[PATCH] libata: dec scmd->retries for qcs with zero err_mask
[linux-2.6-block.git] / drivers / scsi / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
35#include <linux/config.h>
36#include <linux/kernel.h>
37#include <linux/module.h>
38#include <linux/pci.h>
39#include <linux/init.h>
40#include <linux/list.h>
41#include <linux/mm.h>
42#include <linux/highmem.h>
43#include <linux/spinlock.h>
44#include <linux/blkdev.h>
45#include <linux/delay.h>
46#include <linux/timer.h>
47#include <linux/interrupt.h>
48#include <linux/completion.h>
49#include <linux/suspend.h>
50#include <linux/workqueue.h>
67846b30 51#include <linux/jiffies.h>
378f058c 52#include <linux/scatterlist.h>
1da177e4 53#include <scsi/scsi.h>
1da177e4 54#include "scsi_priv.h"
193515d5 55#include <scsi/scsi_cmnd.h>
1da177e4
LT
56#include <scsi/scsi_host.h>
57#include <linux/libata.h>
58#include <asm/io.h>
59#include <asm/semaphore.h>
60#include <asm/byteorder.h>
61
62#include "libata.h"
63
6aff8f1f 64static unsigned int ata_dev_init_params(struct ata_port *ap,
00b6f5e9
AL
65 struct ata_device *dev,
66 u16 heads,
67 u16 sectors);
cf176e1a
TH
68static int ata_down_xfermask_limit(struct ata_port *ap, struct ata_device *dev,
69 int force_pio0);
1c3fae4d 70static int ata_down_sata_spd_limit(struct ata_port *ap);
e82cbdb9 71static int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev);
83206a29
TH
72static unsigned int ata_dev_set_xfermode(struct ata_port *ap,
73 struct ata_device *dev);
acf356b1 74static void ata_dev_xfermask(struct ata_port *ap, struct ata_device *dev);
1da177e4
LT
75
76static unsigned int ata_unique_id = 1;
77static struct workqueue_struct *ata_wq;
78
418dc1f5 79int atapi_enabled = 1;
1623c81e
JG
80module_param(atapi_enabled, int, 0444);
81MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
82
c3c013a2
JG
83int libata_fua = 0;
84module_param_named(fua, libata_fua, int, 0444);
85MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
86
1da177e4
LT
87MODULE_AUTHOR("Jeff Garzik");
88MODULE_DESCRIPTION("Library module for ATA devices");
89MODULE_LICENSE("GPL");
90MODULE_VERSION(DRV_VERSION);
91
0baab86b 92
1da177e4
LT
93/**
94 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
95 * @tf: Taskfile to convert
96 * @fis: Buffer into which data will output
97 * @pmp: Port multiplier port
98 *
99 * Converts a standard ATA taskfile to a Serial ATA
100 * FIS structure (Register - Host to Device).
101 *
102 * LOCKING:
103 * Inherited from caller.
104 */
105
057ace5e 106void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
1da177e4
LT
107{
108 fis[0] = 0x27; /* Register - Host to Device FIS */
109 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
110 bit 7 indicates Command FIS */
111 fis[2] = tf->command;
112 fis[3] = tf->feature;
113
114 fis[4] = tf->lbal;
115 fis[5] = tf->lbam;
116 fis[6] = tf->lbah;
117 fis[7] = tf->device;
118
119 fis[8] = tf->hob_lbal;
120 fis[9] = tf->hob_lbam;
121 fis[10] = tf->hob_lbah;
122 fis[11] = tf->hob_feature;
123
124 fis[12] = tf->nsect;
125 fis[13] = tf->hob_nsect;
126 fis[14] = 0;
127 fis[15] = tf->ctl;
128
129 fis[16] = 0;
130 fis[17] = 0;
131 fis[18] = 0;
132 fis[19] = 0;
133}
134
135/**
136 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
137 * @fis: Buffer from which data will be input
138 * @tf: Taskfile to output
139 *
e12a1be6 140 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
141 *
142 * LOCKING:
143 * Inherited from caller.
144 */
145
057ace5e 146void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
147{
148 tf->command = fis[2]; /* status */
149 tf->feature = fis[3]; /* error */
150
151 tf->lbal = fis[4];
152 tf->lbam = fis[5];
153 tf->lbah = fis[6];
154 tf->device = fis[7];
155
156 tf->hob_lbal = fis[8];
157 tf->hob_lbam = fis[9];
158 tf->hob_lbah = fis[10];
159
160 tf->nsect = fis[12];
161 tf->hob_nsect = fis[13];
162}
163
8cbd6df1
AL
164static const u8 ata_rw_cmds[] = {
165 /* pio multi */
166 ATA_CMD_READ_MULTI,
167 ATA_CMD_WRITE_MULTI,
168 ATA_CMD_READ_MULTI_EXT,
169 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
170 0,
171 0,
172 0,
173 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
174 /* pio */
175 ATA_CMD_PIO_READ,
176 ATA_CMD_PIO_WRITE,
177 ATA_CMD_PIO_READ_EXT,
178 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
179 0,
180 0,
181 0,
182 0,
8cbd6df1
AL
183 /* dma */
184 ATA_CMD_READ,
185 ATA_CMD_WRITE,
186 ATA_CMD_READ_EXT,
9a3dccc4
TH
187 ATA_CMD_WRITE_EXT,
188 0,
189 0,
190 0,
191 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 192};
1da177e4
LT
193
194/**
8cbd6df1
AL
195 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
196 * @qc: command to examine and configure
1da177e4 197 *
2e9edbf8 198 * Examine the device configuration and tf->flags to calculate
8cbd6df1 199 * the proper read/write commands and protocol to use.
1da177e4
LT
200 *
201 * LOCKING:
202 * caller.
203 */
9a3dccc4 204int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
1da177e4 205{
8cbd6df1
AL
206 struct ata_taskfile *tf = &qc->tf;
207 struct ata_device *dev = qc->dev;
9a3dccc4 208 u8 cmd;
1da177e4 209
9a3dccc4 210 int index, fua, lba48, write;
2e9edbf8 211
9a3dccc4 212 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
213 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
214 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 215
8cbd6df1
AL
216 if (dev->flags & ATA_DFLAG_PIO) {
217 tf->protocol = ATA_PROT_PIO;
9a3dccc4 218 index = dev->multi_count ? 0 : 8;
8d238e01
AC
219 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
220 /* Unable to use DMA due to host limitation */
221 tf->protocol = ATA_PROT_PIO;
0565c26d 222 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
223 } else {
224 tf->protocol = ATA_PROT_DMA;
9a3dccc4 225 index = 16;
8cbd6df1 226 }
1da177e4 227
9a3dccc4
TH
228 cmd = ata_rw_cmds[index + fua + lba48 + write];
229 if (cmd) {
230 tf->command = cmd;
231 return 0;
232 }
233 return -1;
1da177e4
LT
234}
235
cb95d562
TH
236/**
237 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
238 * @pio_mask: pio_mask
239 * @mwdma_mask: mwdma_mask
240 * @udma_mask: udma_mask
241 *
242 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
243 * unsigned int xfer_mask.
244 *
245 * LOCKING:
246 * None.
247 *
248 * RETURNS:
249 * Packed xfer_mask.
250 */
251static unsigned int ata_pack_xfermask(unsigned int pio_mask,
252 unsigned int mwdma_mask,
253 unsigned int udma_mask)
254{
255 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
256 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
257 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
258}
259
c0489e4e
TH
260/**
261 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
262 * @xfer_mask: xfer_mask to unpack
263 * @pio_mask: resulting pio_mask
264 * @mwdma_mask: resulting mwdma_mask
265 * @udma_mask: resulting udma_mask
266 *
267 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
268 * Any NULL distination masks will be ignored.
269 */
270static void ata_unpack_xfermask(unsigned int xfer_mask,
271 unsigned int *pio_mask,
272 unsigned int *mwdma_mask,
273 unsigned int *udma_mask)
274{
275 if (pio_mask)
276 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
277 if (mwdma_mask)
278 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
279 if (udma_mask)
280 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
281}
282
cb95d562 283static const struct ata_xfer_ent {
be9a50c8 284 int shift, bits;
cb95d562
TH
285 u8 base;
286} ata_xfer_tbl[] = {
287 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
288 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
289 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
290 { -1, },
291};
292
293/**
294 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
295 * @xfer_mask: xfer_mask of interest
296 *
297 * Return matching XFER_* value for @xfer_mask. Only the highest
298 * bit of @xfer_mask is considered.
299 *
300 * LOCKING:
301 * None.
302 *
303 * RETURNS:
304 * Matching XFER_* value, 0 if no match found.
305 */
306static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
307{
308 int highbit = fls(xfer_mask) - 1;
309 const struct ata_xfer_ent *ent;
310
311 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
312 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
313 return ent->base + highbit - ent->shift;
314 return 0;
315}
316
317/**
318 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
319 * @xfer_mode: XFER_* of interest
320 *
321 * Return matching xfer_mask for @xfer_mode.
322 *
323 * LOCKING:
324 * None.
325 *
326 * RETURNS:
327 * Matching xfer_mask, 0 if no match found.
328 */
329static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
330{
331 const struct ata_xfer_ent *ent;
332
333 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
334 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
335 return 1 << (ent->shift + xfer_mode - ent->base);
336 return 0;
337}
338
339/**
340 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
341 * @xfer_mode: XFER_* of interest
342 *
343 * Return matching xfer_shift for @xfer_mode.
344 *
345 * LOCKING:
346 * None.
347 *
348 * RETURNS:
349 * Matching xfer_shift, -1 if no match found.
350 */
351static int ata_xfer_mode2shift(unsigned int xfer_mode)
352{
353 const struct ata_xfer_ent *ent;
354
355 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
356 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
357 return ent->shift;
358 return -1;
359}
360
1da177e4 361/**
1da7b0d0
TH
362 * ata_mode_string - convert xfer_mask to string
363 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
364 *
365 * Determine string which represents the highest speed
1da7b0d0 366 * (highest bit in @modemask).
1da177e4
LT
367 *
368 * LOCKING:
369 * None.
370 *
371 * RETURNS:
372 * Constant C string representing highest speed listed in
1da7b0d0 373 * @mode_mask, or the constant C string "<n/a>".
1da177e4 374 */
1da7b0d0 375static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 376{
75f554bc
TH
377 static const char * const xfer_mode_str[] = {
378 "PIO0",
379 "PIO1",
380 "PIO2",
381 "PIO3",
382 "PIO4",
383 "MWDMA0",
384 "MWDMA1",
385 "MWDMA2",
386 "UDMA/16",
387 "UDMA/25",
388 "UDMA/33",
389 "UDMA/44",
390 "UDMA/66",
391 "UDMA/100",
392 "UDMA/133",
393 "UDMA7",
394 };
1da7b0d0 395 int highbit;
1da177e4 396
1da7b0d0
TH
397 highbit = fls(xfer_mask) - 1;
398 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
399 return xfer_mode_str[highbit];
1da177e4 400 return "<n/a>";
1da177e4
LT
401}
402
4c360c81
TH
403static const char *sata_spd_string(unsigned int spd)
404{
405 static const char * const spd_str[] = {
406 "1.5 Gbps",
407 "3.0 Gbps",
408 };
409
410 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
411 return "<unknown>";
412 return spd_str[spd - 1];
413}
414
0b8efb0a
TH
415static void ata_dev_disable(struct ata_port *ap, struct ata_device *dev)
416{
e1211e3f 417 if (ata_dev_enabled(dev)) {
0b8efb0a
TH
418 printk(KERN_WARNING "ata%u: dev %u disabled\n",
419 ap->id, dev->devno);
420 dev->class++;
421 }
422}
423
1da177e4
LT
424/**
425 * ata_pio_devchk - PATA device presence detection
426 * @ap: ATA channel to examine
427 * @device: Device to examine (starting at zero)
428 *
429 * This technique was originally described in
430 * Hale Landis's ATADRVR (www.ata-atapi.com), and
431 * later found its way into the ATA/ATAPI spec.
432 *
433 * Write a pattern to the ATA shadow registers,
434 * and if a device is present, it will respond by
435 * correctly storing and echoing back the
436 * ATA shadow register contents.
437 *
438 * LOCKING:
439 * caller.
440 */
441
442static unsigned int ata_pio_devchk(struct ata_port *ap,
443 unsigned int device)
444{
445 struct ata_ioports *ioaddr = &ap->ioaddr;
446 u8 nsect, lbal;
447
448 ap->ops->dev_select(ap, device);
449
450 outb(0x55, ioaddr->nsect_addr);
451 outb(0xaa, ioaddr->lbal_addr);
452
453 outb(0xaa, ioaddr->nsect_addr);
454 outb(0x55, ioaddr->lbal_addr);
455
456 outb(0x55, ioaddr->nsect_addr);
457 outb(0xaa, ioaddr->lbal_addr);
458
459 nsect = inb(ioaddr->nsect_addr);
460 lbal = inb(ioaddr->lbal_addr);
461
462 if ((nsect == 0x55) && (lbal == 0xaa))
463 return 1; /* we found a device */
464
465 return 0; /* nothing found */
466}
467
468/**
469 * ata_mmio_devchk - PATA device presence detection
470 * @ap: ATA channel to examine
471 * @device: Device to examine (starting at zero)
472 *
473 * This technique was originally described in
474 * Hale Landis's ATADRVR (www.ata-atapi.com), and
475 * later found its way into the ATA/ATAPI spec.
476 *
477 * Write a pattern to the ATA shadow registers,
478 * and if a device is present, it will respond by
479 * correctly storing and echoing back the
480 * ATA shadow register contents.
481 *
482 * LOCKING:
483 * caller.
484 */
485
486static unsigned int ata_mmio_devchk(struct ata_port *ap,
487 unsigned int device)
488{
489 struct ata_ioports *ioaddr = &ap->ioaddr;
490 u8 nsect, lbal;
491
492 ap->ops->dev_select(ap, device);
493
494 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
495 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
496
497 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
498 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
499
500 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
501 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
502
503 nsect = readb((void __iomem *) ioaddr->nsect_addr);
504 lbal = readb((void __iomem *) ioaddr->lbal_addr);
505
506 if ((nsect == 0x55) && (lbal == 0xaa))
507 return 1; /* we found a device */
508
509 return 0; /* nothing found */
510}
511
512/**
513 * ata_devchk - PATA device presence detection
514 * @ap: ATA channel to examine
515 * @device: Device to examine (starting at zero)
516 *
517 * Dispatch ATA device presence detection, depending
518 * on whether we are using PIO or MMIO to talk to the
519 * ATA shadow registers.
520 *
521 * LOCKING:
522 * caller.
523 */
524
525static unsigned int ata_devchk(struct ata_port *ap,
526 unsigned int device)
527{
528 if (ap->flags & ATA_FLAG_MMIO)
529 return ata_mmio_devchk(ap, device);
530 return ata_pio_devchk(ap, device);
531}
532
533/**
534 * ata_dev_classify - determine device type based on ATA-spec signature
535 * @tf: ATA taskfile register set for device to be identified
536 *
537 * Determine from taskfile register contents whether a device is
538 * ATA or ATAPI, as per "Signature and persistence" section
539 * of ATA/PI spec (volume 1, sect 5.14).
540 *
541 * LOCKING:
542 * None.
543 *
544 * RETURNS:
545 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
546 * the event of failure.
547 */
548
057ace5e 549unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
550{
551 /* Apple's open source Darwin code hints that some devices only
552 * put a proper signature into the LBA mid/high registers,
553 * So, we only check those. It's sufficient for uniqueness.
554 */
555
556 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
557 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
558 DPRINTK("found ATA device by sig\n");
559 return ATA_DEV_ATA;
560 }
561
562 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
563 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
564 DPRINTK("found ATAPI device by sig\n");
565 return ATA_DEV_ATAPI;
566 }
567
568 DPRINTK("unknown device\n");
569 return ATA_DEV_UNKNOWN;
570}
571
572/**
573 * ata_dev_try_classify - Parse returned ATA device signature
574 * @ap: ATA channel to examine
575 * @device: Device to examine (starting at zero)
b4dc7623 576 * @r_err: Value of error register on completion
1da177e4
LT
577 *
578 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
579 * an ATA/ATAPI-defined set of values is placed in the ATA
580 * shadow registers, indicating the results of device detection
581 * and diagnostics.
582 *
583 * Select the ATA device, and read the values from the ATA shadow
584 * registers. Then parse according to the Error register value,
585 * and the spec-defined values examined by ata_dev_classify().
586 *
587 * LOCKING:
588 * caller.
b4dc7623
TH
589 *
590 * RETURNS:
591 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
592 */
593
b4dc7623
TH
594static unsigned int
595ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 596{
1da177e4
LT
597 struct ata_taskfile tf;
598 unsigned int class;
599 u8 err;
600
601 ap->ops->dev_select(ap, device);
602
603 memset(&tf, 0, sizeof(tf));
604
1da177e4 605 ap->ops->tf_read(ap, &tf);
0169e284 606 err = tf.feature;
b4dc7623
TH
607 if (r_err)
608 *r_err = err;
1da177e4
LT
609
610 /* see if device passed diags */
611 if (err == 1)
612 /* do nothing */ ;
613 else if ((device == 0) && (err == 0x81))
614 /* do nothing */ ;
615 else
b4dc7623 616 return ATA_DEV_NONE;
1da177e4 617
b4dc7623 618 /* determine if device is ATA or ATAPI */
1da177e4 619 class = ata_dev_classify(&tf);
b4dc7623 620
1da177e4 621 if (class == ATA_DEV_UNKNOWN)
b4dc7623 622 return ATA_DEV_NONE;
1da177e4 623 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
624 return ATA_DEV_NONE;
625 return class;
1da177e4
LT
626}
627
628/**
6a62a04d 629 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
630 * @id: IDENTIFY DEVICE results we will examine
631 * @s: string into which data is output
632 * @ofs: offset into identify device page
633 * @len: length of string to return. must be an even number.
634 *
635 * The strings in the IDENTIFY DEVICE page are broken up into
636 * 16-bit chunks. Run through the string, and output each
637 * 8-bit chunk linearly, regardless of platform.
638 *
639 * LOCKING:
640 * caller.
641 */
642
6a62a04d
TH
643void ata_id_string(const u16 *id, unsigned char *s,
644 unsigned int ofs, unsigned int len)
1da177e4
LT
645{
646 unsigned int c;
647
648 while (len > 0) {
649 c = id[ofs] >> 8;
650 *s = c;
651 s++;
652
653 c = id[ofs] & 0xff;
654 *s = c;
655 s++;
656
657 ofs++;
658 len -= 2;
659 }
660}
661
0e949ff3 662/**
6a62a04d 663 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
664 * @id: IDENTIFY DEVICE results we will examine
665 * @s: string into which data is output
666 * @ofs: offset into identify device page
667 * @len: length of string to return. must be an odd number.
668 *
6a62a04d 669 * This function is identical to ata_id_string except that it
0e949ff3
TH
670 * trims trailing spaces and terminates the resulting string with
671 * null. @len must be actual maximum length (even number) + 1.
672 *
673 * LOCKING:
674 * caller.
675 */
6a62a04d
TH
676void ata_id_c_string(const u16 *id, unsigned char *s,
677 unsigned int ofs, unsigned int len)
0e949ff3
TH
678{
679 unsigned char *p;
680
681 WARN_ON(!(len & 1));
682
6a62a04d 683 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
684
685 p = s + strnlen(s, len - 1);
686 while (p > s && p[-1] == ' ')
687 p--;
688 *p = '\0';
689}
0baab86b 690
2940740b
TH
691static u64 ata_id_n_sectors(const u16 *id)
692{
693 if (ata_id_has_lba(id)) {
694 if (ata_id_has_lba48(id))
695 return ata_id_u64(id, 100);
696 else
697 return ata_id_u32(id, 60);
698 } else {
699 if (ata_id_current_chs_valid(id))
700 return ata_id_u32(id, 57);
701 else
702 return id[1] * id[3] * id[6];
703 }
704}
705
0baab86b
EF
706/**
707 * ata_noop_dev_select - Select device 0/1 on ATA bus
708 * @ap: ATA channel to manipulate
709 * @device: ATA device (numbered from zero) to select
710 *
711 * This function performs no actual function.
712 *
713 * May be used as the dev_select() entry in ata_port_operations.
714 *
715 * LOCKING:
716 * caller.
717 */
1da177e4
LT
718void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
719{
720}
721
0baab86b 722
1da177e4
LT
723/**
724 * ata_std_dev_select - Select device 0/1 on ATA bus
725 * @ap: ATA channel to manipulate
726 * @device: ATA device (numbered from zero) to select
727 *
728 * Use the method defined in the ATA specification to
729 * make either device 0, or device 1, active on the
0baab86b
EF
730 * ATA channel. Works with both PIO and MMIO.
731 *
732 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
733 *
734 * LOCKING:
735 * caller.
736 */
737
738void ata_std_dev_select (struct ata_port *ap, unsigned int device)
739{
740 u8 tmp;
741
742 if (device == 0)
743 tmp = ATA_DEVICE_OBS;
744 else
745 tmp = ATA_DEVICE_OBS | ATA_DEV1;
746
747 if (ap->flags & ATA_FLAG_MMIO) {
748 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
749 } else {
750 outb(tmp, ap->ioaddr.device_addr);
751 }
752 ata_pause(ap); /* needed; also flushes, for mmio */
753}
754
755/**
756 * ata_dev_select - Select device 0/1 on ATA bus
757 * @ap: ATA channel to manipulate
758 * @device: ATA device (numbered from zero) to select
759 * @wait: non-zero to wait for Status register BSY bit to clear
760 * @can_sleep: non-zero if context allows sleeping
761 *
762 * Use the method defined in the ATA specification to
763 * make either device 0, or device 1, active on the
764 * ATA channel.
765 *
766 * This is a high-level version of ata_std_dev_select(),
767 * which additionally provides the services of inserting
768 * the proper pauses and status polling, where needed.
769 *
770 * LOCKING:
771 * caller.
772 */
773
774void ata_dev_select(struct ata_port *ap, unsigned int device,
775 unsigned int wait, unsigned int can_sleep)
776{
777 VPRINTK("ENTER, ata%u: device %u, wait %u\n",
778 ap->id, device, wait);
779
780 if (wait)
781 ata_wait_idle(ap);
782
783 ap->ops->dev_select(ap, device);
784
785 if (wait) {
786 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
787 msleep(150);
788 ata_wait_idle(ap);
789 }
790}
791
792/**
793 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 794 * @id: IDENTIFY DEVICE page to dump
1da177e4 795 *
0bd3300a
TH
796 * Dump selected 16-bit words from the given IDENTIFY DEVICE
797 * page.
1da177e4
LT
798 *
799 * LOCKING:
800 * caller.
