thermal: cpu_cooling: rearrange globals
[linux-2.6-block.git] / drivers / thermal / cpu_cooling.c
CommitLineData
02361418
ADK
1/*
2 * linux/drivers/thermal/cpu_cooling.c
3 *
4 * Copyright (C) 2012 Samsung Electronics Co., Ltd(http://www.samsung.com)
5 * Copyright (C) 2012 Amit Daniel <amit.kachhap@linaro.org>
6 *
73904cbc
VK
7 * Copyright (C) 2014 Viresh Kumar <viresh.kumar@linaro.org>
8 *
02361418
ADK
9 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; version 2 of the License.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License along
20 * with this program; if not, write to the Free Software Foundation, Inc.,
21 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
22 *
23 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
24 */
02361418
ADK
25#include <linux/module.h>
26#include <linux/thermal.h>
02361418
ADK
27#include <linux/cpufreq.h>
28#include <linux/err.h>
ae606089 29#include <linux/idr.h>
c36cf071 30#include <linux/pm_opp.h>
02361418
ADK
31#include <linux/slab.h>
32#include <linux/cpu.h>
33#include <linux/cpu_cooling.h>
34
6828a471
JM
35#include <trace/events/thermal.h>
36
07d888d8
VK
37/*
38 * Cooling state <-> CPUFreq frequency
39 *
40 * Cooling states are translated to frequencies throughout this driver and this
41 * is the relation between them.
42 *
43 * Highest cooling state corresponds to lowest possible frequency.
44 *
45 * i.e.
46 * level 0 --> 1st Max Freq
47 * level 1 --> 2nd Max Freq
48 * ...
49 */
50
c36cf071
JM
51/**
52 * struct power_table - frequency to power conversion
53 * @frequency: frequency in KHz
54 * @power: power in mW
55 *
56 * This structure is built when the cooling device registers and helps
57 * in translating frequency to power and viceversa.
58 */
59struct power_table {
60 u32 frequency;
61 u32 power;
62};
63
02361418 64/**
3b3c0748 65 * struct cpufreq_cooling_device - data for cooling device with cpufreq
02361418
ADK
66 * @id: unique integer value corresponding to each cpufreq_cooling_device
67 * registered.
3b3c0748
EV
68 * @cool_dev: thermal_cooling_device pointer to keep track of the
69 * registered cooling device.
02361418
ADK
70 * @cpufreq_state: integer value representing the current state of cpufreq
71 * cooling devices.
59f0d218 72 * @clipped_freq: integer value representing the absolute value of the clipped
02361418 73 * frequency.
dcc6c7fd
VK
74 * @max_level: maximum cooling level. One less than total number of valid
75 * cpufreq frequencies.
02361418 76 * @allowed_cpus: all the cpus involved for this cpufreq_cooling_device.
fc4de356 77 * @node: list_head to link all cpufreq_cooling_device together.
0744f130 78 * @last_load: load measured by the latest call to cpufreq_get_requested_power()
c36cf071
JM
79 * @time_in_idle: previous reading of the absolute time that this cpu was idle
80 * @time_in_idle_timestamp: wall time of the last invocation of
81 * get_cpu_idle_time_us()
82 * @dyn_power_table: array of struct power_table for frequency to power
83 * conversion, sorted in ascending order.
84 * @dyn_power_table_entries: number of entries in the @dyn_power_table array
85 * @cpu_dev: the first cpu_device from @allowed_cpus that has OPPs registered
86 * @plat_get_static_power: callback to calculate the static power
02361418 87 *
beca6053
VK
88 * This structure is required for keeping information of each registered
89 * cpufreq_cooling_device.
02361418
ADK
90 */
91struct cpufreq_cooling_device {
92 int id;
93 struct thermal_cooling_device *cool_dev;
94 unsigned int cpufreq_state;
59f0d218 95 unsigned int clipped_freq;
dcc6c7fd 96 unsigned int max_level;
f6859014 97 unsigned int *freq_table; /* In descending order */
02361418 98 struct cpumask allowed_cpus;
2dcd851f 99 struct list_head node;
c36cf071
JM
100 u32 last_load;
101 u64 *time_in_idle;
102 u64 *time_in_idle_timestamp;
103 struct power_table *dyn_power_table;
104 int dyn_power_table_entries;
105 struct device *cpu_dev;
106 get_static_t plat_get_static_power;
02361418 107};
02361418 108
fb8ea308 109static DEFINE_IDA(cpufreq_ida);
02373d7c 110static DEFINE_MUTEX(cooling_list_lock);
2dcd851f 111static LIST_HEAD(cpufreq_dev_list);
02361418 112
02361418
ADK
113/* Below code defines functions to be used for cpufreq as cooling device */
114
115/**
4843c4a1 116 * get_level: Find the level for a particular frequency
b9f8b416 117 * @cpufreq_dev: cpufreq_dev for which the property is required
4843c4a1 118 * @freq: Frequency
82b9ee40 119 *
4843c4a1 120 * Return: level on success, THERMAL_CSTATE_INVALID on error.
02361418 121 */
4843c4a1
VK
122static unsigned long get_level(struct cpufreq_cooling_device *cpufreq_dev,
123 unsigned int freq)
02361418 124{
4843c4a1 125 unsigned long level;
a116776f 126
4843c4a1
VK
127 for (level = 0; level <= cpufreq_dev->max_level; level++) {
128 if (freq == cpufreq_dev->freq_table[level])
129 return level;
02361418 130
4843c4a1
VK
131 if (freq > cpufreq_dev->freq_table[level])
132 break;
fc35b35c 133 }
02361418 134
4843c4a1 135 return THERMAL_CSTATE_INVALID;
fc35b35c
ZR
136}
137
44952d33 138/**
728c03c9 139 * cpufreq_cooling_get_level - for a given cpu, return the cooling level.
