[PATCH] libata: rework legacy handling to remove much of the cruft
[linux-2.6-block.git] / drivers / scsi / libata-core.c
CommitLineData
1da177e4 1/*
af36d7f0
JG
2 * libata-core.c - helper library for ATA
3 *
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
7 *
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25 *
26 *
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
29 *
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
32 *
1da177e4
LT
33 */
34
1da177e4
LT
35#include <linux/kernel.h>
36#include <linux/module.h>
37#include <linux/pci.h>
38#include <linux/init.h>
39#include <linux/list.h>
40#include <linux/mm.h>
41#include <linux/highmem.h>
42#include <linux/spinlock.h>
43#include <linux/blkdev.h>
44#include <linux/delay.h>
45#include <linux/timer.h>
46#include <linux/interrupt.h>
47#include <linux/completion.h>
48#include <linux/suspend.h>
49#include <linux/workqueue.h>
67846b30 50#include <linux/jiffies.h>
378f058c 51#include <linux/scatterlist.h>
1da177e4 52#include <scsi/scsi.h>
1da177e4 53#include "scsi_priv.h"
193515d5 54#include <scsi/scsi_cmnd.h>
1da177e4
LT
55#include <scsi/scsi_host.h>
56#include <linux/libata.h>
57#include <asm/io.h>
58#include <asm/semaphore.h>
59#include <asm/byteorder.h>
60
61#include "libata.h"
62
d7bb4cc7 63/* debounce timing parameters in msecs { interval, duration, timeout } */
e9c83914
TH
64const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
65const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
66const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
d7bb4cc7 67
3373efd8
TH
68static unsigned int ata_dev_init_params(struct ata_device *dev,
69 u16 heads, u16 sectors);
70static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
71static void ata_dev_xfermask(struct ata_device *dev);
1da177e4
LT
72
73static unsigned int ata_unique_id = 1;
74static struct workqueue_struct *ata_wq;
75
453b07ac
TH
76struct workqueue_struct *ata_aux_wq;
77
418dc1f5 78int atapi_enabled = 1;
1623c81e
JG
79module_param(atapi_enabled, int, 0444);
80MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on)");
81
95de719a
AL
82int atapi_dmadir = 0;
83module_param(atapi_dmadir, int, 0444);
84MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off, 1=on)");
85
c3c013a2
JG
86int libata_fua = 0;
87module_param_named(fua, libata_fua, int, 0444);
88MODULE_PARM_DESC(fua, "FUA support (0=off, 1=on)");
89
a8601e5f
AM
90static int ata_probe_timeout = ATA_TMOUT_INTERNAL / HZ;
91module_param(ata_probe_timeout, int, 0444);
92MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
93
1da177e4
LT
94MODULE_AUTHOR("Jeff Garzik");
95MODULE_DESCRIPTION("Library module for ATA devices");
96MODULE_LICENSE("GPL");
97MODULE_VERSION(DRV_VERSION);
98
0baab86b 99
1da177e4
LT
100/**
101 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
102 * @tf: Taskfile to convert
103 * @fis: Buffer into which data will output
104 * @pmp: Port multiplier port
105 *
106 * Converts a standard ATA taskfile to a Serial ATA
107 * FIS structure (Register - Host to Device).
108 *
109 * LOCKING:
110 * Inherited from caller.
111 */
112
057ace5e 113void ata_tf_to_fis(const struct ata_taskfile *tf, u8 *fis, u8 pmp)
1da177e4
LT
114{
115 fis[0] = 0x27; /* Register - Host to Device FIS */
116 fis[1] = (pmp & 0xf) | (1 << 7); /* Port multiplier number,
117 bit 7 indicates Command FIS */
118 fis[2] = tf->command;
119 fis[3] = tf->feature;
120
121 fis[4] = tf->lbal;
122 fis[5] = tf->lbam;
123 fis[6] = tf->lbah;
124 fis[7] = tf->device;
125
126 fis[8] = tf->hob_lbal;
127 fis[9] = tf->hob_lbam;
128 fis[10] = tf->hob_lbah;
129 fis[11] = tf->hob_feature;
130
131 fis[12] = tf->nsect;
132 fis[13] = tf->hob_nsect;
133 fis[14] = 0;
134 fis[15] = tf->ctl;
135
136 fis[16] = 0;
137 fis[17] = 0;
138 fis[18] = 0;
139 fis[19] = 0;
140}
141
142/**
143 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
144 * @fis: Buffer from which data will be input
145 * @tf: Taskfile to output
146 *
e12a1be6 147 * Converts a serial ATA FIS structure to a standard ATA taskfile.
1da177e4
LT
148 *
149 * LOCKING:
150 * Inherited from caller.
151 */
152
057ace5e 153void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
1da177e4
LT
154{
155 tf->command = fis[2]; /* status */
156 tf->feature = fis[3]; /* error */
157
158 tf->lbal = fis[4];
159 tf->lbam = fis[5];
160 tf->lbah = fis[6];
161 tf->device = fis[7];
162
163 tf->hob_lbal = fis[8];
164 tf->hob_lbam = fis[9];
165 tf->hob_lbah = fis[10];
166
167 tf->nsect = fis[12];
168 tf->hob_nsect = fis[13];
169}
170
8cbd6df1
AL
171static const u8 ata_rw_cmds[] = {
172 /* pio multi */
173 ATA_CMD_READ_MULTI,
174 ATA_CMD_WRITE_MULTI,
175 ATA_CMD_READ_MULTI_EXT,
176 ATA_CMD_WRITE_MULTI_EXT,
9a3dccc4
TH
177 0,
178 0,
179 0,
180 ATA_CMD_WRITE_MULTI_FUA_EXT,
8cbd6df1
AL
181 /* pio */
182 ATA_CMD_PIO_READ,
183 ATA_CMD_PIO_WRITE,
184 ATA_CMD_PIO_READ_EXT,
185 ATA_CMD_PIO_WRITE_EXT,
9a3dccc4
TH
186 0,
187 0,
188 0,
189 0,
8cbd6df1
AL
190 /* dma */
191 ATA_CMD_READ,
192 ATA_CMD_WRITE,
193 ATA_CMD_READ_EXT,
9a3dccc4
TH
194 ATA_CMD_WRITE_EXT,
195 0,
196 0,
197 0,
198 ATA_CMD_WRITE_FUA_EXT
8cbd6df1 199};
1da177e4
LT
200
201/**
8cbd6df1
AL
202 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
203 * @qc: command to examine and configure
1da177e4 204 *
2e9edbf8 205 * Examine the device configuration and tf->flags to calculate
8cbd6df1 206 * the proper read/write commands and protocol to use.
1da177e4
LT
207 *
208 * LOCKING:
209 * caller.
210 */
9a3dccc4 211int ata_rwcmd_protocol(struct ata_queued_cmd *qc)
1da177e4 212{
8cbd6df1
AL
213 struct ata_taskfile *tf = &qc->tf;
214 struct ata_device *dev = qc->dev;
9a3dccc4 215 u8 cmd;
1da177e4 216
9a3dccc4 217 int index, fua, lba48, write;
2e9edbf8 218
9a3dccc4 219 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
8cbd6df1
AL
220 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
221 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
1da177e4 222
8cbd6df1
AL
223 if (dev->flags & ATA_DFLAG_PIO) {
224 tf->protocol = ATA_PROT_PIO;
9a3dccc4 225 index = dev->multi_count ? 0 : 8;
8d238e01
AC
226 } else if (lba48 && (qc->ap->flags & ATA_FLAG_PIO_LBA48)) {
227 /* Unable to use DMA due to host limitation */
228 tf->protocol = ATA_PROT_PIO;
0565c26d 229 index = dev->multi_count ? 0 : 8;
8cbd6df1
AL
230 } else {
231 tf->protocol = ATA_PROT_DMA;
9a3dccc4 232 index = 16;
8cbd6df1 233 }
1da177e4 234
9a3dccc4
TH
235 cmd = ata_rw_cmds[index + fua + lba48 + write];
236 if (cmd) {
237 tf->command = cmd;
238 return 0;
239 }
240 return -1;
1da177e4
LT
241}
242
cb95d562
TH
243/**
244 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
245 * @pio_mask: pio_mask
246 * @mwdma_mask: mwdma_mask
247 * @udma_mask: udma_mask
248 *
249 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
250 * unsigned int xfer_mask.
251 *
252 * LOCKING:
253 * None.
254 *
255 * RETURNS:
256 * Packed xfer_mask.
257 */
258static unsigned int ata_pack_xfermask(unsigned int pio_mask,
259 unsigned int mwdma_mask,
260 unsigned int udma_mask)
261{
262 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
263 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
264 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
265}
266
c0489e4e
TH
267/**
268 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
269 * @xfer_mask: xfer_mask to unpack
270 * @pio_mask: resulting pio_mask
271 * @mwdma_mask: resulting mwdma_mask
272 * @udma_mask: resulting udma_mask
273 *
274 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
275 * Any NULL distination masks will be ignored.
276 */
277static void ata_unpack_xfermask(unsigned int xfer_mask,
278 unsigned int *pio_mask,
279 unsigned int *mwdma_mask,
280 unsigned int *udma_mask)
281{
282 if (pio_mask)
283 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
284 if (mwdma_mask)
285 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
286 if (udma_mask)
287 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
288}
289
cb95d562 290static const struct ata_xfer_ent {
be9a50c8 291 int shift, bits;
cb95d562
TH
292 u8 base;
293} ata_xfer_tbl[] = {
294 { ATA_SHIFT_PIO, ATA_BITS_PIO, XFER_PIO_0 },
295 { ATA_SHIFT_MWDMA, ATA_BITS_MWDMA, XFER_MW_DMA_0 },
296 { ATA_SHIFT_UDMA, ATA_BITS_UDMA, XFER_UDMA_0 },
297 { -1, },
298};
299
300/**
301 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
302 * @xfer_mask: xfer_mask of interest
303 *
304 * Return matching XFER_* value for @xfer_mask. Only the highest
305 * bit of @xfer_mask is considered.
306 *
307 * LOCKING:
308 * None.
309 *
310 * RETURNS:
311 * Matching XFER_* value, 0 if no match found.
312 */
313static u8 ata_xfer_mask2mode(unsigned int xfer_mask)
314{
315 int highbit = fls(xfer_mask) - 1;
316 const struct ata_xfer_ent *ent;
317
318 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
319 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
320 return ent->base + highbit - ent->shift;
321 return 0;
322}
323
324/**
325 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
326 * @xfer_mode: XFER_* of interest
327 *
328 * Return matching xfer_mask for @xfer_mode.
329 *
330 * LOCKING:
331 * None.
332 *
333 * RETURNS:
334 * Matching xfer_mask, 0 if no match found.
335 */
336static unsigned int ata_xfer_mode2mask(u8 xfer_mode)
337{
338 const struct ata_xfer_ent *ent;
339
340 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
341 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
342 return 1 << (ent->shift + xfer_mode - ent->base);
343 return 0;
344}
345
346/**
347 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
348 * @xfer_mode: XFER_* of interest
349 *
350 * Return matching xfer_shift for @xfer_mode.
351 *
352 * LOCKING:
353 * None.
354 *
355 * RETURNS:
356 * Matching xfer_shift, -1 if no match found.
357 */
358static int ata_xfer_mode2shift(unsigned int xfer_mode)
359{
360 const struct ata_xfer_ent *ent;
361
362 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
363 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
364 return ent->shift;
365 return -1;
366}
367
1da177e4 368/**
1da7b0d0
TH
369 * ata_mode_string - convert xfer_mask to string
370 * @xfer_mask: mask of bits supported; only highest bit counts.
1da177e4
LT
371 *
372 * Determine string which represents the highest speed
1da7b0d0 373 * (highest bit in @modemask).
1da177e4
LT
374 *
375 * LOCKING:
376 * None.
377 *
378 * RETURNS:
379 * Constant C string representing highest speed listed in
1da7b0d0 380 * @mode_mask, or the constant C string "<n/a>".
1da177e4 381 */
1da7b0d0 382static const char *ata_mode_string(unsigned int xfer_mask)
1da177e4 383{
75f554bc
TH
384 static const char * const xfer_mode_str[] = {
385 "PIO0",
386 "PIO1",
387 "PIO2",
388 "PIO3",
389 "PIO4",
390 "MWDMA0",
391 "MWDMA1",
392 "MWDMA2",
393 "UDMA/16",
394 "UDMA/25",
395 "UDMA/33",
396 "UDMA/44",
397 "UDMA/66",
398 "UDMA/100",
399 "UDMA/133",
400 "UDMA7",
401 };
1da7b0d0 402 int highbit;
1da177e4 403
1da7b0d0
TH
404 highbit = fls(xfer_mask) - 1;
405 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
406 return xfer_mode_str[highbit];
1da177e4 407 return "<n/a>";
1da177e4
LT
408}
409
4c360c81
TH
410static const char *sata_spd_string(unsigned int spd)
411{
412 static const char * const spd_str[] = {
413 "1.5 Gbps",
414 "3.0 Gbps",
415 };
416
417 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
418 return "<unknown>";
419 return spd_str[spd - 1];
420}
421
3373efd8 422void ata_dev_disable(struct ata_device *dev)
0b8efb0a 423{
0dd4b21f 424 if (ata_dev_enabled(dev) && ata_msg_drv(dev->ap)) {
f15a1daf 425 ata_dev_printk(dev, KERN_WARNING, "disabled\n");
0b8efb0a
TH
426 dev->class++;
427 }
428}
429
1da177e4
LT
430/**
431 * ata_pio_devchk - PATA device presence detection
432 * @ap: ATA channel to examine
433 * @device: Device to examine (starting at zero)
434 *
435 * This technique was originally described in
436 * Hale Landis's ATADRVR (www.ata-atapi.com), and
437 * later found its way into the ATA/ATAPI spec.
