nvme: fix Kconfig description for BLK_DEV_NVME_SCSI
[linux-2.6-block.git] / drivers / spi / spi-atmel.c
CommitLineData
754ce4f2
HS
1/*
2 * Driver for Atmel AT32 and AT91 SPI Controllers
3 *
4 * Copyright (C) 2006 Atmel Corporation
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10
11#include <linux/kernel.h>
754ce4f2
HS
12#include <linux/clk.h>
13#include <linux/module.h>
14#include <linux/platform_device.h>
15#include <linux/delay.h>
16#include <linux/dma-mapping.h>
1ccc404a 17#include <linux/dmaengine.h>
754ce4f2
HS
18#include <linux/err.h>
19#include <linux/interrupt.h>
20#include <linux/spi/spi.h>
5a0e3ad6 21#include <linux/slab.h>
1ccc404a 22#include <linux/platform_data/dma-atmel.h>
850a5b67 23#include <linux/of.h>
754ce4f2 24
d4820b74
WY
25#include <linux/io.h>
26#include <linux/gpio.h>
5bdfd491 27#include <linux/pinctrl/consumer.h>
ce0c4caf 28#include <linux/pm_runtime.h>
bb2d1c36 29
ca632f55
GL
30/* SPI register offsets */
31#define SPI_CR 0x0000
32#define SPI_MR 0x0004
33#define SPI_RDR 0x0008
34#define SPI_TDR 0x000c
35#define SPI_SR 0x0010
36#define SPI_IER 0x0014
37#define SPI_IDR 0x0018
38#define SPI_IMR 0x001c
39#define SPI_CSR0 0x0030
40#define SPI_CSR1 0x0034
41#define SPI_CSR2 0x0038
42#define SPI_CSR3 0x003c
11f2764f
CP
43#define SPI_FMR 0x0040
44#define SPI_FLR 0x0044
d4820b74 45#define SPI_VERSION 0x00fc
ca632f55
GL
46#define SPI_RPR 0x0100
47#define SPI_RCR 0x0104
48#define SPI_TPR 0x0108
49#define SPI_TCR 0x010c
50#define SPI_RNPR 0x0110
51#define SPI_RNCR 0x0114
52#define SPI_TNPR 0x0118
53#define SPI_TNCR 0x011c
54#define SPI_PTCR 0x0120
55#define SPI_PTSR 0x0124
56
57/* Bitfields in CR */
58#define SPI_SPIEN_OFFSET 0
59#define SPI_SPIEN_SIZE 1
60#define SPI_SPIDIS_OFFSET 1
61#define SPI_SPIDIS_SIZE 1
62#define SPI_SWRST_OFFSET 7
63#define SPI_SWRST_SIZE 1
64#define SPI_LASTXFER_OFFSET 24
65#define SPI_LASTXFER_SIZE 1
11f2764f
CP
66#define SPI_TXFCLR_OFFSET 16
67#define SPI_TXFCLR_SIZE 1
68#define SPI_RXFCLR_OFFSET 17
69#define SPI_RXFCLR_SIZE 1
70#define SPI_FIFOEN_OFFSET 30
71#define SPI_FIFOEN_SIZE 1
72#define SPI_FIFODIS_OFFSET 31
73#define SPI_FIFODIS_SIZE 1
ca632f55
GL
74
75/* Bitfields in MR */
76#define SPI_MSTR_OFFSET 0
77#define SPI_MSTR_SIZE 1
78#define SPI_PS_OFFSET 1
79#define SPI_PS_SIZE 1
80#define SPI_PCSDEC_OFFSET 2
81#define SPI_PCSDEC_SIZE 1
82#define SPI_FDIV_OFFSET 3
83#define SPI_FDIV_SIZE 1
84#define SPI_MODFDIS_OFFSET 4
85#define SPI_MODFDIS_SIZE 1
d4820b74
WY
86#define SPI_WDRBT_OFFSET 5
87#define SPI_WDRBT_SIZE 1
ca632f55
GL
88#define SPI_LLB_OFFSET 7
89#define SPI_LLB_SIZE 1
90#define SPI_PCS_OFFSET 16
91#define SPI_PCS_SIZE 4
92#define SPI_DLYBCS_OFFSET 24
93#define SPI_DLYBCS_SIZE 8
94
95/* Bitfields in RDR */
96#define SPI_RD_OFFSET 0
97#define SPI_RD_SIZE 16
98
99/* Bitfields in TDR */
100#define SPI_TD_OFFSET 0
101#define SPI_TD_SIZE 16
102
103/* Bitfields in SR */
104#define SPI_RDRF_OFFSET 0
105#define SPI_RDRF_SIZE 1
106#define SPI_TDRE_OFFSET 1
107#define SPI_TDRE_SIZE 1
108#define SPI_MODF_OFFSET 2
109#define SPI_MODF_SIZE 1
110#define SPI_OVRES_OFFSET 3
111#define SPI_OVRES_SIZE 1
112#define SPI_ENDRX_OFFSET 4
113#define SPI_ENDRX_SIZE 1
114#define SPI_ENDTX_OFFSET 5
115#define SPI_ENDTX_SIZE 1
116#define SPI_RXBUFF_OFFSET 6
117#define SPI_RXBUFF_SIZE 1
118#define SPI_TXBUFE_OFFSET 7
119#define SPI_TXBUFE_SIZE 1
120#define SPI_NSSR_OFFSET 8
121#define SPI_NSSR_SIZE 1
122#define SPI_TXEMPTY_OFFSET 9
123#define SPI_TXEMPTY_SIZE 1
124#define SPI_SPIENS_OFFSET 16
125#define SPI_SPIENS_SIZE 1
11f2764f
CP
126#define SPI_TXFEF_OFFSET 24
127#define SPI_TXFEF_SIZE 1
128#define SPI_TXFFF_OFFSET 25
129#define SPI_TXFFF_SIZE 1
130#define SPI_TXFTHF_OFFSET 26
131#define SPI_TXFTHF_SIZE 1
132#define SPI_RXFEF_OFFSET 27
133#define SPI_RXFEF_SIZE 1
134#define SPI_RXFFF_OFFSET 28
135#define SPI_RXFFF_SIZE 1
136#define SPI_RXFTHF_OFFSET 29
137#define SPI_RXFTHF_SIZE 1
138#define SPI_TXFPTEF_OFFSET 30
139#define SPI_TXFPTEF_SIZE 1
140#define SPI_RXFPTEF_OFFSET 31
141#define SPI_RXFPTEF_SIZE 1
ca632f55
GL
142
143/* Bitfields in CSR0 */
144#define SPI_CPOL_OFFSET 0
145#define SPI_CPOL_SIZE 1
146#define SPI_NCPHA_OFFSET 1
147#define SPI_NCPHA_SIZE 1
148#define SPI_CSAAT_OFFSET 3
149#define SPI_CSAAT_SIZE 1
150#define SPI_BITS_OFFSET 4
151#define SPI_BITS_SIZE 4
152#define SPI_SCBR_OFFSET 8
153#define SPI_SCBR_SIZE 8
154#define SPI_DLYBS_OFFSET 16
155#define SPI_DLYBS_SIZE 8
156#define SPI_DLYBCT_OFFSET 24
157#define SPI_DLYBCT_SIZE 8
158
159/* Bitfields in RCR */
160#define SPI_RXCTR_OFFSET 0
161#define SPI_RXCTR_SIZE 16
162
163/* Bitfields in TCR */
164#define SPI_TXCTR_OFFSET 0
165#define SPI_TXCTR_SIZE 16
166
167/* Bitfields in RNCR */
168#define SPI_RXNCR_OFFSET 0
169#define SPI_RXNCR_SIZE 16
170
171/* Bitfields in TNCR */
172#define SPI_TXNCR_OFFSET 0
173#define SPI_TXNCR_SIZE 16
174
175/* Bitfields in PTCR */
176#define SPI_RXTEN_OFFSET 0
177#define SPI_RXTEN_SIZE 1
178#define SPI_RXTDIS_OFFSET 1
179#define SPI_RXTDIS_SIZE 1
180#define SPI_TXTEN_OFFSET 8
181#define SPI_TXTEN_SIZE 1
182#define SPI_TXTDIS_OFFSET 9
183#define SPI_TXTDIS_SIZE 1
184
11f2764f
CP
185/* Bitfields in FMR */
186#define SPI_TXRDYM_OFFSET 0
187#define SPI_TXRDYM_SIZE 2
188#define SPI_RXRDYM_OFFSET 4
189#define SPI_RXRDYM_SIZE 2
190#define SPI_TXFTHRES_OFFSET 16
191#define SPI_TXFTHRES_SIZE 6
192#define SPI_RXFTHRES_OFFSET 24
193#define SPI_RXFTHRES_SIZE 6
194
195/* Bitfields in FLR */
196#define SPI_TXFL_OFFSET 0
197#define SPI_TXFL_SIZE 6
198#define SPI_RXFL_OFFSET 16
199#define SPI_RXFL_SIZE 6
200
ca632f55
GL
201/* Constants for BITS */
202#define SPI_BITS_8_BPT 0
203#define SPI_BITS_9_BPT 1
204#define SPI_BITS_10_BPT 2
205#define SPI_BITS_11_BPT 3
206#define SPI_BITS_12_BPT 4
207#define SPI_BITS_13_BPT 5
208#define SPI_BITS_14_BPT 6
209#define SPI_BITS_15_BPT 7
210#define SPI_BITS_16_BPT 8
11f2764f
CP
211#define SPI_ONE_DATA 0
212#define SPI_TWO_DATA 1
213#define SPI_FOUR_DATA 2
ca632f55
GL
214
215/* Bit manipulation macros */
216#define SPI_BIT(name) \
217 (1 << SPI_##name##_OFFSET)
a536d765 218#define SPI_BF(name, value) \
ca632f55 219 (((value) & ((1 << SPI_##name##_SIZE) - 1)) << SPI_##name##_OFFSET)
a536d765 220#define SPI_BFEXT(name, value) \
ca632f55 221 (((value) >> SPI_##name##_OFFSET) & ((1 << SPI_##name##_SIZE) - 1))
a536d765
SK
222#define SPI_BFINS(name, value, old) \
223 (((old) & ~(((1 << SPI_##name##_SIZE) - 1) << SPI_##name##_OFFSET)) \
224 | SPI_BF(name, value))
ca632f55
GL
225
226/* Register access macros */
ea467326 227#ifdef CONFIG_AVR32
a536d765 228#define spi_readl(port, reg) \
ca632f55 229 __raw_readl((port)->regs + SPI_##reg)
a536d765 230#define spi_writel(port, reg, value) \
ca632f55 231 __raw_writel((value), (port)->regs + SPI_##reg)
11f2764f
CP
232
233#define spi_readw(port, reg) \
234 __raw_readw((port)->regs + SPI_##reg)
235#define spi_writew(port, reg, value) \
236 __raw_writew((value), (port)->regs + SPI_##reg)
237
238#define spi_readb(port, reg) \
239 __raw_readb((port)->regs + SPI_##reg)
240#define spi_writeb(port, reg, value) \
241 __raw_writeb((value), (port)->regs + SPI_##reg)
ea467326
BD
242#else
243#define spi_readl(port, reg) \
244 readl_relaxed((port)->regs + SPI_##reg)
245#define spi_writel(port, reg, value) \
246 writel_relaxed((value), (port)->regs + SPI_##reg)
11f2764f
CP
247
248#define spi_readw(port, reg) \
249 readw_relaxed((port)->regs + SPI_##reg)
250#define spi_writew(port, reg, value) \
251 writew_relaxed((value), (port)->regs + SPI_##reg)
252
253#define spi_readb(port, reg) \
254 readb_relaxed((port)->regs + SPI_##reg)
255#define spi_writeb(port, reg, value) \
256 writeb_relaxed((value), (port)->regs + SPI_##reg)
ea467326 257#endif
1ccc404a
NF
258/* use PIO for small transfers, avoiding DMA setup/teardown overhead and
259 * cache operations; better heuristics consider wordsize and bitrate.
