mm/memunmap: don't access uninitialized memmap in memunmap_pages()
[linux-2.6-block.git] / fs / aio.c
CommitLineData
1da177e4
LT
1/*
2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
4 *
5 * Implements an efficient asynchronous io interface.
6 *
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
bfe4037e 8 * Copyright 2018 Christoph Hellwig.
1da177e4
LT
9 *
10 * See ../COPYING for licensing terms.
11 */
caf4167a
KO
12#define pr_fmt(fmt) "%s: " fmt, __func__
13
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/init.h>
16#include <linux/errno.h>
17#include <linux/time.h>
18#include <linux/aio_abi.h>
630d9c47 19#include <linux/export.h>
1da177e4 20#include <linux/syscalls.h>
b9d128f1 21#include <linux/backing-dev.h>
9018ccc4 22#include <linux/refcount.h>
027445c3 23#include <linux/uio.h>
1da177e4 24
174cd4b1 25#include <linux/sched/signal.h>
1da177e4
LT
26#include <linux/fs.h>
27#include <linux/file.h>
28#include <linux/mm.h>
29#include <linux/mman.h>
3d2d827f 30#include <linux/mmu_context.h>
e1bdd5f2 31#include <linux/percpu.h>
1da177e4
LT
32#include <linux/slab.h>
33#include <linux/timer.h>
34#include <linux/aio.h>
35#include <linux/highmem.h>
36#include <linux/workqueue.h>
37#include <linux/security.h>
9c3060be 38#include <linux/eventfd.h>
cfb1e33e 39#include <linux/blkdev.h>
9d85cba7 40#include <linux/compat.h>
36bc08cc
GZ
41#include <linux/migrate.h>
42#include <linux/ramfs.h>
723be6e3 43#include <linux/percpu-refcount.h>
71ad7490 44#include <linux/mount.h>
52db59df 45#include <linux/pseudo_fs.h>
1da177e4
LT
46
47#include <asm/kmap_types.h>
7c0f6ba6 48#include <linux/uaccess.h>
a538e3ff 49#include <linux/nospec.h>
1da177e4 50
68d70d03
AV
51#include "internal.h"
52
f3a2752a
CH
53#define KIOCB_KEY 0
54
4e179bca
KO
55#define AIO_RING_MAGIC 0xa10a10a1
56#define AIO_RING_COMPAT_FEATURES 1
57#define AIO_RING_INCOMPAT_FEATURES 0
58struct aio_ring {
59 unsigned id; /* kernel internal index number */
60 unsigned nr; /* number of io_events */
fa8a53c3
BL
61 unsigned head; /* Written to by userland or under ring_lock
62 * mutex by aio_read_events_ring(). */
4e179bca
KO
63 unsigned tail;
64
65 unsigned magic;
66 unsigned compat_features;
67 unsigned incompat_features;
68 unsigned header_length; /* size of aio_ring */
69
70
71 struct io_event io_events[0];
72}; /* 128 bytes + ring size */
73
a79d40e9
JA
74/*
75 * Plugging is meant to work with larger batches of IOs. If we don't
76 * have more than the below, then don't bother setting up a plug.
77 */
78#define AIO_PLUG_THRESHOLD 2
79
4e179bca 80#define AIO_RING_PAGES 8
4e179bca 81
db446a08 82struct kioctx_table {
d0264c01
TH
83 struct rcu_head rcu;
84 unsigned nr;
85 struct kioctx __rcu *table[];
db446a08
BL
86};
87
e1bdd5f2
KO
88struct kioctx_cpu {
89 unsigned reqs_available;
90};
91
dc48e56d
JA
92struct ctx_rq_wait {
93 struct completion comp;
94 atomic_t count;
95};
96
4e179bca 97struct kioctx {
723be6e3 98 struct percpu_ref users;
36f55889 99 atomic_t dead;
4e179bca 100
e34ecee2
KO
101 struct percpu_ref reqs;
102
4e179bca 103 unsigned long user_id;
4e179bca 104
e1bdd5f2
KO
105 struct __percpu kioctx_cpu *cpu;
106
107 /*
108 * For percpu reqs_available, number of slots we move to/from global
109 * counter at a time:
110 */
111 unsigned req_batch;
3e845ce0
KO
112 /*
113 * This is what userspace passed to io_setup(), it's not used for
114 * anything but counting against the global max_reqs quota.
115 *
58c85dc2 116 * The real limit is nr_events - 1, which will be larger (see
3e845ce0
KO
117 * aio_setup_ring())
118 */
4e179bca
KO
119 unsigned max_reqs;
120
58c85dc2
KO
121 /* Size of ringbuffer, in units of struct io_event */
122 unsigned nr_events;
4e179bca 123
58c85dc2
KO
124 unsigned long mmap_base;
125 unsigned long mmap_size;
126
127 struct page **ring_pages;
128 long nr_pages;
129
f729863a 130 struct rcu_work free_rwork; /* see free_ioctx() */
4e23bcae 131
e02ba72a
AP
132 /*
133 * signals when all in-flight requests are done
134 */
dc48e56d 135 struct ctx_rq_wait *rq_wait;
e02ba72a 136
4e23bcae 137 struct {
34e83fc6
KO
138 /*
139 * This counts the number of available slots in the ringbuffer,
140 * so we avoid overflowing it: it's decremented (if positive)
141 * when allocating a kiocb and incremented when the resulting
142 * io_event is pulled off the ringbuffer.
e1bdd5f2
KO
143 *
144 * We batch accesses to it with a percpu version.
34e83fc6
KO
145 */
146 atomic_t reqs_available;
4e23bcae
KO
147 } ____cacheline_aligned_in_smp;
148
149 struct {
150 spinlock_t ctx_lock;
151 struct list_head active_reqs; /* used for cancellation */
152 } ____cacheline_aligned_in_smp;
153
58c85dc2
KO
154 struct {
155 struct mutex ring_lock;
4e23bcae
KO
156 wait_queue_head_t wait;
157 } ____cacheline_aligned_in_smp;
58c85dc2
KO
158
159 struct {
160 unsigned tail;
d856f32a 161 unsigned completed_events;
58c85dc2 162 spinlock_t completion_lock;
4e23bcae 163 } ____cacheline_aligned_in_smp;
58c85dc2
KO
164
165 struct page *internal_pages[AIO_RING_PAGES];
36bc08cc 166 struct file *aio_ring_file;
db446a08
BL
167
168 unsigned id;
4e179bca
KO
169};
170
84c4e1f8
LT
171/*
172 * First field must be the file pointer in all the
173 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
174 */
a3c0d439 175struct fsync_iocb {
a3c0d439 176 struct file *file;
84c4e1f8 177 struct work_struct work;
a3c0d439
CH
178 bool datasync;
179};
180
bfe4037e
CH
181struct poll_iocb {
182 struct file *file;
183 struct wait_queue_head *head;
184 __poll_t events;
af5c72b1 185 bool done;
bfe4037e
CH
186 bool cancelled;
187 struct wait_queue_entry wait;
188 struct work_struct work;
189};
190
84c4e1f8
LT
191/*
192 * NOTE! Each of the iocb union members has the file pointer
193 * as the first entry in their struct definition. So you can
194 * access the file pointer through any of the sub-structs,
195 * or directly as just 'ki_filp' in this struct.
196 */
04b2fa9f 197struct aio_kiocb {
54843f87 198 union {
84c4e1f8 199 struct file *ki_filp;
54843f87 200 struct kiocb rw;
a3c0d439 201 struct fsync_iocb fsync;
bfe4037e 202 struct poll_iocb poll;
54843f87 203 };
04b2fa9f
CH
204
205 struct kioctx *ki_ctx;
206 kiocb_cancel_fn *ki_cancel;
207
a9339b78 208 struct io_event ki_res;
04b2fa9f
CH
209
210 struct list_head ki_list; /* the aio core uses this
211 * for cancellation */
9018ccc4 212 refcount_t ki_refcnt;
04b2fa9f
CH
213
214 /*
215 * If the aio_resfd field of the userspace iocb is not zero,
216 * this is the underlying eventfd context to deliver events to.
217 */
218 struct eventfd_ctx *ki_eventfd;
219};
220
1da177e4 221/*------ sysctl variables----*/
d55b5fda
ZB
222static DEFINE_SPINLOCK(aio_nr_lock);
223unsigned long aio_nr; /* current system wide number of aio requests */
224unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
1da177e4
LT
225/*----end sysctl variables---*/
226
e18b890b
CL
227static struct kmem_cache *kiocb_cachep;
228static struct kmem_cache *kioctx_cachep;
1da177e4 229
71ad7490
BL
230static struct vfsmount *aio_mnt;
231
232static const struct file_operations aio_ring_fops;
233static const struct address_space_operations aio_ctx_aops;
234
235static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
236{
71ad7490 237 struct file *file;
71ad7490 238 struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
7f62656b
DC
239 if (IS_ERR(inode))
240 return ERR_CAST(inode);
71ad7490
BL
241
242 inode->i_mapping->a_ops = &aio_ctx_aops;
243 inode->i_mapping->private_data = ctx;
244 inode->i_size = PAGE_SIZE * nr_pages;
245
d93aa9d8
AV
246 file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
247 O_RDWR, &aio_ring_fops);
c9c554f2 248 if (IS_ERR(file))
71ad7490 249 iput(inode);
71ad7490
BL
250 return file;
251}
252
52db59df 253static int aio_init_fs_context(struct fs_context *fc)
71ad7490 254{
52db59df
DH
255 if (!init_pseudo(fc, AIO_RING_MAGIC))
256 return -ENOMEM;
257 fc->s_iflags |= SB_I_NOEXEC;
258 return 0;
71ad7490
BL
259}
260
1da177e4
LT
261/* aio_setup
262 * Creates the slab caches used by the aio routines, panic on
263 * failure as this is done early during the boot sequence.
264 */
265static int __init aio_setup(void)
266{
71ad7490
BL
267 static struct file_system_type aio_fs = {
268 .name = "aio",
52db59df 269 .init_fs_context = aio_init_fs_context,
71ad7490
BL
270 .kill_sb = kill_anon_super,
271 };
272 aio_mnt = kern_mount(&aio_fs);
273 if (IS_ERR(aio_mnt))
274 panic("Failed to create aio fs mount.");
275
04b2fa9f 276 kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
0a31bd5f 277 kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
1da177e4
LT
278 return 0;
279}
385773e0 280__initcall(aio_setup);
1da177e4 281
5e9ae2e5
BL
282static void put_aio_ring_file(struct kioctx *ctx)
283{
284 struct file *aio_ring_file = ctx->aio_ring_file;
de04e769
RV
285 struct address_space *i_mapping;
286
5e9ae2e5 287 if (aio_ring_file) {
45063097 288 truncate_setsize(file_inode(aio_ring_file), 0);
5e9ae2e5
BL
289
290 /* Prevent further access to the kioctx from migratepages */
45063097 291 i_mapping = aio_ring_file->f_mapping;
de04e769
RV
292 spin_lock(&i_mapping->private_lock);
293 i_mapping->private_data = NULL;
5e9ae2e5 294 ctx->aio_ring_file = NULL;
de04e769 295 spin_unlock(&i_mapping->private_lock);
5e9ae2e5
BL
296
297 fput(aio_ring_file);
298 }
299}
300
1da177e4
LT
301static void aio_free_ring(struct kioctx *ctx)
302{
36bc08cc 303 int i;
1da177e4 304
fa8a53c3
BL
305 /* Disconnect the kiotx from the ring file. This prevents future
306 * accesses to the kioctx from page migration.
