staging/lustre/md: fix lu_ucred.c boilerplate
[linux-2.6-block.git] / drivers / staging / lustre / lustre / lclient / lcommon_cl.c
CommitLineData
d7e09d03
PT
1/*
2 * GPL HEADER START
3 *
4 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 only,
8 * as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License version 2 for more details (a copy is included
14 * in the LICENSE file that accompanied this code).
15 *
16 * You should have received a copy of the GNU General Public License
17 * version 2 along with this program; If not, see
18 * http://www.sun.com/software/products/lustre/docs/GPLv2.pdf
19 *
20 * Please contact Sun Microsystems, Inc., 4150 Network Circle, Santa Clara,
21 * CA 95054 USA or visit www.sun.com if you need additional information or
22 * have any questions.
23 *
24 * GPL HEADER END
25 */
26/*
27 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
28 * Use is subject to license terms.
29 *
30 * Copyright (c) 2011, 2012, Intel Corporation.
31 */
32/*
33 * This file is part of Lustre, http://www.lustre.org/
34 * Lustre is a trademark of Sun Microsystems, Inc.
35 *
36 * cl code shared between vvp and liblustre (and other Lustre clients in the
37 * future).
38 *
39 * Author: Nikita Danilov <nikita.danilov@sun.com>
40 */
41
42#define DEBUG_SUBSYSTEM S_LLITE
43
44# include <linux/libcfs/libcfs.h>
45# include <linux/fs.h>
46# include <linux/sched.h>
47# include <linux/mm.h>
48# include <linux/quotaops.h>
49# include <linux/highmem.h>
50# include <linux/pagemap.h>
51# include <linux/rbtree.h>
52
53#include <obd.h>
54#include <obd_support.h>
55#include <lustre_fid.h>
56#include <lustre_lite.h>
57#include <lustre_dlm.h>
58#include <lustre_ver.h>
59#include <lustre_mdc.h>
60#include <cl_object.h>
61
62#include <lclient.h>
63
64#include "../llite/llite_internal.h"
65
66const struct cl_req_operations ccc_req_ops;
67
68/*
69 * ccc_ prefix stands for "Common Client Code".
70 */
71
72static struct kmem_cache *ccc_lock_kmem;
73static struct kmem_cache *ccc_object_kmem;
74static struct kmem_cache *ccc_thread_kmem;
75static struct kmem_cache *ccc_session_kmem;
76static struct kmem_cache *ccc_req_kmem;
77
78static struct lu_kmem_descr ccc_caches[] = {
79 {
80 .ckd_cache = &ccc_lock_kmem,
81 .ckd_name = "ccc_lock_kmem",
82 .ckd_size = sizeof (struct ccc_lock)
83 },
84 {
85 .ckd_cache = &ccc_object_kmem,
86 .ckd_name = "ccc_object_kmem",
87 .ckd_size = sizeof (struct ccc_object)
88 },
89 {
90 .ckd_cache = &ccc_thread_kmem,
91 .ckd_name = "ccc_thread_kmem",
92 .ckd_size = sizeof (struct ccc_thread_info),
93 },
94 {
95 .ckd_cache = &ccc_session_kmem,
96 .ckd_name = "ccc_session_kmem",
97 .ckd_size = sizeof (struct ccc_session)
98 },
99 {
100 .ckd_cache = &ccc_req_kmem,
101 .ckd_name = "ccc_req_kmem",
102 .ckd_size = sizeof (struct ccc_req)
103 },
104 {
105 .ckd_cache = NULL
106 }
107};
108
109/*****************************************************************************
110 *
111 * Vvp device and device type functions.
112 *
113 */
114
115void *ccc_key_init(const struct lu_context *ctx,
116 struct lu_context_key *key)
117{
118 struct ccc_thread_info *info;
119
120 OBD_SLAB_ALLOC_PTR_GFP(info, ccc_thread_kmem, __GFP_IO);
121 if (info == NULL)
122 info = ERR_PTR(-ENOMEM);
123 return info;
124}
125
126void ccc_key_fini(const struct lu_context *ctx,
127 struct lu_context_key *key, void *data)
128{
129 struct ccc_thread_info *info = data;
130 OBD_SLAB_FREE_PTR(info, ccc_thread_kmem);
131}
132
133void *ccc_session_key_init(const struct lu_context *ctx,
134 struct lu_context_key *key)
135{
136 struct ccc_session *session;
137
138 OBD_SLAB_ALLOC_PTR_GFP(session, ccc_session_kmem, __GFP_IO);
139 if (session == NULL)
140 session = ERR_PTR(-ENOMEM);
141 return session;
142}
143
144void ccc_session_key_fini(const struct lu_context *ctx,
145 struct lu_context_key *key, void *data)
146{
147 struct ccc_session *session = data;
148 OBD_SLAB_FREE_PTR(session, ccc_session_kmem);
149}
150
151struct lu_context_key ccc_key = {
152 .lct_tags = LCT_CL_THREAD,
153 .lct_init = ccc_key_init,
154 .lct_fini = ccc_key_fini
155};
156
157struct lu_context_key ccc_session_key = {
158 .lct_tags = LCT_SESSION,
