[PATCH] libata: kill unused xfer_mode functions
[linux-2.6-block.git] / drivers / scsi / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
35#include <linux/config.h>
36#include <linux/kernel.h>
37#include <linux/module.h>
38#include <linux/pci.h>
39#include <linux/init.h>
40#include <linux/list.h>
41#include <linux/mm.h>
42#include <linux/highmem.h>
43#include <linux/spinlock.h>
44#include <linux/blkdev.h>
45#include <linux/delay.h>
46#include <linux/timer.h>
47#include <linux/interrupt.h>
48#include <linux/completion.h>
49#include <linux/suspend.h>
50#include <linux/workqueue.h>
67846b30 51#include <linux/jiffies.h>
378f058c 52#include <linux/scatterlist.h>
1da177e4 53#include <scsi/scsi.h>
1da177e4 54#include "scsi_priv.h"
193515d5 55#include <scsi/scsi_cmnd.h>
1da177e4
LT
56#include <scsi/scsi_host.h>
57#include <linux/libata.h>
58#include <asm/io.h>
59#include <asm/semaphore.h>
60#include <asm/byteorder.h>
61
62#include "libata.h"
63
6aff8f1f
TH
64static unsigned int ata_dev_init_params(struct ata_port *ap,
65 struct ata_device *dev);
1da177e4
LT
66static void ata_set_mode(struct ata_port *ap);
67static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev);
a6d5a51c
TH
68static unsigned int ata_dev_xfermask(struct ata_port *ap,
69 struct ata_device *dev);
1da177e4
LT
70
71static unsigned int ata_unique_id = 1;
72static struct workqueue_struct *ata_wq;
73
1623c81e
JG
74int atapi_enabled = 0;
75module_param(atapi_enabled, int, 0444);
76MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
77
c3c013a2
JG
78int libata_fua = 0;
79module_param_named(fua, libata_fua, int, 0444);
80MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
81
1da177e4
LT
82MODULE_AUTHOR("Jeff Garzik");
83MODULE_DESCRIPTION("Library module for ATA devices");
84MODULE_LICENSE("GPL");
85MODULE_VERSION(DRV_VERSION);
86
0baab86b 87
1da177e4
LT
88/**
89 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
90 * @tf: Taskfile to convert
91 * @fis: Buffer into which data will output
92 * @pmp: Port multiplier port
93 *
94 * Converts a standard ATA taskfile to a Serial ATA
95 * FIS structure (Register - Host to Device).
96 *
97 * LOCKING:
98 * Inherited from caller.
99 */
100
057ace5e 101void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
1da177e4
LT
102{
103 fis[0] = 0x27; /* Register - Host to Device FIS */
104 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
105 bit 7 indicates Command FIS */
106 fis[2] = tf->command;
107 fis[3] = tf->feature;
108
109 fis[4] = tf->lbal;
110 fis[5] = tf->lbam;
111 fis[6] = tf->lbah;
112 fis[7] = tf->device;
113
114 fis[8] = tf->hob_lbal;
115 fis[9] = tf->hob_lbam;
116 fis[10] = tf->hob_lbah;
117 fis[11] = tf->hob_feature;
118
119 fis[12] = tf->nsect;
120 fis[13] = tf->hob_nsect;
121 fis[14] = 0;
122 fis[15] = tf->ctl;
123
124 fis[16] = 0;
125 fis[17] = 0;
126 fis[18] = 0;
127 fis[19] = 0;
128}
129
130/**
131 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
132 * @fis: Buffer from which data will be input
133 * @tf: Taskfile to output
134 *
e12a1be6 135 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
136 *
137 * LOCKING:
138 * Inherited from caller.
139 */
140
057ace5e 141void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
142{
143 tf->command = fis[2]; /* status */
144 tf->feature = fis[3]; /* error */
145
146 tf->lbal = fis[4];
147 tf->lbam = fis[5];
148 tf->lbah = fis[6];
149 tf->device = fis[7];
150
151 tf->hob_lbal = fis[8];
152 tf->hob_lbam = fis[9];
153 tf->hob_lbah = fis[10];
154
155 tf->nsect = fis[12];
156 tf->hob_nsect = fis[13];
157}
158
8cbd6df1
AL
159static const u8 ata_rw_cmds[] = {
160 /* pio multi */
161 ATA_CMD_READ_MULTI,
162 ATA_CMD_WRITE_MULTI,
163 ATA_CMD_READ_MULTI_EXT,
164 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
165 0,
166 0,
167 0,
168 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
169 /* pio */
170 ATA_CMD_PIO_READ,
171 ATA_CMD_PIO_WRITE,
172 ATA_CMD_PIO_READ_EXT,
173 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
174 0,
175 0,
176 0,
177 0,
8cbd6df1
AL
178 /* dma */
179 ATA_CMD_READ,
180 ATA_CMD_WRITE,
181 ATA_CMD_READ_EXT,
9a3dccc4
TH
182 ATA_CMD_WRITE_EXT,
183 0,
184 0,
185 0,
186 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 187};
1da177e4
LT
188
189/**
8cbd6df1
AL
190 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
191 * @qc: command to examine and configure
1da177e4 192 *
8cbd6df1
AL
193 * Examine the device configuration and tf->flags to calculate
194 * the proper read/write commands and protocol to use.
1da177e4
LT
195 *
196 * LOCKING:
197 * caller.
198 */
9a3dccc4 199int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
1da177e4 200{
8cbd6df1
AL
201 struct ata_taskfile *tf = &qc->tf;
202 struct ata_device *dev = qc->dev;
9a3dccc4 203 u8 cmd;
1da177e4 204
9a3dccc4 205 int index, fua, lba48, write;
8cbd6df1 206
9a3dccc4 207 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
208 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
209 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 210
8cbd6df1
AL
211 if (dev->flags & ATA_DFLAG_PIO) {
212 tf->protocol = ATA_PROT_PIO;
9a3dccc4 213 index = dev->multi_count ? 0 : 8;
8d238e01
AC
214 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
215 /* Unable to use DMA due to host limitation */
216 tf->protocol = ATA_PROT_PIO;
0565c26d 217 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
218 } else {
219 tf->protocol = ATA_PROT_DMA;
9a3dccc4 220 index = 16;
8cbd6df1 221 }
1da177e4 222
9a3dccc4
TH
223 cmd = ata_rw_cmds[index + fua + lba48 + write];
224 if (cmd) {
225 tf->command = cmd;
226 return 0;
227 }
228 return -1;
1da177e4
LT
229}
230
cb95d562
TH
231/**
232 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
233 * @pio_mask: pio_mask
234 * @mwdma_mask: mwdma_mask
235 * @udma_mask: udma_mask
236 *
237 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
238 * unsigned int xfer_mask.
239 *
240 * LOCKING:
241 * None.
242 *
243 * RETURNS:
244 * Packed xfer_mask.
245 */
246static unsigned int ata_pack_xfermask(unsigned int pio_mask,
247 unsigned int mwdma_mask,
248 unsigned int udma_mask)
249{
250 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
251 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
252 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
253}
254
255static const struct ata_xfer_ent {
256 unsigned int shift, bits;
257 u8 base;
258} ata_xfer_tbl[] = {
259 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
260 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
261 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
262 { -1, },
263};
264
265/**
266 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
267 * @xfer_mask: xfer_mask of interest
268 *
269 * Return matching XFER_* value for @xfer_mask. Only the highest
270 * bit of @xfer_mask is considered.
271 *
272 * LOCKING:
273 * None.
274 *
275 * RETURNS:
276 * Matching XFER_* value, 0 if no match found.
277 */
278static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
279{
280 int highbit = fls(xfer_mask) - 1;
281 const struct ata_xfer_ent *ent;
282
283 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
284 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
285 return ent->base + highbit - ent->shift;
286 return 0;
287}
288
289/**
290 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
291 * @xfer_mode: XFER_* of interest
292 *
293 * Return matching xfer_mask for @xfer_mode.
294 *
295 * LOCKING:
296 * None.
297 *
298 * RETURNS:
299 * Matching xfer_mask, 0 if no match found.
300 */
301static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
302{
303 const struct ata_xfer_ent *ent;
304
305 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
306 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
307 return 1 << (ent->shift + xfer_mode - ent->base);
308 return 0;
309}
310
311/**
312 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
313 * @xfer_mode: XFER_* of interest
314 *
315 * Return matching xfer_shift for @xfer_mode.
316 *
317 * LOCKING:
318 * None.
319 *
320 * RETURNS:
321 * Matching xfer_shift, -1 if no match found.
322 */
323static int ata_xfer_mode2shift(unsigned int xfer_mode)
324{
325 const struct ata_xfer_ent *ent;
326
327 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
328 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
329 return ent->shift;
330 return -1;
331}
332
1da177e4 333/**
1da7b0d0
TH
334 * ata_mode_string - convert xfer_mask to string
335 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
336 *
337 * Determine string which represents the highest speed
1da7b0d0 338 * (highest bit in @modemask).
1da177e4
LT
339 *
340 * LOCKING:
341 * None.
342 *
343 * RETURNS:
344 * Constant C string representing highest speed listed in
1da7b0d0 345 * @mode_mask, or the constant C string "<n/a>".
1da177e4 346 */
1da7b0d0 347static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 348{
75f554bc
TH
349 static const char * const xfer_mode_str[] = {
350 "PIO0",
351 "PIO1",
352 "PIO2",
353 "PIO3",
354 "PIO4",
355 "MWDMA0",
356 "MWDMA1",
357 "MWDMA2",
358 "UDMA/16",
359 "UDMA/25",
360 "UDMA/33",
361 "UDMA/44",
362 "UDMA/66",
363 "UDMA/100",
364 "UDMA/133",
365 "UDMA7",
366 };
1da7b0d0 367 int highbit;
1da177e4 368
1da7b0d0
TH
369 highbit = fls(xfer_mask) - 1;
370 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
371 return xfer_mode_str[highbit];
1da177e4 372 return "<n/a>";
1da177e4
LT
373}
374
375/**
376 * ata_pio_devchk - PATA device presence detection
377 * @ap: ATA channel to examine
378 * @device: Device to examine (starting at zero)
379 *
380 * This technique was originally described in
381 * Hale Landis's ATADRVR (www.ata-atapi.com), and
382 * later found its way into the ATA/ATAPI spec.
383 *
384 * Write a pattern to the ATA shadow registers,
385 * and if a device is present, it will respond by
386 * correctly storing and echoing back the
387 * ATA shadow register contents.
388 *
389 * LOCKING:
390 * caller.
391 */
392
393static unsigned int ata_pio_devchk(struct ata_port *ap,
394 unsigned int device)
395{
396 struct ata_ioports *ioaddr = &ap->ioaddr;
397 u8 nsect, lbal;
398
399 ap->ops->dev_select(ap, device);
400
401 outb(0x55, ioaddr->nsect_addr);
402 outb(0xaa, ioaddr->lbal_addr);
403
404 outb(0xaa, ioaddr->nsect_addr);
405 outb(0x55, ioaddr->lbal_addr);
406
407 outb(0x55, ioaddr->nsect_addr);
408 outb(0xaa, ioaddr->lbal_addr);
409
410 nsect = inb(ioaddr->nsect_addr);
411 lbal = inb(ioaddr->lbal_addr);
412
413 if ((nsect == 0x55) && (lbal == 0xaa))
414 return 1; /* we found a device */
415
416 return 0; /* nothing found */
417}
418
419/**
420 * ata_mmio_devchk - PATA device presence detection
421 * @ap: ATA channel to examine
422 * @device: Device to examine (starting at zero)
423 *
424 * This technique was originally described in
425 * Hale Landis's ATADRVR (www.ata-atapi.com), and
426 * later found its way into the ATA/ATAPI spec.
427 *
428 * Write a pattern to the ATA shadow registers,
429 * and if a device is present, it will respond by
430 * correctly storing and echoing back the
431 * ATA shadow register contents.
432 *
433 * LOCKING:
434 * caller.
435 */
436
437static unsigned int ata_mmio_devchk(struct ata_port *ap,
438 unsigned int device)
439{
440 struct ata_ioports *ioaddr = &ap->ioaddr;
441 u8 nsect, lbal;
442
443 ap->ops->dev_select(ap, device);
444
445 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
446 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
447
448 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
449 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
450
451 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
452 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
453
454 nsect = readb((void __iomem *) ioaddr->nsect_addr);
455 lbal = readb((void __iomem *) ioaddr->lbal_addr);
456
457 if ((nsect == 0x55) && (lbal == 0xaa))
458 return 1; /* we found a device */
459
460 return 0; /* nothing found */
461}
462
463/**
464 * ata_devchk - PATA device presence detection
465 * @ap: ATA channel to examine
466 * @device: Device to examine (starting at zero)
467 *
468 * Dispatch ATA device presence detection, depending
469 * on whether we are using PIO or MMIO to talk to the
470 * ATA shadow registers.
471 *
472 * LOCKING:
473 * caller.
474 */
475
476static unsigned int ata_devchk(struct ata_port *ap,
477 unsigned int device)
478{
479 if (ap->flags & ATA_FLAG_MMIO)
480 return ata_mmio_devchk(ap, device);
481 return ata_pio_devchk(ap, device);
482}
483
484/**
485 * ata_dev_classify - determine device type based on ATA-spec signature
486 * @tf: ATA taskfile register set for device to be identified
487 *
488 * Determine from taskfile register contents whether a device is
489 * ATA or ATAPI, as per "Signature and persistence" section
490 * of ATA/PI spec (volume 1, sect 5.14).
491 *
492 * LOCKING:
493 * None.
494 *
495 * RETURNS:
496 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
497 * the event of failure.
498 */
499
057ace5e 500unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
501{
502 /* Apple's open source Darwin code hints that some devices only
503 * put a proper signature into the LBA mid/high registers,
504 * So, we only check those. It's sufficient for uniqueness.
505 */
506
507 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
508 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
509 DPRINTK("found ATA device by sig\n");
510 return ATA_DEV_ATA;
511 }
512
513 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
514 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
515 DPRINTK("found ATAPI device by sig\n");
516 return ATA_DEV_ATAPI;
517 }
518
519 DPRINTK("unknown device\n");
520 return ATA_DEV_UNKNOWN;
521}
522
523/**
524 * ata_dev_try_classify - Parse returned ATA device signature
525 * @ap: ATA channel to examine
526 * @device: Device to examine (starting at zero)
b4dc7623 527 * @r_err: Value of error register on completion
1da177e4
LT
528 *
529 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
530 * an ATA/ATAPI-defined set of values is placed in the ATA
531 * shadow registers, indicating the results of device detection
532 * and diagnostics.
533 *
534 * Select the ATA device, and read the values from the ATA shadow
535 * registers. Then parse according to the Error register value,
536 * and the spec-defined values examined by ata_dev_classify().
537 *
538 * LOCKING:
539 * caller.
b4dc7623
TH
540 *
541 * RETURNS:
542 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
543 */
544
b4dc7623
TH
545static unsigned int
546ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 547{
1da177e4
LT
548 struct ata_taskfile tf;
549 unsigned int class;
550 u8 err;
551
552 ap->ops->dev_select(ap, device);
553
554 memset(&tf, 0, sizeof(tf));
555
1da177e4 556 ap->ops->tf_read(ap, &tf);
0169e284 557 err = tf.feature;
b4dc7623
TH
558 if (r_err)
559 *r_err = err;
1da177e4
LT
560
561 /* see if device passed diags */
562 if (err == 1)
563 /* do nothing */ ;
564 else if ((device == 0) && (err == 0x81))
565 /* do nothing */ ;
566 else
b4dc7623 567 return ATA_DEV_NONE;
1da177e4 568
b4dc7623 569 /* determine if device is ATA or ATAPI */
1da177e4 570 class = ata_dev_classify(&tf);
b4dc7623 571
1da177e4 572 if (class == ATA_DEV_UNKNOWN)
b4dc7623 573 return ATA_DEV_NONE;
1da177e4 574 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
575 return ATA_DEV_NONE;
576 return class;
1da177e4
LT
577}
578
579/**
6a62a04d 580 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
581 * @id: IDENTIFY DEVICE results we will examine
582 * @s: string into which data is output
583 * @ofs: offset into identify device page
584 * @len: length of string to return. must be an even number.
585 *
586 * The strings in the IDENTIFY DEVICE page are broken up into
587 * 16-bit chunks. Run through the string, and output each
588 * 8-bit chunk linearly, regardless of platform.
589 *
590 * LOCKING:
591 * caller.
592 */
593
6a62a04d
TH
594void ata_id_string(const u16 *id, unsigned char *s,
595 unsigned int ofs, unsigned int len)
1da177e4
LT
596{
597 unsigned int c;
598
599 while (len > 0) {
600 c = id[ofs] >> 8;
601 *s = c;
602 s++;
603
604 c = id[ofs] & 0xff;
605 *s = c;
606 s++;
607
608 ofs++;
609 len -= 2;
610 }
611}
612
0e949ff3 613/**
6a62a04d 614 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
615 * @id: IDENTIFY DEVICE results we will examine
616 * @s: string into which data is output
617 * @ofs: offset into identify device page
618 * @len: length of string to return. must be an odd number.
619 *
6a62a04d 620 * This function is identical to ata_id_string except that it
0e949ff3
TH
621 * trims trailing spaces and terminates the resulting string with
622 * null. @len must be actual maximum length (even number) + 1.
623 *
624 * LOCKING:
625 * caller.
626 */
6a62a04d
TH
627void ata_id_c_string(const u16 *id, unsigned char *s,
628 unsigned int ofs, unsigned int len)
0e949ff3
TH
629{
630 unsigned char *p;
631
632 WARN_ON(!(len & 1));
633
6a62a04d 634 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
635
636 p = s + strnlen(s, len - 1);
637 while (p > s && p[-1] == ' ')
638 p--;
639 *p = '\0';
640}
0baab86b 641
2940740b
TH
642static u64 ata_id_n_sectors(const u16 *id)
643{
644 if (ata_id_has_lba(id)) {
645 if (ata_id_has_lba48(id))
646 return ata_id_u64(id, 100);
647 else
648 return ata_id_u32(id, 60);
649 } else {
650 if (ata_id_current_chs_valid(id))
651 return ata_id_u32(id, 57);
652 else
653 return id[1] * id[3] * id[6];
654 }
655}
656
0baab86b
EF
657/**
658 * ata_noop_dev_select - Select device 0/1 on ATA bus
659 * @ap: ATA channel to manipulate
660 * @device: ATA device (numbered from zero) to select
661 *
662 * This function performs no actual function.
663 *
664 * May be used as the dev_select() entry in ata_port_operations.
665 *
666 * LOCKING:
667 * caller.
668 */
1da177e4
LT
669void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
670{
671}
672
0baab86b 673
1da177e4
LT
674/**
675 * ata_std_dev_select - Select device 0/1 on ATA bus
676 * @ap: ATA channel to manipulate
677 * @device: ATA device (numbered from zero) to select
678 *
679 * Use the method defined in the ATA specification to
680 * make either device 0, or device 1, active on the
0baab86b
EF
681 * ATA channel. Works with both PIO and MMIO.
682 *
683 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
684 *
685 * LOCKING:
686 * caller.
687 */
688
689void ata_std_dev_select (struct ata_port *ap, unsigned int device)
690{
691 u8 tmp;
692
693 if (device == 0)
694 tmp = ATA_DEVICE_OBS;
695 else
696 tmp = ATA_DEVICE_OBS | ATA_DEV1;
697
698 if (ap->flags & ATA_FLAG_MMIO) {
699 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
700 } else {
701 outb(tmp, ap->ioaddr.device_addr);
702 }
703 ata_pause(ap); /* needed; also flushes, for mmio */
704}
705
706/**
707 * ata_dev_select - Select device 0/1 on ATA bus
708 * @ap: ATA channel to manipulate
709 * @device: ATA device (numbered from zero) to select
710 * @wait: non-zero to wait for Status register BSY bit to clear
711 * @can_sleep: non-zero if context allows sleeping
712 *
713 * Use the method defined in the ATA specification to
714 * make either device 0, or device 1, active on the
715 * ATA channel.
716 *
717 * This is a high-level version of ata_std_dev_select(),
718 * which additionally provides the services of inserting
719 * the proper pauses and status polling, where needed.
720 *
721 * LOCKING:
722 * caller.
723 */
724
725void ata_dev_select(struct ata_port *ap, unsigned int device,
726 unsigned int wait, unsigned int can_sleep)
727{
728 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
729 ap->id, device, wait);
730
731 if (wait)
732 ata_wait_idle(ap);
733
734 ap->ops->dev_select(ap, device);
735
736 if (wait) {
737 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
738 msleep(150);
739 ata_wait_idle(ap);
740 }
741}
742
743/**
744 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 745 * @id: IDENTIFY DEVICE page to dump
1da177e4 746 *
0bd3300a
TH
747 * Dump selected 16-bit words from the given IDENTIFY DEVICE
748 * page.
1da177e4
LT
749 *
750 * LOCKING:
751 * caller.
752 */
753
0bd3300a 754static inline void ata_dump_id(const u16 *id)
1da177e4
LT
755{
756 DPRINTK("49==0x%04x "
757 "53==0x%04x "
758 "63==0x%04x "
759 "64==0x%04x "
760 "75==0x%04x \n",
0bd3300a
TH
761 id[49],
762 id[53],
763 id[63],
764 id[64],
765 id[75]);
1da177e4
LT
766 DPRINTK("80==0x%04x "
767 "81==0x%04x "
768 "82==0x%04x "
769 "83==0x%04x "
770 "84==0x%04x \n",
0bd3300a
TH
771 id[80],
772 id[81],
773 id[82],
774 id[83],
775 id[84]);
1da177e4
LT
776 DPRINTK("88==0x%04x "
777 "93==0x%04x\n",
0bd3300a
TH
778 id[88],
779 id[93]);
1da177e4
LT
780}
781
cb95d562
TH
782/**
783 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
784 * @id: IDENTIFY data to compute xfer mask from
785 *
786 * Compute the xfermask for this device. This is not as trivial
787 * as it seems if we must consider early devices correctly.