307 */
308 put_aio_ring_file(ctx);
309
36bc08cc 310 for (i = 0; i < ctx->nr_pages; i++) {
8e321fef 311 struct page *page;
36bc08cc
GZ
312 pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
313 page_count(ctx->ring_pages[i]));
8e321fef
BL
314 page = ctx->ring_pages[i];
315 if (!page)
316 continue;
317 ctx->ring_pages[i] = NULL;
318 put_page(page);
36bc08cc 319 }
1da177e4 320
ddb8c45b 321 if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
58c85dc2 322 kfree(ctx->ring_pages);
ddb8c45b
SL
323 ctx->ring_pages = NULL;
324 }
36bc08cc
GZ
325}
326
5477e70a 327static int aio_ring_mremap(struct vm_area_struct *vma)
e4a0d3e7 328{
5477e70a 329 struct file *file = vma->vm_file;
e4a0d3e7
PE
330 struct mm_struct *mm = vma->vm_mm;
331 struct kioctx_table *table;
b2edffdd 332 int i, res = -EINVAL;
e4a0d3e7
PE
333
334 spin_lock(&mm->ioctx_lock);
335 rcu_read_lock();
336 table = rcu_dereference(mm->ioctx_table);
337 for (i = 0; i < table->nr; i++) {
338 struct kioctx *ctx;
339
d0264c01 340 ctx = rcu_dereference(table->table[i]);
e4a0d3e7 341 if (ctx && ctx->aio_ring_file == file) {
b2edffdd
AV
342 if (!atomic_read(&ctx->dead)) {
343 ctx->user_id = ctx->mmap_base = vma->vm_start;
344 res = 0;
345 }
e4a0d3e7
PE
346 break;
347 }
348 }
349
350 rcu_read_unlock();
351 spin_unlock(&mm->ioctx_lock);
b2edffdd 352 return res;
e4a0d3e7
PE
353}
354
5477e70a
ON
355static const struct vm_operations_struct aio_ring_vm_ops = {
356 .mremap = aio_ring_mremap,
357#if IS_ENABLED(CONFIG_MMU)
358 .fault = filemap_fault,
359 .map_pages = filemap_map_pages,
360 .page_mkwrite = filemap_page_mkwrite,
361#endif
362};
363
364static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
365{
366 vma->vm_flags |= VM_DONTEXPAND;
367 vma->vm_ops = &aio_ring_vm_ops;
368 return 0;
369}
370
36bc08cc
GZ
371static const struct file_operations aio_ring_fops = {
372 .mmap = aio_ring_mmap,
373};
374
0c45355f 375#if IS_ENABLED(CONFIG_MIGRATION)
36bc08cc
GZ
376static int aio_migratepage(struct address_space *mapping, struct page *new,
377 struct page *old, enum migrate_mode mode)
378{
5e9ae2e5 379 struct kioctx *ctx;
36bc08cc 380 unsigned long flags;
fa8a53c3 381 pgoff_t idx;
36bc08cc
GZ
382 int rc;
383
2916ecc0
JG
384 /*
385 * We cannot support the _NO_COPY case here, because copy needs to
386 * happen under the ctx->completion_lock. That does not work with the
387 * migration workflow of MIGRATE_SYNC_NO_COPY.
388 */
389 if (mode == MIGRATE_SYNC_NO_COPY)
390 return -EINVAL;
391
8e321fef
BL
392 rc = 0;
393
fa8a53c3 394 /* mapping->private_lock here protects against the kioctx teardown. */
8e321fef
BL
395 spin_lock(&mapping->private_lock);
396 ctx = mapping->private_data;
fa8a53c3
BL
397 if (!ctx) {
398 rc = -EINVAL;
399 goto out;
400 }
401
402 /* The ring_lock mutex. The prevents aio_read_events() from writing
403 * to the ring's head, and prevents page migration from mucking in
404 * a partially initialized kiotx.
405 */
406 if (!mutex_trylock(&ctx->ring_lock)) {
407 rc = -EAGAIN;
408 goto out;
409 }
410
411 idx = old->index;
412 if (idx < (pgoff_t)ctx->nr_pages) {
413 /* Make sure the old page hasn't already been changed */
414 if (ctx->ring_pages[idx] != old)
415 rc = -EAGAIN;
8e321fef
BL
416 } else
417 rc = -EINVAL;
8e321fef
BL
418
419 if (rc != 0)
fa8a53c3 420 goto out_unlock;
8e321fef 421
36bc08cc
GZ
422 /* Writeback must be complete */
423 BUG_ON(PageWriteback(old));
8e321fef 424 get_page(new);
36bc08cc 425
37109694 426 rc = migrate_page_move_mapping(mapping, new, old, 1);
36bc08cc 427 if (rc != MIGRATEPAGE_SUCCESS) {
8e321fef 428 put_page(new);
fa8a53c3 429 goto out_unlock;
36bc08cc
GZ
430 }
431
fa8a53c3
BL
432 /* Take completion_lock to prevent other writes to the ring buffer
433 * while the old page is copied to the new. This prevents new
434 * events from being lost.
5e9ae2e5 435 */
fa8a53c3
BL
436 spin_lock_irqsave(&ctx->completion_lock, flags);
437 migrate_page_copy(new, old);
438 BUG_ON(ctx->ring_pages[idx] != old);
439 ctx->ring_pages[idx] = new;
440 spin_unlock_irqrestore(&ctx->completion_lock, flags);
36bc08cc 441
fa8a53c3
BL
442 /* The old page is no longer accessible. */
443 put_page(old);
8e321fef 444
fa8a53c3
BL
445out_unlock:
446 mutex_unlock(&ctx->ring_lock);
447out:
448 spin_unlock(&mapping->private_lock);
36bc08cc 449 return rc;
1da177e4 450}
0c45355f 451#endif
1da177e4 452
36bc08cc 453static const struct address_space_operations aio_ctx_aops = {
835f252c 454 .set_page_dirty = __set_page_dirty_no_writeback,
0c45355f 455#if IS_ENABLED(CONFIG_MIGRATION)
36bc08cc 456 .migratepage = aio_migratepage,
0c45355f 457#endif
36bc08cc
GZ
458};
459
2a8a9867 460static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
1da177e4
LT
461{
462 struct aio_ring *ring;
41003a7b 463 struct mm_struct *mm = current->mm;
3dc9acb6 464 unsigned long size, unused;
1da177e4 465 int nr_pages;
36bc08cc
GZ
466 int i;
467 struct file *file;
1da177e4
LT
468
469 /* Compensate for the ring buffer's head/tail overlap entry */
470 nr_events += 2; /* 1 is required, 2 for good luck */
471
472 size = sizeof(struct aio_ring);
473 size += sizeof(struct io_event) * nr_events;
1da177e4 474
36bc08cc 475 nr_pages = PFN_UP(size);
1da177e4
LT
476 if (nr_pages < 0)
477 return -EINVAL;
478
71ad7490 479 file = aio_private_file(ctx, nr_pages);
36bc08cc
GZ
480 if (IS_ERR(file)) {
481 ctx->aio_ring_file = NULL;
fa8a53c3 482 return -ENOMEM;
36bc08cc
GZ
483 }
484
3dc9acb6
LT
485 ctx->aio_ring_file = file;
486 nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
487 / sizeof(struct io_event);
488
489 ctx->ring_pages = ctx->internal_pages;
490 if (nr_pages > AIO_RING_PAGES) {
491 ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
492 GFP_KERNEL);
493 if (!ctx->ring_pages) {
494 put_aio_ring_file(ctx);
495 return -ENOMEM;
496 }
497 }
498
36bc08cc
GZ
499 for (i = 0; i < nr_pages; i++) {
500 struct page *page;
45063097 501 page = find_or_create_page(file->f_mapping,
36bc08cc
GZ
502 i, GFP_HIGHUSER | __GFP_ZERO);
503 if (!page)
504 break;
505 pr_debug("pid(%d) page[%d]->count=%d\n",
506 current->pid, i, page_count(page));
507 SetPageUptodate(page);
36bc08cc 508 unlock_page(page);
3dc9acb6
LT
509
510 ctx->ring_pages[i] = page;
36bc08cc 511 }
3dc9acb6 512 ctx->nr_pages = i;
1da177e4 513
3dc9acb6
LT
514 if (unlikely(i != nr_pages)) {
515 aio_free_ring(ctx);
fa8a53c3 516 return -ENOMEM;
1da177e4
LT
517 }
518
58c85dc2
KO
519 ctx->mmap_size = nr_pages * PAGE_SIZE;
520 pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
36bc08cc 521
013373e8
MH
522 if (down_write_killable(&mm->mmap_sem)) {
523 ctx->mmap_size = 0;
524 aio_free_ring(ctx);
525 return -EINTR;
526 }
527
36bc08cc
GZ
528 ctx->mmap_base = do_mmap_pgoff(ctx->aio_ring_file, 0, ctx->mmap_size,
529 PROT_READ | PROT_WRITE,
897ab3e0 530 MAP_SHARED, 0, &unused, NULL);
3dc9acb6 531 up_write(&mm->mmap_sem);
58c85dc2 532 if (IS_ERR((void *)ctx->mmap_base)) {
58c85dc2 533 ctx->mmap_size = 0;
1da177e4 534 aio_free_ring(ctx);
fa8a53c3 535 return -ENOMEM;
1da177e4
LT
536 }
537
58c85dc2 538 pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
d6c355c7 539
58c85dc2
KO
540 ctx->user_id = ctx->mmap_base;
541 ctx->nr_events = nr_events; /* trusted copy */
1da177e4 542
58c85dc2 543 ring = kmap_atomic(ctx->ring_pages[0]);
1da177e4 544 ring->nr = nr_events; /* user copy */
db446a08 545 ring->id = ~0U;
1da177e4
LT
546 ring->head = ring->tail = 0;
547 ring->magic = AIO_RING_MAGIC;
548 ring->compat_features = AIO_RING_COMPAT_FEATURES;
549 ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
550 ring->header_length = sizeof(struct aio_ring);
e8e3c3d6 551 kunmap_atomic(ring);
58c85dc2 552 flush_dcache_page(ctx->ring_pages[0]);
1da177e4
LT
553
554 return 0;
555}
556
1da177e4
LT
557#define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
558#define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
559#define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
560
04b2fa9f 561void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
0460fef2 562{
54843f87 563 struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw);
0460fef2
KO
564 struct kioctx *ctx = req->ki_ctx;
565 unsigned long flags;
566
75321b50
CH
567 if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
568 return;
0460fef2 569
75321b50
CH
570 spin_lock_irqsave(&ctx->ctx_lock, flags);
571 list_add_tail(&req->ki_list, &ctx->active_reqs);
0460fef2 572 req->ki_cancel = cancel;
0460fef2
KO
573 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
574}
575EXPORT_SYMBOL(kiocb_set_cancel_fn);
576
a6d7cff4
TH
577/*
578 * free_ioctx() should be RCU delayed to synchronize against the RCU
579 * protected lookup_ioctx() and also needs process context to call
f729863a 580 * aio_free_ring(). Use rcu_work.
a6d7cff4 581 */
e34ecee2 582static void free_ioctx(struct work_struct *work)
36f55889 583{
f729863a
TH
584 struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
585 free_rwork);
e34ecee2 586 pr_debug("freeing %p\n", ctx);
e1bdd5f2 587
e34ecee2 588 aio_free_ring(ctx);
e1bdd5f2 589 free_percpu(ctx->cpu);
9a1049da
TH
590 percpu_ref_exit(&ctx->reqs);
591 percpu_ref_exit(&ctx->users);
36f55889
KO
592 kmem_cache_free(kioctx_cachep, ctx);
593}
594
e34ecee2
KO
595static void free_ioctx_reqs(struct percpu_ref *ref)
596{
597 struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
598
e02ba72a 599 /* At this point we know that there are no any in-flight requests */
dc48e56d
JA
600 if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
601 complete(&ctx->rq_wait->comp);
e02ba72a 602
a6d7cff4 603 /* Synchronize against RCU protected table->table[] dereferences */
f729863a
TH
604 INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
605 queue_rcu_work(system_wq, &ctx->free_rwork);
e34ecee2
KO
606}
607
36f55889
KO
608/*
609 * When this function runs, the kioctx has been removed from the "hash table"
610 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
611 * now it's safe to cancel any that need to be.