438 *
439 * Write a pattern to the ATA shadow registers,
440 * and if a device is present, it will respond by
441 * correctly storing and echoing back the
442 * ATA shadow register contents.
443 *
444 * LOCKING:
445 * caller.
446 */
447
448static unsigned int ata_pio_devchk(struct ata_port *ap,
449 unsigned int device)
450{
451 struct ata_ioports *ioaddr = &ap->ioaddr;
452 u8 nsect, lbal;
453
454 ap->ops->dev_select(ap, device);
455
456 outb(0x55, ioaddr->nsect_addr);
457 outb(0xaa, ioaddr->lbal_addr);
458
459 outb(0xaa, ioaddr->nsect_addr);
460 outb(0x55, ioaddr->lbal_addr);
461
462 outb(0x55, ioaddr->nsect_addr);
463 outb(0xaa, ioaddr->lbal_addr);
464
465 nsect = inb(ioaddr->nsect_addr);
466 lbal = inb(ioaddr->lbal_addr);
467
468 if ((nsect == 0x55) && (lbal == 0xaa))
469 return 1; /* we found a device */
470
471 return 0; /* nothing found */
472}
473
474/**
475 * ata_mmio_devchk - PATA device presence detection
476 * @ap: ATA channel to examine
477 * @device: Device to examine (starting at zero)
478 *
479 * This technique was originally described in
480 * Hale Landis's ATADRVR (www.ata-atapi.com), and
481 * later found its way into the ATA/ATAPI spec.
482 *
483 * Write a pattern to the ATA shadow registers,
484 * and if a device is present, it will respond by
485 * correctly storing and echoing back the
486 * ATA shadow register contents.
487 *
488 * LOCKING:
489 * caller.
490 */
491
492static unsigned int ata_mmio_devchk(struct ata_port *ap,
493 unsigned int device)
494{
495 struct ata_ioports *ioaddr = &ap->ioaddr;
496 u8 nsect, lbal;
497
498 ap->ops->dev_select(ap, device);
499
500 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
501 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
502
503 writeb(0xaa, (void __iomem *) ioaddr->nsect_addr);
504 writeb(0x55, (void __iomem *) ioaddr->lbal_addr);
505
506 writeb(0x55, (void __iomem *) ioaddr->nsect_addr);
507 writeb(0xaa, (void __iomem *) ioaddr->lbal_addr);
508
509 nsect = readb((void __iomem *) ioaddr->nsect_addr);
510 lbal = readb((void __iomem *) ioaddr->lbal_addr);
511
512 if ((nsect == 0x55) && (lbal == 0xaa))
513 return 1; /* we found a device */
514
515 return 0; /* nothing found */
516}
517
518/**
519 * ata_devchk - PATA device presence detection
520 * @ap: ATA channel to examine
521 * @device: Device to examine (starting at zero)
522 *
523 * Dispatch ATA device presence detection, depending
524 * on whether we are using PIO or MMIO to talk to the
525 * ATA shadow registers.
526 *
527 * LOCKING:
528 * caller.
529 */
530
531static unsigned int ata_devchk(struct ata_port *ap,
532 unsigned int device)
533{
534 if (ap->flags & ATA_FLAG_MMIO)
535 return ata_mmio_devchk(ap, device);
536 return ata_pio_devchk(ap, device);
537}
538
539/**
540 * ata_dev_classify - determine device type based on ATA-spec signature
541 * @tf: ATA taskfile register set for device to be identified
542 *
543 * Determine from taskfile register contents whether a device is
544 * ATA or ATAPI, as per "Signature and persistence" section
545 * of ATA/PI spec (volume 1, sect 5.14).
546 *
547 * LOCKING:
548 * None.
549 *
550 * RETURNS:
551 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, or %ATA_DEV_UNKNOWN
552 * the event of failure.
553 */
554
057ace5e 555unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1da177e4
LT
556{
557 /* Apple's open source Darwin code hints that some devices only
558 * put a proper signature into the LBA mid/high registers,
559 * So, we only check those. It's sufficient for uniqueness.
560 */
561
562 if (((tf->lbam == 0) && (tf->lbah == 0)) ||
563 ((tf->lbam == 0x3c) && (tf->lbah == 0xc3))) {
564 DPRINTK("found ATA device by sig\n");
565 return ATA_DEV_ATA;
566 }
567
568 if (((tf->lbam == 0x14) && (tf->lbah == 0xeb)) ||
569 ((tf->lbam == 0x69) && (tf->lbah == 0x96))) {
570 DPRINTK("found ATAPI device by sig\n");
571 return ATA_DEV_ATAPI;
572 }
573
574 DPRINTK("unknown device\n");
575 return ATA_DEV_UNKNOWN;
576}
577
578/**
579 * ata_dev_try_classify - Parse returned ATA device signature
580 * @ap: ATA channel to examine
581 * @device: Device to examine (starting at zero)
b4dc7623 582 * @r_err: Value of error register on completion
1da177e4
LT
583 *
584 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
585 * an ATA/ATAPI-defined set of values is placed in the ATA
586 * shadow registers, indicating the results of device detection
587 * and diagnostics.
588 *
589 * Select the ATA device, and read the values from the ATA shadow
590 * registers. Then parse according to the Error register value,
591 * and the spec-defined values examined by ata_dev_classify().
592 *
593 * LOCKING:
594 * caller.
b4dc7623
TH
595 *
596 * RETURNS:
597 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1da177e4
LT
598 */
599
b4dc7623
TH
600static unsigned int
601ata_dev_try_classify(struct ata_port *ap, unsigned int device, u8 *r_err)
1da177e4 602{
1da177e4
LT
603 struct ata_taskfile tf;
604 unsigned int class;
605 u8 err;
606
607 ap->ops->dev_select(ap, device);
608
609 memset(&tf, 0, sizeof(tf));
610
1da177e4 611 ap->ops->tf_read(ap, &tf);
0169e284 612 err = tf.feature;
b4dc7623
TH
613 if (r_err)
614 *r_err = err;
1da177e4
LT
615
616 /* see if device passed diags */
617 if (err == 1)
618 /* do nothing */ ;
619 else if ((device == 0) && (err == 0x81))
620 /* do nothing */ ;
621 else
b4dc7623 622 return ATA_DEV_NONE;
1da177e4 623
b4dc7623 624 /* determine if device is ATA or ATAPI */
1da177e4 625 class = ata_dev_classify(&tf);
b4dc7623 626
1da177e4 627 if (class == ATA_DEV_UNKNOWN)
b4dc7623 628 return ATA_DEV_NONE;
1da177e4 629 if ((class == ATA_DEV_ATA) && (ata_chk_status(ap) == 0))
b4dc7623
TH
630 return ATA_DEV_NONE;
631 return class;
1da177e4
LT
632}
633
634/**
6a62a04d 635 * ata_id_string - Convert IDENTIFY DEVICE page into string
1da177e4
LT
636 * @id: IDENTIFY DEVICE results we will examine
637 * @s: string into which data is output
638 * @ofs: offset into identify device page
639 * @len: length of string to return. must be an even number.
640 *
641 * The strings in the IDENTIFY DEVICE page are broken up into
642 * 16-bit chunks. Run through the string, and output each
643 * 8-bit chunk linearly, regardless of platform.
644 *
645 * LOCKING:
646 * caller.
647 */
648
6a62a04d
TH
649void ata_id_string(const u16 *id, unsigned char *s,
650 unsigned int ofs, unsigned int len)
1da177e4
LT
651{
652 unsigned int c;
653
654 while (len > 0) {
655 c = id[ofs] >> 8;
656 *s = c;
657 s++;
658
659 c = id[ofs] & 0xff;
660 *s = c;
661 s++;
662
663 ofs++;
664 len -= 2;
665 }
666}
667
0e949ff3 668/**
6a62a04d 669 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
0e949ff3
TH
670 * @id: IDENTIFY DEVICE results we will examine
671 * @s: string into which data is output
672 * @ofs: offset into identify device page
673 * @len: length of string to return. must be an odd number.
674 *
6a62a04d 675 * This function is identical to ata_id_string except that it
0e949ff3
TH
676 * trims trailing spaces and terminates the resulting string with
677 * null. @len must be actual maximum length (even number) + 1.
678 *
679 * LOCKING:
680 * caller.
681 */
6a62a04d
TH
682void ata_id_c_string(const u16 *id, unsigned char *s,
683 unsigned int ofs, unsigned int len)
0e949ff3
TH
684{
685 unsigned char *p;
686
687 WARN_ON(!(len & 1));
688
6a62a04d 689 ata_id_string(id, s, ofs, len - 1);
0e949ff3
TH
690
691 p = s + strnlen(s, len - 1);
692 while (p > s && p[-1] == ' ')
693 p--;
694 *p = '\0';
695}
0baab86b 696
2940740b
TH
697static u64 ata_id_n_sectors(const u16 *id)
698{
699 if (ata_id_has_lba(id)) {
700 if (ata_id_has_lba48(id))
701 return ata_id_u64(id, 100);
702 else
703 return ata_id_u32(id, 60);
704 } else {
705 if (ata_id_current_chs_valid(id))
706 return ata_id_u32(id, 57);
707 else
708 return id[1] * id[3] * id[6];
709 }
710}
711
0baab86b
EF
712/**
713 * ata_noop_dev_select - Select device 0/1 on ATA bus
714 * @ap: ATA channel to manipulate
715 * @device: ATA device (numbered from zero) to select
716 *
717 * This function performs no actual function.
718 *
719 * May be used as the dev_select() entry in ata_port_operations.
720 *
721 * LOCKING:
722 * caller.
723 */
1da177e4
LT
724void ata_noop_dev_select (struct ata_port *ap, unsigned int device)
725{
726}
727
0baab86b 728
1da177e4
LT
729/**
730 * ata_std_dev_select - Select device 0/1 on ATA bus
731 * @ap: ATA channel to manipulate
732 * @device: ATA device (numbered from zero) to select
733 *
734 * Use the method defined in the ATA specification to
735 * make either device 0, or device 1, active on the
0baab86b
EF
736 * ATA channel. Works with both PIO and MMIO.
737 *
738 * May be used as the dev_select() entry in ata_port_operations.
1da177e4
LT
739 *
740 * LOCKING:
741 * caller.
742 */
743
744void ata_std_dev_select (struct ata_port *ap, unsigned int device)
745{
746 u8 tmp;
747
748 if (device == 0)
749 tmp = ATA_DEVICE_OBS;
750 else
751 tmp = ATA_DEVICE_OBS | ATA_DEV1;
752
753 if (ap->flags & ATA_FLAG_MMIO) {
754 writeb(tmp, (void __iomem *) ap->ioaddr.device_addr);
755 } else {
756 outb(tmp, ap->ioaddr.device_addr);
757 }
758 ata_pause(ap); /* needed; also flushes, for mmio */
759}
760
761/**
762 * ata_dev_select - Select device 0/1 on ATA bus
763 * @ap: ATA channel to manipulate
764 * @device: ATA device (numbered from zero) to select
765 * @wait: non-zero to wait for Status register BSY bit to clear
766 * @can_sleep: non-zero if context allows sleeping
767 *
768 * Use the method defined in the ATA specification to
769 * make either device 0, or device 1, active on the
770 * ATA channel.
771 *
772 * This is a high-level version of ata_std_dev_select(),
773 * which additionally provides the services of inserting
774 * the proper pauses and status polling, where needed.
775 *
776 * LOCKING:
777 * caller.
778 */
779
780void ata_dev_select(struct ata_port *ap, unsigned int device,
781 unsigned int wait, unsigned int can_sleep)
782{
88574551 783 if (ata_msg_probe(ap))
0dd4b21f 784 ata_port_printk(ap, KERN_INFO, "ata_dev_select: ENTER, ata%u: "
88574551 785 "device %u, wait %u\n", ap->id, device, wait);
1da177e4
LT
786
787 if (wait)
788 ata_wait_idle(ap);
789
790 ap->ops->dev_select(ap, device);
791
792 if (wait) {
793 if (can_sleep && ap->device[device].class == ATA_DEV_ATAPI)
794 msleep(150);
795 ata_wait_idle(ap);
796 }
797}
798
799/**
800 * ata_dump_id - IDENTIFY DEVICE info debugging output
0bd3300a 801 * @id: IDENTIFY DEVICE page to dump
1da177e4 802 *
0bd3300a
TH
803 * Dump selected 16-bit words from the given IDENTIFY DEVICE
804 * page.
1da177e4
LT
805 *
806 * LOCKING:
807 * caller.