788 *
789 * FIXME: pre IDE drive timing (do we care ?).
790 *
791 * LOCKING:
792 * None.
793 *
794 * RETURNS:
795 * Computed xfermask
796 */
797static unsigned int ata_id_xfermask(const u16 *id)
798{
799 unsigned int pio_mask, mwdma_mask, udma_mask;
800
801 /* Usual case. Word 53 indicates word 64 is valid */
802 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
803 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
804 pio_mask <<= 3;
805 pio_mask |= 0x7;
806 } else {
807 /* If word 64 isn't valid then Word 51 high byte holds
808 * the PIO timing number for the maximum. Turn it into
809 * a mask.
810 */
811 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
812
813 /* But wait.. there's more. Design your standards by
814 * committee and you too can get a free iordy field to
815 * process. However its the speeds not the modes that
816 * are supported... Note drivers using the timing API
817 * will get this right anyway
818 */
819 }
820
821 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
822 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
823
824 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
825}
826
86e45b6b
TH
827/**
828 * ata_port_queue_task - Queue port_task
829 * @ap: The ata_port to queue port_task for
830 *
831 * Schedule @fn(@data) for execution after @delay jiffies using
832 * port_task. There is one port_task per port and it's the
833 * user(low level driver)'s responsibility to make sure that only
834 * one task is active at any given time.
835 *
836 * libata core layer takes care of synchronization between
837 * port_task and EH. ata_port_queue_task() may be ignored for EH
838 * synchronization.
839 *
840 * LOCKING:
841 * Inherited from caller.
842 */
843void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
844 unsigned long delay)
845{
846 int rc;
847
2e755f68 848 if (ap->flags & ATA_FLAG_FLUSH_PORT_TASK)
86e45b6b
TH
849 return;
850
851 PREPARE_WORK(&ap->port_task, fn, data);
852
853 if (!delay)
854 rc = queue_work(ata_wq, &ap->port_task);
855 else
856 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
857
858 /* rc == 0 means that another user is using port task */
859 WARN_ON(rc == 0);
860}
861
862/**
863 * ata_port_flush_task - Flush port_task
864 * @ap: The ata_port to flush port_task for
865 *
866 * After this function completes, port_task is guranteed not to
867 * be running or scheduled.
868 *
869 * LOCKING:
870 * Kernel thread context (may sleep)
871 */
872void ata_port_flush_task(struct ata_port *ap)
873{
874 unsigned long flags;
875
876 DPRINTK("ENTER\n");
877
878 spin_lock_irqsave(&ap->host_set->lock, flags);
2e755f68 879 ap->flags |= ATA_FLAG_FLUSH_PORT_TASK;
86e45b6b
TH
880 spin_unlock_irqrestore(&ap->host_set->lock, flags);
881
882 DPRINTK("flush #1\n");
883 flush_workqueue(ata_wq);
884
885 /*
886 * At this point, if a task is running, it's guaranteed to see
887 * the FLUSH flag; thus, it will never queue pio tasks again.
888 * Cancel and flush.
889 */
890 if (!cancel_delayed_work(&ap->port_task)) {
891 DPRINTK("flush #2\n");
892 flush_workqueue(ata_wq);
893 }
894
895 spin_lock_irqsave(&ap->host_set->lock, flags);
2e755f68 896 ap->flags &= ~ATA_FLAG_FLUSH_PORT_TASK;
86e45b6b
TH
897 spin_unlock_irqrestore(&ap->host_set->lock, flags);
898
899 DPRINTK("EXIT\n");
900}
901
77853bf2 902void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 903{
77853bf2 904 struct completion *waiting = qc->private_data;
a2a7a662 905
77853bf2 906 qc->ap->ops->tf_read(qc->ap, &qc->tf);
a2a7a662 907 complete(waiting);
a2a7a662
TH
908}
909
910/**
911 * ata_exec_internal - execute libata internal command
912 * @ap: Port to which the command is sent
913 * @dev: Device to which the command is sent
914 * @tf: Taskfile registers for the command and the result
915 * @dma_dir: Data tranfer direction of the command
916 * @buf: Data buffer of the command
917 * @buflen: Length of data buffer
918 *
919 * Executes libata internal command with timeout. @tf contains
920 * command on entry and result on return. Timeout and error
921 * conditions are reported via return value. No recovery action
922 * is taken after a command times out. It's caller's duty to
923 * clean up after timeout.
924 *
925 * LOCKING:
926 * None. Should be called with kernel context, might sleep.
927 */
928
929static unsigned
930ata_exec_internal(struct ata_port *ap, struct ata_device *dev,
931 struct ata_taskfile *tf,
932 int dma_dir, void *buf, unsigned int buflen)
933{
934 u8 command = tf->command;
935 struct ata_queued_cmd *qc;
936 DECLARE_COMPLETION(wait);
937 unsigned long flags;
77853bf2 938 unsigned int err_mask;
a2a7a662
TH
939
940 spin_lock_irqsave(&ap->host_set->lock, flags);
941
942 qc = ata_qc_new_init(ap, dev);
943 BUG_ON(qc == NULL);
944
945 qc->tf = *tf;
946 qc->dma_dir = dma_dir;
947 if (dma_dir != DMA_NONE) {
948 ata_sg_init_one(qc, buf, buflen);
949 qc->nsect = buflen / ATA_SECT_SIZE;
950 }
951
77853bf2 952 qc->private_data = &wait;
a2a7a662
TH
953 qc->complete_fn = ata_qc_complete_internal;
954
9a3d9eb0
TH
955 qc->err_mask = ata_qc_issue(qc);
956 if (qc->err_mask)
8e436af9 957 ata_qc_complete(qc);
a2a7a662
TH
958
959 spin_unlock_irqrestore(&ap->host_set->lock, flags);
960
961 if (!wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL)) {
962 spin_lock_irqsave(&ap->host_set->lock, flags);
963
964 /* We're racing with irq here. If we lose, the
965 * following test prevents us from completing the qc
966 * again. If completion irq occurs after here but
967 * before the caller cleans up, it will result in a
968 * spurious interrupt. We can live with that.
969 */
77853bf2 970 if (qc->flags & ATA_QCFLAG_ACTIVE) {
11a56d24 971 qc->err_mask = AC_ERR_TIMEOUT;
a2a7a662
TH
972 ata_qc_complete(qc);
973 printk(KERN_WARNING "ata%u: qc timeout (cmd 0x%x)\n",
974 ap->id, command);
975 }
976
977 spin_unlock_irqrestore(&ap->host_set->lock, flags);
978 }
979
77853bf2
TH
980 *tf = qc->tf;
981 err_mask = qc->err_mask;
982
983 ata_qc_free(qc);
984
985 return err_mask;
a2a7a662
TH
986}
987
1bc4ccff
AC
988/**
989 * ata_pio_need_iordy - check if iordy needed
990 * @adev: ATA device
991 *
992 * Check if the current speed of the device requires IORDY. Used
993 * by various controllers for chip configuration.
994 */
995
996unsigned int ata_pio_need_iordy(const struct ata_device *adev)
997{
998 int pio;
999 int speed = adev->pio_mode - XFER_PIO_0;
1000
1001 if (speed < 2)
1002 return 0;
1003 if (speed > 2)
1004 return 1;
1005
1006 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1007
1008 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1009 pio = adev->id[ATA_ID_EIDE_PIO];
1010 /* Is the speed faster than the drive allows non IORDY ? */
1011 if (pio) {
1012 /* This is cycle times not frequency - watch the logic! */
1013 if (pio > 240) /* PIO2 is 240nS per cycle */
1014 return 1;
1015 return 0;
1016 }
1017 }
1018 return 0;
1019}
1020
1da177e4 1021/**
49016aca
TH
1022 * ata_dev_read_id - Read ID data from the specified device
1023 * @ap: port on which target device resides
1024 * @dev: target device
1025 * @p_class: pointer to class of the target device (may be changed)
1026 * @post_reset: is this read ID post-reset?
d9572b1d 1027 * @p_id: read IDENTIFY page (newly allocated)
1da177e4 1028 *
49016aca
TH
1029 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1030 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1031 * devices. This function also takes care of EDD signature
1032 * misreporting (to be removed once EDD support is gone) and
1033 * issues ATA_CMD_INIT_DEV_PARAMS for pre-ATA4 drives.
1da177e4
LT
1034 *
1035 * LOCKING:
49016aca
TH
1036 * Kernel thread context (may sleep)
1037 *
1038 * RETURNS:
1039 * 0 on success, -errno otherwise.
1da177e4 1040 */
49016aca 1041static int ata_dev_read_id(struct ata_port *ap, struct ata_device *dev,
d9572b1d 1042 unsigned int *p_class, int post_reset, u16 **p_id)
1da177e4 1043{
49016aca 1044 unsigned int class = *p_class;
1da177e4 1045 unsigned int using_edd;
a0123703 1046 struct ata_taskfile tf;
49016aca 1047 unsigned int err_mask = 0;
d9572b1d 1048 u16 *id;
49016aca
TH
1049 const char *reason;
1050 int rc;
1da177e4 1051
49016aca 1052 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1da177e4 1053
61eb066a
TH
1054 if (ap->ops->probe_reset ||
1055 ap->flags & (ATA_FLAG_SRST | ATA_FLAG_SATA_RESET))
1da177e4
LT
1056 using_edd = 0;
1057 else
1058 using_edd = 1;
1059
49016aca 1060 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1da177e4 1061
d9572b1d
TH
1062 id = kmalloc(sizeof(id[0]) * ATA_ID_WORDS, GFP_KERNEL);
1063 if (id == NULL) {
1064 rc = -ENOMEM;
1065 reason = "out of memory";
1066 goto err_out;
1067 }
1068
49016aca
TH
1069 retry:
1070 ata_tf_init(ap, &tf, dev->devno);
a0123703 1071
49016aca
TH
1072 switch (class) {
1073 case ATA_DEV_ATA:
a0123703 1074 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1075 break;
1076 case ATA_DEV_ATAPI:
a0123703 1077 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1078 break;
1079 default:
1080 rc = -ENODEV;
1081 reason = "unsupported class";
1082 goto err_out;
1da177e4
LT
1083 }
1084
a0123703 1085 tf.protocol = ATA_PROT_PIO;
1da177e4 1086
a0123703 1087 err_mask = ata_exec_internal(ap, dev, &tf, DMA_FROM_DEVICE,
49016aca 1088 id, sizeof(id[0]) * ATA_ID_WORDS);
1da177e4 1089
a0123703 1090 if (err_mask) {
49016aca
TH
1091 rc = -EIO;
1092 reason = "I/O error";
1093
a0123703
TH
1094 if (err_mask & ~AC_ERR_DEV)
1095 goto err_out;
0169e284 1096
1da177e4
LT
1097 /*
1098 * arg! EDD works for all test cases, but seems to return
1099 * the ATA signature for some ATAPI devices. Until the
1100 * reason for this is found and fixed, we fix up the mess
1101 * here. If IDENTIFY DEVICE returns command aborted
1102 * (as ATAPI devices do), then we issue an
1103 * IDENTIFY PACKET DEVICE.
1104 *
1105 * ATA software reset (SRST, the default) does not appear
1106 * to have this problem.
1107 */
49016aca 1108 if ((using_edd) && (class == ATA_DEV_ATA)) {
a0123703 1109 u8 err = tf.feature;
1da177e4 1110 if (err & ATA_ABORTED) {
49016aca 1111 class = ATA_DEV_ATAPI;
1da177e4
LT
1112 goto retry;
1113 }
1114 }
1115 goto err_out;
1116 }
1117
49016aca 1118 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4
LT
1119
1120 /* print device capabilities */
1121 printk(KERN_DEBUG "ata%u: dev %u cfg "
1122 "49:%04x 82:%04x 83:%04x 84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
49016aca
TH
1123 ap->id, dev->devno,
1124 id[49], id[82], id[83], id[84], id[85], id[86], id[87], id[88]);
1125
1126 /* sanity check */
1127 if ((class == ATA_DEV_ATA) != ata_id_is_ata(id)) {
1128 rc = -EINVAL;
1129 reason = "device reports illegal type";
1130 goto err_out;
1131 }
1132
1133 if (post_reset && class == ATA_DEV_ATA) {
1134 /*
1135 * The exact sequence expected by certain pre-ATA4 drives is:
1136 * SRST RESET
1137 * IDENTIFY
1138 * INITIALIZE DEVICE PARAMETERS
1139 * anything else..
1140 * Some drives were very specific about that exact sequence.
1141 */
1142 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
1143 err_mask = ata_dev_init_params(ap, dev);
1144 if (err_mask) {
1145 rc = -EIO;
1146 reason = "INIT_DEV_PARAMS failed";
1147 goto err_out;
1148 }
1149
1150 /* current CHS translation info (id[53-58]) might be
1151 * changed. reread the identify device info.
1152 */
1153 post_reset = 0;
1154 goto retry;
1155 }
1156 }
1157
1158 *p_class = class;
d9572b1d 1159 *p_id = id;
49016aca
TH
1160 return 0;
1161
1162 err_out:
1163 printk(KERN_WARNING "ata%u: dev %u failed to IDENTIFY (%s)\n",
1164 ap->id, dev->devno, reason);
d9572b1d 1165 kfree(id);
49016aca
TH
1166 return rc;
1167}
1168
4b2f3ede
TH
1169static inline u8 ata_dev_knobble(const struct ata_port *ap,
1170 struct ata_device *dev)
1171{
1172 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1173}
1174
49016aca 1175/**
ffeae418
TH
1176 * ata_dev_configure - Configure the specified ATA/ATAPI device
1177 * @ap: Port on which target device resides
1178 * @dev: Target device to configure
4c2d721a 1179 * @print_info: Enable device info printout
ffeae418
TH
1180 *
1181 * Configure @dev according to @dev->id. Generic and low-level
1182 * driver specific fixups are also applied.
49016aca
TH
1183 *
1184 * LOCKING:
ffeae418
TH
1185 * Kernel thread context (may sleep)
1186 *
1187 * RETURNS:
1188 * 0 on success, -errno otherwise
49016aca 1189 */
4c2d721a
TH
1190static int ata_dev_configure(struct ata_port *ap, struct ata_device *dev,
1191 int print_info)
49016aca 1192{
ff8854b2 1193 unsigned int xfer_mask;
49016aca
TH
1194 int i, rc;
1195
1196 if (!ata_dev_present(dev)) {
1197 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
ffeae418
TH
1198 ap->id, dev->devno);
1199 return 0;
49016aca
TH
1200 }
1201
ffeae418 1202 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1da177e4 1203
208a9933
TH
1204 /* initialize to-be-configured parameters */
1205 dev->flags = 0;
1206 dev->max_sectors = 0;
1207 dev->cdb_len = 0;
1208 dev->n_sectors = 0;
1209 dev->cylinders = 0;
1210 dev->heads = 0;
1211 dev->sectors = 0;
1212
1da177e4
LT
1213 /*
1214 * common ATA, ATAPI feature tests
1215 */
1216
8bf62ece
AL
1217 /* we require DMA support (bits 8 of word 49) */
1218 if (!ata_id_has_dma(dev->id)) {
1219 printk(KERN_DEBUG "ata%u: no dma\n", ap->id);
ffeae418 1220 rc = -EINVAL;
1da177e4
LT
1221 goto err_out_nosup;
1222 }
1223
ff8854b2
TH
1224 /* find max transfer mode; for printk only */
1225 xfer_mask = ata_id_xfermask(dev->id);
1da177e4 1226
0bd3300a 1227 ata_dump_id(dev->id);
1da177e4
LT
1228
1229 /* ATA-specific feature tests */
1230 if (dev->class == ATA_DEV_ATA) {
2940740b
TH
1231 dev->n_sectors = ata_id_n_sectors(dev->id);
1232
8bf62ece 1233 if (ata_id_has_lba(dev->id)) {
4c2d721a 1234 const char *lba_desc;
8bf62ece 1235
4c2d721a
TH
1236 lba_desc = "LBA";
1237 dev->flags |= ATA_DFLAG_LBA;
1238 if (ata_id_has_lba48(dev->id)) {
8bf62ece 1239 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a
TH
1240 lba_desc = "LBA48";
1241 }
8bf62ece
AL
1242
1243 /* print device info to dmesg */
4c2d721a
TH
1244 if (print_info)
1245 printk(KERN_INFO "ata%u: dev %u ATA-%d, "
1246 "max %s, %Lu sectors: %s\n",
1247 ap->id, dev->devno,
1248 ata_id_major_version(dev->id),
ff8854b2 1249 ata_mode_string(xfer_mask),
4c2d721a
TH
1250 (unsigned long long)dev->n_sectors,
1251 lba_desc);
ffeae418 1252 } else {
8bf62ece
AL
1253 /* CHS */
1254
1255 /* Default translation */
1256 dev->cylinders = dev->id[1];
1257 dev->heads = dev->id[3];
1258 dev->sectors = dev->id[6];
8bf62ece
AL
1259
1260 if (ata_id_current_chs_valid(dev->id)) {
1261 /* Current CHS translation is valid. */
1262 dev->cylinders = dev->id[54];
1263 dev->heads = dev->id[55];
1264 dev->sectors = dev->id[56];
8bf62ece
AL
1265 }
1266
1267 /* print device info to dmesg */
4c2d721a
TH
1268 if (print_info)
1269 printk(KERN_INFO "ata%u: dev %u ATA-%d, "
1270 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1271 ap->id, dev->devno,
1272 ata_id_major_version(dev->id),
ff8854b2 1273 ata_mode_string(xfer_mask),
4c2d721a
TH
1274 (unsigned long long)dev->n_sectors,
1275 dev->cylinders, dev->heads, dev->sectors);
1da177e4
LT
1276 }
1277
6e7846e9 1278 dev->cdb_len = 16;
1da177e4
LT
1279 }
1280
1281 /* ATAPI-specific feature tests */
2c13b7ce 1282 else if (dev->class == ATA_DEV_ATAPI) {
1da177e4
LT
1283 rc = atapi_cdb_len(dev->id);
1284 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1285 printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id);
ffeae418 1286 rc = -EINVAL;
1da177e4
LT
1287 goto err_out_nosup;
1288 }
6e7846e9 1289 dev->cdb_len = (unsigned int) rc;
1da177e4
LT
1290
1291 /* print device info to dmesg */
4c2d721a
TH
1292 if (print_info)
1293 printk(KERN_INFO "ata%u: dev %u ATAPI, max %s\n",
ff8854b2 1294 ap->id, dev->devno, ata_mode_string(xfer_mask));
1da177e4
LT
1295 }
1296
6e7846e9
TH
1297 ap->host->max_cmd_len = 0;
1298 for (i = 0; i < ATA_MAX_DEVICES; i++)
1299 ap->host->max_cmd_len = max_t(unsigned int,
1300 ap->host->max_cmd_len,
1301 ap->device[i].cdb_len);
1302
4b2f3ede
TH
1303 /* limit bridge transfers to udma5, 200 sectors */
1304 if (ata_dev_knobble(ap, dev)) {
4c2d721a
TH
1305 if (print_info)
1306 printk(KERN_INFO "ata%u(%u): applying bridge limits\n",
1307 ap->id, dev->devno);
4b2f3ede
TH
1308 ap->udma_mask &= ATA_UDMA5;
1309 dev->max_sectors = ATA_MAX_SECTORS;
1310 }
1311
1312 if (ap->ops->dev_config)
1313 ap->ops->dev_config(ap, dev);
1314
1da177e4 1315 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
ffeae418 1316 return 0;
1da177e4
LT
1317
1318err_out_nosup:
1319 printk(KERN_WARNING "ata%u: dev %u not supported, ignoring\n",
ffeae418 1320 ap->id, dev->devno);
1da177e4 1321 DPRINTK("EXIT, err\n");
ffeae418 1322 return rc;
1da177e4
LT
1323}
1324
1325/**
1326 * ata_bus_probe - Reset and probe ATA bus
1327 * @ap: Bus to probe
1328 *
0cba632b
JG
1329 * Master ATA bus probing function. Initiates a hardware-dependent
1330 * bus reset, then attempts to identify any devices found on
1331 * the bus.
1332 *
1da177e4 1333 * LOCKING:
0cba632b 1334 * PCI/etc. bus probe sem.
1da177e4
LT
1335 *
1336 * RETURNS:
1337 * Zero on success, non-zero on error.