612 */
e34ecee2 613static void free_ioctx_users(struct percpu_ref *ref)
36f55889 614{
e34ecee2 615 struct kioctx *ctx = container_of(ref, struct kioctx, users);
04b2fa9f 616 struct aio_kiocb *req;
36f55889
KO
617
618 spin_lock_irq(&ctx->ctx_lock);
619
620 while (!list_empty(&ctx->active_reqs)) {
621 req = list_first_entry(&ctx->active_reqs,
04b2fa9f 622 struct aio_kiocb, ki_list);
888933f8 623 req->ki_cancel(&req->rw);
4faa9996 624 list_del_init(&req->ki_list);
36f55889
KO
625 }
626
627 spin_unlock_irq(&ctx->ctx_lock);
628
e34ecee2
KO
629 percpu_ref_kill(&ctx->reqs);
630 percpu_ref_put(&ctx->reqs);
36f55889
KO
631}
632
db446a08
BL
633static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
634{
635 unsigned i, new_nr;
636 struct kioctx_table *table, *old;
637 struct aio_ring *ring;
638
639 spin_lock(&mm->ioctx_lock);
855ef0de 640 table = rcu_dereference_raw(mm->ioctx_table);
db446a08
BL
641
642 while (1) {
643 if (table)
644 for (i = 0; i < table->nr; i++)
d0264c01 645 if (!rcu_access_pointer(table->table[i])) {
db446a08 646 ctx->id = i;
d0264c01 647 rcu_assign_pointer(table->table[i], ctx);
db446a08
BL
648 spin_unlock(&mm->ioctx_lock);
649
fa8a53c3
BL
650 /* While kioctx setup is in progress,
651 * we are protected from page migration
652 * changes ring_pages by ->ring_lock.
653 */
db446a08
BL
654 ring = kmap_atomic(ctx->ring_pages[0]);
655 ring->id = ctx->id;
656 kunmap_atomic(ring);
657 return 0;
658 }
659
660 new_nr = (table ? table->nr : 1) * 4;
db446a08
BL
661 spin_unlock(&mm->ioctx_lock);
662
663 table = kzalloc(sizeof(*table) + sizeof(struct kioctx *) *
664 new_nr, GFP_KERNEL);
665 if (!table)
666 return -ENOMEM;
667
668 table->nr = new_nr;
669
670 spin_lock(&mm->ioctx_lock);
855ef0de 671 old = rcu_dereference_raw(mm->ioctx_table);
db446a08
BL
672
673 if (!old) {
674 rcu_assign_pointer(mm->ioctx_table, table);
675 } else if (table->nr > old->nr) {
676 memcpy(table->table, old->table,
677 old->nr * sizeof(struct kioctx *));
678
679 rcu_assign_pointer(mm->ioctx_table, table);
680 kfree_rcu(old, rcu);
681 } else {
682 kfree(table);
683 table = old;
684 }
685 }
686}
687
e34ecee2
KO
688static void aio_nr_sub(unsigned nr)
689{
690 spin_lock(&aio_nr_lock);
691 if (WARN_ON(aio_nr - nr > aio_nr))
692 aio_nr = 0;
693 else
694 aio_nr -= nr;
695 spin_unlock(&aio_nr_lock);
696}
697
1da177e4
LT
698/* ioctx_alloc
699 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
700 */
701static struct kioctx *ioctx_alloc(unsigned nr_events)
702{
41003a7b 703 struct mm_struct *mm = current->mm;
1da177e4 704 struct kioctx *ctx;
e23754f8 705 int err = -ENOMEM;
1da177e4 706
2a8a9867
MFO
707 /*
708 * Store the original nr_events -- what userspace passed to io_setup(),
709 * for counting against the global limit -- before it changes.
710 */
711 unsigned int max_reqs = nr_events;
712
e1bdd5f2
KO
713 /*
714 * We keep track of the number of available ringbuffer slots, to prevent
715 * overflow (reqs_available), and we also use percpu counters for this.
716 *
717 * So since up to half the slots might be on other cpu's percpu counters
718 * and unavailable, double nr_events so userspace sees what they
719 * expected: additionally, we move req_batch slots to/from percpu
720 * counters at a time, so make sure that isn't 0:
721 */
722 nr_events = max(nr_events, num_possible_cpus() * 4);
723 nr_events *= 2;
724
1da177e4 725 /* Prevent overflows */
08397acd 726 if (nr_events > (0x10000000U / sizeof(struct io_event))) {
1da177e4
LT
727 pr_debug("ENOMEM: nr_events too high\n");
728 return ERR_PTR(-EINVAL);
729 }
730
2a8a9867 731 if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
1da177e4
LT
732 return ERR_PTR(-EAGAIN);
733
c3762229 734 ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
1da177e4
LT
735 if (!ctx)
736 return ERR_PTR(-ENOMEM);
737
2a8a9867 738 ctx->max_reqs = max_reqs;
1da177e4 739
1da177e4 740 spin_lock_init(&ctx->ctx_lock);
0460fef2 741 spin_lock_init(&ctx->completion_lock);
58c85dc2 742 mutex_init(&ctx->ring_lock);
fa8a53c3
BL
743 /* Protect against page migration throughout kiotx setup by keeping
744 * the ring_lock mutex held until setup is complete. */
745 mutex_lock(&ctx->ring_lock);
1da177e4
LT
746 init_waitqueue_head(&ctx->wait);
747
748 INIT_LIST_HEAD(&ctx->active_reqs);
1da177e4 749
2aad2a86 750 if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
fa8a53c3
BL
751 goto err;
752
2aad2a86 753 if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
fa8a53c3
BL
754 goto err;
755
e1bdd5f2
KO
756 ctx->cpu = alloc_percpu(struct kioctx_cpu);
757 if (!ctx->cpu)
e34ecee2 758 goto err;
1da177e4 759
2a8a9867 760 err = aio_setup_ring(ctx, nr_events);
fa8a53c3 761 if (err < 0)
e34ecee2 762 goto err;
e1bdd5f2 763
34e83fc6 764 atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
e1bdd5f2 765 ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
6878ea72
BL
766 if (ctx->req_batch < 1)
767 ctx->req_batch = 1;
34e83fc6 768
1da177e4 769 /* limit the number of system wide aios */
9fa1cb39 770 spin_lock(&aio_nr_lock);
2a8a9867
MFO
771 if (aio_nr + ctx->max_reqs > aio_max_nr ||
772 aio_nr + ctx->max_reqs < aio_nr) {
9fa1cb39 773 spin_unlock(&aio_nr_lock);
e34ecee2 774 err = -EAGAIN;
d1b94327 775 goto err_ctx;
2dd542b7
AV
776 }
777 aio_nr += ctx->max_reqs;
9fa1cb39 778 spin_unlock(&aio_nr_lock);
1da177e4 779
1881686f
BL
780 percpu_ref_get(&ctx->users); /* io_setup() will drop this ref */
781 percpu_ref_get(&ctx->reqs); /* free_ioctx_users() will drop this */
723be6e3 782
da90382c
BL
783 err = ioctx_add_table(ctx, mm);
784 if (err)
e34ecee2 785 goto err_cleanup;
da90382c 786
fa8a53c3
BL
787 /* Release the ring_lock mutex now that all setup is complete. */
788 mutex_unlock(&ctx->ring_lock);
789
caf4167a 790 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
58c85dc2 791 ctx, ctx->user_id, mm, ctx->nr_events);
1da177e4
LT
792 return ctx;
793
e34ecee2
KO
794err_cleanup:
795 aio_nr_sub(ctx->max_reqs);
d1b94327 796err_ctx:
deeb8525
AV
797 atomic_set(&ctx->dead, 1);
798 if (ctx->mmap_size)
799 vm_munmap(ctx->mmap_base, ctx->mmap_size);
d1b94327 800 aio_free_ring(ctx);
e34ecee2 801err:
fa8a53c3 802 mutex_unlock(&ctx->ring_lock);
e1bdd5f2 803 free_percpu(ctx->cpu);
9a1049da
TH
804 percpu_ref_exit(&ctx->reqs);
805 percpu_ref_exit(&ctx->users);
1da177e4 806 kmem_cache_free(kioctx_cachep, ctx);
caf4167a 807 pr_debug("error allocating ioctx %d\n", err);
e23754f8 808 return ERR_PTR(err);
1da177e4
LT
809}
810
36f55889
KO
811/* kill_ioctx
812 * Cancels all outstanding aio requests on an aio context. Used
813 * when the processes owning a context have all exited to encourage
814 * the rapid destruction of the kioctx.
815 */
fb2d4483 816static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
dc48e56d 817 struct ctx_rq_wait *wait)
36f55889 818{
fa88b6f8 819 struct kioctx_table *table;
db446a08 820
b2edffdd
AV
821 spin_lock(&mm->ioctx_lock);
822 if (atomic_xchg(&ctx->dead, 1)) {
823 spin_unlock(&mm->ioctx_lock);
fa88b6f8 824 return -EINVAL;
b2edffdd 825 }
db446a08 826
855ef0de 827 table = rcu_dereference_raw(mm->ioctx_table);
d0264c01
TH
828 WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
829 RCU_INIT_POINTER(table->table[ctx->id], NULL);
fa88b6f8 830 spin_unlock(&mm->ioctx_lock);
4fcc712f 831
a6d7cff4 832 /* free_ioctx_reqs() will do the necessary RCU synchronization */
fa88b6f8 833 wake_up_all(&ctx->wait);
4fcc712f 834
fa88b6f8
BL
835 /*
836 * It'd be more correct to do this in free_ioctx(), after all
837 * the outstanding kiocbs have finished - but by then io_destroy
838 * has already returned, so io_setup() could potentially return
839 * -EAGAIN with no ioctxs actually in use (as far as userspace
840 * could tell).