44952d33
EV
140 * @cpu: cpu for which the level is required
141 * @freq: the frequency of interest
142 *
143 * This function will match the cooling level corresponding to the
144 * requested @freq and return it.
145 *
146 * Return: The matched cooling level on success or THERMAL_CSTATE_INVALID
147 * otherwise.
148 */
57df8106
ZR
149unsigned long cpufreq_cooling_get_level(unsigned int cpu, unsigned int freq)
150{
b9f8b416 151 struct cpufreq_cooling_device *cpufreq_dev;
02361418 152
02373d7c 153 mutex_lock(&cooling_list_lock);
b9f8b416
VK
154 list_for_each_entry(cpufreq_dev, &cpufreq_dev_list, node) {
155 if (cpumask_test_cpu(cpu, &cpufreq_dev->allowed_cpus)) {
289d72af
VK
156 unsigned long level = get_level(cpufreq_dev, freq);
157
02373d7c 158 mutex_unlock(&cooling_list_lock);
289d72af 159 return level;
b9f8b416 160 }
02361418 161 }
02373d7c 162 mutex_unlock(&cooling_list_lock);
02361418 163
b9f8b416
VK
164 pr_err("%s: cpu:%d not part of any cooling device\n", __func__, cpu);
165 return THERMAL_CSTATE_INVALID;
02361418 166}
243dbd9c 167EXPORT_SYMBOL_GPL(cpufreq_cooling_get_level);
02361418
ADK
168
169/**
170 * cpufreq_thermal_notifier - notifier callback for cpufreq policy change.
171 * @nb: struct notifier_block * with callback info.
172 * @event: value showing cpufreq event for which this function invoked.
173 * @data: callback-specific data
bab30554 174 *
9746b6e7 175 * Callback to hijack the notification on cpufreq policy transition.
bab30554
EV
176 * Every time there is a change in policy, we will intercept and
177 * update the cpufreq policy with thermal constraints.
178 *
179 * Return: 0 (success)
02361418
ADK
180 */
181static int cpufreq_thermal_notifier(struct notifier_block *nb,
5fda7f68 182 unsigned long event, void *data)
02361418
ADK
183{
184 struct cpufreq_policy *policy = data;
abcbcc25 185 unsigned long clipped_freq;
2dcd851f 186 struct cpufreq_cooling_device *cpufreq_dev;
02361418 187
a24af233
VK
188 if (event != CPUFREQ_ADJUST)
189 return NOTIFY_DONE;
02361418 190
a24af233
VK
191 mutex_lock(&cooling_list_lock);
192 list_for_each_entry(cpufreq_dev, &cpufreq_dev_list, node) {
193 if (!cpumask_test_cpu(policy->cpu, &cpufreq_dev->allowed_cpus))
194 continue;
c36cf071 195
1afb9c53
VK
196 /*
197 * policy->max is the maximum allowed frequency defined by user
198 * and clipped_freq is the maximum that thermal constraints
199 * allow.
200 *
201 * If clipped_freq is lower than policy->max, then we need to
202 * readjust policy->max.
203 *
204 * But, if clipped_freq is greater than policy->max, we don't
205 * need to do anything.
206 */
abcbcc25 207 clipped_freq = cpufreq_dev->clipped_freq;
c36cf071 208
1afb9c53 209 if (policy->max > clipped_freq)
abcbcc25 210 cpufreq_verify_within_limits(policy, 0, clipped_freq);
c36cf071 211 break;
c36cf071 212 }
a24af233 213 mutex_unlock(&cooling_list_lock);
c36cf071
JM
214
215 return NOTIFY_OK;
216}
217
218/**
219 * build_dyn_power_table() - create a dynamic power to frequency table
220 * @cpufreq_device: the cpufreq cooling device in which to store the table
221 * @capacitance: dynamic power coefficient for these cpus
222 *
223 * Build a dynamic power to frequency table for this cpu and store it
224 * in @cpufreq_device. This table will be used in cpu_power_to_freq() and
225 * cpu_freq_to_power() to convert between power and frequency
226 * efficiently. Power is stored in mW, frequency in KHz. The
227 * resulting table is in ascending order.
228 *
459ac375
JM
229 * Return: 0 on success, -EINVAL if there are no OPPs for any CPUs,
230 * -ENOMEM if we run out of memory or -EAGAIN if an OPP was
231 * added/enabled while the function was executing.
c36cf071
JM
232 */
233static int build_dyn_power_table(struct cpufreq_cooling_device *cpufreq_device,
234 u32 capacitance)
235{
236 struct power_table *power_table;
237 struct dev_pm_opp *opp;
238 struct device *dev = NULL;
eba4f88d 239 int num_opps = 0, cpu, i, ret = 0;
c36cf071
JM
240 unsigned long freq;
241
c36cf071
JM
242 for_each_cpu(cpu, &cpufreq_device->allowed_cpus) {
243 dev = get_cpu_device(cpu);
244 if (!dev) {
245 dev_warn(&cpufreq_device->cool_dev->device,
246 "No cpu device for cpu %d\n", cpu);
2dcd851f 247 continue;
c36cf071 248 }
2dcd851f 249
c36cf071 250 num_opps = dev_pm_opp_get_opp_count(dev);
459ac375 251 if (num_opps > 0)
c36cf071 252 break;
459ac375
JM
253 else if (num_opps < 0)
254 return num_opps;
c36cf071 255 }
02361418 256
459ac375
JM
257 if (num_opps == 0)
258 return -EINVAL;
02361418 259
c36cf071 260 power_table = kcalloc(num_opps, sizeof(*power_table), GFP_KERNEL);
459ac375
JM
261 if (!power_table)
262 return -ENOMEM;
263
c36cf071
JM
264 for (freq = 0, i = 0;
265 opp = dev_pm_opp_find_freq_ceil(dev, &freq), !IS_ERR(opp);
266 freq++, i++) {
267 u32 freq_mhz, voltage_mv;
268 u64 power;
269
459ac375 270 if (i >= num_opps) {
eba4f88d
JM
271 ret = -EAGAIN;
272 goto free_power_table;
459ac375
JM
273 }
274
c36cf071
JM
275 freq_mhz = freq / 1000000;
276 voltage_mv = dev_pm_opp_get_voltage(opp) / 1000;
8a31d9d9 277 dev_pm_opp_put(opp);
c36cf071
JM
278
279 /*
280 * Do the multiplication with MHz and millivolt so as
281 * to not overflow.