801 */
802
0bd3300a 803static inline void ata_dump_id(const u16 *id)
1da177e4
LT
804{
805 DPRINTK("49==0x%04x "
806 "53==0x%04x "
807 "63==0x%04x "
808 "64==0x%04x "
809 "75==0x%04x \n",
0bd3300a
TH
810 id[49],
811 id[53],
812 id[63],
813 id[64],
814 id[75]);
1da177e4
LT
815 DPRINTK("80==0x%04x "
816 "81==0x%04x "
817 "82==0x%04x "
818 "83==0x%04x "
819 "84==0x%04x \n",
0bd3300a
TH
820 id[80],
821 id[81],
822 id[82],
823 id[83],
824 id[84]);
1da177e4
LT
825 DPRINTK("88==0x%04x "
826 "93==0x%04x\n",
0bd3300a
TH
827 id[88],
828 id[93]);
1da177e4
LT
829}
830
cb95d562
TH
831/**
832 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
833 * @id: IDENTIFY data to compute xfer mask from
834 *
835 * Compute the xfermask for this device. This is not as trivial
836 * as it seems if we must consider early devices correctly.
837 *
838 * FIXME: pre IDE drive timing (do we care ?).
839 *
840 * LOCKING:
841 * None.
842 *
843 * RETURNS:
844 * Computed xfermask
845 */
846static unsigned int ata_id_xfermask(const u16 *id)
847{
848 unsigned int pio_mask, mwdma_mask, udma_mask;
849
850 /* Usual case. Word 53 indicates word 64 is valid */
851 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
852 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
853 pio_mask <<= 3;
854 pio_mask |= 0x7;
855 } else {
856 /* If word 64 isn't valid then Word 51 high byte holds
857 * the PIO timing number for the maximum. Turn it into
858 * a mask.
859 */
860 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
861
862 /* But wait.. there's more. Design your standards by
863 * committee and you too can get a free iordy field to
864 * process. However its the speeds not the modes that
865 * are supported... Note drivers using the timing API
866 * will get this right anyway
867 */
868 }
869
870 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0
TH
871
872 udma_mask = 0;
873 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
874 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
875
876 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
877}
878
86e45b6b
TH
879/**
880 * ata_port_queue_task - Queue port_task
881 * @ap: The ata_port to queue port_task for
882 *
883 * Schedule @fn(@data) for execution after @delay jiffies using
884 * port_task. There is one port_task per port and it's the
885 * user(low level driver)'s responsibility to make sure that only
886 * one task is active at any given time.
887 *
888 * libata core layer takes care of synchronization between
889 * port_task and EH. ata_port_queue_task() may be ignored for EH
890 * synchronization.
891 *
892 * LOCKING:
893 * Inherited from caller.
894 */
895void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
896 unsigned long delay)
897{
898 int rc;
899
2e755f68 900 if (ap->flags & ATA_FLAG_FLUSH_PORT_TASK)
86e45b6b
TH
901 return;
902
903 PREPARE_WORK(&ap->port_task, fn, data);
904
905 if (!delay)
906 rc = queue_work(ata_wq, &ap->port_task);
907 else
908 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
909
910 /* rc == 0 means that another user is using port task */
911 WARN_ON(rc == 0);
912}
913
914/**
915 * ata_port_flush_task - Flush port_task
916 * @ap: The ata_port to flush port_task for
917 *
918 * After this function completes, port_task is guranteed not to
919 * be running or scheduled.
920 *
921 * LOCKING:
922 * Kernel thread context (may sleep)
923 */
924void ata_port_flush_task(struct ata_port *ap)
925{
926 unsigned long flags;
927
928 DPRINTK("ENTER\n");
929
930 spin_lock_irqsave(&ap->host_set->lock, flags);
2e755f68 931 ap->flags |= ATA_FLAG_FLUSH_PORT_TASK;
86e45b6b
TH
932 spin_unlock_irqrestore(&ap->host_set->lock, flags);
933
934 DPRINTK("flush #1\n");
935 flush_workqueue(ata_wq);
936
937 /*
938 * At this point, if a task is running, it's guaranteed to see
939 * the FLUSH flag; thus, it will never queue pio tasks again.
940 * Cancel and flush.
941 */
942 if (!cancel_delayed_work(&ap->port_task)) {
943 DPRINTK("flush #2\n");
944 flush_workqueue(ata_wq);
945 }
946
947 spin_lock_irqsave(&ap->host_set->lock, flags);
2e755f68 948 ap->flags &= ~ATA_FLAG_FLUSH_PORT_TASK;
86e45b6b
TH
949 spin_unlock_irqrestore(&ap->host_set->lock, flags);
950
951 DPRINTK("EXIT\n");
952}
953
77853bf2 954void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 955{
77853bf2 956 struct completion *waiting = qc->private_data;
a2a7a662 957
77853bf2 958 qc->ap->ops->tf_read(qc->ap, &qc->tf);
a2a7a662 959 complete(waiting);
a2a7a662
TH
960}
961
962/**
963 * ata_exec_internal - execute libata internal command
964 * @ap: Port to which the command is sent
965 * @dev: Device to which the command is sent
966 * @tf: Taskfile registers for the command and the result
d69cf37d 967 * @cdb: CDB for packet command
a2a7a662
TH
968 * @dma_dir: Data tranfer direction of the command
969 * @buf: Data buffer of the command
970 * @buflen: Length of data buffer
971 *
972 * Executes libata internal command with timeout. @tf contains
973 * command on entry and result on return. Timeout and error
974 * conditions are reported via return value. No recovery action
975 * is taken after a command times out. It's caller's duty to
976 * clean up after timeout.
977 *
978 * LOCKING:
979 * None. Should be called with kernel context, might sleep.
980 */
981
982static unsigned
983ata_exec_internal(struct ata_port *ap, struct ata_device *dev,
d69cf37d 984 struct ata_taskfile *tf, const u8 *cdb,
a2a7a662
TH
985 int dma_dir, void *buf, unsigned int buflen)
986{
987 u8 command = tf->command;
988 struct ata_queued_cmd *qc;
989 DECLARE_COMPLETION(wait);
990 unsigned long flags;
77853bf2 991 unsigned int err_mask;
a2a7a662
TH
992
993 spin_lock_irqsave(&ap->host_set->lock, flags);
994
995 qc = ata_qc_new_init(ap, dev);
996 BUG_ON(qc == NULL);
997
998 qc->tf = *tf;
d69cf37d
TH
999 if (cdb)
1000 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
a2a7a662
TH
1001 qc->dma_dir = dma_dir;
1002 if (dma_dir != DMA_NONE) {
1003 ata_sg_init_one(qc, buf, buflen);
1004 qc->nsect = buflen / ATA_SECT_SIZE;
1005 }
1006
77853bf2 1007 qc->private_data = &wait;
a2a7a662
TH
1008 qc->complete_fn = ata_qc_complete_internal;
1009
8e0e694a 1010 ata_qc_issue(qc);
a2a7a662
TH
1011
1012 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1013
1014 if (!wait_for_completion_timeout(&wait, ATA_TMOUT_INTERNAL)) {
41ade50c
AL
1015 ata_port_flush_task(ap);
1016
a2a7a662
TH
1017 spin_lock_irqsave(&ap->host_set->lock, flags);
1018
1019 /* We're racing with irq here. If we lose, the
1020 * following test prevents us from completing the qc
1021 * again. If completion irq occurs after here but
1022 * before the caller cleans up, it will result in a
1023 * spurious interrupt. We can live with that.
1024 */
77853bf2 1025 if (qc->flags & ATA_QCFLAG_ACTIVE) {
11a56d24 1026 qc->err_mask = AC_ERR_TIMEOUT;
a2a7a662
TH
1027 ata_qc_complete(qc);
1028 printk(KERN_WARNING "ata%u: qc timeout (cmd 0x%x)\n",
1029 ap->id, command);
1030 }
1031
1032 spin_unlock_irqrestore(&ap->host_set->lock, flags);
1033 }
1034
77853bf2
TH
1035 *tf = qc->tf;
1036 err_mask = qc->err_mask;
1037
1038 ata_qc_free(qc);
1039
1f7dd3e9
TH
1040 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1041 * Until those drivers are fixed, we detect the condition
1042 * here, fail the command with AC_ERR_SYSTEM and reenable the
1043 * port.
1044 *
1045 * Note that this doesn't change any behavior as internal
1046 * command failure results in disabling the device in the
1047 * higher layer for LLDDs without new reset/EH callbacks.
1048 *
1049 * Kill the following code as soon as those drivers are fixed.
1050 */
198e0fed 1051 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1052 err_mask |= AC_ERR_SYSTEM;
1053 ata_port_probe(ap);
1054 }
1055
77853bf2 1056 return err_mask;
a2a7a662
TH
1057}
1058
1bc4ccff
AC
1059/**
1060 * ata_pio_need_iordy - check if iordy needed
1061 * @adev: ATA device
1062 *
1063 * Check if the current speed of the device requires IORDY. Used
1064 * by various controllers for chip configuration.
1065 */
1066
1067unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1068{
1069 int pio;
1070 int speed = adev->pio_mode - XFER_PIO_0;
1071
1072 if (speed < 2)
1073 return 0;
1074 if (speed > 2)
1075 return 1;
2e9edbf8 1076
1bc4ccff
AC
1077 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1078
1079 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1080 pio = adev->id[ATA_ID_EIDE_PIO];
1081 /* Is the speed faster than the drive allows non IORDY ? */
1082 if (pio) {
1083 /* This is cycle times not frequency - watch the logic! */
1084 if (pio > 240) /* PIO2 is 240nS per cycle */
1085 return 1;
1086 return 0;
1087 }
1088 }
1089 return 0;
1090}
1091
1da177e4 1092/**
49016aca
TH
1093 * ata_dev_read_id - Read ID data from the specified device
1094 * @ap: port on which target device resides
1095 * @dev: target device
1096 * @p_class: pointer to class of the target device (may be changed)
1097 * @post_reset: is this read ID post-reset?
d9572b1d 1098 * @p_id: read IDENTIFY page (newly allocated)
1da177e4 1099 *
49016aca
TH
1100 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1101 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1102 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1103 * for pre-ATA4 drives.
1da177e4
LT
1104 *
1105 * LOCKING:
49016aca
TH
1106 * Kernel thread context (may sleep)
1107 *
1108 * RETURNS:
1109 * 0 on success, -errno otherwise.
1da177e4 1110 */
49016aca 1111static int ata_dev_read_id(struct ata_port *ap, struct ata_device *dev,
d9572b1d 1112 unsigned int *p_class, int post_reset, u16 **p_id)
1da177e4 1113{
49016aca 1114 unsigned int class = *p_class;
a0123703 1115 struct ata_taskfile tf;
49016aca 1116 unsigned int err_mask = 0;
d9572b1d 1117 u16 *id;
49016aca
TH
1118 const char *reason;
1119 int rc;
1da177e4 1120
49016aca 1121 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1da177e4 1122
49016aca 1123 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1da177e4 1124
d9572b1d
TH
1125 id = kmalloc(sizeof(id[0]) * ATA_ID_WORDS, GFP_KERNEL);
1126 if (id == NULL) {
1127 rc = -ENOMEM;
1128 reason = "out of memory";
1129 goto err_out;
1130 }
1131
49016aca
TH
1132 retry:
1133 ata_tf_init(ap, &tf, dev->devno);
a0123703 1134
49016aca
TH
1135 switch (class) {
1136 case ATA_DEV_ATA:
a0123703 1137 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1138 break;
1139 case ATA_DEV_ATAPI:
a0123703 1140 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1141 break;
1142 default:
1143 rc = -ENODEV;
1144 reason = "unsupported class";
1145 goto err_out;
1da177e4
LT
1146 }
1147
a0123703 1148 tf.protocol = ATA_PROT_PIO;
1da177e4 1149
d69cf37d 1150 err_mask = ata_exec_internal(ap, dev, &tf, NULL, DMA_FROM_DEVICE,
49016aca 1151 id, sizeof(id[0]) * ATA_ID_WORDS);
a0123703 1152 if (err_mask) {
49016aca
TH
1153 rc = -EIO;
1154 reason = "I/O error";
1da177e4
LT
1155 goto err_out;
1156 }
1157
49016aca 1158 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1159
49016aca 1160 /* sanity check */
692785e7 1161 if ((class == ATA_DEV_ATA) != (ata_id_is_ata(id) | ata_id_is_cfa(id))) {
49016aca
TH
1162 rc = -EINVAL;
1163 reason = "device reports illegal type";
1164 goto err_out;
1165 }
1166
1167 if (post_reset && class == ATA_DEV_ATA) {
1168 /*
1169 * The exact sequence expected by certain pre-ATA4 drives is:
1170 * SRST RESET
1171 * IDENTIFY
1172 * INITIALIZE DEVICE PARAMETERS
1173 * anything else..
1174 * Some drives were very specific about that exact sequence.
1175 */
1176 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
00b6f5e9 1177 err_mask = ata_dev_init_params(ap, dev, id[3], id[6]);
49016aca
TH
1178 if (err_mask) {
1179 rc = -EIO;
1180 reason = "INIT_DEV_PARAMS failed";
1181 goto err_out;
1182 }
1183
1184 /* current CHS translation info (id[53-58]) might be
1185 * changed. reread the identify device info.
1186 */
1187 post_reset = 0;
1188 goto retry;
1189 }
1190 }
1191
1192 *p_class = class;
d9572b1d 1193 *p_id = id;
49016aca
TH
1194 return 0;
1195
1196 err_out:
1197 printk(KERN_WARNING "ata%u: dev %u failed to IDENTIFY (%s)\n",
1198 ap->id, dev->devno, reason);
d9572b1d 1199 kfree(id);
49016aca
TH
1200 return rc;
1201}
1202
4b2f3ede
TH
1203static inline u8 ata_dev_knobble(const struct ata_port *ap,
1204 struct ata_device *dev)
1205{
1206 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
1207}
1208
49016aca 1209/**
ffeae418
TH
1210 * ata_dev_configure - Configure the specified ATA/ATAPI device
1211 * @ap: Port on which target device resides
1212 * @dev: Target device to configure
4c2d721a 1213 * @print_info: Enable device info printout
ffeae418
TH
1214 *
1215 * Configure @dev according to @dev->id. Generic and low-level
1216 * driver specific fixups are also applied.
49016aca
TH
1217 *
1218 * LOCKING:
ffeae418
TH
1219 * Kernel thread context (may sleep)
1220 *
1221 * RETURNS:
1222 * 0 on success, -errno otherwise
49016aca 1223 */
4c2d721a
TH
1224static int ata_dev_configure(struct ata_port *ap, struct ata_device *dev,
1225 int print_info)
49016aca 1226{
1148c3a7 1227 const u16 *id = dev->id;
ff8854b2 1228 unsigned int xfer_mask;
49016aca
TH
1229 int i, rc;
1230
e1211e3f 1231 if (!ata_dev_enabled(dev)) {
49016aca 1232 DPRINTK("ENTER/EXIT (host %u, dev %u) -- nodev\n",
ffeae418
TH
1233 ap->id, dev->devno);
1234 return 0;
49016aca
TH
1235 }
1236
ffeae418 1237 DPRINTK("ENTER, host %u, dev %u\n", ap->id, dev->devno);
1da177e4 1238
c39f5ebe
TH
1239 /* print device capabilities */
1240 if (print_info)
1241 printk(KERN_DEBUG "ata%u: dev %u cfg 49:%04x 82:%04x 83:%04x "
1242 "84:%04x 85:%04x 86:%04x 87:%04x 88:%04x\n",
1243 ap->id, dev->devno, id[49], id[82], id[83],
1244 id[84], id[85], id[86], id[87], id[88]);
1245
208a9933 1246 /* initialize to-be-configured parameters */
ea1dd4e1 1247 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
1248 dev->max_sectors = 0;
1249 dev->cdb_len = 0;
1250 dev->n_sectors = 0;
1251 dev->cylinders = 0;
1252 dev->heads = 0;
1253 dev->sectors = 0;
1254
1da177e4
LT
1255 /*
1256 * common ATA, ATAPI feature tests
1257 */
1258
ff8854b2 1259 /* find max transfer mode; for printk only */
1148c3a7 1260 xfer_mask = ata_id_xfermask(id);
1da177e4 1261
1148c3a7 1262 ata_dump_id(id);
1da177e4
LT
1263
1264 /* ATA-specific feature tests */
1265 if (dev->class == ATA_DEV_ATA) {
1148c3a7 1266 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1267
1148c3a7 1268 if (ata_id_has_lba(id)) {
4c2d721a 1269 const char *lba_desc;
8bf62ece 1270
4c2d721a
TH
1271 lba_desc = "LBA";
1272 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1273 if (ata_id_has_lba48(id)) {
8bf62ece 1274 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a
TH
1275 lba_desc = "LBA48";
1276 }
8bf62ece
AL
1277
1278 /* print device info to dmesg */
4c2d721a
TH
1279 if (print_info)
1280 printk(KERN_INFO "ata%u: dev %u ATA-%d, "
1281 "max %s, %Lu sectors: %s\n",
1282 ap->id, dev->devno,
1148c3a7 1283 ata_id_major_version(id),
ff8854b2 1284 ata_mode_string(xfer_mask),
4c2d721a
TH
1285 (unsigned long long)dev->n_sectors,
1286 lba_desc);
ffeae418 1287 } else {
8bf62ece
AL
1288 /* CHS */
1289
1290 /* Default translation */
1148c3a7
TH
1291 dev->cylinders = id[1];
1292 dev->heads = id[3];
1293 dev->sectors = id[6];
8bf62ece 1294
1148c3a7 1295 if (ata_id_current_chs_valid(id)) {
8bf62ece 1296 /* Current CHS translation is valid. */
1148c3a7
TH
1297 dev->cylinders = id[54];
1298 dev->heads = id[55];
1299 dev->sectors = id[56];
8bf62ece
AL
1300 }
1301
1302 /* print device info to dmesg */
4c2d721a
TH
1303 if (print_info)
1304 printk(KERN_INFO "ata%u: dev %u ATA-%d, "
1305 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1306 ap->id, dev->devno,
1148c3a7 1307 ata_id_major_version(id),
ff8854b2 1308 ata_mode_string(xfer_mask),
4c2d721a
TH
1309 (unsigned long long)dev->n_sectors,
1310 dev->cylinders, dev->heads, dev->sectors);
1da177e4
LT
1311 }
1312
6e7846e9 1313 dev->cdb_len = 16;
1da177e4
LT
1314 }
1315
1316 /* ATAPI-specific feature tests */
2c13b7ce 1317 else if (dev->class == ATA_DEV_ATAPI) {
1148c3a7 1318 rc = atapi_cdb_len(id);
1da177e4
LT
1319 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
1320 printk(KERN_WARNING "ata%u: unsupported CDB len\n", ap->id);
ffeae418 1321 rc = -EINVAL;
1da177e4
LT
1322 goto err_out_nosup;
1323 }
6e7846e9 1324 dev->cdb_len = (unsigned int) rc;
1da177e4
LT
1325
1326 /* print device info to dmesg */
4c2d721a
TH
1327 if (print_info)
1328 printk(KERN_INFO "ata%u: dev %u ATAPI, max %s\n",
ff8854b2 1329 ap->id, dev->devno, ata_mode_string(xfer_mask));
1da177e4
LT
1330 }
1331
6e7846e9
TH
1332 ap->host->max_cmd_len = 0;
1333 for (i = 0; i < ATA_MAX_DEVICES; i++)
1334 ap->host->max_cmd_len = max_t(unsigned int,
1335 ap->host->max_cmd_len,
1336 ap->device[i].cdb_len);
1337
4b2f3ede
TH
1338 /* limit bridge transfers to udma5, 200 sectors */
1339 if (ata_dev_knobble(ap, dev)) {
4c2d721a
TH
1340 if (print_info)
1341 printk(KERN_INFO "ata%u(%u): applying bridge limits\n",
1342 ap->id, dev->devno);
5a529139 1343 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
1344 dev->max_sectors = ATA_MAX_SECTORS;
1345 }
1346
1347 if (ap->ops->dev_config)
1348 ap->ops->dev_config(ap, dev);
1349
1da177e4 1350 DPRINTK("EXIT, drv_stat = 0x%x\n", ata_chk_status(ap));
ffeae418 1351 return 0;
1da177e4
LT
1352
1353err_out_nosup:
1da177e4 1354 DPRINTK("EXIT, err\n");
ffeae418 1355 return rc;
1da177e4
LT
1356}
1357
1358/**
1359 * ata_bus_probe - Reset and probe ATA bus
1360 * @ap: Bus to probe
1361 *
0cba632b
JG
1362 * Master ATA bus probing function. Initiates a hardware-dependent
1363 * bus reset, then attempts to identify any devices found on
1364 * the bus.
1365 *
1da177e4 1366 * LOCKING:
0cba632b 1367 * PCI/etc. bus probe sem.
1da177e4
LT
1368 *
1369 * RETURNS:
96072e69 1370 * Zero on success, negative errno otherwise.
1da177e4
LT
1371 */
1372
1373static int ata_bus_probe(struct ata_port *ap)
1374{
28ca5c57 1375 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1
TH
1376 int tries[ATA_MAX_DEVICES];
1377 int i, rc, down_xfermask;
e82cbdb9 1378 struct ata_device *dev;
1da177e4 1379
28ca5c57 1380 ata_port_probe(ap);
c19ba8af 1381
14d2bac1
TH
1382 for (i = 0; i < ATA_MAX_DEVICES; i++)
1383 tries[i] = ATA_PROBE_MAX_TRIES;
1384
1385 retry:
1386 down_xfermask = 0;
1387
2044470c
TH
1388 /* reset and determine device classes */
1389 for (i = 0; i < ATA_MAX_DEVICES; i++)
1390 classes[i] = ATA_DEV_UNKNOWN;
2061a47a 1391
2044470c 1392 if (ap->ops->probe_reset) {
c19ba8af 1393 rc = ap->ops->probe_reset(ap, classes);
28ca5c57
TH
1394 if (rc) {
1395 printk("ata%u: reset failed (errno=%d)\n", ap->id, rc);
1396 return rc;
c19ba8af 1397 }
28ca5c57 1398 } else {
c19ba8af
TH
1399 ap->ops->phy_reset(ap);
1400
198e0fed 1401 if (!(ap->flags & ATA_FLAG_DISABLED))
2044470c 1402 for (i = 0; i < ATA_MAX_DEVICES; i++)
28ca5c57 1403 classes[i] = ap->device[i].class;
2044470c 1404
28ca5c57
TH
1405 ata_port_probe(ap);
1406 }
1da177e4 1407
2044470c
TH
1408 for (i = 0; i < ATA_MAX_DEVICES; i++)
1409 if (classes[i] == ATA_DEV_UNKNOWN)
1410 classes[i] = ATA_DEV_NONE;
1411
28ca5c57 1412 /* read IDENTIFY page and configure devices */
1da177e4 1413 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e82cbdb9 1414 dev = &ap->device[i];
28ca5c57
TH
1415 dev->class = classes[i];
1416
14d2bac1
TH
1417 if (!tries[i]) {
1418 ata_down_xfermask_limit(ap, dev, 1);
1419 ata_dev_disable(ap, dev);
ffeae418
TH
1420 }
1421
14d2bac1 1422 if (!ata_dev_enabled(dev))
ffeae418 1423 continue;
ffeae418 1424
14d2bac1
TH
1425 kfree(dev->id);
1426 dev->id = NULL;
1427 rc = ata_dev_read_id(ap, dev, &dev->class, 1, &dev->id);
1428 if (rc)
1429 goto fail;
1430
1431 rc = ata_dev_configure(ap, dev, 1);
1432 if (rc)
1433 goto fail;
1da177e4
LT
1434 }
1435
e82cbdb9
TH
1436 /* configure transfer mode */
1437 if (ap->ops->set_mode) {
1438 /* FIXME: make ->set_mode handle no device case and
1439 * return error code and failing device on failure as
1440 * ata_set_mode() does.