159 .lct_init = ccc_session_key_init,
160 .lct_fini = ccc_session_key_fini
161};
162
163
164/* type constructor/destructor: ccc_type_{init,fini,start,stop}(). */
165// LU_TYPE_INIT_FINI(ccc, &ccc_key, &ccc_session_key);
166
167int ccc_device_init(const struct lu_env *env, struct lu_device *d,
168 const char *name, struct lu_device *next)
169{
170 struct ccc_device *vdv;
171 int rc;
172 ENTRY;
173
174 vdv = lu2ccc_dev(d);
175 vdv->cdv_next = lu2cl_dev(next);
176
177 LASSERT(d->ld_site != NULL && next->ld_type != NULL);
178 next->ld_site = d->ld_site;
179 rc = next->ld_type->ldt_ops->ldto_device_init(
180 env, next, next->ld_type->ldt_name, NULL);
181 if (rc == 0) {
182 lu_device_get(next);
183 lu_ref_add(&next->ld_reference, "lu-stack", &lu_site_init);
184 }
185 RETURN(rc);
186}
187
188struct lu_device *ccc_device_fini(const struct lu_env *env,
189 struct lu_device *d)
190{
191 return cl2lu_dev(lu2ccc_dev(d)->cdv_next);
192}
193
194struct lu_device *ccc_device_alloc(const struct lu_env *env,
195 struct lu_device_type *t,
196 struct lustre_cfg *cfg,
197 const struct lu_device_operations *luops,
198 const struct cl_device_operations *clops)
199{
200 struct ccc_device *vdv;
201 struct lu_device *lud;
202 struct cl_site *site;
203 int rc;
204 ENTRY;
205
206 OBD_ALLOC_PTR(vdv);
207 if (vdv == NULL)
208 RETURN(ERR_PTR(-ENOMEM));
209
210 lud = &vdv->cdv_cl.cd_lu_dev;
211 cl_device_init(&vdv->cdv_cl, t);
212 ccc2lu_dev(vdv)->ld_ops = luops;
213 vdv->cdv_cl.cd_ops = clops;
214
215 OBD_ALLOC_PTR(site);
216 if (site != NULL) {
217 rc = cl_site_init(site, &vdv->cdv_cl);
218 if (rc == 0)
219 rc = lu_site_init_finish(&site->cs_lu);
220 else {
221 LASSERT(lud->ld_site == NULL);
222 CERROR("Cannot init lu_site, rc %d.\n", rc);
223 OBD_FREE_PTR(site);
224 }
225 } else
226 rc = -ENOMEM;
227 if (rc != 0) {
228 ccc_device_free(env, lud);
229 lud = ERR_PTR(rc);
230 }
231 RETURN(lud);
232}
233
234struct lu_device *ccc_device_free(const struct lu_env *env,
235 struct lu_device *d)
236{
237 struct ccc_device *vdv = lu2ccc_dev(d);
238 struct cl_site *site = lu2cl_site(d->ld_site);
239 struct lu_device *next = cl2lu_dev(vdv->cdv_next);
240
241 if (d->ld_site != NULL) {
242 cl_site_fini(site);
243 OBD_FREE_PTR(site);
244 }
245 cl_device_fini(lu2cl_dev(d));
246 OBD_FREE_PTR(vdv);
247 return next;
248}
249
250int ccc_req_init(const struct lu_env *env, struct cl_device *dev,
251 struct cl_req *req)
252{
253 struct ccc_req *vrq;
254 int result;
255
256 OBD_SLAB_ALLOC_PTR_GFP(vrq, ccc_req_kmem, __GFP_IO);
257 if (vrq != NULL) {
258 cl_req_slice_add(req, &vrq->crq_cl, dev, &ccc_req_ops);
259 result = 0;
260 } else
261 result = -ENOMEM;
262 return result;
263}
264
265/**
266 * An `emergency' environment used by ccc_inode_fini() when cl_env_get()
267 * fails. Access to this environment is serialized by ccc_inode_fini_guard
268 * mutex.
269 */
270static struct lu_env *ccc_inode_fini_env = NULL;
271
272/**
273 * A mutex serializing calls to slp_inode_fini() under extreme memory
274 * pressure, when environments cannot be allocated.
275 */
276static DEFINE_MUTEX(ccc_inode_fini_guard);
277static int dummy_refcheck;
278
279int ccc_global_init(struct lu_device_type *device_type)
280{
281 int result;
282
283 result = lu_kmem_init(ccc_caches);
284 if (result)
285 return result;
286
287 result = lu_device_type_init(device_type);
288 if (result)
289 goto out_kmem;
290
291 ccc_inode_fini_env = cl_env_alloc(&dummy_refcheck,
292 LCT_REMEMBER|LCT_NOREF);
293 if (IS_ERR(ccc_inode_fini_env)) {
294 result = PTR_ERR(ccc_inode_fini_env);
295 goto out_device;
296 }
297
298 ccc_inode_fini_env->le_ctx.lc_cookie = 0x4;
299 return 0;
300out_device:
301 lu_device_type_fini(device_type);
302out_kmem:
303 lu_kmem_fini(ccc_caches);
304 return result;
305}
306
307void ccc_global_fini(struct lu_device_type *device_type)
308{
309 if (ccc_inode_fini_env != NULL) {
310 cl_env_put(ccc_inode_fini_env, &dummy_refcheck);
311 ccc_inode_fini_env = NULL;
312 }
313 lu_device_type_fini(device_type);
314 lu_kmem_fini(ccc_caches);
315}
316
317/*****************************************************************************
318 *
319 * Object operations.