260 */
261#define DMA_MIN_BYTES 16
262
8090d6d1
WY
263#define SPI_DMA_TIMEOUT (msecs_to_jiffies(1000))
264
ce0c4caf
WY
265#define AUTOSUSPEND_TIMEOUT 2000
266
1ccc404a
NF
267struct atmel_spi_dma {
268 struct dma_chan *chan_rx;
269 struct dma_chan *chan_tx;
270 struct scatterlist sgrx;
271 struct scatterlist sgtx;
272 struct dma_async_tx_descriptor *data_desc_rx;
273 struct dma_async_tx_descriptor *data_desc_tx;
274
275 struct at_dma_slave dma_slave;
276};
277
d4820b74
WY
278struct atmel_spi_caps {
279 bool is_spi2;
280 bool has_wdrbt;
281 bool has_dma_support;
282};
754ce4f2
HS
283
284/*
285 * The core SPI transfer engine just talks to a register bank to set up
286 * DMA transfers; transfer queue progress is driven by IRQs. The clock
287 * framework provides the base clock, subdivided for each spi_device.
754ce4f2
HS
288 */
289struct atmel_spi {
290 spinlock_t lock;
8aad7924 291 unsigned long flags;
754ce4f2 292
dfab30ee 293 phys_addr_t phybase;
754ce4f2
HS
294 void __iomem *regs;
295 int irq;
296 struct clk *clk;
297 struct platform_device *pdev;
754ce4f2 298
754ce4f2 299 struct spi_transfer *current_transfer;
0c3b9748 300 int current_remaining_bytes;
823cd045 301 int done_status;
754ce4f2 302
8090d6d1
WY
303 struct completion xfer_completion;
304
1ccc404a 305 /* scratch buffer */
754ce4f2
HS
306 void *buffer;
307 dma_addr_t buffer_dma;
d4820b74
WY
308
309 struct atmel_spi_caps caps;
1ccc404a
NF
310
311 bool use_dma;
312 bool use_pdc;
48203034 313 bool use_cs_gpios;
1ccc404a
NF
314 /* dmaengine data */
315 struct atmel_spi_dma dma;
8090d6d1
WY
316
317 bool keep_cs;
318 bool cs_active;
11f2764f
CP
319
320 u32 fifo_size;
754ce4f2
HS
321};
322
5ee36c98
HS
323/* Controller-specific per-slave state */
324struct atmel_spi_device {
325 unsigned int npcs_pin;
326 u32 csr;
327};
328
754ce4f2
HS
329#define BUFFER_SIZE PAGE_SIZE
330#define INVALID_DMA_ADDRESS 0xffffffff
331
5bfa26ca
HS
332/*
333 * Version 2 of the SPI controller has
334 * - CR.LASTXFER
335 * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
336 * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
337 * - SPI_CSRx.CSAAT
338 * - SPI_CSRx.SBCR allows faster clocking
5bfa26ca 339 */
d4820b74 340static bool atmel_spi_is_v2(struct atmel_spi *as)
5bfa26ca 341{
d4820b74 342 return as->caps.is_spi2;
5bfa26ca
HS
343}
344
754ce4f2
HS
345/*
346 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
347 * they assume that spi slave device state will not change on deselect, so
defbd3b4
DB
348 * that automagic deselection is OK. ("NPCSx rises if no data is to be
349 * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer
350 * controllers have CSAAT and friends.
754ce4f2 351 *
defbd3b4
DB
352 * Since the CSAAT functionality is a bit weird on newer controllers as
353 * well, we use GPIO to control nCSx pins on all controllers, updating
354 * MR.PCS to avoid confusing the controller. Using GPIOs also lets us
355 * support active-high chipselects despite the controller's belief that
356 * only active-low devices/systems exists.
357 *
358 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
359 * right when driven with GPIO. ("Mode Fault does not allow more than one
360 * Master on Chip Select 0.") No workaround exists for that ... so for
361 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
362 * and (c) will trigger that first erratum in some cases.
754ce4f2
HS
363 */
364
defbd3b4 365static void cs_activate(struct atmel_spi *as, struct spi_device *spi)
754ce4f2 366{
5ee36c98 367 struct atmel_spi_device *asd = spi->controller_state;
754ce4f2 368 unsigned active = spi->mode & SPI_CS_HIGH;
defbd3b4
DB
369 u32 mr;
370
d4820b74 371 if (atmel_spi_is_v2(as)) {
97ed465b
WY
372 spi_writel(as, CSR0 + 4 * spi->chip_select, asd->csr);
373 /* For the low SPI version, there is a issue that PDC transfer
374 * on CS1,2,3 needs SPI_CSR0.BITS config as SPI_CSR1,2,3.BITS
5ee36c98
HS
375 */
376 spi_writel(as, CSR0, asd->csr);
d4820b74 377 if (as->caps.has_wdrbt) {
97ed465b
WY
378 spi_writel(as, MR,
379 SPI_BF(PCS, ~(0x01 << spi->chip_select))
380 | SPI_BIT(WDRBT)
381 | SPI_BIT(MODFDIS)
382 | SPI_BIT(MSTR));
d4820b74 383 } else {
97ed465b
WY
384 spi_writel(as, MR,
385 SPI_BF(PCS, ~(0x01 << spi->chip_select))
386 | SPI_BIT(MODFDIS)
387 | SPI_BIT(MSTR));
d4820b74 388 }
1ccc404a 389
5ee36c98 390 mr = spi_readl(as, MR);
48203034
CP
391 if (as->use_cs_gpios)
392 gpio_set_value(asd->npcs_pin, active);
5ee36c98
HS
393 } else {
394 u32 cpol = (spi->mode & SPI_CPOL) ? SPI_BIT(CPOL) : 0;
395 int i;
396 u32 csr;
397
398 /* Make sure clock polarity is correct */
399 for (i = 0; i < spi->master->num_chipselect; i++) {
400 csr = spi_readl(as, CSR0 + 4 * i);
401 if ((csr ^ cpol) & SPI_BIT(CPOL))
402 spi_writel(as, CSR0 + 4 * i,
403 csr ^ SPI_BIT(CPOL));
404 }
405
406 mr = spi_readl(as, MR);
407 mr = SPI_BFINS(PCS, ~(1 << spi->chip_select), mr);
48203034 408 if (as->use_cs_gpios && spi->chip_select != 0)
5ee36c98
HS
409 gpio_set_value(asd->npcs_pin, active);
410 spi_writel(as, MR, mr);
411 }
defbd3b4
DB
412
413 dev_dbg(&spi->dev, "activate %u%s, mr %08x\n",
5ee36c98 414 asd->npcs_pin, active ? " (high)" : "",
defbd3b4 415 mr);
754ce4f2
HS
416}
417
defbd3b4 418static void cs_deactivate(struct atmel_spi *as, struct spi_device *spi)
754ce4f2 419{
5ee36c98 420 struct atmel_spi_device *asd = spi->controller_state;
754ce4f2 421 unsigned active = spi->mode & SPI_CS_HIGH;
defbd3b4
DB
422 u32 mr;
423
424 /* only deactivate *this* device; sometimes transfers to
425 * another device may be active when this routine is called.