1338 */
1339
1340static int ata_bus_probe(struct ata_port *ap)
1341{
28ca5c57
TH
1342 unsigned int classes[ATA_MAX_DEVICES];
1343 unsigned int i, rc, found = 0;
1da177e4 1344
28ca5c57 1345 ata_port_probe(ap);
c19ba8af 1346
28ca5c57
TH
1347 /* reset */
1348 if (ap->ops->probe_reset) {
c19ba8af 1349 rc = ap->ops->probe_reset(ap, classes);
28ca5c57
TH
1350 if (rc) {
1351 printk("ata%u: reset failed (errno=%d)\n", ap->id, rc);
1352 return rc;
c19ba8af 1353 }
28ca5c57
TH
1354
1355 for (i = 0; i < ATA_MAX_DEVICES; i++)
1356 if (classes[i] == ATA_DEV_UNKNOWN)
1357 classes[i] = ATA_DEV_NONE;
1358 } else {
c19ba8af
TH
1359 ap->ops->phy_reset(ap);
1360
28ca5c57
TH
1361 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1362 if (!(ap->flags & ATA_FLAG_PORT_DISABLED))
1363 classes[i] = ap->device[i].class;
1364 else
1365 ap->device[i].class = ATA_DEV_UNKNOWN;
1366 }
1367 ata_port_probe(ap);
1368 }
1da177e4 1369
28ca5c57 1370 /* read IDENTIFY page and configure devices */
1da177e4 1371 for (i = 0; i < ATA_MAX_DEVICES; i++) {
ffeae418
TH
1372 struct ata_device *dev = &ap->device[i];
1373
28ca5c57
TH
1374 dev->class = classes[i];
1375
ffeae418
TH
1376 if (!ata_dev_present(dev))
1377 continue;
1378
1379 WARN_ON(dev->id != NULL);
1380 if (ata_dev_read_id(ap, dev, &dev->class, 1, &dev->id)) {
1381 dev->class = ATA_DEV_NONE;
1382 continue;
1383 }
1384
4c2d721a 1385 if (ata_dev_configure(ap, dev, 1)) {
ffeae418
TH
1386 dev->class++; /* disable device */
1387 continue;
1da177e4 1388 }
ffeae418 1389
ffeae418 1390 found = 1;
1da177e4
LT
1391 }
1392
28ca5c57 1393 if (!found)
1da177e4
LT
1394 goto err_out_disable;
1395
1396 ata_set_mode(ap);
1397 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1398 goto err_out_disable;
1399
1400 return 0;
1401
1402err_out_disable:
1403 ap->ops->port_disable(ap);
1da177e4
LT
1404 return -1;
1405}
1406
1407/**
0cba632b
JG
1408 * ata_port_probe - Mark port as enabled
1409 * @ap: Port for which we indicate enablement
1da177e4 1410 *
0cba632b
JG
1411 * Modify @ap data structure such that the system
1412 * thinks that the entire port is enabled.
1413 *
1414 * LOCKING: host_set lock, or some other form of
1415 * serialization.
1da177e4
LT
1416 */
1417
1418void ata_port_probe(struct ata_port *ap)
1419{
1420 ap->flags &= ~ATA_FLAG_PORT_DISABLED;
1421}
1422
3be680b7
TH
1423/**
1424 * sata_print_link_status - Print SATA link status
1425 * @ap: SATA port to printk link status about
1426 *
1427 * This function prints link speed and status of a SATA link.
1428 *
1429 * LOCKING:
1430 * None.
1431 */
1432static void sata_print_link_status(struct ata_port *ap)
1433{
1434 u32 sstatus, tmp;
1435 const char *speed;
1436
1437 if (!ap->ops->scr_read)
1438 return;
1439
1440 sstatus = scr_read(ap, SCR_STATUS);
1441
1442 if (sata_dev_present(ap)) {
1443 tmp = (sstatus >> 4) & 0xf;
1444 if (tmp & (1 << 0))
1445 speed = "1.5";
1446 else if (tmp & (1 << 1))
1447 speed = "3.0";
1448 else
1449 speed = "<unknown>";
1450 printk(KERN_INFO "ata%u: SATA link up %s Gbps (SStatus %X)\n",
1451 ap->id, speed, sstatus);
1452 } else {
1453 printk(KERN_INFO "ata%u: SATA link down (SStatus %X)\n",
1454 ap->id, sstatus);
1455 }
1456}
1457
1da177e4 1458/**
780a87f7
JG
1459 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1460 * @ap: SATA port associated with target SATA PHY.
1da177e4 1461 *
780a87f7
JG
1462 * This function issues commands to standard SATA Sxxx
1463 * PHY registers, to wake up the phy (and device), and
1464 * clear any reset condition.
1da177e4
LT
1465 *
1466 * LOCKING:
0cba632b 1467 * PCI/etc. bus probe sem.
1da177e4
LT
1468 *
1469 */
1470void __sata_phy_reset(struct ata_port *ap)
1471{
1472 u32 sstatus;
1473 unsigned long timeout = jiffies + (HZ * 5);
1474
1475 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e
BR
1476 /* issue phy wake/reset */
1477 scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
1478 /* Couldn't find anything in SATA I/II specs, but
1479 * AHCI-1.1 10.4.2 says at least 1 ms. */
1480 mdelay(1);
1da177e4 1481 }
cdcca89e 1482 scr_write_flush(ap, SCR_CONTROL, 0x300); /* phy wake/clear reset */
1da177e4
LT
1483
1484 /* wait for phy to become ready, if necessary */
1485 do {
1486 msleep(200);
1487 sstatus = scr_read(ap, SCR_STATUS);
1488 if ((sstatus & 0xf) != 1)
1489 break;
1490 } while (time_before(jiffies, timeout));
1491
3be680b7
TH
1492 /* print link status */
1493 sata_print_link_status(ap);
656563e3 1494
3be680b7
TH
1495 /* TODO: phy layer with polling, timeouts, etc. */
1496 if (sata_dev_present(ap))
1da177e4 1497 ata_port_probe(ap);
3be680b7 1498 else
1da177e4 1499 ata_port_disable(ap);
1da177e4
LT
1500
1501 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1502 return;
1503
1504 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1505 ata_port_disable(ap);
1506 return;
1507 }
1508
1509 ap->cbl = ATA_CBL_SATA;
1510}
1511
1512/**
780a87f7
JG
1513 * sata_phy_reset - Reset SATA bus.
1514 * @ap: SATA port associated with target SATA PHY.
1da177e4 1515 *
780a87f7
JG
1516 * This function resets the SATA bus, and then probes
1517 * the bus for devices.
1da177e4
LT
1518 *
1519 * LOCKING:
0cba632b 1520 * PCI/etc. bus probe sem.
1da177e4
LT
1521 *
1522 */
1523void sata_phy_reset(struct ata_port *ap)
1524{
1525 __sata_phy_reset(ap);
1526 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1527 return;
1528 ata_bus_reset(ap);
1529}
1530
1531/**
780a87f7
JG
1532 * ata_port_disable - Disable port.
1533 * @ap: Port to be disabled.
1da177e4 1534 *
780a87f7
JG
1535 * Modify @ap data structure such that the system
1536 * thinks that the entire port is disabled, and should
1537 * never attempt to probe or communicate with devices
1538 * on this port.
1539 *
1540 * LOCKING: host_set lock, or some other form of
1541 * serialization.
1da177e4
LT
1542 */
1543
1544void ata_port_disable(struct ata_port *ap)
1545{
1546 ap->device[0].class = ATA_DEV_NONE;
1547 ap->device[1].class = ATA_DEV_NONE;
1548 ap->flags |= ATA_FLAG_PORT_DISABLED;
1549}
1550
452503f9
AC
1551/*
1552 * This mode timing computation functionality is ported over from
1553 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1554 */
1555/*
1556 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1557 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1558 * for PIO 5, which is a nonstandard extension and UDMA6, which
1559 * is currently supported only by Maxtor drives.
1560 */
1561
1562static const struct ata_timing ata_timing[] = {
1563
1564 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1565 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1566 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1567 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1568
1569 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1570 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1571 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1572
1573/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
1574
1575 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1576 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1577 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
1578
1579 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1580 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1581 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1582
1583/* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1584 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1585 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1586
1587 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1588 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1589 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1590
1591/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1592
1593 { 0xFF }
1594};
1595
1596#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1597#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1598
1599static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1600{
1601 q->setup = EZ(t->setup * 1000, T);
1602 q->act8b = EZ(t->act8b * 1000, T);
1603 q->rec8b = EZ(t->rec8b * 1000, T);
1604 q->cyc8b = EZ(t->cyc8b * 1000, T);
1605 q->active = EZ(t->active * 1000, T);
1606 q->recover = EZ(t->recover * 1000, T);
1607 q->cycle = EZ(t->cycle * 1000, T);
1608 q->udma = EZ(t->udma * 1000, UT);
1609}
1610
1611void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1612 struct ata_timing *m, unsigned int what)
1613{
1614 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1615 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1616 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1617 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1618 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1619 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1620 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1621 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1622}
1623
1624static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1625{
1626 const struct ata_timing *t;
1627
1628 for (t = ata_timing; t->mode != speed; t++)
91190758 1629 if (t->mode == 0xFF)
452503f9
AC
1630 return NULL;
1631 return t;
1632}
1633
1634int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1635 struct ata_timing *t, int T, int UT)
1636{
1637 const struct ata_timing *s;
1638 struct ata_timing p;
1639
1640 /*
1641 * Find the mode.
75b1f2f8 1642 */
452503f9
AC
1643
1644 if (!(s = ata_timing_find_mode(speed)))
1645 return -EINVAL;
1646
75b1f2f8
AL
1647 memcpy(t, s, sizeof(*s));
1648
452503f9
AC
1649 /*
1650 * If the drive is an EIDE drive, it can tell us it needs extended
1651 * PIO/MW_DMA cycle timing.
1652 */
1653
1654 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1655 memset(&p, 0, sizeof(p));
1656 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1657 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1658 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1659 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1660 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1661 }
1662 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1663 }
1664
1665 /*
1666 * Convert the timing to bus clock counts.
1667 */
1668
75b1f2f8 1669 ata_timing_quantize(t, t, T, UT);
452503f9
AC
1670
1671 /*
c893a3ae
RD
1672 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1673 * S.M.A.R.T * and some other commands. We have to ensure that the
1674 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
1675 */
1676
1677 if (speed > XFER_PIO_4) {
1678 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1679 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1680 }
1681
1682 /*
c893a3ae 1683 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
1684 */
1685
1686 if (t->act8b + t->rec8b < t->cyc8b) {
1687 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1688 t->rec8b = t->cyc8b - t->act8b;
1689 }
1690
1691 if (t->active + t->recover < t->cycle) {
1692 t->active += (t->cycle - (t->active + t->recover)) / 2;
1693 t->recover = t->cycle - t->active;
1694 }
1695
1696 return 0;
1697}
1698
1da177e4
LT
1699static void ata_dev_set_mode(struct ata_port *ap, struct ata_device *dev)
1700{
1da177e4
LT
1701 if (!ata_dev_present(dev) || (ap->flags & ATA_FLAG_PORT_DISABLED))
1702 return;
1703
1704 if (dev->xfer_shift == ATA_SHIFT_PIO)
1705 dev->flags |= ATA_DFLAG_PIO;
1706
1707 ata_dev_set_xfermode(ap, dev);
1708
48a8a14f
TH
1709 if (ata_dev_revalidate(ap, dev, 0)) {
1710 printk(KERN_ERR "ata%u: failed to revalidate after set "
1711 "xfermode, disabled\n", ap->id);
1712 ata_port_disable(ap);
1713 }
1714
23e71c3d
TH
1715 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
1716 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4
LT
1717
1718 printk(KERN_INFO "ata%u: dev %u configured for %s\n",
23e71c3d
TH
1719 ap->id, dev->devno,
1720 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
1da177e4
LT
1721}
1722
1723static int ata_host_set_pio(struct ata_port *ap)
1724{
a6d5a51c 1725 int i;
1da177e4
LT
1726
1727 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1728 struct ata_device *dev = &ap->device[i];
a6d5a51c
TH
1729
1730 if (!ata_dev_present(dev))
1731 continue;
1732
1733 if (!dev->pio_mode) {
1734 printk(KERN_WARNING "ata%u: no PIO support\n", ap->id);
1735 return -1;
1da177e4 1736 }
a6d5a51c
TH
1737
1738 dev->xfer_mode = dev->pio_mode;
1739 dev->xfer_shift = ATA_SHIFT_PIO;
1740 if (ap->ops->set_piomode)
1741 ap->ops->set_piomode(ap, dev);
1da177e4
LT
1742 }
1743
1744 return 0;
1745}
1746
a6d5a51c 1747static void ata_host_set_dma(struct ata_port *ap)
1da177e4
LT
1748{
1749 int i;
1750
1751 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1752 struct ata_device *dev = &ap->device[i];
a6d5a51c
TH
1753
1754 if (!ata_dev_present(dev) || !dev->dma_mode)
1755 continue;
1756
1757 dev->xfer_mode = dev->dma_mode;
1758 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
1759 if (ap->ops->set_dmamode)
1760 ap->ops->set_dmamode(ap, dev);
1da177e4
LT
1761 }
1762}
1763
1764/**
1765 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1766 * @ap: port on which timings will be programmed
1767 *
780a87f7
JG
1768 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.).
1769 *
1da177e4 1770 * LOCKING:
0cba632b 1771 * PCI/etc. bus probe sem.
1da177e4
LT
1772 */
1773static void ata_set_mode(struct ata_port *ap)
1774{
a6d5a51c 1775 int i, rc;
1da177e4 1776
a6d5a51c
TH
1777 /* step 1: calculate xfer_mask */
1778 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1779 struct ata_device *dev = &ap->device[i];
1780 unsigned int xfer_mask;
1781
1782 if (!ata_dev_present(dev))
1783 continue;
1784
1785 xfer_mask = ata_dev_xfermask(ap, dev);
1da177e4 1786
a6d5a51c
TH
1787 dev->pio_mode = ata_xfer_mask2mode(xfer_mask & ATA_MASK_PIO);
1788 dev->dma_mode = ata_xfer_mask2mode(xfer_mask & (ATA_MASK_MWDMA |
1789 ATA_MASK_UDMA));
1790 }
1791
1792 /* step 2: always set host PIO timings */
1793 rc = ata_host_set_pio(ap);
1da177e4
LT
1794 if (rc)
1795 goto err_out;
1796
a6d5a51c
TH
1797 /* step 3: set host DMA timings */
1798 ata_host_set_dma(ap);
1da177e4
LT
1799
1800 /* step 4: update devices' xfer mode */
a6d5a51c
TH
1801 for (i = 0; i < ATA_MAX_DEVICES; i++)
1802 ata_dev_set_mode(ap, &ap->device[i]);
1da177e4
LT
1803
1804 if (ap->flags & ATA_FLAG_PORT_DISABLED)
1805 return;
1806
1807 if (ap->ops->post_set_mode)
1808 ap->ops->post_set_mode(ap);
1809
1da177e4
LT
1810 return;
1811
1812err_out:
1813 ata_port_disable(ap);
1814}
1815
1fdffbce
JG
1816/**
1817 * ata_tf_to_host - issue ATA taskfile to host controller
1818 * @ap: port to which command is being issued
1819 * @tf: ATA taskfile register set
1820 *
1821 * Issues ATA taskfile register set to ATA host controller,
1822 * with proper synchronization with interrupt handler and
1823 * other threads.
1824 *
1825 * LOCKING:
1826 * spin_lock_irqsave(host_set lock)
1827 */
1828
1829static inline void ata_tf_to_host(struct ata_port *ap,
1830 const struct ata_taskfile *tf)
1831{
1832 ap->ops->tf_load(ap, tf);
1833 ap->ops->exec_command(ap, tf);
1834}
1835
1da177e4
LT
1836/**
1837 * ata_busy_sleep - sleep until BSY clears, or timeout
1838 * @ap: port containing status register to be polled
1839 * @tmout_pat: impatience timeout
1840 * @tmout: overall timeout
1841 *
780a87f7
JG
1842 * Sleep until ATA Status register bit BSY clears,
1843 * or a timeout occurs.
1844 *
1845 * LOCKING: None.
1da177e4
LT
1846 */
1847
6f8b9958
TH
1848unsigned int ata_busy_sleep (struct ata_port *ap,
1849 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
1850{
1851 unsigned long timer_start, timeout;
1852 u8 status;
1853
1854 status = ata_busy_wait(ap, ATA_BUSY, 300);
1855 timer_start = jiffies;
1856 timeout = timer_start + tmout_pat;
1857 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1858 msleep(50);
1859 status = ata_busy_wait(ap, ATA_BUSY, 3);
1860 }
1861
1862 if (status & ATA_BUSY)
1863 printk(KERN_WARNING "ata%u is slow to respond, "
1864 "please be patient\n", ap->id);
1865
1866 timeout = timer_start + tmout;
1867 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
1868 msleep(50);
1869 status = ata_chk_status(ap);
1870 }
1871
1872 if (status & ATA_BUSY) {
1873 printk(KERN_ERR "ata%u failed to respond (%lu secs)\n",
1874 ap->id, tmout / HZ);
1875 return 1;
1876 }
1877
1878 return 0;
1879}
1880
1881static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
1882{
1883 struct ata_ioports *ioaddr = &ap->ioaddr;
1884 unsigned int dev0 = devmask & (1 << 0);
1885 unsigned int dev1 = devmask & (1 << 1);
1886 unsigned long timeout;
1887
1888 /* if device 0 was found in ata_devchk, wait for its
1889 * BSY bit to clear
1890 */
1891 if (dev0)
1892 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1893
1894 /* if device 1 was found in ata_devchk, wait for
1895 * register access, then wait for BSY to clear
1896 */
1897 timeout = jiffies + ATA_TMOUT_BOOT;
1898 while (dev1) {
1899 u8 nsect, lbal;
1900
1901 ap->ops->dev_select(ap, 1);
1902 if (ap->flags & ATA_FLAG_MMIO) {
1903 nsect = readb((void __iomem *) ioaddr->nsect_addr);
1904 lbal = readb((void __iomem *) ioaddr->lbal_addr);
1905 } else {
1906 nsect = inb(ioaddr->nsect_addr);
1907 lbal = inb(ioaddr->lbal_addr);
1908 }
1909 if ((nsect == 1) && (lbal == 1))
1910 break;
1911 if (time_after(jiffies, timeout)) {
1912 dev1 = 0;
1913 break;
1914 }
1915 msleep(50); /* give drive a breather */
1916 }
1917 if (dev1)
1918 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1919
1920 /* is all this really necessary? */
1921 ap->ops->dev_select(ap, 0);
1922 if (dev1)
1923 ap->ops->dev_select(ap, 1);
1924 if (dev0)
1925 ap->ops->dev_select(ap, 0);
1926}
1927
1928/**
0cba632b
JG
1929 * ata_bus_edd - Issue EXECUTE DEVICE DIAGNOSTIC command.
1930 * @ap: Port to reset and probe
1931 *
1932 * Use the EXECUTE DEVICE DIAGNOSTIC command to reset and
1933 * probe the bus. Not often used these days.
1da177e4
LT
1934 *
1935 * LOCKING:
0cba632b 1936 * PCI/etc. bus probe sem.
e5338254 1937 * Obtains host_set lock.
1da177e4
LT
1938 *
1939 */
1940
1941static unsigned int ata_bus_edd(struct ata_port *ap)
1942{
1943 struct ata_taskfile tf;
e5338254 1944 unsigned long flags;
1da177e4
LT
1945
1946 /* set up execute-device-diag (bus reset) taskfile */
1947 /* also, take interrupts to a known state (disabled) */
1948 DPRINTK("execute-device-diag\n");
1949 ata_tf_init(ap, &tf, 0);
1950 tf.ctl |= ATA_NIEN;
1951 tf.command = ATA_CMD_EDD;
1952 tf.protocol = ATA_PROT_NODATA;
1953
1954 /* do bus reset */
e5338254 1955 spin_lock_irqsave(&ap->host_set->lock, flags);
1da177e4 1956 ata_tf_to_host(ap, &tf);
e5338254 1957 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1da177e4
LT
1958
1959 /* spec says at least 2ms. but who knows with those
1960 * crazy ATAPI devices...
1961 */
1962 msleep(150);
1963
1964 return ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
1965}
1966
1967static unsigned int ata_bus_softreset(struct ata_port *ap,
1968 unsigned int devmask)
1969{
1970 struct ata_ioports *ioaddr = &ap->ioaddr;
1971
1972 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
1973
1974 /* software reset. causes dev0 to be selected */
1975 if (ap->flags & ATA_FLAG_MMIO) {
1976 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1977 udelay(20); /* FIXME: flush */
1978 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
1979 udelay(20); /* FIXME: flush */
1980 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
1981 } else {
1982 outb(ap->ctl, ioaddr->ctl_addr);
1983 udelay(10);
1984 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
1985 udelay(10);
1986 outb(ap->ctl, ioaddr->ctl_addr);
1987 }
1988
1989 /* spec mandates ">= 2ms" before checking status.
1990 * We wait 150ms, because that was the magic delay used for
1991 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
1992 * between when the ATA command register is written, and then
1993 * status is checked. Because waiting for "a while" before
1994 * checking status is fine, post SRST, we perform this magic
1995 * delay here as well.
1996 */
1997 msleep(150);
1998
1999 ata_bus_post_reset(ap, devmask);
2000
2001 return 0;
2002}
2003
2004/**
2005 * ata_bus_reset - reset host port and associated ATA channel
2006 * @ap: port to reset
2007 *
2008 * This is typically the first time we actually start issuing
2009 * commands to the ATA channel. We wait for BSY to clear, then
2010 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2011 * result. Determine what devices, if any, are on the channel
2012 * by looking at the device 0/1 error register. Look at the signature
2013 * stored in each device's taskfile registers, to determine if
2014 * the device is ATA or ATAPI.
2015 *
2016 * LOCKING:
0cba632b
JG
2017 * PCI/etc. bus probe sem.
2018 * Obtains host_set lock.
1da177e4
LT
2019 *
2020 * SIDE EFFECTS:
2021 * Sets ATA_FLAG_PORT_DISABLED if bus reset fails.