282 */
283 power = (u64)capacitance * freq_mhz * voltage_mv * voltage_mv;
284 do_div(power, 1000000000);
285
286 /* frequency is stored in power_table in KHz */
287 power_table[i].frequency = freq / 1000;
288
289 /* power is stored in mW */
290 power_table[i].power = power;
291 }
292
eba4f88d
JM
293 if (i != num_opps) {
294 ret = PTR_ERR(opp);
295 goto free_power_table;
296 }
c36cf071
JM
297
298 cpufreq_device->cpu_dev = dev;
299 cpufreq_device->dyn_power_table = power_table;
300 cpufreq_device->dyn_power_table_entries = i;
301
459ac375 302 return 0;
eba4f88d
JM
303
304free_power_table:
305 kfree(power_table);
306
307 return ret;
c36cf071
JM
308}
309
310static u32 cpu_freq_to_power(struct cpufreq_cooling_device *cpufreq_device,
311 u32 freq)
312{
313 int i;
314 struct power_table *pt = cpufreq_device->dyn_power_table;
315
316 for (i = 1; i < cpufreq_device->dyn_power_table_entries; i++)
317 if (freq < pt[i].frequency)
318 break;
319
320 return pt[i - 1].power;
321}
322
323static u32 cpu_power_to_freq(struct cpufreq_cooling_device *cpufreq_device,
324 u32 power)
325{
326 int i;
327 struct power_table *pt = cpufreq_device->dyn_power_table;
328
329 for (i = 1; i < cpufreq_device->dyn_power_table_entries; i++)
330 if (power < pt[i].power)
331 break;
332
333 return pt[i - 1].frequency;
334}
335
336/**
337 * get_load() - get load for a cpu since last updated
338 * @cpufreq_device: &struct cpufreq_cooling_device for this cpu
339 * @cpu: cpu number
a53b8394 340 * @cpu_idx: index of the cpu in cpufreq_device->allowed_cpus
c36cf071
JM
341 *
342 * Return: The average load of cpu @cpu in percentage since this
343 * function was last called.
344 */
a53b8394
JM
345static u32 get_load(struct cpufreq_cooling_device *cpufreq_device, int cpu,
346 int cpu_idx)
c36cf071
JM
347{
348 u32 load;
349 u64 now, now_idle, delta_time, delta_idle;
350
351 now_idle = get_cpu_idle_time(cpu, &now, 0);
a53b8394
JM
352 delta_idle = now_idle - cpufreq_device->time_in_idle[cpu_idx];
353 delta_time = now - cpufreq_device->time_in_idle_timestamp[cpu_idx];
c36cf071
JM
354
355 if (delta_time <= delta_idle)
356 load = 0;
357 else
358 load = div64_u64(100 * (delta_time - delta_idle), delta_time);
359
a53b8394
JM
360 cpufreq_device->time_in_idle[cpu_idx] = now_idle;
361 cpufreq_device->time_in_idle_timestamp[cpu_idx] = now;
c36cf071
JM
362
363 return load;
364}
365
366/**
367 * get_static_power() - calculate the static power consumed by the cpus
368 * @cpufreq_device: struct &cpufreq_cooling_device for this cpu cdev
369 * @tz: thermal zone device in which we're operating
370 * @freq: frequency in KHz
371 * @power: pointer in which to store the calculated static power
372 *
373 * Calculate the static power consumed by the cpus described by
374 * @cpu_actor running at frequency @freq. This function relies on a
375 * platform specific function that should have been provided when the
376 * actor was registered. If it wasn't, the static power is assumed to
377 * be negligible. The calculated static power is stored in @power.
378 *
379 * Return: 0 on success, -E* on failure.
380 */
381static int get_static_power(struct cpufreq_cooling_device *cpufreq_device,
382 struct thermal_zone_device *tz, unsigned long freq,
383 u32 *power)
384{
385 struct dev_pm_opp *opp;
386 unsigned long voltage;
387 struct cpumask *cpumask = &cpufreq_device->allowed_cpus;
388 unsigned long freq_hz = freq * 1000;
389
390 if (!cpufreq_device->plat_get_static_power ||
391 !cpufreq_device->cpu_dev) {
392 *power = 0;
393 return 0;
394 }
395
c36cf071
JM
396 opp = dev_pm_opp_find_freq_exact(cpufreq_device->cpu_dev, freq_hz,
397 true);
3ea3217c
VK
398 if (IS_ERR(opp)) {
399 dev_warn_ratelimited(cpufreq_device->cpu_dev,
400 "Failed to find OPP for frequency %lu: %ld\n",
401 freq_hz, PTR_ERR(opp));
402 return -EINVAL;
403 }
404
c36cf071 405 voltage = dev_pm_opp_get_voltage(opp);
8a31d9d9 406 dev_pm_opp_put(opp);
c36cf071
JM
407
408 if (voltage == 0) {
9aec9082 409 dev_err_ratelimited(cpufreq_device->cpu_dev,
3ea3217c
VK
410 "Failed to get voltage for frequency %lu\n",
411 freq_hz);
c36cf071
JM
412 return -EINVAL;
413 }
414
415 return cpufreq_device->plat_get_static_power(cpumask, tz->passive_delay,
416 voltage, power);
417}
418
419/**
420 * get_dynamic_power() - calculate the dynamic power
421 * @cpufreq_device: &cpufreq_cooling_device for this cdev
422 * @freq: current frequency
423 *
424 * Return: the dynamic power consumed by the cpus described by
425 * @cpufreq_device.