320 *
321 */
322
323struct lu_object *ccc_object_alloc(const struct lu_env *env,
324 const struct lu_object_header *unused,
325 struct lu_device *dev,
326 const struct cl_object_operations *clops,
327 const struct lu_object_operations *luops)
328{
329 struct ccc_object *vob;
330 struct lu_object *obj;
331
332 OBD_SLAB_ALLOC_PTR_GFP(vob, ccc_object_kmem, __GFP_IO);
333 if (vob != NULL) {
334 struct cl_object_header *hdr;
335
336 obj = ccc2lu(vob);
337 hdr = &vob->cob_header;
338 cl_object_header_init(hdr);
339 lu_object_init(obj, &hdr->coh_lu, dev);
340 lu_object_add_top(&hdr->coh_lu, obj);
341
342 vob->cob_cl.co_ops = clops;
343 obj->lo_ops = luops;
344 } else
345 obj = NULL;
346 return obj;
347}
348
349int ccc_object_init0(const struct lu_env *env,
350 struct ccc_object *vob,
351 const struct cl_object_conf *conf)
352{
353 vob->cob_inode = conf->coc_inode;
354 vob->cob_transient_pages = 0;
355 cl_object_page_init(&vob->cob_cl, sizeof(struct ccc_page));
356 return 0;
357}
358
359int ccc_object_init(const struct lu_env *env, struct lu_object *obj,
360 const struct lu_object_conf *conf)
361{
362 struct ccc_device *dev = lu2ccc_dev(obj->lo_dev);
363 struct ccc_object *vob = lu2ccc(obj);
364 struct lu_object *below;
365 struct lu_device *under;
366 int result;
367
368 under = &dev->cdv_next->cd_lu_dev;
369 below = under->ld_ops->ldo_object_alloc(env, obj->lo_header, under);
370 if (below != NULL) {
371 const struct cl_object_conf *cconf;
372
373 cconf = lu2cl_conf(conf);
374 INIT_LIST_HEAD(&vob->cob_pending_list);
375 lu_object_add(obj, below);
376 result = ccc_object_init0(env, vob, cconf);
377 } else
378 result = -ENOMEM;
379 return result;
380}
381
382void ccc_object_free(const struct lu_env *env, struct lu_object *obj)
383{
384 struct ccc_object *vob = lu2ccc(obj);
385
386 lu_object_fini(obj);
387 lu_object_header_fini(obj->lo_header);
388 OBD_SLAB_FREE_PTR(vob, ccc_object_kmem);
389}
390
391int ccc_lock_init(const struct lu_env *env,
392 struct cl_object *obj, struct cl_lock *lock,
393 const struct cl_io *unused,
394 const struct cl_lock_operations *lkops)
395{
396 struct ccc_lock *clk;
397 int result;
398
399 CLOBINVRNT(env, obj, ccc_object_invariant(obj));
400
401 OBD_SLAB_ALLOC_PTR_GFP(clk, ccc_lock_kmem, __GFP_IO);
402 if (clk != NULL) {
403 cl_lock_slice_add(lock, &clk->clk_cl, obj, lkops);
404 result = 0;
405 } else
406 result = -ENOMEM;
407 return result;
408}
409
410int ccc_attr_set(const struct lu_env *env, struct cl_object *obj,
411 const struct cl_attr *attr, unsigned valid)
412{
413 return 0;
414}
415
416int ccc_object_glimpse(const struct lu_env *env,
417 const struct cl_object *obj, struct ost_lvb *lvb)
418{
419 struct inode *inode = ccc_object_inode(obj);
420
421 ENTRY;
422 lvb->lvb_mtime = cl_inode_mtime(inode);
423 lvb->lvb_atime = cl_inode_atime(inode);
424 lvb->lvb_ctime = cl_inode_ctime(inode);
425 /*
426 * LU-417: Add dirty pages block count lest i_blocks reports 0, some
427 * "cp" or "tar" on remote node may think it's a completely sparse file
428 * and skip it.
429 */
430 if (lvb->lvb_size > 0 && lvb->lvb_blocks == 0)
431 lvb->lvb_blocks = dirty_cnt(inode);
432 RETURN(0);
433}
434
435
436
437int ccc_conf_set(const struct lu_env *env, struct cl_object *obj,
438 const struct cl_object_conf *conf)
439{
440 /* TODO: destroy all pages attached to this object. */
441 return 0;
442}
443
444static void ccc_object_size_lock(struct cl_object *obj)
445{
446 struct inode *inode = ccc_object_inode(obj);
447
448 cl_isize_lock(inode);
449 cl_object_attr_lock(obj);
450}
451
452static void ccc_object_size_unlock(struct cl_object *obj)
453{
454 struct inode *inode = ccc_object_inode(obj);
455
456 cl_object_attr_unlock(obj);
457 cl_isize_unlock(inode);
458}
459
460/*****************************************************************************
461 *
462 * Page operations.
463 *
464 */
465
466struct page *ccc_page_vmpage(const struct lu_env *env,
467 const struct cl_page_slice *slice)
468{
469 return cl2vm_page(slice);
470}
471
472int ccc_page_is_under_lock(const struct lu_env *env,
473 const struct cl_page_slice *slice,
474 struct cl_io *io)
475{
476 struct ccc_io *cio = ccc_env_io(env);
477 struct cl_lock_descr *desc = &ccc_env_info(env)->cti_descr;
478 struct cl_page *page = slice->cpl_page;
479
480 int result;
481
482 ENTRY;
483
484 if (io->ci_type == CIT_READ || io->ci_type == CIT_WRITE ||
485 io->ci_type == CIT_FAULT) {
486 if (cio->cui_fd->fd_flags & LL_FILE_GROUP_LOCKED)
487 result = -EBUSY;
488 else {
489 desc->cld_start = page->cp_index;
490 desc->cld_end = page->cp_index;
491 desc->cld_obj = page->cp_obj;
492 desc->cld_mode = CLM_READ;
493 result = cl_queue_match(&io->ci_lockset.cls_done,
494 desc) ? -EBUSY : 0;
495 }
496 } else
497 result = 0;
498 RETURN(result);
499}
500
501int ccc_fail(const struct lu_env *env, const struct cl_page_slice *slice)
502{
503 /*
504 * Cached read?
505 */
506 LBUG();
507 return 0;
508}
509
510void ccc_transient_page_verify(const struct cl_page *page)
511{
512}
513
514int ccc_transient_page_own(const struct lu_env *env,
515 const struct cl_page_slice *slice,
516 struct cl_io *unused,
517 int nonblock)
518{
519 ccc_transient_page_verify(slice->cpl_page);
520 return 0;
521}
522
523void ccc_transient_page_assume(const struct lu_env *env,
524 const struct cl_page_slice *slice,
525 struct cl_io *unused)
526{
527 ccc_transient_page_verify(slice->cpl_page);
528}
529
530void ccc_transient_page_unassume(const struct lu_env *env,
531 const struct cl_page_slice *slice,
532 struct cl_io *unused)
533{
534 ccc_transient_page_verify(slice->cpl_page);
535}
536
537void ccc_transient_page_disown(const struct lu_env *env,
538 const struct cl_page_slice *slice,
539 struct cl_io *unused)
540{
541 ccc_transient_page_verify(slice->cpl_page);
542}
543
544void ccc_transient_page_discard(const struct lu_env *env,
545 const struct cl_page_slice *slice,
546 struct cl_io *unused)
547{
548 struct cl_page *page = slice->cpl_page;
549
550 ccc_transient_page_verify(slice->cpl_page);
551
552 /*
553 * For transient pages, remove it from the radix tree.