808 */
809
0bd3300a 810static inline void ata_dump_id(const u16 *id)
1da177e4
LT
811{
812 DPRINTK("49==0x%04x "
813 "53==0x%04x "
814 "63==0x%04x "
815 "64==0x%04x "
816 "75==0x%04x \n",
0bd3300a
TH
817 id[49],
818 id[53],
819 id[63],
820 id[64],
821 id[75]);
1da177e4
LT
822 DPRINTK("80==0x%04x "
823 "81==0x%04x "
824 "82==0x%04x "
825 "83==0x%04x "
826 "84==0x%04x \n",
0bd3300a
TH
827 id[80],
828 id[81],
829 id[82],
830 id[83],
831 id[84]);
1da177e4
LT
832 DPRINTK("88==0x%04x "
833 "93==0x%04x\n",
0bd3300a
TH
834 id[88],
835 id[93]);
1da177e4
LT
836}
837
cb95d562
TH
838/**
839 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
840 * @id: IDENTIFY data to compute xfer mask from
841 *
842 * Compute the xfermask for this device. This is not as trivial
843 * as it seems if we must consider early devices correctly.
844 *
845 * FIXME: pre IDE drive timing (do we care ?).
846 *
847 * LOCKING:
848 * None.
849 *
850 * RETURNS:
851 * Computed xfermask
852 */
853static unsigned int ata_id_xfermask(const u16 *id)
854{
855 unsigned int pio_mask, mwdma_mask, udma_mask;
856
857 /* Usual case. Word 53 indicates word 64 is valid */
858 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
859 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
860 pio_mask <<= 3;
861 pio_mask |= 0x7;
862 } else {
863 /* If word 64 isn't valid then Word 51 high byte holds
864 * the PIO timing number for the maximum. Turn it into
865 * a mask.
866 */
867 pio_mask = (2 << (id[ATA_ID_OLD_PIO_MODES] & 0xFF)) - 1 ;
868
869 /* But wait.. there's more. Design your standards by
870 * committee and you too can get a free iordy field to
871 * process. However its the speeds not the modes that
872 * are supported... Note drivers using the timing API
873 * will get this right anyway
874 */
875 }
876
877 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
fb21f0d0
TH
878
879 udma_mask = 0;
880 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
881 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
cb95d562
TH
882
883 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
884}
885
86e45b6b
TH
886/**
887 * ata_port_queue_task - Queue port_task
888 * @ap: The ata_port to queue port_task for
e2a7f77a
RD
889 * @fn: workqueue function to be scheduled
890 * @data: data value to pass to workqueue function
891 * @delay: delay time for workqueue function
86e45b6b
TH
892 *
893 * Schedule @fn(@data) for execution after @delay jiffies using
894 * port_task. There is one port_task per port and it's the
895 * user(low level driver)'s responsibility to make sure that only
896 * one task is active at any given time.
897 *
898 * libata core layer takes care of synchronization between
899 * port_task and EH. ata_port_queue_task() may be ignored for EH
900 * synchronization.
901 *
902 * LOCKING:
903 * Inherited from caller.
904 */
905void ata_port_queue_task(struct ata_port *ap, void (*fn)(void *), void *data,
906 unsigned long delay)
907{
908 int rc;
909
b51e9e5d 910 if (ap->pflags & ATA_PFLAG_FLUSH_PORT_TASK)
86e45b6b
TH
911 return;
912
913 PREPARE_WORK(&ap->port_task, fn, data);
914
915 if (!delay)
916 rc = queue_work(ata_wq, &ap->port_task);
917 else
918 rc = queue_delayed_work(ata_wq, &ap->port_task, delay);
919
920 /* rc == 0 means that another user is using port task */
921 WARN_ON(rc == 0);
922}
923
924/**
925 * ata_port_flush_task - Flush port_task
926 * @ap: The ata_port to flush port_task for
927 *
928 * After this function completes, port_task is guranteed not to
929 * be running or scheduled.
930 *
931 * LOCKING:
932 * Kernel thread context (may sleep)
933 */
934void ata_port_flush_task(struct ata_port *ap)
935{
936 unsigned long flags;
937
938 DPRINTK("ENTER\n");
939
ba6a1308 940 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 941 ap->pflags |= ATA_PFLAG_FLUSH_PORT_TASK;
ba6a1308 942 spin_unlock_irqrestore(ap->lock, flags);
86e45b6b
TH
943
944 DPRINTK("flush #1\n");
945 flush_workqueue(ata_wq);
946
947 /*
948 * At this point, if a task is running, it's guaranteed to see
949 * the FLUSH flag; thus, it will never queue pio tasks again.
950 * Cancel and flush.
951 */
952 if (!cancel_delayed_work(&ap->port_task)) {
0dd4b21f 953 if (ata_msg_ctl(ap))
88574551
TH
954 ata_port_printk(ap, KERN_DEBUG, "%s: flush #2\n",
955 __FUNCTION__);
86e45b6b
TH
956 flush_workqueue(ata_wq);
957 }
958
ba6a1308 959 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 960 ap->pflags &= ~ATA_PFLAG_FLUSH_PORT_TASK;
ba6a1308 961 spin_unlock_irqrestore(ap->lock, flags);
86e45b6b 962
0dd4b21f
BP
963 if (ata_msg_ctl(ap))
964 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __FUNCTION__);
86e45b6b
TH
965}
966
77853bf2 967void ata_qc_complete_internal(struct ata_queued_cmd *qc)
a2a7a662 968{
77853bf2 969 struct completion *waiting = qc->private_data;
a2a7a662 970
a2a7a662 971 complete(waiting);
a2a7a662
TH
972}
973
974/**
975 * ata_exec_internal - execute libata internal command
a2a7a662
TH
976 * @dev: Device to which the command is sent
977 * @tf: Taskfile registers for the command and the result
d69cf37d 978 * @cdb: CDB for packet command
a2a7a662
TH
979 * @dma_dir: Data tranfer direction of the command
980 * @buf: Data buffer of the command
981 * @buflen: Length of data buffer
982 *
983 * Executes libata internal command with timeout. @tf contains
984 * command on entry and result on return. Timeout and error
985 * conditions are reported via return value. No recovery action
986 * is taken after a command times out. It's caller's duty to
987 * clean up after timeout.
988 *
989 * LOCKING:
990 * None. Should be called with kernel context, might sleep.
551e8889
TH
991 *
992 * RETURNS:
993 * Zero on success, AC_ERR_* mask on failure
a2a7a662 994 */
3373efd8 995unsigned ata_exec_internal(struct ata_device *dev,
1ad8e7f9
TH
996 struct ata_taskfile *tf, const u8 *cdb,
997 int dma_dir, void *buf, unsigned int buflen)
a2a7a662 998{
3373efd8 999 struct ata_port *ap = dev->ap;
a2a7a662
TH
1000 u8 command = tf->command;
1001 struct ata_queued_cmd *qc;
2ab7db1f 1002 unsigned int tag, preempted_tag;
dedaf2b0 1003 u32 preempted_sactive, preempted_qc_active;
60be6b9a 1004 DECLARE_COMPLETION_ONSTACK(wait);
a2a7a662 1005 unsigned long flags;
77853bf2 1006 unsigned int err_mask;
d95a717f 1007 int rc;
a2a7a662 1008
ba6a1308 1009 spin_lock_irqsave(ap->lock, flags);
a2a7a662 1010
e3180499 1011 /* no internal command while frozen */
b51e9e5d 1012 if (ap->pflags & ATA_PFLAG_FROZEN) {
ba6a1308 1013 spin_unlock_irqrestore(ap->lock, flags);
e3180499
TH
1014 return AC_ERR_SYSTEM;
1015 }
1016
2ab7db1f 1017 /* initialize internal qc */
a2a7a662 1018
2ab7db1f
TH
1019 /* XXX: Tag 0 is used for drivers with legacy EH as some
1020 * drivers choke if any other tag is given. This breaks
1021 * ata_tag_internal() test for those drivers. Don't use new
1022 * EH stuff without converting to it.
1023 */
1024 if (ap->ops->error_handler)
1025 tag = ATA_TAG_INTERNAL;
1026 else
1027 tag = 0;
1028
6cec4a39 1029 if (test_and_set_bit(tag, &ap->qc_allocated))
2ab7db1f 1030 BUG();
f69499f4 1031 qc = __ata_qc_from_tag(ap, tag);
2ab7db1f
TH
1032
1033 qc->tag = tag;
1034 qc->scsicmd = NULL;
1035 qc->ap = ap;
1036 qc->dev = dev;
1037 ata_qc_reinit(qc);
1038
1039 preempted_tag = ap->active_tag;
dedaf2b0
TH
1040 preempted_sactive = ap->sactive;
1041 preempted_qc_active = ap->qc_active;
2ab7db1f 1042 ap->active_tag = ATA_TAG_POISON;
dedaf2b0
TH
1043 ap->sactive = 0;
1044 ap->qc_active = 0;
2ab7db1f
TH
1045
1046 /* prepare & issue qc */
a2a7a662 1047 qc->tf = *tf;
d69cf37d
TH
1048 if (cdb)
1049 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
e61e0672 1050 qc->flags |= ATA_QCFLAG_RESULT_TF;
a2a7a662
TH
1051 qc->dma_dir = dma_dir;
1052 if (dma_dir != DMA_NONE) {
1053 ata_sg_init_one(qc, buf, buflen);
1054 qc->nsect = buflen / ATA_SECT_SIZE;
1055 }
1056
77853bf2 1057 qc->private_data = &wait;
a2a7a662
TH
1058 qc->complete_fn = ata_qc_complete_internal;
1059
8e0e694a 1060 ata_qc_issue(qc);
a2a7a662 1061
ba6a1308 1062 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662 1063
a8601e5f 1064 rc = wait_for_completion_timeout(&wait, ata_probe_timeout);
d95a717f
TH
1065
1066 ata_port_flush_task(ap);
41ade50c 1067
d95a717f 1068 if (!rc) {
ba6a1308 1069 spin_lock_irqsave(ap->lock, flags);
a2a7a662
TH
1070
1071 /* We're racing with irq here. If we lose, the
1072 * following test prevents us from completing the qc
d95a717f
TH
1073 * twice. If we win, the port is frozen and will be
1074 * cleaned up by ->post_internal_cmd().
a2a7a662 1075 */
77853bf2 1076 if (qc->flags & ATA_QCFLAG_ACTIVE) {
d95a717f
TH
1077 qc->err_mask |= AC_ERR_TIMEOUT;
1078
1079 if (ap->ops->error_handler)
1080 ata_port_freeze(ap);
1081 else
1082 ata_qc_complete(qc);
f15a1daf 1083
0dd4b21f
BP
1084 if (ata_msg_warn(ap))
1085 ata_dev_printk(dev, KERN_WARNING,
88574551 1086 "qc timeout (cmd 0x%x)\n", command);
a2a7a662
TH
1087 }
1088
ba6a1308 1089 spin_unlock_irqrestore(ap->lock, flags);
a2a7a662
TH
1090 }
1091
d95a717f
TH
1092 /* do post_internal_cmd */
1093 if (ap->ops->post_internal_cmd)
1094 ap->ops->post_internal_cmd(qc);
1095
1096 if (qc->flags & ATA_QCFLAG_FAILED && !qc->err_mask) {
0dd4b21f 1097 if (ata_msg_warn(ap))
88574551 1098 ata_dev_printk(dev, KERN_WARNING,
0dd4b21f 1099 "zero err_mask for failed "
88574551 1100 "internal command, assuming AC_ERR_OTHER\n");
d95a717f
TH
1101 qc->err_mask |= AC_ERR_OTHER;
1102 }
1103
15869303 1104 /* finish up */
ba6a1308 1105 spin_lock_irqsave(ap->lock, flags);
15869303 1106
e61e0672 1107 *tf = qc->result_tf;
77853bf2
TH
1108 err_mask = qc->err_mask;
1109
1110 ata_qc_free(qc);
2ab7db1f 1111 ap->active_tag = preempted_tag;
dedaf2b0
TH
1112 ap->sactive = preempted_sactive;
1113 ap->qc_active = preempted_qc_active;
77853bf2 1114
1f7dd3e9
TH
1115 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1116 * Until those drivers are fixed, we detect the condition
1117 * here, fail the command with AC_ERR_SYSTEM and reenable the
1118 * port.
1119 *
1120 * Note that this doesn't change any behavior as internal
1121 * command failure results in disabling the device in the
1122 * higher layer for LLDDs without new reset/EH callbacks.
1123 *
1124 * Kill the following code as soon as those drivers are fixed.
1125 */
198e0fed 1126 if (ap->flags & ATA_FLAG_DISABLED) {
1f7dd3e9
TH
1127 err_mask |= AC_ERR_SYSTEM;
1128 ata_port_probe(ap);
1129 }
1130
ba6a1308 1131 spin_unlock_irqrestore(ap->lock, flags);
15869303 1132
77853bf2 1133 return err_mask;
a2a7a662
TH
1134}
1135
977e6b9f
TH
1136/**
1137 * ata_do_simple_cmd - execute simple internal command
1138 * @dev: Device to which the command is sent
1139 * @cmd: Opcode to execute
1140 *
1141 * Execute a 'simple' command, that only consists of the opcode
1142 * 'cmd' itself, without filling any other registers
1143 *
1144 * LOCKING:
1145 * Kernel thread context (may sleep).
1146 *
1147 * RETURNS:
1148 * Zero on success, AC_ERR_* mask on failure
e58eb583 1149 */
77b08fb5 1150unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
e58eb583
TH
1151{
1152 struct ata_taskfile tf;
e58eb583
TH
1153
1154 ata_tf_init(dev, &tf);
1155
1156 tf.command = cmd;
1157 tf.flags |= ATA_TFLAG_DEVICE;
1158 tf.protocol = ATA_PROT_NODATA;
1159
977e6b9f 1160 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
e58eb583
TH
1161}
1162
1bc4ccff
AC
1163/**
1164 * ata_pio_need_iordy - check if iordy needed
1165 * @adev: ATA device
1166 *
1167 * Check if the current speed of the device requires IORDY. Used
1168 * by various controllers for chip configuration.