426 */
427static u32 get_dynamic_power(struct cpufreq_cooling_device *cpufreq_device,
428 unsigned long freq)
429{
430 u32 raw_cpu_power;
431
432 raw_cpu_power = cpu_freq_to_power(cpufreq_device, freq);
433 return (raw_cpu_power * cpufreq_device->last_load) / 100;
02361418
ADK
434}
435
1b9e3526 436/* cpufreq cooling device callback functions are defined below */
02361418
ADK
437
438/**
439 * cpufreq_get_max_state - callback function to get the max cooling state.
440 * @cdev: thermal cooling device pointer.
441 * @state: fill this variable with the max cooling state.
62c00421
EV
442 *
443 * Callback for the thermal cooling device to return the cpufreq
444 * max cooling state.
445 *
446 * Return: 0 on success, an error code otherwise.
02361418
ADK
447 */
448static int cpufreq_get_max_state(struct thermal_cooling_device *cdev,
449 unsigned long *state)
450{
160b7d80 451 struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
9c51b05a 452
dcc6c7fd
VK
453 *state = cpufreq_device->max_level;
454 return 0;
02361418
ADK
455}
456
457/**
458 * cpufreq_get_cur_state - callback function to get the current cooling state.
459 * @cdev: thermal cooling device pointer.
460 * @state: fill this variable with the current cooling state.
3672552d
EV
461 *
462 * Callback for the thermal cooling device to return the cpufreq
463 * current cooling state.
464 *
465 * Return: 0 on success, an error code otherwise.
02361418
ADK
466 */
467static int cpufreq_get_cur_state(struct thermal_cooling_device *cdev,
468 unsigned long *state)
469{
160b7d80 470 struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
02361418 471
160b7d80 472 *state = cpufreq_device->cpufreq_state;
79491e53 473
160b7d80 474 return 0;
02361418
ADK
475}
476
477/**
478 * cpufreq_set_cur_state - callback function to set the current cooling state.
479 * @cdev: thermal cooling device pointer.
480 * @state: set this variable to the current cooling state.
56e05fdb
EV
481 *
482 * Callback for the thermal cooling device to change the cpufreq
483 * current cooling state.
484 *
485 * Return: 0 on success, an error code otherwise.
02361418
ADK
486 */
487static int cpufreq_set_cur_state(struct thermal_cooling_device *cdev,
488 unsigned long state)
489{
160b7d80 490 struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
5194fe46
VK
491 unsigned int cpu = cpumask_any(&cpufreq_device->allowed_cpus);
492 unsigned int clip_freq;
4843c4a1
VK
493
494 /* Request state should be less than max_level */
495 if (WARN_ON(state > cpufreq_device->max_level))
496 return -EINVAL;
5194fe46
VK
497
498 /* Check if the old cooling action is same as new cooling action */
499 if (cpufreq_device->cpufreq_state == state)
500 return 0;
02361418 501
4843c4a1 502 clip_freq = cpufreq_device->freq_table[state];
5194fe46 503 cpufreq_device->cpufreq_state = state;
59f0d218 504 cpufreq_device->clipped_freq = clip_freq;
5194fe46
VK
505
506 cpufreq_update_policy(cpu);
507
508 return 0;
02361418
ADK
509}
510
c36cf071
JM
511/**
512 * cpufreq_get_requested_power() - get the current power
513 * @cdev: &thermal_cooling_device pointer
514 * @tz: a valid thermal zone device pointer
515 * @power: pointer in which to store the resulting power
516 *
517 * Calculate the current power consumption of the cpus in milliwatts
518 * and store it in @power. This function should actually calculate
519 * the requested power, but it's hard to get the frequency that
520 * cpufreq would have assigned if there were no thermal limits.
521 * Instead, we calculate the current power on the assumption that the
522 * immediate future will look like the immediate past.
523 *
524 * We use the current frequency and the average load since this
525 * function was last called. In reality, there could have been
526 * multiple opps since this function was last called and that affects
527 * the load calculation. While it's not perfectly accurate, this
528 * simplification is good enough and works. REVISIT this, as more
529 * complex code may be needed if experiments show that it's not
530 * accurate enough.
531 *
532 * Return: 0 on success, -E* if getting the static power failed.