554 */
555 cl_page_delete(env, page);
556}
557
558int ccc_transient_page_prep(const struct lu_env *env,
559 const struct cl_page_slice *slice,
560 struct cl_io *unused)
561{
562 ENTRY;
563 /* transient page should always be sent. */
564 RETURN(0);
565}
566
567/*****************************************************************************
568 *
569 * Lock operations.
570 *
571 */
572
573void ccc_lock_delete(const struct lu_env *env,
574 const struct cl_lock_slice *slice)
575{
576 CLOBINVRNT(env, slice->cls_obj, ccc_object_invariant(slice->cls_obj));
577}
578
579void ccc_lock_fini(const struct lu_env *env, struct cl_lock_slice *slice)
580{
581 struct ccc_lock *clk = cl2ccc_lock(slice);
582 OBD_SLAB_FREE_PTR(clk, ccc_lock_kmem);
583}
584
585int ccc_lock_enqueue(const struct lu_env *env,
586 const struct cl_lock_slice *slice,
587 struct cl_io *unused, __u32 enqflags)
588{
589 CLOBINVRNT(env, slice->cls_obj, ccc_object_invariant(slice->cls_obj));
590 return 0;
591}
592
593int ccc_lock_unuse(const struct lu_env *env, const struct cl_lock_slice *slice)
594{
595 CLOBINVRNT(env, slice->cls_obj, ccc_object_invariant(slice->cls_obj));
596 return 0;
597}
598
599int ccc_lock_wait(const struct lu_env *env, const struct cl_lock_slice *slice)
600{
601 CLOBINVRNT(env, slice->cls_obj, ccc_object_invariant(slice->cls_obj));
602 return 0;
603}
604
605/**
606 * Implementation of cl_lock_operations::clo_fits_into() methods for ccc
607 * layer. This function is executed every time io finds an existing lock in
608 * the lock cache while creating new lock. This function has to decide whether
609 * cached lock "fits" into io.
610 *
611 * \param slice lock to be checked
612 * \param io IO that wants a lock.
613 *
614 * \see lov_lock_fits_into().
615 */
616int ccc_lock_fits_into(const struct lu_env *env,
617 const struct cl_lock_slice *slice,
618 const struct cl_lock_descr *need,
619 const struct cl_io *io)
620{
621 const struct cl_lock *lock = slice->cls_lock;
622 const struct cl_lock_descr *descr = &lock->cll_descr;
623 const struct ccc_io *cio = ccc_env_io(env);
624 int result;
625
626 ENTRY;
627 /*
628 * Work around DLM peculiarity: it assumes that glimpse
629 * (LDLM_FL_HAS_INTENT) lock is always LCK_PR, and returns reads lock
630 * when asked for LCK_PW lock with LDLM_FL_HAS_INTENT flag set. Make
631 * sure that glimpse doesn't get CLM_WRITE top-lock, so that it
632 * doesn't enqueue CLM_WRITE sub-locks.
633 */
634 if (cio->cui_glimpse)
635 result = descr->cld_mode != CLM_WRITE;
636
637 /*
638 * Also, don't match incomplete write locks for read, otherwise read
639 * would enqueue missing sub-locks in the write mode.
640 */
641 else if (need->cld_mode != descr->cld_mode)
642 result = lock->cll_state >= CLS_ENQUEUED;
643 else
644 result = 1;
645 RETURN(result);
646}
647
648/**
649 * Implements cl_lock_operations::clo_state() method for ccc layer, invoked
650 * whenever lock state changes. Transfers object attributes, that might be
651 * updated as a result of lock acquiring into inode.
652 */
653void ccc_lock_state(const struct lu_env *env,
654 const struct cl_lock_slice *slice,
655 enum cl_lock_state state)
656{
657 struct cl_lock *lock = slice->cls_lock;
658 ENTRY;
659
660 /*
661 * Refresh inode attributes when the lock is moving into CLS_HELD
662 * state, and only when this is a result of real enqueue, rather than
663 * of finding lock in the cache.
664 */
665 if (state == CLS_HELD && lock->cll_state < CLS_HELD) {
666 struct cl_object *obj;
667 struct inode *inode;
668
669 obj = slice->cls_obj;
670 inode = ccc_object_inode(obj);
671
672 /* vmtruncate() sets the i_size
673 * under both a DLM lock and the
674 * ll_inode_size_lock(). If we don't get the
675 * ll_inode_size_lock() here we can match the DLM lock and
676 * reset i_size. generic_file_write can then trust the
677 * stale i_size when doing appending writes and effectively
678 * cancel the result of the truncate. Getting the
679 * ll_inode_size_lock() after the enqueue maintains the DLM
680 * -> ll_inode_size_lock() acquiring order. */
681 if (lock->cll_descr.cld_start == 0 &&
682 lock->cll_descr.cld_end == CL_PAGE_EOF)
683 cl_merge_lvb(env, inode);
684 }
685 EXIT;
686}
687
688/*****************************************************************************
689 *
690 * io operations.