2022 */
2023
2024void ata_bus_reset(struct ata_port *ap)
2025{
2026 struct ata_ioports *ioaddr = &ap->ioaddr;
2027 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2028 u8 err;
2029 unsigned int dev0, dev1 = 0, rc = 0, devmask = 0;
2030
2031 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2032
2033 /* determine if device 0/1 are present */
2034 if (ap->flags & ATA_FLAG_SATA_RESET)
2035 dev0 = 1;
2036 else {
2037 dev0 = ata_devchk(ap, 0);
2038 if (slave_possible)
2039 dev1 = ata_devchk(ap, 1);
2040 }
2041
2042 if (dev0)
2043 devmask |= (1 << 0);
2044 if (dev1)
2045 devmask |= (1 << 1);
2046
2047 /* select device 0 again */
2048 ap->ops->dev_select(ap, 0);
2049
2050 /* issue bus reset */
2051 if (ap->flags & ATA_FLAG_SRST)
2052 rc = ata_bus_softreset(ap, devmask);
2053 else if ((ap->flags & ATA_FLAG_SATA_RESET) == 0) {
2054 /* set up device control */
2055 if (ap->flags & ATA_FLAG_MMIO)
2056 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2057 else
2058 outb(ap->ctl, ioaddr->ctl_addr);
2059 rc = ata_bus_edd(ap);
2060 }
2061
2062 if (rc)
2063 goto err_out;
2064
2065 /*
2066 * determine by signature whether we have ATA or ATAPI devices
2067 */
b4dc7623 2068 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 2069 if ((slave_possible) && (err != 0x81))
b4dc7623 2070 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4
LT
2071
2072 /* re-enable interrupts */
2073 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2074 ata_irq_on(ap);
2075
2076 /* is double-select really necessary? */
2077 if (ap->device[1].class != ATA_DEV_NONE)
2078 ap->ops->dev_select(ap, 1);
2079 if (ap->device[0].class != ATA_DEV_NONE)
2080 ap->ops->dev_select(ap, 0);
2081
2082 /* if no devices were detected, disable this port */
2083 if ((ap->device[0].class == ATA_DEV_NONE) &&
2084 (ap->device[1].class == ATA_DEV_NONE))
2085 goto err_out;
2086
2087 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2088 /* set up device control for ATA_FLAG_SATA_RESET */
2089 if (ap->flags & ATA_FLAG_MMIO)
2090 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2091 else
2092 outb(ap->ctl, ioaddr->ctl_addr);
2093 }
2094
2095 DPRINTK("EXIT\n");
2096 return;
2097
2098err_out:
2099 printk(KERN_ERR "ata%u: disabling port\n", ap->id);
2100 ap->ops->port_disable(ap);
2101
2102 DPRINTK("EXIT\n");
2103}
2104
7a7921e8
TH
2105static int sata_phy_resume(struct ata_port *ap)
2106{
2107 unsigned long timeout = jiffies + (HZ * 5);
2108 u32 sstatus;
2109
2110 scr_write_flush(ap, SCR_CONTROL, 0x300);
2111
2112 /* Wait for phy to become ready, if necessary. */
2113 do {
2114 msleep(200);
2115 sstatus = scr_read(ap, SCR_STATUS);
2116 if ((sstatus & 0xf) != 1)
2117 return 0;
2118 } while (time_before(jiffies, timeout));
2119
2120 return -1;
2121}
2122
8a19ac89
TH
2123/**
2124 * ata_std_probeinit - initialize probing
2125 * @ap: port to be probed
2126 *
2127 * @ap is about to be probed. Initialize it. This function is
2128 * to be used as standard callback for ata_drive_probe_reset().
3a39746a
TH
2129 *
2130 * NOTE!!! Do not use this function as probeinit if a low level
2131 * driver implements only hardreset. Just pass NULL as probeinit
2132 * in that case. Using this function is probably okay but doing
2133 * so makes reset sequence different from the original
2134 * ->phy_reset implementation and Jeff nervous. :-P
8a19ac89
TH
2135 */
2136extern void ata_std_probeinit(struct ata_port *ap)
2137{
3a39746a 2138 if (ap->flags & ATA_FLAG_SATA && ap->ops->scr_read) {
8a19ac89 2139 sata_phy_resume(ap);
3a39746a
TH
2140 if (sata_dev_present(ap))
2141 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2142 }
8a19ac89
TH
2143}
2144
c2bd5804
TH
2145/**
2146 * ata_std_softreset - reset host port via ATA SRST
2147 * @ap: port to reset
2148 * @verbose: fail verbosely
2149 * @classes: resulting classes of attached devices
2150 *
2151 * Reset host port using ATA SRST. This function is to be used
2152 * as standard callback for ata_drive_*_reset() functions.
2153 *
2154 * LOCKING:
2155 * Kernel thread context (may sleep)
2156 *
2157 * RETURNS:
2158 * 0 on success, -errno otherwise.
2159 */
2160int ata_std_softreset(struct ata_port *ap, int verbose, unsigned int *classes)
2161{
2162 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2163 unsigned int devmask = 0, err_mask;
2164 u8 err;
2165
2166 DPRINTK("ENTER\n");
2167
3a39746a
TH
2168 if (ap->ops->scr_read && !sata_dev_present(ap)) {
2169 classes[0] = ATA_DEV_NONE;
2170 goto out;
2171 }
2172
c2bd5804
TH
2173 /* determine if device 0/1 are present */
2174 if (ata_devchk(ap, 0))
2175 devmask |= (1 << 0);
2176 if (slave_possible && ata_devchk(ap, 1))
2177 devmask |= (1 << 1);
2178
c2bd5804
TH
2179 /* select device 0 again */
2180 ap->ops->dev_select(ap, 0);
2181
2182 /* issue bus reset */
2183 DPRINTK("about to softreset, devmask=%x\n", devmask);
2184 err_mask = ata_bus_softreset(ap, devmask);
2185 if (err_mask) {
2186 if (verbose)
2187 printk(KERN_ERR "ata%u: SRST failed (err_mask=0x%x)\n",
2188 ap->id, err_mask);
2189 else
2190 DPRINTK("EXIT, softreset failed (err_mask=0x%x)\n",
2191 err_mask);
2192 return -EIO;
2193 }
2194
2195 /* determine by signature whether we have ATA or ATAPI devices */
2196 classes[0] = ata_dev_try_classify(ap, 0, &err);
2197 if (slave_possible && err != 0x81)
2198 classes[1] = ata_dev_try_classify(ap, 1, &err);
2199
3a39746a 2200 out:
c2bd5804
TH
2201 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2202 return 0;
2203}
2204
2205/**
2206 * sata_std_hardreset - reset host port via SATA phy reset
2207 * @ap: port to reset
2208 * @verbose: fail verbosely
2209 * @class: resulting class of attached device
2210 *
2211 * SATA phy-reset host port using DET bits of SControl register.
2212 * This function is to be used as standard callback for
2213 * ata_drive_*_reset().
2214 *
2215 * LOCKING:
2216 * Kernel thread context (may sleep)
2217 *
2218 * RETURNS:
2219 * 0 on success, -errno otherwise.
2220 */
2221int sata_std_hardreset(struct ata_port *ap, int verbose, unsigned int *class)
2222{
c2bd5804
TH
2223 DPRINTK("ENTER\n");
2224
2225 /* Issue phy wake/reset */
2226 scr_write_flush(ap, SCR_CONTROL, 0x301);
2227
2228 /*
2229 * Couldn't find anything in SATA I/II specs, but AHCI-1.1
2230 * 10.4.2 says at least 1 ms.
2231 */
2232 msleep(1);
2233
7a7921e8
TH
2234 /* Bring phy back */
2235 sata_phy_resume(ap);
c2bd5804 2236
c2bd5804
TH
2237 /* TODO: phy layer with polling, timeouts, etc. */
2238 if (!sata_dev_present(ap)) {
2239 *class = ATA_DEV_NONE;
2240 DPRINTK("EXIT, link offline\n");
2241 return 0;
2242 }
2243
2244 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2245 if (verbose)
2246 printk(KERN_ERR "ata%u: COMRESET failed "
2247 "(device not ready)\n", ap->id);
2248 else
2249 DPRINTK("EXIT, device not ready\n");
2250 return -EIO;
2251 }
2252
3a39746a
TH
2253 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2254
c2bd5804
TH
2255 *class = ata_dev_try_classify(ap, 0, NULL);
2256
2257 DPRINTK("EXIT, class=%u\n", *class);
2258 return 0;
2259}
2260
2261/**
2262 * ata_std_postreset - standard postreset callback
2263 * @ap: the target ata_port
2264 * @classes: classes of attached devices
2265 *
2266 * This function is invoked after a successful reset. Note that
2267 * the device might have been reset more than once using
2268 * different reset methods before postreset is invoked.
c2bd5804
TH
2269 *
2270 * This function is to be used as standard callback for
2271 * ata_drive_*_reset().
2272 *
2273 * LOCKING:
2274 * Kernel thread context (may sleep)
2275 */
2276void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2277{
2278 DPRINTK("ENTER\n");
2279
56497bd5 2280 /* set cable type if it isn't already set */
c2bd5804
TH
2281 if (ap->cbl == ATA_CBL_NONE && ap->flags & ATA_FLAG_SATA)
2282 ap->cbl = ATA_CBL_SATA;
2283
2284 /* print link status */
2285 if (ap->cbl == ATA_CBL_SATA)
2286 sata_print_link_status(ap);
2287
3a39746a
TH
2288 /* re-enable interrupts */
2289 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2290 ata_irq_on(ap);
c2bd5804
TH
2291
2292 /* is double-select really necessary? */
2293 if (classes[0] != ATA_DEV_NONE)
2294 ap->ops->dev_select(ap, 1);
2295 if (classes[1] != ATA_DEV_NONE)
2296 ap->ops->dev_select(ap, 0);
2297
3a39746a
TH
2298 /* bail out if no device is present */
2299 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2300 DPRINTK("EXIT, no device\n");
2301 return;
2302 }
2303
2304 /* set up device control */
2305 if (ap->ioaddr.ctl_addr) {
2306 if (ap->flags & ATA_FLAG_MMIO)
2307 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2308 else
2309 outb(ap->ctl, ap->ioaddr.ctl_addr);
2310 }
c2bd5804
TH
2311
2312 DPRINTK("EXIT\n");
2313}
2314
2315/**
2316 * ata_std_probe_reset - standard probe reset method
2317 * @ap: prot to perform probe-reset
2318 * @classes: resulting classes of attached devices
2319 *
2320 * The stock off-the-shelf ->probe_reset method.
2321 *
2322 * LOCKING:
2323 * Kernel thread context (may sleep)
2324 *
2325 * RETURNS:
2326 * 0 on success, -errno otherwise.
2327 */
2328int ata_std_probe_reset(struct ata_port *ap, unsigned int *classes)
2329{
2330 ata_reset_fn_t hardreset;
2331
2332 hardreset = NULL;
b911fc3a 2333 if (ap->flags & ATA_FLAG_SATA && ap->ops->scr_read)
c2bd5804
TH
2334 hardreset = sata_std_hardreset;
2335
8a19ac89 2336 return ata_drive_probe_reset(ap, ata_std_probeinit,
7944ea95 2337 ata_std_softreset, hardreset,
c2bd5804
TH
2338 ata_std_postreset, classes);
2339}
2340
a62c0fc5
TH
2341static int do_probe_reset(struct ata_port *ap, ata_reset_fn_t reset,
2342 ata_postreset_fn_t postreset,
2343 unsigned int *classes)
2344{
2345 int i, rc;
2346
2347 for (i = 0; i < ATA_MAX_DEVICES; i++)
2348 classes[i] = ATA_DEV_UNKNOWN;
2349
2350 rc = reset(ap, 0, classes);
2351 if (rc)
2352 return rc;
2353
2354 /* If any class isn't ATA_DEV_UNKNOWN, consider classification
2355 * is complete and convert all ATA_DEV_UNKNOWN to
2356 * ATA_DEV_NONE.
2357 */
2358 for (i = 0; i < ATA_MAX_DEVICES; i++)
2359 if (classes[i] != ATA_DEV_UNKNOWN)
2360 break;
2361
2362 if (i < ATA_MAX_DEVICES)
2363 for (i = 0; i < ATA_MAX_DEVICES; i++)
2364 if (classes[i] == ATA_DEV_UNKNOWN)
2365 classes[i] = ATA_DEV_NONE;
2366
2367 if (postreset)
2368 postreset(ap, classes);
2369
2370 return classes[0] != ATA_DEV_UNKNOWN ? 0 : -ENODEV;
2371}
2372
2373/**
2374 * ata_drive_probe_reset - Perform probe reset with given methods
2375 * @ap: port to reset
7944ea95 2376 * @probeinit: probeinit method (can be NULL)
a62c0fc5
TH
2377 * @softreset: softreset method (can be NULL)
2378 * @hardreset: hardreset method (can be NULL)
2379 * @postreset: postreset method (can be NULL)
2380 * @classes: resulting classes of attached devices
2381 *
2382 * Reset the specified port and classify attached devices using
2383 * given methods. This function prefers softreset but tries all
2384 * possible reset sequences to reset and classify devices. This
2385 * function is intended to be used for constructing ->probe_reset
2386 * callback by low level drivers.
2387 *
2388 * Reset methods should follow the following rules.
2389 *
2390 * - Return 0 on sucess, -errno on failure.
2391 * - If classification is supported, fill classes[] with
2392 * recognized class codes.
2393 * - If classification is not supported, leave classes[] alone.
2394 * - If verbose is non-zero, print error message on failure;
2395 * otherwise, shut up.
2396 *
2397 * LOCKING:
2398 * Kernel thread context (may sleep)
2399 *
2400 * RETURNS:
2401 * 0 on success, -EINVAL if no reset method is avaliable, -ENODEV
2402 * if classification fails, and any error code from reset
2403 * methods.
2404 */
7944ea95 2405int ata_drive_probe_reset(struct ata_port *ap, ata_probeinit_fn_t probeinit,
a62c0fc5
TH
2406 ata_reset_fn_t softreset, ata_reset_fn_t hardreset,
2407 ata_postreset_fn_t postreset, unsigned int *classes)
2408{
2409 int rc = -EINVAL;
2410
7944ea95
TH
2411 if (probeinit)
2412 probeinit(ap);
2413
a62c0fc5
TH
2414 if (softreset) {
2415 rc = do_probe_reset(ap, softreset, postreset, classes);
2416 if (rc == 0)
2417 return 0;
2418 }
2419
2420 if (!hardreset)
2421 return rc;
2422
2423 rc = do_probe_reset(ap, hardreset, postreset, classes);
2424 if (rc == 0 || rc != -ENODEV)
2425 return rc;
2426
2427 if (softreset)
2428 rc = do_probe_reset(ap, softreset, postreset, classes);
2429
2430 return rc;
2431}
2432
623a3128
TH
2433/**
2434 * ata_dev_same_device - Determine whether new ID matches configured device
2435 * @ap: port on which the device to compare against resides
2436 * @dev: device to compare against
2437 * @new_class: class of the new device
2438 * @new_id: IDENTIFY page of the new device
2439 *
2440 * Compare @new_class and @new_id against @dev and determine
2441 * whether @dev is the device indicated by @new_class and
2442 * @new_id.
2443 *
2444 * LOCKING:
2445 * None.
2446 *
2447 * RETURNS:
2448 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2449 */
2450static int ata_dev_same_device(struct ata_port *ap, struct ata_device *dev,
2451 unsigned int new_class, const u16 *new_id)
2452{
2453 const u16 *old_id = dev->id;
2454 unsigned char model[2][41], serial[2][21];
2455 u64 new_n_sectors;
2456
2457 if (dev->class != new_class) {
2458 printk(KERN_INFO
2459 "ata%u: dev %u class mismatch %d != %d\n",
2460 ap->id, dev->devno, dev->class, new_class);
2461 return 0;
2462 }
2463
2464 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2465 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2466 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2467 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2468 new_n_sectors = ata_id_n_sectors(new_id);
2469
2470 if (strcmp(model[0], model[1])) {
2471 printk(KERN_INFO
2472 "ata%u: dev %u model number mismatch '%s' != '%s'\n",
2473 ap->id, dev->devno, model[0], model[1]);
2474 return 0;
2475 }
2476
2477 if (strcmp(serial[0], serial[1])) {
2478 printk(KERN_INFO
2479 "ata%u: dev %u serial number mismatch '%s' != '%s'\n",
2480 ap->id, dev->devno, serial[0], serial[1]);
2481 return 0;
2482 }
2483
2484 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
2485 printk(KERN_INFO
2486 "ata%u: dev %u n_sectors mismatch %llu != %llu\n",
2487 ap->id, dev->devno, (unsigned long long)dev->n_sectors,
2488 (unsigned long long)new_n_sectors);
2489 return 0;
2490 }
2491
2492 return 1;
2493}
2494
2495/**
2496 * ata_dev_revalidate - Revalidate ATA device
2497 * @ap: port on which the device to revalidate resides
2498 * @dev: device to revalidate
2499 * @post_reset: is this revalidation after reset?
2500 *
2501 * Re-read IDENTIFY page and make sure @dev is still attached to
2502 * the port.
2503 *
2504 * LOCKING:
2505 * Kernel thread context (may sleep)
2506 *
2507 * RETURNS:
2508 * 0 on success, negative errno otherwise
2509 */
2510int ata_dev_revalidate(struct ata_port *ap, struct ata_device *dev,
2511 int post_reset)
2512{
2513 unsigned int class;
2514 u16 *id;
2515 int rc;
2516
2517 if (!ata_dev_present(dev))
2518 return -ENODEV;
2519
2520 class = dev->class;
2521 id = NULL;
2522
2523 /* allocate & read ID data */
2524 rc = ata_dev_read_id(ap, dev, &class, post_reset, &id);
2525 if (rc)
2526 goto fail;
2527
2528 /* is the device still there? */
2529 if (!ata_dev_same_device(ap, dev, class, id)) {
2530 rc = -ENODEV;
2531 goto fail;
2532 }
2533
2534 kfree(dev->id);
2535 dev->id = id;
2536
2537 /* configure device according to the new ID */
2538 return ata_dev_configure(ap, dev, 0);
2539
2540 fail:
2541 printk(KERN_ERR "ata%u: dev %u revalidation failed (errno=%d)\n",
2542 ap->id, dev->devno, rc);
2543 kfree(id);
2544 return rc;
2545}
2546
98ac62de 2547static const char * const ata_dma_blacklist [] = {
1da177e4
LT
2548 "WDC AC11000H",
2549 "WDC AC22100H",
2550 "WDC AC32500H",
2551 "WDC AC33100H",
2552 "WDC AC31600H",
2553 "WDC AC32100H",
2554 "WDC AC23200L",
2555 "Compaq CRD-8241B",
2556 "CRD-8400B",
2557 "CRD-8480B",
2558 "CRD-8482B",
2559 "CRD-84",
2560 "SanDisk SDP3B",
2561 "SanDisk SDP3B-64",
2562 "SANYO CD-ROM CRD",
2563 "HITACHI CDR-8",
2564 "HITACHI CDR-8335",
2565 "HITACHI CDR-8435",
2566 "Toshiba CD-ROM XM-6202B",
e922256a 2567 "TOSHIBA CD-ROM XM-1702BC",
1da177e4
LT
2568 "CD-532E-A",
2569 "E-IDE CD-ROM CR-840",
2570 "CD-ROM Drive/F5A",
2571 "WPI CDD-820",
2572 "SAMSUNG CD-ROM SC-148C",
2573 "SAMSUNG CD-ROM SC",
2574 "SanDisk SDP3B-64",
1da177e4
LT
2575 "ATAPI CD-ROM DRIVE 40X MAXIMUM",
2576 "_NEC DV5800A",
2577};
2578
057ace5e 2579static int ata_dma_blacklisted(const struct ata_device *dev)
1da177e4 2580{
2e02671d 2581 unsigned char model_num[41];
1da177e4
LT
2582 int i;
2583
6a62a04d 2584 ata_id_c_string(dev->id, model_num, ATA_ID_PROD_OFS, sizeof(model_num));
1da177e4
LT
2585
2586 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i++)
2e02671d 2587 if (!strcmp(ata_dma_blacklist[i], model_num))
1da177e4
LT
2588 return 1;
2589
2590 return 0;
2591}
2592
a6d5a51c
TH
2593/**
2594 * ata_dev_xfermask - Compute supported xfermask of the given device
2595 * @ap: Port on which the device to compute xfermask for resides
2596 * @dev: Device to compute xfermask for
2597 *
2598 * Compute supported xfermask of @dev. This function is
2599 * responsible for applying all known limits including host
2600 * controller limits, device blacklist, etc...
2601 *
2602 * LOCKING:
2603 * None.
2604 *
2605 * RETURNS:
2606 * Computed xfermask.
2607 */
2608static unsigned int ata_dev_xfermask(struct ata_port *ap,
2609 struct ata_device *dev)
1da177e4 2610{
a6d5a51c
TH
2611 unsigned long xfer_mask;
2612 int i;
1da177e4 2613
a6d5a51c
TH
2614 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
2615 ap->udma_mask);
1da177e4 2616
a6d5a51c
TH
2617 /* use port-wide xfermask for now */
2618 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2619 struct ata_device *d = &ap->device[i];
2620 if (!ata_dev_present(d))
2621 continue;
2622 xfer_mask &= ata_id_xfermask(d->id);
2623 if (ata_dma_blacklisted(d))
2624 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
1da177e4
LT
2625 }
2626
a6d5a51c
TH
2627 if (ata_dma_blacklisted(dev))
2628 printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, "
2629 "disabling DMA\n", ap->id, dev->devno);
2630
2631 return xfer_mask;
1da177e4
LT
2632}
2633
1da177e4
LT
2634/**
2635 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
2636 * @ap: Port associated with device @dev
2637 * @dev: Device to which command will be sent
2638 *
780a87f7
JG
2639 * Issue SET FEATURES - XFER MODE command to device @dev
2640 * on port @ap.
2641 *
1da177e4 2642 * LOCKING:
0cba632b 2643 * PCI/etc. bus probe sem.