1441 */
14d2bac1
TH
1442 for (i = 0; i < ATA_MAX_DEVICES; i++)
1443 if (ata_dev_enabled(&ap->device[i])) {
1444 ap->ops->set_mode(ap);
1445 break;
1446 }
e82cbdb9
TH
1447 rc = 0;
1448 } else {
14d2bac1
TH
1449 rc = ata_set_mode(ap, &dev);
1450 if (rc) {
1451 down_xfermask = 1;
1452 goto fail;
1453 }
e82cbdb9 1454 }
1da177e4 1455
e82cbdb9
TH
1456 for (i = 0; i < ATA_MAX_DEVICES; i++)
1457 if (ata_dev_enabled(&ap->device[i]))
1458 return 0;
1da177e4 1459
e82cbdb9
TH
1460 /* no device present, disable port */
1461 ata_port_disable(ap);
1da177e4 1462 ap->ops->port_disable(ap);
96072e69 1463 return -ENODEV;
14d2bac1
TH
1464
1465 fail:
1466 switch (rc) {
1467 case -EINVAL:
1468 case -ENODEV:
1469 tries[dev->devno] = 0;
1470 break;
1471 case -EIO:
1472 ata_down_sata_spd_limit(ap);
1473 /* fall through */
1474 default:
1475 tries[dev->devno]--;
1476 if (down_xfermask &&
1477 ata_down_xfermask_limit(ap, dev, tries[dev->devno] == 1))
1478 tries[dev->devno] = 0;
1479 }
1480
1481 goto retry;
1da177e4
LT
1482}
1483
1484/**
0cba632b
JG
1485 * ata_port_probe - Mark port as enabled
1486 * @ap: Port for which we indicate enablement
1da177e4 1487 *
0cba632b
JG
1488 * Modify @ap data structure such that the system
1489 * thinks that the entire port is enabled.
1490 *
1491 * LOCKING: host_set lock, or some other form of
1492 * serialization.
1da177e4
LT
1493 */
1494
1495void ata_port_probe(struct ata_port *ap)
1496{
198e0fed 1497 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
1498}
1499
3be680b7
TH
1500/**
1501 * sata_print_link_status - Print SATA link status
1502 * @ap: SATA port to printk link status about
1503 *
1504 * This function prints link speed and status of a SATA link.
1505 *
1506 * LOCKING:
1507 * None.
1508 */
1509static void sata_print_link_status(struct ata_port *ap)
1510{
1511 u32 sstatus, tmp;
3be680b7
TH
1512
1513 if (!ap->ops->scr_read)
1514 return;
1515
1516 sstatus = scr_read(ap, SCR_STATUS);
1517
1518 if (sata_dev_present(ap)) {
1519 tmp = (sstatus >> 4) & 0xf;
4c360c81
TH
1520 printk(KERN_INFO "ata%u: SATA link up %s (SStatus %X)\n",
1521 ap->id, sata_spd_string(tmp), sstatus);
3be680b7
TH
1522 } else {
1523 printk(KERN_INFO "ata%u: SATA link down (SStatus %X)\n",
1524 ap->id, sstatus);
1525 }
1526}
1527
1da177e4 1528/**
780a87f7
JG
1529 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1530 * @ap: SATA port associated with target SATA PHY.
1da177e4 1531 *
780a87f7
JG
1532 * This function issues commands to standard SATA Sxxx
1533 * PHY registers, to wake up the phy (and device), and
1534 * clear any reset condition.
1da177e4
LT
1535 *
1536 * LOCKING:
0cba632b 1537 * PCI/etc. bus probe sem.
1da177e4
LT
1538 *
1539 */
1540void __sata_phy_reset(struct ata_port *ap)
1541{
1542 u32 sstatus;
1543 unsigned long timeout = jiffies + (HZ * 5);
1544
1545 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e
BR
1546 /* issue phy wake/reset */
1547 scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
1548 /* Couldn't find anything in SATA I/II specs, but
1549 * AHCI-1.1 10.4.2 says at least 1 ms. */
1550 mdelay(1);
1da177e4 1551 }
cdcca89e 1552 scr_write_flush(ap, SCR_CONTROL, 0x300); /* phy wake/clear reset */
1da177e4
LT
1553
1554 /* wait for phy to become ready, if necessary */
1555 do {
1556 msleep(200);
1557 sstatus = scr_read(ap, SCR_STATUS);
1558 if ((sstatus & 0xf) != 1)
1559 break;
1560 } while (time_before(jiffies, timeout));
1561
3be680b7
TH
1562 /* print link status */
1563 sata_print_link_status(ap);
656563e3 1564
3be680b7
TH
1565 /* TODO: phy layer with polling, timeouts, etc. */
1566 if (sata_dev_present(ap))
1da177e4 1567 ata_port_probe(ap);
3be680b7 1568 else
1da177e4 1569 ata_port_disable(ap);
1da177e4 1570
198e0fed 1571 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
1572 return;
1573
1574 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1575 ata_port_disable(ap);
1576 return;
1577 }
1578
1579 ap->cbl = ATA_CBL_SATA;
1580}
1581
1582/**
780a87f7
JG
1583 * sata_phy_reset - Reset SATA bus.
1584 * @ap: SATA port associated with target SATA PHY.
1da177e4 1585 *
780a87f7
JG
1586 * This function resets the SATA bus, and then probes
1587 * the bus for devices.
1da177e4
LT
1588 *
1589 * LOCKING:
0cba632b 1590 * PCI/etc. bus probe sem.
1da177e4
LT
1591 *
1592 */
1593void sata_phy_reset(struct ata_port *ap)
1594{
1595 __sata_phy_reset(ap);
198e0fed 1596 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
1597 return;
1598 ata_bus_reset(ap);
1599}
1600
ebdfca6e
AC
1601/**
1602 * ata_dev_pair - return other device on cable
1603 * @ap: port
1604 * @adev: device
1605 *
1606 * Obtain the other device on the same cable, or if none is
1607 * present NULL is returned
1608 */
2e9edbf8 1609
ebdfca6e
AC
1610struct ata_device *ata_dev_pair(struct ata_port *ap, struct ata_device *adev)
1611{
1612 struct ata_device *pair = &ap->device[1 - adev->devno];
e1211e3f 1613 if (!ata_dev_enabled(pair))
ebdfca6e
AC
1614 return NULL;
1615 return pair;
1616}
1617
1da177e4 1618/**
780a87f7
JG
1619 * ata_port_disable - Disable port.
1620 * @ap: Port to be disabled.
1da177e4 1621 *
780a87f7
JG
1622 * Modify @ap data structure such that the system
1623 * thinks that the entire port is disabled, and should
1624 * never attempt to probe or communicate with devices
1625 * on this port.
1626 *
1627 * LOCKING: host_set lock, or some other form of
1628 * serialization.
1da177e4
LT
1629 */
1630
1631void ata_port_disable(struct ata_port *ap)
1632{
1633 ap->device[0].class = ATA_DEV_NONE;
1634 ap->device[1].class = ATA_DEV_NONE;
198e0fed 1635 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
1636}
1637
1c3fae4d
TH
1638/**
1639 * ata_down_sata_spd_limit - adjust SATA spd limit downward
1640 * @ap: Port to adjust SATA spd limit for
1641 *
1642 * Adjust SATA spd limit of @ap downward. Note that this
1643 * function only adjusts the limit. The change must be applied
1644 * using ata_set_sata_spd().
1645 *
1646 * LOCKING:
1647 * Inherited from caller.
1648 *
1649 * RETURNS:
1650 * 0 on success, negative errno on failure
1651 */
1652static int ata_down_sata_spd_limit(struct ata_port *ap)
1653{
1654 u32 spd, mask;
1655 int highbit;
1656
1657 if (ap->cbl != ATA_CBL_SATA || !ap->ops->scr_read)
1658 return -EOPNOTSUPP;
1659
1660 mask = ap->sata_spd_limit;
1661 if (mask <= 1)
1662 return -EINVAL;
1663 highbit = fls(mask) - 1;
1664 mask &= ~(1 << highbit);
1665
1666 spd = (scr_read(ap, SCR_STATUS) >> 4) & 0xf;
1667 if (spd <= 1)
1668 return -EINVAL;
1669 spd--;
1670 mask &= (1 << spd) - 1;
1671 if (!mask)
1672 return -EINVAL;
1673
1674 ap->sata_spd_limit = mask;
1675
1676 printk(KERN_WARNING "ata%u: limiting SATA link speed to %s\n",
1677 ap->id, sata_spd_string(fls(mask)));
1678
1679 return 0;
1680}
1681
1682static int __ata_set_sata_spd_needed(struct ata_port *ap, u32 *scontrol)
1683{
1684 u32 spd, limit;
1685
1686 if (ap->sata_spd_limit == UINT_MAX)
1687 limit = 0;
1688 else
1689 limit = fls(ap->sata_spd_limit);
1690
1691 spd = (*scontrol >> 4) & 0xf;
1692 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
1693
1694 return spd != limit;
1695}
1696
1697/**
1698 * ata_set_sata_spd_needed - is SATA spd configuration needed
1699 * @ap: Port in question
1700 *
1701 * Test whether the spd limit in SControl matches
1702 * @ap->sata_spd_limit. This function is used to determine
1703 * whether hardreset is necessary to apply SATA spd
1704 * configuration.
1705 *
1706 * LOCKING:
1707 * Inherited from caller.
1708 *
1709 * RETURNS:
1710 * 1 if SATA spd configuration is needed, 0 otherwise.
1711 */
1712static int ata_set_sata_spd_needed(struct ata_port *ap)
1713{
1714 u32 scontrol;
1715
1716 if (ap->cbl != ATA_CBL_SATA || !ap->ops->scr_read)
1717 return 0;
1718
1719 scontrol = scr_read(ap, SCR_CONTROL);
1720
1721 return __ata_set_sata_spd_needed(ap, &scontrol);
1722}
1723
1724/**
1725 * ata_set_sata_spd - set SATA spd according to spd limit
1726 * @ap: Port to set SATA spd for
1727 *
1728 * Set SATA spd of @ap according to sata_spd_limit.
1729 *
1730 * LOCKING:
1731 * Inherited from caller.
1732 *
1733 * RETURNS:
1734 * 0 if spd doesn't need to be changed, 1 if spd has been
1735 * changed. -EOPNOTSUPP if SCR registers are inaccessible.
1736 */
1737static int ata_set_sata_spd(struct ata_port *ap)
1738{
1739 u32 scontrol;
1740
1741 if (ap->cbl != ATA_CBL_SATA || !ap->ops->scr_read)
1742 return -EOPNOTSUPP;
1743
1744 scontrol = scr_read(ap, SCR_CONTROL);
1745 if (!__ata_set_sata_spd_needed(ap, &scontrol))
1746 return 0;
1747
1748 scr_write(ap, SCR_CONTROL, scontrol);
1749 return 1;
1750}
1751
452503f9
AC
1752/*
1753 * This mode timing computation functionality is ported over from
1754 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1755 */
1756/*
1757 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1758 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1759 * for PIO 5, which is a nonstandard extension and UDMA6, which
2e9edbf8 1760 * is currently supported only by Maxtor drives.
452503f9
AC
1761 */
1762
1763static const struct ata_timing ata_timing[] = {
1764
1765 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1766 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1767 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1768 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1769
1770 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1771 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1772 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1773
1774/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 1775
452503f9
AC
1776 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1777 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1778 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 1779
452503f9
AC
1780 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1781 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1782 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1783
1784/* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1785 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1786 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1787
1788 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1789 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1790 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1791
1792/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1793
1794 { 0xFF }
1795};
1796
1797#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1798#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1799
1800static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1801{
1802 q->setup = EZ(t->setup * 1000, T);
1803 q->act8b = EZ(t->act8b * 1000, T);
1804 q->rec8b = EZ(t->rec8b * 1000, T);
1805 q->cyc8b = EZ(t->cyc8b * 1000, T);
1806 q->active = EZ(t->active * 1000, T);
1807 q->recover = EZ(t->recover * 1000, T);
1808 q->cycle = EZ(t->cycle * 1000, T);
1809 q->udma = EZ(t->udma * 1000, UT);
1810}
1811
1812void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1813 struct ata_timing *m, unsigned int what)
1814{
1815 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1816 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1817 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1818 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1819 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1820 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1821 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1822 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1823}
1824
1825static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1826{
1827 const struct ata_timing *t;
1828
1829 for (t = ata_timing; t->mode != speed; t++)
91190758 1830 if (t->mode == 0xFF)
452503f9 1831 return NULL;
2e9edbf8 1832 return t;
452503f9
AC
1833}
1834
1835int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1836 struct ata_timing *t, int T, int UT)
1837{
1838 const struct ata_timing *s;
1839 struct ata_timing p;
1840
1841 /*
2e9edbf8 1842 * Find the mode.
75b1f2f8 1843 */
452503f9
AC
1844
1845 if (!(s = ata_timing_find_mode(speed)))
1846 return -EINVAL;
1847
75b1f2f8
AL
1848 memcpy(t, s, sizeof(*s));
1849
452503f9
AC
1850 /*
1851 * If the drive is an EIDE drive, it can tell us it needs extended
1852 * PIO/MW_DMA cycle timing.
1853 */
1854
1855 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
1856 memset(&p, 0, sizeof(p));
1857 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
1858 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
1859 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
1860 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
1861 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
1862 }
1863 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
1864 }
1865
1866 /*
1867 * Convert the timing to bus clock counts.
1868 */
1869
75b1f2f8 1870 ata_timing_quantize(t, t, T, UT);
452503f9
AC
1871
1872 /*
c893a3ae
RD
1873 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
1874 * S.M.A.R.T * and some other commands. We have to ensure that the
1875 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
1876 */
1877
1878 if (speed > XFER_PIO_4) {
1879 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
1880 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
1881 }
1882
1883 /*
c893a3ae 1884 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
1885 */
1886
1887 if (t->act8b + t->rec8b < t->cyc8b) {
1888 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
1889 t->rec8b = t->cyc8b - t->act8b;
1890 }
1891
1892 if (t->active + t->recover < t->cycle) {
1893 t->active += (t->cycle - (t->active + t->recover)) / 2;
1894 t->recover = t->cycle - t->active;
1895 }
1896
1897 return 0;
1898}
1899
cf176e1a
TH
1900/**
1901 * ata_down_xfermask_limit - adjust dev xfer masks downward
1902 * @ap: Port associated with device @dev
1903 * @dev: Device to adjust xfer masks
1904 * @force_pio0: Force PIO0
1905 *
1906 * Adjust xfer masks of @dev downward. Note that this function
1907 * does not apply the change. Invoking ata_set_mode() afterwards
1908 * will apply the limit.
1909 *
1910 * LOCKING:
1911 * Inherited from caller.
1912 *
1913 * RETURNS:
1914 * 0 on success, negative errno on failure
1915 */
1916static int ata_down_xfermask_limit(struct ata_port *ap, struct ata_device *dev,
1917 int force_pio0)
1918{
1919 unsigned long xfer_mask;
1920 int highbit;
1921
1922 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
1923 dev->udma_mask);
1924
1925 if (!xfer_mask)
1926 goto fail;
1927 /* don't gear down to MWDMA from UDMA, go directly to PIO */
1928 if (xfer_mask & ATA_MASK_UDMA)
1929 xfer_mask &= ~ATA_MASK_MWDMA;
1930
1931 highbit = fls(xfer_mask) - 1;
1932 xfer_mask &= ~(1 << highbit);
1933 if (force_pio0)
1934 xfer_mask &= 1 << ATA_SHIFT_PIO;
1935 if (!xfer_mask)
1936 goto fail;
1937
1938 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
1939 &dev->udma_mask);
1940
1941 printk(KERN_WARNING "ata%u: dev %u limiting speed to %s\n",
1942 ap->id, dev->devno, ata_mode_string(xfer_mask));
1943
1944 return 0;
1945
1946 fail:
1947 return -EINVAL;
1948}
1949
83206a29 1950static int ata_dev_set_mode(struct ata_port *ap, struct ata_device *dev)
1da177e4 1951{
83206a29
TH
1952 unsigned int err_mask;
1953 int rc;
1da177e4 1954
e8384607 1955 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
1956 if (dev->xfer_shift == ATA_SHIFT_PIO)
1957 dev->flags |= ATA_DFLAG_PIO;
1958
83206a29
TH
1959 err_mask = ata_dev_set_xfermode(ap, dev);
1960 if (err_mask) {
1961 printk(KERN_ERR
1962 "ata%u: failed to set xfermode (err_mask=0x%x)\n",
1963 ap->id, err_mask);
1964 return -EIO;
1965 }
1da177e4 1966
83206a29 1967 rc = ata_dev_revalidate(ap, dev, 0);
5eb45c02 1968 if (rc)
83206a29 1969 return rc;
48a8a14f 1970
23e71c3d
TH
1971 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
1972 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4
LT
1973
1974 printk(KERN_INFO "ata%u: dev %u configured for %s\n",
23e71c3d
TH
1975 ap->id, dev->devno,
1976 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 1977 return 0;
1da177e4
LT
1978}
1979
1da177e4
LT
1980/**
1981 * ata_set_mode - Program timings and issue SET FEATURES - XFER
1982 * @ap: port on which timings will be programmed
e82cbdb9 1983 * @r_failed_dev: out paramter for failed device
1da177e4 1984 *
e82cbdb9
TH
1985 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
1986 * ata_set_mode() fails, pointer to the failing device is
1987 * returned in @r_failed_dev.
780a87f7 1988 *
1da177e4 1989 * LOCKING:
0cba632b 1990 * PCI/etc. bus probe sem.
e82cbdb9
TH
1991 *
1992 * RETURNS:
1993 * 0 on success, negative errno otherwise
1da177e4 1994 */
e82cbdb9 1995static int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
1da177e4 1996{
e8e0619f 1997 struct ata_device *dev;
e82cbdb9 1998 int i, rc = 0, used_dma = 0, found = 0;
1da177e4 1999
a6d5a51c
TH
2000 /* step 1: calculate xfer_mask */
2001 for (i = 0; i < ATA_MAX_DEVICES; i++) {
acf356b1 2002 unsigned int pio_mask, dma_mask;
a6d5a51c 2003
e8e0619f
TH
2004 dev = &ap->device[i];
2005
e1211e3f 2006 if (!ata_dev_enabled(dev))
a6d5a51c
TH
2007 continue;
2008
acf356b1 2009 ata_dev_xfermask(ap, dev);
1da177e4 2010
acf356b1
TH
2011 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2012 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2013 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2014 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 2015
4f65977d 2016 found = 1;
5444a6f4
AC
2017 if (dev->dma_mode)
2018 used_dma = 1;
a6d5a51c 2019 }
4f65977d 2020 if (!found)
e82cbdb9 2021 goto out;
a6d5a51c
TH
2022
2023 /* step 2: always set host PIO timings */
e8e0619f
TH
2024 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2025 dev = &ap->device[i];
2026 if (!ata_dev_enabled(dev))
2027 continue;
2028
2029 if (!dev->pio_mode) {
2030 printk(KERN_WARNING "ata%u: dev %u no PIO support\n",
2031 ap->id, dev->devno);
2032 rc = -EINVAL;
e82cbdb9 2033 goto out;
e8e0619f
TH
2034 }
2035
2036 dev->xfer_mode = dev->pio_mode;
2037 dev->xfer_shift = ATA_SHIFT_PIO;
2038 if (ap->ops->set_piomode)
2039 ap->ops->set_piomode(ap, dev);
2040 }
1da177e4 2041
a6d5a51c 2042 /* step 3: set host DMA timings */
e8e0619f
TH
2043 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2044 dev = &ap->device[i];
2045
2046 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2047 continue;
2048
2049 dev->xfer_mode = dev->dma_mode;
2050 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2051 if (ap->ops->set_dmamode)
2052 ap->ops->set_dmamode(ap, dev);
2053 }
1da177e4
LT
2054
2055 /* step 4: update devices' xfer mode */
83206a29 2056 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e8e0619f 2057 dev = &ap->device[i];
1da177e4 2058
e1211e3f 2059 if (!ata_dev_enabled(dev))
83206a29
TH
2060 continue;
2061
5bbc53f4
TH
2062 rc = ata_dev_set_mode(ap, dev);
2063 if (rc)
e82cbdb9 2064 goto out;
83206a29 2065 }
1da177e4 2066
e8e0619f
TH
2067 /* Record simplex status. If we selected DMA then the other
2068 * host channels are not permitted to do so.
5444a6f4 2069 */
5444a6f4
AC
2070 if (used_dma && (ap->host_set->flags & ATA_HOST_SIMPLEX))
2071 ap->host_set->simplex_claimed = 1;
2072
e8e0619f 2073 /* step5: chip specific finalisation */
1da177e4
LT
2074 if (ap->ops->post_set_mode)
2075 ap->ops->post_set_mode(ap);
2076
e82cbdb9
TH
2077 out:
2078 if (rc)
2079 *r_failed_dev = dev;
2080 return rc;
1da177e4
LT
2081}
2082
1fdffbce
JG
2083/**
2084 * ata_tf_to_host - issue ATA taskfile to host controller
2085 * @ap: port to which command is being issued
2086 * @tf: ATA taskfile register set
2087 *
2088 * Issues ATA taskfile register set to ATA host controller,
2089 * with proper synchronization with interrupt handler and
2090 * other threads.