533 */
534static int cpufreq_get_requested_power(struct thermal_cooling_device *cdev,
535 struct thermal_zone_device *tz,
536 u32 *power)
537{
538 unsigned long freq;
6828a471 539 int i = 0, cpu, ret;
c36cf071
JM
540 u32 static_power, dynamic_power, total_load = 0;
541 struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
6828a471 542 u32 *load_cpu = NULL;
c36cf071 543
dd658e02
KS
544 cpu = cpumask_any_and(&cpufreq_device->allowed_cpus, cpu_online_mask);
545
546 /*
547 * All the CPUs are offline, thus the requested power by
548 * the cdev is 0
549 */
550 if (cpu >= nr_cpu_ids) {
551 *power = 0;
552 return 0;
553 }
554
555 freq = cpufreq_quick_get(cpu);
c36cf071 556
6828a471
JM
557 if (trace_thermal_power_cpu_get_power_enabled()) {
558 u32 ncpus = cpumask_weight(&cpufreq_device->allowed_cpus);
559
a71544cd 560 load_cpu = kcalloc(ncpus, sizeof(*load_cpu), GFP_KERNEL);
6828a471
JM
561 }
562
c36cf071
JM
563 for_each_cpu(cpu, &cpufreq_device->allowed_cpus) {
564 u32 load;
565
566 if (cpu_online(cpu))
a53b8394 567 load = get_load(cpufreq_device, cpu, i);
c36cf071
JM
568 else
569 load = 0;
570
571 total_load += load;
6828a471
JM
572 if (trace_thermal_power_cpu_limit_enabled() && load_cpu)
573 load_cpu[i] = load;
574
575 i++;
c36cf071
JM
576 }
577
578 cpufreq_device->last_load = total_load;
579
580 dynamic_power = get_dynamic_power(cpufreq_device, freq);
581 ret = get_static_power(cpufreq_device, tz, freq, &static_power);
6828a471 582 if (ret) {
a71544cd 583 kfree(load_cpu);
c36cf071 584 return ret;
6828a471
JM
585 }
586
587 if (load_cpu) {
588 trace_thermal_power_cpu_get_power(
589 &cpufreq_device->allowed_cpus,
590 freq, load_cpu, i, dynamic_power, static_power);
591
a71544cd 592 kfree(load_cpu);
6828a471 593 }
c36cf071
JM
594
595 *power = static_power + dynamic_power;
596 return 0;
597}
598
599/**
600 * cpufreq_state2power() - convert a cpu cdev state to power consumed
601 * @cdev: &thermal_cooling_device pointer
602 * @tz: a valid thermal zone device pointer
603 * @state: cooling device state to be converted
604 * @power: pointer in which to store the resulting power
605 *
606 * Convert cooling device state @state into power consumption in
607 * milliwatts assuming 100% load. Store the calculated power in
608 * @power.
609 *
610 * Return: 0 on success, -EINVAL if the cooling device state could not
611 * be converted into a frequency or other -E* if there was an error
612 * when calculating the static power.
613 */
614static int cpufreq_state2power(struct thermal_cooling_device *cdev,
615 struct thermal_zone_device *tz,
616 unsigned long state, u32 *power)
617{
618 unsigned int freq, num_cpus;
d9cc34a6 619 cpumask_var_t cpumask;
c36cf071
JM
620 u32 static_power, dynamic_power;
621 int ret;
622 struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
623
d9cc34a6
AB
624 if (!alloc_cpumask_var(&cpumask, GFP_KERNEL))
625 return -ENOMEM;
626
627 cpumask_and(cpumask, &cpufreq_device->allowed_cpus, cpu_online_mask);
628 num_cpus = cpumask_weight(cpumask);
c36cf071
JM
629
630 /* None of our cpus are online, so no power */
631 if (num_cpus == 0) {
632 *power = 0;
d9cc34a6
AB
633 ret = 0;
634 goto out;
c36cf071
JM
635 }
636
637 freq = cpufreq_device->freq_table[state];
d9cc34a6
AB
638 if (!freq) {
639 ret = -EINVAL;
640 goto out;
641 }
c36cf071
JM
642
643 dynamic_power = cpu_freq_to_power(cpufreq_device, freq) * num_cpus;
644 ret = get_static_power(cpufreq_device, tz, freq, &static_power);
645 if (ret)
d9cc34a6 646 goto out;
c36cf071
JM
647
648 *power = static_power + dynamic_power;
d9cc34a6
AB
649out:
650 free_cpumask_var(cpumask);
651 return ret;
c36cf071
JM
652}
653
654/**
655 * cpufreq_power2state() - convert power to a cooling device state
656 * @cdev: &thermal_cooling_device pointer
657 * @tz: a valid thermal zone device pointer
658 * @power: power in milliwatts to be converted
659 * @state: pointer in which to store the resulting state
660 *
661 * Calculate a cooling device state for the cpus described by @cdev
662 * that would allow them to consume at most @power mW and store it in
663 * @state. Note that this calculation depends on external factors
664 * such as the cpu load or the current static power. Calling this
665 * function with the same power as input can yield different cooling
666 * device states depending on those external factors.
667 *
668 * Return: 0 on success, -ENODEV if no cpus are online or -EINVAL if
669 * the calculated frequency could not be converted to a valid state.
670 * The latter should not happen unless the frequencies available to
671 * cpufreq have changed since the initialization of the cpu cooling
672 * device.