1da177e4
LT
2644 */
2645
2646static void ata_dev_set_xfermode(struct ata_port *ap, struct ata_device *dev)
2647{
a0123703 2648 struct ata_taskfile tf;
1da177e4
LT
2649
2650 /* set up set-features taskfile */
2651 DPRINTK("set features - xfer mode\n");
2652
a0123703
TH
2653 ata_tf_init(ap, &tf, dev->devno);
2654 tf.command = ATA_CMD_SET_FEATURES;
2655 tf.feature = SETFEATURES_XFER;
2656 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2657 tf.protocol = ATA_PROT_NODATA;
2658 tf.nsect = dev->xfer_mode;
1da177e4 2659
a0123703
TH
2660 if (ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0)) {
2661 printk(KERN_ERR "ata%u: failed to set xfermode, disabled\n",
2662 ap->id);
1da177e4 2663 ata_port_disable(ap);
a0123703 2664 }
1da177e4
LT
2665
2666 DPRINTK("EXIT\n");
2667}
2668
8bf62ece
AL
2669/**
2670 * ata_dev_init_params - Issue INIT DEV PARAMS command
2671 * @ap: Port associated with device @dev
2672 * @dev: Device to which command will be sent
2673 *
2674 * LOCKING:
6aff8f1f
TH
2675 * Kernel thread context (may sleep)
2676 *
2677 * RETURNS:
2678 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece
AL
2679 */
2680
6aff8f1f
TH
2681static unsigned int ata_dev_init_params(struct ata_port *ap,
2682 struct ata_device *dev)
8bf62ece 2683{
a0123703 2684 struct ata_taskfile tf;
6aff8f1f 2685 unsigned int err_mask;
8bf62ece
AL
2686 u16 sectors = dev->id[6];
2687 u16 heads = dev->id[3];
2688
2689 /* Number of sectors per track 1-255. Number of heads 1-16 */
2690 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
6aff8f1f 2691 return 0;
8bf62ece
AL
2692
2693 /* set up init dev params taskfile */
2694 DPRINTK("init dev params \n");
2695
a0123703
TH
2696 ata_tf_init(ap, &tf, dev->devno);
2697 tf.command = ATA_CMD_INIT_DEV_PARAMS;
2698 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2699 tf.protocol = ATA_PROT_NODATA;
2700 tf.nsect = sectors;
2701 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 2702
6aff8f1f 2703 err_mask = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
8bf62ece 2704
6aff8f1f
TH
2705 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2706 return err_mask;
8bf62ece
AL
2707}
2708
1da177e4 2709/**
0cba632b
JG
2710 * ata_sg_clean - Unmap DMA memory associated with command
2711 * @qc: Command containing DMA memory to be released
2712 *
2713 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
2714 *
2715 * LOCKING:
0cba632b 2716 * spin_lock_irqsave(host_set lock)
1da177e4
LT
2717 */
2718
2719static void ata_sg_clean(struct ata_queued_cmd *qc)
2720{
2721 struct ata_port *ap = qc->ap;
cedc9a47 2722 struct scatterlist *sg = qc->__sg;
1da177e4 2723 int dir = qc->dma_dir;
cedc9a47 2724 void *pad_buf = NULL;
1da177e4 2725
a4631474
TH
2726 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
2727 WARN_ON(sg == NULL);
1da177e4
LT
2728
2729 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 2730 WARN_ON(qc->n_elem > 1);
1da177e4 2731
2c13b7ce 2732 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 2733
cedc9a47
JG
2734 /* if we padded the buffer out to 32-bit bound, and data
2735 * xfer direction is from-device, we must copy from the
2736 * pad buffer back into the supplied buffer
2737 */
2738 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
2739 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2740
2741 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d
JG
2742 if (qc->n_elem)
2743 dma_unmap_sg(ap->host_set->dev, sg, qc->n_elem, dir);
cedc9a47
JG
2744 /* restore last sg */
2745 sg[qc->orig_n_elem - 1].length += qc->pad_len;
2746 if (pad_buf) {
2747 struct scatterlist *psg = &qc->pad_sgent;
2748 void *addr = kmap_atomic(psg->page, KM_IRQ0);
2749 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 2750 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
2751 }
2752 } else {
2e242fa9 2753 if (qc->n_elem)
e1410f2d
JG
2754 dma_unmap_single(ap->host_set->dev,
2755 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
2756 dir);
cedc9a47
JG
2757 /* restore sg */
2758 sg->length += qc->pad_len;
2759 if (pad_buf)
2760 memcpy(qc->buf_virt + sg->length - qc->pad_len,
2761 pad_buf, qc->pad_len);
2762 }
1da177e4
LT
2763
2764 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 2765 qc->__sg = NULL;
1da177e4
LT
2766}
2767
2768/**
2769 * ata_fill_sg - Fill PCI IDE PRD table
2770 * @qc: Metadata associated with taskfile to be transferred
2771 *
780a87f7
JG
2772 * Fill PCI IDE PRD (scatter-gather) table with segments
2773 * associated with the current disk command.
2774 *
1da177e4 2775 * LOCKING:
780a87f7 2776 * spin_lock_irqsave(host_set lock)
1da177e4
LT
2777 *
2778 */
2779static void ata_fill_sg(struct ata_queued_cmd *qc)
2780{
1da177e4 2781 struct ata_port *ap = qc->ap;
cedc9a47
JG
2782 struct scatterlist *sg;
2783 unsigned int idx;
1da177e4 2784
a4631474 2785 WARN_ON(qc->__sg == NULL);
f131883e 2786 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
2787
2788 idx = 0;
cedc9a47 2789 ata_for_each_sg(sg, qc) {
1da177e4
LT
2790 u32 addr, offset;
2791 u32 sg_len, len;
2792
2793 /* determine if physical DMA addr spans 64K boundary.
2794 * Note h/w doesn't support 64-bit, so we unconditionally
2795 * truncate dma_addr_t to u32.
2796 */
2797 addr = (u32) sg_dma_address(sg);
2798 sg_len = sg_dma_len(sg);
2799
2800 while (sg_len) {
2801 offset = addr & 0xffff;
2802 len = sg_len;
2803 if ((offset + sg_len) > 0x10000)
2804 len = 0x10000 - offset;
2805
2806 ap->prd[idx].addr = cpu_to_le32(addr);
2807 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
2808 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
2809
2810 idx++;
2811 sg_len -= len;
2812 addr += len;
2813 }
2814 }
2815
2816 if (idx)
2817 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
2818}
2819/**
2820 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
2821 * @qc: Metadata associated with taskfile to check
2822 *
780a87f7
JG
2823 * Allow low-level driver to filter ATA PACKET commands, returning
2824 * a status indicating whether or not it is OK to use DMA for the
2825 * supplied PACKET command.
2826 *
1da177e4 2827 * LOCKING:
0cba632b
JG
2828 * spin_lock_irqsave(host_set lock)
2829 *
1da177e4
LT
2830 * RETURNS: 0 when ATAPI DMA can be used
2831 * nonzero otherwise
2832 */
2833int ata_check_atapi_dma(struct ata_queued_cmd *qc)
2834{
2835 struct ata_port *ap = qc->ap;
2836 int rc = 0; /* Assume ATAPI DMA is OK by default */
2837
2838 if (ap->ops->check_atapi_dma)
2839 rc = ap->ops->check_atapi_dma(qc);
2840
2841 return rc;
2842}
2843/**
2844 * ata_qc_prep - Prepare taskfile for submission
2845 * @qc: Metadata associated with taskfile to be prepared
2846 *
780a87f7
JG
2847 * Prepare ATA taskfile for submission.
2848 *
1da177e4
LT
2849 * LOCKING:
2850 * spin_lock_irqsave(host_set lock)
2851 */
2852void ata_qc_prep(struct ata_queued_cmd *qc)
2853{
2854 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
2855 return;
2856
2857 ata_fill_sg(qc);
2858}
2859
0cba632b
JG
2860/**
2861 * ata_sg_init_one - Associate command with memory buffer
2862 * @qc: Command to be associated
2863 * @buf: Memory buffer
2864 * @buflen: Length of memory buffer, in bytes.
2865 *
2866 * Initialize the data-related elements of queued_cmd @qc
2867 * to point to a single memory buffer, @buf of byte length @buflen.
2868 *
2869 * LOCKING:
2870 * spin_lock_irqsave(host_set lock)
2871 */
2872
1da177e4
LT
2873void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
2874{
2875 struct scatterlist *sg;
2876
2877 qc->flags |= ATA_QCFLAG_SINGLE;
2878
2879 memset(&qc->sgent, 0, sizeof(qc->sgent));
cedc9a47 2880 qc->__sg = &qc->sgent;
1da177e4 2881 qc->n_elem = 1;
cedc9a47 2882 qc->orig_n_elem = 1;
1da177e4
LT
2883 qc->buf_virt = buf;
2884
cedc9a47 2885 sg = qc->__sg;
f0612bbc 2886 sg_init_one(sg, buf, buflen);
1da177e4
LT
2887}
2888
0cba632b
JG
2889/**
2890 * ata_sg_init - Associate command with scatter-gather table.
2891 * @qc: Command to be associated
2892 * @sg: Scatter-gather table.
2893 * @n_elem: Number of elements in s/g table.
2894 *
2895 * Initialize the data-related elements of queued_cmd @qc
2896 * to point to a scatter-gather table @sg, containing @n_elem
2897 * elements.
2898 *
2899 * LOCKING:
2900 * spin_lock_irqsave(host_set lock)
2901 */
2902
1da177e4
LT
2903void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
2904 unsigned int n_elem)
2905{
2906 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 2907 qc->__sg = sg;
1da177e4 2908 qc->n_elem = n_elem;
cedc9a47 2909 qc->orig_n_elem = n_elem;
1da177e4
LT
2910}
2911
2912/**
0cba632b
JG
2913 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
2914 * @qc: Command with memory buffer to be mapped.
2915 *
2916 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
2917 *
2918 * LOCKING:
2919 * spin_lock_irqsave(host_set lock)
2920 *
2921 * RETURNS:
0cba632b 2922 * Zero on success, negative on error.
1da177e4
LT
2923 */
2924
2925static int ata_sg_setup_one(struct ata_queued_cmd *qc)
2926{
2927 struct ata_port *ap = qc->ap;
2928 int dir = qc->dma_dir;
cedc9a47 2929 struct scatterlist *sg = qc->__sg;
1da177e4 2930 dma_addr_t dma_address;
2e242fa9 2931 int trim_sg = 0;
1da177e4 2932
cedc9a47
JG
2933 /* we must lengthen transfers to end on a 32-bit boundary */
2934 qc->pad_len = sg->length & 3;
2935 if (qc->pad_len) {
2936 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
2937 struct scatterlist *psg = &qc->pad_sgent;
2938
a4631474 2939 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
2940
2941 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
2942
2943 if (qc->tf.flags & ATA_TFLAG_WRITE)
2944 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
2945 qc->pad_len);
2946
2947 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
2948 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
2949 /* trim sg */
2950 sg->length -= qc->pad_len;
2e242fa9
TH
2951 if (sg->length == 0)
2952 trim_sg = 1;
cedc9a47
JG
2953
2954 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
2955 sg->length, qc->pad_len);
2956 }
2957
2e242fa9
TH
2958 if (trim_sg) {
2959 qc->n_elem--;
e1410f2d
JG
2960 goto skip_map;
2961 }
2962
1da177e4 2963 dma_address = dma_map_single(ap->host_set->dev, qc->buf_virt,
32529e01 2964 sg->length, dir);
537a95d9
TH
2965 if (dma_mapping_error(dma_address)) {
2966 /* restore sg */
2967 sg->length += qc->pad_len;
1da177e4 2968 return -1;
537a95d9 2969 }
1da177e4
LT
2970
2971 sg_dma_address(sg) = dma_address;
32529e01 2972 sg_dma_len(sg) = sg->length;
1da177e4 2973
2e242fa9 2974skip_map:
1da177e4
LT
2975 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
2976 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
2977
2978 return 0;
2979}
2980
2981/**
0cba632b
JG
2982 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
2983 * @qc: Command with scatter-gather table to be mapped.
2984 *
2985 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
2986 *
2987 * LOCKING:
2988 * spin_lock_irqsave(host_set lock)
2989 *
2990 * RETURNS:
0cba632b 2991 * Zero on success, negative on error.
1da177e4
LT
2992 *
2993 */
2994
2995static int ata_sg_setup(struct ata_queued_cmd *qc)
2996{
2997 struct ata_port *ap = qc->ap;
cedc9a47
JG
2998 struct scatterlist *sg = qc->__sg;
2999 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 3000 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4
LT
3001
3002 VPRINTK("ENTER, ata%u\n", ap->id);
a4631474 3003 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 3004
cedc9a47
JG
3005 /* we must lengthen transfers to end on a 32-bit boundary */
3006 qc->pad_len = lsg->length & 3;
3007 if (qc->pad_len) {
3008 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3009 struct scatterlist *psg = &qc->pad_sgent;
3010 unsigned int offset;
3011
a4631474 3012 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3013
3014 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3015
3016 /*
3017 * psg->page/offset are used to copy to-be-written
3018 * data in this function or read data in ata_sg_clean.
3019 */
3020 offset = lsg->offset + lsg->length - qc->pad_len;
3021 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3022 psg->offset = offset_in_page(offset);
3023
3024 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3025 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3026 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 3027 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3028 }
3029
3030 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3031 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3032 /* trim last sg */
3033 lsg->length -= qc->pad_len;
e1410f2d
JG
3034 if (lsg->length == 0)
3035 trim_sg = 1;
cedc9a47
JG
3036
3037 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3038 qc->n_elem - 1, lsg->length, qc->pad_len);
3039 }
3040
e1410f2d
JG
3041 pre_n_elem = qc->n_elem;
3042 if (trim_sg && pre_n_elem)
3043 pre_n_elem--;
3044
3045 if (!pre_n_elem) {
3046 n_elem = 0;
3047 goto skip_map;
3048 }
3049
1da177e4 3050 dir = qc->dma_dir;
e1410f2d 3051 n_elem = dma_map_sg(ap->host_set->dev, sg, pre_n_elem, dir);
537a95d9
TH
3052 if (n_elem < 1) {
3053 /* restore last sg */
3054 lsg->length += qc->pad_len;
1da177e4 3055 return -1;
537a95d9 3056 }
1da177e4
LT
3057
3058 DPRINTK("%d sg elements mapped\n", n_elem);
3059
e1410f2d 3060skip_map:
1da177e4
LT
3061 qc->n_elem = n_elem;
3062
3063 return 0;
3064}
3065
40e8c82c
TH
3066/**
3067 * ata_poll_qc_complete - turn irq back on and finish qc
3068 * @qc: Command to complete
8e8b77dd 3069 * @err_mask: ATA status register content
40e8c82c
TH
3070 *
3071 * LOCKING:
3072 * None. (grabs host lock)
3073 */
3074
a22e2eb0 3075void ata_poll_qc_complete(struct ata_queued_cmd *qc)
40e8c82c
TH
3076{
3077 struct ata_port *ap = qc->ap;
b8f6153e 3078 unsigned long flags;
40e8c82c 3079
b8f6153e 3080 spin_lock_irqsave(&ap->host_set->lock, flags);
40e8c82c
TH
3081 ap->flags &= ~ATA_FLAG_NOINTR;
3082 ata_irq_on(ap);
a22e2eb0 3083 ata_qc_complete(qc);
b8f6153e 3084 spin_unlock_irqrestore(&ap->host_set->lock, flags);
40e8c82c
TH
3085}
3086
1da177e4 3087/**
c893a3ae 3088 * ata_pio_poll - poll using PIO, depending on current state
6f0ef4fa 3089 * @ap: the target ata_port
1da177e4
LT
3090 *
3091 * LOCKING:
0cba632b 3092 * None. (executing in kernel thread context)
1da177e4
LT
3093 *
3094 * RETURNS:
6f0ef4fa 3095 * timeout value to use
1da177e4
LT
3096 */
3097
3098static unsigned long ata_pio_poll(struct ata_port *ap)
3099{
c14b8331 3100 struct ata_queued_cmd *qc;
1da177e4 3101 u8 status;
14be71f4
AL
3102 unsigned int poll_state = HSM_ST_UNKNOWN;
3103 unsigned int reg_state = HSM_ST_UNKNOWN;
14be71f4 3104
c14b8331 3105 qc = ata_qc_from_tag(ap, ap->active_tag);
a4631474 3106 WARN_ON(qc == NULL);
c14b8331 3107
14be71f4
AL
3108 switch (ap->hsm_task_state) {
3109 case HSM_ST:
3110 case HSM_ST_POLL:
3111 poll_state = HSM_ST_POLL;
3112 reg_state = HSM_ST;
1da177e4 3113 break;
14be71f4
AL
3114 case HSM_ST_LAST:
3115 case HSM_ST_LAST_POLL:
3116 poll_state = HSM_ST_LAST_POLL;
3117 reg_state = HSM_ST_LAST;
1da177e4
LT
3118 break;
3119 default:
3120 BUG();
3121 break;
3122 }
3123
3124 status = ata_chk_status(ap);
3125 if (status & ATA_BUSY) {
3126 if (time_after(jiffies, ap->pio_task_timeout)) {
11a56d24 3127 qc->err_mask |= AC_ERR_TIMEOUT;
7c398335 3128 ap->hsm_task_state = HSM_ST_TMOUT;
1da177e4
LT
3129 return 0;
3130 }
14be71f4 3131 ap->hsm_task_state = poll_state;
1da177e4
LT
3132 return ATA_SHORT_PAUSE;
3133 }
3134
14be71f4 3135 ap->hsm_task_state = reg_state;
1da177e4
LT
3136 return 0;
3137}
3138
3139/**
6f0ef4fa
RD
3140 * ata_pio_complete - check if drive is busy or idle
3141 * @ap: the target ata_port
1da177e4
LT
3142 *
3143 * LOCKING:
0cba632b 3144 * None. (executing in kernel thread context)
7fb6ec28
JG
3145 *
3146 * RETURNS:
3147 * Non-zero if qc completed, zero otherwise.
1da177e4
LT
3148 */
3149
7fb6ec28 3150static int ata_pio_complete (struct ata_port *ap)
1da177e4
LT
3151{
3152 struct ata_queued_cmd *qc;
3153 u8 drv_stat;
3154
3155 /*
31433ea3
AC
3156 * This is purely heuristic. This is a fast path. Sometimes when
3157 * we enter, BSY will be cleared in a chk-status or two. If not,
3158 * the drive is probably seeking or something. Snooze for a couple
3159 * msecs, then chk-status again. If still busy, fall back to
14be71f4 3160 * HSM_ST_POLL state.
1da177e4 3161 */
fe79e683
AL
3162 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3163 if (drv_stat & ATA_BUSY) {
1da177e4 3164 msleep(2);
fe79e683
AL
3165 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3166 if (drv_stat & ATA_BUSY) {
14be71f4 3167 ap->hsm_task_state = HSM_ST_LAST_POLL;
1da177e4 3168 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
7fb6ec28 3169 return 0;
1da177e4
LT
3170 }
3171 }
3172
c14b8331 3173 qc = ata_qc_from_tag(ap, ap->active_tag);
a4631474 3174 WARN_ON(qc == NULL);
c14b8331 3175
1da177e4
LT
3176 drv_stat = ata_wait_idle(ap);
3177 if (!ata_ok(drv_stat)) {
1c848984 3178 qc->err_mask |= __ac_err_mask(drv_stat);
14be71f4 3179 ap->hsm_task_state = HSM_ST_ERR;
7fb6ec28 3180 return 0;
1da177e4
LT
3181 }
3182
14be71f4 3183 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 3184
a4631474 3185 WARN_ON(qc->err_mask);
a22e2eb0 3186 ata_poll_qc_complete(qc);
7fb6ec28
JG
3187
3188 /* another command may start at this point */
3189
3190 return 1;
1da177e4
LT
3191}
3192
0baab86b
EF
3193
3194/**
c893a3ae 3195 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
3196 * @buf: Buffer to swap
3197 * @buf_words: Number of 16-bit words in buffer.
3198 *
3199 * Swap halves of 16-bit words if needed to convert from
3200 * little-endian byte order to native cpu byte order, or
3201 * vice-versa.
3202 *
3203 * LOCKING:
6f0ef4fa 3204 * Inherited from caller.
0baab86b 3205 */
1da177e4
LT
3206void swap_buf_le16(u16 *buf, unsigned int buf_words)
3207{
3208#ifdef __BIG_ENDIAN
3209 unsigned int i;
3210
3211 for (i = 0; i < buf_words; i++)
3212 buf[i] = le16_to_cpu(buf[i]);
3213#endif /* __BIG_ENDIAN */
3214}
3215
6ae4cfb5
AL
3216/**
3217 * ata_mmio_data_xfer - Transfer data by MMIO
3218 * @ap: port to read/write
3219 * @buf: data buffer
3220 * @buflen: buffer length
344babaa 3221 * @write_data: read/write
6ae4cfb5
AL
3222 *
3223 * Transfer data from/to the device data register by MMIO.
3224 *
3225 * LOCKING:
3226 * Inherited from caller.
6ae4cfb5
AL
3227 */
3228
1da177e4
LT
3229static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
3230 unsigned int buflen, int write_data)
3231{
3232 unsigned int i;
3233 unsigned int words = buflen >> 1;
3234 u16 *buf16 = (u16 *) buf;
3235 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3236
6ae4cfb5 3237 /* Transfer multiple of 2 bytes */
1da177e4
LT
3238 if (write_data) {
3239 for (i = 0; i < words; i++)
3240 writew(le16_to_cpu(buf16[i]), mmio);
3241 } else {
3242 for (i = 0; i < words; i++)
3243 buf16[i] = cpu_to_le16(readw(mmio));
3244 }
6ae4cfb5
AL
3245
3246 /* Transfer trailing 1 byte, if any. */
3247 if (unlikely(buflen & 0x01)) {
3248 u16 align_buf[1] = { 0 };
3249 unsigned char *trailing_buf = buf + buflen - 1;
3250
3251 if (write_data) {
3252 memcpy(align_buf, trailing_buf, 1);
3253 writew(le16_to_cpu(align_buf[0]), mmio);
3254 } else {
3255 align_buf[0] = cpu_to_le16(readw(mmio));
3256 memcpy(trailing_buf, align_buf, 1);
3257 }
3258 }
1da177e4
LT
3259}
3260
6ae4cfb5
AL
3261/**
3262 * ata_pio_data_xfer - Transfer data by PIO
3263 * @ap: port to read/write
3264 * @buf: data buffer
3265 * @buflen: buffer length
344babaa 3266 * @write_data: read/write
6ae4cfb5
AL
3267 *
3268 * Transfer data from/to the device data register by PIO.