691 *
692 */
693
694void ccc_io_fini(const struct lu_env *env, const struct cl_io_slice *ios)
695{
696 struct cl_io *io = ios->cis_io;
697
698 CLOBINVRNT(env, io->ci_obj, ccc_object_invariant(io->ci_obj));
699}
700
701int ccc_io_one_lock_index(const struct lu_env *env, struct cl_io *io,
702 __u32 enqflags, enum cl_lock_mode mode,
703 pgoff_t start, pgoff_t end)
704{
705 struct ccc_io *cio = ccc_env_io(env);
706 struct cl_lock_descr *descr = &cio->cui_link.cill_descr;
707 struct cl_object *obj = io->ci_obj;
708
709 CLOBINVRNT(env, obj, ccc_object_invariant(obj));
710 ENTRY;
711
712 CDEBUG(D_VFSTRACE, "lock: %d [%lu, %lu]\n", mode, start, end);
713
714 memset(&cio->cui_link, 0, sizeof cio->cui_link);
715
716 if (cio->cui_fd && (cio->cui_fd->fd_flags & LL_FILE_GROUP_LOCKED)) {
717 descr->cld_mode = CLM_GROUP;
718 descr->cld_gid = cio->cui_fd->fd_grouplock.cg_gid;
719 } else {
720 descr->cld_mode = mode;
721 }
722 descr->cld_obj = obj;
723 descr->cld_start = start;
724 descr->cld_end = end;
725 descr->cld_enq_flags = enqflags;
726
727 cl_io_lock_add(env, io, &cio->cui_link);
728 RETURN(0);
729}
730
731void ccc_io_update_iov(const struct lu_env *env,
732 struct ccc_io *cio, struct cl_io *io)
733{
734 int i;
735 size_t size = io->u.ci_rw.crw_count;
736
737 cio->cui_iov_olen = 0;
738 if (!cl_is_normalio(env, io) || cio->cui_tot_nrsegs == 0)
739 return;
740
741 for (i = 0; i < cio->cui_tot_nrsegs; i++) {
742 struct iovec *iv = &cio->cui_iov[i];
743
744 if (iv->iov_len < size)
745 size -= iv->iov_len;
746 else {
747 if (iv->iov_len > size) {
748 cio->cui_iov_olen = iv->iov_len;
749 iv->iov_len = size;
750 }
751 break;
752 }
753 }
754
755 cio->cui_nrsegs = i + 1;
756 LASSERTF(cio->cui_tot_nrsegs >= cio->cui_nrsegs,
757 "tot_nrsegs: %lu, nrsegs: %lu\n",
758 cio->cui_tot_nrsegs, cio->cui_nrsegs);
759}
760
761int ccc_io_one_lock(const struct lu_env *env, struct cl_io *io,
762 __u32 enqflags, enum cl_lock_mode mode,
763 loff_t start, loff_t end)
764{
765 struct cl_object *obj = io->ci_obj;
766 return ccc_io_one_lock_index(env, io, enqflags, mode,
767 cl_index(obj, start), cl_index(obj, end));
768}
769
770void ccc_io_end(const struct lu_env *env, const struct cl_io_slice *ios)
771{
772 CLOBINVRNT(env, ios->cis_io->ci_obj,
773 ccc_object_invariant(ios->cis_io->ci_obj));
774}
775
776void ccc_io_advance(const struct lu_env *env,
777 const struct cl_io_slice *ios,
778 size_t nob)
779{
780 struct ccc_io *cio = cl2ccc_io(env, ios);
781 struct cl_io *io = ios->cis_io;
782 struct cl_object *obj = ios->cis_io->ci_obj;
783
784 CLOBINVRNT(env, obj, ccc_object_invariant(obj));
785
786 if (!cl_is_normalio(env, io))
787 return;
788
789 LASSERT(cio->cui_tot_nrsegs >= cio->cui_nrsegs);
790 LASSERT(cio->cui_tot_count >= nob);
791
792 cio->cui_iov += cio->cui_nrsegs;
793 cio->cui_tot_nrsegs -= cio->cui_nrsegs;
794 cio->cui_tot_count -= nob;
795
796 /* update the iov */
797 if (cio->cui_iov_olen > 0) {
798 struct iovec *iv;
799
800 cio->cui_iov--;
801 cio->cui_tot_nrsegs++;
802 iv = &cio->cui_iov[0];
803 if (io->ci_continue) {
804 iv->iov_base += iv->iov_len;
805 LASSERT(cio->cui_iov_olen > iv->iov_len);
806 iv->iov_len = cio->cui_iov_olen - iv->iov_len;
807 } else {
808 /* restore the iov_len, in case of restart io. */
809 iv->iov_len = cio->cui_iov_olen;
810 }
811 cio->cui_iov_olen = 0;
812 }
813}
814
815/**
816 * Helper function that if necessary adjusts file size (inode->i_size), when
817 * position at the offset \a pos is accessed. File size can be arbitrary stale
818 * on a Lustre client, but client at least knows KMS. If accessed area is
819 * inside [0, KMS], set file size to KMS, otherwise glimpse file size.
820 *
821 * Locking: cl_isize_lock is used to serialize changes to inode size and to
822 * protect consistency between inode size and cl_object
823 * attributes. cl_object_size_lock() protects consistency between cl_attr's of
824 * top-object and sub-objects.
825 */
826int ccc_prep_size(const struct lu_env *env, struct cl_object *obj,
827 struct cl_io *io, loff_t start, size_t count, int *exceed)
828{
829 struct cl_attr *attr = ccc_env_thread_attr(env);
830 struct inode *inode = ccc_object_inode(obj);
831 loff_t pos = start + count - 1;
832 loff_t kms;
833 int result;
834
835 /*
836 * Consistency guarantees: following possibilities exist for the
837 * relation between region being accessed and real file size at this
838 * moment:
839 *
840 * (A): the region is completely inside of the file;
841 *
842 * (B-x): x bytes of region are inside of the file, the rest is
843 * outside;
844 *
845 * (C): the region is completely outside of the file.
846 *
847 * This classification is stable under DLM lock already acquired by
848 * the caller, because to change the class, other client has to take
849 * DLM lock conflicting with our lock. Also, any updates to ->i_size
850 * by other threads on this client are serialized by
851 * ll_inode_size_lock(). This guarantees that short reads are handled
852 * correctly in the face of concurrent writes and truncates.