2091 *
2092 * LOCKING:
2093 * spin_lock_irqsave(host_set lock)
2094 */
2095
2096static inline void ata_tf_to_host(struct ata_port *ap,
2097 const struct ata_taskfile *tf)
2098{
2099 ap->ops->tf_load(ap, tf);
2100 ap->ops->exec_command(ap, tf);
2101}
2102
1da177e4
LT
2103/**
2104 * ata_busy_sleep - sleep until BSY clears, or timeout
2105 * @ap: port containing status register to be polled
2106 * @tmout_pat: impatience timeout
2107 * @tmout: overall timeout
2108 *
780a87f7
JG
2109 * Sleep until ATA Status register bit BSY clears,
2110 * or a timeout occurs.
2111 *
2112 * LOCKING: None.
1da177e4
LT
2113 */
2114
6f8b9958
TH
2115unsigned int ata_busy_sleep (struct ata_port *ap,
2116 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
2117{
2118 unsigned long timer_start, timeout;
2119 u8 status;
2120
2121 status = ata_busy_wait(ap, ATA_BUSY, 300);
2122 timer_start = jiffies;
2123 timeout = timer_start + tmout_pat;
2124 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2125 msleep(50);
2126 status = ata_busy_wait(ap, ATA_BUSY, 3);
2127 }
2128
2129 if (status & ATA_BUSY)
2130 printk(KERN_WARNING "ata%u is slow to respond, "
2131 "please be patient\n", ap->id);
2132
2133 timeout = timer_start + tmout;
2134 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2135 msleep(50);
2136 status = ata_chk_status(ap);
2137 }
2138
2139 if (status & ATA_BUSY) {
2140 printk(KERN_ERR "ata%u failed to respond (%lu secs)\n",
2141 ap->id, tmout / HZ);
2142 return 1;
2143 }
2144
2145 return 0;
2146}
2147
2148static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2149{
2150 struct ata_ioports *ioaddr = &ap->ioaddr;
2151 unsigned int dev0 = devmask & (1 << 0);
2152 unsigned int dev1 = devmask & (1 << 1);
2153 unsigned long timeout;
2154
2155 /* if device 0 was found in ata_devchk, wait for its
2156 * BSY bit to clear
2157 */
2158 if (dev0)
2159 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2160
2161 /* if device 1 was found in ata_devchk, wait for
2162 * register access, then wait for BSY to clear
2163 */
2164 timeout = jiffies + ATA_TMOUT_BOOT;
2165 while (dev1) {
2166 u8 nsect, lbal;
2167
2168 ap->ops->dev_select(ap, 1);
2169 if (ap->flags & ATA_FLAG_MMIO) {
2170 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2171 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2172 } else {
2173 nsect = inb(ioaddr->nsect_addr);
2174 lbal = inb(ioaddr->lbal_addr);
2175 }
2176 if ((nsect == 1) && (lbal == 1))
2177 break;
2178 if (time_after(jiffies, timeout)) {
2179 dev1 = 0;
2180 break;
2181 }
2182 msleep(50); /* give drive a breather */
2183 }
2184 if (dev1)
2185 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2186
2187 /* is all this really necessary? */
2188 ap->ops->dev_select(ap, 0);
2189 if (dev1)
2190 ap->ops->dev_select(ap, 1);
2191 if (dev0)
2192 ap->ops->dev_select(ap, 0);
2193}
2194
1da177e4
LT
2195static unsigned int ata_bus_softreset(struct ata_port *ap,
2196 unsigned int devmask)
2197{
2198 struct ata_ioports *ioaddr = &ap->ioaddr;
2199
2200 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2201
2202 /* software reset. causes dev0 to be selected */
2203 if (ap->flags & ATA_FLAG_MMIO) {
2204 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2205 udelay(20); /* FIXME: flush */
2206 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2207 udelay(20); /* FIXME: flush */
2208 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2209 } else {
2210 outb(ap->ctl, ioaddr->ctl_addr);
2211 udelay(10);
2212 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2213 udelay(10);
2214 outb(ap->ctl, ioaddr->ctl_addr);
2215 }
2216
2217 /* spec mandates ">= 2ms" before checking status.
2218 * We wait 150ms, because that was the magic delay used for
2219 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2220 * between when the ATA command register is written, and then
2221 * status is checked. Because waiting for "a while" before
2222 * checking status is fine, post SRST, we perform this magic
2223 * delay here as well.
09c7ad79
AC
2224 *
2225 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
2226 */
2227 msleep(150);
2228
2e9edbf8 2229 /* Before we perform post reset processing we want to see if
298a41ca
TH
2230 * the bus shows 0xFF because the odd clown forgets the D7
2231 * pulldown resistor.
2232 */
09c7ad79 2233 if (ata_check_status(ap) == 0xFF)
298a41ca 2234 return AC_ERR_OTHER;
09c7ad79 2235
1da177e4
LT
2236 ata_bus_post_reset(ap, devmask);
2237
2238 return 0;
2239}
2240
2241/**
2242 * ata_bus_reset - reset host port and associated ATA channel
2243 * @ap: port to reset
2244 *
2245 * This is typically the first time we actually start issuing
2246 * commands to the ATA channel. We wait for BSY to clear, then
2247 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2248 * result. Determine what devices, if any, are on the channel
2249 * by looking at the device 0/1 error register. Look at the signature
2250 * stored in each device's taskfile registers, to determine if
2251 * the device is ATA or ATAPI.
2252 *
2253 * LOCKING:
0cba632b
JG
2254 * PCI/etc. bus probe sem.
2255 * Obtains host_set lock.
1da177e4
LT
2256 *
2257 * SIDE EFFECTS:
198e0fed 2258 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
2259 */
2260
2261void ata_bus_reset(struct ata_port *ap)
2262{
2263 struct ata_ioports *ioaddr = &ap->ioaddr;
2264 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2265 u8 err;
aec5c3c1 2266 unsigned int dev0, dev1 = 0, devmask = 0;
1da177e4
LT
2267
2268 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2269
2270 /* determine if device 0/1 are present */
2271 if (ap->flags & ATA_FLAG_SATA_RESET)
2272 dev0 = 1;
2273 else {
2274 dev0 = ata_devchk(ap, 0);
2275 if (slave_possible)
2276 dev1 = ata_devchk(ap, 1);
2277 }
2278
2279 if (dev0)
2280 devmask |= (1 << 0);
2281 if (dev1)
2282 devmask |= (1 << 1);
2283
2284 /* select device 0 again */
2285 ap->ops->dev_select(ap, 0);
2286
2287 /* issue bus reset */
2288 if (ap->flags & ATA_FLAG_SRST)
aec5c3c1
TH
2289 if (ata_bus_softreset(ap, devmask))
2290 goto err_out;
1da177e4
LT
2291
2292 /*
2293 * determine by signature whether we have ATA or ATAPI devices
2294 */
b4dc7623 2295 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 2296 if ((slave_possible) && (err != 0x81))
b4dc7623 2297 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4
LT
2298
2299 /* re-enable interrupts */
2300 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2301 ata_irq_on(ap);
2302
2303 /* is double-select really necessary? */
2304 if (ap->device[1].class != ATA_DEV_NONE)
2305 ap->ops->dev_select(ap, 1);
2306 if (ap->device[0].class != ATA_DEV_NONE)
2307 ap->ops->dev_select(ap, 0);
2308
2309 /* if no devices were detected, disable this port */
2310 if ((ap->device[0].class == ATA_DEV_NONE) &&
2311 (ap->device[1].class == ATA_DEV_NONE))
2312 goto err_out;
2313
2314 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2315 /* set up device control for ATA_FLAG_SATA_RESET */
2316 if (ap->flags & ATA_FLAG_MMIO)
2317 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2318 else
2319 outb(ap->ctl, ioaddr->ctl_addr);
2320 }
2321
2322 DPRINTK("EXIT\n");
2323 return;
2324
2325err_out:
2326 printk(KERN_ERR "ata%u: disabling port\n", ap->id);
2327 ap->ops->port_disable(ap);
2328
2329 DPRINTK("EXIT\n");
2330}
2331
7a7921e8
TH
2332static int sata_phy_resume(struct ata_port *ap)
2333{
2334 unsigned long timeout = jiffies + (HZ * 5);
852ee16a 2335 u32 scontrol, sstatus;
7a7921e8 2336
852ee16a
TH
2337 scontrol = scr_read(ap, SCR_CONTROL);
2338 scontrol = (scontrol & 0x0f0) | 0x300;
2339 scr_write_flush(ap, SCR_CONTROL, scontrol);
7a7921e8
TH
2340
2341 /* Wait for phy to become ready, if necessary. */
2342 do {
2343 msleep(200);
2344 sstatus = scr_read(ap, SCR_STATUS);
2345 if ((sstatus & 0xf) != 1)
2346 return 0;
2347 } while (time_before(jiffies, timeout));
2348
2349 return -1;
2350}
2351
8a19ac89
TH
2352/**
2353 * ata_std_probeinit - initialize probing
2354 * @ap: port to be probed
2355 *
2356 * @ap is about to be probed. Initialize it. This function is
2357 * to be used as standard callback for ata_drive_probe_reset().
3a39746a
TH
2358 *
2359 * NOTE!!! Do not use this function as probeinit if a low level
2360 * driver implements only hardreset. Just pass NULL as probeinit
2361 * in that case. Using this function is probably okay but doing
2362 * so makes reset sequence different from the original
2363 * ->phy_reset implementation and Jeff nervous. :-P
8a19ac89 2364 */
17efc5f7 2365void ata_std_probeinit(struct ata_port *ap)
8a19ac89 2366{
17efc5f7 2367 if ((ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read) {
1c3fae4d
TH
2368 u32 spd;
2369
8a19ac89 2370 sata_phy_resume(ap);
1c3fae4d
TH
2371
2372 spd = (scr_read(ap, SCR_CONTROL) & 0xf0) >> 4;
2373 if (spd)
2374 ap->sata_spd_limit &= (1 << spd) - 1;
2375
3a39746a
TH
2376 if (sata_dev_present(ap))
2377 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2378 }
8a19ac89
TH
2379}
2380
c2bd5804
TH
2381/**
2382 * ata_std_softreset - reset host port via ATA SRST
2383 * @ap: port to reset
2384 * @verbose: fail verbosely
2385 * @classes: resulting classes of attached devices
2386 *
2387 * Reset host port using ATA SRST. This function is to be used
2388 * as standard callback for ata_drive_*_reset() functions.
2389 *
2390 * LOCKING:
2391 * Kernel thread context (may sleep)
2392 *
2393 * RETURNS:
2394 * 0 on success, -errno otherwise.
2395 */
2396int ata_std_softreset(struct ata_port *ap, int verbose, unsigned int *classes)
2397{
2398 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2399 unsigned int devmask = 0, err_mask;
2400 u8 err;
2401
2402 DPRINTK("ENTER\n");
2403
3a39746a
TH
2404 if (ap->ops->scr_read && !sata_dev_present(ap)) {
2405 classes[0] = ATA_DEV_NONE;
2406 goto out;
2407 }
2408
c2bd5804
TH
2409 /* determine if device 0/1 are present */
2410 if (ata_devchk(ap, 0))
2411 devmask |= (1 << 0);
2412 if (slave_possible && ata_devchk(ap, 1))
2413 devmask |= (1 << 1);
2414
c2bd5804
TH
2415 /* select device 0 again */
2416 ap->ops->dev_select(ap, 0);
2417
2418 /* issue bus reset */
2419 DPRINTK("about to softreset, devmask=%x\n", devmask);
2420 err_mask = ata_bus_softreset(ap, devmask);
2421 if (err_mask) {
2422 if (verbose)
2423 printk(KERN_ERR "ata%u: SRST failed (err_mask=0x%x)\n",
2424 ap->id, err_mask);
2425 else
2426 DPRINTK("EXIT, softreset failed (err_mask=0x%x)\n",
2427 err_mask);
2428 return -EIO;
2429 }
2430
2431 /* determine by signature whether we have ATA or ATAPI devices */
2432 classes[0] = ata_dev_try_classify(ap, 0, &err);
2433 if (slave_possible && err != 0x81)
2434 classes[1] = ata_dev_try_classify(ap, 1, &err);
2435
3a39746a 2436 out:
c2bd5804
TH
2437 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2438 return 0;
2439}
2440
2441/**
2442 * sata_std_hardreset - reset host port via SATA phy reset
2443 * @ap: port to reset
2444 * @verbose: fail verbosely
2445 * @class: resulting class of attached device
2446 *
2447 * SATA phy-reset host port using DET bits of SControl register.
2448 * This function is to be used as standard callback for
2449 * ata_drive_*_reset().
2450 *
2451 * LOCKING:
2452 * Kernel thread context (may sleep)
2453 *
2454 * RETURNS:
2455 * 0 on success, -errno otherwise.
2456 */
2457int sata_std_hardreset(struct ata_port *ap, int verbose, unsigned int *class)
2458{
852ee16a
TH
2459 u32 scontrol;
2460
c2bd5804
TH
2461 DPRINTK("ENTER\n");
2462
1c3fae4d
TH
2463 if (ata_set_sata_spd_needed(ap)) {
2464 /* SATA spec says nothing about how to reconfigure
2465 * spd. To be on the safe side, turn off phy during
2466 * reconfiguration. This works for at least ICH7 AHCI
2467 * and Sil3124.
2468 */
2469 scontrol = scr_read(ap, SCR_CONTROL);
2470 scontrol = (scontrol & 0x0f0) | 0x302;
2471 scr_write_flush(ap, SCR_CONTROL, scontrol);
2472
2473 ata_set_sata_spd(ap);
2474 }
2475
2476 /* issue phy wake/reset */
852ee16a
TH
2477 scontrol = scr_read(ap, SCR_CONTROL);
2478 scontrol = (scontrol & 0x0f0) | 0x301;
2479 scr_write_flush(ap, SCR_CONTROL, scontrol);
c2bd5804 2480
1c3fae4d 2481 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
2482 * 10.4.2 says at least 1 ms.
2483 */
2484 msleep(1);
2485
1c3fae4d 2486 /* bring phy back */
7a7921e8 2487 sata_phy_resume(ap);
c2bd5804 2488
c2bd5804
TH
2489 /* TODO: phy layer with polling, timeouts, etc. */
2490 if (!sata_dev_present(ap)) {
2491 *class = ATA_DEV_NONE;
2492 DPRINTK("EXIT, link offline\n");
2493 return 0;
2494 }
2495
2496 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
2497 if (verbose)
2498 printk(KERN_ERR "ata%u: COMRESET failed "
2499 "(device not ready)\n", ap->id);
2500 else
2501 DPRINTK("EXIT, device not ready\n");
2502 return -EIO;
2503 }
2504
3a39746a
TH
2505 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2506
c2bd5804
TH
2507 *class = ata_dev_try_classify(ap, 0, NULL);
2508
2509 DPRINTK("EXIT, class=%u\n", *class);
2510 return 0;
2511}
2512
2513/**
2514 * ata_std_postreset - standard postreset callback
2515 * @ap: the target ata_port
2516 * @classes: classes of attached devices
2517 *
2518 * This function is invoked after a successful reset. Note that
2519 * the device might have been reset more than once using
2520 * different reset methods before postreset is invoked.
c2bd5804
TH
2521 *
2522 * This function is to be used as standard callback for
2523 * ata_drive_*_reset().
2524 *
2525 * LOCKING:
2526 * Kernel thread context (may sleep)
2527 */
2528void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2529{
2530 DPRINTK("ENTER\n");
2531
56497bd5 2532 /* set cable type if it isn't already set */
c2bd5804
TH
2533 if (ap->cbl == ATA_CBL_NONE && ap->flags & ATA_FLAG_SATA)
2534 ap->cbl = ATA_CBL_SATA;
2535
2536 /* print link status */
2537 if (ap->cbl == ATA_CBL_SATA)
2538 sata_print_link_status(ap);
2539
3a39746a
TH
2540 /* re-enable interrupts */
2541 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2542 ata_irq_on(ap);
c2bd5804
TH
2543
2544 /* is double-select really necessary? */
2545 if (classes[0] != ATA_DEV_NONE)
2546 ap->ops->dev_select(ap, 1);
2547 if (classes[1] != ATA_DEV_NONE)
2548 ap->ops->dev_select(ap, 0);
2549
3a39746a
TH
2550 /* bail out if no device is present */
2551 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2552 DPRINTK("EXIT, no device\n");
2553 return;
2554 }
2555
2556 /* set up device control */
2557 if (ap->ioaddr.ctl_addr) {
2558 if (ap->flags & ATA_FLAG_MMIO)
2559 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2560 else
2561 outb(ap->ctl, ap->ioaddr.ctl_addr);
2562 }
c2bd5804
TH
2563
2564 DPRINTK("EXIT\n");
2565}
2566
2567/**
2568 * ata_std_probe_reset - standard probe reset method
2569 * @ap: prot to perform probe-reset
2570 * @classes: resulting classes of attached devices
2571 *
2572 * The stock off-the-shelf ->probe_reset method.
2573 *
2574 * LOCKING:
2575 * Kernel thread context (may sleep)
2576 *
2577 * RETURNS:
2578 * 0 on success, -errno otherwise.
2579 */
2580int ata_std_probe_reset(struct ata_port *ap, unsigned int *classes)
2581{
2582 ata_reset_fn_t hardreset;
2583
2584 hardreset = NULL;
b911fc3a 2585 if (ap->flags & ATA_FLAG_SATA && ap->ops->scr_read)
c2bd5804
TH
2586 hardreset = sata_std_hardreset;
2587
8a19ac89 2588 return ata_drive_probe_reset(ap, ata_std_probeinit,
7944ea95 2589 ata_std_softreset, hardreset,
c2bd5804
TH
2590 ata_std_postreset, classes);
2591}
2592
9974e7cc
TH
2593static int ata_do_reset(struct ata_port *ap,
2594 ata_reset_fn_t reset, ata_postreset_fn_t postreset,
2595 int verbose, unsigned int *classes)
a62c0fc5
TH
2596{
2597 int i, rc;
2598
2599 for (i = 0; i < ATA_MAX_DEVICES; i++)
2600 classes[i] = ATA_DEV_UNKNOWN;
2601
9974e7cc 2602 rc = reset(ap, verbose, classes);
a62c0fc5
TH
2603 if (rc)
2604 return rc;
2605
2606 /* If any class isn't ATA_DEV_UNKNOWN, consider classification
2607 * is complete and convert all ATA_DEV_UNKNOWN to
2608 * ATA_DEV_NONE.
2609 */
2610 for (i = 0; i < ATA_MAX_DEVICES; i++)
2611 if (classes[i] != ATA_DEV_UNKNOWN)
2612 break;
2613
2614 if (i < ATA_MAX_DEVICES)
2615 for (i = 0; i < ATA_MAX_DEVICES; i++)
2616 if (classes[i] == ATA_DEV_UNKNOWN)
2617 classes[i] = ATA_DEV_NONE;
2618
2619 if (postreset)
2620 postreset(ap, classes);
2621
9974e7cc 2622 return 0;
a62c0fc5
TH
2623}
2624
2625/**
2626 * ata_drive_probe_reset - Perform probe reset with given methods
2627 * @ap: port to reset
7944ea95 2628 * @probeinit: probeinit method (can be NULL)
a62c0fc5
TH
2629 * @softreset: softreset method (can be NULL)
2630 * @hardreset: hardreset method (can be NULL)
2631 * @postreset: postreset method (can be NULL)
2632 * @classes: resulting classes of attached devices
2633 *
2634 * Reset the specified port and classify attached devices using
2635 * given methods. This function prefers softreset but tries all
2636 * possible reset sequences to reset and classify devices. This
2637 * function is intended to be used for constructing ->probe_reset
2638 * callback by low level drivers.
2639 *
2640 * Reset methods should follow the following rules.
2641 *
2642 * - Return 0 on sucess, -errno on failure.
2643 * - If classification is supported, fill classes[] with
2644 * recognized class codes.
2645 * - If classification is not supported, leave classes[] alone.
2646 * - If verbose is non-zero, print error message on failure;
2647 * otherwise, shut up.
2648 *
2649 * LOCKING:
2650 * Kernel thread context (may sleep)
2651 *
2652 * RETURNS:
2653 * 0 on success, -EINVAL if no reset method is avaliable, -ENODEV
2654 * if classification fails, and any error code from reset
2655 * methods.
2656 */
7944ea95 2657int ata_drive_probe_reset(struct ata_port *ap, ata_probeinit_fn_t probeinit,
a62c0fc5
TH
2658 ata_reset_fn_t softreset, ata_reset_fn_t hardreset,
2659 ata_postreset_fn_t postreset, unsigned int *classes)
2660{
2661 int rc = -EINVAL;
2662
7944ea95
TH
2663 if (probeinit)
2664 probeinit(ap);
2665
90dac02c 2666 if (softreset && !ata_set_sata_spd_needed(ap)) {
9974e7cc
TH
2667 rc = ata_do_reset(ap, softreset, postreset, 0, classes);
2668 if (rc == 0 && classes[0] != ATA_DEV_UNKNOWN)
2669 goto done;
edbabd86
TH
2670 printk(KERN_INFO "ata%u: softreset failed, will try "
2671 "hardreset in 5 secs\n", ap->id);
2672 ssleep(5);
a62c0fc5
TH
2673 }
2674
2675 if (!hardreset)
9974e7cc 2676 goto done;
a62c0fc5 2677
90dac02c
TH
2678 while (1) {
2679 rc = ata_do_reset(ap, hardreset, postreset, 0, classes);
2680 if (rc == 0) {
2681 if (classes[0] != ATA_DEV_UNKNOWN)
2682 goto done;
2683 break;
2684 }
2685
2686 if (ata_down_sata_spd_limit(ap))
2687 goto done;
edbabd86
TH
2688
2689 printk(KERN_INFO "ata%u: hardreset failed, will retry "
2690 "in 5 secs\n", ap->id);
2691 ssleep(5);
90dac02c 2692 }
a62c0fc5 2693
edbabd86
TH
2694 if (softreset) {
2695 printk(KERN_INFO "ata%u: hardreset succeeded without "
2696 "classification, will retry softreset in 5 secs\n",
2697 ap->id);
2698 ssleep(5);
2699
9974e7cc 2700 rc = ata_do_reset(ap, softreset, postreset, 0, classes);
edbabd86 2701 }
a62c0fc5 2702
9974e7cc
TH
2703 done:
2704 if (rc == 0 && classes[0] == ATA_DEV_UNKNOWN)
2705 rc = -ENODEV;
a62c0fc5
TH
2706 return rc;
2707}
2708
623a3128
TH
2709/**
2710 * ata_dev_same_device - Determine whether new ID matches configured device
2711 * @ap: port on which the device to compare against resides
2712 * @dev: device to compare against
2713 * @new_class: class of the new device
2714 * @new_id: IDENTIFY page of the new device
2715 *
2716 * Compare @new_class and @new_id against @dev and determine
2717 * whether @dev is the device indicated by @new_class and
2718 * @new_id.