3269 *
3270 * LOCKING:
3271 * Inherited from caller.
6ae4cfb5
AL
3272 */
3273
1da177e4
LT
3274static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
3275 unsigned int buflen, int write_data)
3276{
6ae4cfb5 3277 unsigned int words = buflen >> 1;
1da177e4 3278
6ae4cfb5 3279 /* Transfer multiple of 2 bytes */
1da177e4 3280 if (write_data)
6ae4cfb5 3281 outsw(ap->ioaddr.data_addr, buf, words);
1da177e4 3282 else
6ae4cfb5
AL
3283 insw(ap->ioaddr.data_addr, buf, words);
3284
3285 /* Transfer trailing 1 byte, if any. */
3286 if (unlikely(buflen & 0x01)) {
3287 u16 align_buf[1] = { 0 };
3288 unsigned char *trailing_buf = buf + buflen - 1;
3289
3290 if (write_data) {
3291 memcpy(align_buf, trailing_buf, 1);
3292 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3293 } else {
3294 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3295 memcpy(trailing_buf, align_buf, 1);
3296 }
3297 }
1da177e4
LT
3298}
3299
6ae4cfb5
AL
3300/**
3301 * ata_data_xfer - Transfer data from/to the data register.
3302 * @ap: port to read/write
3303 * @buf: data buffer
3304 * @buflen: buffer length
3305 * @do_write: read/write
3306 *
3307 * Transfer data from/to the device data register.
3308 *
3309 * LOCKING:
3310 * Inherited from caller.
6ae4cfb5
AL
3311 */
3312
1da177e4
LT
3313static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
3314 unsigned int buflen, int do_write)
3315{
a1bd9e68
AC
3316 /* Make the crap hardware pay the costs not the good stuff */
3317 if (unlikely(ap->flags & ATA_FLAG_IRQ_MASK)) {
3318 unsigned long flags;
3319 local_irq_save(flags);
3320 if (ap->flags & ATA_FLAG_MMIO)
3321 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3322 else
3323 ata_pio_data_xfer(ap, buf, buflen, do_write);
3324 local_irq_restore(flags);
3325 } else {
3326 if (ap->flags & ATA_FLAG_MMIO)
3327 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3328 else
3329 ata_pio_data_xfer(ap, buf, buflen, do_write);
3330 }
1da177e4
LT
3331}
3332
6ae4cfb5
AL
3333/**
3334 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3335 * @qc: Command on going
3336 *
3337 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3338 *
3339 * LOCKING:
3340 * Inherited from caller.
3341 */
3342
1da177e4
LT
3343static void ata_pio_sector(struct ata_queued_cmd *qc)
3344{
3345 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3346 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3347 struct ata_port *ap = qc->ap;
3348 struct page *page;
3349 unsigned int offset;
3350 unsigned char *buf;
3351
3352 if (qc->cursect == (qc->nsect - 1))
14be71f4 3353 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3354
3355 page = sg[qc->cursg].page;
3356 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3357
3358 /* get the current page and offset */
3359 page = nth_page(page, (offset >> PAGE_SHIFT));
3360 offset %= PAGE_SIZE;
3361
3362 buf = kmap(page) + offset;
3363
3364 qc->cursect++;
3365 qc->cursg_ofs++;
3366
32529e01 3367 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
1da177e4
LT
3368 qc->cursg++;
3369 qc->cursg_ofs = 0;
3370 }
3371
3372 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3373
3374 /* do the actual data transfer */
3375 do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3376 ata_data_xfer(ap, buf, ATA_SECT_SIZE, do_write);
3377
3378 kunmap(page);
3379}
3380
6ae4cfb5
AL
3381/**
3382 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3383 * @qc: Command on going
3384 * @bytes: number of bytes
3385 *
3386 * Transfer Transfer data from/to the ATAPI device.
3387 *
3388 * LOCKING:
3389 * Inherited from caller.
3390 *
3391 */
3392
1da177e4
LT
3393static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3394{
3395 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3396 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3397 struct ata_port *ap = qc->ap;
3398 struct page *page;
3399 unsigned char *buf;
3400 unsigned int offset, count;
3401
563a6e1f 3402 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 3403 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3404
3405next_sg:
563a6e1f 3406 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 3407 /*
563a6e1f
AL
3408 * The end of qc->sg is reached and the device expects
3409 * more data to transfer. In order not to overrun qc->sg
3410 * and fulfill length specified in the byte count register,
3411 * - for read case, discard trailing data from the device
3412 * - for write case, padding zero data to the device
3413 */
3414 u16 pad_buf[1] = { 0 };
3415 unsigned int words = bytes >> 1;
3416 unsigned int i;
3417
3418 if (words) /* warning if bytes > 1 */
7fb6ec28 3419 printk(KERN_WARNING "ata%u: %u bytes trailing data\n",
563a6e1f
AL
3420 ap->id, bytes);
3421
3422 for (i = 0; i < words; i++)
3423 ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
3424
14be71f4 3425 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
3426 return;
3427 }
3428
cedc9a47 3429 sg = &qc->__sg[qc->cursg];
1da177e4 3430
1da177e4
LT
3431 page = sg->page;
3432 offset = sg->offset + qc->cursg_ofs;
3433
3434 /* get the current page and offset */
3435 page = nth_page(page, (offset >> PAGE_SHIFT));
3436 offset %= PAGE_SIZE;
3437
6952df03 3438 /* don't overrun current sg */
32529e01 3439 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
3440
3441 /* don't cross page boundaries */
3442 count = min(count, (unsigned int)PAGE_SIZE - offset);
3443
3444 buf = kmap(page) + offset;
3445
3446 bytes -= count;
3447 qc->curbytes += count;
3448 qc->cursg_ofs += count;
3449
32529e01 3450 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
3451 qc->cursg++;
3452 qc->cursg_ofs = 0;
3453 }
3454
3455 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3456
3457 /* do the actual data transfer */
3458 ata_data_xfer(ap, buf, count, do_write);
3459
3460 kunmap(page);
3461
563a6e1f 3462 if (bytes)
1da177e4 3463 goto next_sg;
1da177e4
LT
3464}
3465
6ae4cfb5
AL
3466/**
3467 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3468 * @qc: Command on going
3469 *
3470 * Transfer Transfer data from/to the ATAPI device.
3471 *
3472 * LOCKING:
3473 * Inherited from caller.
6ae4cfb5
AL
3474 */
3475
1da177e4
LT
3476static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3477{
3478 struct ata_port *ap = qc->ap;
3479 struct ata_device *dev = qc->dev;
3480 unsigned int ireason, bc_lo, bc_hi, bytes;
3481 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3482
3483 ap->ops->tf_read(ap, &qc->tf);
3484 ireason = qc->tf.nsect;
3485 bc_lo = qc->tf.lbam;
3486 bc_hi = qc->tf.lbah;
3487 bytes = (bc_hi << 8) | bc_lo;
3488
3489 /* shall be cleared to zero, indicating xfer of data */
3490 if (ireason & (1 << 0))
3491 goto err_out;
3492
3493 /* make sure transfer direction matches expected */
3494 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3495 if (do_write != i_write)
3496 goto err_out;
3497
3498 __atapi_pio_bytes(qc, bytes);
3499
3500 return;
3501
3502err_out:
3503 printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n",
3504 ap->id, dev->devno);
11a56d24 3505 qc->err_mask |= AC_ERR_HSM;
14be71f4 3506 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
3507}
3508
3509/**
6f0ef4fa
RD
3510 * ata_pio_block - start PIO on a block
3511 * @ap: the target ata_port
1da177e4
LT
3512 *
3513 * LOCKING:
0cba632b 3514 * None. (executing in kernel thread context)
1da177e4
LT
3515 */
3516
3517static void ata_pio_block(struct ata_port *ap)
3518{
3519 struct ata_queued_cmd *qc;
3520 u8 status;
3521
3522 /*
6f0ef4fa 3523 * This is purely heuristic. This is a fast path.
1da177e4
LT
3524 * Sometimes when we enter, BSY will be cleared in
3525 * a chk-status or two. If not, the drive is probably seeking
3526 * or something. Snooze for a couple msecs, then
3527 * chk-status again. If still busy, fall back to
14be71f4 3528 * HSM_ST_POLL state.
1da177e4
LT
3529 */
3530 status = ata_busy_wait(ap, ATA_BUSY, 5);
3531 if (status & ATA_BUSY) {
3532 msleep(2);
3533 status = ata_busy_wait(ap, ATA_BUSY, 10);
3534 if (status & ATA_BUSY) {
14be71f4 3535 ap->hsm_task_state = HSM_ST_POLL;
1da177e4
LT
3536 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3537 return;
3538 }
3539 }
3540
3541 qc = ata_qc_from_tag(ap, ap->active_tag);
a4631474 3542 WARN_ON(qc == NULL);
1da177e4 3543
fe79e683
AL
3544 /* check error */
3545 if (status & (ATA_ERR | ATA_DF)) {
3546 qc->err_mask |= AC_ERR_DEV;
3547 ap->hsm_task_state = HSM_ST_ERR;
3548 return;
3549 }
3550
3551 /* transfer data if any */
1da177e4 3552 if (is_atapi_taskfile(&qc->tf)) {
fe79e683 3553 /* DRQ=0 means no more data to transfer */
1da177e4 3554 if ((status & ATA_DRQ) == 0) {
14be71f4 3555 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3556 return;
3557 }
3558
3559 atapi_pio_bytes(qc);
3560 } else {
3561 /* handle BSY=0, DRQ=0 as error */
3562 if ((status & ATA_DRQ) == 0) {
11a56d24 3563 qc->err_mask |= AC_ERR_HSM;
14be71f4 3564 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
3565 return;
3566 }
3567
3568 ata_pio_sector(qc);
3569 }
3570}
3571
3572static void ata_pio_error(struct ata_port *ap)
3573{
3574 struct ata_queued_cmd *qc;
a7dac447 3575
1da177e4 3576 qc = ata_qc_from_tag(ap, ap->active_tag);
a4631474 3577 WARN_ON(qc == NULL);
1da177e4 3578
0565c26d
AL
3579 if (qc->tf.command != ATA_CMD_PACKET)
3580 printk(KERN_WARNING "ata%u: PIO error\n", ap->id);
3581
1c848984
AL
3582 /* make sure qc->err_mask is available to
3583 * know what's wrong and recover
3584 */
a4631474 3585 WARN_ON(qc->err_mask == 0);
1c848984 3586
14be71f4 3587 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 3588
a22e2eb0 3589 ata_poll_qc_complete(qc);
1da177e4
LT
3590}
3591
3592static void ata_pio_task(void *_data)
3593{
3594 struct ata_port *ap = _data;
7fb6ec28
JG
3595 unsigned long timeout;
3596 int qc_completed;
3597
3598fsm_start:
3599 timeout = 0;
3600 qc_completed = 0;
1da177e4 3601
14be71f4
AL
3602 switch (ap->hsm_task_state) {
3603 case HSM_ST_IDLE:
1da177e4
LT
3604 return;
3605
14be71f4 3606 case HSM_ST:
1da177e4
LT
3607 ata_pio_block(ap);
3608 break;
3609
14be71f4 3610 case HSM_ST_LAST:
7fb6ec28 3611 qc_completed = ata_pio_complete(ap);
1da177e4
LT
3612 break;
3613
14be71f4
AL
3614 case HSM_ST_POLL:
3615 case HSM_ST_LAST_POLL:
1da177e4
LT
3616 timeout = ata_pio_poll(ap);
3617 break;
3618
14be71f4
AL
3619 case HSM_ST_TMOUT:
3620 case HSM_ST_ERR:
1da177e4
LT
3621 ata_pio_error(ap);
3622 return;
3623 }
3624
3625 if (timeout)
8061f5f0 3626 ata_port_queue_task(ap, ata_pio_task, ap, timeout);
7fb6ec28
JG
3627 else if (!qc_completed)
3628 goto fsm_start;
1da177e4
LT
3629}
3630
8061f5f0
TH
3631/**
3632 * atapi_packet_task - Write CDB bytes to hardware
3633 * @_data: Port to which ATAPI device is attached.
3634 *
3635 * When device has indicated its readiness to accept
3636 * a CDB, this function is called. Send the CDB.
3637 * If DMA is to be performed, exit immediately.
3638 * Otherwise, we are in polling mode, so poll
3639 * status under operation succeeds or fails.
3640 *
3641 * LOCKING:
3642 * Kernel thread context (may sleep)
3643 */
3644
3645static void atapi_packet_task(void *_data)
3646{
3647 struct ata_port *ap = _data;
3648 struct ata_queued_cmd *qc;
3649 u8 status;
3650
3651 qc = ata_qc_from_tag(ap, ap->active_tag);
3652 WARN_ON(qc == NULL);
3653 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
3654
3655 /* sleep-wait for BSY to clear */
3656 DPRINTK("busy wait\n");
3657 if (ata_busy_sleep(ap, ATA_TMOUT_CDB_QUICK, ATA_TMOUT_CDB)) {
3658 qc->err_mask |= AC_ERR_TIMEOUT;
3659 goto err_out;
3660 }
3661
3662 /* make sure DRQ is set */
3663 status = ata_chk_status(ap);
3664 if ((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ) {
3665 qc->err_mask |= AC_ERR_HSM;
3666 goto err_out;
3667 }
3668
3669 /* send SCSI cdb */
3670 DPRINTK("send cdb\n");
3671 WARN_ON(qc->dev->cdb_len < 12);
3672
3673 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA ||
3674 qc->tf.protocol == ATA_PROT_ATAPI_NODATA) {
3675 unsigned long flags;
3676
3677 /* Once we're done issuing command and kicking bmdma,
3678 * irq handler takes over. To not lose irq, we need
3679 * to clear NOINTR flag before sending cdb, but
3680 * interrupt handler shouldn't be invoked before we're
3681 * finished. Hence, the following locking.
3682 */
3683 spin_lock_irqsave(&ap->host_set->lock, flags);
3684 ap->flags &= ~ATA_FLAG_NOINTR;
3685 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
3686 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA)
3687 ap->ops->bmdma_start(qc); /* initiate bmdma */
3688 spin_unlock_irqrestore(&ap->host_set->lock, flags);
3689 } else {
3690 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
3691
3692 /* PIO commands are handled by polling */
3693 ap->hsm_task_state = HSM_ST;
3694 ata_port_queue_task(ap, ata_pio_task, ap, 0);
3695 }
3696
3697 return;
3698
3699err_out:
3700 ata_poll_qc_complete(qc);
3701}
3702
1da177e4
LT
3703/**
3704 * ata_qc_timeout - Handle timeout of queued command
3705 * @qc: Command that timed out
3706 *
3707 * Some part of the kernel (currently, only the SCSI layer)
3708 * has noticed that the active command on port @ap has not
3709 * completed after a specified length of time. Handle this
3710 * condition by disabling DMA (if necessary) and completing
3711 * transactions, with error if necessary.
3712 *
3713 * This also handles the case of the "lost interrupt", where
3714 * for some reason (possibly hardware bug, possibly driver bug)
3715 * an interrupt was not delivered to the driver, even though the
3716 * transaction completed successfully.
3717 *
3718 * LOCKING:
0cba632b 3719 * Inherited from SCSI layer (none, can sleep)
1da177e4
LT
3720 */
3721
3722static void ata_qc_timeout(struct ata_queued_cmd *qc)
3723{
3724 struct ata_port *ap = qc->ap;
b8f6153e 3725 struct ata_host_set *host_set = ap->host_set;
1da177e4 3726 u8 host_stat = 0, drv_stat;
b8f6153e 3727 unsigned long flags;
1da177e4
LT
3728
3729 DPRINTK("ENTER\n");
3730
c18d06f8
TH
3731 ap->hsm_task_state = HSM_ST_IDLE;
3732
b8f6153e
JG
3733 spin_lock_irqsave(&host_set->lock, flags);
3734
1da177e4
LT
3735 switch (qc->tf.protocol) {
3736
3737 case ATA_PROT_DMA:
3738 case ATA_PROT_ATAPI_DMA:
3739 host_stat = ap->ops->bmdma_status(ap);
3740
3741 /* before we do anything else, clear DMA-Start bit */
b73fc89f 3742 ap->ops->bmdma_stop(qc);
1da177e4
LT
3743
3744 /* fall through */
3745
3746 default:
3747 ata_altstatus(ap);
3748 drv_stat = ata_chk_status(ap);
3749
3750 /* ack bmdma irq events */
3751 ap->ops->irq_clear(ap);
3752
3753 printk(KERN_ERR "ata%u: command 0x%x timeout, stat 0x%x host_stat 0x%x\n",
3754 ap->id, qc->tf.command, drv_stat, host_stat);
3755
3756 /* complete taskfile transaction */
a22e2eb0 3757 qc->err_mask |= ac_err_mask(drv_stat);
1da177e4
LT
3758 break;
3759 }
b8f6153e
JG
3760
3761 spin_unlock_irqrestore(&host_set->lock, flags);
3762
a72ec4ce
TH
3763 ata_eh_qc_complete(qc);
3764
1da177e4
LT
3765 DPRINTK("EXIT\n");
3766}
3767
3768/**
3769 * ata_eng_timeout - Handle timeout of queued command
3770 * @ap: Port on which timed-out command is active
3771 *
3772 * Some part of the kernel (currently, only the SCSI layer)
3773 * has noticed that the active command on port @ap has not
3774 * completed after a specified length of time. Handle this
3775 * condition by disabling DMA (if necessary) and completing
3776 * transactions, with error if necessary.
3777 *
3778 * This also handles the case of the "lost interrupt", where
3779 * for some reason (possibly hardware bug, possibly driver bug)
3780 * an interrupt was not delivered to the driver, even though the
3781 * transaction completed successfully.
3782 *
3783 * LOCKING:
3784 * Inherited from SCSI layer (none, can sleep)
3785 */
3786
3787void ata_eng_timeout(struct ata_port *ap)
3788{
1da177e4
LT
3789 DPRINTK("ENTER\n");
3790
f6379020 3791 ata_qc_timeout(ata_qc_from_tag(ap, ap->active_tag));
1da177e4 3792
1da177e4
LT
3793 DPRINTK("EXIT\n");
3794}
3795
3796/**
3797 * ata_qc_new - Request an available ATA command, for queueing
3798 * @ap: Port associated with device @dev
3799 * @dev: Device from whom we request an available command structure
3800 *
3801 * LOCKING:
0cba632b 3802 * None.
1da177e4
LT
3803 */
3804
3805static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
3806{
3807 struct ata_queued_cmd *qc = NULL;
3808 unsigned int i;
3809
3810 for (i = 0; i < ATA_MAX_QUEUE; i++)
3811 if (!test_and_set_bit(i, &ap->qactive)) {
3812 qc = ata_qc_from_tag(ap, i);
3813 break;
3814 }
3815
3816 if (qc)
3817 qc->tag = i;
3818
3819 return qc;
3820}
3821
3822/**
3823 * ata_qc_new_init - Request an available ATA command, and initialize it
3824 * @ap: Port associated with device @dev
3825 * @dev: Device from whom we request an available command structure
3826 *
3827 * LOCKING:
0cba632b 3828 * None.
1da177e4
LT
3829 */
3830
3831struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap,
3832 struct ata_device *dev)
3833{
3834 struct ata_queued_cmd *qc;
3835
3836 qc = ata_qc_new(ap);
3837 if (qc) {
1da177e4
LT
3838 qc->scsicmd = NULL;
3839 qc->ap = ap;
3840 qc->dev = dev;
1da177e4 3841
2c13b7ce 3842 ata_qc_reinit(qc);
1da177e4
LT
3843 }
3844
3845 return qc;
3846}
3847
1da177e4
LT
3848/**
3849 * ata_qc_free - free unused ata_queued_cmd
3850 * @qc: Command to complete
3851 *
3852 * Designed to free unused ata_queued_cmd object
3853 * in case something prevents using it.
3854 *
3855 * LOCKING:
0cba632b 3856 * spin_lock_irqsave(host_set lock)
1da177e4
LT
3857 */
3858void ata_qc_free(struct ata_queued_cmd *qc)
3859{
4ba946e9
TH
3860 struct ata_port *ap = qc->ap;
3861 unsigned int tag;
3862
a4631474 3863 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 3864
4ba946e9
TH
3865 qc->flags = 0;
3866 tag = qc->tag;
3867 if (likely(ata_tag_valid(tag))) {
3868 if (tag == ap->active_tag)
3869 ap->active_tag = ATA_TAG_POISON;
3870 qc->tag = ATA_TAG_POISON;
3871 clear_bit(tag, &ap->qactive);
3872 }
1da177e4
LT
3873}
3874
76014427 3875void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 3876{
a4631474
TH
3877 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
3878 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
3879
3880 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
3881 ata_sg_clean(qc);
3882
3f3791d3
AL
3883 /* atapi: mark qc as inactive to prevent the interrupt handler
3884 * from completing the command twice later, before the error handler
3885 * is called. (when rc != 0 and atapi request sense is needed)
3886 */
3887 qc->flags &= ~ATA_QCFLAG_ACTIVE;
3888
1da177e4 3889 /* call completion callback */
77853bf2 3890 qc->complete_fn(qc);
1da177e4
LT
3891}
3892
3893static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
3894{
3895 struct ata_port *ap = qc->ap;
3896
3897 switch (qc->tf.protocol) {
3898 case ATA_PROT_DMA:
3899 case ATA_PROT_ATAPI_DMA:
3900 return 1;
3901
3902 case ATA_PROT_ATAPI:
3903 case ATA_PROT_PIO:
3904 case ATA_PROT_PIO_MULT:
3905 if (ap->flags & ATA_FLAG_PIO_DMA)
3906 return 1;
3907
3908 /* fall through */
3909
3910 default:
3911 return 0;
3912 }
3913
3914 /* never reached */
3915}
3916
3917/**
3918 * ata_qc_issue - issue taskfile to device
3919 * @qc: command to issue to device
3920 *
3921 * Prepare an ATA command to submission to device.