853 */
854 ccc_object_size_lock(obj);
855 result = cl_object_attr_get(env, obj, attr);
856 if (result == 0) {
857 kms = attr->cat_kms;
858 if (pos > kms) {
859 /*
860 * A glimpse is necessary to determine whether we
861 * return a short read (B) or some zeroes at the end
862 * of the buffer (C)
863 */
864 ccc_object_size_unlock(obj);
865 result = cl_glimpse_lock(env, io, inode, obj, 0);
866 if (result == 0 && exceed != NULL) {
867 /* If objective page index exceed end-of-file
868 * page index, return directly. Do not expect
869 * kernel will check such case correctly.
870 * linux-2.6.18-128.1.1 miss to do that.
871 * --bug 17336 */
872 loff_t size = cl_isize_read(inode);
873 unsigned long cur_index = start >> PAGE_CACHE_SHIFT;
874
875 if ((size == 0 && cur_index != 0) ||
876 (((size - 1) >> PAGE_CACHE_SHIFT) < cur_index))
877 *exceed = 1;
878 }
879 return result;
880 } else {
881 /*
882 * region is within kms and, hence, within real file
883 * size (A). We need to increase i_size to cover the
884 * read region so that generic_file_read() will do its
885 * job, but that doesn't mean the kms size is
886 * _correct_, it is only the _minimum_ size. If
887 * someone does a stat they will get the correct size
888 * which will always be >= the kms value here.
889 * b=11081
890 */
891 if (cl_isize_read(inode) < kms) {
892 cl_isize_write_nolock(inode, kms);
893 CDEBUG(D_VFSTRACE,
894 DFID" updating i_size "LPU64"\n",
895 PFID(lu_object_fid(&obj->co_lu)),
896 (__u64)cl_isize_read(inode));
897
898 }
899 }
900 }
901 ccc_object_size_unlock(obj);
902 return result;
903}
904
905/*****************************************************************************
906 *
907 * Transfer operations.
908 *
909 */
910
911void ccc_req_completion(const struct lu_env *env,
912 const struct cl_req_slice *slice, int ioret)
913{
914 struct ccc_req *vrq;
915
916 if (ioret > 0)
917 cl_stats_tally(slice->crs_dev, slice->crs_req->crq_type, ioret);
918
919 vrq = cl2ccc_req(slice);
920 OBD_SLAB_FREE_PTR(vrq, ccc_req_kmem);
921}
922
923/**
924 * Implementation of struct cl_req_operations::cro_attr_set() for ccc
925 * layer. ccc is responsible for
926 *
927 * - o_[mac]time
928 *
929 * - o_mode
930 *
931 * - o_parent_seq
932 *
933 * - o_[ug]id
934 *
935 * - o_parent_oid
936 *
937 * - o_parent_ver
938 *
939 * - o_ioepoch,
940 *
941 * and capability.
942 */
943void ccc_req_attr_set(const struct lu_env *env,
944 const struct cl_req_slice *slice,
945 const struct cl_object *obj,
946 struct cl_req_attr *attr, obd_valid flags)
947{
948 struct inode *inode;
949 struct obdo *oa;
950 obd_flag valid_flags;
951
952 oa = attr->cra_oa;
953 inode = ccc_object_inode(obj);
954 valid_flags = OBD_MD_FLTYPE;
955
956 if ((flags & OBD_MD_FLOSSCAPA) != 0) {
957 LASSERT(attr->cra_capa == NULL);
958 attr->cra_capa = cl_capa_lookup(inode,
959 slice->crs_req->crq_type);
960 }
961
962 if (slice->crs_req->crq_type == CRT_WRITE) {
963 if (flags & OBD_MD_FLEPOCH) {
964 oa->o_valid |= OBD_MD_FLEPOCH;
965 oa->o_ioepoch = cl_i2info(inode)->lli_ioepoch;
966 valid_flags |= OBD_MD_FLMTIME | OBD_MD_FLCTIME |
967 OBD_MD_FLUID | OBD_MD_FLGID;
968 }
969 }
970 obdo_from_inode(oa, inode, valid_flags & flags);
971 obdo_set_parent_fid(oa, &cl_i2info(inode)->lli_fid);
972 memcpy(attr->cra_jobid, cl_i2info(inode)->lli_jobid,
973 JOBSTATS_JOBID_SIZE);
974}
975
976const struct cl_req_operations ccc_req_ops = {
977 .cro_attr_set = ccc_req_attr_set,
978 .cro_completion = ccc_req_completion
979};
980
981int cl_setattr_ost(struct inode *inode, const struct iattr *attr,
982 struct obd_capa *capa)
983{
984 struct lu_env *env;
985 struct cl_io *io;
986 int result;
987 int refcheck;
988
989 ENTRY;
990
991 env = cl_env_get(&refcheck);
992 if (IS_ERR(env))
993 RETURN(PTR_ERR(env));
994
995 io = ccc_env_thread_io(env);
996 io->ci_obj = cl_i2info(inode)->lli_clob;
997
998 io->u.ci_setattr.sa_attr.lvb_atime = LTIME_S(attr->ia_atime);
999 io->u.ci_setattr.sa_attr.lvb_mtime = LTIME_S(attr->ia_mtime);
1000 io->u.ci_setattr.sa_attr.lvb_ctime = LTIME_S(attr->ia_ctime);
1001 io->u.ci_setattr.sa_attr.lvb_size = attr->ia_size;
1002 io->u.ci_setattr.sa_valid = attr->ia_valid;
1003 io->u.ci_setattr.sa_capa = capa;
1004
1005again:
1006 if (cl_io_init(env, io, CIT_SETATTR, io->ci_obj) == 0) {
1007 struct ccc_io *cio = ccc_env_io(env);
1008
1009 if (attr->ia_valid & ATTR_FILE)
1010 /* populate the file descriptor for ftruncate to honor
1011 * group lock - see LU-787 */
1012 cio->cui_fd = cl_iattr2fd(inode, attr);
1013
1014 result = cl_io_loop(env, io);
1015 } else {
1016 result = io->ci_result;
1017 }
1018 cl_io_fini(env, io);
1019 if (unlikely(io->ci_need_restart))
1020 goto again;
1021 cl_env_put(env, &refcheck);
1022 RETURN(result);
1023}
1024
1025/*****************************************************************************
1026 *
1027 * Type conversions.