2719 *
2720 * LOCKING:
2721 * None.
2722 *
2723 * RETURNS:
2724 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2725 */
2726static int ata_dev_same_device(struct ata_port *ap, struct ata_device *dev,
2727 unsigned int new_class, const u16 *new_id)
2728{
2729 const u16 *old_id = dev->id;
2730 unsigned char model[2][41], serial[2][21];
2731 u64 new_n_sectors;
2732
2733 if (dev->class != new_class) {
2734 printk(KERN_INFO
2735 "ata%u: dev %u class mismatch %d != %d\n",
2736 ap->id, dev->devno, dev->class, new_class);
2737 return 0;
2738 }
2739
2740 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2741 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2742 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2743 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2744 new_n_sectors = ata_id_n_sectors(new_id);
2745
2746 if (strcmp(model[0], model[1])) {
2747 printk(KERN_INFO
2748 "ata%u: dev %u model number mismatch '%s' != '%s'\n",
2749 ap->id, dev->devno, model[0], model[1]);
2750 return 0;
2751 }
2752
2753 if (strcmp(serial[0], serial[1])) {
2754 printk(KERN_INFO
2755 "ata%u: dev %u serial number mismatch '%s' != '%s'\n",
2756 ap->id, dev->devno, serial[0], serial[1]);
2757 return 0;
2758 }
2759
2760 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
2761 printk(KERN_INFO
2762 "ata%u: dev %u n_sectors mismatch %llu != %llu\n",
2763 ap->id, dev->devno, (unsigned long long)dev->n_sectors,
2764 (unsigned long long)new_n_sectors);
2765 return 0;
2766 }
2767
2768 return 1;
2769}
2770
2771/**
2772 * ata_dev_revalidate - Revalidate ATA device
2773 * @ap: port on which the device to revalidate resides
2774 * @dev: device to revalidate
2775 * @post_reset: is this revalidation after reset?
2776 *
2777 * Re-read IDENTIFY page and make sure @dev is still attached to
2778 * the port.
2779 *
2780 * LOCKING:
2781 * Kernel thread context (may sleep)
2782 *
2783 * RETURNS:
2784 * 0 on success, negative errno otherwise
2785 */
2786int ata_dev_revalidate(struct ata_port *ap, struct ata_device *dev,
2787 int post_reset)
2788{
5eb45c02
TH
2789 unsigned int class = dev->class;
2790 u16 *id = NULL;
623a3128
TH
2791 int rc;
2792
5eb45c02
TH
2793 if (!ata_dev_enabled(dev)) {
2794 rc = -ENODEV;
2795 goto fail;
2796 }
623a3128
TH
2797
2798 /* allocate & read ID data */
2799 rc = ata_dev_read_id(ap, dev, &class, post_reset, &id);
2800 if (rc)
2801 goto fail;
2802
2803 /* is the device still there? */
2804 if (!ata_dev_same_device(ap, dev, class, id)) {
2805 rc = -ENODEV;
2806 goto fail;
2807 }
2808
2809 kfree(dev->id);
2810 dev->id = id;
2811
2812 /* configure device according to the new ID */
5eb45c02
TH
2813 rc = ata_dev_configure(ap, dev, 0);
2814 if (rc == 0)
2815 return 0;
623a3128
TH
2816
2817 fail:
2818 printk(KERN_ERR "ata%u: dev %u revalidation failed (errno=%d)\n",
2819 ap->id, dev->devno, rc);
2820 kfree(id);
2821 return rc;
2822}
2823
98ac62de 2824static const char * const ata_dma_blacklist [] = {
f4b15fef
AC
2825 "WDC AC11000H", NULL,
2826 "WDC AC22100H", NULL,
2827 "WDC AC32500H", NULL,
2828 "WDC AC33100H", NULL,
2829 "WDC AC31600H", NULL,
2830 "WDC AC32100H", "24.09P07",
2831 "WDC AC23200L", "21.10N21",
2832 "Compaq CRD-8241B", NULL,
2833 "CRD-8400B", NULL,
2834 "CRD-8480B", NULL,
2835 "CRD-8482B", NULL,
2836 "CRD-84", NULL,
2837 "SanDisk SDP3B", NULL,
2838 "SanDisk SDP3B-64", NULL,
2839 "SANYO CD-ROM CRD", NULL,
2840 "HITACHI CDR-8", NULL,
2e9edbf8 2841 "HITACHI CDR-8335", NULL,
f4b15fef 2842 "HITACHI CDR-8435", NULL,
2e9edbf8
JG
2843 "Toshiba CD-ROM XM-6202B", NULL,
2844 "TOSHIBA CD-ROM XM-1702BC", NULL,
2845 "CD-532E-A", NULL,
2846 "E-IDE CD-ROM CR-840", NULL,
2847 "CD-ROM Drive/F5A", NULL,
2848 "WPI CDD-820", NULL,
f4b15fef 2849 "SAMSUNG CD-ROM SC-148C", NULL,
2e9edbf8 2850 "SAMSUNG CD-ROM SC", NULL,
f4b15fef
AC
2851 "SanDisk SDP3B-64", NULL,
2852 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
2853 "_NEC DV5800A", NULL,
2854 "SAMSUNG CD-ROM SN-124", "N001"
1da177e4 2855};
2e9edbf8 2856
f4b15fef
AC
2857static int ata_strim(char *s, size_t len)
2858{
2859 len = strnlen(s, len);
2860
2861 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2862 while ((len > 0) && (s[len - 1] == ' ')) {
2863 len--;
2864 s[len] = 0;
2865 }
2866 return len;
2867}
1da177e4 2868
057ace5e 2869static int ata_dma_blacklisted(const struct ata_device *dev)
1da177e4 2870{
f4b15fef
AC
2871 unsigned char model_num[40];
2872 unsigned char model_rev[16];
2873 unsigned int nlen, rlen;
1da177e4
LT
2874 int i;
2875
f4b15fef
AC
2876 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
2877 sizeof(model_num));
2878 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
2879 sizeof(model_rev));
2880 nlen = ata_strim(model_num, sizeof(model_num));
2881 rlen = ata_strim(model_rev, sizeof(model_rev));
1da177e4 2882
f4b15fef
AC
2883 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
2884 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
2885 if (ata_dma_blacklist[i+1] == NULL)
2886 return 1;
2887 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
2888 return 1;
2889 }
2890 }
1da177e4
LT
2891 return 0;
2892}
2893
a6d5a51c
TH
2894/**
2895 * ata_dev_xfermask - Compute supported xfermask of the given device
2896 * @ap: Port on which the device to compute xfermask for resides
2897 * @dev: Device to compute xfermask for
2898 *
acf356b1
TH
2899 * Compute supported xfermask of @dev and store it in
2900 * dev->*_mask. This function is responsible for applying all
2901 * known limits including host controller limits, device
2902 * blacklist, etc...
a6d5a51c 2903 *
600511e8
TH
2904 * FIXME: The current implementation limits all transfer modes to
2905 * the fastest of the lowested device on the port. This is not
05c8e0ac 2906 * required on most controllers.
600511e8 2907 *
a6d5a51c
TH
2908 * LOCKING:
2909 * None.
a6d5a51c 2910 */
acf356b1 2911static void ata_dev_xfermask(struct ata_port *ap, struct ata_device *dev)
1da177e4 2912{
5444a6f4 2913 struct ata_host_set *hs = ap->host_set;
a6d5a51c
TH
2914 unsigned long xfer_mask;
2915 int i;
1da177e4 2916
565083e1
TH
2917 xfer_mask = ata_pack_xfermask(ap->pio_mask,
2918 ap->mwdma_mask, ap->udma_mask);
2919
2920 /* Apply cable rule here. Don't apply it early because when
2921 * we handle hot plug the cable type can itself change.
2922 */
2923 if (ap->cbl == ATA_CBL_PATA40)
2924 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
1da177e4 2925
5444a6f4 2926 /* FIXME: Use port-wide xfermask for now */
a6d5a51c
TH
2927 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2928 struct ata_device *d = &ap->device[i];
565083e1
TH
2929
2930 if (ata_dev_absent(d))
2931 continue;
2932
2933 if (ata_dev_disabled(d)) {
2934 /* to avoid violating device selection timing */
2935 xfer_mask &= ata_pack_xfermask(d->pio_mask,
2936 UINT_MAX, UINT_MAX);
a6d5a51c 2937 continue;
565083e1
TH
2938 }
2939
2940 xfer_mask &= ata_pack_xfermask(d->pio_mask,
2941 d->mwdma_mask, d->udma_mask);
a6d5a51c
TH
2942 xfer_mask &= ata_id_xfermask(d->id);
2943 if (ata_dma_blacklisted(d))
2944 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
1da177e4
LT
2945 }
2946
a6d5a51c
TH
2947 if (ata_dma_blacklisted(dev))
2948 printk(KERN_WARNING "ata%u: dev %u is on DMA blacklist, "
2949 "disabling DMA\n", ap->id, dev->devno);
2950
5444a6f4
AC
2951 if (hs->flags & ATA_HOST_SIMPLEX) {
2952 if (hs->simplex_claimed)
2953 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
2954 }
565083e1 2955
5444a6f4
AC
2956 if (ap->ops->mode_filter)
2957 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
2958
565083e1
TH
2959 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
2960 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
2961}
2962
1da177e4
LT
2963/**
2964 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
2965 * @ap: Port associated with device @dev
2966 * @dev: Device to which command will be sent
2967 *
780a87f7
JG
2968 * Issue SET FEATURES - XFER MODE command to device @dev
2969 * on port @ap.
2970 *
1da177e4 2971 * LOCKING:
0cba632b 2972 * PCI/etc. bus probe sem.
83206a29
TH
2973 *
2974 * RETURNS:
2975 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
2976 */
2977
83206a29
TH
2978static unsigned int ata_dev_set_xfermode(struct ata_port *ap,
2979 struct ata_device *dev)
1da177e4 2980{
a0123703 2981 struct ata_taskfile tf;
83206a29 2982 unsigned int err_mask;
1da177e4
LT
2983
2984 /* set up set-features taskfile */
2985 DPRINTK("set features - xfer mode\n");
2986
a0123703
TH
2987 ata_tf_init(ap, &tf, dev->devno);
2988 tf.command = ATA_CMD_SET_FEATURES;
2989 tf.feature = SETFEATURES_XFER;
2990 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2991 tf.protocol = ATA_PROT_NODATA;
2992 tf.nsect = dev->xfer_mode;
1da177e4 2993
d69cf37d 2994 err_mask = ata_exec_internal(ap, dev, &tf, NULL, DMA_NONE, NULL, 0);
1da177e4 2995
83206a29
TH
2996 DPRINTK("EXIT, err_mask=%x\n", err_mask);
2997 return err_mask;
1da177e4
LT
2998}
2999
8bf62ece
AL
3000/**
3001 * ata_dev_init_params - Issue INIT DEV PARAMS command
3002 * @ap: Port associated with device @dev
3003 * @dev: Device to which command will be sent
3004 *
3005 * LOCKING:
6aff8f1f
TH
3006 * Kernel thread context (may sleep)
3007 *
3008 * RETURNS:
3009 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece
AL
3010 */
3011
6aff8f1f 3012static unsigned int ata_dev_init_params(struct ata_port *ap,
00b6f5e9
AL
3013 struct ata_device *dev,
3014 u16 heads,
3015 u16 sectors)
8bf62ece 3016{
a0123703 3017 struct ata_taskfile tf;
6aff8f1f 3018 unsigned int err_mask;
8bf62ece
AL
3019
3020 /* Number of sectors per track 1-255. Number of heads 1-16 */
3021 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 3022 return AC_ERR_INVALID;
8bf62ece
AL
3023
3024 /* set up init dev params taskfile */
3025 DPRINTK("init dev params \n");
3026
a0123703
TH
3027 ata_tf_init(ap, &tf, dev->devno);
3028 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3029 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3030 tf.protocol = ATA_PROT_NODATA;
3031 tf.nsect = sectors;
3032 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 3033
d69cf37d 3034 err_mask = ata_exec_internal(ap, dev, &tf, NULL, DMA_NONE, NULL, 0);
8bf62ece 3035
6aff8f1f
TH
3036 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3037 return err_mask;
8bf62ece
AL
3038}
3039
1da177e4 3040/**
0cba632b
JG
3041 * ata_sg_clean - Unmap DMA memory associated with command
3042 * @qc: Command containing DMA memory to be released
3043 *
3044 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
3045 *
3046 * LOCKING:
0cba632b 3047 * spin_lock_irqsave(host_set lock)
1da177e4
LT
3048 */
3049
3050static void ata_sg_clean(struct ata_queued_cmd *qc)
3051{
3052 struct ata_port *ap = qc->ap;
cedc9a47 3053 struct scatterlist *sg = qc->__sg;
1da177e4 3054 int dir = qc->dma_dir;
cedc9a47 3055 void *pad_buf = NULL;
1da177e4 3056
a4631474
TH
3057 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3058 WARN_ON(sg == NULL);
1da177e4
LT
3059
3060 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 3061 WARN_ON(qc->n_elem > 1);
1da177e4 3062
2c13b7ce 3063 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 3064
cedc9a47
JG
3065 /* if we padded the buffer out to 32-bit bound, and data
3066 * xfer direction is from-device, we must copy from the
3067 * pad buffer back into the supplied buffer
3068 */
3069 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3070 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3071
3072 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 3073 if (qc->n_elem)
2f1f610b 3074 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
3075 /* restore last sg */
3076 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3077 if (pad_buf) {
3078 struct scatterlist *psg = &qc->pad_sgent;
3079 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3080 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 3081 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3082 }
3083 } else {
2e242fa9 3084 if (qc->n_elem)
2f1f610b 3085 dma_unmap_single(ap->dev,
e1410f2d
JG
3086 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3087 dir);
cedc9a47
JG
3088 /* restore sg */
3089 sg->length += qc->pad_len;
3090 if (pad_buf)
3091 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3092 pad_buf, qc->pad_len);
3093 }
1da177e4
LT
3094
3095 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 3096 qc->__sg = NULL;
1da177e4
LT
3097}
3098
3099/**
3100 * ata_fill_sg - Fill PCI IDE PRD table
3101 * @qc: Metadata associated with taskfile to be transferred
3102 *
780a87f7
JG
3103 * Fill PCI IDE PRD (scatter-gather) table with segments
3104 * associated with the current disk command.
3105 *
1da177e4 3106 * LOCKING:
780a87f7 3107 * spin_lock_irqsave(host_set lock)
1da177e4
LT
3108 *
3109 */
3110static void ata_fill_sg(struct ata_queued_cmd *qc)
3111{
1da177e4 3112 struct ata_port *ap = qc->ap;
cedc9a47
JG
3113 struct scatterlist *sg;
3114 unsigned int idx;
1da177e4 3115
a4631474 3116 WARN_ON(qc->__sg == NULL);
f131883e 3117 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
3118
3119 idx = 0;
cedc9a47 3120 ata_for_each_sg(sg, qc) {
1da177e4
LT
3121 u32 addr, offset;
3122 u32 sg_len, len;
3123
3124 /* determine if physical DMA addr spans 64K boundary.
3125 * Note h/w doesn't support 64-bit, so we unconditionally
3126 * truncate dma_addr_t to u32.
3127 */
3128 addr = (u32) sg_dma_address(sg);
3129 sg_len = sg_dma_len(sg);
3130
3131 while (sg_len) {
3132 offset = addr & 0xffff;
3133 len = sg_len;
3134 if ((offset + sg_len) > 0x10000)
3135 len = 0x10000 - offset;
3136
3137 ap->prd[idx].addr = cpu_to_le32(addr);
3138 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3139 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3140
3141 idx++;
3142 sg_len -= len;
3143 addr += len;
3144 }
3145 }
3146
3147 if (idx)
3148 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3149}
3150/**
3151 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3152 * @qc: Metadata associated with taskfile to check
3153 *
780a87f7
JG
3154 * Allow low-level driver to filter ATA PACKET commands, returning
3155 * a status indicating whether or not it is OK to use DMA for the
3156 * supplied PACKET command.
3157 *
1da177e4 3158 * LOCKING:
0cba632b
JG
3159 * spin_lock_irqsave(host_set lock)
3160 *
1da177e4
LT
3161 * RETURNS: 0 when ATAPI DMA can be used
3162 * nonzero otherwise
3163 */
3164int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3165{
3166 struct ata_port *ap = qc->ap;
3167 int rc = 0; /* Assume ATAPI DMA is OK by default */
3168
3169 if (ap->ops->check_atapi_dma)
3170 rc = ap->ops->check_atapi_dma(qc);
3171
3172 return rc;
3173}
3174/**
3175 * ata_qc_prep - Prepare taskfile for submission
3176 * @qc: Metadata associated with taskfile to be prepared
3177 *
780a87f7
JG
3178 * Prepare ATA taskfile for submission.
3179 *
1da177e4
LT
3180 * LOCKING:
3181 * spin_lock_irqsave(host_set lock)
3182 */
3183void ata_qc_prep(struct ata_queued_cmd *qc)
3184{
3185 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3186 return;
3187
3188 ata_fill_sg(qc);
3189}
3190
e46834cd
BK
3191void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3192
0cba632b
JG
3193/**
3194 * ata_sg_init_one - Associate command with memory buffer
3195 * @qc: Command to be associated
3196 * @buf: Memory buffer
3197 * @buflen: Length of memory buffer, in bytes.
3198 *
3199 * Initialize the data-related elements of queued_cmd @qc
3200 * to point to a single memory buffer, @buf of byte length @buflen.
3201 *
3202 * LOCKING:
3203 * spin_lock_irqsave(host_set lock)
3204 */
3205
1da177e4
LT
3206void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3207{
3208 struct scatterlist *sg;
3209
3210 qc->flags |= ATA_QCFLAG_SINGLE;
3211
3212 memset(&qc->sgent, 0, sizeof(qc->sgent));
cedc9a47 3213 qc->__sg = &qc->sgent;
1da177e4 3214 qc->n_elem = 1;
cedc9a47 3215 qc->orig_n_elem = 1;
1da177e4
LT
3216 qc->buf_virt = buf;
3217
cedc9a47 3218 sg = qc->__sg;
f0612bbc 3219 sg_init_one(sg, buf, buflen);
1da177e4
LT
3220}
3221
0cba632b
JG
3222/**
3223 * ata_sg_init - Associate command with scatter-gather table.
3224 * @qc: Command to be associated
3225 * @sg: Scatter-gather table.
3226 * @n_elem: Number of elements in s/g table.
3227 *
3228 * Initialize the data-related elements of queued_cmd @qc
3229 * to point to a scatter-gather table @sg, containing @n_elem
3230 * elements.
3231 *
3232 * LOCKING:
3233 * spin_lock_irqsave(host_set lock)
3234 */
3235
1da177e4
LT
3236void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3237 unsigned int n_elem)
3238{
3239 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 3240 qc->__sg = sg;
1da177e4 3241 qc->n_elem = n_elem;
cedc9a47 3242 qc->orig_n_elem = n_elem;
1da177e4
LT
3243}
3244
3245/**
0cba632b
JG
3246 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3247 * @qc: Command with memory buffer to be mapped.
3248 *
3249 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
3250 *
3251 * LOCKING:
3252 * spin_lock_irqsave(host_set lock)
3253 *
3254 * RETURNS:
0cba632b 3255 * Zero on success, negative on error.
1da177e4
LT
3256 */
3257
3258static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3259{
3260 struct ata_port *ap = qc->ap;
3261 int dir = qc->dma_dir;
cedc9a47 3262 struct scatterlist *sg = qc->__sg;
1da177e4 3263 dma_addr_t dma_address;
2e242fa9 3264 int trim_sg = 0;
1da177e4 3265
cedc9a47
JG
3266 /* we must lengthen transfers to end on a 32-bit boundary */
3267 qc->pad_len = sg->length & 3;
3268 if (qc->pad_len) {
3269 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3270 struct scatterlist *psg = &qc->pad_sgent;
3271
a4631474 3272 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3273
3274 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3275
3276 if (qc->tf.flags & ATA_TFLAG_WRITE)
3277 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3278 qc->pad_len);
3279
3280 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3281 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3282 /* trim sg */
3283 sg->length -= qc->pad_len;
2e242fa9
TH
3284 if (sg->length == 0)
3285 trim_sg = 1;
cedc9a47
JG
3286
3287 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3288 sg->length, qc->pad_len);
3289 }
3290
2e242fa9
TH
3291 if (trim_sg) {
3292 qc->n_elem--;
e1410f2d
JG
3293 goto skip_map;
3294 }
3295
2f1f610b 3296 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 3297 sg->length, dir);
537a95d9
TH
3298 if (dma_mapping_error(dma_address)) {
3299 /* restore sg */
3300 sg->length += qc->pad_len;
1da177e4 3301 return -1;
537a95d9 3302 }
1da177e4
LT
3303
3304 sg_dma_address(sg) = dma_address;
32529e01 3305 sg_dma_len(sg) = sg->length;
1da177e4 3306
2e242fa9 3307skip_map:
1da177e4
LT
3308 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3309 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3310
3311 return 0;
3312}
3313
3314/**
0cba632b
JG
3315 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3316 * @qc: Command with scatter-gather table to be mapped.
3317 *
3318 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
3319 *
3320 * LOCKING:
3321 * spin_lock_irqsave(host_set lock)
3322 *
3323 * RETURNS:
0cba632b 3324 * Zero on success, negative on error.
1da177e4
LT
3325 *
3326 */
3327
3328static int ata_sg_setup(struct ata_queued_cmd *qc)
3329{
3330 struct ata_port *ap = qc->ap;
cedc9a47
JG
3331 struct scatterlist *sg = qc->__sg;
3332 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 3333 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4
LT
3334
3335 VPRINTK("ENTER, ata%u\n", ap->id);
a4631474 3336 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 3337
cedc9a47
JG
3338 /* we must lengthen transfers to end on a 32-bit boundary */
3339 qc->pad_len = lsg->length & 3;
3340 if (qc->pad_len) {
3341 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3342 struct scatterlist *psg = &qc->pad_sgent;
3343 unsigned int offset;
3344
a4631474 3345 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3346
3347 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3348
3349 /*
3350 * psg->page/offset are used to copy to-be-written
3351 * data in this function or read data in ata_sg_clean.