426 */
427 mr = spi_readl(as, MR);
428 if (~SPI_BFEXT(PCS, mr) & (1 << spi->chip_select)) {
429 mr = SPI_BFINS(PCS, 0xf, mr);
430 spi_writel(as, MR, mr);
431 }
754ce4f2 432
defbd3b4 433 dev_dbg(&spi->dev, "DEactivate %u%s, mr %08x\n",
5ee36c98 434 asd->npcs_pin, active ? " (low)" : "",
defbd3b4
DB
435 mr);
436
48203034
CP
437 if (!as->use_cs_gpios)
438 spi_writel(as, CR, SPI_BIT(LASTXFER));
439 else if (atmel_spi_is_v2(as) || spi->chip_select != 0)
5ee36c98 440 gpio_set_value(asd->npcs_pin, !active);
754ce4f2
HS
441}
442
6c07ef29 443static void atmel_spi_lock(struct atmel_spi *as) __acquires(&as->lock)
8aad7924
NF
444{
445 spin_lock_irqsave(&as->lock, as->flags);
446}
447
6c07ef29 448static void atmel_spi_unlock(struct atmel_spi *as) __releases(&as->lock)
8aad7924
NF
449{
450 spin_unlock_irqrestore(&as->lock, as->flags);
451}
452
1ccc404a
NF
453static inline bool atmel_spi_use_dma(struct atmel_spi *as,
454 struct spi_transfer *xfer)
455{
456 return as->use_dma && xfer->len >= DMA_MIN_BYTES;
457}
458
1ccc404a
NF
459static int atmel_spi_dma_slave_config(struct atmel_spi *as,
460 struct dma_slave_config *slave_config,
461 u8 bits_per_word)
462{
463 int err = 0;
464
465 if (bits_per_word > 8) {
466 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
467 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
468 } else {
469 slave_config->dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
470 slave_config->src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
471 }
472
473 slave_config->dst_addr = (dma_addr_t)as->phybase + SPI_TDR;
474 slave_config->src_addr = (dma_addr_t)as->phybase + SPI_RDR;
475 slave_config->src_maxburst = 1;
476 slave_config->dst_maxburst = 1;
477 slave_config->device_fc = false;
478
11f2764f
CP
479 /*
480 * This driver uses fixed peripheral select mode (PS bit set to '0' in
481 * the Mode Register).
482 * So according to the datasheet, when FIFOs are available (and
483 * enabled), the Transmit FIFO operates in Multiple Data Mode.
484 * In this mode, up to 2 data, not 4, can be written into the Transmit
485 * Data Register in a single access.
486 * However, the first data has to be written into the lowest 16 bits and
487 * the second data into the highest 16 bits of the Transmit
488 * Data Register. For 8bit data (the most frequent case), it would
489 * require to rework tx_buf so each data would actualy fit 16 bits.
490 * So we'd rather write only one data at the time. Hence the transmit
491 * path works the same whether FIFOs are available (and enabled) or not.
492 */
1ccc404a
NF
493 slave_config->direction = DMA_MEM_TO_DEV;
494 if (dmaengine_slave_config(as->dma.chan_tx, slave_config)) {
495 dev_err(&as->pdev->dev,
496 "failed to configure tx dma channel\n");
497 err = -EINVAL;
498 }
499
11f2764f
CP
500 /*
501 * This driver configures the spi controller for master mode (MSTR bit
502 * set to '1' in the Mode Register).
503 * So according to the datasheet, when FIFOs are available (and
504 * enabled), the Receive FIFO operates in Single Data Mode.
505 * So the receive path works the same whether FIFOs are available (and
506 * enabled) or not.
507 */
1ccc404a
NF
508 slave_config->direction = DMA_DEV_TO_MEM;
509 if (dmaengine_slave_config(as->dma.chan_rx, slave_config)) {
510 dev_err(&as->pdev->dev,
511 "failed to configure rx dma channel\n");
512 err = -EINVAL;
513 }
514
515 return err;
516}
517
1ccc404a
NF
518static int atmel_spi_configure_dma(struct atmel_spi *as)
519{
1ccc404a 520 struct dma_slave_config slave_config;
2f767a9f 521 struct device *dev = &as->pdev->dev;
1ccc404a
NF
522 int err;
523
2f767a9f
RG
524 dma_cap_mask_t mask;
525 dma_cap_zero(mask);
526 dma_cap_set(DMA_SLAVE, mask);
1ccc404a 527
5e9af37e
LD
528 as->dma.chan_tx = dma_request_slave_channel_reason(dev, "tx");
529 if (IS_ERR(as->dma.chan_tx)) {
530 err = PTR_ERR(as->dma.chan_tx);
531 if (err == -EPROBE_DEFER) {
532 dev_warn(dev, "no DMA channel available at the moment\n");
533 return err;
534 }
2f767a9f
RG
535 dev_err(dev,
536 "DMA TX channel not available, SPI unable to use DMA\n");
537 err = -EBUSY;
538 goto error;
1ccc404a 539 }
2f767a9f 540
5e9af37e
LD
541 /*
542 * No reason to check EPROBE_DEFER here since we have already requested
543 * tx channel. If it fails here, it's for another reason.
544 */
7758e390 545 as->dma.chan_rx = dma_request_slave_channel(dev, "rx");
2f767a9f
RG
546
547 if (!as->dma.chan_rx) {
548 dev_err(dev,
549 "DMA RX channel not available, SPI unable to use DMA\n");
1ccc404a
NF
550 err = -EBUSY;
551 goto error;
552 }
553
554 err = atmel_spi_dma_slave_config(as, &slave_config, 8);
555 if (err)
556 goto error;
557
558 dev_info(&as->pdev->dev,
559 "Using %s (tx) and %s (rx) for DMA transfers\n",
560 dma_chan_name(as->dma.chan_tx),
561 dma_chan_name(as->dma.chan_rx));
562 return 0;
563error:
564 if (as->dma.chan_rx)
565 dma_release_channel(as->dma.chan_rx);
5e9af37e 566 if (!IS_ERR(as->dma.chan_tx))
1ccc404a
NF
567 dma_release_channel(as->dma.chan_tx);
568 return err;
569}
570
571static void atmel_spi_stop_dma(struct atmel_spi *as)
572{
573 if (as->dma.chan_rx)
5398ad68 574 dmaengine_terminate_all(as->dma.chan_rx);
1ccc404a 575 if (as->dma.chan_tx)
5398ad68 576 dmaengine_terminate_all(as->dma.chan_tx);
1ccc404a
NF
577}
578
579static void atmel_spi_release_dma(struct atmel_spi *as)
580{
581 if (as->dma.chan_rx)
582 dma_release_channel(as->dma.chan_rx);
583 if (as->dma.chan_tx)
584 dma_release_channel(as->dma.chan_tx);
585}
586
587/* This function is called by the DMA driver from tasklet context */
588static void dma_callback(void *data)
589{
590 struct spi_master *master = data;
591 struct atmel_spi *as = spi_master_get_devdata(master);
592
8090d6d1 593 complete(&as->xfer_completion);
1ccc404a
NF
594}
595
596/*
11f2764f 597 * Next transfer using PIO without FIFO.
1ccc404a 598 */
11f2764f
CP
599static void atmel_spi_next_xfer_single(struct spi_master *master,
600 struct spi_transfer *xfer)
1ccc404a
NF
601{
602 struct atmel_spi *as = spi_master_get_devdata(master);
8090d6d1 603 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
1ccc404a
NF
604
605 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_pio\n");
606
1ccc404a
NF
607 /* Make sure data is not remaining in RDR */
608 spi_readl(as, RDR);
609 while (spi_readl(as, SR) & SPI_BIT(RDRF)) {
610 spi_readl(as, RDR);
611 cpu_relax();
612 }
613
8090d6d1 614 if (xfer->tx_buf) {
f557c98b 615 if (xfer->bits_per_word > 8)
8090d6d1 616 spi_writel(as, TDR, *(u16 *)(xfer->tx_buf + xfer_pos));
f557c98b 617 else
8090d6d1
WY
618 spi_writel(as, TDR, *(u8 *)(xfer->tx_buf + xfer_pos));
619 } else {
1ccc404a 620 spi_writel(as, TDR, 0);
8090d6d1 621 }
1ccc404a
NF
622
623 dev_dbg(master->dev.parent,
f557c98b
RG
624 " start pio xfer %p: len %u tx %p rx %p bitpw %d\n",
625 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
626 xfer->bits_per_word);
1ccc404a
NF
627
628 /* Enable relevant interrupts */
629 spi_writel(as, IER, SPI_BIT(RDRF) | SPI_BIT(OVRES));
630}
631
11f2764f
CP
632/*
633 * Next transfer using PIO with FIFO.
634 */
635static void atmel_spi_next_xfer_fifo(struct spi_master *master,
636 struct spi_transfer *xfer)
637{
638 struct atmel_spi *as = spi_master_get_devdata(master);
639 u32 current_remaining_data, num_data;
640 u32 offset = xfer->len - as->current_remaining_bytes;
641 const u16 *words = (const u16 *)((u8 *)xfer->tx_buf + offset);
642 const u8 *bytes = (const u8 *)((u8 *)xfer->tx_buf + offset);
643 u16 td0, td1;
644 u32 fifomr;
645
646 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_fifo\n");
647
648 /* Compute the number of data to transfer in the current iteration */
649 current_remaining_data = ((xfer->bits_per_word > 8) ?