673 */
674static int cpufreq_power2state(struct thermal_cooling_device *cdev,
675 struct thermal_zone_device *tz, u32 power,
676 unsigned long *state)
677{
678 unsigned int cpu, cur_freq, target_freq;
679 int ret;
680 s32 dyn_power;
681 u32 last_load, normalised_power, static_power;
682 struct cpufreq_cooling_device *cpufreq_device = cdev->devdata;
683
684 cpu = cpumask_any_and(&cpufreq_device->allowed_cpus, cpu_online_mask);
685
686 /* None of our cpus are online */
687 if (cpu >= nr_cpu_ids)
688 return -ENODEV;
689
690 cur_freq = cpufreq_quick_get(cpu);
691 ret = get_static_power(cpufreq_device, tz, cur_freq, &static_power);
692 if (ret)
693 return ret;
694
695 dyn_power = power - static_power;
696 dyn_power = dyn_power > 0 ? dyn_power : 0;
697 last_load = cpufreq_device->last_load ?: 1;
698 normalised_power = (dyn_power * 100) / last_load;
699 target_freq = cpu_power_to_freq(cpufreq_device, normalised_power);
700
701 *state = cpufreq_cooling_get_level(cpu, target_freq);
702 if (*state == THERMAL_CSTATE_INVALID) {
9aec9082
VK
703 dev_err_ratelimited(&cdev->device,
704 "Failed to convert %dKHz for cpu %d into a cdev state\n",
705 target_freq, cpu);
c36cf071
JM
706 return -EINVAL;
707 }
708
6828a471
JM
709 trace_thermal_power_cpu_limit(&cpufreq_device->allowed_cpus,
710 target_freq, *state, power);
c36cf071
JM
711 return 0;
712}
713
02361418 714/* Bind cpufreq callbacks to thermal cooling device ops */
a305a438 715
c36cf071 716static struct thermal_cooling_device_ops cpufreq_cooling_ops = {
02361418
ADK
717 .get_max_state = cpufreq_get_max_state,
718 .get_cur_state = cpufreq_get_cur_state,
719 .set_cur_state = cpufreq_set_cur_state,
720};
721
a305a438
BJ
722static struct thermal_cooling_device_ops cpufreq_power_cooling_ops = {
723 .get_max_state = cpufreq_get_max_state,
724 .get_cur_state = cpufreq_get_cur_state,
725 .set_cur_state = cpufreq_set_cur_state,
726 .get_requested_power = cpufreq_get_requested_power,
727 .state2power = cpufreq_state2power,
728 .power2state = cpufreq_power2state,
729};
730
02361418
ADK
731/* Notifier for cpufreq policy change */
732static struct notifier_block thermal_cpufreq_notifier_block = {
733 .notifier_call = cpufreq_thermal_notifier,
734};
735
f6859014
VK
736static unsigned int find_next_max(struct cpufreq_frequency_table *table,
737 unsigned int prev_max)
738{
739 struct cpufreq_frequency_table *pos;
740 unsigned int max = 0;
741
742 cpufreq_for_each_valid_entry(pos, table) {
743 if (pos->frequency > max && pos->frequency < prev_max)
744 max = pos->frequency;
745 }
746
747 return max;
748}
749
02361418 750/**
39d99cff
EV
751 * __cpufreq_cooling_register - helper function to create cpufreq cooling device
752 * @np: a valid struct device_node to the cooling device device tree node
02361418 753 * @clip_cpus: cpumask of cpus where the frequency constraints will happen.
405fb825 754 * Normally this should be same as cpufreq policy->related_cpus.
c36cf071
JM
755 * @capacitance: dynamic power coefficient for these cpus
756 * @plat_static_func: function to calculate the static power consumed by these
757 * cpus (optional)
12cb08ba
EV
758 *
759 * This interface function registers the cpufreq cooling device with the name
760 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
39d99cff
EV
761 * cooling devices. It also gives the opportunity to link the cooling device
762 * with a device tree node, in order to bind it via the thermal DT code.
12cb08ba
EV
763 *
764 * Return: a valid struct thermal_cooling_device pointer on success,
765 * on failure, it returns a corresponding ERR_PTR().
02361418 766 */
39d99cff
EV
767static struct thermal_cooling_device *
768__cpufreq_cooling_register(struct device_node *np,
c36cf071
JM
769 const struct cpumask *clip_cpus, u32 capacitance,
770 get_static_t plat_static_func)
02361418 771{
f8bfc116 772 struct cpufreq_policy *policy;
02361418 773 struct thermal_cooling_device *cool_dev;
5d3bdb89 774 struct cpufreq_cooling_device *cpufreq_dev;
02361418 775 char dev_name[THERMAL_NAME_LENGTH];
dcc6c7fd 776 struct cpufreq_frequency_table *pos, *table;
d9cc34a6 777 cpumask_var_t temp_mask;
c36cf071 778 unsigned int freq, i, num_cpus;
405fb825 779 int ret;
a305a438 780 struct thermal_cooling_device_ops *cooling_ops;
088db931 781 bool first;
02361418 782
d9cc34a6
AB
783 if (!alloc_cpumask_var(&temp_mask, GFP_KERNEL))
784 return ERR_PTR(-ENOMEM);
785
786 cpumask_and(temp_mask, clip_cpus, cpu_online_mask);
787 policy = cpufreq_cpu_get(cpumask_first(temp_mask));
f8bfc116
VK
788 if (!policy) {
789 pr_debug("%s: CPUFreq policy not found\n", __func__);
d9cc34a6
AB
790 cool_dev = ERR_PTR(-EPROBE_DEFER);
791 goto free_cpumask;
f8bfc116
VK
792 }
793
794 table = policy->freq_table;
dcc6c7fd 795 if (!table) {
0f1be51c 796 pr_debug("%s: CPUFreq table not found\n", __func__);
f8bfc116
VK