1169 */
1170
1171unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1172{
1173 int pio;
1174 int speed = adev->pio_mode - XFER_PIO_0;
1175
1176 if (speed < 2)
1177 return 0;
1178 if (speed > 2)
1179 return 1;
2e9edbf8 1180
1bc4ccff
AC
1181 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1182
1183 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1184 pio = adev->id[ATA_ID_EIDE_PIO];
1185 /* Is the speed faster than the drive allows non IORDY ? */
1186 if (pio) {
1187 /* This is cycle times not frequency - watch the logic! */
1188 if (pio > 240) /* PIO2 is 240nS per cycle */
1189 return 1;
1190 return 0;
1191 }
1192 }
1193 return 0;
1194}
1195
1da177e4 1196/**
49016aca 1197 * ata_dev_read_id - Read ID data from the specified device
49016aca
TH
1198 * @dev: target device
1199 * @p_class: pointer to class of the target device (may be changed)
1200 * @post_reset: is this read ID post-reset?
fe635c7e 1201 * @id: buffer to read IDENTIFY data into
1da177e4 1202 *
49016aca
TH
1203 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1204 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
aec5c3c1
TH
1205 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1206 * for pre-ATA4 drives.
1da177e4
LT
1207 *
1208 * LOCKING:
49016aca
TH
1209 * Kernel thread context (may sleep)
1210 *
1211 * RETURNS:
1212 * 0 on success, -errno otherwise.
1da177e4 1213 */
a9beec95
TH
1214int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1215 int post_reset, u16 *id)
1da177e4 1216{
3373efd8 1217 struct ata_port *ap = dev->ap;
49016aca 1218 unsigned int class = *p_class;
a0123703 1219 struct ata_taskfile tf;
49016aca
TH
1220 unsigned int err_mask = 0;
1221 const char *reason;
1222 int rc;
1da177e4 1223
0dd4b21f 1224 if (ata_msg_ctl(ap))
88574551
TH
1225 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1226 __FUNCTION__, ap->id, dev->devno);
1da177e4 1227
49016aca 1228 ata_dev_select(ap, dev->devno, 1, 1); /* select device 0/1 */
1da177e4 1229
49016aca 1230 retry:
3373efd8 1231 ata_tf_init(dev, &tf);
a0123703 1232
49016aca
TH
1233 switch (class) {
1234 case ATA_DEV_ATA:
a0123703 1235 tf.command = ATA_CMD_ID_ATA;
49016aca
TH
1236 break;
1237 case ATA_DEV_ATAPI:
a0123703 1238 tf.command = ATA_CMD_ID_ATAPI;
49016aca
TH
1239 break;
1240 default:
1241 rc = -ENODEV;
1242 reason = "unsupported class";
1243 goto err_out;
1da177e4
LT
1244 }
1245
a0123703 1246 tf.protocol = ATA_PROT_PIO;
1da177e4 1247
3373efd8 1248 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_FROM_DEVICE,
49016aca 1249 id, sizeof(id[0]) * ATA_ID_WORDS);
a0123703 1250 if (err_mask) {
49016aca
TH
1251 rc = -EIO;
1252 reason = "I/O error";
1da177e4
LT
1253 goto err_out;
1254 }
1255
49016aca 1256 swap_buf_le16(id, ATA_ID_WORDS);
1da177e4 1257
49016aca 1258 /* sanity check */
692785e7 1259 if ((class == ATA_DEV_ATA) != (ata_id_is_ata(id) | ata_id_is_cfa(id))) {
49016aca
TH
1260 rc = -EINVAL;
1261 reason = "device reports illegal type";
1262 goto err_out;
1263 }
1264
1265 if (post_reset && class == ATA_DEV_ATA) {
1266 /*
1267 * The exact sequence expected by certain pre-ATA4 drives is:
1268 * SRST RESET
1269 * IDENTIFY
1270 * INITIALIZE DEVICE PARAMETERS
1271 * anything else..
1272 * Some drives were very specific about that exact sequence.
1273 */
1274 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
3373efd8 1275 err_mask = ata_dev_init_params(dev, id[3], id[6]);
49016aca
TH
1276 if (err_mask) {
1277 rc = -EIO;
1278 reason = "INIT_DEV_PARAMS failed";
1279 goto err_out;
1280 }
1281
1282 /* current CHS translation info (id[53-58]) might be
1283 * changed. reread the identify device info.
1284 */
1285 post_reset = 0;
1286 goto retry;
1287 }
1288 }
1289
1290 *p_class = class;
fe635c7e 1291
49016aca
TH
1292 return 0;
1293
1294 err_out:
88574551 1295 if (ata_msg_warn(ap))
0dd4b21f 1296 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
88574551 1297 "(%s, err_mask=0x%x)\n", reason, err_mask);
49016aca
TH
1298 return rc;
1299}
1300
3373efd8 1301static inline u8 ata_dev_knobble(struct ata_device *dev)
4b2f3ede 1302{
3373efd8 1303 return ((dev->ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
4b2f3ede
TH
1304}
1305
a6e6ce8e
TH
1306static void ata_dev_config_ncq(struct ata_device *dev,
1307 char *desc, size_t desc_sz)
1308{
1309 struct ata_port *ap = dev->ap;
1310 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
1311
1312 if (!ata_id_has_ncq(dev->id)) {
1313 desc[0] = '\0';
1314 return;
1315 }
1316
1317 if (ap->flags & ATA_FLAG_NCQ) {
1318 hdepth = min(ap->host->can_queue, ATA_MAX_QUEUE - 1);
1319 dev->flags |= ATA_DFLAG_NCQ;
1320 }
1321
1322 if (hdepth >= ddepth)
1323 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
1324 else
1325 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
1326}
1327
e6d902a3
BK
1328static void ata_set_port_max_cmd_len(struct ata_port *ap)
1329{
1330 int i;
1331
1332 if (ap->host) {
1333 ap->host->max_cmd_len = 0;
1334 for (i = 0; i < ATA_MAX_DEVICES; i++)
1335 ap->host->max_cmd_len = max_t(unsigned int,
1336 ap->host->max_cmd_len,
1337 ap->device[i].cdb_len);
1338 }
1339}
1340
49016aca 1341/**
ffeae418 1342 * ata_dev_configure - Configure the specified ATA/ATAPI device
ffeae418 1343 * @dev: Target device to configure
4c2d721a 1344 * @print_info: Enable device info printout
ffeae418
TH
1345 *
1346 * Configure @dev according to @dev->id. Generic and low-level
1347 * driver specific fixups are also applied.
49016aca
TH
1348 *
1349 * LOCKING:
ffeae418
TH
1350 * Kernel thread context (may sleep)
1351 *
1352 * RETURNS:
1353 * 0 on success, -errno otherwise
49016aca 1354 */
a9beec95 1355int ata_dev_configure(struct ata_device *dev, int print_info)
49016aca 1356{
3373efd8 1357 struct ata_port *ap = dev->ap;
1148c3a7 1358 const u16 *id = dev->id;
ff8854b2 1359 unsigned int xfer_mask;
e6d902a3 1360 int rc;
49016aca 1361
0dd4b21f 1362 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
88574551
TH
1363 ata_dev_printk(dev, KERN_INFO,
1364 "%s: ENTER/EXIT (host %u, dev %u) -- nodev\n",
1365 __FUNCTION__, ap->id, dev->devno);
ffeae418 1366 return 0;
49016aca
TH
1367 }
1368
0dd4b21f 1369 if (ata_msg_probe(ap))
88574551
TH
1370 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER, host %u, dev %u\n",
1371 __FUNCTION__, ap->id, dev->devno);
1da177e4 1372
c39f5ebe 1373 /* print device capabilities */
0dd4b21f 1374 if (ata_msg_probe(ap))
88574551
TH
1375 ata_dev_printk(dev, KERN_DEBUG,
1376 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
1377 "85:%04x 86:%04x 87:%04x 88:%04x\n",
0dd4b21f 1378 __FUNCTION__,
f15a1daf
TH
1379 id[49], id[82], id[83], id[84],
1380 id[85], id[86], id[87], id[88]);
c39f5ebe 1381
208a9933 1382 /* initialize to-be-configured parameters */
ea1dd4e1 1383 dev->flags &= ~ATA_DFLAG_CFG_MASK;
208a9933
TH
1384 dev->max_sectors = 0;
1385 dev->cdb_len = 0;
1386 dev->n_sectors = 0;
1387 dev->cylinders = 0;
1388 dev->heads = 0;
1389 dev->sectors = 0;
1390
1da177e4
LT
1391 /*
1392 * common ATA, ATAPI feature tests
1393 */
1394
ff8854b2 1395 /* find max transfer mode; for printk only */
1148c3a7 1396 xfer_mask = ata_id_xfermask(id);
1da177e4 1397
0dd4b21f
BP
1398 if (ata_msg_probe(ap))
1399 ata_dump_id(id);
1da177e4
LT
1400
1401 /* ATA-specific feature tests */
1402 if (dev->class == ATA_DEV_ATA) {
1148c3a7 1403 dev->n_sectors = ata_id_n_sectors(id);
2940740b 1404
1148c3a7 1405 if (ata_id_has_lba(id)) {
4c2d721a 1406 const char *lba_desc;
a6e6ce8e 1407 char ncq_desc[20];
8bf62ece 1408
4c2d721a
TH
1409 lba_desc = "LBA";
1410 dev->flags |= ATA_DFLAG_LBA;
1148c3a7 1411 if (ata_id_has_lba48(id)) {
8bf62ece 1412 dev->flags |= ATA_DFLAG_LBA48;
4c2d721a
TH
1413 lba_desc = "LBA48";
1414 }
8bf62ece 1415
a6e6ce8e
TH
1416 /* config NCQ */
1417 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
1418
8bf62ece 1419 /* print device info to dmesg */
5afc8142 1420 if (ata_msg_drv(ap) && print_info)
f15a1daf 1421 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
a6e6ce8e 1422 "max %s, %Lu sectors: %s %s\n",
f15a1daf
TH
1423 ata_id_major_version(id),
1424 ata_mode_string(xfer_mask),
1425 (unsigned long long)dev->n_sectors,
a6e6ce8e 1426 lba_desc, ncq_desc);
ffeae418 1427 } else {
8bf62ece
AL
1428 /* CHS */
1429
1430 /* Default translation */
1148c3a7
TH
1431 dev->cylinders = id[1];
1432 dev->heads = id[3];
1433 dev->sectors = id[6];
8bf62ece 1434
1148c3a7 1435 if (ata_id_current_chs_valid(id)) {
8bf62ece 1436 /* Current CHS translation is valid. */
1148c3a7
TH
1437 dev->cylinders = id[54];
1438 dev->heads = id[55];
1439 dev->sectors = id[56];
8bf62ece
AL
1440 }
1441
1442 /* print device info to dmesg */
5afc8142 1443 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
1444 ata_dev_printk(dev, KERN_INFO, "ATA-%d, "
1445 "max %s, %Lu sectors: CHS %u/%u/%u\n",
1446 ata_id_major_version(id),
1447 ata_mode_string(xfer_mask),
1448 (unsigned long long)dev->n_sectors,
88574551
TH
1449 dev->cylinders, dev->heads,
1450 dev->sectors);
1da177e4
LT
1451 }
1452
07f6f7d0
AL
1453 if (dev->id[59] & 0x100) {
1454 dev->multi_count = dev->id[59] & 0xff;
5afc8142 1455 if (ata_msg_drv(ap) && print_info)
88574551
TH
1456 ata_dev_printk(dev, KERN_INFO,
1457 "ata%u: dev %u multi count %u\n",
1458 ap->id, dev->devno, dev->multi_count);
07f6f7d0
AL
1459 }
1460
6e7846e9 1461 dev->cdb_len = 16;
1da177e4
LT
1462 }
1463
1464 /* ATAPI-specific feature tests */
2c13b7ce 1465 else if (dev->class == ATA_DEV_ATAPI) {
08a556db
AL
1466 char *cdb_intr_string = "";
1467
1148c3a7 1468 rc = atapi_cdb_len(id);
1da177e4 1469 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
0dd4b21f 1470 if (ata_msg_warn(ap))
88574551
TH
1471 ata_dev_printk(dev, KERN_WARNING,
1472 "unsupported CDB len\n");
ffeae418 1473 rc = -EINVAL;
1da177e4
LT
1474 goto err_out_nosup;
1475 }
6e7846e9 1476 dev->cdb_len = (unsigned int) rc;
1da177e4 1477
08a556db 1478 if (ata_id_cdb_intr(dev->id)) {
312f7da2 1479 dev->flags |= ATA_DFLAG_CDB_INTR;
08a556db
AL
1480 cdb_intr_string = ", CDB intr";
1481 }
312f7da2 1482
1da177e4 1483 /* print device info to dmesg */
5afc8142 1484 if (ata_msg_drv(ap) && print_info)
12436c30
TH
1485 ata_dev_printk(dev, KERN_INFO, "ATAPI, max %s%s\n",
1486 ata_mode_string(xfer_mask),
1487 cdb_intr_string);
1da177e4
LT
1488 }
1489
e6d902a3 1490 ata_set_port_max_cmd_len(ap);
6e7846e9 1491
4b2f3ede 1492 /* limit bridge transfers to udma5, 200 sectors */
3373efd8 1493 if (ata_dev_knobble(dev)) {
5afc8142 1494 if (ata_msg_drv(ap) && print_info)
f15a1daf
TH
1495 ata_dev_printk(dev, KERN_INFO,
1496 "applying bridge limits\n");
5a529139 1497 dev->udma_mask &= ATA_UDMA5;
4b2f3ede
TH
1498 dev->max_sectors = ATA_MAX_SECTORS;
1499 }
1500
1501 if (ap->ops->dev_config)
1502 ap->ops->dev_config(ap, dev);
1503
0dd4b21f
BP
1504 if (ata_msg_probe(ap))
1505 ata_dev_printk(dev, KERN_DEBUG, "%s: EXIT, drv_stat = 0x%x\n",
1506 __FUNCTION__, ata_chk_status(ap));
ffeae418 1507 return 0;
1da177e4
LT
1508
1509err_out_nosup:
0dd4b21f 1510 if (ata_msg_probe(ap))
88574551
TH
1511 ata_dev_printk(dev, KERN_DEBUG,
1512 "%s: EXIT, err\n", __FUNCTION__);
ffeae418 1513 return rc;
1da177e4
LT
1514}
1515
1516/**
1517 * ata_bus_probe - Reset and probe ATA bus
1518 * @ap: Bus to probe
1519 *
0cba632b
JG
1520 * Master ATA bus probing function. Initiates a hardware-dependent
1521 * bus reset, then attempts to identify any devices found on
1522 * the bus.