650 ((u32)as->current_remaining_bytes >> 1) :
651 (u32)as->current_remaining_bytes);
652 num_data = min(current_remaining_data, as->fifo_size);
653
654 /* Flush RX and TX FIFOs */
655 spi_writel(as, CR, SPI_BIT(RXFCLR) | SPI_BIT(TXFCLR));
656 while (spi_readl(as, FLR))
657 cpu_relax();
658
659 /* Set RX FIFO Threshold to the number of data to transfer */
660 fifomr = spi_readl(as, FMR);
661 spi_writel(as, FMR, SPI_BFINS(RXFTHRES, num_data, fifomr));
662
663 /* Clear FIFO flags in the Status Register, especially RXFTHF */
664 (void)spi_readl(as, SR);
665
666 /* Fill TX FIFO */
667 while (num_data >= 2) {
668 if (xfer->tx_buf) {
669 if (xfer->bits_per_word > 8) {
670 td0 = *words++;
671 td1 = *words++;
672 } else {
673 td0 = *bytes++;
674 td1 = *bytes++;
675 }
676 } else {
677 td0 = 0;
678 td1 = 0;
679 }
680
681 spi_writel(as, TDR, (td1 << 16) | td0);
682 num_data -= 2;
683 }
684
685 if (num_data) {
686 if (xfer->tx_buf) {
687 if (xfer->bits_per_word > 8)
688 td0 = *words++;
689 else
690 td0 = *bytes++;
691 } else {
692 td0 = 0;
693 }
694
695 spi_writew(as, TDR, td0);
696 num_data--;
697 }
698
699 dev_dbg(master->dev.parent,
700 " start fifo xfer %p: len %u tx %p rx %p bitpw %d\n",
701 xfer, xfer->len, xfer->tx_buf, xfer->rx_buf,
702 xfer->bits_per_word);
703
704 /*
705 * Enable RX FIFO Threshold Flag interrupt to be notified about
706 * transfer completion.
707 */
708 spi_writel(as, IER, SPI_BIT(RXFTHF) | SPI_BIT(OVRES));
709}
710
711/*
712 * Next transfer using PIO.
713 */
714static void atmel_spi_next_xfer_pio(struct spi_master *master,
715 struct spi_transfer *xfer)
716{
717 struct atmel_spi *as = spi_master_get_devdata(master);
718
719 if (as->fifo_size)
720 atmel_spi_next_xfer_fifo(master, xfer);
721 else
722 atmel_spi_next_xfer_single(master, xfer);
723}
724
1ccc404a
NF
725/*
726 * Submit next transfer for DMA.
1ccc404a
NF
727 */
728static int atmel_spi_next_xfer_dma_submit(struct spi_master *master,
729 struct spi_transfer *xfer,
730 u32 *plen)
731{
732 struct atmel_spi *as = spi_master_get_devdata(master);
733 struct dma_chan *rxchan = as->dma.chan_rx;
734 struct dma_chan *txchan = as->dma.chan_tx;
735 struct dma_async_tx_descriptor *rxdesc;
736 struct dma_async_tx_descriptor *txdesc;
737 struct dma_slave_config slave_config;
738 dma_cookie_t cookie;
739 u32 len = *plen;
740
741 dev_vdbg(master->dev.parent, "atmel_spi_next_xfer_dma_submit\n");
742
743 /* Check that the channels are available */
744 if (!rxchan || !txchan)
745 return -ENODEV;
746
747 /* release lock for DMA operations */
748 atmel_spi_unlock(as);
749
750 /* prepare the RX dma transfer */
751 sg_init_table(&as->dma.sgrx, 1);
752 if (xfer->rx_buf) {
753 as->dma.sgrx.dma_address = xfer->rx_dma + xfer->len - *plen;
754 } else {
755 as->dma.sgrx.dma_address = as->buffer_dma;
756 if (len > BUFFER_SIZE)
757 len = BUFFER_SIZE;
758 }
759
760 /* prepare the TX dma transfer */
761 sg_init_table(&as->dma.sgtx, 1);
762 if (xfer->tx_buf) {
763 as->dma.sgtx.dma_address = xfer->tx_dma + xfer->len - *plen;
764 } else {
765 as->dma.sgtx.dma_address = as->buffer_dma;
766 if (len > BUFFER_SIZE)
767 len = BUFFER_SIZE;
768 memset(as->buffer, 0, len);
769 }
770
771 sg_dma_len(&as->dma.sgtx) = len;
772 sg_dma_len(&as->dma.sgrx) = len;
773
774 *plen = len;
775
06515f83
DMT
776 if (atmel_spi_dma_slave_config(as, &slave_config,
777 xfer->bits_per_word))
1ccc404a
NF
778 goto err_exit;
779
780 /* Send both scatterlists */
ef40eb39
GU
781 rxdesc = dmaengine_prep_slave_sg(rxchan, &as->dma.sgrx, 1,
782 DMA_FROM_DEVICE,
783 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1ccc404a
NF
784 if (!rxdesc)
785 goto err_dma;
786
ef40eb39
GU
787 txdesc = dmaengine_prep_slave_sg(txchan, &as->dma.sgtx, 1,
788 DMA_TO_DEVICE,
789 DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1ccc404a
NF
790 if (!txdesc)
791 goto err_dma;
792
793 dev_dbg(master->dev.parent,
2de024b7
EG
794 " start dma xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
795 xfer, xfer->len, xfer->tx_buf, (unsigned long long)xfer->tx_dma,
796 xfer->rx_buf, (unsigned long long)xfer->rx_dma);
1ccc404a
NF
797
798 /* Enable relevant interrupts */
799 spi_writel(as, IER, SPI_BIT(OVRES));
800
801 /* Put the callback on the RX transfer only, that should finish last */
802 rxdesc->callback = dma_callback;
803 rxdesc->callback_param = master;
804
805 /* Submit and fire RX and TX with TX last so we're ready to read! */
806 cookie = rxdesc->tx_submit(rxdesc);
807 if (dma_submit_error(cookie))
808 goto err_dma;
809 cookie = txdesc->tx_submit(txdesc);
810 if (dma_submit_error(cookie))
811 goto err_dma;
812 rxchan->device->device_issue_pending(rxchan);
813 txchan->device->device_issue_pending(txchan);
814
815 /* take back lock */
816 atmel_spi_lock(as);
817 return 0;
818
819err_dma:
820 spi_writel(as, IDR, SPI_BIT(OVRES));
821 atmel_spi_stop_dma(as);
822err_exit:
823 atmel_spi_lock(as);
824 return -ENOMEM;
825}
826
154443c7
SE
827static void atmel_spi_next_xfer_data(struct spi_master *master,
828 struct spi_transfer *xfer,
829 dma_addr_t *tx_dma,
830 dma_addr_t *rx_dma,
831 u32 *plen)
832{
833 struct atmel_spi *as = spi_master_get_devdata(master);
834 u32 len = *plen;
835
836 /* use scratch buffer only when rx or tx data is unspecified */
837 if (xfer->rx_buf)
6aed4ee9 838 *rx_dma = xfer->rx_dma + xfer->len - *plen;
154443c7
SE
839 else {
840 *rx_dma = as->buffer_dma;
841 if (len > BUFFER_SIZE)
842 len = BUFFER_SIZE;
843 }
1ccc404a 844
154443c7 845 if (xfer->tx_buf)
6aed4ee9 846 *tx_dma = xfer->tx_dma + xfer->len - *plen;
154443c7
SE
847 else {
848 *tx_dma = as->buffer_dma;
849 if (len > BUFFER_SIZE)
850 len = BUFFER_SIZE;
851 memset(as->buffer, 0, len);
852 dma_sync_single_for_device(&as->pdev->dev,
853 as->buffer_dma, len, DMA_TO_DEVICE);
854 }
855
856 *plen = len;
857}
858
d3b72c7e
RG
859static int atmel_spi_set_xfer_speed(struct atmel_spi *as,
860 struct spi_device *spi,
861 struct spi_transfer *xfer)
862{
863 u32 scbr, csr;
864 unsigned long bus_hz;
865
866 /* v1 chips start out at half the peripheral bus speed. */
867 bus_hz = clk_get_rate(as->clk);
868 if (!atmel_spi_is_v2(as))
869 bus_hz /= 2;
870
871 /*
872 * Calculate the lowest divider that satisfies the
873 * constraint, assuming div32/fdiv/mbz == 0.
874 */
e8646580 875 scbr = DIV_ROUND_UP(bus_hz, xfer->speed_hz);
d3b72c7e
RG
876
877 /*
878 * If the resulting divider doesn't fit into the
879 * register bitfield, we can't satisfy the constraint.
880 */
881 if (scbr >= (1 << SPI_SCBR_SIZE)) {
882 dev_err(&spi->dev,
883 "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
884 xfer->speed_hz, scbr, bus_hz/255);
885 return -EINVAL;
886 }
887 if (scbr == 0) {
888 dev_err(&spi->dev,
889 "setup: %d Hz too high, scbr %u; max %ld Hz\n",
890 xfer->speed_hz, scbr, bus_hz);
891 return -EINVAL;
892 }
893 csr = spi_readl(as, CSR0 + 4 * spi->chip_select);
894 csr = SPI_BFINS(SCBR, scbr, csr);
895 spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
896
897 return 0;
898}
899
754ce4f2 900/*
1ccc404a 901 * Submit next transfer for PDC.