3352 */
3353 offset = lsg->offset + lsg->length - qc->pad_len;
3354 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3355 psg->offset = offset_in_page(offset);
3356
3357 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3358 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3359 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 3360 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3361 }
3362
3363 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3364 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3365 /* trim last sg */
3366 lsg->length -= qc->pad_len;
e1410f2d
JG
3367 if (lsg->length == 0)
3368 trim_sg = 1;
cedc9a47
JG
3369
3370 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3371 qc->n_elem - 1, lsg->length, qc->pad_len);
3372 }
3373
e1410f2d
JG
3374 pre_n_elem = qc->n_elem;
3375 if (trim_sg && pre_n_elem)
3376 pre_n_elem--;
3377
3378 if (!pre_n_elem) {
3379 n_elem = 0;
3380 goto skip_map;
3381 }
3382
1da177e4 3383 dir = qc->dma_dir;
2f1f610b 3384 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
3385 if (n_elem < 1) {
3386 /* restore last sg */
3387 lsg->length += qc->pad_len;
1da177e4 3388 return -1;
537a95d9 3389 }
1da177e4
LT
3390
3391 DPRINTK("%d sg elements mapped\n", n_elem);
3392
e1410f2d 3393skip_map:
1da177e4
LT
3394 qc->n_elem = n_elem;
3395
3396 return 0;
3397}
3398
40e8c82c
TH
3399/**
3400 * ata_poll_qc_complete - turn irq back on and finish qc
3401 * @qc: Command to complete
8e8b77dd 3402 * @err_mask: ATA status register content
40e8c82c
TH
3403 *
3404 * LOCKING:
3405 * None. (grabs host lock)
3406 */
3407
a22e2eb0 3408void ata_poll_qc_complete(struct ata_queued_cmd *qc)
40e8c82c
TH
3409{
3410 struct ata_port *ap = qc->ap;
b8f6153e 3411 unsigned long flags;
40e8c82c 3412
b8f6153e 3413 spin_lock_irqsave(&ap->host_set->lock, flags);
40e8c82c
TH
3414 ap->flags &= ~ATA_FLAG_NOINTR;
3415 ata_irq_on(ap);
a22e2eb0 3416 ata_qc_complete(qc);
b8f6153e 3417 spin_unlock_irqrestore(&ap->host_set->lock, flags);
40e8c82c
TH
3418}
3419
1da177e4 3420/**
c893a3ae 3421 * ata_pio_poll - poll using PIO, depending on current state
c91af2c8 3422 * @qc: qc in progress
1da177e4
LT
3423 *
3424 * LOCKING:
0cba632b 3425 * None. (executing in kernel thread context)
1da177e4
LT
3426 *
3427 * RETURNS:
6f0ef4fa 3428 * timeout value to use
1da177e4 3429 */
c91af2c8 3430static unsigned long ata_pio_poll(struct ata_queued_cmd *qc)
1da177e4 3431{
c91af2c8 3432 struct ata_port *ap = qc->ap;
1da177e4 3433 u8 status;
14be71f4
AL
3434 unsigned int poll_state = HSM_ST_UNKNOWN;
3435 unsigned int reg_state = HSM_ST_UNKNOWN;
14be71f4
AL
3436
3437 switch (ap->hsm_task_state) {
3438 case HSM_ST:
3439 case HSM_ST_POLL:
3440 poll_state = HSM_ST_POLL;
3441 reg_state = HSM_ST;
1da177e4 3442 break;
14be71f4
AL
3443 case HSM_ST_LAST:
3444 case HSM_ST_LAST_POLL:
3445 poll_state = HSM_ST_LAST_POLL;
3446 reg_state = HSM_ST_LAST;
1da177e4
LT
3447 break;
3448 default:
3449 BUG();
3450 break;
3451 }
3452
3453 status = ata_chk_status(ap);
3454 if (status & ATA_BUSY) {
3455 if (time_after(jiffies, ap->pio_task_timeout)) {
11a56d24 3456 qc->err_mask |= AC_ERR_TIMEOUT;
7c398335 3457 ap->hsm_task_state = HSM_ST_TMOUT;
1da177e4
LT
3458 return 0;
3459 }
14be71f4 3460 ap->hsm_task_state = poll_state;
1da177e4
LT
3461 return ATA_SHORT_PAUSE;
3462 }
3463
14be71f4 3464 ap->hsm_task_state = reg_state;
1da177e4
LT
3465 return 0;
3466}
3467
3468/**
6f0ef4fa 3469 * ata_pio_complete - check if drive is busy or idle
c91af2c8 3470 * @qc: qc to complete
1da177e4
LT
3471 *
3472 * LOCKING:
0cba632b 3473 * None. (executing in kernel thread context)
7fb6ec28
JG
3474 *
3475 * RETURNS:
3476 * Non-zero if qc completed, zero otherwise.
1da177e4 3477 */
c91af2c8 3478static int ata_pio_complete(struct ata_queued_cmd *qc)
1da177e4 3479{
c91af2c8 3480 struct ata_port *ap = qc->ap;
1da177e4
LT
3481 u8 drv_stat;
3482
3483 /*
31433ea3
AC
3484 * This is purely heuristic. This is a fast path. Sometimes when
3485 * we enter, BSY will be cleared in a chk-status or two. If not,
3486 * the drive is probably seeking or something. Snooze for a couple
3487 * msecs, then chk-status again. If still busy, fall back to
14be71f4 3488 * HSM_ST_POLL state.
1da177e4 3489 */
fe79e683
AL
3490 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3491 if (drv_stat & ATA_BUSY) {
1da177e4 3492 msleep(2);
fe79e683
AL
3493 drv_stat = ata_busy_wait(ap, ATA_BUSY, 10);
3494 if (drv_stat & ATA_BUSY) {
14be71f4 3495 ap->hsm_task_state = HSM_ST_LAST_POLL;
1da177e4 3496 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
7fb6ec28 3497 return 0;
1da177e4
LT
3498 }
3499 }
3500
3501 drv_stat = ata_wait_idle(ap);
3502 if (!ata_ok(drv_stat)) {
1c848984 3503 qc->err_mask |= __ac_err_mask(drv_stat);
14be71f4 3504 ap->hsm_task_state = HSM_ST_ERR;
7fb6ec28 3505 return 0;
1da177e4
LT
3506 }
3507
14be71f4 3508 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 3509
a4631474 3510 WARN_ON(qc->err_mask);
a22e2eb0 3511 ata_poll_qc_complete(qc);
7fb6ec28
JG
3512
3513 /* another command may start at this point */
3514
3515 return 1;
1da177e4
LT
3516}
3517
0baab86b
EF
3518
3519/**
c893a3ae 3520 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
3521 * @buf: Buffer to swap
3522 * @buf_words: Number of 16-bit words in buffer.
3523 *
3524 * Swap halves of 16-bit words if needed to convert from
3525 * little-endian byte order to native cpu byte order, or
3526 * vice-versa.
3527 *
3528 * LOCKING:
6f0ef4fa 3529 * Inherited from caller.
0baab86b 3530 */
1da177e4
LT
3531void swap_buf_le16(u16 *buf, unsigned int buf_words)
3532{
3533#ifdef __BIG_ENDIAN
3534 unsigned int i;
3535
3536 for (i = 0; i < buf_words; i++)
3537 buf[i] = le16_to_cpu(buf[i]);
3538#endif /* __BIG_ENDIAN */
3539}
3540
6ae4cfb5
AL
3541/**
3542 * ata_mmio_data_xfer - Transfer data by MMIO
3543 * @ap: port to read/write
3544 * @buf: data buffer
3545 * @buflen: buffer length
344babaa 3546 * @write_data: read/write
6ae4cfb5
AL
3547 *
3548 * Transfer data from/to the device data register by MMIO.
3549 *
3550 * LOCKING:
3551 * Inherited from caller.
6ae4cfb5
AL
3552 */
3553
1da177e4
LT
3554static void ata_mmio_data_xfer(struct ata_port *ap, unsigned char *buf,
3555 unsigned int buflen, int write_data)
3556{
3557 unsigned int i;
3558 unsigned int words = buflen >> 1;
3559 u16 *buf16 = (u16 *) buf;
3560 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3561
6ae4cfb5 3562 /* Transfer multiple of 2 bytes */
1da177e4
LT
3563 if (write_data) {
3564 for (i = 0; i < words; i++)
3565 writew(le16_to_cpu(buf16[i]), mmio);
3566 } else {
3567 for (i = 0; i < words; i++)
3568 buf16[i] = cpu_to_le16(readw(mmio));
3569 }
6ae4cfb5
AL
3570
3571 /* Transfer trailing 1 byte, if any. */
3572 if (unlikely(buflen & 0x01)) {
3573 u16 align_buf[1] = { 0 };
3574 unsigned char *trailing_buf = buf + buflen - 1;
3575
3576 if (write_data) {
3577 memcpy(align_buf, trailing_buf, 1);
3578 writew(le16_to_cpu(align_buf[0]), mmio);
3579 } else {
3580 align_buf[0] = cpu_to_le16(readw(mmio));
3581 memcpy(trailing_buf, align_buf, 1);
3582 }
3583 }
1da177e4
LT
3584}
3585
6ae4cfb5
AL
3586/**
3587 * ata_pio_data_xfer - Transfer data by PIO
3588 * @ap: port to read/write
3589 * @buf: data buffer
3590 * @buflen: buffer length
344babaa 3591 * @write_data: read/write
6ae4cfb5
AL
3592 *
3593 * Transfer data from/to the device data register by PIO.
3594 *
3595 * LOCKING:
3596 * Inherited from caller.
6ae4cfb5
AL
3597 */
3598
1da177e4
LT
3599static void ata_pio_data_xfer(struct ata_port *ap, unsigned char *buf,
3600 unsigned int buflen, int write_data)
3601{
6ae4cfb5 3602 unsigned int words = buflen >> 1;
1da177e4 3603
6ae4cfb5 3604 /* Transfer multiple of 2 bytes */
1da177e4 3605 if (write_data)
6ae4cfb5 3606 outsw(ap->ioaddr.data_addr, buf, words);
1da177e4 3607 else
6ae4cfb5
AL
3608 insw(ap->ioaddr.data_addr, buf, words);
3609
3610 /* Transfer trailing 1 byte, if any. */
3611 if (unlikely(buflen & 0x01)) {
3612 u16 align_buf[1] = { 0 };
3613 unsigned char *trailing_buf = buf + buflen - 1;
3614
3615 if (write_data) {
3616 memcpy(align_buf, trailing_buf, 1);
3617 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3618 } else {
3619 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3620 memcpy(trailing_buf, align_buf, 1);
3621 }
3622 }
1da177e4
LT
3623}
3624
6ae4cfb5
AL
3625/**
3626 * ata_data_xfer - Transfer data from/to the data register.
3627 * @ap: port to read/write
3628 * @buf: data buffer
3629 * @buflen: buffer length
3630 * @do_write: read/write
3631 *
3632 * Transfer data from/to the device data register.
3633 *
3634 * LOCKING:
3635 * Inherited from caller.
6ae4cfb5
AL
3636 */
3637
1da177e4
LT
3638static void ata_data_xfer(struct ata_port *ap, unsigned char *buf,
3639 unsigned int buflen, int do_write)
3640{
a1bd9e68
AC
3641 /* Make the crap hardware pay the costs not the good stuff */
3642 if (unlikely(ap->flags & ATA_FLAG_IRQ_MASK)) {
3643 unsigned long flags;
3644 local_irq_save(flags);
3645 if (ap->flags & ATA_FLAG_MMIO)
3646 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3647 else
3648 ata_pio_data_xfer(ap, buf, buflen, do_write);
3649 local_irq_restore(flags);
3650 } else {
3651 if (ap->flags & ATA_FLAG_MMIO)
3652 ata_mmio_data_xfer(ap, buf, buflen, do_write);
3653 else
3654 ata_pio_data_xfer(ap, buf, buflen, do_write);
3655 }
1da177e4
LT
3656}
3657
6ae4cfb5
AL
3658/**
3659 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3660 * @qc: Command on going
3661 *
3662 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3663 *
3664 * LOCKING:
3665 * Inherited from caller.
3666 */
3667
1da177e4
LT
3668static void ata_pio_sector(struct ata_queued_cmd *qc)
3669{
3670 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3671 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3672 struct ata_port *ap = qc->ap;
3673 struct page *page;
3674 unsigned int offset;
3675 unsigned char *buf;
3676
3677 if (qc->cursect == (qc->nsect - 1))
14be71f4 3678 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3679
3680 page = sg[qc->cursg].page;
3681 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3682
3683 /* get the current page and offset */
3684 page = nth_page(page, (offset >> PAGE_SHIFT));
3685 offset %= PAGE_SIZE;
3686
3687 buf = kmap(page) + offset;
3688
3689 qc->cursect++;
3690 qc->cursg_ofs++;
3691
32529e01 3692 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
1da177e4
LT
3693 qc->cursg++;
3694 qc->cursg_ofs = 0;
3695 }
3696
3697 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3698
3699 /* do the actual data transfer */
3700 do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
3701 ata_data_xfer(ap, buf, ATA_SECT_SIZE, do_write);
3702
3703 kunmap(page);
3704}
3705
6ae4cfb5
AL
3706/**
3707 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3708 * @qc: Command on going
3709 * @bytes: number of bytes
3710 *
3711 * Transfer Transfer data from/to the ATAPI device.
3712 *
3713 * LOCKING:
3714 * Inherited from caller.
3715 *
3716 */
3717
1da177e4
LT
3718static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3719{
3720 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3721 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3722 struct ata_port *ap = qc->ap;
3723 struct page *page;
3724 unsigned char *buf;
3725 unsigned int offset, count;
3726
563a6e1f 3727 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 3728 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3729
3730next_sg:
563a6e1f 3731 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 3732 /*
563a6e1f
AL
3733 * The end of qc->sg is reached and the device expects
3734 * more data to transfer. In order not to overrun qc->sg
3735 * and fulfill length specified in the byte count register,
3736 * - for read case, discard trailing data from the device
3737 * - for write case, padding zero data to the device
3738 */
3739 u16 pad_buf[1] = { 0 };
3740 unsigned int words = bytes >> 1;
3741 unsigned int i;
3742
3743 if (words) /* warning if bytes > 1 */
7fb6ec28 3744 printk(KERN_WARNING "ata%u: %u bytes trailing data\n",
563a6e1f
AL
3745 ap->id, bytes);
3746
3747 for (i = 0; i < words; i++)
3748 ata_data_xfer(ap, (unsigned char*)pad_buf, 2, do_write);
3749
14be71f4 3750 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
3751 return;
3752 }
3753
cedc9a47 3754 sg = &qc->__sg[qc->cursg];
1da177e4 3755
1da177e4
LT
3756 page = sg->page;
3757 offset = sg->offset + qc->cursg_ofs;
3758
3759 /* get the current page and offset */
3760 page = nth_page(page, (offset >> PAGE_SHIFT));
3761 offset %= PAGE_SIZE;
3762
6952df03 3763 /* don't overrun current sg */
32529e01 3764 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
3765
3766 /* don't cross page boundaries */
3767 count = min(count, (unsigned int)PAGE_SIZE - offset);
3768
3769 buf = kmap(page) + offset;
3770
3771 bytes -= count;
3772 qc->curbytes += count;
3773 qc->cursg_ofs += count;
3774
32529e01 3775 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
3776 qc->cursg++;
3777 qc->cursg_ofs = 0;
3778 }
3779
3780 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3781
3782 /* do the actual data transfer */
3783 ata_data_xfer(ap, buf, count, do_write);
3784
3785 kunmap(page);
3786
563a6e1f 3787 if (bytes)
1da177e4 3788 goto next_sg;
1da177e4
LT
3789}
3790
6ae4cfb5
AL
3791/**
3792 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3793 * @qc: Command on going
3794 *
3795 * Transfer Transfer data from/to the ATAPI device.
3796 *
3797 * LOCKING:
3798 * Inherited from caller.
6ae4cfb5
AL
3799 */
3800
1da177e4
LT
3801static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3802{
3803 struct ata_port *ap = qc->ap;
3804 struct ata_device *dev = qc->dev;
3805 unsigned int ireason, bc_lo, bc_hi, bytes;
3806 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3807
3808 ap->ops->tf_read(ap, &qc->tf);
3809 ireason = qc->tf.nsect;
3810 bc_lo = qc->tf.lbam;
3811 bc_hi = qc->tf.lbah;
3812 bytes = (bc_hi << 8) | bc_lo;
3813
3814 /* shall be cleared to zero, indicating xfer of data */
3815 if (ireason & (1 << 0))
3816 goto err_out;
3817
3818 /* make sure transfer direction matches expected */
3819 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3820 if (do_write != i_write)
3821 goto err_out;
3822
3823 __atapi_pio_bytes(qc, bytes);
3824
3825 return;
3826
3827err_out:
3828 printk(KERN_INFO "ata%u: dev %u: ATAPI check failed\n",
3829 ap->id, dev->devno);
11a56d24 3830 qc->err_mask |= AC_ERR_HSM;
14be71f4 3831 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
3832}
3833
3834/**
6f0ef4fa 3835 * ata_pio_block - start PIO on a block
c91af2c8 3836 * @qc: qc to transfer block for
1da177e4
LT
3837 *
3838 * LOCKING:
0cba632b 3839 * None. (executing in kernel thread context)
1da177e4 3840 */
c91af2c8 3841static void ata_pio_block(struct ata_queued_cmd *qc)
1da177e4 3842{
c91af2c8 3843 struct ata_port *ap = qc->ap;
1da177e4
LT
3844 u8 status;
3845
3846 /*
6f0ef4fa 3847 * This is purely heuristic. This is a fast path.
1da177e4
LT
3848 * Sometimes when we enter, BSY will be cleared in
3849 * a chk-status or two. If not, the drive is probably seeking
3850 * or something. Snooze for a couple msecs, then
3851 * chk-status again. If still busy, fall back to
14be71f4 3852 * HSM_ST_POLL state.
1da177e4
LT
3853 */
3854 status = ata_busy_wait(ap, ATA_BUSY, 5);
3855 if (status & ATA_BUSY) {
3856 msleep(2);
3857 status = ata_busy_wait(ap, ATA_BUSY, 10);
3858 if (status & ATA_BUSY) {
14be71f4 3859 ap->hsm_task_state = HSM_ST_POLL;
1da177e4
LT
3860 ap->pio_task_timeout = jiffies + ATA_TMOUT_PIO;
3861 return;
3862 }
3863 }
3864
fe79e683
AL
3865 /* check error */
3866 if (status & (ATA_ERR | ATA_DF)) {
3867 qc->err_mask |= AC_ERR_DEV;
3868 ap->hsm_task_state = HSM_ST_ERR;
3869 return;
3870 }
3871
3872 /* transfer data if any */
1da177e4 3873 if (is_atapi_taskfile(&qc->tf)) {
fe79e683 3874 /* DRQ=0 means no more data to transfer */
1da177e4 3875 if ((status & ATA_DRQ) == 0) {
14be71f4 3876 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3877 return;
3878 }
3879
3880 atapi_pio_bytes(qc);
3881 } else {
3882 /* handle BSY=0, DRQ=0 as error */
3883 if ((status & ATA_DRQ) == 0) {
11a56d24 3884 qc->err_mask |= AC_ERR_HSM;
14be71f4 3885 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
3886 return;
3887 }
3888
3889 ata_pio_sector(qc);
3890 }
3891}
3892
c91af2c8 3893static void ata_pio_error(struct ata_queued_cmd *qc)
1da177e4 3894{
c91af2c8 3895 struct ata_port *ap = qc->ap;
1da177e4 3896
0565c26d 3897 if (qc->tf.command != ATA_CMD_PACKET)
d63cb4a6
TH
3898 printk(KERN_WARNING "ata%u: dev %u PIO error\n",
3899 ap->id, qc->dev->devno);
0565c26d 3900
2e9edbf8 3901 /* make sure qc->err_mask is available to
1c848984
AL
3902 * know what's wrong and recover
3903 */
a4631474 3904 WARN_ON(qc->err_mask == 0);
1c848984 3905
14be71f4 3906 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 3907
a22e2eb0 3908 ata_poll_qc_complete(qc);
1da177e4
LT
3909}
3910
3911static void ata_pio_task(void *_data)
3912{
c91af2c8
TH
3913 struct ata_queued_cmd *qc = _data;
3914 struct ata_port *ap = qc->ap;
7fb6ec28
JG
3915 unsigned long timeout;
3916 int qc_completed;
3917
3918fsm_start:
3919 timeout = 0;
3920 qc_completed = 0;
1da177e4 3921
14be71f4
AL
3922 switch (ap->hsm_task_state) {
3923 case HSM_ST_IDLE:
1da177e4
LT
3924 return;
3925
14be71f4 3926 case HSM_ST:
c91af2c8 3927 ata_pio_block(qc);
1da177e4
LT
3928 break;
3929
14be71f4 3930 case HSM_ST_LAST:
c91af2c8 3931 qc_completed = ata_pio_complete(qc);
1da177e4
LT
3932 break;
3933
14be71f4
AL
3934 case HSM_ST_POLL:
3935 case HSM_ST_LAST_POLL:
c91af2c8 3936 timeout = ata_pio_poll(qc);
1da177e4
LT
3937 break;
3938
14be71f4
AL
3939 case HSM_ST_TMOUT:
3940 case HSM_ST_ERR:
c91af2c8 3941 ata_pio_error(qc);
1da177e4
LT
3942 return;
3943 }
3944
3945 if (timeout)
c91af2c8 3946 ata_port_queue_task(ap, ata_pio_task, qc, timeout);
7fb6ec28
JG
3947 else if (!qc_completed)
3948 goto fsm_start;
1da177e4
LT
3949}
3950
8061f5f0
TH
3951/**
3952 * atapi_packet_task - Write CDB bytes to hardware
c91af2c8 3953 * @_data: qc in progress
8061f5f0
TH
3954 *
3955 * When device has indicated its readiness to accept
3956 * a CDB, this function is called. Send the CDB.
3957 * If DMA is to be performed, exit immediately.
3958 * Otherwise, we are in polling mode, so poll
3959 * status under operation succeeds or fails.
3960 *
3961 * LOCKING:
3962 * Kernel thread context (may sleep)
3963 */
8061f5f0
TH
3964static void atapi_packet_task(void *_data)
3965{
c91af2c8
TH
3966 struct ata_queued_cmd *qc = _data;
3967 struct ata_port *ap = qc->ap;
8061f5f0
TH
3968 u8 status;
3969
8061f5f0
TH
3970 /* sleep-wait for BSY to clear */
3971 DPRINTK("busy wait\n");
3972 if (ata_busy_sleep(ap, ATA_TMOUT_CDB_QUICK, ATA_TMOUT_CDB)) {
3973 qc->err_mask |= AC_ERR_TIMEOUT;
3974 goto err_out;
3975 }
3976
3977 /* make sure DRQ is set */
3978 status = ata_chk_status(ap);
3979 if ((status & (ATA_BUSY | ATA_DRQ)) != ATA_DRQ) {
3980 qc->err_mask |= AC_ERR_HSM;
3981 goto err_out;
3982 }
3983
3984 /* send SCSI cdb */
3985 DPRINTK("send cdb\n");
3986 WARN_ON(qc->dev->cdb_len < 12);
3987
3988 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA ||
3989 qc->tf.protocol == ATA_PROT_ATAPI_NODATA) {
3990 unsigned long flags;
3991
3992 /* Once we're done issuing command and kicking bmdma,
3993 * irq handler takes over. To not lose irq, we need
3994 * to clear NOINTR flag before sending cdb, but
3995 * interrupt handler shouldn't be invoked before we're
3996 * finished. Hence, the following locking.