1523 *
1da177e4 1524 * LOCKING:
0cba632b 1525 * PCI/etc. bus probe sem.
1da177e4
LT
1526 *
1527 * RETURNS:
96072e69 1528 * Zero on success, negative errno otherwise.
1da177e4
LT
1529 */
1530
80289167 1531int ata_bus_probe(struct ata_port *ap)
1da177e4 1532{
28ca5c57 1533 unsigned int classes[ATA_MAX_DEVICES];
14d2bac1
TH
1534 int tries[ATA_MAX_DEVICES];
1535 int i, rc, down_xfermask;
e82cbdb9 1536 struct ata_device *dev;
1da177e4 1537
28ca5c57 1538 ata_port_probe(ap);
c19ba8af 1539
14d2bac1
TH
1540 for (i = 0; i < ATA_MAX_DEVICES; i++)
1541 tries[i] = ATA_PROBE_MAX_TRIES;
1542
1543 retry:
1544 down_xfermask = 0;
1545
2044470c 1546 /* reset and determine device classes */
52783c5d 1547 ap->ops->phy_reset(ap);
2061a47a 1548
52783c5d
TH
1549 for (i = 0; i < ATA_MAX_DEVICES; i++) {
1550 dev = &ap->device[i];
c19ba8af 1551
52783c5d
TH
1552 if (!(ap->flags & ATA_FLAG_DISABLED) &&
1553 dev->class != ATA_DEV_UNKNOWN)
1554 classes[dev->devno] = dev->class;
1555 else
1556 classes[dev->devno] = ATA_DEV_NONE;
2044470c 1557
52783c5d 1558 dev->class = ATA_DEV_UNKNOWN;
28ca5c57 1559 }
1da177e4 1560
52783c5d 1561 ata_port_probe(ap);
2044470c 1562
b6079ca4
AC
1563 /* after the reset the device state is PIO 0 and the controller
1564 state is undefined. Record the mode */
1565
1566 for (i = 0; i < ATA_MAX_DEVICES; i++)
1567 ap->device[i].pio_mode = XFER_PIO_0;
1568
28ca5c57 1569 /* read IDENTIFY page and configure devices */
1da177e4 1570 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e82cbdb9 1571 dev = &ap->device[i];
28ca5c57 1572
ec573755
TH
1573 if (tries[i])
1574 dev->class = classes[i];
ffeae418 1575
14d2bac1 1576 if (!ata_dev_enabled(dev))
ffeae418 1577 continue;
ffeae418 1578
3373efd8 1579 rc = ata_dev_read_id(dev, &dev->class, 1, dev->id);
14d2bac1
TH
1580 if (rc)
1581 goto fail;
1582
3373efd8 1583 rc = ata_dev_configure(dev, 1);
14d2bac1
TH
1584 if (rc)
1585 goto fail;
1da177e4
LT
1586 }
1587
e82cbdb9 1588 /* configure transfer mode */
3adcebb2 1589 rc = ata_set_mode(ap, &dev);
51713d35
TH
1590 if (rc) {
1591 down_xfermask = 1;
1592 goto fail;
e82cbdb9 1593 }
1da177e4 1594
e82cbdb9
TH
1595 for (i = 0; i < ATA_MAX_DEVICES; i++)
1596 if (ata_dev_enabled(&ap->device[i]))
1597 return 0;
1da177e4 1598
e82cbdb9
TH
1599 /* no device present, disable port */
1600 ata_port_disable(ap);
1da177e4 1601 ap->ops->port_disable(ap);
96072e69 1602 return -ENODEV;
14d2bac1
TH
1603
1604 fail:
1605 switch (rc) {
1606 case -EINVAL:
1607 case -ENODEV:
1608 tries[dev->devno] = 0;
1609 break;
1610 case -EIO:
3c567b7d 1611 sata_down_spd_limit(ap);
14d2bac1
TH
1612 /* fall through */
1613 default:
1614 tries[dev->devno]--;
1615 if (down_xfermask &&
3373efd8 1616 ata_down_xfermask_limit(dev, tries[dev->devno] == 1))
14d2bac1
TH
1617 tries[dev->devno] = 0;
1618 }
1619
ec573755 1620 if (!tries[dev->devno]) {
3373efd8
TH
1621 ata_down_xfermask_limit(dev, 1);
1622 ata_dev_disable(dev);
ec573755
TH
1623 }
1624
14d2bac1 1625 goto retry;
1da177e4
LT
1626}
1627
1628/**
0cba632b
JG
1629 * ata_port_probe - Mark port as enabled
1630 * @ap: Port for which we indicate enablement
1da177e4 1631 *
0cba632b
JG
1632 * Modify @ap data structure such that the system
1633 * thinks that the entire port is enabled.
1634 *
1635 * LOCKING: host_set lock, or some other form of
1636 * serialization.
1da177e4
LT
1637 */
1638
1639void ata_port_probe(struct ata_port *ap)
1640{
198e0fed 1641 ap->flags &= ~ATA_FLAG_DISABLED;
1da177e4
LT
1642}
1643
3be680b7
TH
1644/**
1645 * sata_print_link_status - Print SATA link status
1646 * @ap: SATA port to printk link status about
1647 *
1648 * This function prints link speed and status of a SATA link.
1649 *
1650 * LOCKING:
1651 * None.
1652 */
1653static void sata_print_link_status(struct ata_port *ap)
1654{
6d5f9732 1655 u32 sstatus, scontrol, tmp;
3be680b7 1656
81952c54 1657 if (sata_scr_read(ap, SCR_STATUS, &sstatus))
3be680b7 1658 return;
81952c54 1659 sata_scr_read(ap, SCR_CONTROL, &scontrol);
3be680b7 1660
81952c54 1661 if (ata_port_online(ap)) {
3be680b7 1662 tmp = (sstatus >> 4) & 0xf;
f15a1daf
TH
1663 ata_port_printk(ap, KERN_INFO,
1664 "SATA link up %s (SStatus %X SControl %X)\n",
1665 sata_spd_string(tmp), sstatus, scontrol);
3be680b7 1666 } else {
f15a1daf
TH
1667 ata_port_printk(ap, KERN_INFO,
1668 "SATA link down (SStatus %X SControl %X)\n",
1669 sstatus, scontrol);
3be680b7
TH
1670 }
1671}
1672
1da177e4 1673/**
780a87f7
JG
1674 * __sata_phy_reset - Wake/reset a low-level SATA PHY
1675 * @ap: SATA port associated with target SATA PHY.
1da177e4 1676 *
780a87f7
JG
1677 * This function issues commands to standard SATA Sxxx
1678 * PHY registers, to wake up the phy (and device), and
1679 * clear any reset condition.
1da177e4
LT
1680 *
1681 * LOCKING:
0cba632b 1682 * PCI/etc. bus probe sem.
1da177e4
LT
1683 *
1684 */
1685void __sata_phy_reset(struct ata_port *ap)
1686{
1687 u32 sstatus;
1688 unsigned long timeout = jiffies + (HZ * 5);
1689
1690 if (ap->flags & ATA_FLAG_SATA_RESET) {
cdcca89e 1691 /* issue phy wake/reset */
81952c54 1692 sata_scr_write_flush(ap, SCR_CONTROL, 0x301);
62ba2841
TH
1693 /* Couldn't find anything in SATA I/II specs, but
1694 * AHCI-1.1 10.4.2 says at least 1 ms. */
1695 mdelay(1);
1da177e4 1696 }
81952c54
TH
1697 /* phy wake/clear reset */
1698 sata_scr_write_flush(ap, SCR_CONTROL, 0x300);
1da177e4
LT
1699
1700 /* wait for phy to become ready, if necessary */
1701 do {
1702 msleep(200);
81952c54 1703 sata_scr_read(ap, SCR_STATUS, &sstatus);
1da177e4
LT
1704 if ((sstatus & 0xf) != 1)
1705 break;
1706 } while (time_before(jiffies, timeout));
1707
3be680b7
TH
1708 /* print link status */
1709 sata_print_link_status(ap);
656563e3 1710
3be680b7 1711 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 1712 if (!ata_port_offline(ap))
1da177e4 1713 ata_port_probe(ap);
3be680b7 1714 else
1da177e4 1715 ata_port_disable(ap);
1da177e4 1716
198e0fed 1717 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
1718 return;
1719
1720 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
1721 ata_port_disable(ap);
1722 return;
1723 }
1724
1725 ap->cbl = ATA_CBL_SATA;
1726}
1727
1728/**
780a87f7
JG
1729 * sata_phy_reset - Reset SATA bus.
1730 * @ap: SATA port associated with target SATA PHY.
1da177e4 1731 *
780a87f7
JG
1732 * This function resets the SATA bus, and then probes
1733 * the bus for devices.
1da177e4
LT
1734 *
1735 * LOCKING:
0cba632b 1736 * PCI/etc. bus probe sem.
1da177e4
LT
1737 *
1738 */
1739void sata_phy_reset(struct ata_port *ap)
1740{
1741 __sata_phy_reset(ap);
198e0fed 1742 if (ap->flags & ATA_FLAG_DISABLED)
1da177e4
LT
1743 return;
1744 ata_bus_reset(ap);
1745}
1746
ebdfca6e
AC
1747/**
1748 * ata_dev_pair - return other device on cable
ebdfca6e
AC
1749 * @adev: device
1750 *
1751 * Obtain the other device on the same cable, or if none is
1752 * present NULL is returned
1753 */
2e9edbf8 1754
3373efd8 1755struct ata_device *ata_dev_pair(struct ata_device *adev)
ebdfca6e 1756{
3373efd8 1757 struct ata_port *ap = adev->ap;
ebdfca6e 1758 struct ata_device *pair = &ap->device[1 - adev->devno];
e1211e3f 1759 if (!ata_dev_enabled(pair))
ebdfca6e
AC
1760 return NULL;
1761 return pair;
1762}
1763
1da177e4 1764/**
780a87f7
JG
1765 * ata_port_disable - Disable port.
1766 * @ap: Port to be disabled.
1da177e4 1767 *
780a87f7
JG
1768 * Modify @ap data structure such that the system
1769 * thinks that the entire port is disabled, and should
1770 * never attempt to probe or communicate with devices
1771 * on this port.
1772 *
1773 * LOCKING: host_set lock, or some other form of
1774 * serialization.
1da177e4
LT
1775 */
1776
1777void ata_port_disable(struct ata_port *ap)
1778{
1779 ap->device[0].class = ATA_DEV_NONE;
1780 ap->device[1].class = ATA_DEV_NONE;
198e0fed 1781 ap->flags |= ATA_FLAG_DISABLED;
1da177e4
LT
1782}
1783
1c3fae4d 1784/**
3c567b7d 1785 * sata_down_spd_limit - adjust SATA spd limit downward
1c3fae4d
TH
1786 * @ap: Port to adjust SATA spd limit for
1787 *
1788 * Adjust SATA spd limit of @ap downward. Note that this
1789 * function only adjusts the limit. The change must be applied
3c567b7d 1790 * using sata_set_spd().
1c3fae4d
TH
1791 *
1792 * LOCKING:
1793 * Inherited from caller.