754ce4f2
HS
902 * lock is held, spi irq is blocked
903 */
1ccc404a 904static void atmel_spi_pdc_next_xfer(struct spi_master *master,
8090d6d1
WY
905 struct spi_message *msg,
906 struct spi_transfer *xfer)
754ce4f2
HS
907{
908 struct atmel_spi *as = spi_master_get_devdata(master);
8090d6d1 909 u32 len;
754ce4f2
HS
910 dma_addr_t tx_dma, rx_dma;
911
8090d6d1 912 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
754ce4f2 913
8090d6d1
WY
914 len = as->current_remaining_bytes;
915 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
916 as->current_remaining_bytes -= len;
754ce4f2 917
8090d6d1
WY
918 spi_writel(as, RPR, rx_dma);
919 spi_writel(as, TPR, tx_dma);
754ce4f2 920
8090d6d1
WY
921 if (msg->spi->bits_per_word > 8)
922 len >>= 1;
923 spi_writel(as, RCR, len);
924 spi_writel(as, TCR, len);
754ce4f2 925
8090d6d1
WY
926 dev_dbg(&msg->spi->dev,
927 " start xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
928 xfer, xfer->len, xfer->tx_buf,
929 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
930 (unsigned long long)xfer->rx_dma);
dc329442 931
8090d6d1
WY
932 if (as->current_remaining_bytes) {
933 len = as->current_remaining_bytes;
154443c7 934 atmel_spi_next_xfer_data(master, xfer, &tx_dma, &rx_dma, &len);
8090d6d1 935 as->current_remaining_bytes -= len;
754ce4f2 936
154443c7
SE
937 spi_writel(as, RNPR, rx_dma);
938 spi_writel(as, TNPR, tx_dma);
754ce4f2 939
154443c7
SE
940 if (msg->spi->bits_per_word > 8)
941 len >>= 1;
942 spi_writel(as, RNCR, len);
943 spi_writel(as, TNCR, len);
8bacb219
HS
944
945 dev_dbg(&msg->spi->dev,
2de024b7
EG
946 " next xfer %p: len %u tx %p/%08llx rx %p/%08llx\n",
947 xfer, xfer->len, xfer->tx_buf,
948 (unsigned long long)xfer->tx_dma, xfer->rx_buf,
949 (unsigned long long)xfer->rx_dma);
154443c7
SE
950 }
951
76e1d14b 952 /* REVISIT: We're waiting for RXBUFF before we start the next
754ce4f2 953 * transfer because we need to handle some difficult timing
76e1d14b
TF
954 * issues otherwise. If we wait for TXBUFE in one transfer and
955 * then starts waiting for RXBUFF in the next, it's difficult
956 * to tell the difference between the RXBUFF interrupt we're
957 * actually waiting for and the RXBUFF interrupt of the
754ce4f2
HS
958 * previous transfer.
959 *
960 * It should be doable, though. Just not now...
961 */
76e1d14b 962 spi_writel(as, IER, SPI_BIT(RXBUFF) | SPI_BIT(OVRES));
754ce4f2
HS
963 spi_writel(as, PTCR, SPI_BIT(TXTEN) | SPI_BIT(RXTEN));
964}
965
8da0859a
DB
966/*
967 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
968 * - The buffer is either valid for CPU access, else NULL
b595076a 969 * - If the buffer is valid, so is its DMA address
8da0859a 970 *
b595076a 971 * This driver manages the dma address unless message->is_dma_mapped.
8da0859a
DB
972 */
973static int
754ce4f2
HS
974atmel_spi_dma_map_xfer(struct atmel_spi *as, struct spi_transfer *xfer)
975{
8da0859a
DB
976 struct device *dev = &as->pdev->dev;
977
754ce4f2 978 xfer->tx_dma = xfer->rx_dma = INVALID_DMA_ADDRESS;
8da0859a 979 if (xfer->tx_buf) {
214b574a
JCPV
980 /* tx_buf is a const void* where we need a void * for the dma
981 * mapping */
982 void *nonconst_tx = (void *)xfer->tx_buf;
983
8da0859a 984 xfer->tx_dma = dma_map_single(dev,
214b574a 985 nonconst_tx, xfer->len,
754ce4f2 986 DMA_TO_DEVICE);
8d8bb39b 987 if (dma_mapping_error(dev, xfer->tx_dma))
8da0859a
DB
988 return -ENOMEM;
989 }
990 if (xfer->rx_buf) {
991 xfer->rx_dma = dma_map_single(dev,
754ce4f2
HS
992 xfer->rx_buf, xfer->len,
993 DMA_FROM_DEVICE);
8d8bb39b 994 if (dma_mapping_error(dev, xfer->rx_dma)) {
8da0859a
DB
995 if (xfer->tx_buf)
996 dma_unmap_single(dev,
997 xfer->tx_dma, xfer->len,
998 DMA_TO_DEVICE);
999 return -ENOMEM;
1000 }
1001 }
1002 return 0;
754ce4f2
HS
1003}
1004
1005static void atmel_spi_dma_unmap_xfer(struct spi_master *master,
1006 struct spi_transfer *xfer)
1007{
1008 if (xfer->tx_dma != INVALID_DMA_ADDRESS)
49dce689 1009 dma_unmap_single(master->dev.parent, xfer->tx_dma,
754ce4f2
HS
1010 xfer->len, DMA_TO_DEVICE);
1011 if (xfer->rx_dma != INVALID_DMA_ADDRESS)
49dce689 1012 dma_unmap_single(master->dev.parent, xfer->rx_dma,
754ce4f2
HS
1013 xfer->len, DMA_FROM_DEVICE);
1014}
1015
1ccc404a
NF
1016static void atmel_spi_disable_pdc_transfer(struct atmel_spi *as)
1017{
1018 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
1019}
1020
1ccc404a 1021static void
11f2764f 1022atmel_spi_pump_single_data(struct atmel_spi *as, struct spi_transfer *xfer)
1ccc404a 1023{
1ccc404a 1024 u8 *rxp;
f557c98b 1025 u16 *rxp16;
1ccc404a
NF
1026 unsigned long xfer_pos = xfer->len - as->current_remaining_bytes;
1027
1028 if (xfer->rx_buf) {
f557c98b
RG
1029 if (xfer->bits_per_word > 8) {
1030 rxp16 = (u16 *)(((u8 *)xfer->rx_buf) + xfer_pos);
1031 *rxp16 = spi_readl(as, RDR);
1032 } else {
1033 rxp = ((u8 *)xfer->rx_buf) + xfer_pos;
1034 *rxp = spi_readl(as, RDR);
1035 }
1ccc404a
NF
1036 } else {
1037 spi_readl(as, RDR);
1038 }
f557c98b 1039 if (xfer->bits_per_word > 8) {
b112f058
AB
1040 if (as->current_remaining_bytes > 2)
1041 as->current_remaining_bytes -= 2;
1042 else
f557c98b
RG
1043 as->current_remaining_bytes = 0;
1044 } else {
1045 as->current_remaining_bytes--;
1046 }
1ccc404a
NF
1047}
1048
11f2764f
CP
1049static void
1050atmel_spi_pump_fifo_data(struct atmel_spi *as, struct spi_transfer *xfer)
1051{
1052 u32 fifolr = spi_readl(as, FLR);
1053 u32 num_bytes, num_data = SPI_BFEXT(RXFL, fifolr);
1054 u32 offset = xfer->len - as->current_remaining_bytes;
1055 u16 *words = (u16 *)((u8 *)xfer->rx_buf + offset);
1056 u8 *bytes = (u8 *)((u8 *)xfer->rx_buf + offset);
1057 u16 rd; /* RD field is the lowest 16 bits of RDR */
1058
1059 /* Update the number of remaining bytes to transfer */
1060 num_bytes = ((xfer->bits_per_word > 8) ?
1061 (num_data << 1) :
1062 num_data);
1063
1064 if (as->current_remaining_bytes > num_bytes)
1065 as->current_remaining_bytes -= num_bytes;
1066 else
1067 as->current_remaining_bytes = 0;
1068
1069 /* Handle odd number of bytes when data are more than 8bit width */
1070 if (xfer->bits_per_word > 8)
1071 as->current_remaining_bytes &= ~0x1;
1072
1073 /* Read data */
1074 while (num_data) {
1075 rd = spi_readl(as, RDR);
1076 if (xfer->rx_buf) {
1077 if (xfer->bits_per_word > 8)
1078 *words++ = rd;
1079 else
1080 *bytes++ = rd;
1081 }
1082 num_data--;
1083 }
1084}
1085
1086/* Called from IRQ
1087 *
1088 * Must update "current_remaining_bytes" to keep track of data
1089 * to transfer.
1090 */
1091static void
1092atmel_spi_pump_pio_data(struct atmel_spi *as, struct spi_transfer *xfer)
1093{
1094 if (as->fifo_size)
1095 atmel_spi_pump_fifo_data(as, xfer);
1096 else
1097 atmel_spi_pump_single_data(as, xfer);
1098}
1099
1ccc404a
NF
1100/* Interrupt
1101 *
1102 * No need for locking in this Interrupt handler: done_status is the
8090d6d1 1103 * only information modified.
1ccc404a
NF
1104 */
1105static irqreturn_t
1106atmel_spi_pio_interrupt(int irq, void *dev_id)
1107{
1108 struct spi_master *master = dev_id;
1109 struct atmel_spi *as = spi_master_get_devdata(master);
1110 u32 status, pending, imr;
1111 struct spi_transfer *xfer;
1112 int ret = IRQ_NONE;
1113
1114 imr = spi_readl(as, IMR);
1115 status = spi_readl(as, SR);
1116 pending = status & imr;
1117
1118 if (pending & SPI_BIT(OVRES)) {
1119 ret = IRQ_HANDLED;
1120 spi_writel(as, IDR, SPI_BIT(OVRES));
1121 dev_warn(master->dev.parent, "overrun\n");
1122
1123 /*
1124 * When we get an overrun, we disregard the current
1125 * transfer. Data will not be copied back from any
1126 * bounce buffer and msg->actual_len will not be
1127 * updated with the last xfer.