3922 * This includes mapping the data into a DMA-able
3923 * area, filling in the S/G table, and finally
3924 * writing the taskfile to hardware, starting the command.
3925 *
3926 * LOCKING:
3927 * spin_lock_irqsave(host_set lock)
3928 *
3929 * RETURNS:
9a3d9eb0 3930 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
3931 */
3932
9a3d9eb0 3933unsigned int ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
3934{
3935 struct ata_port *ap = qc->ap;
3936
3937 if (ata_should_dma_map(qc)) {
3938 if (qc->flags & ATA_QCFLAG_SG) {
3939 if (ata_sg_setup(qc))
8e436af9 3940 goto sg_err;
1da177e4
LT
3941 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
3942 if (ata_sg_setup_one(qc))
8e436af9 3943 goto sg_err;
1da177e4
LT
3944 }
3945 } else {
3946 qc->flags &= ~ATA_QCFLAG_DMAMAP;
3947 }
3948
3949 ap->ops->qc_prep(qc);
3950
3951 qc->ap->active_tag = qc->tag;
3952 qc->flags |= ATA_QCFLAG_ACTIVE;
3953
3954 return ap->ops->qc_issue(qc);
3955
8e436af9
TH
3956sg_err:
3957 qc->flags &= ~ATA_QCFLAG_DMAMAP;
9a3d9eb0 3958 return AC_ERR_SYSTEM;
1da177e4
LT
3959}
3960
0baab86b 3961
1da177e4
LT
3962/**
3963 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
3964 * @qc: command to issue to device
3965 *
3966 * Using various libata functions and hooks, this function
3967 * starts an ATA command. ATA commands are grouped into
3968 * classes called "protocols", and issuing each type of protocol
3969 * is slightly different.
3970 *
0baab86b
EF
3971 * May be used as the qc_issue() entry in ata_port_operations.
3972 *
1da177e4
LT
3973 * LOCKING:
3974 * spin_lock_irqsave(host_set lock)
3975 *
3976 * RETURNS:
9a3d9eb0 3977 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
3978 */
3979
9a3d9eb0 3980unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
3981{
3982 struct ata_port *ap = qc->ap;
3983
3984 ata_dev_select(ap, qc->dev->devno, 1, 0);
3985
3986 switch (qc->tf.protocol) {
3987 case ATA_PROT_NODATA:
e5338254 3988 ata_tf_to_host(ap, &qc->tf);
1da177e4
LT
3989 break;
3990
3991 case ATA_PROT_DMA:
3992 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
3993 ap->ops->bmdma_setup(qc); /* set up bmdma */
3994 ap->ops->bmdma_start(qc); /* initiate bmdma */
3995 break;
3996
3997 case ATA_PROT_PIO: /* load tf registers, initiate polling pio */
3998 ata_qc_set_polling(qc);
e5338254 3999 ata_tf_to_host(ap, &qc->tf);
14be71f4 4000 ap->hsm_task_state = HSM_ST;
8061f5f0 4001 ata_port_queue_task(ap, ata_pio_task, ap, 0);
1da177e4
LT
4002 break;
4003
4004 case ATA_PROT_ATAPI:
4005 ata_qc_set_polling(qc);
e5338254 4006 ata_tf_to_host(ap, &qc->tf);
8061f5f0 4007 ata_port_queue_task(ap, atapi_packet_task, ap, 0);
1da177e4
LT
4008 break;
4009
4010 case ATA_PROT_ATAPI_NODATA:
c1389503 4011 ap->flags |= ATA_FLAG_NOINTR;
e5338254 4012 ata_tf_to_host(ap, &qc->tf);
8061f5f0 4013 ata_port_queue_task(ap, atapi_packet_task, ap, 0);
1da177e4
LT
4014 break;
4015
4016 case ATA_PROT_ATAPI_DMA:
c1389503 4017 ap->flags |= ATA_FLAG_NOINTR;
1da177e4
LT
4018 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4019 ap->ops->bmdma_setup(qc); /* set up bmdma */
8061f5f0 4020 ata_port_queue_task(ap, atapi_packet_task, ap, 0);
1da177e4
LT
4021 break;
4022
4023 default:
4024 WARN_ON(1);
9a3d9eb0 4025 return AC_ERR_SYSTEM;
1da177e4
LT
4026 }
4027
4028 return 0;
4029}
4030
4031/**
0baab86b 4032 * ata_bmdma_setup_mmio - Set up PCI IDE BMDMA transaction
1da177e4
LT
4033 * @qc: Info associated with this ATA transaction.
4034 *
4035 * LOCKING:
4036 * spin_lock_irqsave(host_set lock)
4037 */
4038
4039static void ata_bmdma_setup_mmio (struct ata_queued_cmd *qc)
4040{
4041 struct ata_port *ap = qc->ap;
4042 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
4043 u8 dmactl;
4044 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
4045
4046 /* load PRD table addr. */
4047 mb(); /* make sure PRD table writes are visible to controller */
4048 writel(ap->prd_dma, mmio + ATA_DMA_TABLE_OFS);
4049
4050 /* specify data direction, triple-check start bit is clear */
4051 dmactl = readb(mmio + ATA_DMA_CMD);
4052 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
4053 if (!rw)
4054 dmactl |= ATA_DMA_WR;
4055 writeb(dmactl, mmio + ATA_DMA_CMD);
4056
4057 /* issue r/w command */
4058 ap->ops->exec_command(ap, &qc->tf);
4059}
4060
4061/**
b73fc89f 4062 * ata_bmdma_start_mmio - Start a PCI IDE BMDMA transaction
1da177e4
LT
4063 * @qc: Info associated with this ATA transaction.
4064 *
4065 * LOCKING:
4066 * spin_lock_irqsave(host_set lock)
4067 */
4068
4069static void ata_bmdma_start_mmio (struct ata_queued_cmd *qc)
4070{
4071 struct ata_port *ap = qc->ap;
4072 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
4073 u8 dmactl;
4074
4075 /* start host DMA transaction */
4076 dmactl = readb(mmio + ATA_DMA_CMD);
4077 writeb(dmactl | ATA_DMA_START, mmio + ATA_DMA_CMD);
4078
4079 /* Strictly, one may wish to issue a readb() here, to
4080 * flush the mmio write. However, control also passes
4081 * to the hardware at this point, and it will interrupt
4082 * us when we are to resume control. So, in effect,
4083 * we don't care when the mmio write flushes.
4084 * Further, a read of the DMA status register _immediately_
4085 * following the write may not be what certain flaky hardware
4086 * is expected, so I think it is best to not add a readb()
4087 * without first all the MMIO ATA cards/mobos.
4088 * Or maybe I'm just being paranoid.
4089 */
4090}
4091
4092/**
4093 * ata_bmdma_setup_pio - Set up PCI IDE BMDMA transaction (PIO)
4094 * @qc: Info associated with this ATA transaction.
4095 *
4096 * LOCKING:
4097 * spin_lock_irqsave(host_set lock)
4098 */
4099
4100static void ata_bmdma_setup_pio (struct ata_queued_cmd *qc)
4101{
4102 struct ata_port *ap = qc->ap;
4103 unsigned int rw = (qc->tf.flags & ATA_TFLAG_WRITE);
4104 u8 dmactl;
4105
4106 /* load PRD table addr. */
4107 outl(ap->prd_dma, ap->ioaddr.bmdma_addr + ATA_DMA_TABLE_OFS);
4108
4109 /* specify data direction, triple-check start bit is clear */
4110 dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
4111 dmactl &= ~(ATA_DMA_WR | ATA_DMA_START);
4112 if (!rw)
4113 dmactl |= ATA_DMA_WR;
4114 outb(dmactl, ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
4115
4116 /* issue r/w command */
4117 ap->ops->exec_command(ap, &qc->tf);
4118}
4119
4120/**
4121 * ata_bmdma_start_pio - Start a PCI IDE BMDMA transaction (PIO)
4122 * @qc: Info associated with this ATA transaction.
4123 *
4124 * LOCKING:
4125 * spin_lock_irqsave(host_set lock)
4126 */
4127
4128static void ata_bmdma_start_pio (struct ata_queued_cmd *qc)
4129{
4130 struct ata_port *ap = qc->ap;
4131 u8 dmactl;
4132
4133 /* start host DMA transaction */
4134 dmactl = inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
4135 outb(dmactl | ATA_DMA_START,
4136 ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
4137}
4138
0baab86b
EF
4139
4140/**
4141 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
4142 * @qc: Info associated with this ATA transaction.
4143 *
4144 * Writes the ATA_DMA_START flag to the DMA command register.
4145 *
4146 * May be used as the bmdma_start() entry in ata_port_operations.
4147 *
4148 * LOCKING:
4149 * spin_lock_irqsave(host_set lock)
4150 */
1da177e4
LT
4151void ata_bmdma_start(struct ata_queued_cmd *qc)
4152{
4153 if (qc->ap->flags & ATA_FLAG_MMIO)
4154 ata_bmdma_start_mmio(qc);
4155 else
4156 ata_bmdma_start_pio(qc);
4157}
4158
0baab86b
EF
4159
4160/**
4161 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
4162 * @qc: Info associated with this ATA transaction.
4163 *
4164 * Writes address of PRD table to device's PRD Table Address
4165 * register, sets the DMA control register, and calls
4166 * ops->exec_command() to start the transfer.
4167 *
4168 * May be used as the bmdma_setup() entry in ata_port_operations.
4169 *
4170 * LOCKING:
4171 * spin_lock_irqsave(host_set lock)
4172 */
1da177e4
LT
4173void ata_bmdma_setup(struct ata_queued_cmd *qc)
4174{
4175 if (qc->ap->flags & ATA_FLAG_MMIO)
4176 ata_bmdma_setup_mmio(qc);
4177 else
4178 ata_bmdma_setup_pio(qc);
4179}
4180
0baab86b
EF
4181
4182/**
4183 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
decc6d0b 4184 * @ap: Port associated with this ATA transaction.
0baab86b
EF
4185 *
4186 * Clear interrupt and error flags in DMA status register.
4187 *
4188 * May be used as the irq_clear() entry in ata_port_operations.
4189 *
4190 * LOCKING:
4191 * spin_lock_irqsave(host_set lock)
4192 */
4193
1da177e4
LT
4194void ata_bmdma_irq_clear(struct ata_port *ap)
4195{
4196 if (ap->flags & ATA_FLAG_MMIO) {
4197 void __iomem *mmio = ((void __iomem *) ap->ioaddr.bmdma_addr) + ATA_DMA_STATUS;
4198 writeb(readb(mmio), mmio);
4199 } else {
4200 unsigned long addr = ap->ioaddr.bmdma_addr + ATA_DMA_STATUS;
4201 outb(inb(addr), addr);
4202 }
4203
4204}
4205
0baab86b
EF
4206
4207/**
4208 * ata_bmdma_status - Read PCI IDE BMDMA status
decc6d0b 4209 * @ap: Port associated with this ATA transaction.
0baab86b
EF
4210 *
4211 * Read and return BMDMA status register.
4212 *
4213 * May be used as the bmdma_status() entry in ata_port_operations.
4214 *
4215 * LOCKING:
4216 * spin_lock_irqsave(host_set lock)
4217 */
4218
1da177e4
LT
4219u8 ata_bmdma_status(struct ata_port *ap)
4220{
4221 u8 host_stat;
4222 if (ap->flags & ATA_FLAG_MMIO) {
4223 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
4224 host_stat = readb(mmio + ATA_DMA_STATUS);
4225 } else
ee500aab 4226 host_stat = inb(ap->ioaddr.bmdma_addr + ATA_DMA_STATUS);
1da177e4
LT
4227 return host_stat;
4228}
4229
0baab86b
EF
4230
4231/**
4232 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
b73fc89f 4233 * @qc: Command we are ending DMA for
0baab86b
EF
4234 *
4235 * Clears the ATA_DMA_START flag in the dma control register
4236 *
4237 * May be used as the bmdma_stop() entry in ata_port_operations.
4238 *
4239 * LOCKING:
4240 * spin_lock_irqsave(host_set lock)
4241 */
4242
b73fc89f 4243void ata_bmdma_stop(struct ata_queued_cmd *qc)
1da177e4 4244{
b73fc89f 4245 struct ata_port *ap = qc->ap;
1da177e4
LT
4246 if (ap->flags & ATA_FLAG_MMIO) {
4247 void __iomem *mmio = (void __iomem *) ap->ioaddr.bmdma_addr;
4248
4249 /* clear start/stop bit */
4250 writeb(readb(mmio + ATA_DMA_CMD) & ~ATA_DMA_START,
4251 mmio + ATA_DMA_CMD);
4252 } else {
4253 /* clear start/stop bit */
4254 outb(inb(ap->ioaddr.bmdma_addr + ATA_DMA_CMD) & ~ATA_DMA_START,
4255 ap->ioaddr.bmdma_addr + ATA_DMA_CMD);
4256 }
4257
4258 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
4259 ata_altstatus(ap); /* dummy read */
4260}
4261
4262/**
4263 * ata_host_intr - Handle host interrupt for given (port, task)
4264 * @ap: Port on which interrupt arrived (possibly...)
4265 * @qc: Taskfile currently active in engine
4266 *
4267 * Handle host interrupt for given queued command. Currently,
4268 * only DMA interrupts are handled. All other commands are
4269 * handled via polling with interrupts disabled (nIEN bit).
4270 *
4271 * LOCKING:
4272 * spin_lock_irqsave(host_set lock)
4273 *
4274 * RETURNS:
4275 * One if interrupt was handled, zero if not (shared irq).
4276 */
4277
4278inline unsigned int ata_host_intr (struct ata_port *ap,
4279 struct ata_queued_cmd *qc)
4280{
4281 u8 status, host_stat;
4282
4283 switch (qc->tf.protocol) {
4284
4285 case ATA_PROT_DMA:
4286 case ATA_PROT_ATAPI_DMA:
4287 case ATA_PROT_ATAPI:
4288 /* check status of DMA engine */
4289 host_stat = ap->ops->bmdma_status(ap);
4290 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4291
4292 /* if it's not our irq... */
4293 if (!(host_stat & ATA_DMA_INTR))
4294 goto idle_irq;
4295
4296 /* before we do anything else, clear DMA-Start bit */
b73fc89f 4297 ap->ops->bmdma_stop(qc);
1da177e4
LT
4298
4299 /* fall through */
4300
4301 case ATA_PROT_ATAPI_NODATA:
4302 case ATA_PROT_NODATA:
4303 /* check altstatus */
4304 status = ata_altstatus(ap);
4305 if (status & ATA_BUSY)
4306 goto idle_irq;
4307
4308 /* check main status, clearing INTRQ */
4309 status = ata_chk_status(ap);
4310 if (unlikely(status & ATA_BUSY))
4311 goto idle_irq;
4312 DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
4313 ap->id, qc->tf.protocol, status);
4314
4315 /* ack bmdma irq events */
4316 ap->ops->irq_clear(ap);
4317
4318 /* complete taskfile transaction */
a22e2eb0
AL
4319 qc->err_mask |= ac_err_mask(status);
4320 ata_qc_complete(qc);
1da177e4
LT
4321 break;
4322
4323 default:
4324 goto idle_irq;
4325 }
4326
4327 return 1; /* irq handled */
4328
4329idle_irq:
4330 ap->stats.idle_irq++;
4331
4332#ifdef ATA_IRQ_TRAP
4333 if ((ap->stats.idle_irq % 1000) == 0) {
4334 handled = 1;
4335 ata_irq_ack(ap, 0); /* debug trap */
4336 printk(KERN_WARNING "ata%d: irq trap\n", ap->id);
4337 }
4338#endif
4339 return 0; /* irq not handled */
4340}
4341
4342/**
4343 * ata_interrupt - Default ATA host interrupt handler
0cba632b
JG
4344 * @irq: irq line (unused)
4345 * @dev_instance: pointer to our ata_host_set information structure
1da177e4
LT
4346 * @regs: unused
4347 *
0cba632b
JG
4348 * Default interrupt handler for PCI IDE devices. Calls
4349 * ata_host_intr() for each port that is not disabled.
4350 *
1da177e4 4351 * LOCKING:
0cba632b 4352 * Obtains host_set lock during operation.
1da177e4
LT
4353 *
4354 * RETURNS:
0cba632b 4355 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
4356 */
4357
4358irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4359{
4360 struct ata_host_set *host_set = dev_instance;
4361 unsigned int i;
4362 unsigned int handled = 0;
4363 unsigned long flags;
4364
4365 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4366 spin_lock_irqsave(&host_set->lock, flags);
4367
4368 for (i = 0; i < host_set->n_ports; i++) {
4369 struct ata_port *ap;
4370
4371 ap = host_set->ports[i];
c1389503
TH
4372 if (ap &&
4373 !(ap->flags & (ATA_FLAG_PORT_DISABLED | ATA_FLAG_NOINTR))) {
1da177e4
LT
4374 struct ata_queued_cmd *qc;
4375
4376 qc = ata_qc_from_tag(ap, ap->active_tag);
21b1ed74
AL
4377 if (qc && (!(qc->tf.ctl & ATA_NIEN)) &&
4378 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
4379 handled |= ata_host_intr(ap, qc);
4380 }
4381 }
4382
4383 spin_unlock_irqrestore(&host_set->lock, flags);
4384
4385 return IRQ_RETVAL(handled);
4386}
4387
0baab86b 4388
9b847548
JA
4389/*
4390 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4391 * without filling any other registers
4392 */
4393static int ata_do_simple_cmd(struct ata_port *ap, struct ata_device *dev,
4394 u8 cmd)
4395{
4396 struct ata_taskfile tf;
4397 int err;
4398
4399 ata_tf_init(ap, &tf, dev->devno);
4400
4401 tf.command = cmd;
4402 tf.flags |= ATA_TFLAG_DEVICE;
4403 tf.protocol = ATA_PROT_NODATA;
4404
4405 err = ata_exec_internal(ap, dev, &tf, DMA_NONE, NULL, 0);
4406 if (err)
4407 printk(KERN_ERR "%s: ata command failed: %d\n",
4408 __FUNCTION__, err);
4409
4410 return err;
4411}
4412
4413static int ata_flush_cache(struct ata_port *ap, struct ata_device *dev)
4414{
4415 u8 cmd;
4416
4417 if (!ata_try_flush_cache(dev))
4418 return 0;
4419
4420 if (ata_id_has_flush_ext(dev->id))
4421 cmd = ATA_CMD_FLUSH_EXT;
4422 else
4423 cmd = ATA_CMD_FLUSH;
4424
4425 return ata_do_simple_cmd(ap, dev, cmd);
4426}
4427
4428static int ata_standby_drive(struct ata_port *ap, struct ata_device *dev)
4429{
4430 return ata_do_simple_cmd(ap, dev, ATA_CMD_STANDBYNOW1);
4431}
4432
4433static int ata_start_drive(struct ata_port *ap, struct ata_device *dev)
4434{
4435 return ata_do_simple_cmd(ap, dev, ATA_CMD_IDLEIMMEDIATE);
4436}
4437
4438/**
4439 * ata_device_resume - wakeup a previously suspended devices
c893a3ae
RD
4440 * @ap: port the device is connected to
4441 * @dev: the device to resume
9b847548
JA
4442 *
4443 * Kick the drive back into action, by sending it an idle immediate
4444 * command and making sure its transfer mode matches between drive
4445 * and host.
4446 *
4447 */
4448int ata_device_resume(struct ata_port *ap, struct ata_device *dev)
4449{
4450 if (ap->flags & ATA_FLAG_SUSPENDED) {
4451 ap->flags &= ~ATA_FLAG_SUSPENDED;
4452 ata_set_mode(ap);
4453 }
4454 if (!ata_dev_present(dev))
4455 return 0;
4456 if (dev->class == ATA_DEV_ATA)
4457 ata_start_drive(ap, dev);
4458
4459 return 0;
4460}
4461
4462/**
4463 * ata_device_suspend - prepare a device for suspend
c893a3ae
RD
4464 * @ap: port the device is connected to
4465 * @dev: the device to suspend
9b847548
JA
4466 *
4467 * Flush the cache on the drive, if appropriate, then issue a
4468 * standbynow command.
9b847548
JA
4469 */
4470int ata_device_suspend(struct ata_port *ap, struct ata_device *dev)
4471{
4472 if (!ata_dev_present(dev))
4473 return 0;
4474 if (dev->class == ATA_DEV_ATA)
4475 ata_flush_cache(ap, dev);
4476
4477 ata_standby_drive(ap, dev);
4478 ap->flags |= ATA_FLAG_SUSPENDED;
4479 return 0;
4480}
4481
c893a3ae
RD
4482/**
4483 * ata_port_start - Set port up for dma.
4484 * @ap: Port to initialize
4485 *
4486 * Called just after data structures for each port are
4487 * initialized. Allocates space for PRD table.
4488 *
4489 * May be used as the port_start() entry in ata_port_operations.
4490 *
4491 * LOCKING:
4492 * Inherited from caller.
4493 */
4494
1da177e4
LT
4495int ata_port_start (struct ata_port *ap)
4496{
4497 struct device *dev = ap->host_set->dev;
6037d6bb 4498 int rc;
1da177e4
LT
4499
4500 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
4501 if (!ap->prd)
4502 return -ENOMEM;
4503
6037d6bb
JG
4504 rc = ata_pad_alloc(ap, dev);
4505 if (rc) {
cedc9a47 4506 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 4507 return rc;
cedc9a47
JG
4508 }
4509
1da177e4
LT
4510 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
4511
4512 return 0;
4513}
4514
0baab86b
EF
4515
4516/**
4517 * ata_port_stop - Undo ata_port_start()
4518 * @ap: Port to shut down
4519 *
4520 * Frees the PRD table.