1794 *
1795 * RETURNS:
1796 * 0 on success, negative errno on failure
1797 */
3c567b7d 1798int sata_down_spd_limit(struct ata_port *ap)
1c3fae4d 1799{
81952c54
TH
1800 u32 sstatus, spd, mask;
1801 int rc, highbit;
1c3fae4d 1802
81952c54
TH
1803 rc = sata_scr_read(ap, SCR_STATUS, &sstatus);
1804 if (rc)
1805 return rc;
1c3fae4d
TH
1806
1807 mask = ap->sata_spd_limit;
1808 if (mask <= 1)
1809 return -EINVAL;
1810 highbit = fls(mask) - 1;
1811 mask &= ~(1 << highbit);
1812
81952c54 1813 spd = (sstatus >> 4) & 0xf;
1c3fae4d
TH
1814 if (spd <= 1)
1815 return -EINVAL;
1816 spd--;
1817 mask &= (1 << spd) - 1;
1818 if (!mask)
1819 return -EINVAL;
1820
1821 ap->sata_spd_limit = mask;
1822
f15a1daf
TH
1823 ata_port_printk(ap, KERN_WARNING, "limiting SATA link speed to %s\n",
1824 sata_spd_string(fls(mask)));
1c3fae4d
TH
1825
1826 return 0;
1827}
1828
3c567b7d 1829static int __sata_set_spd_needed(struct ata_port *ap, u32 *scontrol)
1c3fae4d
TH
1830{
1831 u32 spd, limit;
1832
1833 if (ap->sata_spd_limit == UINT_MAX)
1834 limit = 0;
1835 else
1836 limit = fls(ap->sata_spd_limit);
1837
1838 spd = (*scontrol >> 4) & 0xf;
1839 *scontrol = (*scontrol & ~0xf0) | ((limit & 0xf) << 4);
1840
1841 return spd != limit;
1842}
1843
1844/**
3c567b7d 1845 * sata_set_spd_needed - is SATA spd configuration needed
1c3fae4d
TH
1846 * @ap: Port in question
1847 *
1848 * Test whether the spd limit in SControl matches
1849 * @ap->sata_spd_limit. This function is used to determine
1850 * whether hardreset is necessary to apply SATA spd
1851 * configuration.
1852 *
1853 * LOCKING:
1854 * Inherited from caller.
1855 *
1856 * RETURNS:
1857 * 1 if SATA spd configuration is needed, 0 otherwise.
1858 */
3c567b7d 1859int sata_set_spd_needed(struct ata_port *ap)
1c3fae4d
TH
1860{
1861 u32 scontrol;
1862
81952c54 1863 if (sata_scr_read(ap, SCR_CONTROL, &scontrol))
1c3fae4d
TH
1864 return 0;
1865
3c567b7d 1866 return __sata_set_spd_needed(ap, &scontrol);
1c3fae4d
TH
1867}
1868
1869/**
3c567b7d 1870 * sata_set_spd - set SATA spd according to spd limit
1c3fae4d
TH
1871 * @ap: Port to set SATA spd for
1872 *
1873 * Set SATA spd of @ap according to sata_spd_limit.
1874 *
1875 * LOCKING:
1876 * Inherited from caller.
1877 *
1878 * RETURNS:
1879 * 0 if spd doesn't need to be changed, 1 if spd has been
81952c54 1880 * changed. Negative errno if SCR registers are inaccessible.
1c3fae4d 1881 */
3c567b7d 1882int sata_set_spd(struct ata_port *ap)
1c3fae4d
TH
1883{
1884 u32 scontrol;
81952c54 1885 int rc;
1c3fae4d 1886
81952c54
TH
1887 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
1888 return rc;
1c3fae4d 1889
3c567b7d 1890 if (!__sata_set_spd_needed(ap, &scontrol))
1c3fae4d
TH
1891 return 0;
1892
81952c54
TH
1893 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
1894 return rc;
1895
1c3fae4d
TH
1896 return 1;
1897}
1898
452503f9
AC
1899/*
1900 * This mode timing computation functionality is ported over from
1901 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
1902 */
1903/*
1904 * PIO 0-5, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
1905 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
1906 * for PIO 5, which is a nonstandard extension and UDMA6, which
2e9edbf8 1907 * is currently supported only by Maxtor drives.
452503f9
AC
1908 */
1909
1910static const struct ata_timing ata_timing[] = {
1911
1912 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 15 },
1913 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 20 },
1914 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 30 },
1915 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 45 },
1916
1917 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 60 },
1918 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 80 },
1919 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 120 },
1920
1921/* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2e9edbf8 1922
452503f9
AC
1923 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 120, 0 },
1924 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 150, 0 },
1925 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 480, 0 },
2e9edbf8 1926
452503f9
AC
1927 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 240, 0 },
1928 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 480, 0 },
1929 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 960, 0 },
1930
1931/* { XFER_PIO_5, 20, 50, 30, 100, 50, 30, 100, 0 }, */
1932 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 120, 0 },
1933 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 180, 0 },
1934
1935 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 240, 0 },
1936 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 383, 0 },
1937 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 600, 0 },
1938
1939/* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 960, 0 }, */
1940
1941 { 0xFF }
1942};
1943
1944#define ENOUGH(v,unit) (((v)-1)/(unit)+1)
1945#define EZ(v,unit) ((v)?ENOUGH(v,unit):0)
1946
1947static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
1948{
1949 q->setup = EZ(t->setup * 1000, T);
1950 q->act8b = EZ(t->act8b * 1000, T);
1951 q->rec8b = EZ(t->rec8b * 1000, T);
1952 q->cyc8b = EZ(t->cyc8b * 1000, T);
1953 q->active = EZ(t->active * 1000, T);
1954 q->recover = EZ(t->recover * 1000, T);
1955 q->cycle = EZ(t->cycle * 1000, T);
1956 q->udma = EZ(t->udma * 1000, UT);
1957}
1958
1959void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
1960 struct ata_timing *m, unsigned int what)
1961{
1962 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
1963 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
1964 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
1965 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
1966 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
1967 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
1968 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
1969 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
1970}
1971
1972static const struct ata_timing* ata_timing_find_mode(unsigned short speed)
1973{
1974 const struct ata_timing *t;
1975
1976 for (t = ata_timing; t->mode != speed; t++)
91190758 1977 if (t->mode == 0xFF)
452503f9 1978 return NULL;
2e9edbf8 1979 return t;
452503f9
AC
1980}
1981
1982int ata_timing_compute(struct ata_device *adev, unsigned short speed,
1983 struct ata_timing *t, int T, int UT)
1984{
1985 const struct ata_timing *s;
1986 struct ata_timing p;
1987
1988 /*
2e9edbf8 1989 * Find the mode.
75b1f2f8 1990 */
452503f9
AC
1991
1992 if (!(s = ata_timing_find_mode(speed)))
1993 return -EINVAL;
1994
75b1f2f8
AL
1995 memcpy(t, s, sizeof(*s));
1996
452503f9
AC
1997 /*
1998 * If the drive is an EIDE drive, it can tell us it needs extended
1999 * PIO/MW_DMA cycle timing.
2000 */
2001
2002 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
2003 memset(&p, 0, sizeof(p));
2004 if(speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
2005 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
2006 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
2007 } else if(speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
2008 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
2009 }
2010 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
2011 }
2012
2013 /*
2014 * Convert the timing to bus clock counts.
2015 */
2016
75b1f2f8 2017 ata_timing_quantize(t, t, T, UT);
452503f9
AC
2018
2019 /*
c893a3ae
RD
2020 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
2021 * S.M.A.R.T * and some other commands. We have to ensure that the
2022 * DMA cycle timing is slower/equal than the fastest PIO timing.
452503f9
AC
2023 */
2024
2025 if (speed > XFER_PIO_4) {
2026 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
2027 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
2028 }
2029
2030 /*
c893a3ae 2031 * Lengthen active & recovery time so that cycle time is correct.
452503f9
AC
2032 */
2033
2034 if (t->act8b + t->rec8b < t->cyc8b) {
2035 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
2036 t->rec8b = t->cyc8b - t->act8b;
2037 }
2038
2039 if (t->active + t->recover < t->cycle) {
2040 t->active += (t->cycle - (t->active + t->recover)) / 2;
2041 t->recover = t->cycle - t->active;
2042 }
2043
2044 return 0;
2045}
2046
cf176e1a
TH
2047/**
2048 * ata_down_xfermask_limit - adjust dev xfer masks downward
cf176e1a
TH
2049 * @dev: Device to adjust xfer masks
2050 * @force_pio0: Force PIO0
2051 *
2052 * Adjust xfer masks of @dev downward. Note that this function
2053 * does not apply the change. Invoking ata_set_mode() afterwards
2054 * will apply the limit.
2055 *
2056 * LOCKING:
2057 * Inherited from caller.
2058 *
2059 * RETURNS:
2060 * 0 on success, negative errno on failure
2061 */
3373efd8 2062int ata_down_xfermask_limit(struct ata_device *dev, int force_pio0)
cf176e1a
TH
2063{
2064 unsigned long xfer_mask;
2065 int highbit;
2066
2067 xfer_mask = ata_pack_xfermask(dev->pio_mask, dev->mwdma_mask,
2068 dev->udma_mask);
2069
2070 if (!xfer_mask)
2071 goto fail;
2072 /* don't gear down to MWDMA from UDMA, go directly to PIO */
2073 if (xfer_mask & ATA_MASK_UDMA)
2074 xfer_mask &= ~ATA_MASK_MWDMA;
2075
2076 highbit = fls(xfer_mask) - 1;
2077 xfer_mask &= ~(1 << highbit);
2078 if (force_pio0)
2079 xfer_mask &= 1 << ATA_SHIFT_PIO;
2080 if (!xfer_mask)
2081 goto fail;
2082
2083 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
2084 &dev->udma_mask);
2085
f15a1daf
TH
2086 ata_dev_printk(dev, KERN_WARNING, "limiting speed to %s\n",
2087 ata_mode_string(xfer_mask));
cf176e1a
TH
2088
2089 return 0;
2090
2091 fail:
2092 return -EINVAL;
2093}
2094
3373efd8 2095static int ata_dev_set_mode(struct ata_device *dev)
1da177e4 2096{
83206a29
TH
2097 unsigned int err_mask;
2098 int rc;
1da177e4 2099
e8384607 2100 dev->flags &= ~ATA_DFLAG_PIO;
1da177e4
LT
2101 if (dev->xfer_shift == ATA_SHIFT_PIO)
2102 dev->flags |= ATA_DFLAG_PIO;
2103
3373efd8 2104 err_mask = ata_dev_set_xfermode(dev);
83206a29 2105 if (err_mask) {
f15a1daf
TH
2106 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
2107 "(err_mask=0x%x)\n", err_mask);
83206a29
TH
2108 return -EIO;
2109 }
1da177e4 2110
3373efd8 2111 rc = ata_dev_revalidate(dev, 0);
5eb45c02 2112 if (rc)
83206a29 2113 return rc;
48a8a14f 2114
23e71c3d
TH
2115 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
2116 dev->xfer_shift, (int)dev->xfer_mode);
1da177e4 2117
f15a1daf
TH
2118 ata_dev_printk(dev, KERN_INFO, "configured for %s\n",
2119 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)));
83206a29 2120 return 0;
1da177e4
LT
2121}
2122
1da177e4
LT
2123/**
2124 * ata_set_mode - Program timings and issue SET FEATURES - XFER
2125 * @ap: port on which timings will be programmed
e82cbdb9 2126 * @r_failed_dev: out paramter for failed device
1da177e4 2127 *
e82cbdb9
TH
2128 * Set ATA device disk transfer mode (PIO3, UDMA6, etc.). If
2129 * ata_set_mode() fails, pointer to the failing device is
2130 * returned in @r_failed_dev.
780a87f7 2131 *
1da177e4 2132 * LOCKING:
0cba632b 2133 * PCI/etc. bus probe sem.
e82cbdb9
TH
2134 *
2135 * RETURNS:
2136 * 0 on success, negative errno otherwise
1da177e4 2137 */
1ad8e7f9 2138int ata_set_mode(struct ata_port *ap, struct ata_device **r_failed_dev)
1da177e4 2139{
e8e0619f 2140 struct ata_device *dev;
e82cbdb9 2141 int i, rc = 0, used_dma = 0, found = 0;
1da177e4 2142
3adcebb2
TH
2143 /* has private set_mode? */
2144 if (ap->ops->set_mode) {
2145 /* FIXME: make ->set_mode handle no device case and
2146 * return error code and failing device on failure.
2147 */
2148 for (i = 0; i < ATA_MAX_DEVICES; i++) {
02670bf3 2149 if (ata_dev_ready(&ap->device[i])) {
3adcebb2
TH
2150 ap->ops->set_mode(ap);
2151 break;
2152 }
2153 }
2154 return 0;
2155 }
2156
a6d5a51c
TH
2157 /* step 1: calculate xfer_mask */
2158 for (i = 0; i < ATA_MAX_DEVICES; i++) {
acf356b1 2159 unsigned int pio_mask, dma_mask;
a6d5a51c 2160
e8e0619f
TH
2161 dev = &ap->device[i];
2162
e1211e3f 2163 if (!ata_dev_enabled(dev))
a6d5a51c
TH
2164 continue;
2165
3373efd8 2166 ata_dev_xfermask(dev);
1da177e4 2167
acf356b1
TH
2168 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
2169 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
2170 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
2171 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
5444a6f4 2172
4f65977d 2173 found = 1;
5444a6f4
AC
2174 if (dev->dma_mode)
2175 used_dma = 1;
a6d5a51c 2176 }
4f65977d 2177 if (!found)
e82cbdb9 2178 goto out;
a6d5a51c
TH
2179
2180 /* step 2: always set host PIO timings */
e8e0619f
TH
2181 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2182 dev = &ap->device[i];
2183 if (!ata_dev_enabled(dev))
2184 continue;
2185
2186 if (!dev->pio_mode) {
f15a1daf 2187 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
e8e0619f 2188 rc = -EINVAL;
e82cbdb9 2189 goto out;
e8e0619f
TH
2190 }
2191
2192 dev->xfer_mode = dev->pio_mode;
2193 dev->xfer_shift = ATA_SHIFT_PIO;
2194 if (ap->ops->set_piomode)
2195 ap->ops->set_piomode(ap, dev);
2196 }
1da177e4 2197
a6d5a51c 2198 /* step 3: set host DMA timings */
e8e0619f
TH
2199 for (i = 0; i < ATA_MAX_DEVICES; i++) {
2200 dev = &ap->device[i];
2201
2202 if (!ata_dev_enabled(dev) || !dev->dma_mode)
2203 continue;
2204
2205 dev->xfer_mode = dev->dma_mode;
2206 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
2207 if (ap->ops->set_dmamode)
2208 ap->ops->set_dmamode(ap, dev);
2209 }
1da177e4
LT
2210
2211 /* step 4: update devices' xfer mode */
83206a29 2212 for (i = 0; i < ATA_MAX_DEVICES; i++) {
e8e0619f 2213 dev = &ap->device[i];
1da177e4 2214
02670bf3
TH
2215 /* don't udpate suspended devices' xfer mode */
2216 if (!ata_dev_ready(dev))
83206a29
TH
2217 continue;
2218
3373efd8 2219 rc = ata_dev_set_mode(dev);
5bbc53f4 2220 if (rc)
e82cbdb9 2221 goto out;
83206a29 2222 }
1da177e4 2223
e8e0619f
TH
2224 /* Record simplex status. If we selected DMA then the other
2225 * host channels are not permitted to do so.