1128 *
1129 * We will also not process any remaning transfers in
1130 * the message.
1ccc404a
NF
1131 */
1132 as->done_status = -EIO;
1133 smp_wmb();
1134
1135 /* Clear any overrun happening while cleaning up */
1136 spi_readl(as, SR);
1137
8090d6d1 1138 complete(&as->xfer_completion);
1ccc404a 1139
11f2764f 1140 } else if (pending & (SPI_BIT(RDRF) | SPI_BIT(RXFTHF))) {
1ccc404a
NF
1141 atmel_spi_lock(as);
1142
1143 if (as->current_remaining_bytes) {
1144 ret = IRQ_HANDLED;
1145 xfer = as->current_transfer;
1146 atmel_spi_pump_pio_data(as, xfer);
8090d6d1 1147 if (!as->current_remaining_bytes)
1ccc404a 1148 spi_writel(as, IDR, pending);
8090d6d1
WY
1149
1150 complete(&as->xfer_completion);
1ccc404a
NF
1151 }
1152
1153 atmel_spi_unlock(as);
1154 } else {
1155 WARN_ONCE(pending, "IRQ not handled, pending = %x\n", pending);
1156 ret = IRQ_HANDLED;
1157 spi_writel(as, IDR, pending);
1158 }
1159
1160 return ret;
754ce4f2
HS
1161}
1162
1163static irqreturn_t
1ccc404a 1164atmel_spi_pdc_interrupt(int irq, void *dev_id)
754ce4f2
HS
1165{
1166 struct spi_master *master = dev_id;
1167 struct atmel_spi *as = spi_master_get_devdata(master);
754ce4f2
HS
1168 u32 status, pending, imr;
1169 int ret = IRQ_NONE;
1170
754ce4f2
HS
1171 imr = spi_readl(as, IMR);
1172 status = spi_readl(as, SR);
1173 pending = status & imr;
1174
1175 if (pending & SPI_BIT(OVRES)) {
754ce4f2
HS
1176
1177 ret = IRQ_HANDLED;
1178
dc329442 1179 spi_writel(as, IDR, (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX)
754ce4f2
HS
1180 | SPI_BIT(OVRES)));
1181
754ce4f2
HS
1182 /* Clear any overrun happening while cleaning up */
1183 spi_readl(as, SR);
1184
823cd045 1185 as->done_status = -EIO;
8090d6d1
WY
1186
1187 complete(&as->xfer_completion);
1188
dc329442 1189 } else if (pending & (SPI_BIT(RXBUFF) | SPI_BIT(ENDRX))) {
754ce4f2
HS
1190 ret = IRQ_HANDLED;
1191
1192 spi_writel(as, IDR, pending);
1193
8090d6d1 1194 complete(&as->xfer_completion);
754ce4f2
HS
1195 }
1196
754ce4f2
HS
1197 return ret;
1198}
1199
754ce4f2
HS
1200static int atmel_spi_setup(struct spi_device *spi)
1201{
1202 struct atmel_spi *as;
5ee36c98 1203 struct atmel_spi_device *asd;
d3b72c7e 1204 u32 csr;
754ce4f2 1205 unsigned int bits = spi->bits_per_word;
754ce4f2
HS
1206 unsigned int npcs_pin;
1207 int ret;
1208
1209 as = spi_master_get_devdata(spi->master);
1210
defbd3b4 1211 /* see notes above re chipselect */
d4820b74 1212 if (!atmel_spi_is_v2(as)
defbd3b4
DB
1213 && spi->chip_select == 0
1214 && (spi->mode & SPI_CS_HIGH)) {
1215 dev_dbg(&spi->dev, "setup: can't be active-high\n");
1216 return -EINVAL;
1217 }
1218
d3b72c7e 1219 csr = SPI_BF(BITS, bits - 8);
754ce4f2
HS
1220 if (spi->mode & SPI_CPOL)
1221 csr |= SPI_BIT(CPOL);
1222 if (!(spi->mode & SPI_CPHA))
1223 csr |= SPI_BIT(NCPHA);
48203034
CP
1224 if (!as->use_cs_gpios)
1225 csr |= SPI_BIT(CSAAT);
754ce4f2 1226
1eed29df
HS
1227 /* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
1228 *
1229 * DLYBCT would add delays between words, slowing down transfers.
1230 * It could potentially be useful to cope with DMA bottlenecks, but
1231 * in those cases it's probably best to just use a lower bitrate.
1232 */
1233 csr |= SPI_BF(DLYBS, 0);
1234 csr |= SPI_BF(DLYBCT, 0);
754ce4f2
HS
1235
1236 /* chipselect must have been muxed as GPIO (e.g. in board setup) */
67f08d69 1237 npcs_pin = (unsigned long)spi->controller_data;
850a5b67 1238
48203034
CP
1239 if (!as->use_cs_gpios)
1240 npcs_pin = spi->chip_select;
1241 else if (gpio_is_valid(spi->cs_gpio))
850a5b67
JCPV
1242 npcs_pin = spi->cs_gpio;
1243
5ee36c98
HS
1244 asd = spi->controller_state;
1245 if (!asd) {
1246 asd = kzalloc(sizeof(struct atmel_spi_device), GFP_KERNEL);
1247 if (!asd)
1248 return -ENOMEM;
1249
48203034
CP
1250 if (as->use_cs_gpios) {
1251 ret = gpio_request(npcs_pin, dev_name(&spi->dev));
1252 if (ret) {
1253 kfree(asd);
1254 return ret;
1255 }
1256
1257 gpio_direction_output(npcs_pin,
1258 !(spi->mode & SPI_CS_HIGH));
5ee36c98
HS
1259 }
1260
1261 asd->npcs_pin = npcs_pin;
1262 spi->controller_state = asd;
754ce4f2
HS
1263 }
1264
5ee36c98
HS
1265 asd->csr = csr;
1266
754ce4f2 1267 dev_dbg(&spi->dev,
d3b72c7e
RG
1268 "setup: bpw %u mode 0x%x -> csr%d %08x\n",
1269 bits, spi->mode, spi->chip_select, csr);
754ce4f2 1270
d4820b74 1271 if (!atmel_spi_is_v2(as))
5ee36c98 1272 spi_writel(as, CSR0 + 4 * spi->chip_select, csr);
754ce4f2
HS
1273
1274 return 0;
1275}
1276
8090d6d1
WY
1277static int atmel_spi_one_transfer(struct spi_master *master,
1278 struct spi_message *msg,
1279 struct spi_transfer *xfer)
754ce4f2
HS
1280{
1281 struct atmel_spi *as;
8090d6d1 1282 struct spi_device *spi = msg->spi;
b9d228f9 1283 u8 bits;
8090d6d1 1284 u32 len;
b9d228f9 1285 struct atmel_spi_device *asd;
8090d6d1
WY
1286 int timeout;
1287 int ret;
1369dea6 1288 unsigned long dma_timeout;
754ce4f2 1289
8090d6d1 1290 as = spi_master_get_devdata(master);
754ce4f2 1291
8090d6d1
WY
1292 if (!(xfer->tx_buf || xfer->rx_buf) && xfer->len) {
1293 dev_dbg(&spi->dev, "missing rx or tx buf\n");
754ce4f2 1294 return -EINVAL;
8090d6d1 1295 }
754ce4f2 1296
e8646580
JN
1297 asd = spi->controller_state;
1298 bits = (asd->csr >> 4) & 0xf;
1299 if (bits != xfer->bits_per_word - 8) {
1300 dev_dbg(&spi->dev,
8090d6d1 1301 "you can't yet change bits_per_word in transfers\n");
e8646580 1302 return -ENOPROTOOPT;
8090d6d1 1303 }
754ce4f2 1304
8090d6d1
WY
1305 /*
1306 * DMA map early, for performance (empties dcache ASAP) and
1307 * better fault reporting.
1308 */
1309 if ((!msg->is_dma_mapped)
1310 && (atmel_spi_use_dma(as, xfer) || as->use_pdc)) {
1311 if (atmel_spi_dma_map_xfer(as, xfer) < 0)
1312 return -ENOMEM;
1313 }
1314
1315 atmel_spi_set_xfer_speed(as, msg->spi, xfer);
754ce4f2 1316
8090d6d1
WY
1317 as->done_status = 0;
1318 as->current_transfer = xfer;
1319 as->current_remaining_bytes = xfer->len;
1320 while (as->current_remaining_bytes) {
1321 reinit_completion(&as->xfer_completion);
1322
1323 if (as->use_pdc) {
1324 atmel_spi_pdc_next_xfer(master, msg, xfer);
1325 } else if (atmel_spi_use_dma(as, xfer)) {
1326 len = as->current_remaining_bytes;
1327 ret = atmel_spi_next_xfer_dma_submit(master,
1328 xfer, &len);
1329 if (ret) {
1330 dev_err(&spi->dev,
1331 "unable to use DMA, fallback to PIO\n");
1332 atmel_spi_next_xfer_pio(master, xfer);
1333 } else {
1334 as->current_remaining_bytes -= len;
0c3b9748
AL
1335 if (as->current_remaining_bytes < 0)
1336 as->current_remaining_bytes = 0;
b9d228f9 1337 }
8090d6d1
WY
1338 } else {
1339 atmel_spi_next_xfer_pio(master, xfer);
b9d228f9
MB
1340 }
1341
1676014e
AS
1342 /* interrupts are disabled, so free the lock for schedule */
1343 atmel_spi_unlock(as);
1369dea6
NMG
1344 dma_timeout = wait_for_completion_timeout(&as->xfer_completion,
1345 SPI_DMA_TIMEOUT);
1676014e 1346 atmel_spi_lock(as);
1369dea6
NMG
1347 if (WARN_ON(dma_timeout == 0)) {
1348 dev_err(&spi->dev, "spi transfer timeout\n");
8090d6d1 1349 as->done_status = -EIO;
f557c98b
RG
1350 }
1351
8090d6d1
WY
1352 if (as->done_status)
1353 break;
1354 }
1355
1356 if (as->done_status) {
1357 if (as->use_pdc) {
1358 dev_warn(master->dev.parent,
1359 "overrun (%u/%u remaining)\n",
1360 spi_readl(as, TCR), spi_readl(as, RCR));
1361
1362 /*
1363 * Clean up DMA registers and make sure the data
1364 * registers are empty.