841 */
842 aio_nr_sub(ctx->max_reqs);
4fcc712f 843
fa88b6f8
BL
844 if (ctx->mmap_size)
845 vm_munmap(ctx->mmap_base, ctx->mmap_size);
fb2d4483 846
dc48e56d 847 ctx->rq_wait = wait;
fa88b6f8
BL
848 percpu_ref_kill(&ctx->users);
849 return 0;
1da177e4
LT
850}
851
36f55889
KO
852/*
853 * exit_aio: called when the last user of mm goes away. At this point, there is
854 * no way for any new requests to be submited or any of the io_* syscalls to be
855 * called on the context.
856 *
857 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
858 * them.
1da177e4 859 */
fc9b52cd 860void exit_aio(struct mm_struct *mm)
1da177e4 861{
4b70ac5f 862 struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
dc48e56d
JA
863 struct ctx_rq_wait wait;
864 int i, skipped;
db446a08 865
4b70ac5f
ON
866 if (!table)
867 return;
db446a08 868
dc48e56d
JA
869 atomic_set(&wait.count, table->nr);
870 init_completion(&wait.comp);
871
872 skipped = 0;
4b70ac5f 873 for (i = 0; i < table->nr; ++i) {
d0264c01
TH
874 struct kioctx *ctx =
875 rcu_dereference_protected(table->table[i], true);
abf137dd 876
dc48e56d
JA
877 if (!ctx) {
878 skipped++;
4b70ac5f 879 continue;
dc48e56d
JA
880 }
881
936af157 882 /*
4b70ac5f
ON
883 * We don't need to bother with munmap() here - exit_mmap(mm)
884 * is coming and it'll unmap everything. And we simply can't,
885 * this is not necessarily our ->mm.
886 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
887 * that it needs to unmap the area, just set it to 0.
936af157 888 */
58c85dc2 889 ctx->mmap_size = 0;
dc48e56d
JA
890 kill_ioctx(mm, ctx, &wait);
891 }
36f55889 892
dc48e56d 893 if (!atomic_sub_and_test(skipped, &wait.count)) {
6098b45b 894 /* Wait until all IO for the context are done. */
dc48e56d 895 wait_for_completion(&wait.comp);
1da177e4 896 }
4b70ac5f
ON
897
898 RCU_INIT_POINTER(mm->ioctx_table, NULL);
899 kfree(table);
1da177e4
LT
900}
901
e1bdd5f2
KO
902static void put_reqs_available(struct kioctx *ctx, unsigned nr)
903{
904 struct kioctx_cpu *kcpu;
263782c1 905 unsigned long flags;
e1bdd5f2 906
263782c1 907 local_irq_save(flags);
be6fb451 908 kcpu = this_cpu_ptr(ctx->cpu);
e1bdd5f2 909 kcpu->reqs_available += nr;
263782c1 910
e1bdd5f2
KO
911 while (kcpu->reqs_available >= ctx->req_batch * 2) {
912 kcpu->reqs_available -= ctx->req_batch;
913 atomic_add(ctx->req_batch, &ctx->reqs_available);
914 }
915
263782c1 916 local_irq_restore(flags);
e1bdd5f2
KO
917}
918
432c7997 919static bool __get_reqs_available(struct kioctx *ctx)
e1bdd5f2
KO
920{
921 struct kioctx_cpu *kcpu;
922 bool ret = false;
263782c1 923 unsigned long flags;
e1bdd5f2 924
263782c1 925 local_irq_save(flags);
be6fb451 926 kcpu = this_cpu_ptr(ctx->cpu);
e1bdd5f2
KO
927 if (!kcpu->reqs_available) {
928 int old, avail = atomic_read(&ctx->reqs_available);
929
930 do {
931 if (avail < ctx->req_batch)
932 goto out;
933
934 old = avail;
935 avail = atomic_cmpxchg(&ctx->reqs_available,
936 avail, avail - ctx->req_batch);
937 } while (avail != old);
938
939 kcpu->reqs_available += ctx->req_batch;
940 }
941
942 ret = true;
943 kcpu->reqs_available--;
944out:
263782c1 945 local_irq_restore(flags);
e1bdd5f2
KO
946 return ret;
947}
948
d856f32a
BL
949/* refill_reqs_available
950 * Updates the reqs_available reference counts used for tracking the
951 * number of free slots in the completion ring. This can be called
952 * from aio_complete() (to optimistically update reqs_available) or
953 * from aio_get_req() (the we're out of events case). It must be
954 * called holding ctx->completion_lock.
955 */
956static void refill_reqs_available(struct kioctx *ctx, unsigned head,
957 unsigned tail)
958{
959 unsigned events_in_ring, completed;
960
961 /* Clamp head since userland can write to it. */
962 head %= ctx->nr_events;
963 if (head <= tail)
964 events_in_ring = tail - head;
965 else
966 events_in_ring = ctx->nr_events - (head - tail);
967
968 completed = ctx->completed_events;
969 if (events_in_ring < completed)
970 completed -= events_in_ring;
971 else
972 completed = 0;
973
974 if (!completed)
975 return;
976
977 ctx->completed_events -= completed;
978 put_reqs_available(ctx, completed);
979}
980
981/* user_refill_reqs_available
982 * Called to refill reqs_available when aio_get_req() encounters an
983 * out of space in the completion ring.
984 */
985static void user_refill_reqs_available(struct kioctx *ctx)
986{
987 spin_lock_irq(&ctx->completion_lock);
988 if (ctx->completed_events) {
989 struct aio_ring *ring;
990 unsigned head;
991
992 /* Access of ring->head may race with aio_read_events_ring()
993 * here, but that's okay since whether we read the old version
994 * or the new version, and either will be valid. The important
995 * part is that head cannot pass tail since we prevent
996 * aio_complete() from updating tail by holding
997 * ctx->completion_lock. Even if head is invalid, the check
998 * against ctx->completed_events below will make sure we do the
999 * safe/right thing.
1000 */
1001 ring = kmap_atomic(ctx->ring_pages[0]);
1002 head = ring->head;
1003 kunmap_atomic(ring);
1004
1005 refill_reqs_available(ctx, head, ctx->tail);
1006 }
1007
1008 spin_unlock_irq(&ctx->completion_lock);
1009}
1010
432c7997
CH
1011static bool get_reqs_available(struct kioctx *ctx)
1012{
1013 if (__get_reqs_available(ctx))
1014 return true;
1015 user_refill_reqs_available(ctx);
1016 return __get_reqs_available(ctx);
1017}
1018
1da177e4 1019/* aio_get_req
57282d8f
KO
1020 * Allocate a slot for an aio request.
1021 * Returns NULL if no requests are free.
b53119f1
LT
1022 *
1023 * The refcount is initialized to 2 - one for the async op completion,
1024 * one for the synchronous code that does this.
1da177e4 1025 */
04b2fa9f 1026static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1da177e4 1027{
04b2fa9f 1028 struct aio_kiocb *req;
a1c8eae7 1029
2bc4ca9b 1030 req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
1da177e4 1031 if (unlikely(!req))
432c7997 1032 return NULL;
1da177e4 1033
fa0ca2ae 1034 if (unlikely(!get_reqs_available(ctx))) {
6af1c849 1035 kmem_cache_free(kiocb_cachep, req);
fa0ca2ae
AV
1036 return NULL;
1037 }
1038
e34ecee2 1039 percpu_ref_get(&ctx->reqs);
2bc4ca9b 1040 req->ki_ctx = ctx;
75321b50 1041 INIT_LIST_HEAD(&req->ki_list);
b53119f1 1042 refcount_set(&req->ki_refcnt, 2);
2bc4ca9b 1043 req->ki_eventfd = NULL;
080d676d 1044 return req;
1da177e4
LT
1045}
1046
d5470b59 1047static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1da177e4 1048{
db446a08 1049 struct aio_ring __user *ring = (void __user *)ctx_id;
abf137dd 1050 struct mm_struct *mm = current->mm;
65c24491 1051 struct kioctx *ctx, *ret = NULL;
db446a08
BL
1052 struct kioctx_table *table;
1053 unsigned id;
1054
1055 if (get_user(id, &ring->id))
1056 return NULL;
1da177e4 1057
abf137dd 1058 rcu_read_lock();
db446a08 1059 table = rcu_dereference(mm->ioctx_table);
abf137dd 1060
db446a08
BL
1061 if (!table || id >= table->nr)
1062 goto out;
1da177e4 1063
a538e3ff 1064 id = array_index_nospec(id, table->nr);
d0264c01 1065 ctx = rcu_dereference(table->table[id]);
f30d704f 1066 if (ctx && ctx->user_id == ctx_id) {
baf10564
AV
1067 if (percpu_ref_tryget_live(&ctx->users))
1068 ret = ctx;
db446a08
BL
1069 }
1070out:
abf137dd 1071 rcu_read_unlock();
65c24491 1072 return ret;
1da177e4
LT
1073}
1074
b53119f1
LT
1075static inline void iocb_destroy(struct aio_kiocb *iocb)
1076{
74259703
AV
1077 if (iocb->ki_eventfd)
1078 eventfd_ctx_put(iocb->ki_eventfd);
b53119f1
LT
1079 if (iocb->ki_filp)
1080 fput(iocb->ki_filp);
1081 percpu_ref_put(&iocb->ki_ctx->reqs);
1082 kmem_cache_free(kiocb_cachep, iocb);
1083}
1084
1da177e4
LT
1085/* aio_complete
1086 * Called when the io request on the given iocb is complete.
1da177e4 1087 */
2bb874c0 1088static void aio_complete(struct aio_kiocb *iocb)
1da177e4
LT
1089{
1090 struct kioctx *ctx = iocb->ki_ctx;
1da177e4 1091 struct aio_ring *ring;
21b40200 1092 struct io_event *ev_page, *event;
d856f32a 1093 unsigned tail, pos, head;
1da177e4 1094 unsigned long flags;
1da177e4 1095
0460fef2
KO
1096 /*
1097 * Add a completion event to the ring buffer. Must be done holding
4b30f07e 1098 * ctx->completion_lock to prevent other code from messing with the tail
0460fef2
KO
1099 * pointer since we might be called from irq context.