797 cool_dev = ERR_PTR(-ENODEV);
798 goto put_policy;
02361418 799 }
0f1be51c 800
98d522f0 801 cpufreq_dev = kzalloc(sizeof(*cpufreq_dev), GFP_KERNEL);
f8bfc116
VK
802 if (!cpufreq_dev) {
803 cool_dev = ERR_PTR(-ENOMEM);
804 goto put_policy;
805 }
02361418 806
c36cf071
JM
807 num_cpus = cpumask_weight(clip_cpus);
808 cpufreq_dev->time_in_idle = kcalloc(num_cpus,
809 sizeof(*cpufreq_dev->time_in_idle),
810 GFP_KERNEL);
811 if (!cpufreq_dev->time_in_idle) {
812 cool_dev = ERR_PTR(-ENOMEM);
813 goto free_cdev;
814 }
815
816 cpufreq_dev->time_in_idle_timestamp =
817 kcalloc(num_cpus, sizeof(*cpufreq_dev->time_in_idle_timestamp),
818 GFP_KERNEL);
819 if (!cpufreq_dev->time_in_idle_timestamp) {
820 cool_dev = ERR_PTR(-ENOMEM);
821 goto free_time_in_idle;
822 }
823
dcc6c7fd
VK
824 /* Find max levels */
825 cpufreq_for_each_valid_entry(pos, table)
826 cpufreq_dev->max_level++;
827
f6859014
VK
828 cpufreq_dev->freq_table = kmalloc(sizeof(*cpufreq_dev->freq_table) *
829 cpufreq_dev->max_level, GFP_KERNEL);
830 if (!cpufreq_dev->freq_table) {
f6859014 831 cool_dev = ERR_PTR(-ENOMEM);
c36cf071 832 goto free_time_in_idle_timestamp;
f6859014
VK
833 }
834
dcc6c7fd
VK
835 /* max_level is an index, not a counter */
836 cpufreq_dev->max_level--;
837
02361418
ADK
838 cpumask_copy(&cpufreq_dev->allowed_cpus, clip_cpus);
839
c36cf071 840 if (capacitance) {
c36cf071
JM
841 cpufreq_dev->plat_get_static_power = plat_static_func;
842
843 ret = build_dyn_power_table(cpufreq_dev, capacitance);
844 if (ret) {
845 cool_dev = ERR_PTR(ret);
846 goto free_table;
847 }
a305a438
BJ
848
849 cooling_ops = &cpufreq_power_cooling_ops;
850 } else {
851 cooling_ops = &cpufreq_cooling_ops;
c36cf071
JM
852 }
853
ae606089
MW
854 ret = ida_simple_get(&cpufreq_ida, 0, 0, GFP_KERNEL);
855 if (ret < 0) {
730abe06 856 cool_dev = ERR_PTR(ret);
eba4f88d 857 goto free_power_table;
02361418 858 }
ae606089 859 cpufreq_dev->id = ret;
02361418 860
f6859014
VK
861 /* Fill freq-table in descending order of frequencies */
862 for (i = 0, freq = -1; i <= cpufreq_dev->max_level; i++) {
863 freq = find_next_max(table, freq);
864 cpufreq_dev->freq_table[i] = freq;
865
866 /* Warn for duplicate entries */
867 if (!freq)
868 pr_warn("%s: table has duplicate entries\n", __func__);
869 else
870 pr_debug("%s: freq:%u KHz\n", __func__, freq);
02361418 871 }
f6859014 872
f840ab18
LL
873 snprintf(dev_name, sizeof(dev_name), "thermal-cpufreq-%d",
874 cpufreq_dev->id);
875
876 cool_dev = thermal_of_cooling_device_register(np, dev_name, cpufreq_dev,
a305a438 877 cooling_ops);
f840ab18 878 if (IS_ERR(cool_dev))
ae606089 879 goto remove_ida;
f840ab18 880
59f0d218 881 cpufreq_dev->clipped_freq = cpufreq_dev->freq_table[0];
02361418 882 cpufreq_dev->cool_dev = cool_dev;
92e615ec 883
02373d7c 884 mutex_lock(&cooling_list_lock);
088db931
MW
885 /* Register the notifier for first cpufreq cooling device */
886 first = list_empty(&cpufreq_dev_list);
02373d7c 887 list_add(&cpufreq_dev->node, &cpufreq_dev_list);
088db931 888 mutex_unlock(&cooling_list_lock);
02373d7c 889
088db931 890 if (first)
02361418 891 cpufreq_register_notifier(&thermal_cpufreq_notifier_block,
5fda7f68 892 CPUFREQ_POLICY_NOTIFIER);
79491e53 893
f8bfc116 894 goto put_policy;
730abe06 895
ae606089
MW
896remove_ida:
897 ida_simple_remove(&cpufreq_ida, cpufreq_dev->id);
eba4f88d
JM
898free_power_table:
899 kfree(cpufreq_dev->dyn_power_table);
f6859014
VK
900free_table:
901 kfree(cpufreq_dev->freq_table);
c36cf071
JM
902free_time_in_idle_timestamp:
903 kfree(cpufreq_dev->time_in_idle_timestamp);
904free_time_in_idle:
905 kfree(cpufreq_dev->time_in_idle);
730abe06
VK
906free_cdev:
907 kfree(cpufreq_dev);
f8bfc116
VK
908put_policy:
909 cpufreq_cpu_put(policy);
d9cc34a6
AB
910free_cpumask:
911 free_cpumask_var(temp_mask);
02361418
ADK
912 return cool_dev;
913}
39d99cff
EV
914
915/**
916 * cpufreq_cooling_register - function to create cpufreq cooling device.
917 * @clip_cpus: cpumask of cpus where the frequency constraints will happen.
918 *
919 * This interface function registers the cpufreq cooling device with the name
920 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
921 * cooling devices.
922 *
923 * Return: a valid struct thermal_cooling_device pointer on success,
924 * on failure, it returns a corresponding ERR_PTR().
925 */
926struct thermal_cooling_device *
927cpufreq_cooling_register(const struct cpumask *clip_cpus)
928{
c36cf071 929 return __cpufreq_cooling_register(NULL, clip_cpus, 0, NULL);
39d99cff 930}
243dbd9c 931EXPORT_SYMBOL_GPL(cpufreq_cooling_register);
02361418 932
39d99cff
EV
933/**
934 * of_cpufreq_cooling_register - function to create cpufreq cooling device.
935 * @np: a valid struct device_node to the cooling device device tree node
936 * @clip_cpus: cpumask of cpus where the frequency constraints will happen.