1365 */
1366 spi_writel(as, RNCR, 0);
1367 spi_writel(as, TNCR, 0);
1368 spi_writel(as, RCR, 0);
1369 spi_writel(as, TCR, 0);
1370 for (timeout = 1000; timeout; timeout--)
1371 if (spi_readl(as, SR) & SPI_BIT(TXEMPTY))
1372 break;
1373 if (!timeout)
1374 dev_warn(master->dev.parent,
1375 "timeout waiting for TXEMPTY");
1376 while (spi_readl(as, SR) & SPI_BIT(RDRF))
1377 spi_readl(as, RDR);
1378
1379 /* Clear any overrun happening while cleaning up */
1380 spi_readl(as, SR);
1381
1382 } else if (atmel_spi_use_dma(as, xfer)) {
1383 atmel_spi_stop_dma(as);
1384 }
1385
1386 if (!msg->is_dma_mapped
1387 && (atmel_spi_use_dma(as, xfer) || as->use_pdc))
1388 atmel_spi_dma_unmap_xfer(master, xfer);
1389
1390 return 0;
1391
1392 } else {
1393 /* only update length if no error */
1394 msg->actual_length += xfer->len;
1395 }
1396
1397 if (!msg->is_dma_mapped
1398 && (atmel_spi_use_dma(as, xfer) || as->use_pdc))
1399 atmel_spi_dma_unmap_xfer(master, xfer);
1400
1401 if (xfer->delay_usecs)
1402 udelay(xfer->delay_usecs);
1403
1404 if (xfer->cs_change) {
1405 if (list_is_last(&xfer->transfer_list,
1406 &msg->transfers)) {
1407 as->keep_cs = true;
1408 } else {
1409 as->cs_active = !as->cs_active;
1410 if (as->cs_active)
1411 cs_activate(as, msg->spi);
1412 else
1413 cs_deactivate(as, msg->spi);
8da0859a 1414 }
754ce4f2
HS
1415 }
1416
8090d6d1
WY
1417 return 0;
1418}
1419
1420static int atmel_spi_transfer_one_message(struct spi_master *master,
1421 struct spi_message *msg)
1422{
1423 struct atmel_spi *as;
1424 struct spi_transfer *xfer;
1425 struct spi_device *spi = msg->spi;
1426 int ret = 0;
1427
1428 as = spi_master_get_devdata(master);
1429
1430 dev_dbg(&spi->dev, "new message %p submitted for %s\n",
1431 msg, dev_name(&spi->dev));
1432
8090d6d1
WY
1433 atmel_spi_lock(as);
1434 cs_activate(as, spi);
1435
1436 as->cs_active = true;
1437 as->keep_cs = false;
1438
1439 msg->status = 0;
1440 msg->actual_length = 0;
1441
1442 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
1443 ret = atmel_spi_one_transfer(master, msg, xfer);
1444 if (ret)
1445 goto msg_done;
1446 }
1447
1448 if (as->use_pdc)
1449 atmel_spi_disable_pdc_transfer(as);
1450
754ce4f2 1451 list_for_each_entry(xfer, &msg->transfers, transfer_list) {
8090d6d1 1452 dev_dbg(&spi->dev,
54f4c51c 1453 " xfer %p: len %u tx %p/%pad rx %p/%pad\n",
754ce4f2 1454 xfer, xfer->len,
54f4c51c
RD
1455 xfer->tx_buf, &xfer->tx_dma,
1456 xfer->rx_buf, &xfer->rx_dma);
754ce4f2
HS
1457 }
1458
8090d6d1
WY
1459msg_done:
1460 if (!as->keep_cs)
1461 cs_deactivate(as, msg->spi);
754ce4f2 1462
8aad7924 1463 atmel_spi_unlock(as);
754ce4f2 1464
8090d6d1
WY
1465 msg->status = as->done_status;
1466 spi_finalize_current_message(spi->master);
1467
1468 return ret;
754ce4f2
HS
1469}
1470
bb2d1c36 1471static void atmel_spi_cleanup(struct spi_device *spi)
754ce4f2 1472{
5ee36c98 1473 struct atmel_spi_device *asd = spi->controller_state;
67f08d69 1474 unsigned gpio = (unsigned long) spi->controller_data;
defbd3b4 1475
5ee36c98 1476 if (!asd)
defbd3b4
DB
1477 return;
1478
5ee36c98 1479 spi->controller_state = NULL;
defbd3b4 1480 gpio_free(gpio);
5ee36c98 1481 kfree(asd);
754ce4f2
HS
1482}
1483
d4820b74
WY
1484static inline unsigned int atmel_get_version(struct atmel_spi *as)
1485{
1486 return spi_readl(as, VERSION) & 0x00000fff;
1487}
1488
1489static void atmel_get_caps(struct atmel_spi *as)
1490{
1491 unsigned int version;
1492
1493 version = atmel_get_version(as);
1494 dev_info(&as->pdev->dev, "version: 0x%x\n", version);
1495
1496 as->caps.is_spi2 = version > 0x121;
1497 as->caps.has_wdrbt = version >= 0x210;
1498 as->caps.has_dma_support = version >= 0x212;
1499}
1500
754ce4f2
HS
1501/*-------------------------------------------------------------------------*/
1502
fd4a319b 1503static int atmel_spi_probe(struct platform_device *pdev)
754ce4f2
HS
1504{
1505 struct resource *regs;
1506 int irq;
1507 struct clk *clk;
1508 int ret;
1509 struct spi_master *master;
1510 struct atmel_spi *as;
1511
5bdfd491
WY
1512 /* Select default pin state */
1513 pinctrl_pm_select_default_state(&pdev->dev);
1514
754ce4f2
HS
1515 regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1516 if (!regs)
1517 return -ENXIO;
1518
1519 irq = platform_get_irq(pdev, 0);
1520 if (irq < 0)
1521 return irq;
1522
9f87d6f2 1523 clk = devm_clk_get(&pdev->dev, "spi_clk");
754ce4f2
HS
1524 if (IS_ERR(clk))
1525 return PTR_ERR(clk);
1526
1527 /* setup spi core then atmel-specific driver state */
1528 ret = -ENOMEM;
a536d765 1529 master = spi_alloc_master(&pdev->dev, sizeof(*as));
754ce4f2
HS
1530 if (!master)
1531 goto out_free;
1532
e7db06b5
DB
1533 /* the spi->mode bits understood by this driver: */
1534 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
24778be2 1535 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(8, 16);
850a5b67 1536 master->dev.of_node = pdev->dev.of_node;
754ce4f2 1537 master->bus_num = pdev->id;
850a5b67 1538 master->num_chipselect = master->dev.of_node ? 0 : 4;
754ce4f2 1539 master->setup = atmel_spi_setup;
8090d6d1 1540 master->transfer_one_message = atmel_spi_transfer_one_message;
754ce4f2 1541 master->cleanup = atmel_spi_cleanup;
ce0c4caf 1542 master->auto_runtime_pm = true;
754ce4f2
HS
1543 platform_set_drvdata(pdev, master);
1544
1545 as = spi_master_get_devdata(master);
1546
8da0859a
DB
1547 /*
1548 * Scratch buffer is used for throwaway rx and tx data.
1549 * It's coherent to minimize dcache pollution.