1028 *
1029 */
1030
1031struct lu_device *ccc2lu_dev(struct ccc_device *vdv)
1032{
1033 return &vdv->cdv_cl.cd_lu_dev;
1034}
1035
1036struct ccc_device *lu2ccc_dev(const struct lu_device *d)
1037{
1038 return container_of0(d, struct ccc_device, cdv_cl.cd_lu_dev);
1039}
1040
1041struct ccc_device *cl2ccc_dev(const struct cl_device *d)
1042{
1043 return container_of0(d, struct ccc_device, cdv_cl);
1044}
1045
1046struct lu_object *ccc2lu(struct ccc_object *vob)
1047{
1048 return &vob->cob_cl.co_lu;
1049}
1050
1051struct ccc_object *lu2ccc(const struct lu_object *obj)
1052{
1053 return container_of0(obj, struct ccc_object, cob_cl.co_lu);
1054}
1055
1056struct ccc_object *cl2ccc(const struct cl_object *obj)
1057{
1058 return container_of0(obj, struct ccc_object, cob_cl);
1059}
1060
1061struct ccc_lock *cl2ccc_lock(const struct cl_lock_slice *slice)
1062{
1063 return container_of(slice, struct ccc_lock, clk_cl);
1064}
1065
1066struct ccc_io *cl2ccc_io(const struct lu_env *env,
1067 const struct cl_io_slice *slice)
1068{
1069 struct ccc_io *cio;
1070
1071 cio = container_of(slice, struct ccc_io, cui_cl);
1072 LASSERT(cio == ccc_env_io(env));
1073 return cio;
1074}
1075
1076struct ccc_req *cl2ccc_req(const struct cl_req_slice *slice)
1077{
1078 return container_of0(slice, struct ccc_req, crq_cl);
1079}
1080
1081struct page *cl2vm_page(const struct cl_page_slice *slice)
1082{
1083 return cl2ccc_page(slice)->cpg_page;
1084}
1085
1086/*****************************************************************************
1087 *
1088 * Accessors.
1089 *
1090 */
1091int ccc_object_invariant(const struct cl_object *obj)
1092{
1093 struct inode *inode = ccc_object_inode(obj);
1094 struct cl_inode_info *lli = cl_i2info(inode);
1095
1096 return (S_ISREG(cl_inode_mode(inode)) ||
1097 /* i_mode of unlinked inode is zeroed. */
1098 cl_inode_mode(inode) == 0) && lli->lli_clob == obj;
1099}
1100
1101struct inode *ccc_object_inode(const struct cl_object *obj)
1102{
1103 return cl2ccc(obj)->cob_inode;
1104}
1105
1106/**
1107 * Returns a pointer to cl_page associated with \a vmpage, without acquiring
1108 * additional reference to the resulting page. This is an unsafe version of
1109 * cl_vmpage_page() that can only be used under vmpage lock.
1110 */
1111struct cl_page *ccc_vmpage_page_transient(struct page *vmpage)
1112{
1113 KLASSERT(PageLocked(vmpage));
1114 return (struct cl_page *)vmpage->private;
1115}
1116
1117/**
1118 * Initialize or update CLIO structures for regular files when new
1119 * meta-data arrives from the server.
1120 *
1121 * \param inode regular file inode
1122 * \param md new file metadata from MDS
1123 * - allocates cl_object if necessary,
1124 * - updated layout, if object was already here.
1125 */
1126int cl_file_inode_init(struct inode *inode, struct lustre_md *md)
1127{
1128 struct lu_env *env;
1129 struct cl_inode_info *lli;
1130 struct cl_object *clob;
1131 struct lu_site *site;
1132 struct lu_fid *fid;
1133 struct cl_object_conf conf = {
1134 .coc_inode = inode,
1135 .u = {
1136 .coc_md = md
1137 }
1138 };
1139 int result = 0;
1140 int refcheck;
1141
1142 LASSERT(md->body->valid & OBD_MD_FLID);
1143 LASSERT(S_ISREG(cl_inode_mode(inode)));
1144
1145 env = cl_env_get(&refcheck);
1146 if (IS_ERR(env))
1147 return PTR_ERR(env);
1148
1149 site = cl_i2sbi(inode)->ll_site;
1150 lli = cl_i2info(inode);
1151 fid = &lli->lli_fid;
1152 LASSERT(fid_is_sane(fid));
1153
1154 if (lli->lli_clob == NULL) {
1155 /* clob is slave of inode, empty lli_clob means for new inode,
1156 * there is no clob in cache with the given fid, so it is
1157 * unnecessary to perform lookup-alloc-lookup-insert, just
1158 * alloc and insert directly. */
1159 LASSERT(inode->i_state & I_NEW);
1160 conf.coc_lu.loc_flags = LOC_F_NEW;
1161 clob = cl_object_find(env, lu2cl_dev(site->ls_top_dev),
1162 fid, &conf);
1163 if (!IS_ERR(clob)) {
1164 /*
1165 * No locking is necessary, as new inode is
1166 * locked by I_NEW bit.