937 *
938 * This interface function registers the cpufreq cooling device with the name
939 * "thermal-cpufreq-%x". This api can support multiple instances of cpufreq
940 * cooling devices. Using this API, the cpufreq cooling device will be
941 * linked to the device tree node provided.
942 *
943 * Return: a valid struct thermal_cooling_device pointer on success,
944 * on failure, it returns a corresponding ERR_PTR().
945 */
946struct thermal_cooling_device *
947of_cpufreq_cooling_register(struct device_node *np,
948 const struct cpumask *clip_cpus)
949{
950 if (!np)
951 return ERR_PTR(-EINVAL);
952
c36cf071 953 return __cpufreq_cooling_register(np, clip_cpus, 0, NULL);
39d99cff
EV
954}
955EXPORT_SYMBOL_GPL(of_cpufreq_cooling_register);
956
c36cf071
JM
957/**
958 * cpufreq_power_cooling_register() - create cpufreq cooling device with power extensions
959 * @clip_cpus: cpumask of cpus where the frequency constraints will happen
960 * @capacitance: dynamic power coefficient for these cpus
961 * @plat_static_func: function to calculate the static power consumed by these
962 * cpus (optional)
963 *
964 * This interface function registers the cpufreq cooling device with
965 * the name "thermal-cpufreq-%x". This api can support multiple
966 * instances of cpufreq cooling devices. Using this function, the
967 * cooling device will implement the power extensions by using a
968 * simple cpu power model. The cpus must have registered their OPPs
969 * using the OPP library.
970 *
971 * An optional @plat_static_func may be provided to calculate the
972 * static power consumed by these cpus. If the platform's static
973 * power consumption is unknown or negligible, make it NULL.
974 *
975 * Return: a valid struct thermal_cooling_device pointer on success,
976 * on failure, it returns a corresponding ERR_PTR().
977 */
978struct thermal_cooling_device *
979cpufreq_power_cooling_register(const struct cpumask *clip_cpus, u32 capacitance,
980 get_static_t plat_static_func)
981{
982 return __cpufreq_cooling_register(NULL, clip_cpus, capacitance,
983 plat_static_func);
984}
985EXPORT_SYMBOL(cpufreq_power_cooling_register);
986
987/**
988 * of_cpufreq_power_cooling_register() - create cpufreq cooling device with power extensions
989 * @np: a valid struct device_node to the cooling device device tree node
990 * @clip_cpus: cpumask of cpus where the frequency constraints will happen
991 * @capacitance: dynamic power coefficient for these cpus
992 * @plat_static_func: function to calculate the static power consumed by these
993 * cpus (optional)
994 *
995 * This interface function registers the cpufreq cooling device with
996 * the name "thermal-cpufreq-%x". This api can support multiple
997 * instances of cpufreq cooling devices. Using this API, the cpufreq
998 * cooling device will be linked to the device tree node provided.
999 * Using this function, the cooling device will implement the power
1000 * extensions by using a simple cpu power model. The cpus must have
1001 * registered their OPPs using the OPP library.
1002 *
1003 * An optional @plat_static_func may be provided to calculate the
1004 * static power consumed by these cpus. If the platform's static
1005 * power consumption is unknown or negligible, make it NULL.
1006 *
1007 * Return: a valid struct thermal_cooling_device pointer on success,
1008 * on failure, it returns a corresponding ERR_PTR().
1009 */
1010struct thermal_cooling_device *
1011of_cpufreq_power_cooling_register(struct device_node *np,
1012 const struct cpumask *clip_cpus,
1013 u32 capacitance,
1014 get_static_t plat_static_func)
1015{
1016 if (!np)
1017 return ERR_PTR(-EINVAL);
1018
1019 return __cpufreq_cooling_register(np, clip_cpus, capacitance,
1020 plat_static_func);
1021}
1022EXPORT_SYMBOL(of_cpufreq_power_cooling_register);
1023
02361418
ADK
1024/**
1025 * cpufreq_cooling_unregister - function to remove cpufreq cooling device.
1026 * @cdev: thermal cooling device pointer.
135266b4
EV
1027 *
1028 * This interface function unregisters the "thermal-cpufreq-%x" cooling device.
02361418
ADK
1029 */
1030void cpufreq_cooling_unregister(struct thermal_cooling_device *cdev)
1031{
50e66c7e 1032 struct cpufreq_cooling_device *cpufreq_dev;
088db931 1033 bool last;
02361418 1034
50e66c7e
EV
1035 if (!cdev)
1036 return;
1037
1038 cpufreq_dev = cdev->devdata;
02361418 1039
ae606089 1040 mutex_lock(&cooling_list_lock);
088db931 1041 list_del(&cpufreq_dev->node);
02361418 1042 /* Unregister the notifier for the last cpufreq cooling device */
088db931
MW
1043 last = list_empty(&cpufreq_dev_list);
1044 mutex_unlock(&cooling_list_lock);
1045
1046 if (last)
02361418 1047 cpufreq_unregister_notifier(&thermal_cpufreq_notifier_block,
5fda7f68 1048 CPUFREQ_POLICY_NOTIFIER);
02373d7c 1049
02361418 1050 thermal_cooling_device_unregister(cpufreq_dev->cool_dev);
ae606089 1051 ida_simple_remove(&cpufreq_ida, cpufreq_dev->id);
eba4f88d 1052 kfree(cpufreq_dev->dyn_power_table);
c36cf071
JM
1053 kfree(cpufreq_dev->time_in_idle_timestamp);
1054 kfree(cpufreq_dev->time_in_idle);
f6859014 1055 kfree(cpufreq_dev->freq_table);
02361418
ADK
1056 kfree(cpufreq_dev);
1057}
243dbd9c 1058EXPORT_SYMBOL_GPL(cpufreq_cooling_unregister);