1100 */
1101 spin_lock_irqsave(&ctx->completion_lock, flags);
1102
58c85dc2 1103 tail = ctx->tail;
21b40200
KO
1104 pos = tail + AIO_EVENTS_OFFSET;
1105
58c85dc2 1106 if (++tail >= ctx->nr_events)
4bf69b2a 1107 tail = 0;
1da177e4 1108
58c85dc2 1109 ev_page = kmap_atomic(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
21b40200
KO
1110 event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1111
a9339b78 1112 *event = iocb->ki_res;
1da177e4 1113
21b40200 1114 kunmap_atomic(ev_page);
58c85dc2 1115 flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
21b40200 1116
a9339b78
AV
1117 pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb,
1118 (void __user *)(unsigned long)iocb->ki_res.obj,
1119 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2);
1da177e4
LT
1120
1121 /* after flagging the request as done, we
1122 * must never even look at it again
1123 */
1124 smp_wmb(); /* make event visible before updating tail */
1125
58c85dc2 1126 ctx->tail = tail;
1da177e4 1127
58c85dc2 1128 ring = kmap_atomic(ctx->ring_pages[0]);
d856f32a 1129 head = ring->head;
21b40200 1130 ring->tail = tail;
e8e3c3d6 1131 kunmap_atomic(ring);
58c85dc2 1132 flush_dcache_page(ctx->ring_pages[0]);
1da177e4 1133
d856f32a
BL
1134 ctx->completed_events++;
1135 if (ctx->completed_events > 1)
1136 refill_reqs_available(ctx, head, tail);
0460fef2
KO
1137 spin_unlock_irqrestore(&ctx->completion_lock, flags);
1138
21b40200 1139 pr_debug("added to ring %p at [%u]\n", iocb, tail);
8d1c98b0
DL
1140
1141 /*
1142 * Check if the user asked us to deliver the result through an
1143 * eventfd. The eventfd_signal() function is safe to be called
1144 * from IRQ context.
1145 */
74259703 1146 if (iocb->ki_eventfd)
8d1c98b0
DL
1147 eventfd_signal(iocb->ki_eventfd, 1);
1148
6cb2a210
QB
1149 /*
1150 * We have to order our ring_info tail store above and test
1151 * of the wait list below outside the wait lock. This is
1152 * like in wake_up_bit() where clearing a bit has to be
1153 * ordered with the unlocked test.
1154 */
1155 smp_mb();
1156
1da177e4
LT
1157 if (waitqueue_active(&ctx->wait))
1158 wake_up(&ctx->wait);
2bb874c0
AV
1159}
1160
1161static inline void iocb_put(struct aio_kiocb *iocb)
1162{
1163 if (refcount_dec_and_test(&iocb->ki_refcnt)) {
1164 aio_complete(iocb);
1165 iocb_destroy(iocb);
1166 }
1da177e4
LT
1167}
1168
2be4e7de 1169/* aio_read_events_ring
a31ad380
KO
1170 * Pull an event off of the ioctx's event ring. Returns the number of
1171 * events fetched
1da177e4 1172 */
a31ad380
KO
1173static long aio_read_events_ring(struct kioctx *ctx,
1174 struct io_event __user *event, long nr)
1da177e4 1175{
1da177e4 1176 struct aio_ring *ring;
5ffac122 1177 unsigned head, tail, pos;
a31ad380
KO
1178 long ret = 0;
1179 int copy_ret;
1180
9c9ce763
DC
1181 /*
1182 * The mutex can block and wake us up and that will cause
1183 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1184 * and repeat. This should be rare enough that it doesn't cause
1185 * peformance issues. See the comment in read_events() for more detail.
1186 */
1187 sched_annotate_sleep();
58c85dc2 1188 mutex_lock(&ctx->ring_lock);
1da177e4 1189
fa8a53c3 1190 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
58c85dc2 1191 ring = kmap_atomic(ctx->ring_pages[0]);
a31ad380 1192 head = ring->head;
5ffac122 1193 tail = ring->tail;
a31ad380
KO
1194 kunmap_atomic(ring);
1195
2ff396be
JM
1196 /*
1197 * Ensure that once we've read the current tail pointer, that
1198 * we also see the events that were stored up to the tail.
1199 */
1200 smp_rmb();
1201
5ffac122 1202 pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1da177e4 1203
5ffac122 1204 if (head == tail)
1da177e4
LT
1205 goto out;
1206
edfbbf38
BL
1207 head %= ctx->nr_events;
1208 tail %= ctx->nr_events;
1209
a31ad380
KO
1210 while (ret < nr) {
1211 long avail;
1212 struct io_event *ev;
1213 struct page *page;
1214
5ffac122
KO
1215 avail = (head <= tail ? tail : ctx->nr_events) - head;
1216 if (head == tail)
a31ad380
KO
1217 break;
1218
a31ad380 1219 pos = head + AIO_EVENTS_OFFSET;
58c85dc2 1220 page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
a31ad380
KO
1221 pos %= AIO_EVENTS_PER_PAGE;
1222
d2988bd4
AV
1223 avail = min(avail, nr - ret);
1224 avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1225
a31ad380
KO
1226 ev = kmap(page);
1227 copy_ret = copy_to_user(event + ret, ev + pos,
1228 sizeof(*ev) * avail);
1229 kunmap(page);
1230
1231 if (unlikely(copy_ret)) {
1232 ret = -EFAULT;
1233 goto out;
1234 }
1235
1236 ret += avail;
1237 head += avail;
58c85dc2 1238 head %= ctx->nr_events;
1da177e4 1239 }
1da177e4 1240
58c85dc2 1241 ring = kmap_atomic(ctx->ring_pages[0]);
a31ad380 1242 ring->head = head;
91d80a84 1243 kunmap_atomic(ring);
58c85dc2 1244 flush_dcache_page(ctx->ring_pages[0]);
a31ad380 1245
5ffac122 1246 pr_debug("%li h%u t%u\n", ret, head, tail);
a31ad380 1247out:
58c85dc2 1248 mutex_unlock(&ctx->ring_lock);
a31ad380 1249
1da177e4
LT
1250 return ret;
1251}
1252
a31ad380
KO
1253static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1254 struct io_event __user *event, long *i)
1da177e4 1255{
a31ad380 1256 long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1da177e4 1257
a31ad380
KO
1258 if (ret > 0)
1259 *i += ret;
1da177e4 1260
a31ad380
KO
1261 if (unlikely(atomic_read(&ctx->dead)))
1262 ret = -EINVAL;
1da177e4 1263
a31ad380
KO
1264 if (!*i)
1265 *i = ret;
1da177e4 1266
a31ad380 1267 return ret < 0 || *i >= min_nr;
1da177e4
LT
1268}
1269
a31ad380 1270static long read_events(struct kioctx *ctx, long min_nr, long nr,
1da177e4 1271 struct io_event __user *event,
fa2e62a5 1272 ktime_t until)
1da177e4 1273{
a31ad380 1274 long ret = 0;
1da177e4 1275
a31ad380
KO
1276 /*
1277 * Note that aio_read_events() is being called as the conditional - i.e.
1278 * we're calling it after prepare_to_wait() has set task state to
1279 * TASK_INTERRUPTIBLE.
1280 *
1281 * But aio_read_events() can block, and if it blocks it's going to flip
1282 * the task state back to TASK_RUNNING.
1283 *
1284 * This should be ok, provided it doesn't flip the state back to
1285 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1286 * will only happen if the mutex_lock() call blocks, and we then find
1287 * the ringbuffer empty. So in practice we should be ok, but it's
1288 * something to be aware of when touching this code.
1289 */
2456e855 1290 if (until == 0)
5f785de5
FZ
1291 aio_read_events(ctx, min_nr, nr, event, &ret);
1292 else
1293 wait_event_interruptible_hrtimeout(ctx->wait,
1294 aio_read_events(ctx, min_nr, nr, event, &ret),
1295 until);
a31ad380 1296 return ret;
1da177e4
LT
1297}
1298
1da177e4
LT
1299/* sys_io_setup:
1300 * Create an aio_context capable of receiving at least nr_events.
1301 * ctxp must not point to an aio_context that already exists, and
1302 * must be initialized to 0 prior to the call. On successful
1303 * creation of the aio_context, *ctxp is filled in with the resulting
1304 * handle. May fail with -EINVAL if *ctxp is not initialized,
1305 * if the specified nr_events exceeds internal limits. May fail
1306 * with -EAGAIN if the specified nr_events exceeds the user's limit
1307 * of available events. May fail with -ENOMEM if insufficient kernel
1308 * resources are available. May fail with -EFAULT if an invalid
1309 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1310 * implemented.
1311 */
002c8976 1312SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1da177e4
LT
1313{
1314 struct kioctx *ioctx = NULL;
1315 unsigned long ctx;
1316 long ret;
1317
1318 ret = get_user(ctx, ctxp);
1319 if (unlikely(ret))
1320 goto out;
1321
1322 ret = -EINVAL;
d55b5fda 1323 if (unlikely(ctx || nr_events == 0)) {
acd88d4e 1324 pr_debug("EINVAL: ctx %lu nr_events %u\n",
d55b5fda 1325 ctx, nr_events);
1da177e4
LT
1326 goto out;
1327 }
1328
1329 ioctx = ioctx_alloc(nr_events);
1330 ret = PTR_ERR(ioctx);
1331 if (!IS_ERR(ioctx)) {
1332 ret = put_user(ioctx->user_id, ctxp);
a2e1859a 1333 if (ret)
e02ba72a 1334 kill_ioctx(current->mm, ioctx, NULL);
723be6e3 1335 percpu_ref_put(&ioctx->users);
1da177e4
LT
1336 }
1337
1338out:
1339 return ret;
1340}
1341
c00d2c7e
AV
1342#ifdef CONFIG_COMPAT
1343COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1344{
1345 struct kioctx *ioctx = NULL;
1346 unsigned long ctx;
1347 long ret;
1348
1349 ret = get_user(ctx, ctx32p);
1350 if (unlikely(ret))
1351 goto out;
1352
1353 ret = -EINVAL;
1354 if (unlikely(ctx || nr_events == 0)) {
1355 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1356 ctx, nr_events);
1357 goto out;
1358 }
1359
1360 ioctx = ioctx_alloc(nr_events);
1361 ret = PTR_ERR(ioctx);
1362 if (!IS_ERR(ioctx)) {
1363 /* truncating is ok because it's a user address */
1364 ret = put_user((u32)ioctx->user_id, ctx32p);
1365 if (ret)
1366 kill_ioctx(current->mm, ioctx, NULL);
1367 percpu_ref_put(&ioctx->users);
1368 }
1369
1370out:
1371 return ret;
1372}
1373#endif
1374
1da177e4
LT
1375/* sys_io_destroy:
1376 * Destroy the aio_context specified. May cancel any outstanding
1377 * AIOs and block on completion. Will fail with -ENOSYS if not
642b5123 1378 * implemented. May fail with -EINVAL if the context pointed to
1da177e4
LT
1379 * is invalid.
1380 */
002c8976 1381SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1da177e4
LT
1382{
1383 struct kioctx *ioctx = lookup_ioctx(ctx);
1384 if (likely(NULL != ioctx)) {
dc48e56d 1385 struct ctx_rq_wait wait;
fb2d4483 1386 int ret;
e02ba72a 1387
dc48e56d
JA
1388 init_completion(&wait.comp);
1389 atomic_set(&wait.count, 1);
1390
e02ba72a
AP
1391 /* Pass requests_done to kill_ioctx() where it can be set
1392 * in a thread-safe way. If we try to set it here then we have
1393 * a race condition if two io_destroy() called simultaneously.
1394 */
dc48e56d 1395 ret = kill_ioctx(current->mm, ioctx, &wait);
723be6e3 1396 percpu_ref_put(&ioctx->users);
e02ba72a
AP
1397
1398 /* Wait until all IO for the context are done. Otherwise kernel
1399 * keep using user-space buffers even if user thinks the context
1400 * is destroyed.