4521 *
4522 * May be used as the port_stop() entry in ata_port_operations.
4523 *
4524 * LOCKING:
6f0ef4fa 4525 * Inherited from caller.
0baab86b
EF
4526 */
4527
1da177e4
LT
4528void ata_port_stop (struct ata_port *ap)
4529{
4530 struct device *dev = ap->host_set->dev;
4531
4532 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 4533 ata_pad_free(ap, dev);
1da177e4
LT
4534}
4535
aa8f0dc6
JG
4536void ata_host_stop (struct ata_host_set *host_set)
4537{
4538 if (host_set->mmio_base)
4539 iounmap(host_set->mmio_base);
4540}
4541
4542
1da177e4
LT
4543/**
4544 * ata_host_remove - Unregister SCSI host structure with upper layers
4545 * @ap: Port to unregister
4546 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
4547 *
4548 * LOCKING:
6f0ef4fa 4549 * Inherited from caller.
1da177e4
LT
4550 */
4551
4552static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
4553{
4554 struct Scsi_Host *sh = ap->host;
4555
4556 DPRINTK("ENTER\n");
4557
4558 if (do_unregister)
4559 scsi_remove_host(sh);
4560
4561 ap->ops->port_stop(ap);
4562}
4563
4564/**
4565 * ata_host_init - Initialize an ata_port structure
4566 * @ap: Structure to initialize
4567 * @host: associated SCSI mid-layer structure
4568 * @host_set: Collection of hosts to which @ap belongs
4569 * @ent: Probe information provided by low-level driver
4570 * @port_no: Port number associated with this ata_port
4571 *
0cba632b
JG
4572 * Initialize a new ata_port structure, and its associated
4573 * scsi_host.
4574 *
1da177e4 4575 * LOCKING:
0cba632b 4576 * Inherited from caller.
1da177e4
LT
4577 */
4578
4579static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
4580 struct ata_host_set *host_set,
057ace5e 4581 const struct ata_probe_ent *ent, unsigned int port_no)
1da177e4
LT
4582{
4583 unsigned int i;
4584
4585 host->max_id = 16;
4586 host->max_lun = 1;
4587 host->max_channel = 1;
4588 host->unique_id = ata_unique_id++;
4589 host->max_cmd_len = 12;
12413197 4590
1da177e4
LT
4591 ap->flags = ATA_FLAG_PORT_DISABLED;
4592 ap->id = host->unique_id;
4593 ap->host = host;
4594 ap->ctl = ATA_DEVCTL_OBS;
4595 ap->host_set = host_set;
4596 ap->port_no = port_no;
4597 ap->hard_port_no =
4598 ent->legacy_mode ? ent->hard_port_no : port_no;
4599 ap->pio_mask = ent->pio_mask;
4600 ap->mwdma_mask = ent->mwdma_mask;
4601 ap->udma_mask = ent->udma_mask;
4602 ap->flags |= ent->host_flags;
4603 ap->ops = ent->port_ops;
4604 ap->cbl = ATA_CBL_NONE;
4605 ap->active_tag = ATA_TAG_POISON;
4606 ap->last_ctl = 0xFF;
4607
86e45b6b 4608 INIT_WORK(&ap->port_task, NULL, NULL);
a72ec4ce 4609 INIT_LIST_HEAD(&ap->eh_done_q);
1da177e4
LT
4610
4611 for (i = 0; i < ATA_MAX_DEVICES; i++)
4612 ap->device[i].devno = i;
4613
4614#ifdef ATA_IRQ_TRAP
4615 ap->stats.unhandled_irq = 1;
4616 ap->stats.idle_irq = 1;
4617#endif
4618
4619 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
4620}
4621
4622/**
4623 * ata_host_add - Attach low-level ATA driver to system
4624 * @ent: Information provided by low-level driver
4625 * @host_set: Collections of ports to which we add
4626 * @port_no: Port number associated with this host
4627 *
0cba632b
JG
4628 * Attach low-level ATA driver to system.
4629 *
1da177e4 4630 * LOCKING:
0cba632b 4631 * PCI/etc. bus probe sem.
1da177e4
LT
4632 *
4633 * RETURNS:
0cba632b 4634 * New ata_port on success, for NULL on error.
1da177e4
LT
4635 */
4636
057ace5e 4637static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
1da177e4
LT
4638 struct ata_host_set *host_set,
4639 unsigned int port_no)
4640{
4641 struct Scsi_Host *host;
4642 struct ata_port *ap;
4643 int rc;
4644
4645 DPRINTK("ENTER\n");
4646 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
4647 if (!host)
4648 return NULL;
4649
4650 ap = (struct ata_port *) &host->hostdata[0];
4651
4652 ata_host_init(ap, host, host_set, ent, port_no);
4653
4654 rc = ap->ops->port_start(ap);
4655 if (rc)
4656 goto err_out;
4657
4658 return ap;
4659
4660err_out:
4661 scsi_host_put(host);
4662 return NULL;
4663}
4664
4665/**
0cba632b
JG
4666 * ata_device_add - Register hardware device with ATA and SCSI layers
4667 * @ent: Probe information describing hardware device to be registered
4668 *
4669 * This function processes the information provided in the probe
4670 * information struct @ent, allocates the necessary ATA and SCSI
4671 * host information structures, initializes them, and registers
4672 * everything with requisite kernel subsystems.
4673 *
4674 * This function requests irqs, probes the ATA bus, and probes
4675 * the SCSI bus.
1da177e4
LT
4676 *
4677 * LOCKING:
0cba632b 4678 * PCI/etc. bus probe sem.
1da177e4
LT
4679 *
4680 * RETURNS:
0cba632b 4681 * Number of ports registered. Zero on error (no ports registered).
1da177e4
LT
4682 */
4683
057ace5e 4684int ata_device_add(const struct ata_probe_ent *ent)
1da177e4
LT
4685{
4686 unsigned int count = 0, i;
4687 struct device *dev = ent->dev;
4688 struct ata_host_set *host_set;
4689
4690 DPRINTK("ENTER\n");
4691 /* alloc a container for our list of ATA ports (buses) */
57f3bda8 4692 host_set = kzalloc(sizeof(struct ata_host_set) +
1da177e4
LT
4693 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
4694 if (!host_set)
4695 return 0;
1da177e4
LT
4696 spin_lock_init(&host_set->lock);
4697
4698 host_set->dev = dev;
4699 host_set->n_ports = ent->n_ports;
4700 host_set->irq = ent->irq;
4701 host_set->mmio_base = ent->mmio_base;
4702 host_set->private_data = ent->private_data;
4703 host_set->ops = ent->port_ops;
4704
4705 /* register each port bound to this device */
4706 for (i = 0; i < ent->n_ports; i++) {
4707 struct ata_port *ap;
4708 unsigned long xfer_mode_mask;
4709
4710 ap = ata_host_add(ent, host_set, i);
4711 if (!ap)
4712 goto err_out;
4713
4714 host_set->ports[i] = ap;
4715 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
4716 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
4717 (ap->pio_mask << ATA_SHIFT_PIO);
4718
4719 /* print per-port info to dmesg */
4720 printk(KERN_INFO "ata%u: %cATA max %s cmd 0x%lX ctl 0x%lX "
4721 "bmdma 0x%lX irq %lu\n",
4722 ap->id,
4723 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
4724 ata_mode_string(xfer_mode_mask),
4725 ap->ioaddr.cmd_addr,
4726 ap->ioaddr.ctl_addr,
4727 ap->ioaddr.bmdma_addr,
4728 ent->irq);
4729
4730 ata_chk_status(ap);
4731 host_set->ops->irq_clear(ap);
4732 count++;
4733 }
4734
57f3bda8
RD
4735 if (!count)
4736 goto err_free_ret;
1da177e4
LT
4737
4738 /* obtain irq, that is shared between channels */
4739 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
4740 DRV_NAME, host_set))
4741 goto err_out;
4742
4743 /* perform each probe synchronously */
4744 DPRINTK("probe begin\n");
4745 for (i = 0; i < count; i++) {
4746 struct ata_port *ap;
4747 int rc;
4748
4749 ap = host_set->ports[i];
4750
c893a3ae 4751 DPRINTK("ata%u: bus probe begin\n", ap->id);
1da177e4 4752 rc = ata_bus_probe(ap);
c893a3ae 4753 DPRINTK("ata%u: bus probe end\n", ap->id);
1da177e4
LT
4754
4755 if (rc) {
4756 /* FIXME: do something useful here?
4757 * Current libata behavior will
4758 * tear down everything when
4759 * the module is removed
4760 * or the h/w is unplugged.
4761 */
4762 }
4763
4764 rc = scsi_add_host(ap->host, dev);
4765 if (rc) {
4766 printk(KERN_ERR "ata%u: scsi_add_host failed\n",
4767 ap->id);
4768 /* FIXME: do something useful here */
4769 /* FIXME: handle unconditional calls to
4770 * scsi_scan_host and ata_host_remove, below,
4771 * at the very least
4772 */
4773 }
4774 }
4775
4776 /* probes are done, now scan each port's disk(s) */
c893a3ae 4777 DPRINTK("host probe begin\n");
1da177e4
LT
4778 for (i = 0; i < count; i++) {
4779 struct ata_port *ap = host_set->ports[i];
4780
644dd0cc 4781 ata_scsi_scan_host(ap);
1da177e4
LT
4782 }
4783
4784 dev_set_drvdata(dev, host_set);
4785
4786 VPRINTK("EXIT, returning %u\n", ent->n_ports);
4787 return ent->n_ports; /* success */
4788
4789err_out:
4790 for (i = 0; i < count; i++) {
4791 ata_host_remove(host_set->ports[i], 1);
4792 scsi_host_put(host_set->ports[i]->host);
4793 }
57f3bda8 4794err_free_ret:
1da177e4
LT
4795 kfree(host_set);
4796 VPRINTK("EXIT, returning 0\n");
4797 return 0;
4798}
4799
17b14451
AC
4800/**
4801 * ata_host_set_remove - PCI layer callback for device removal
4802 * @host_set: ATA host set that was removed
4803 *
4804 * Unregister all objects associated with this host set. Free those
4805 * objects.
4806 *
4807 * LOCKING:
4808 * Inherited from calling layer (may sleep).
4809 */
4810
17b14451
AC
4811void ata_host_set_remove(struct ata_host_set *host_set)
4812{
4813 struct ata_port *ap;
4814 unsigned int i;
4815
4816 for (i = 0; i < host_set->n_ports; i++) {
4817 ap = host_set->ports[i];
4818 scsi_remove_host(ap->host);
4819 }
4820
4821 free_irq(host_set->irq, host_set);
4822
4823 for (i = 0; i < host_set->n_ports; i++) {
4824 ap = host_set->ports[i];
4825
4826 ata_scsi_release(ap->host);
4827
4828 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
4829 struct ata_ioports *ioaddr = &ap->ioaddr;
4830
4831 if (ioaddr->cmd_addr == 0x1f0)
4832 release_region(0x1f0, 8);
4833 else if (ioaddr->cmd_addr == 0x170)
4834 release_region(0x170, 8);
4835 }
4836
4837 scsi_host_put(ap->host);
4838 }
4839
4840 if (host_set->ops->host_stop)
4841 host_set->ops->host_stop(host_set);
4842
4843 kfree(host_set);
4844}
4845
1da177e4
LT
4846/**
4847 * ata_scsi_release - SCSI layer callback hook for host unload
4848 * @host: libata host to be unloaded
4849 *
4850 * Performs all duties necessary to shut down a libata port...
4851 * Kill port kthread, disable port, and release resources.
4852 *
4853 * LOCKING:
4854 * Inherited from SCSI layer.
4855 *
4856 * RETURNS:
4857 * One.
4858 */
4859
4860int ata_scsi_release(struct Scsi_Host *host)
4861{
4862 struct ata_port *ap = (struct ata_port *) &host->hostdata[0];
d9572b1d 4863 int i;
1da177e4
LT
4864
4865 DPRINTK("ENTER\n");
4866
4867 ap->ops->port_disable(ap);
4868 ata_host_remove(ap, 0);
d9572b1d
TH
4869 for (i = 0; i < ATA_MAX_DEVICES; i++)
4870 kfree(ap->device[i].id);
1da177e4
LT
4871
4872 DPRINTK("EXIT\n");
4873 return 1;
4874}
4875
4876/**
4877 * ata_std_ports - initialize ioaddr with standard port offsets.
4878 * @ioaddr: IO address structure to be initialized
0baab86b
EF
4879 *
4880 * Utility function which initializes data_addr, error_addr,
4881 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
4882 * device_addr, status_addr, and command_addr to standard offsets
4883 * relative to cmd_addr.
4884 *
4885 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 4886 */
0baab86b 4887
1da177e4
LT
4888void ata_std_ports(struct ata_ioports *ioaddr)
4889{
4890 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
4891 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
4892 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
4893 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
4894 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
4895 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
4896 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
4897 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
4898 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
4899 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
4900}
4901
0baab86b 4902
374b1873
JG
4903#ifdef CONFIG_PCI
4904
4905void ata_pci_host_stop (struct ata_host_set *host_set)
4906{
4907 struct pci_dev *pdev = to_pci_dev(host_set->dev);
4908
4909 pci_iounmap(pdev, host_set->mmio_base);
4910}
4911
1da177e4
LT
4912/**
4913 * ata_pci_remove_one - PCI layer callback for device removal
4914 * @pdev: PCI device that was removed
4915 *
4916 * PCI layer indicates to libata via this hook that
6f0ef4fa 4917 * hot-unplug or module unload event has occurred.
1da177e4
LT
4918 * Handle this by unregistering all objects associated
4919 * with this PCI device. Free those objects. Then finally
4920 * release PCI resources and disable device.
4921 *
4922 * LOCKING:
4923 * Inherited from PCI layer (may sleep).
4924 */
4925
4926void ata_pci_remove_one (struct pci_dev *pdev)
4927{
4928 struct device *dev = pci_dev_to_dev(pdev);
4929 struct ata_host_set *host_set = dev_get_drvdata(dev);
1da177e4 4930
17b14451 4931 ata_host_set_remove(host_set);
1da177e4
LT
4932 pci_release_regions(pdev);
4933 pci_disable_device(pdev);
4934 dev_set_drvdata(dev, NULL);
4935}
4936
4937/* move to PCI subsystem */
057ace5e 4938int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
4939{
4940 unsigned long tmp = 0;
4941
4942 switch (bits->width) {
4943 case 1: {
4944 u8 tmp8 = 0;
4945 pci_read_config_byte(pdev, bits->reg, &tmp8);
4946 tmp = tmp8;
4947 break;
4948 }
4949 case 2: {
4950 u16 tmp16 = 0;
4951 pci_read_config_word(pdev, bits->reg, &tmp16);
4952 tmp = tmp16;
4953 break;
4954 }
4955 case 4: {
4956 u32 tmp32 = 0;
4957 pci_read_config_dword(pdev, bits->reg, &tmp32);
4958 tmp = tmp32;
4959 break;
4960 }
4961
4962 default:
4963 return -EINVAL;
4964 }
4965
4966 tmp &= bits->mask;
4967
4968 return (tmp == bits->val) ? 1 : 0;
4969}
9b847548
JA
4970
4971int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
4972{
4973 pci_save_state(pdev);
4974 pci_disable_device(pdev);
4975 pci_set_power_state(pdev, PCI_D3hot);
4976 return 0;
4977}
4978
4979int ata_pci_device_resume(struct pci_dev *pdev)
4980{
4981 pci_set_power_state(pdev, PCI_D0);
4982 pci_restore_state(pdev);
4983 pci_enable_device(pdev);
4984 pci_set_master(pdev);
4985 return 0;
4986}
1da177e4
LT
4987#endif /* CONFIG_PCI */
4988
4989
1da177e4
LT
4990static int __init ata_init(void)
4991{
4992 ata_wq = create_workqueue("ata");
4993 if (!ata_wq)
4994 return -ENOMEM;
4995
4996 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
4997 return 0;
4998}
4999
5000static void __exit ata_exit(void)
5001{
5002 destroy_workqueue(ata_wq);
5003}
5004
5005module_init(ata_init);
5006module_exit(ata_exit);
5007
67846b30
JG
5008static unsigned long ratelimit_time;
5009static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
5010
5011int ata_ratelimit(void)
5012{
5013 int rc;
5014 unsigned long flags;
5015
5016 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5017
5018 if (time_after(jiffies, ratelimit_time)) {
5019 rc = 1;
5020 ratelimit_time = jiffies + (HZ/5);
5021 } else
5022 rc = 0;
5023
5024 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5025
5026 return rc;
5027}
5028
1da177e4
LT
5029/*
5030 * libata is essentially a library of internal helper functions for
5031 * low-level ATA host controller drivers. As such, the API/ABI is
5032 * likely to change as new drivers are added and updated.
5033 * Do not depend on ABI/API stability.
5034 */
5035
5036EXPORT_SYMBOL_GPL(ata_std_bios_param);
5037EXPORT_SYMBOL_GPL(ata_std_ports);
5038EXPORT_SYMBOL_GPL(ata_device_add);
17b14451 5039EXPORT_SYMBOL_GPL(ata_host_set_remove);
1da177e4
LT
5040EXPORT_SYMBOL_GPL(ata_sg_init);
5041EXPORT_SYMBOL_GPL(ata_sg_init_one);
76014427 5042EXPORT_SYMBOL_GPL(__ata_qc_complete);
1da177e4
LT
5043EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
5044EXPORT_SYMBOL_GPL(ata_eng_timeout);
5045EXPORT_SYMBOL_GPL(ata_tf_load);
5046EXPORT_SYMBOL_GPL(ata_tf_read);
5047EXPORT_SYMBOL_GPL(ata_noop_dev_select);
5048EXPORT_SYMBOL_GPL(ata_std_dev_select);
5049EXPORT_SYMBOL_GPL(ata_tf_to_fis);
5050EXPORT_SYMBOL_GPL(ata_tf_from_fis);
5051EXPORT_SYMBOL_GPL(ata_check_status);
5052EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
5053EXPORT_SYMBOL_GPL(ata_exec_command);
5054EXPORT_SYMBOL_GPL(ata_port_start);
5055EXPORT_SYMBOL_GPL(ata_port_stop);
aa8f0dc6 5056EXPORT_SYMBOL_GPL(ata_host_stop);
1da177e4
LT
5057EXPORT_SYMBOL_GPL(ata_interrupt);
5058EXPORT_SYMBOL_GPL(ata_qc_prep);
5059EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5060EXPORT_SYMBOL_GPL(ata_bmdma_start);
5061EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5062EXPORT_SYMBOL_GPL(ata_bmdma_status);
5063EXPORT_SYMBOL_GPL(ata_bmdma_stop);
5064EXPORT_SYMBOL_GPL(ata_port_probe);
5065EXPORT_SYMBOL_GPL(sata_phy_reset);
5066EXPORT_SYMBOL_GPL(__sata_phy_reset);
5067EXPORT_SYMBOL_GPL(ata_bus_reset);
8a19ac89 5068EXPORT_SYMBOL_GPL(ata_std_probeinit);
c2bd5804
TH
5069EXPORT_SYMBOL_GPL(ata_std_softreset);
5070EXPORT_SYMBOL_GPL(sata_std_hardreset);
5071EXPORT_SYMBOL_GPL(ata_std_postreset);
5072EXPORT_SYMBOL_GPL(ata_std_probe_reset);
a62c0fc5 5073EXPORT_SYMBOL_GPL(ata_drive_probe_reset);
623a3128 5074EXPORT_SYMBOL_GPL(ata_dev_revalidate);
1da177e4 5075EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 5076EXPORT_SYMBOL_GPL(ata_ratelimit);
6f8b9958 5077EXPORT_SYMBOL_GPL(ata_busy_sleep);
86e45b6b 5078EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
5079EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
5080EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
f29841e0 5081EXPORT_SYMBOL_GPL(ata_scsi_timed_out);
1da177e4
LT
5082EXPORT_SYMBOL_GPL(ata_scsi_error);
5083EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
5084EXPORT_SYMBOL_GPL(ata_scsi_release);
5085EXPORT_SYMBOL_GPL(ata_host_intr);
5086EXPORT_SYMBOL_GPL(ata_dev_classify);
6a62a04d
TH
5087EXPORT_SYMBOL_GPL(ata_id_string);
5088EXPORT_SYMBOL_GPL(ata_id_c_string);
1da177e4 5089EXPORT_SYMBOL_GPL(ata_scsi_simulate);
a72ec4ce
TH
5090EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
5091EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
1da177e4 5092
1bc4ccff 5093EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
5094EXPORT_SYMBOL_GPL(ata_timing_compute);
5095EXPORT_SYMBOL_GPL(ata_timing_merge);
5096
1da177e4
LT
5097#ifdef CONFIG_PCI
5098EXPORT_SYMBOL_GPL(pci_test_config_bits);
374b1873 5099EXPORT_SYMBOL_GPL(ata_pci_host_stop);
1da177e4
LT
5100EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
5101EXPORT_SYMBOL_GPL(ata_pci_init_one);
5102EXPORT_SYMBOL_GPL(ata_pci_remove_one);
9b847548
JA
5103EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
5104EXPORT_SYMBOL_GPL(ata_pci_device_resume);
1da177e4 5105#endif /* CONFIG_PCI */
9b847548
JA
5106
5107EXPORT_SYMBOL_GPL(ata_device_suspend);
5108EXPORT_SYMBOL_GPL(ata_device_resume);
5109EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
5110EXPORT_SYMBOL_GPL(ata_scsi_device_resume);