3997 */
3998 spin_lock_irqsave(&ap->host_set->lock, flags);
3999 ap->flags &= ~ATA_FLAG_NOINTR;
4000 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
4001 if (qc->tf.protocol == ATA_PROT_ATAPI_DMA)
4002 ap->ops->bmdma_start(qc); /* initiate bmdma */
4003 spin_unlock_irqrestore(&ap->host_set->lock, flags);
4004 } else {
4005 ata_data_xfer(ap, qc->cdb, qc->dev->cdb_len, 1);
4006
4007 /* PIO commands are handled by polling */
4008 ap->hsm_task_state = HSM_ST;
c91af2c8 4009 ata_port_queue_task(ap, ata_pio_task, qc, 0);
8061f5f0
TH
4010 }
4011
4012 return;
4013
4014err_out:
4015 ata_poll_qc_complete(qc);
4016}
4017
1da177e4
LT
4018/**
4019 * ata_qc_timeout - Handle timeout of queued command
4020 * @qc: Command that timed out
4021 *
4022 * Some part of the kernel (currently, only the SCSI layer)
4023 * has noticed that the active command on port @ap has not
4024 * completed after a specified length of time. Handle this
4025 * condition by disabling DMA (if necessary) and completing
4026 * transactions, with error if necessary.
4027 *
4028 * This also handles the case of the "lost interrupt", where
4029 * for some reason (possibly hardware bug, possibly driver bug)
4030 * an interrupt was not delivered to the driver, even though the
4031 * transaction completed successfully.
4032 *
4033 * LOCKING:
0cba632b 4034 * Inherited from SCSI layer (none, can sleep)
1da177e4
LT
4035 */
4036
4037static void ata_qc_timeout(struct ata_queued_cmd *qc)
4038{
4039 struct ata_port *ap = qc->ap;
b8f6153e 4040 struct ata_host_set *host_set = ap->host_set;
1da177e4 4041 u8 host_stat = 0, drv_stat;
b8f6153e 4042 unsigned long flags;
1da177e4
LT
4043
4044 DPRINTK("ENTER\n");
4045
c18d06f8
TH
4046 ap->hsm_task_state = HSM_ST_IDLE;
4047
b8f6153e
JG
4048 spin_lock_irqsave(&host_set->lock, flags);
4049
1da177e4
LT
4050 switch (qc->tf.protocol) {
4051
4052 case ATA_PROT_DMA:
4053 case ATA_PROT_ATAPI_DMA:
4054 host_stat = ap->ops->bmdma_status(ap);
4055
4056 /* before we do anything else, clear DMA-Start bit */
b73fc89f 4057 ap->ops->bmdma_stop(qc);
1da177e4
LT
4058
4059 /* fall through */
4060
4061 default:
4062 ata_altstatus(ap);
4063 drv_stat = ata_chk_status(ap);
4064
4065 /* ack bmdma irq events */
4066 ap->ops->irq_clear(ap);
4067
4068 printk(KERN_ERR "ata%u: command 0x%x timeout, stat 0x%x host_stat 0x%x\n",
4069 ap->id, qc->tf.command, drv_stat, host_stat);
4070
4071 /* complete taskfile transaction */
a22e2eb0 4072 qc->err_mask |= ac_err_mask(drv_stat);
1da177e4
LT
4073 break;
4074 }
b8f6153e
JG
4075
4076 spin_unlock_irqrestore(&host_set->lock, flags);
4077
a72ec4ce
TH
4078 ata_eh_qc_complete(qc);
4079
1da177e4
LT
4080 DPRINTK("EXIT\n");
4081}
4082
4083/**
4084 * ata_eng_timeout - Handle timeout of queued command
4085 * @ap: Port on which timed-out command is active
4086 *
4087 * Some part of the kernel (currently, only the SCSI layer)
4088 * has noticed that the active command on port @ap has not
4089 * completed after a specified length of time. Handle this
4090 * condition by disabling DMA (if necessary) and completing
4091 * transactions, with error if necessary.
4092 *
4093 * This also handles the case of the "lost interrupt", where
4094 * for some reason (possibly hardware bug, possibly driver bug)
4095 * an interrupt was not delivered to the driver, even though the
4096 * transaction completed successfully.
4097 *
4098 * LOCKING:
4099 * Inherited from SCSI layer (none, can sleep)
4100 */
4101
4102void ata_eng_timeout(struct ata_port *ap)
4103{
1da177e4
LT
4104 DPRINTK("ENTER\n");
4105
f6379020 4106 ata_qc_timeout(ata_qc_from_tag(ap, ap->active_tag));
1da177e4 4107
1da177e4
LT
4108 DPRINTK("EXIT\n");
4109}
4110
4111/**
4112 * ata_qc_new - Request an available ATA command, for queueing
4113 * @ap: Port associated with device @dev
4114 * @dev: Device from whom we request an available command structure
4115 *
4116 * LOCKING:
0cba632b 4117 * None.
1da177e4
LT
4118 */
4119
4120static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4121{
4122 struct ata_queued_cmd *qc = NULL;
4123 unsigned int i;
4124
4125 for (i = 0; i < ATA_MAX_QUEUE; i++)
4126 if (!test_and_set_bit(i, &ap->qactive)) {
4127 qc = ata_qc_from_tag(ap, i);
4128 break;
4129 }
4130
4131 if (qc)
4132 qc->tag = i;
4133
4134 return qc;
4135}
4136
4137/**
4138 * ata_qc_new_init - Request an available ATA command, and initialize it
4139 * @ap: Port associated with device @dev
4140 * @dev: Device from whom we request an available command structure
4141 *
4142 * LOCKING:
0cba632b 4143 * None.
1da177e4
LT
4144 */
4145
4146struct ata_queued_cmd *ata_qc_new_init(struct ata_port *ap,
4147 struct ata_device *dev)
4148{
4149 struct ata_queued_cmd *qc;
4150
4151 qc = ata_qc_new(ap);
4152 if (qc) {
1da177e4
LT
4153 qc->scsicmd = NULL;
4154 qc->ap = ap;
4155 qc->dev = dev;
1da177e4 4156
2c13b7ce 4157 ata_qc_reinit(qc);
1da177e4
LT
4158 }
4159
4160 return qc;
4161}
4162
1da177e4
LT
4163/**
4164 * ata_qc_free - free unused ata_queued_cmd
4165 * @qc: Command to complete
4166 *
4167 * Designed to free unused ata_queued_cmd object
4168 * in case something prevents using it.
4169 *
4170 * LOCKING:
0cba632b 4171 * spin_lock_irqsave(host_set lock)
1da177e4
LT
4172 */
4173void ata_qc_free(struct ata_queued_cmd *qc)
4174{
4ba946e9
TH
4175 struct ata_port *ap = qc->ap;
4176 unsigned int tag;
4177
a4631474 4178 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 4179
4ba946e9
TH
4180 qc->flags = 0;
4181 tag = qc->tag;
4182 if (likely(ata_tag_valid(tag))) {
4183 if (tag == ap->active_tag)
4184 ap->active_tag = ATA_TAG_POISON;
4185 qc->tag = ATA_TAG_POISON;
4186 clear_bit(tag, &ap->qactive);
4187 }
1da177e4
LT
4188}
4189
76014427 4190void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 4191{
a4631474
TH
4192 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4193 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
4194
4195 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4196 ata_sg_clean(qc);
4197
3f3791d3
AL
4198 /* atapi: mark qc as inactive to prevent the interrupt handler
4199 * from completing the command twice later, before the error handler
4200 * is called. (when rc != 0 and atapi request sense is needed)
4201 */
4202 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4203
1da177e4 4204 /* call completion callback */
77853bf2 4205 qc->complete_fn(qc);
1da177e4
LT
4206}
4207
4208static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4209{
4210 struct ata_port *ap = qc->ap;
4211
4212 switch (qc->tf.protocol) {
4213 case ATA_PROT_DMA:
4214 case ATA_PROT_ATAPI_DMA:
4215 return 1;
4216
4217 case ATA_PROT_ATAPI:
4218 case ATA_PROT_PIO:
1da177e4
LT
4219 if (ap->flags & ATA_FLAG_PIO_DMA)
4220 return 1;
4221
4222 /* fall through */
4223
4224 default:
4225 return 0;
4226 }
4227
4228 /* never reached */
4229}
4230
4231/**
4232 * ata_qc_issue - issue taskfile to device
4233 * @qc: command to issue to device
4234 *
4235 * Prepare an ATA command to submission to device.
4236 * This includes mapping the data into a DMA-able
4237 * area, filling in the S/G table, and finally
4238 * writing the taskfile to hardware, starting the command.
4239 *
4240 * LOCKING:
4241 * spin_lock_irqsave(host_set lock)
1da177e4 4242 */
8e0e694a 4243void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
4244{
4245 struct ata_port *ap = qc->ap;
4246
e4a70e76
TH
4247 qc->ap->active_tag = qc->tag;
4248 qc->flags |= ATA_QCFLAG_ACTIVE;
4249
1da177e4
LT
4250 if (ata_should_dma_map(qc)) {
4251 if (qc->flags & ATA_QCFLAG_SG) {
4252 if (ata_sg_setup(qc))
8e436af9 4253 goto sg_err;
1da177e4
LT
4254 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4255 if (ata_sg_setup_one(qc))
8e436af9 4256 goto sg_err;
1da177e4
LT
4257 }
4258 } else {
4259 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4260 }
4261
4262 ap->ops->qc_prep(qc);
4263
8e0e694a
TH
4264 qc->err_mask |= ap->ops->qc_issue(qc);
4265 if (unlikely(qc->err_mask))
4266 goto err;
4267 return;
1da177e4 4268
8e436af9
TH
4269sg_err:
4270 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
4271 qc->err_mask |= AC_ERR_SYSTEM;
4272err:
4273 ata_qc_complete(qc);
1da177e4
LT
4274}
4275
4276/**
4277 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4278 * @qc: command to issue to device
4279 *
4280 * Using various libata functions and hooks, this function
4281 * starts an ATA command. ATA commands are grouped into
4282 * classes called "protocols", and issuing each type of protocol
4283 * is slightly different.
4284 *
0baab86b
EF
4285 * May be used as the qc_issue() entry in ata_port_operations.
4286 *
1da177e4
LT
4287 * LOCKING:
4288 * spin_lock_irqsave(host_set lock)
4289 *
4290 * RETURNS:
9a3d9eb0 4291 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
4292 */
4293
9a3d9eb0 4294unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
4295{
4296 struct ata_port *ap = qc->ap;
4297
4298 ata_dev_select(ap, qc->dev->devno, 1, 0);
4299
4300 switch (qc->tf.protocol) {
4301 case ATA_PROT_NODATA:
e5338254 4302 ata_tf_to_host(ap, &qc->tf);
1da177e4
LT
4303 break;
4304
4305 case ATA_PROT_DMA:
4306 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4307 ap->ops->bmdma_setup(qc); /* set up bmdma */
4308 ap->ops->bmdma_start(qc); /* initiate bmdma */
4309 break;
4310
4311 case ATA_PROT_PIO: /* load tf registers, initiate polling pio */
4312 ata_qc_set_polling(qc);
e5338254 4313 ata_tf_to_host(ap, &qc->tf);
14be71f4 4314 ap->hsm_task_state = HSM_ST;
c91af2c8 4315 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
4316 break;
4317
4318 case ATA_PROT_ATAPI:
4319 ata_qc_set_polling(qc);
e5338254 4320 ata_tf_to_host(ap, &qc->tf);
c91af2c8 4321 ata_port_queue_task(ap, atapi_packet_task, qc, 0);
1da177e4
LT
4322 break;
4323
4324 case ATA_PROT_ATAPI_NODATA:
c1389503 4325 ap->flags |= ATA_FLAG_NOINTR;
e5338254 4326 ata_tf_to_host(ap, &qc->tf);
c91af2c8 4327 ata_port_queue_task(ap, atapi_packet_task, qc, 0);
1da177e4
LT
4328 break;
4329
4330 case ATA_PROT_ATAPI_DMA:
c1389503 4331 ap->flags |= ATA_FLAG_NOINTR;
1da177e4
LT
4332 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4333 ap->ops->bmdma_setup(qc); /* set up bmdma */
c91af2c8 4334 ata_port_queue_task(ap, atapi_packet_task, qc, 0);
1da177e4
LT
4335 break;
4336
4337 default:
4338 WARN_ON(1);
9a3d9eb0 4339 return AC_ERR_SYSTEM;
1da177e4
LT
4340 }
4341
4342 return 0;
4343}
4344
1da177e4
LT
4345/**
4346 * ata_host_intr - Handle host interrupt for given (port, task)
4347 * @ap: Port on which interrupt arrived (possibly...)
4348 * @qc: Taskfile currently active in engine
4349 *
4350 * Handle host interrupt for given queued command. Currently,
4351 * only DMA interrupts are handled. All other commands are
4352 * handled via polling with interrupts disabled (nIEN bit).
4353 *
4354 * LOCKING:
4355 * spin_lock_irqsave(host_set lock)
4356 *
4357 * RETURNS:
4358 * One if interrupt was handled, zero if not (shared irq).
4359 */
4360
4361inline unsigned int ata_host_intr (struct ata_port *ap,
4362 struct ata_queued_cmd *qc)
4363{
4364 u8 status, host_stat;
4365
4366 switch (qc->tf.protocol) {
4367
4368 case ATA_PROT_DMA:
4369 case ATA_PROT_ATAPI_DMA:
4370 case ATA_PROT_ATAPI:
4371 /* check status of DMA engine */
4372 host_stat = ap->ops->bmdma_status(ap);
4373 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4374
4375 /* if it's not our irq... */
4376 if (!(host_stat & ATA_DMA_INTR))
4377 goto idle_irq;
4378
4379 /* before we do anything else, clear DMA-Start bit */
b73fc89f 4380 ap->ops->bmdma_stop(qc);
1da177e4
LT
4381
4382 /* fall through */
4383
4384 case ATA_PROT_ATAPI_NODATA:
4385 case ATA_PROT_NODATA:
4386 /* check altstatus */
4387 status = ata_altstatus(ap);
4388 if (status & ATA_BUSY)
4389 goto idle_irq;
4390
4391 /* check main status, clearing INTRQ */
4392 status = ata_chk_status(ap);
4393 if (unlikely(status & ATA_BUSY))
4394 goto idle_irq;
4395 DPRINTK("ata%u: protocol %d (dev_stat 0x%X)\n",
4396 ap->id, qc->tf.protocol, status);
4397
4398 /* ack bmdma irq events */
4399 ap->ops->irq_clear(ap);
4400
4401 /* complete taskfile transaction */
a22e2eb0
AL
4402 qc->err_mask |= ac_err_mask(status);
4403 ata_qc_complete(qc);
1da177e4
LT
4404 break;
4405
4406 default:
4407 goto idle_irq;
4408 }
4409
4410 return 1; /* irq handled */
4411
4412idle_irq:
4413 ap->stats.idle_irq++;
4414
4415#ifdef ATA_IRQ_TRAP
4416 if ((ap->stats.idle_irq % 1000) == 0) {
1da177e4
LT
4417 ata_irq_ack(ap, 0); /* debug trap */
4418 printk(KERN_WARNING "ata%d: irq trap\n", ap->id);
23cfce89 4419 return 1;
1da177e4
LT
4420 }
4421#endif
4422 return 0; /* irq not handled */
4423}
4424
4425/**
4426 * ata_interrupt - Default ATA host interrupt handler
0cba632b
JG
4427 * @irq: irq line (unused)
4428 * @dev_instance: pointer to our ata_host_set information structure
1da177e4
LT
4429 * @regs: unused
4430 *
0cba632b
JG
4431 * Default interrupt handler for PCI IDE devices. Calls
4432 * ata_host_intr() for each port that is not disabled.
4433 *
1da177e4 4434 * LOCKING:
0cba632b 4435 * Obtains host_set lock during operation.
1da177e4
LT
4436 *
4437 * RETURNS:
0cba632b 4438 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
4439 */
4440
4441irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4442{
4443 struct ata_host_set *host_set = dev_instance;
4444 unsigned int i;
4445 unsigned int handled = 0;
4446 unsigned long flags;
4447
4448 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4449 spin_lock_irqsave(&host_set->lock, flags);
4450
4451 for (i = 0; i < host_set->n_ports; i++) {
4452 struct ata_port *ap;
4453
4454 ap = host_set->ports[i];
c1389503 4455 if (ap &&
198e0fed 4456 !(ap->flags & (ATA_FLAG_DISABLED | ATA_FLAG_NOINTR))) {
1da177e4
LT
4457 struct ata_queued_cmd *qc;
4458
4459 qc = ata_qc_from_tag(ap, ap->active_tag);
21b1ed74
AL
4460 if (qc && (!(qc->tf.ctl & ATA_NIEN)) &&
4461 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
4462 handled |= ata_host_intr(ap, qc);
4463 }
4464 }
4465
4466 spin_unlock_irqrestore(&host_set->lock, flags);
4467
4468 return IRQ_RETVAL(handled);
4469}
4470
0baab86b 4471
9b847548
JA
4472/*
4473 * Execute a 'simple' command, that only consists of the opcode 'cmd' itself,
4474 * without filling any other registers
4475 */
4476static int ata_do_simple_cmd(struct ata_port *ap, struct ata_device *dev,
4477 u8 cmd)
4478{
4479 struct ata_taskfile tf;
4480 int err;
4481
4482 ata_tf_init(ap, &tf, dev->devno);
4483
4484 tf.command = cmd;
4485 tf.flags |= ATA_TFLAG_DEVICE;
4486 tf.protocol = ATA_PROT_NODATA;
4487
d69cf37d 4488 err = ata_exec_internal(ap, dev, &tf, NULL, DMA_NONE, NULL, 0);
9b847548
JA
4489 if (err)
4490 printk(KERN_ERR "%s: ata command failed: %d\n",
4491 __FUNCTION__, err);
4492
4493 return err;
4494}
4495
4496static int ata_flush_cache(struct ata_port *ap, struct ata_device *dev)
4497{
4498 u8 cmd;
4499
4500 if (!ata_try_flush_cache(dev))
4501 return 0;
4502
4503 if (ata_id_has_flush_ext(dev->id))
4504 cmd = ATA_CMD_FLUSH_EXT;
4505 else
4506 cmd = ATA_CMD_FLUSH;
4507
4508 return ata_do_simple_cmd(ap, dev, cmd);
4509}
4510
4511static int ata_standby_drive(struct ata_port *ap, struct ata_device *dev)
4512{
4513 return ata_do_simple_cmd(ap, dev, ATA_CMD_STANDBYNOW1);
4514}
4515
4516static int ata_start_drive(struct ata_port *ap, struct ata_device *dev)
4517{
4518 return ata_do_simple_cmd(ap, dev, ATA_CMD_IDLEIMMEDIATE);
4519}
4520
4521/**
4522 * ata_device_resume - wakeup a previously suspended devices
c893a3ae
RD
4523 * @ap: port the device is connected to
4524 * @dev: the device to resume
9b847548
JA
4525 *
4526 * Kick the drive back into action, by sending it an idle immediate
4527 * command and making sure its transfer mode matches between drive
4528 * and host.
4529 *
4530 */
4531int ata_device_resume(struct ata_port *ap, struct ata_device *dev)
4532{
4533 if (ap->flags & ATA_FLAG_SUSPENDED) {
e82cbdb9 4534 struct ata_device *failed_dev;
9b847548 4535 ap->flags &= ~ATA_FLAG_SUSPENDED;
e82cbdb9
TH
4536 while (ata_set_mode(ap, &failed_dev))
4537 ata_dev_disable(ap, failed_dev);
9b847548 4538 }
e1211e3f 4539 if (!ata_dev_enabled(dev))
9b847548
JA
4540 return 0;
4541 if (dev->class == ATA_DEV_ATA)
4542 ata_start_drive(ap, dev);
4543
4544 return 0;
4545}
4546
4547/**
4548 * ata_device_suspend - prepare a device for suspend
c893a3ae
RD
4549 * @ap: port the device is connected to
4550 * @dev: the device to suspend
9b847548
JA
4551 *
4552 * Flush the cache on the drive, if appropriate, then issue a
4553 * standbynow command.
9b847548 4554 */
082776e4 4555int ata_device_suspend(struct ata_port *ap, struct ata_device *dev, pm_message_t state)
9b847548 4556{
e1211e3f 4557 if (!ata_dev_enabled(dev))
9b847548
JA
4558 return 0;
4559 if (dev->class == ATA_DEV_ATA)
4560 ata_flush_cache(ap, dev);
4561
082776e4
NC
4562 if (state.event != PM_EVENT_FREEZE)
4563 ata_standby_drive(ap, dev);
9b847548
JA
4564 ap->flags |= ATA_FLAG_SUSPENDED;
4565 return 0;
4566}
4567
c893a3ae
RD
4568/**
4569 * ata_port_start - Set port up for dma.
4570 * @ap: Port to initialize
4571 *
4572 * Called just after data structures for each port are
4573 * initialized. Allocates space for PRD table.
4574 *
4575 * May be used as the port_start() entry in ata_port_operations.
4576 *
4577 * LOCKING:
4578 * Inherited from caller.
4579 */
4580
1da177e4
LT
4581int ata_port_start (struct ata_port *ap)
4582{
2f1f610b 4583 struct device *dev = ap->dev;
6037d6bb 4584 int rc;
1da177e4
LT
4585
4586 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
4587 if (!ap->prd)
4588 return -ENOMEM;
4589
6037d6bb
JG
4590 rc = ata_pad_alloc(ap, dev);
4591 if (rc) {
cedc9a47 4592 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 4593 return rc;
cedc9a47
JG
4594 }
4595
1da177e4
LT
4596 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
4597
4598 return 0;
4599}
4600
0baab86b
EF
4601
4602/**
4603 * ata_port_stop - Undo ata_port_start()
4604 * @ap: Port to shut down
4605 *
4606 * Frees the PRD table.
4607 *
4608 * May be used as the port_stop() entry in ata_port_operations.
4609 *
4610 * LOCKING:
6f0ef4fa 4611 * Inherited from caller.