1401 */
fb2d4483 1402 if (!ret)
dc48e56d 1403 wait_for_completion(&wait.comp);
e02ba72a 1404
fb2d4483 1405 return ret;
1da177e4 1406 }
acd88d4e 1407 pr_debug("EINVAL: invalid context id\n");
1da177e4
LT
1408 return -EINVAL;
1409}
1410
3c96c7f4
AV
1411static void aio_remove_iocb(struct aio_kiocb *iocb)
1412{
1413 struct kioctx *ctx = iocb->ki_ctx;
1414 unsigned long flags;
1415
1416 spin_lock_irqsave(&ctx->ctx_lock, flags);
1417 list_del(&iocb->ki_list);
1418 spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1419}
1420
54843f87
CH
1421static void aio_complete_rw(struct kiocb *kiocb, long res, long res2)
1422{
1423 struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1424
3c96c7f4
AV
1425 if (!list_empty_careful(&iocb->ki_list))
1426 aio_remove_iocb(iocb);
1427
54843f87
CH
1428 if (kiocb->ki_flags & IOCB_WRITE) {
1429 struct inode *inode = file_inode(kiocb->ki_filp);
1430
1431 /*
1432 * Tell lockdep we inherited freeze protection from submission
1433 * thread.
1434 */
1435 if (S_ISREG(inode->i_mode))
1436 __sb_writers_acquired(inode->i_sb, SB_FREEZE_WRITE);
1437 file_end_write(kiocb->ki_filp);
1438 }
1439
2bb874c0
AV
1440 iocb->ki_res.res = res;
1441 iocb->ki_res.res2 = res2;
1442 iocb_put(iocb);
54843f87
CH
1443}
1444
88a6f18b 1445static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb)
54843f87
CH
1446{
1447 int ret;
1448
54843f87 1449 req->ki_complete = aio_complete_rw;
ec51f8ee 1450 req->private = NULL;
54843f87
CH
1451 req->ki_pos = iocb->aio_offset;
1452 req->ki_flags = iocb_flags(req->ki_filp);
1453 if (iocb->aio_flags & IOCB_FLAG_RESFD)
1454 req->ki_flags |= IOCB_EVENTFD;
fc28724d 1455 req->ki_hint = ki_hint_validate(file_write_hint(req->ki_filp));
d9a08a9e
AM
1456 if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1457 /*
1458 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1459 * aio_reqprio is interpreted as an I/O scheduling
1460 * class and priority.
1461 */
1462 ret = ioprio_check_cap(iocb->aio_reqprio);
1463 if (ret) {
9a6d9a62 1464 pr_debug("aio ioprio check cap error: %d\n", ret);
84c4e1f8 1465 return ret;
d9a08a9e
AM
1466 }
1467
1468 req->ki_ioprio = iocb->aio_reqprio;
1469 } else
76dc8913 1470 req->ki_ioprio = get_current_ioprio();
d9a08a9e 1471
54843f87
CH
1472 ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1473 if (unlikely(ret))
84c4e1f8 1474 return ret;
154989e4
CH
1475
1476 req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */
1477 return 0;
54843f87
CH
1478}
1479
87e5e6da
JA
1480static ssize_t aio_setup_rw(int rw, const struct iocb *iocb,
1481 struct iovec **iovec, bool vectored, bool compat,
1482 struct iov_iter *iter)
eed4e51f 1483{
89319d31
CH
1484 void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1485 size_t len = iocb->aio_nbytes;
1486
1487 if (!vectored) {
1488 ssize_t ret = import_single_range(rw, buf, len, *iovec, iter);
1489 *iovec = NULL;
1490 return ret;
1491 }
9d85cba7
JM
1492#ifdef CONFIG_COMPAT
1493 if (compat)
89319d31
CH
1494 return compat_import_iovec(rw, buf, len, UIO_FASTIOV, iovec,
1495 iter);
9d85cba7 1496#endif
89319d31 1497 return import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter);
eed4e51f
BP
1498}
1499
9061d14a 1500static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
89319d31
CH
1501{
1502 switch (ret) {
1503 case -EIOCBQUEUED:
9061d14a 1504 break;
89319d31
CH
1505 case -ERESTARTSYS:
1506 case -ERESTARTNOINTR:
1507 case -ERESTARTNOHAND:
1508 case -ERESTART_RESTARTBLOCK:
1509 /*
1510 * There's no easy way to restart the syscall since other AIO's
1511 * may be already running. Just fail this IO with EINTR.
1512 */
1513 ret = -EINTR;
1514 /*FALLTHRU*/
1515 default:
bc9bff61 1516 req->ki_complete(req, ret, 0);
89319d31
CH
1517 }
1518}
1519
958c13ce 1520static int aio_read(struct kiocb *req, const struct iocb *iocb,
88a6f18b 1521 bool vectored, bool compat)
1da177e4 1522{
00fefb9c 1523 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
293bc982 1524 struct iov_iter iter;
54843f87 1525 struct file *file;
958c13ce 1526 int ret;
1da177e4 1527
54843f87
CH
1528 ret = aio_prep_rw(req, iocb);
1529 if (ret)
1530 return ret;
1531 file = req->ki_filp;
89319d31 1532 if (unlikely(!(file->f_mode & FMODE_READ)))
84c4e1f8 1533 return -EBADF;
54843f87 1534 ret = -EINVAL;
89319d31 1535 if (unlikely(!file->f_op->read_iter))
84c4e1f8 1536 return -EINVAL;
73a7075e 1537
89319d31 1538 ret = aio_setup_rw(READ, iocb, &iovec, vectored, compat, &iter);
87e5e6da 1539 if (ret < 0)
84c4e1f8 1540 return ret;
89319d31
CH
1541 ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1542 if (!ret)
9061d14a 1543 aio_rw_done(req, call_read_iter(file, req, &iter));
89319d31
CH
1544 kfree(iovec);
1545 return ret;
1546}
73a7075e 1547
958c13ce 1548static int aio_write(struct kiocb *req, const struct iocb *iocb,
88a6f18b 1549 bool vectored, bool compat)
89319d31 1550{
89319d31
CH
1551 struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1552 struct iov_iter iter;
54843f87 1553 struct file *file;
958c13ce 1554 int ret;
41ef4eb8 1555
54843f87
CH
1556 ret = aio_prep_rw(req, iocb);
1557 if (ret)
1558 return ret;
1559 file = req->ki_filp;
1560
89319d31 1561 if (unlikely(!(file->f_mode & FMODE_WRITE)))
84c4e1f8 1562 return -EBADF;
89319d31 1563 if (unlikely(!file->f_op->write_iter))
84c4e1f8 1564 return -EINVAL;
1da177e4 1565
89319d31 1566 ret = aio_setup_rw(WRITE, iocb, &iovec, vectored, compat, &iter);
87e5e6da 1567 if (ret < 0)
84c4e1f8 1568 return ret;
89319d31
CH
1569 ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1570 if (!ret) {
70fe2f48 1571 /*
92ce4728 1572 * Open-code file_start_write here to grab freeze protection,
54843f87
CH
1573 * which will be released by another thread in
1574 * aio_complete_rw(). Fool lockdep by telling it the lock got
1575 * released so that it doesn't complain about the held lock when
1576 * we return to userspace.
70fe2f48 1577 */
92ce4728
CH
1578 if (S_ISREG(file_inode(file)->i_mode)) {
1579 __sb_start_write(file_inode(file)->i_sb, SB_FREEZE_WRITE, true);
a12f1ae6 1580 __sb_writers_release(file_inode(file)->i_sb, SB_FREEZE_WRITE);
92ce4728
CH
1581 }
1582 req->ki_flags |= IOCB_WRITE;
9061d14a 1583 aio_rw_done(req, call_write_iter(file, req, &iter));
41ef4eb8 1584 }
89319d31
CH
1585 kfree(iovec);
1586 return ret;
1da177e4
LT
1587}
1588
a3c0d439
CH
1589static void aio_fsync_work(struct work_struct *work)
1590{
2bb874c0 1591 struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work);
a3c0d439 1592
2bb874c0
AV
1593 iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync);
1594 iocb_put(iocb);
a3c0d439
CH
1595}
1596
88a6f18b
JA
1597static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb,
1598 bool datasync)
a3c0d439
CH
1599{
1600 if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1601 iocb->aio_rw_flags))
1602 return -EINVAL;
a11e1d43 1603
84c4e1f8 1604 if (unlikely(!req->file->f_op->fsync))
a3c0d439 1605 return -EINVAL;
a3c0d439
CH
1606
1607 req->datasync = datasync;
1608 INIT_WORK(&req->work, aio_fsync_work);
1609 schedule_work(&req->work);
9061d14a 1610 return 0;
a3c0d439
CH
1611}
1612
bfe4037e
CH
1613static void aio_poll_complete_work(struct work_struct *work)
1614{
1615 struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1616 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1617 struct poll_table_struct pt = { ._key = req->events };
1618 struct kioctx *ctx = iocb->ki_ctx;
1619 __poll_t mask = 0;
1620
1621 if (!READ_ONCE(req->cancelled))
1622 mask = vfs_poll(req->file, &pt) & req->events;
1623
1624 /*
1625 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1626 * calling ->ki_cancel. We need the ctx_lock roundtrip here to
1627 * synchronize with them. In the cancellation case the list_del_init
1628 * itself is not actually needed, but harmless so we keep it in to
1629 * avoid further branches in the fast path.
1630 */
1631 spin_lock_irq(&ctx->ctx_lock);
1632 if (!mask && !READ_ONCE(req->cancelled)) {
1633 add_wait_queue(req->head, &req->wait);
1634 spin_unlock_irq(&ctx->ctx_lock);
1635 return;
1636 }
1637 list_del_init(&iocb->ki_list);
af5c72b1
AV
1638 iocb->ki_res.res = mangle_poll(mask);
1639 req->done = true;
bfe4037e
CH
1640 spin_unlock_irq(&ctx->ctx_lock);
1641
af5c72b1 1642 iocb_put(iocb);
bfe4037e
CH
1643}
1644
1645/* assumes we are called with irqs disabled */
1646static int aio_poll_cancel(struct kiocb *iocb)
1647{
1648 struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1649 struct poll_iocb *req = &aiocb->poll;
1650
1651 spin_lock(&req->head->lock);
1652 WRITE_ONCE(req->cancelled, true);
1653 if (!list_empty(&req->wait.entry)) {
1654 list_del_init(&req->wait.entry);
1655 schedule_work(&aiocb->poll.work);
1656 }
1657 spin_unlock(&req->head->lock);
1658
1659 return 0;
1660}
1661
1662static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1663 void *key)
1664{
1665 struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
e8693bcf 1666 struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
bfe4037e 1667 __poll_t mask = key_to_poll(key);
d3d6a18d 1668 unsigned long flags;
bfe4037e 1669
bfe4037e 1670 /* for instances that support it check for an event match first: */
af5c72b1
AV
1671 if (mask && !(mask & req->events))
1672 return 0;
e8693bcf 1673
af5c72b1
AV
1674 list_del_init(&req->wait.entry);
1675
1676 if (mask && spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) {
d3d6a18d
BVA
1677 /*
1678 * Try to complete the iocb inline if we can. Use
1679 * irqsave/irqrestore because not all filesystems (e.g. fuse)
1680 * call this function with IRQs disabled and because IRQs
1681 * have to be disabled before ctx_lock is obtained.