5444a6f4 2226 */
5444a6f4
AC
2227 if (used_dma && (ap->host_set->flags & ATA_HOST_SIMPLEX))
2228 ap->host_set->simplex_claimed = 1;
2229
e8e0619f 2230 /* step5: chip specific finalisation */
1da177e4
LT
2231 if (ap->ops->post_set_mode)
2232 ap->ops->post_set_mode(ap);
2233
e82cbdb9
TH
2234 out:
2235 if (rc)
2236 *r_failed_dev = dev;
2237 return rc;
1da177e4
LT
2238}
2239
1fdffbce
JG
2240/**
2241 * ata_tf_to_host - issue ATA taskfile to host controller
2242 * @ap: port to which command is being issued
2243 * @tf: ATA taskfile register set
2244 *
2245 * Issues ATA taskfile register set to ATA host controller,
2246 * with proper synchronization with interrupt handler and
2247 * other threads.
2248 *
2249 * LOCKING:
2250 * spin_lock_irqsave(host_set lock)
2251 */
2252
2253static inline void ata_tf_to_host(struct ata_port *ap,
2254 const struct ata_taskfile *tf)
2255{
2256 ap->ops->tf_load(ap, tf);
2257 ap->ops->exec_command(ap, tf);
2258}
2259
1da177e4
LT
2260/**
2261 * ata_busy_sleep - sleep until BSY clears, or timeout
2262 * @ap: port containing status register to be polled
2263 * @tmout_pat: impatience timeout
2264 * @tmout: overall timeout
2265 *
780a87f7
JG
2266 * Sleep until ATA Status register bit BSY clears,
2267 * or a timeout occurs.
2268 *
2269 * LOCKING: None.
1da177e4
LT
2270 */
2271
6f8b9958
TH
2272unsigned int ata_busy_sleep (struct ata_port *ap,
2273 unsigned long tmout_pat, unsigned long tmout)
1da177e4
LT
2274{
2275 unsigned long timer_start, timeout;
2276 u8 status;
2277
2278 status = ata_busy_wait(ap, ATA_BUSY, 300);
2279 timer_start = jiffies;
2280 timeout = timer_start + tmout_pat;
2281 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2282 msleep(50);
2283 status = ata_busy_wait(ap, ATA_BUSY, 3);
2284 }
2285
2286 if (status & ATA_BUSY)
f15a1daf
TH
2287 ata_port_printk(ap, KERN_WARNING,
2288 "port is slow to respond, please be patient\n");
1da177e4
LT
2289
2290 timeout = timer_start + tmout;
2291 while ((status & ATA_BUSY) && (time_before(jiffies, timeout))) {
2292 msleep(50);
2293 status = ata_chk_status(ap);
2294 }
2295
2296 if (status & ATA_BUSY) {
f15a1daf
TH
2297 ata_port_printk(ap, KERN_ERR, "port failed to respond "
2298 "(%lu secs)\n", tmout / HZ);
1da177e4
LT
2299 return 1;
2300 }
2301
2302 return 0;
2303}
2304
2305static void ata_bus_post_reset(struct ata_port *ap, unsigned int devmask)
2306{
2307 struct ata_ioports *ioaddr = &ap->ioaddr;
2308 unsigned int dev0 = devmask & (1 << 0);
2309 unsigned int dev1 = devmask & (1 << 1);
2310 unsigned long timeout;
2311
2312 /* if device 0 was found in ata_devchk, wait for its
2313 * BSY bit to clear
2314 */
2315 if (dev0)
2316 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2317
2318 /* if device 1 was found in ata_devchk, wait for
2319 * register access, then wait for BSY to clear
2320 */
2321 timeout = jiffies + ATA_TMOUT_BOOT;
2322 while (dev1) {
2323 u8 nsect, lbal;
2324
2325 ap->ops->dev_select(ap, 1);
2326 if (ap->flags & ATA_FLAG_MMIO) {
2327 nsect = readb((void __iomem *) ioaddr->nsect_addr);
2328 lbal = readb((void __iomem *) ioaddr->lbal_addr);
2329 } else {
2330 nsect = inb(ioaddr->nsect_addr);
2331 lbal = inb(ioaddr->lbal_addr);
2332 }
2333 if ((nsect == 1) && (lbal == 1))
2334 break;
2335 if (time_after(jiffies, timeout)) {
2336 dev1 = 0;
2337 break;
2338 }
2339 msleep(50); /* give drive a breather */
2340 }
2341 if (dev1)
2342 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2343
2344 /* is all this really necessary? */
2345 ap->ops->dev_select(ap, 0);
2346 if (dev1)
2347 ap->ops->dev_select(ap, 1);
2348 if (dev0)
2349 ap->ops->dev_select(ap, 0);
2350}
2351
1da177e4
LT
2352static unsigned int ata_bus_softreset(struct ata_port *ap,
2353 unsigned int devmask)
2354{
2355 struct ata_ioports *ioaddr = &ap->ioaddr;
2356
2357 DPRINTK("ata%u: bus reset via SRST\n", ap->id);
2358
2359 /* software reset. causes dev0 to be selected */
2360 if (ap->flags & ATA_FLAG_MMIO) {
2361 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2362 udelay(20); /* FIXME: flush */
2363 writeb(ap->ctl | ATA_SRST, (void __iomem *) ioaddr->ctl_addr);
2364 udelay(20); /* FIXME: flush */
2365 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2366 } else {
2367 outb(ap->ctl, ioaddr->ctl_addr);
2368 udelay(10);
2369 outb(ap->ctl | ATA_SRST, ioaddr->ctl_addr);
2370 udelay(10);
2371 outb(ap->ctl, ioaddr->ctl_addr);
2372 }
2373
2374 /* spec mandates ">= 2ms" before checking status.
2375 * We wait 150ms, because that was the magic delay used for
2376 * ATAPI devices in Hale Landis's ATADRVR, for the period of time
2377 * between when the ATA command register is written, and then
2378 * status is checked. Because waiting for "a while" before
2379 * checking status is fine, post SRST, we perform this magic
2380 * delay here as well.
09c7ad79
AC
2381 *
2382 * Old drivers/ide uses the 2mS rule and then waits for ready
1da177e4
LT
2383 */
2384 msleep(150);
2385
2e9edbf8 2386 /* Before we perform post reset processing we want to see if
298a41ca
TH
2387 * the bus shows 0xFF because the odd clown forgets the D7
2388 * pulldown resistor.
2389 */
987d2f05 2390 if (ata_check_status(ap) == 0xFF) {
f15a1daf 2391 ata_port_printk(ap, KERN_ERR, "SRST failed (status 0xFF)\n");
298a41ca 2392 return AC_ERR_OTHER;
987d2f05 2393 }
09c7ad79 2394
1da177e4
LT
2395 ata_bus_post_reset(ap, devmask);
2396
2397 return 0;
2398}
2399
2400/**
2401 * ata_bus_reset - reset host port and associated ATA channel
2402 * @ap: port to reset
2403 *
2404 * This is typically the first time we actually start issuing
2405 * commands to the ATA channel. We wait for BSY to clear, then
2406 * issue EXECUTE DEVICE DIAGNOSTIC command, polling for its
2407 * result. Determine what devices, if any, are on the channel
2408 * by looking at the device 0/1 error register. Look at the signature
2409 * stored in each device's taskfile registers, to determine if
2410 * the device is ATA or ATAPI.
2411 *
2412 * LOCKING:
0cba632b
JG
2413 * PCI/etc. bus probe sem.
2414 * Obtains host_set lock.
1da177e4
LT
2415 *
2416 * SIDE EFFECTS:
198e0fed 2417 * Sets ATA_FLAG_DISABLED if bus reset fails.
1da177e4
LT
2418 */
2419
2420void ata_bus_reset(struct ata_port *ap)
2421{
2422 struct ata_ioports *ioaddr = &ap->ioaddr;
2423 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2424 u8 err;
aec5c3c1 2425 unsigned int dev0, dev1 = 0, devmask = 0;
1da177e4
LT
2426
2427 DPRINTK("ENTER, host %u, port %u\n", ap->id, ap->port_no);
2428
2429 /* determine if device 0/1 are present */
2430 if (ap->flags & ATA_FLAG_SATA_RESET)
2431 dev0 = 1;
2432 else {
2433 dev0 = ata_devchk(ap, 0);
2434 if (slave_possible)
2435 dev1 = ata_devchk(ap, 1);
2436 }
2437
2438 if (dev0)
2439 devmask |= (1 << 0);
2440 if (dev1)
2441 devmask |= (1 << 1);
2442
2443 /* select device 0 again */
2444 ap->ops->dev_select(ap, 0);
2445
2446 /* issue bus reset */
2447 if (ap->flags & ATA_FLAG_SRST)
aec5c3c1
TH
2448 if (ata_bus_softreset(ap, devmask))
2449 goto err_out;
1da177e4
LT
2450
2451 /*
2452 * determine by signature whether we have ATA or ATAPI devices
2453 */
b4dc7623 2454 ap->device[0].class = ata_dev_try_classify(ap, 0, &err);
1da177e4 2455 if ((slave_possible) && (err != 0x81))
b4dc7623 2456 ap->device[1].class = ata_dev_try_classify(ap, 1, &err);
1da177e4
LT
2457
2458 /* re-enable interrupts */
2459 if (ap->ioaddr.ctl_addr) /* FIXME: hack. create a hook instead */
2460 ata_irq_on(ap);
2461
2462 /* is double-select really necessary? */
2463 if (ap->device[1].class != ATA_DEV_NONE)
2464 ap->ops->dev_select(ap, 1);
2465 if (ap->device[0].class != ATA_DEV_NONE)
2466 ap->ops->dev_select(ap, 0);
2467
2468 /* if no devices were detected, disable this port */
2469 if ((ap->device[0].class == ATA_DEV_NONE) &&
2470 (ap->device[1].class == ATA_DEV_NONE))
2471 goto err_out;
2472
2473 if (ap->flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST)) {
2474 /* set up device control for ATA_FLAG_SATA_RESET */
2475 if (ap->flags & ATA_FLAG_MMIO)
2476 writeb(ap->ctl, (void __iomem *) ioaddr->ctl_addr);
2477 else
2478 outb(ap->ctl, ioaddr->ctl_addr);
2479 }
2480
2481 DPRINTK("EXIT\n");
2482 return;
2483
2484err_out:
f15a1daf 2485 ata_port_printk(ap, KERN_ERR, "disabling port\n");
1da177e4
LT
2486 ap->ops->port_disable(ap);
2487
2488 DPRINTK("EXIT\n");
2489}
2490
d7bb4cc7
TH
2491/**
2492 * sata_phy_debounce - debounce SATA phy status
2493 * @ap: ATA port to debounce SATA phy status for
2494 * @params: timing parameters { interval, duratinon, timeout } in msec
2495 *
2496 * Make sure SStatus of @ap reaches stable state, determined by
2497 * holding the same value where DET is not 1 for @duration polled
2498 * every @interval, before @timeout. Timeout constraints the
2499 * beginning of the stable state. Because, after hot unplugging,
2500 * DET gets stuck at 1 on some controllers, this functions waits
2501 * until timeout then returns 0 if DET is stable at 1.
2502 *
2503 * LOCKING:
2504 * Kernel thread context (may sleep)
2505 *
2506 * RETURNS:
2507 * 0 on success, -errno on failure.
2508 */
2509int sata_phy_debounce(struct ata_port *ap, const unsigned long *params)
7a7921e8 2510{
d7bb4cc7
TH
2511 unsigned long interval_msec = params[0];
2512 unsigned long duration = params[1] * HZ / 1000;
2513 unsigned long timeout = jiffies + params[2] * HZ / 1000;
2514 unsigned long last_jiffies;
2515 u32 last, cur;
2516 int rc;
2517
2518 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2519 return rc;
2520 cur &= 0xf;
2521
2522 last = cur;
2523 last_jiffies = jiffies;
2524
2525 while (1) {
2526 msleep(interval_msec);
2527 if ((rc = sata_scr_read(ap, SCR_STATUS, &cur)))
2528 return rc;
2529 cur &= 0xf;
2530
2531 /* DET stable? */
2532 if (cur == last) {
2533 if (cur == 1 && time_before(jiffies, timeout))
2534 continue;
2535 if (time_after(jiffies, last_jiffies + duration))
2536 return 0;
2537 continue;
2538 }
2539
2540 /* unstable, start over */
2541 last = cur;
2542 last_jiffies = jiffies;
2543
2544 /* check timeout */
2545 if (time_after(jiffies, timeout))
2546 return -EBUSY;
2547 }
2548}
2549
2550/**
2551 * sata_phy_resume - resume SATA phy
2552 * @ap: ATA port to resume SATA phy for
2553 * @params: timing parameters { interval, duratinon, timeout } in msec
2554 *
2555 * Resume SATA phy of @ap and debounce it.