0baab86b
EF
4612 */
4613
1da177e4
LT
4614void ata_port_stop (struct ata_port *ap)
4615{
2f1f610b 4616 struct device *dev = ap->dev;
1da177e4
LT
4617
4618 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 4619 ata_pad_free(ap, dev);
1da177e4
LT
4620}
4621
aa8f0dc6
JG
4622void ata_host_stop (struct ata_host_set *host_set)
4623{
4624 if (host_set->mmio_base)
4625 iounmap(host_set->mmio_base);
4626}
4627
4628
1da177e4
LT
4629/**
4630 * ata_host_remove - Unregister SCSI host structure with upper layers
4631 * @ap: Port to unregister
4632 * @do_unregister: 1 if we fully unregister, 0 to just stop the port
4633 *
4634 * LOCKING:
6f0ef4fa 4635 * Inherited from caller.
1da177e4
LT
4636 */
4637
4638static void ata_host_remove(struct ata_port *ap, unsigned int do_unregister)
4639{
4640 struct Scsi_Host *sh = ap->host;
4641
4642 DPRINTK("ENTER\n");
4643
4644 if (do_unregister)
4645 scsi_remove_host(sh);
4646
4647 ap->ops->port_stop(ap);
4648}
4649
4650/**
4651 * ata_host_init - Initialize an ata_port structure
4652 * @ap: Structure to initialize
4653 * @host: associated SCSI mid-layer structure
4654 * @host_set: Collection of hosts to which @ap belongs
4655 * @ent: Probe information provided by low-level driver
4656 * @port_no: Port number associated with this ata_port
4657 *
0cba632b
JG
4658 * Initialize a new ata_port structure, and its associated
4659 * scsi_host.
4660 *
1da177e4 4661 * LOCKING:
0cba632b 4662 * Inherited from caller.
1da177e4
LT
4663 */
4664
4665static void ata_host_init(struct ata_port *ap, struct Scsi_Host *host,
4666 struct ata_host_set *host_set,
057ace5e 4667 const struct ata_probe_ent *ent, unsigned int port_no)
1da177e4
LT
4668{
4669 unsigned int i;
4670
4671 host->max_id = 16;
4672 host->max_lun = 1;
4673 host->max_channel = 1;
4674 host->unique_id = ata_unique_id++;
4675 host->max_cmd_len = 12;
12413197 4676
198e0fed 4677 ap->flags = ATA_FLAG_DISABLED;
1da177e4
LT
4678 ap->id = host->unique_id;
4679 ap->host = host;
4680 ap->ctl = ATA_DEVCTL_OBS;
4681 ap->host_set = host_set;
2f1f610b 4682 ap->dev = ent->dev;
1da177e4
LT
4683 ap->port_no = port_no;
4684 ap->hard_port_no =
4685 ent->legacy_mode ? ent->hard_port_no : port_no;
4686 ap->pio_mask = ent->pio_mask;
4687 ap->mwdma_mask = ent->mwdma_mask;
4688 ap->udma_mask = ent->udma_mask;
4689 ap->flags |= ent->host_flags;
4690 ap->ops = ent->port_ops;
4691 ap->cbl = ATA_CBL_NONE;
1c3fae4d 4692 ap->sata_spd_limit = UINT_MAX;
1da177e4
LT
4693 ap->active_tag = ATA_TAG_POISON;
4694 ap->last_ctl = 0xFF;
4695
86e45b6b 4696 INIT_WORK(&ap->port_task, NULL, NULL);
a72ec4ce 4697 INIT_LIST_HEAD(&ap->eh_done_q);
1da177e4 4698
acf356b1
TH
4699 for (i = 0; i < ATA_MAX_DEVICES; i++) {
4700 struct ata_device *dev = &ap->device[i];
4701 dev->devno = i;
4702 dev->pio_mask = UINT_MAX;
4703 dev->mwdma_mask = UINT_MAX;
4704 dev->udma_mask = UINT_MAX;
4705 }
1da177e4
LT
4706
4707#ifdef ATA_IRQ_TRAP
4708 ap->stats.unhandled_irq = 1;
4709 ap->stats.idle_irq = 1;
4710#endif
4711
4712 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
4713}
4714
4715/**
4716 * ata_host_add - Attach low-level ATA driver to system
4717 * @ent: Information provided by low-level driver
4718 * @host_set: Collections of ports to which we add
4719 * @port_no: Port number associated with this host
4720 *
0cba632b
JG
4721 * Attach low-level ATA driver to system.
4722 *
1da177e4 4723 * LOCKING:
0cba632b 4724 * PCI/etc. bus probe sem.
1da177e4
LT
4725 *
4726 * RETURNS:
0cba632b 4727 * New ata_port on success, for NULL on error.
1da177e4
LT
4728 */
4729
057ace5e 4730static struct ata_port * ata_host_add(const struct ata_probe_ent *ent,
1da177e4
LT
4731 struct ata_host_set *host_set,
4732 unsigned int port_no)
4733{
4734 struct Scsi_Host *host;
4735 struct ata_port *ap;
4736 int rc;
4737
4738 DPRINTK("ENTER\n");
aec5c3c1
TH
4739
4740 if (!ent->port_ops->probe_reset &&
4741 !(ent->host_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
4742 printk(KERN_ERR "ata%u: no reset mechanism available\n",
4743 port_no);
4744 return NULL;
4745 }
4746
1da177e4
LT
4747 host = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
4748 if (!host)
4749 return NULL;
4750
30afc84c
TH
4751 host->transportt = &ata_scsi_transport_template;
4752
1da177e4
LT
4753 ap = (struct ata_port *) &host->hostdata[0];
4754
4755 ata_host_init(ap, host, host_set, ent, port_no);
4756
4757 rc = ap->ops->port_start(ap);
4758 if (rc)
4759 goto err_out;
4760
4761 return ap;
4762
4763err_out:
4764 scsi_host_put(host);
4765 return NULL;
4766}
4767
4768/**
0cba632b
JG
4769 * ata_device_add - Register hardware device with ATA and SCSI layers
4770 * @ent: Probe information describing hardware device to be registered
4771 *
4772 * This function processes the information provided in the probe
4773 * information struct @ent, allocates the necessary ATA and SCSI
4774 * host information structures, initializes them, and registers
4775 * everything with requisite kernel subsystems.
4776 *
4777 * This function requests irqs, probes the ATA bus, and probes
4778 * the SCSI bus.
1da177e4
LT
4779 *
4780 * LOCKING:
0cba632b 4781 * PCI/etc. bus probe sem.
1da177e4
LT
4782 *
4783 * RETURNS:
0cba632b 4784 * Number of ports registered. Zero on error (no ports registered).
1da177e4
LT
4785 */
4786
057ace5e 4787int ata_device_add(const struct ata_probe_ent *ent)
1da177e4
LT
4788{
4789 unsigned int count = 0, i;
4790 struct device *dev = ent->dev;
4791 struct ata_host_set *host_set;
4792
4793 DPRINTK("ENTER\n");
4794 /* alloc a container for our list of ATA ports (buses) */
57f3bda8 4795 host_set = kzalloc(sizeof(struct ata_host_set) +
1da177e4
LT
4796 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
4797 if (!host_set)
4798 return 0;
1da177e4
LT
4799 spin_lock_init(&host_set->lock);
4800
4801 host_set->dev = dev;
4802 host_set->n_ports = ent->n_ports;
4803 host_set->irq = ent->irq;
4804 host_set->mmio_base = ent->mmio_base;
4805 host_set->private_data = ent->private_data;
4806 host_set->ops = ent->port_ops;
5444a6f4 4807 host_set->flags = ent->host_set_flags;
1da177e4
LT
4808
4809 /* register each port bound to this device */
4810 for (i = 0; i < ent->n_ports; i++) {
4811 struct ata_port *ap;
4812 unsigned long xfer_mode_mask;
4813
4814 ap = ata_host_add(ent, host_set, i);
4815 if (!ap)
4816 goto err_out;
4817
4818 host_set->ports[i] = ap;
4819 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
4820 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
4821 (ap->pio_mask << ATA_SHIFT_PIO);
4822
4823 /* print per-port info to dmesg */
4824 printk(KERN_INFO "ata%u: %cATA max %s cmd 0x%lX ctl 0x%lX "
4825 "bmdma 0x%lX irq %lu\n",
4826 ap->id,
4827 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
4828 ata_mode_string(xfer_mode_mask),
4829 ap->ioaddr.cmd_addr,
4830 ap->ioaddr.ctl_addr,
4831 ap->ioaddr.bmdma_addr,
4832 ent->irq);
4833
4834 ata_chk_status(ap);
4835 host_set->ops->irq_clear(ap);
4836 count++;
4837 }
4838
57f3bda8
RD
4839 if (!count)
4840 goto err_free_ret;
1da177e4
LT
4841
4842 /* obtain irq, that is shared between channels */
4843 if (request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
4844 DRV_NAME, host_set))
4845 goto err_out;
4846
4847 /* perform each probe synchronously */
4848 DPRINTK("probe begin\n");
4849 for (i = 0; i < count; i++) {
4850 struct ata_port *ap;
4851 int rc;
4852
4853 ap = host_set->ports[i];
4854
c893a3ae 4855 DPRINTK("ata%u: bus probe begin\n", ap->id);
1da177e4 4856 rc = ata_bus_probe(ap);
c893a3ae 4857 DPRINTK("ata%u: bus probe end\n", ap->id);
1da177e4
LT
4858
4859 if (rc) {
4860 /* FIXME: do something useful here?
4861 * Current libata behavior will
4862 * tear down everything when
4863 * the module is removed
4864 * or the h/w is unplugged.
4865 */
4866 }
4867
4868 rc = scsi_add_host(ap->host, dev);
4869 if (rc) {
4870 printk(KERN_ERR "ata%u: scsi_add_host failed\n",
4871 ap->id);
4872 /* FIXME: do something useful here */
4873 /* FIXME: handle unconditional calls to
4874 * scsi_scan_host and ata_host_remove, below,
4875 * at the very least
4876 */
4877 }
4878 }
4879
4880 /* probes are done, now scan each port's disk(s) */
c893a3ae 4881 DPRINTK("host probe begin\n");
1da177e4
LT
4882 for (i = 0; i < count; i++) {
4883 struct ata_port *ap = host_set->ports[i];
4884
644dd0cc 4885 ata_scsi_scan_host(ap);
1da177e4
LT
4886 }
4887
4888 dev_set_drvdata(dev, host_set);
4889
4890 VPRINTK("EXIT, returning %u\n", ent->n_ports);
4891 return ent->n_ports; /* success */
4892
4893err_out:
4894 for (i = 0; i < count; i++) {
4895 ata_host_remove(host_set->ports[i], 1);
4896 scsi_host_put(host_set->ports[i]->host);
4897 }
57f3bda8 4898err_free_ret:
1da177e4
LT
4899 kfree(host_set);
4900 VPRINTK("EXIT, returning 0\n");
4901 return 0;
4902}
4903
17b14451
AC
4904/**
4905 * ata_host_set_remove - PCI layer callback for device removal
4906 * @host_set: ATA host set that was removed
4907 *
2e9edbf8 4908 * Unregister all objects associated with this host set. Free those
17b14451
AC
4909 * objects.
4910 *
4911 * LOCKING:
4912 * Inherited from calling layer (may sleep).
4913 */
4914
17b14451
AC
4915void ata_host_set_remove(struct ata_host_set *host_set)
4916{
4917 struct ata_port *ap;
4918 unsigned int i;
4919
4920 for (i = 0; i < host_set->n_ports; i++) {
4921 ap = host_set->ports[i];
4922 scsi_remove_host(ap->host);
4923 }
4924
4925 free_irq(host_set->irq, host_set);
4926
4927 for (i = 0; i < host_set->n_ports; i++) {
4928 ap = host_set->ports[i];
4929
4930 ata_scsi_release(ap->host);
4931
4932 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
4933 struct ata_ioports *ioaddr = &ap->ioaddr;
4934
4935 if (ioaddr->cmd_addr == 0x1f0)
4936 release_region(0x1f0, 8);
4937 else if (ioaddr->cmd_addr == 0x170)
4938 release_region(0x170, 8);
4939 }
4940
4941 scsi_host_put(ap->host);
4942 }
4943
4944 if (host_set->ops->host_stop)
4945 host_set->ops->host_stop(host_set);
4946
4947 kfree(host_set);
4948}
4949
1da177e4
LT
4950/**
4951 * ata_scsi_release - SCSI layer callback hook for host unload
4952 * @host: libata host to be unloaded
4953 *
4954 * Performs all duties necessary to shut down a libata port...
4955 * Kill port kthread, disable port, and release resources.
4956 *
4957 * LOCKING:
4958 * Inherited from SCSI layer.
4959 *
4960 * RETURNS:
4961 * One.
4962 */
4963
4964int ata_scsi_release(struct Scsi_Host *host)
4965{
4966 struct ata_port *ap = (struct ata_port *) &host->hostdata[0];
d9572b1d 4967 int i;
1da177e4
LT
4968
4969 DPRINTK("ENTER\n");
4970
4971 ap->ops->port_disable(ap);
4972 ata_host_remove(ap, 0);
d9572b1d
TH
4973 for (i = 0; i < ATA_MAX_DEVICES; i++)
4974 kfree(ap->device[i].id);
1da177e4
LT
4975
4976 DPRINTK("EXIT\n");
4977 return 1;
4978}
4979
4980/**
4981 * ata_std_ports - initialize ioaddr with standard port offsets.
4982 * @ioaddr: IO address structure to be initialized
0baab86b
EF
4983 *
4984 * Utility function which initializes data_addr, error_addr,
4985 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
4986 * device_addr, status_addr, and command_addr to standard offsets
4987 * relative to cmd_addr.
4988 *
4989 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 4990 */
0baab86b 4991
1da177e4
LT
4992void ata_std_ports(struct ata_ioports *ioaddr)
4993{
4994 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
4995 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
4996 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
4997 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
4998 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
4999 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
5000 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
5001 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
5002 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
5003 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
5004}
5005
0baab86b 5006
374b1873
JG
5007#ifdef CONFIG_PCI
5008
5009void ata_pci_host_stop (struct ata_host_set *host_set)
5010{
5011 struct pci_dev *pdev = to_pci_dev(host_set->dev);
5012
5013 pci_iounmap(pdev, host_set->mmio_base);
5014}
5015
1da177e4
LT
5016/**
5017 * ata_pci_remove_one - PCI layer callback for device removal
5018 * @pdev: PCI device that was removed
5019 *
5020 * PCI layer indicates to libata via this hook that
6f0ef4fa 5021 * hot-unplug or module unload event has occurred.
1da177e4
LT
5022 * Handle this by unregistering all objects associated
5023 * with this PCI device. Free those objects. Then finally
5024 * release PCI resources and disable device.
5025 *
5026 * LOCKING:
5027 * Inherited from PCI layer (may sleep).
5028 */
5029
5030void ata_pci_remove_one (struct pci_dev *pdev)
5031{
5032 struct device *dev = pci_dev_to_dev(pdev);
5033 struct ata_host_set *host_set = dev_get_drvdata(dev);
1da177e4 5034
17b14451 5035 ata_host_set_remove(host_set);
1da177e4
LT
5036 pci_release_regions(pdev);
5037 pci_disable_device(pdev);
5038 dev_set_drvdata(dev, NULL);
5039}
5040
5041/* move to PCI subsystem */
057ace5e 5042int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
5043{
5044 unsigned long tmp = 0;
5045
5046 switch (bits->width) {
5047 case 1: {
5048 u8 tmp8 = 0;
5049 pci_read_config_byte(pdev, bits->reg, &tmp8);
5050 tmp = tmp8;
5051 break;
5052 }
5053 case 2: {
5054 u16 tmp16 = 0;
5055 pci_read_config_word(pdev, bits->reg, &tmp16);
5056 tmp = tmp16;
5057 break;
5058 }
5059 case 4: {
5060 u32 tmp32 = 0;
5061 pci_read_config_dword(pdev, bits->reg, &tmp32);
5062 tmp = tmp32;
5063 break;
5064 }
5065
5066 default:
5067 return -EINVAL;
5068 }
5069
5070 tmp &= bits->mask;
5071
5072 return (tmp == bits->val) ? 1 : 0;
5073}
9b847548
JA
5074
5075int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t state)
5076{
5077 pci_save_state(pdev);
5078 pci_disable_device(pdev);
5079 pci_set_power_state(pdev, PCI_D3hot);
5080 return 0;
5081}
5082
5083int ata_pci_device_resume(struct pci_dev *pdev)
5084{
5085 pci_set_power_state(pdev, PCI_D0);
5086 pci_restore_state(pdev);
5087 pci_enable_device(pdev);
5088 pci_set_master(pdev);
5089 return 0;
5090}
1da177e4
LT
5091#endif /* CONFIG_PCI */
5092
5093
1da177e4
LT
5094static int __init ata_init(void)
5095{
5096 ata_wq = create_workqueue("ata");
5097 if (!ata_wq)
5098 return -ENOMEM;
5099
5100 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5101 return 0;
5102}
5103
5104static void __exit ata_exit(void)
5105{
5106 destroy_workqueue(ata_wq);
5107}
5108
5109module_init(ata_init);
5110module_exit(ata_exit);
5111
67846b30
JG
5112static unsigned long ratelimit_time;
5113static spinlock_t ata_ratelimit_lock = SPIN_LOCK_UNLOCKED;
5114
5115int ata_ratelimit(void)
5116{
5117 int rc;
5118 unsigned long flags;
5119
5120 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5121
5122 if (time_after(jiffies, ratelimit_time)) {
5123 rc = 1;
5124 ratelimit_time = jiffies + (HZ/5);
5125 } else
5126 rc = 0;
5127
5128 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5129
5130 return rc;
5131}
5132
1da177e4
LT
5133/*
5134 * libata is essentially a library of internal helper functions for
5135 * low-level ATA host controller drivers. As such, the API/ABI is
5136 * likely to change as new drivers are added and updated.
5137 * Do not depend on ABI/API stability.
5138 */
5139
5140EXPORT_SYMBOL_GPL(ata_std_bios_param);
5141EXPORT_SYMBOL_GPL(ata_std_ports);
5142EXPORT_SYMBOL_GPL(ata_device_add);
17b14451 5143EXPORT_SYMBOL_GPL(ata_host_set_remove);
1da177e4
LT
5144EXPORT_SYMBOL_GPL(ata_sg_init);
5145EXPORT_SYMBOL_GPL(ata_sg_init_one);
76014427 5146EXPORT_SYMBOL_GPL(__ata_qc_complete);
1da177e4
LT
5147EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
5148EXPORT_SYMBOL_GPL(ata_eng_timeout);
5149EXPORT_SYMBOL_GPL(ata_tf_load);
5150EXPORT_SYMBOL_GPL(ata_tf_read);
5151EXPORT_SYMBOL_GPL(ata_noop_dev_select);
5152EXPORT_SYMBOL_GPL(ata_std_dev_select);
5153EXPORT_SYMBOL_GPL(ata_tf_to_fis);
5154EXPORT_SYMBOL_GPL(ata_tf_from_fis);
5155EXPORT_SYMBOL_GPL(ata_check_status);
5156EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
5157EXPORT_SYMBOL_GPL(ata_exec_command);
5158EXPORT_SYMBOL_GPL(ata_port_start);
5159EXPORT_SYMBOL_GPL(ata_port_stop);
aa8f0dc6 5160EXPORT_SYMBOL_GPL(ata_host_stop);
1da177e4
LT
5161EXPORT_SYMBOL_GPL(ata_interrupt);
5162EXPORT_SYMBOL_GPL(ata_qc_prep);
e46834cd 5163EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
5164EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5165EXPORT_SYMBOL_GPL(ata_bmdma_start);
5166EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5167EXPORT_SYMBOL_GPL(ata_bmdma_status);
5168EXPORT_SYMBOL_GPL(ata_bmdma_stop);
5169EXPORT_SYMBOL_GPL(ata_port_probe);
5170EXPORT_SYMBOL_GPL(sata_phy_reset);
5171EXPORT_SYMBOL_GPL(__sata_phy_reset);
5172EXPORT_SYMBOL_GPL(ata_bus_reset);
8a19ac89 5173EXPORT_SYMBOL_GPL(ata_std_probeinit);
c2bd5804
TH
5174EXPORT_SYMBOL_GPL(ata_std_softreset);
5175EXPORT_SYMBOL_GPL(sata_std_hardreset);
5176EXPORT_SYMBOL_GPL(ata_std_postreset);
5177EXPORT_SYMBOL_GPL(ata_std_probe_reset);
a62c0fc5 5178EXPORT_SYMBOL_GPL(ata_drive_probe_reset);
623a3128 5179EXPORT_SYMBOL_GPL(ata_dev_revalidate);
2e9edbf8
JG
5180EXPORT_SYMBOL_GPL(ata_dev_classify);
5181EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 5182EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 5183EXPORT_SYMBOL_GPL(ata_ratelimit);
6f8b9958 5184EXPORT_SYMBOL_GPL(ata_busy_sleep);
86e45b6b 5185EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
5186EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
5187EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
5188EXPORT_SYMBOL_GPL(ata_scsi_error);
5189EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
5190EXPORT_SYMBOL_GPL(ata_scsi_release);
5191EXPORT_SYMBOL_GPL(ata_host_intr);
6a62a04d
TH
5192EXPORT_SYMBOL_GPL(ata_id_string);
5193EXPORT_SYMBOL_GPL(ata_id_c_string);
1da177e4 5194EXPORT_SYMBOL_GPL(ata_scsi_simulate);
a72ec4ce
TH
5195EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
5196EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
1da177e4 5197
1bc4ccff 5198EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
5199EXPORT_SYMBOL_GPL(ata_timing_compute);
5200EXPORT_SYMBOL_GPL(ata_timing_merge);
5201
1da177e4
LT
5202#ifdef CONFIG_PCI
5203EXPORT_SYMBOL_GPL(pci_test_config_bits);
374b1873 5204EXPORT_SYMBOL_GPL(ata_pci_host_stop);
1da177e4
LT
5205EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
5206EXPORT_SYMBOL_GPL(ata_pci_init_one);
5207EXPORT_SYMBOL_GPL(ata_pci_remove_one);
9b847548
JA
5208EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
5209EXPORT_SYMBOL_GPL(ata_pci_device_resume);
67951ade
AC
5210EXPORT_SYMBOL_GPL(ata_pci_default_filter);
5211EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 5212#endif /* CONFIG_PCI */
9b847548
JA
5213
5214EXPORT_SYMBOL_GPL(ata_device_suspend);
5215EXPORT_SYMBOL_GPL(ata_device_resume);
5216EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
5217EXPORT_SYMBOL_GPL(ata_scsi_device_resume);