1682 */
af5c72b1
AV
1683 list_del(&iocb->ki_list);
1684 iocb->ki_res.res = mangle_poll(mask);
1685 req->done = true;
1686 spin_unlock_irqrestore(&iocb->ki_ctx->ctx_lock, flags);
1687 iocb_put(iocb);
1688 } else {
1689 schedule_work(&req->work);
e8693bcf 1690 }
bfe4037e
CH
1691 return 1;
1692}
1693
1694struct aio_poll_table {
1695 struct poll_table_struct pt;
1696 struct aio_kiocb *iocb;
1697 int error;
1698};
1699
1700static void
1701aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1702 struct poll_table_struct *p)
1703{
1704 struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1705
1706 /* multiple wait queues per file are not supported */
1707 if (unlikely(pt->iocb->poll.head)) {
1708 pt->error = -EINVAL;
1709 return;
1710 }
1711
1712 pt->error = 0;
1713 pt->iocb->poll.head = head;
1714 add_wait_queue(head, &pt->iocb->poll.wait);
1715}
1716
958c13ce 1717static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb)
bfe4037e
CH
1718{
1719 struct kioctx *ctx = aiocb->ki_ctx;
1720 struct poll_iocb *req = &aiocb->poll;
1721 struct aio_poll_table apt;
af5c72b1 1722 bool cancel = false;
bfe4037e
CH
1723 __poll_t mask;
1724
1725 /* reject any unknown events outside the normal event mask. */
1726 if ((u16)iocb->aio_buf != iocb->aio_buf)
1727 return -EINVAL;
1728 /* reject fields that are not defined for poll */
1729 if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1730 return -EINVAL;
1731
1732 INIT_WORK(&req->work, aio_poll_complete_work);
1733 req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
bfe4037e 1734
2bc4ca9b 1735 req->head = NULL;
af5c72b1 1736 req->done = false;
2bc4ca9b
JA
1737 req->cancelled = false;
1738
bfe4037e
CH
1739 apt.pt._qproc = aio_poll_queue_proc;
1740 apt.pt._key = req->events;
1741 apt.iocb = aiocb;
1742 apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1743
1744 /* initialized the list so that we can do list_empty checks */
1745 INIT_LIST_HEAD(&req->wait.entry);
1746 init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1747
bfe4037e 1748 mask = vfs_poll(req->file, &apt.pt) & req->events;
bfe4037e 1749 spin_lock_irq(&ctx->ctx_lock);
af5c72b1
AV
1750 if (likely(req->head)) {
1751 spin_lock(&req->head->lock);
1752 if (unlikely(list_empty(&req->wait.entry))) {
1753 if (apt.error)
1754 cancel = true;
1755 apt.error = 0;
1756 mask = 0;
1757 }
1758 if (mask || apt.error) {
1759 list_del_init(&req->wait.entry);
1760 } else if (cancel) {
1761 WRITE_ONCE(req->cancelled, true);
1762 } else if (!req->done) { /* actually waiting for an event */
1763 list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1764 aiocb->ki_cancel = aio_poll_cancel;
1765 }
1766 spin_unlock(&req->head->lock);
1767 }
1768 if (mask) { /* no async, we'd stolen it */
1769 aiocb->ki_res.res = mangle_poll(mask);
bfe4037e 1770 apt.error = 0;
bfe4037e 1771 }
bfe4037e 1772 spin_unlock_irq(&ctx->ctx_lock);
bfe4037e 1773 if (mask)
af5c72b1
AV
1774 iocb_put(aiocb);
1775 return apt.error;
bfe4037e
CH
1776}
1777
88a6f18b 1778static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb,
7316b49c
AV
1779 struct iocb __user *user_iocb, struct aio_kiocb *req,
1780 bool compat)
1da177e4 1781{
84c4e1f8 1782 req->ki_filp = fget(iocb->aio_fildes);
84c4e1f8 1783 if (unlikely(!req->ki_filp))
7316b49c 1784 return -EBADF;
84c4e1f8 1785
88a6f18b 1786 if (iocb->aio_flags & IOCB_FLAG_RESFD) {
74259703 1787 struct eventfd_ctx *eventfd;
9c3060be
DL
1788 /*
1789 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1790 * instance of the file* now. The file descriptor must be
1791 * an eventfd() fd, and will be signaled for each completed
1792 * event using the eventfd_signal() function.
1793 */
74259703 1794 eventfd = eventfd_ctx_fdget(iocb->aio_resfd);
7316b49c 1795 if (IS_ERR(eventfd))
18bfb9c6 1796 return PTR_ERR(eventfd);
7316b49c 1797
74259703 1798 req->ki_eventfd = eventfd;
9830f4be
GR
1799 }
1800
7316b49c 1801 if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) {
caf4167a 1802 pr_debug("EFAULT: aio_key\n");
7316b49c 1803 return -EFAULT;
1da177e4
LT
1804 }
1805
a9339b78
AV
1806 req->ki_res.obj = (u64)(unsigned long)user_iocb;
1807 req->ki_res.data = iocb->aio_data;
1808 req->ki_res.res = 0;
1809 req->ki_res.res2 = 0;
1da177e4 1810
88a6f18b 1811 switch (iocb->aio_lio_opcode) {
89319d31 1812 case IOCB_CMD_PREAD:
7316b49c 1813 return aio_read(&req->rw, iocb, false, compat);
89319d31 1814 case IOCB_CMD_PWRITE:
7316b49c 1815 return aio_write(&req->rw, iocb, false, compat);
89319d31 1816 case IOCB_CMD_PREADV:
7316b49c 1817 return aio_read(&req->rw, iocb, true, compat);
89319d31 1818 case IOCB_CMD_PWRITEV:
7316b49c 1819 return aio_write(&req->rw, iocb, true, compat);
a3c0d439 1820 case IOCB_CMD_FSYNC:
7316b49c 1821 return aio_fsync(&req->fsync, iocb, false);
a3c0d439 1822 case IOCB_CMD_FDSYNC:
7316b49c 1823 return aio_fsync(&req->fsync, iocb, true);
bfe4037e 1824 case IOCB_CMD_POLL:
7316b49c 1825 return aio_poll(req, iocb);
89319d31 1826 default:
88a6f18b 1827 pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
7316b49c 1828 return -EINVAL;
89319d31 1829 }
1da177e4
LT
1830}
1831
88a6f18b
JA
1832static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
1833 bool compat)
1834{
7316b49c 1835 struct aio_kiocb *req;
88a6f18b 1836 struct iocb iocb;
7316b49c 1837 int err;
88a6f18b
JA
1838
1839 if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
1840 return -EFAULT;
1841
7316b49c
AV
1842 /* enforce forwards compatibility on users */
1843 if (unlikely(iocb.aio_reserved2)) {
1844 pr_debug("EINVAL: reserve field set\n");
1845 return -EINVAL;
1846 }
1847
1848 /* prevent overflows */
1849 if (unlikely(
1850 (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
1851 (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
1852 ((ssize_t)iocb.aio_nbytes < 0)
1853 )) {
1854 pr_debug("EINVAL: overflow check\n");
1855 return -EINVAL;
1856 }
1857
1858 req = aio_get_req(ctx);
1859 if (unlikely(!req))
1860 return -EAGAIN;
1861
1862 err = __io_submit_one(ctx, &iocb, user_iocb, req, compat);
1863
1864 /* Done with the synchronous reference */
1865 iocb_put(req);
1866
1867 /*
1868 * If err is 0, we'd either done aio_complete() ourselves or have
1869 * arranged for that to be done asynchronously. Anything non-zero
1870 * means that we need to destroy req ourselves.
1871 */
1872 if (unlikely(err)) {
1873 iocb_destroy(req);
1874 put_reqs_available(ctx, 1);
1875 }
1876 return err;
88a6f18b
JA
1877}
1878
67ba049f
AV
1879/* sys_io_submit:
1880 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1881 * the number of iocbs queued. May return -EINVAL if the aio_context
1882 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1883 * *iocbpp[0] is not properly initialized, if the operation specified
1884 * is invalid for the file descriptor in the iocb. May fail with
1885 * -EFAULT if any of the data structures point to invalid data. May
1886 * fail with -EBADF if the file descriptor specified in the first
1887 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1888 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1889 * fail with -ENOSYS if not implemented.
1890 */
1891SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
1892 struct iocb __user * __user *, iocbpp)
1da177e4
LT
1893{
1894 struct kioctx *ctx;
1895 long ret = 0;
080d676d 1896 int i = 0;
9f5b9425 1897 struct blk_plug plug;
1da177e4
LT
1898
1899 if (unlikely(nr < 0))
1900 return -EINVAL;
1901
1da177e4
LT
1902 ctx = lookup_ioctx(ctx_id);
1903 if (unlikely(!ctx)) {
caf4167a 1904 pr_debug("EINVAL: invalid context id\n");
1da177e4
LT
1905 return -EINVAL;
1906 }
1907
1da92779
AV
1908 if (nr > ctx->nr_events)
1909 nr = ctx->nr_events;
1910
a79d40e9
JA
1911 if (nr > AIO_PLUG_THRESHOLD)
1912 blk_start_plug(&plug);
67ba049f 1913 for (i = 0; i < nr; i++) {
1da177e4 1914 struct iocb __user *user_iocb;
1da177e4 1915
67ba049f 1916 if (unlikely(get_user(user_iocb, iocbpp + i))) {
1da177e4
LT
1917 ret = -EFAULT;
1918 break;
1919 }
1920
67ba049f 1921 ret = io_submit_one(ctx, user_iocb, false);
1da177e4
LT
1922 if (ret)
1923 break;
1924 }
a79d40e9
JA
1925 if (nr > AIO_PLUG_THRESHOLD)
1926 blk_finish_plug(&plug);
1da177e4 1927
723be6e3 1928 percpu_ref_put(&ctx->users);
1da177e4
LT
1929 return i ? i : ret;
1930}
1931
c00d2c7e 1932#ifdef CONFIG_COMPAT
c00d2c7e 1933COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
67ba049f 1934 int, nr, compat_uptr_t __user *, iocbpp)
c00d2c7e 1935{
67ba049f
AV
1936 struct kioctx *ctx;
1937 long ret = 0;
1938 int i = 0;
1939 struct blk_plug plug;
c00d2c7e
AV
1940
1941 if (unlikely(nr < 0))
1942 return -EINVAL;
1943
67ba049f
AV
1944 ctx = lookup_ioctx(ctx_id);
1945 if (unlikely(!ctx)) {
1946 pr_debug("EINVAL: invalid context id\n");
1947 return -EINVAL;
1948 }
1949
1da92779
AV
1950 if (nr > ctx->nr_events)
1951 nr = ctx->nr_events;
1952
a79d40e9
JA
1953 if (nr > AIO_PLUG_THRESHOLD)
1954 blk_start_plug(&plug);
67ba049f
AV
1955 for (i = 0; i < nr; i++) {
1956 compat_uptr_t user_iocb;
1957
1958 if (unlikely(get_user(user_iocb, iocbpp + i))) {
1959 ret = -EFAULT;
1960 break;
1961 }
1962
1963 ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
1964 if (ret)
1965 break;
1966 }
a79d40e9
JA
1967 if (nr > AIO_PLUG_THRESHOLD)
1968 blk_finish_plug(&plug);
67ba049f
AV
1969
1970 percpu_ref_put(&ctx->users);
1971 return i ? i : ret;
c00d2c7e
AV
1972}
1973#endif
1974
1da177e4
LT
1975/* sys_io_cancel:
1976 * Attempts to cancel an iocb previously passed to io_submit. If
1977 * the operation is successfully cancelled, the resulting event is
1978 * copied into the memory pointed to by result without being placed
1979 * into the completion queue and 0 is returned. May fail with
1980 * -EFAULT if any of the data structures pointed to are invalid.