1167 */
1168 lli->lli_clob = clob;
1169 lli->lli_has_smd = md->lsm != NULL;
1170 lu_object_ref_add(&clob->co_lu, "inode", inode);
1171 } else
1172 result = PTR_ERR(clob);
1173 } else {
1174 result = cl_conf_set(env, lli->lli_clob, &conf);
1175 }
1176
1177 cl_env_put(env, &refcheck);
1178
1179 if (result != 0)
1180 CERROR("Failure to initialize cl object "DFID": %d\n",
1181 PFID(fid), result);
1182 return result;
1183}
1184
1185/**
1186 * Wait for others drop their references of the object at first, then we drop
1187 * the last one, which will lead to the object be destroyed immediately.
1188 * Must be called after cl_object_kill() against this object.
1189 *
1190 * The reason we want to do this is: destroying top object will wait for sub
1191 * objects being destroyed first, so we can't let bottom layer (e.g. from ASTs)
1192 * to initiate top object destroying which may deadlock. See bz22520.
1193 */
1194static void cl_object_put_last(struct lu_env *env, struct cl_object *obj)
1195{
1196 struct lu_object_header *header = obj->co_lu.lo_header;
1197 wait_queue_t waiter;
1198
1199 if (unlikely(atomic_read(&header->loh_ref) != 1)) {
1200 struct lu_site *site = obj->co_lu.lo_dev->ld_site;
1201 struct lu_site_bkt_data *bkt;
1202
1203 bkt = lu_site_bkt_from_fid(site, &header->loh_fid);
1204
1205 init_waitqueue_entry_current(&waiter);
1206 add_wait_queue(&bkt->lsb_marche_funebre, &waiter);
1207
1208 while (1) {
1209 set_current_state(TASK_UNINTERRUPTIBLE);
1210 if (atomic_read(&header->loh_ref) == 1)
1211 break;
1212 waitq_wait(&waiter, TASK_UNINTERRUPTIBLE);
1213 }
1214
1215 set_current_state(TASK_RUNNING);
1216 remove_wait_queue(&bkt->lsb_marche_funebre, &waiter);
1217 }
1218
1219 cl_object_put(env, obj);
1220}
1221
1222void cl_inode_fini(struct inode *inode)
1223{
1224 struct lu_env *env;
1225 struct cl_inode_info *lli = cl_i2info(inode);
1226 struct cl_object *clob = lli->lli_clob;
1227 int refcheck;
1228 int emergency;
1229
1230 if (clob != NULL) {
1231 void *cookie;
1232
1233 cookie = cl_env_reenter();
1234 env = cl_env_get(&refcheck);
1235 emergency = IS_ERR(env);
1236 if (emergency) {
1237 mutex_lock(&ccc_inode_fini_guard);
1238 LASSERT(ccc_inode_fini_env != NULL);
1239 cl_env_implant(ccc_inode_fini_env, &refcheck);
1240 env = ccc_inode_fini_env;
1241 }
1242 /*
1243 * cl_object cache is a slave to inode cache (which, in turn
1244 * is a slave to dentry cache), don't keep cl_object in memory
1245 * when its master is evicted.
1246 */
1247 cl_object_kill(env, clob);
1248 lu_object_ref_del(&clob->co_lu, "inode", inode);
1249 cl_object_put_last(env, clob);
1250 lli->lli_clob = NULL;
1251 if (emergency) {
1252 cl_env_unplant(ccc_inode_fini_env, &refcheck);
1253 mutex_unlock(&ccc_inode_fini_guard);
1254 } else
1255 cl_env_put(env, &refcheck);
1256 cl_env_reexit(cookie);
1257 }
1258}
1259
1260/**
1261 * return IF_* type for given lu_dirent entry.
1262 * IF_* flag shld be converted to particular OS file type in
1263 * platform llite module.
1264 */
1265__u16 ll_dirent_type_get(struct lu_dirent *ent)
1266{
1267 __u16 type = 0;
1268 struct luda_type *lt;
1269 int len = 0;
1270
1271 if (le32_to_cpu(ent->lde_attrs) & LUDA_TYPE) {
1272 const unsigned align = sizeof(struct luda_type) - 1;
1273
1274 len = le16_to_cpu(ent->lde_namelen);
1275 len = (len + align) & ~align;
1276 lt = (void *)ent->lde_name + len;
1277 type = IFTODT(le16_to_cpu(lt->lt_type));
1278 }
1279 return type;
1280}
1281
1282/**
1283 * build inode number from passed @fid */
1284__u64 cl_fid_build_ino(const struct lu_fid *fid, int api32)
1285{
1286 if (BITS_PER_LONG == 32 || api32)
1287 RETURN(fid_flatten32(fid));
1288 else
1289 RETURN(fid_flatten(fid));
1290}
1291
1292/**
1293 * build inode generation from passed @fid. If our FID overflows the 32-bit
1294 * inode number then return a non-zero generation to distinguish them. */
1295__u32 cl_fid_build_gen(const struct lu_fid *fid)
1296{
1297 __u32 gen;
1298 ENTRY;
1299
1300 if (fid_is_igif(fid)) {
1301 gen = lu_igif_gen(fid);
1302 RETURN(gen);
1303 }
1304
1305 gen = (fid_flatten(fid) >> 32);
1306 RETURN(gen);
1307}
1308
1309/* lsm is unreliable after hsm implementation as layout can be changed at
1310 * any time. This is only to support old, non-clio-ized interfaces. It will
1311 * cause deadlock if clio operations are called with this extra layout refcount
1312 * because in case the layout changed during the IO, ll_layout_refresh() will
1313 * have to wait for the refcount to become zero to destroy the older layout.
1314 *
1315 * Notice that the lsm returned by this function may not be valid unless called
1316 * inside layout lock - MDS_INODELOCK_LAYOUT. */
1317struct lov_stripe_md *ccc_inode_lsm_get(struct inode *inode)
1318{
1319 return lov_lsm_get(cl_i2info(inode)->lli_clob);
1320}
1321
1322void inline ccc_inode_lsm_put(struct inode *inode, struct lov_stripe_md *lsm)
1323{
1324 lov_lsm_put(cl_i2info(inode)->lli_clob, lsm);
1325}