1550 */
754ce4f2
HS
1551 as->buffer = dma_alloc_coherent(&pdev->dev, BUFFER_SIZE,
1552 &as->buffer_dma, GFP_KERNEL);
1553 if (!as->buffer)
1554 goto out_free;
1555
1556 spin_lock_init(&as->lock);
1ccc404a 1557
754ce4f2 1558 as->pdev = pdev;
31407478 1559 as->regs = devm_ioremap_resource(&pdev->dev, regs);
543c954d
WY
1560 if (IS_ERR(as->regs)) {
1561 ret = PTR_ERR(as->regs);
754ce4f2 1562 goto out_free_buffer;
543c954d 1563 }
dfab30ee 1564 as->phybase = regs->start;
754ce4f2
HS
1565 as->irq = irq;
1566 as->clk = clk;
754ce4f2 1567
8090d6d1
WY
1568 init_completion(&as->xfer_completion);
1569
d4820b74
WY
1570 atmel_get_caps(as);
1571
48203034
CP
1572 as->use_cs_gpios = true;
1573 if (atmel_spi_is_v2(as) &&
1574 !of_get_property(pdev->dev.of_node, "cs-gpios", NULL)) {
1575 as->use_cs_gpios = false;
1576 master->num_chipselect = 4;
1577 }
1578
1ccc404a
NF
1579 as->use_dma = false;
1580 as->use_pdc = false;
1581 if (as->caps.has_dma_support) {
5e9af37e
LD
1582 ret = atmel_spi_configure_dma(as);
1583 if (ret == 0)
1ccc404a 1584 as->use_dma = true;
5e9af37e
LD
1585 else if (ret == -EPROBE_DEFER)
1586 return ret;
1ccc404a
NF
1587 } else {
1588 as->use_pdc = true;
1589 }
1590
1591 if (as->caps.has_dma_support && !as->use_dma)
1592 dev_info(&pdev->dev, "Atmel SPI Controller using PIO only\n");
1593
1594 if (as->use_pdc) {
9f87d6f2
JH
1595 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pdc_interrupt,
1596 0, dev_name(&pdev->dev), master);
1ccc404a 1597 } else {
9f87d6f2
JH
1598 ret = devm_request_irq(&pdev->dev, irq, atmel_spi_pio_interrupt,
1599 0, dev_name(&pdev->dev), master);
1ccc404a 1600 }
754ce4f2
HS
1601 if (ret)
1602 goto out_unmap_regs;
1603
1604 /* Initialize the hardware */
dfec4a6e
BB
1605 ret = clk_prepare_enable(clk);
1606 if (ret)
de8cc234 1607 goto out_free_irq;
754ce4f2 1608 spi_writel(as, CR, SPI_BIT(SWRST));
50d7d5bf 1609 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
d4820b74
WY
1610 if (as->caps.has_wdrbt) {
1611 spi_writel(as, MR, SPI_BIT(WDRBT) | SPI_BIT(MODFDIS)
1612 | SPI_BIT(MSTR));
1613 } else {
1614 spi_writel(as, MR, SPI_BIT(MSTR) | SPI_BIT(MODFDIS));
1615 }
1ccc404a
NF
1616
1617 if (as->use_pdc)
1618 spi_writel(as, PTCR, SPI_BIT(RXTDIS) | SPI_BIT(TXTDIS));
754ce4f2
HS
1619 spi_writel(as, CR, SPI_BIT(SPIEN));
1620
11f2764f
CP
1621 as->fifo_size = 0;
1622 if (!of_property_read_u32(pdev->dev.of_node, "atmel,fifo-size",
1623 &as->fifo_size)) {
1624 dev_info(&pdev->dev, "Using FIFO (%u data)\n", as->fifo_size);
1625 spi_writel(as, CR, SPI_BIT(FIFOEN));
1626 }
1627
754ce4f2
HS
1628 /* go! */
1629 dev_info(&pdev->dev, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
1630 (unsigned long)regs->start, irq);
1631
ce0c4caf
WY
1632 pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1633 pm_runtime_use_autosuspend(&pdev->dev);
1634 pm_runtime_set_active(&pdev->dev);
1635 pm_runtime_enable(&pdev->dev);
1636
9f87d6f2 1637 ret = devm_spi_register_master(&pdev->dev, master);
754ce4f2 1638 if (ret)
1ccc404a 1639 goto out_free_dma;
754ce4f2
HS
1640
1641 return 0;
1642
1ccc404a 1643out_free_dma:
ce0c4caf
WY
1644 pm_runtime_disable(&pdev->dev);
1645 pm_runtime_set_suspended(&pdev->dev);
1646
1ccc404a
NF
1647 if (as->use_dma)
1648 atmel_spi_release_dma(as);
1649
754ce4f2 1650 spi_writel(as, CR, SPI_BIT(SWRST));
50d7d5bf 1651 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
dfec4a6e 1652 clk_disable_unprepare(clk);
de8cc234 1653out_free_irq:
754ce4f2 1654out_unmap_regs:
754ce4f2
HS
1655out_free_buffer:
1656 dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1657 as->buffer_dma);
1658out_free:
754ce4f2
HS
1659 spi_master_put(master);
1660 return ret;
1661}
1662
fd4a319b 1663static int atmel_spi_remove(struct platform_device *pdev)
754ce4f2
HS
1664{
1665 struct spi_master *master = platform_get_drvdata(pdev);
1666 struct atmel_spi *as = spi_master_get_devdata(master);
754ce4f2 1667
ce0c4caf
WY
1668 pm_runtime_get_sync(&pdev->dev);
1669
754ce4f2
HS
1670 /* reset the hardware and block queue progress */
1671 spin_lock_irq(&as->lock);
1ccc404a
NF
1672 if (as->use_dma) {
1673 atmel_spi_stop_dma(as);
1674 atmel_spi_release_dma(as);
1675 }
1676
754ce4f2 1677 spi_writel(as, CR, SPI_BIT(SWRST));
50d7d5bf 1678 spi_writel(as, CR, SPI_BIT(SWRST)); /* AT91SAM9263 Rev B workaround */
754ce4f2
HS
1679 spi_readl(as, SR);
1680 spin_unlock_irq(&as->lock);
1681
754ce4f2
HS
1682 dma_free_coherent(&pdev->dev, BUFFER_SIZE, as->buffer,
1683 as->buffer_dma);
1684
dfec4a6e 1685 clk_disable_unprepare(as->clk);
754ce4f2 1686
ce0c4caf
WY
1687 pm_runtime_put_noidle(&pdev->dev);
1688 pm_runtime_disable(&pdev->dev);
1689
754ce4f2
HS
1690 return 0;
1691}
1692
ce0c4caf 1693#ifdef CONFIG_PM
c1ee8f3f
WY
1694static int atmel_spi_runtime_suspend(struct device *dev)
1695{
1696 struct spi_master *master = dev_get_drvdata(dev);
1697 struct atmel_spi *as = spi_master_get_devdata(master);
1698
1699 clk_disable_unprepare(as->clk);
1700 pinctrl_pm_select_sleep_state(dev);
1701
1702 return 0;
1703}
1704
1705static int atmel_spi_runtime_resume(struct device *dev)
1706{
1707 struct spi_master *master = dev_get_drvdata(dev);
1708 struct atmel_spi *as = spi_master_get_devdata(master);
1709
1710 pinctrl_pm_select_default_state(dev);
1711
1712 return clk_prepare_enable(as->clk);
1713}
1714
d630526d 1715#ifdef CONFIG_PM_SLEEP
ec60dd37 1716static int atmel_spi_suspend(struct device *dev)
754ce4f2 1717{
c1ee8f3f 1718 struct spi_master *master = dev_get_drvdata(dev);
ba938f3a
WY
1719 int ret;
1720
1721 /* Stop the queue running */
1722 ret = spi_master_suspend(master);
1723 if (ret) {
1724 dev_warn(dev, "cannot suspend master\n");
1725 return ret;
1726 }
754ce4f2 1727
c1ee8f3f
WY
1728 if (!pm_runtime_suspended(dev))
1729 atmel_spi_runtime_suspend(dev);
5bdfd491 1730
754ce4f2
HS
1731 return 0;
1732}
1733
ec60dd37 1734static int atmel_spi_resume(struct device *dev)
754ce4f2 1735{
c1ee8f3f 1736 struct spi_master *master = dev_get_drvdata(dev);
ba938f3a 1737 int ret;
754ce4f2 1738
ce0c4caf 1739 if (!pm_runtime_suspended(dev)) {
c1ee8f3f 1740 ret = atmel_spi_runtime_resume(dev);
ce0c4caf
WY
1741 if (ret)
1742 return ret;
1743 }
ba938f3a
WY
1744
1745 /* Start the queue running */
1746 ret = spi_master_resume(master);
1747 if (ret)
1748 dev_err(dev, "problem starting queue (%d)\n", ret);
1749
1750 return ret;
754ce4f2 1751}
d630526d 1752#endif
ce0c4caf
WY
1753
1754static const struct dev_pm_ops atmel_spi_pm_ops = {
1755 SET_SYSTEM_SLEEP_PM_OPS(atmel_spi_suspend, atmel_spi_resume)
1756 SET_RUNTIME_PM_OPS(atmel_spi_runtime_suspend,
1757 atmel_spi_runtime_resume, NULL)
1758};
ec60dd37 1759#define ATMEL_SPI_PM_OPS (&atmel_spi_pm_ops)
754ce4f2 1760#else
ec60dd37 1761#define ATMEL_SPI_PM_OPS NULL
754ce4f2
HS
1762#endif
1763
850a5b67
JCPV
1764#if defined(CONFIG_OF)
1765static const struct of_device_id atmel_spi_dt_ids[] = {
1766 { .compatible = "atmel,at91rm9200-spi" },
1767 { /* sentinel */ }
1768};
1769
1770MODULE_DEVICE_TABLE(of, atmel_spi_dt_ids);
1771#endif
754ce4f2
HS
1772
1773static struct platform_driver atmel_spi_driver = {
1774 .driver = {
1775 .name = "atmel_spi",
ec60dd37 1776 .pm = ATMEL_SPI_PM_OPS,
850a5b67 1777 .of_match_table = of_match_ptr(atmel_spi_dt_ids),
754ce4f2 1778 },
1cb201af 1779 .probe = atmel_spi_probe,
2deff8d6 1780 .remove = atmel_spi_remove,
754ce4f2 1781};
940ab889 1782module_platform_driver(atmel_spi_driver);
754ce4f2
HS
1783
1784MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
e05503ef 1785MODULE_AUTHOR("Haavard Skinnemoen (Atmel)");
754ce4f2 1786MODULE_LICENSE("GPL");
7e38c3c4 1787MODULE_ALIAS("platform:atmel_spi");