1981 * May fail with -EINVAL if aio_context specified by ctx_id is
1982 * invalid. May fail with -EAGAIN if the iocb specified was not
1983 * cancelled. Will fail with -ENOSYS if not implemented.
1984 */
002c8976
HC
1985SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
1986 struct io_event __user *, result)
1da177e4 1987{
1da177e4 1988 struct kioctx *ctx;
04b2fa9f 1989 struct aio_kiocb *kiocb;
888933f8 1990 int ret = -EINVAL;
1da177e4 1991 u32 key;
a9339b78 1992 u64 obj = (u64)(unsigned long)iocb;
1da177e4 1993
f3a2752a 1994 if (unlikely(get_user(key, &iocb->aio_key)))
1da177e4 1995 return -EFAULT;
f3a2752a
CH
1996 if (unlikely(key != KIOCB_KEY))
1997 return -EINVAL;
1da177e4
LT
1998
1999 ctx = lookup_ioctx(ctx_id);
2000 if (unlikely(!ctx))
2001 return -EINVAL;
2002
2003 spin_lock_irq(&ctx->ctx_lock);
833f4154
AV
2004 /* TODO: use a hash or array, this sucks. */
2005 list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
a9339b78 2006 if (kiocb->ki_res.obj == obj) {
833f4154
AV
2007 ret = kiocb->ki_cancel(&kiocb->rw);
2008 list_del_init(&kiocb->ki_list);
2009 break;
2010 }
888933f8 2011 }
1da177e4
LT
2012 spin_unlock_irq(&ctx->ctx_lock);
2013
906b973c 2014 if (!ret) {
bec68faa
KO
2015 /*
2016 * The result argument is no longer used - the io_event is
2017 * always delivered via the ring buffer. -EINPROGRESS indicates
2018 * cancellation is progress:
906b973c 2019 */
bec68faa 2020 ret = -EINPROGRESS;
906b973c 2021 }
1da177e4 2022
723be6e3 2023 percpu_ref_put(&ctx->users);
1da177e4
LT
2024
2025 return ret;
2026}
2027
fa2e62a5
DD
2028static long do_io_getevents(aio_context_t ctx_id,
2029 long min_nr,
2030 long nr,
2031 struct io_event __user *events,
2032 struct timespec64 *ts)
2033{
2034 ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
2035 struct kioctx *ioctx = lookup_ioctx(ctx_id);
2036 long ret = -EINVAL;
2037
2038 if (likely(ioctx)) {
2039 if (likely(min_nr <= nr && min_nr >= 0))
2040 ret = read_events(ioctx, min_nr, nr, events, until);
2041 percpu_ref_put(&ioctx->users);
2042 }
2043
2044 return ret;
2045}
2046
1da177e4
LT
2047/* io_getevents:
2048 * Attempts to read at least min_nr events and up to nr events from
642b5123
ST
2049 * the completion queue for the aio_context specified by ctx_id. If
2050 * it succeeds, the number of read events is returned. May fail with
2051 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2052 * out of range, if timeout is out of range. May fail with -EFAULT
2053 * if any of the memory specified is invalid. May return 0 or
2054 * < min_nr if the timeout specified by timeout has elapsed
2055 * before sufficient events are available, where timeout == NULL
2056 * specifies an infinite timeout. Note that the timeout pointed to by
6900807c 2057 * timeout is relative. Will fail with -ENOSYS if not implemented.
1da177e4 2058 */
7a35397f
DD
2059#if !defined(CONFIG_64BIT_TIME) || defined(CONFIG_64BIT)
2060
002c8976
HC
2061SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2062 long, min_nr,
2063 long, nr,
2064 struct io_event __user *, events,
7a35397f 2065 struct __kernel_timespec __user *, timeout)
1da177e4 2066{
fa2e62a5 2067 struct timespec64 ts;
7a074e96
CH
2068 int ret;
2069
2070 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2071 return -EFAULT;
2072
2073 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2074 if (!ret && signal_pending(current))
2075 ret = -EINTR;
2076 return ret;
2077}
1da177e4 2078
7a35397f
DD
2079#endif
2080
9ba546c0
CH
2081struct __aio_sigset {
2082 const sigset_t __user *sigmask;
2083 size_t sigsetsize;
2084};
2085
7a074e96
CH
2086SYSCALL_DEFINE6(io_pgetevents,
2087 aio_context_t, ctx_id,
2088 long, min_nr,
2089 long, nr,
2090 struct io_event __user *, events,
7a35397f 2091 struct __kernel_timespec __user *, timeout,
7a074e96
CH
2092 const struct __aio_sigset __user *, usig)
2093{
2094 struct __aio_sigset ksig = { NULL, };
7a074e96 2095 struct timespec64 ts;
97abc889 2096 bool interrupted;
7a074e96
CH
2097 int ret;
2098
2099 if (timeout && unlikely(get_timespec64(&ts, timeout)))
2100 return -EFAULT;
2101
2102 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2103 return -EFAULT;
2104
b772434b 2105 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
7a35397f
DD
2106 if (ret)
2107 return ret;
7a074e96
CH
2108
2109 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
97abc889
ON
2110
2111 interrupted = signal_pending(current);
b772434b 2112 restore_saved_sigmask_unless(interrupted);
97abc889 2113 if (interrupted && !ret)
7a35397f 2114 ret = -ERESTARTNOHAND;
7a074e96 2115
7a35397f
DD
2116 return ret;
2117}
2118
2119#if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT)
2120
2121SYSCALL_DEFINE6(io_pgetevents_time32,
2122 aio_context_t, ctx_id,
2123 long, min_nr,
2124 long, nr,
2125 struct io_event __user *, events,
2126 struct old_timespec32 __user *, timeout,
2127 const struct __aio_sigset __user *, usig)
2128{
2129 struct __aio_sigset ksig = { NULL, };
7a35397f 2130 struct timespec64 ts;
97abc889 2131 bool interrupted;
7a35397f
DD
2132 int ret;
2133
2134 if (timeout && unlikely(get_old_timespec32(&ts, timeout)))
2135 return -EFAULT;
2136
2137 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2138 return -EFAULT;
2139
ded653cc 2140
b772434b 2141 ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
ded653cc
DD
2142 if (ret)
2143 return ret;
7a074e96
CH
2144
2145 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
97abc889
ON
2146
2147 interrupted = signal_pending(current);
b772434b 2148 restore_saved_sigmask_unless(interrupted);
97abc889 2149 if (interrupted && !ret)
854a6ed5 2150 ret = -ERESTARTNOHAND;
fa2e62a5 2151
7a074e96 2152 return ret;
1da177e4 2153}
c00d2c7e 2154
7a35397f
DD
2155#endif
2156
2157#if defined(CONFIG_COMPAT_32BIT_TIME)
2158
8dabe724
AB
2159SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id,
2160 __s32, min_nr,
2161 __s32, nr,
2162 struct io_event __user *, events,
2163 struct old_timespec32 __user *, timeout)
c00d2c7e 2164{
fa2e62a5 2165 struct timespec64 t;
7a074e96
CH
2166 int ret;
2167
9afc5eee 2168 if (timeout && get_old_timespec32(&t, timeout))
7a074e96
CH
2169 return -EFAULT;
2170
2171 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2172 if (!ret && signal_pending(current))
2173 ret = -EINTR;
2174 return ret;
2175}
2176
7a35397f
DD
2177#endif
2178
2179#ifdef CONFIG_COMPAT
c00d2c7e 2180
7a074e96
CH
2181struct __compat_aio_sigset {
2182 compat_sigset_t __user *sigmask;
2183 compat_size_t sigsetsize;
2184};
2185
7a35397f
DD
2186#if defined(CONFIG_COMPAT_32BIT_TIME)
2187
7a074e96
CH
2188COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2189 compat_aio_context_t, ctx_id,
2190 compat_long_t, min_nr,
2191 compat_long_t, nr,
2192 struct io_event __user *, events,
9afc5eee 2193 struct old_timespec32 __user *, timeout,
7a074e96
CH
2194 const struct __compat_aio_sigset __user *, usig)
2195{
2196 struct __compat_aio_sigset ksig = { NULL, };
7a074e96 2197 struct timespec64 t;
97abc889 2198 bool interrupted;
7a074e96
CH
2199 int ret;
2200
9afc5eee 2201 if (timeout && get_old_timespec32(&t, timeout))
7a074e96
CH
2202 return -EFAULT;
2203
2204 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2205 return -EFAULT;
2206
b772434b 2207 ret = set_compat_user_sigmask(ksig.sigmask, ksig.sigsetsize);
ded653cc
DD
2208 if (ret)
2209 return ret;
c00d2c7e 2210
7a074e96 2211 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
97abc889
ON
2212
2213 interrupted = signal_pending(current);
b772434b 2214 restore_saved_sigmask_unless(interrupted);
97abc889 2215 if (interrupted && !ret)
854a6ed5 2216 ret = -ERESTARTNOHAND;
fa2e62a5 2217
7a074e96 2218 return ret;
c00d2c7e 2219}
7a35397f
DD
2220
2221#endif
2222
2223COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,
2224 compat_aio_context_t, ctx_id,
2225 compat_long_t, min_nr,
2226 compat_long_t, nr,
2227 struct io_event __user *, events,
2228 struct __kernel_timespec __user *, timeout,
2229 const struct __compat_aio_sigset __user *, usig)
2230{
2231 struct __compat_aio_sigset ksig = { NULL, };
7a35397f 2232 struct timespec64 t;
97abc889 2233 bool interrupted;
7a35397f
DD
2234 int ret;
2235
2236 if (timeout && get_timespec64(&t, timeout))
2237 return -EFAULT;
2238
2239 if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2240 return -EFAULT;
2241
b772434b 2242 ret = set_compat_user_sigmask(ksig.sigmask, ksig.sigsetsize);
7a35397f
DD
2243 if (ret)
2244 return ret;
2245
2246 ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
97abc889
ON
2247
2248 interrupted = signal_pending(current);
b772434b 2249 restore_saved_sigmask_unless(interrupted);
97abc889 2250 if (interrupted && !ret)
7a35397f 2251 ret = -ERESTARTNOHAND;
fa2e62a5 2252
7a074e96 2253 return ret;
c00d2c7e
AV
2254}
2255#endif