2556 *
2557 * LOCKING:
2558 * Kernel thread context (may sleep)
2559 *
2560 * RETURNS:
2561 * 0 on success, -errno on failure.
2562 */
2563int sata_phy_resume(struct ata_port *ap, const unsigned long *params)
2564{
2565 u32 scontrol;
81952c54
TH
2566 int rc;
2567
2568 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2569 return rc;
7a7921e8 2570
852ee16a 2571 scontrol = (scontrol & 0x0f0) | 0x300;
81952c54
TH
2572
2573 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2574 return rc;
7a7921e8 2575
d7bb4cc7
TH
2576 /* Some PHYs react badly if SStatus is pounded immediately
2577 * after resuming. Delay 200ms before debouncing.
2578 */
2579 msleep(200);
7a7921e8 2580
d7bb4cc7 2581 return sata_phy_debounce(ap, params);
7a7921e8
TH
2582}
2583
f5914a46
TH
2584static void ata_wait_spinup(struct ata_port *ap)
2585{
2586 struct ata_eh_context *ehc = &ap->eh_context;
2587 unsigned long end, secs;
2588 int rc;
2589
2590 /* first, debounce phy if SATA */
2591 if (ap->cbl == ATA_CBL_SATA) {
e9c83914 2592 rc = sata_phy_debounce(ap, sata_deb_timing_hotplug);
f5914a46
TH
2593
2594 /* if debounced successfully and offline, no need to wait */
2595 if ((rc == 0 || rc == -EOPNOTSUPP) && ata_port_offline(ap))
2596 return;
2597 }
2598
2599 /* okay, let's give the drive time to spin up */
2600 end = ehc->i.hotplug_timestamp + ATA_SPINUP_WAIT * HZ / 1000;
2601 secs = ((end - jiffies) + HZ - 1) / HZ;
2602
2603 if (time_after(jiffies, end))
2604 return;
2605
2606 if (secs > 5)
2607 ata_port_printk(ap, KERN_INFO, "waiting for device to spin up "
2608 "(%lu secs)\n", secs);
2609
2610 schedule_timeout_uninterruptible(end - jiffies);
2611}
2612
2613/**
2614 * ata_std_prereset - prepare for reset
2615 * @ap: ATA port to be reset
2616 *
2617 * @ap is about to be reset. Initialize it.
2618 *
2619 * LOCKING:
2620 * Kernel thread context (may sleep)
2621 *
2622 * RETURNS:
2623 * 0 on success, -errno otherwise.
2624 */
2625int ata_std_prereset(struct ata_port *ap)
2626{
2627 struct ata_eh_context *ehc = &ap->eh_context;
e9c83914 2628 const unsigned long *timing = sata_ehc_deb_timing(ehc);
f5914a46
TH
2629 int rc;
2630
28324304
TH
2631 /* handle link resume & hotplug spinup */
2632 if ((ehc->i.flags & ATA_EHI_RESUME_LINK) &&
2633 (ap->flags & ATA_FLAG_HRST_TO_RESUME))
2634 ehc->i.action |= ATA_EH_HARDRESET;
2635
2636 if ((ehc->i.flags & ATA_EHI_HOTPLUGGED) &&
2637 (ap->flags & ATA_FLAG_SKIP_D2H_BSY))
2638 ata_wait_spinup(ap);
f5914a46
TH
2639
2640 /* if we're about to do hardreset, nothing more to do */
2641 if (ehc->i.action & ATA_EH_HARDRESET)
2642 return 0;
2643
2644 /* if SATA, resume phy */
2645 if (ap->cbl == ATA_CBL_SATA) {
f5914a46
TH
2646 rc = sata_phy_resume(ap, timing);
2647 if (rc && rc != -EOPNOTSUPP) {
2648 /* phy resume failed */
2649 ata_port_printk(ap, KERN_WARNING, "failed to resume "
2650 "link for reset (errno=%d)\n", rc);
2651 return rc;
2652 }
2653 }
2654
2655 /* Wait for !BSY if the controller can wait for the first D2H
2656 * Reg FIS and we don't know that no device is attached.
2657 */
2658 if (!(ap->flags & ATA_FLAG_SKIP_D2H_BSY) && !ata_port_offline(ap))
2659 ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT);
2660
2661 return 0;
2662}
2663
c2bd5804
TH
2664/**
2665 * ata_std_softreset - reset host port via ATA SRST
2666 * @ap: port to reset
c2bd5804
TH
2667 * @classes: resulting classes of attached devices
2668 *
52783c5d 2669 * Reset host port using ATA SRST.
c2bd5804
TH
2670 *
2671 * LOCKING:
2672 * Kernel thread context (may sleep)
2673 *
2674 * RETURNS:
2675 * 0 on success, -errno otherwise.
2676 */
2bf2cb26 2677int ata_std_softreset(struct ata_port *ap, unsigned int *classes)
c2bd5804
TH
2678{
2679 unsigned int slave_possible = ap->flags & ATA_FLAG_SLAVE_POSS;
2680 unsigned int devmask = 0, err_mask;
2681 u8 err;
2682
2683 DPRINTK("ENTER\n");
2684
81952c54 2685 if (ata_port_offline(ap)) {
3a39746a
TH
2686 classes[0] = ATA_DEV_NONE;
2687 goto out;
2688 }
2689
c2bd5804
TH
2690 /* determine if device 0/1 are present */
2691 if (ata_devchk(ap, 0))
2692 devmask |= (1 << 0);
2693 if (slave_possible && ata_devchk(ap, 1))
2694 devmask |= (1 << 1);
2695
c2bd5804
TH
2696 /* select device 0 again */
2697 ap->ops->dev_select(ap, 0);
2698
2699 /* issue bus reset */
2700 DPRINTK("about to softreset, devmask=%x\n", devmask);
2701 err_mask = ata_bus_softreset(ap, devmask);
2702 if (err_mask) {
f15a1daf
TH
2703 ata_port_printk(ap, KERN_ERR, "SRST failed (err_mask=0x%x)\n",
2704 err_mask);
c2bd5804
TH
2705 return -EIO;
2706 }
2707
2708 /* determine by signature whether we have ATA or ATAPI devices */
2709 classes[0] = ata_dev_try_classify(ap, 0, &err);
2710 if (slave_possible && err != 0x81)
2711 classes[1] = ata_dev_try_classify(ap, 1, &err);
2712
3a39746a 2713 out:
c2bd5804
TH
2714 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes[0], classes[1]);
2715 return 0;
2716}
2717
2718/**
2719 * sata_std_hardreset - reset host port via SATA phy reset
2720 * @ap: port to reset
c2bd5804
TH
2721 * @class: resulting class of attached device
2722 *
2723 * SATA phy-reset host port using DET bits of SControl register.
c2bd5804
TH
2724 *
2725 * LOCKING:
2726 * Kernel thread context (may sleep)
2727 *
2728 * RETURNS:
2729 * 0 on success, -errno otherwise.
2730 */
2bf2cb26 2731int sata_std_hardreset(struct ata_port *ap, unsigned int *class)
c2bd5804 2732{
e9c83914
TH
2733 struct ata_eh_context *ehc = &ap->eh_context;
2734 const unsigned long *timing = sata_ehc_deb_timing(ehc);
852ee16a 2735 u32 scontrol;
81952c54 2736 int rc;
852ee16a 2737
c2bd5804
TH
2738 DPRINTK("ENTER\n");
2739
3c567b7d 2740 if (sata_set_spd_needed(ap)) {
1c3fae4d
TH
2741 /* SATA spec says nothing about how to reconfigure
2742 * spd. To be on the safe side, turn off phy during
2743 * reconfiguration. This works for at least ICH7 AHCI
2744 * and Sil3124.
2745 */
81952c54
TH
2746 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2747 return rc;
2748
1c3fae4d 2749 scontrol = (scontrol & 0x0f0) | 0x302;
81952c54
TH
2750
2751 if ((rc = sata_scr_write(ap, SCR_CONTROL, scontrol)))
2752 return rc;
1c3fae4d 2753
3c567b7d 2754 sata_set_spd(ap);
1c3fae4d
TH
2755 }
2756
2757 /* issue phy wake/reset */
81952c54
TH
2758 if ((rc = sata_scr_read(ap, SCR_CONTROL, &scontrol)))
2759 return rc;
2760
852ee16a 2761 scontrol = (scontrol & 0x0f0) | 0x301;
81952c54
TH
2762
2763 if ((rc = sata_scr_write_flush(ap, SCR_CONTROL, scontrol)))
2764 return rc;
c2bd5804 2765
1c3fae4d 2766 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
c2bd5804
TH
2767 * 10.4.2 says at least 1 ms.
2768 */
2769 msleep(1);
2770
1c3fae4d 2771 /* bring phy back */
e9c83914 2772 sata_phy_resume(ap, timing);
c2bd5804 2773
c2bd5804 2774 /* TODO: phy layer with polling, timeouts, etc. */
81952c54 2775 if (ata_port_offline(ap)) {
c2bd5804
TH
2776 *class = ATA_DEV_NONE;
2777 DPRINTK("EXIT, link offline\n");
2778 return 0;
2779 }
2780
2781 if (ata_busy_sleep(ap, ATA_TMOUT_BOOT_QUICK, ATA_TMOUT_BOOT)) {
f15a1daf
TH
2782 ata_port_printk(ap, KERN_ERR,
2783 "COMRESET failed (device not ready)\n");
c2bd5804
TH
2784 return -EIO;
2785 }
2786
3a39746a
TH
2787 ap->ops->dev_select(ap, 0); /* probably unnecessary */
2788
c2bd5804
TH
2789 *class = ata_dev_try_classify(ap, 0, NULL);
2790
2791 DPRINTK("EXIT, class=%u\n", *class);
2792 return 0;
2793}
2794
2795/**
2796 * ata_std_postreset - standard postreset callback
2797 * @ap: the target ata_port
2798 * @classes: classes of attached devices
2799 *
2800 * This function is invoked after a successful reset. Note that
2801 * the device might have been reset more than once using
2802 * different reset methods before postreset is invoked.
c2bd5804 2803 *
c2bd5804
TH
2804 * LOCKING:
2805 * Kernel thread context (may sleep)
2806 */
2807void ata_std_postreset(struct ata_port *ap, unsigned int *classes)
2808{
dc2b3515
TH
2809 u32 serror;
2810
c2bd5804
TH
2811 DPRINTK("ENTER\n");
2812
c2bd5804 2813 /* print link status */
81952c54 2814 sata_print_link_status(ap);
c2bd5804 2815
dc2b3515
TH
2816 /* clear SError */
2817 if (sata_scr_read(ap, SCR_ERROR, &serror) == 0)
2818 sata_scr_write(ap, SCR_ERROR, serror);
2819
3a39746a 2820 /* re-enable interrupts */
e3180499
TH
2821 if (!ap->ops->error_handler) {
2822 /* FIXME: hack. create a hook instead */
2823 if (ap->ioaddr.ctl_addr)
2824 ata_irq_on(ap);
2825 }
c2bd5804
TH
2826
2827 /* is double-select really necessary? */
2828 if (classes[0] != ATA_DEV_NONE)
2829 ap->ops->dev_select(ap, 1);
2830 if (classes[1] != ATA_DEV_NONE)
2831 ap->ops->dev_select(ap, 0);
2832
3a39746a
TH
2833 /* bail out if no device is present */
2834 if (classes[0] == ATA_DEV_NONE && classes[1] == ATA_DEV_NONE) {
2835 DPRINTK("EXIT, no device\n");
2836 return;
2837 }
2838
2839 /* set up device control */
2840 if (ap->ioaddr.ctl_addr) {
2841 if (ap->flags & ATA_FLAG_MMIO)
2842 writeb(ap->ctl, (void __iomem *) ap->ioaddr.ctl_addr);
2843 else
2844 outb(ap->ctl, ap->ioaddr.ctl_addr);
2845 }
c2bd5804
TH
2846
2847 DPRINTK("EXIT\n");
2848}
2849
623a3128
TH
2850/**
2851 * ata_dev_same_device - Determine whether new ID matches configured device
623a3128
TH
2852 * @dev: device to compare against
2853 * @new_class: class of the new device
2854 * @new_id: IDENTIFY page of the new device
2855 *
2856 * Compare @new_class and @new_id against @dev and determine
2857 * whether @dev is the device indicated by @new_class and
2858 * @new_id.
2859 *
2860 * LOCKING:
2861 * None.
2862 *
2863 * RETURNS:
2864 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
2865 */
3373efd8
TH
2866static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
2867 const u16 *new_id)
623a3128
TH
2868{
2869 const u16 *old_id = dev->id;
2870 unsigned char model[2][41], serial[2][21];
2871 u64 new_n_sectors;
2872
2873 if (dev->class != new_class) {
f15a1daf
TH
2874 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
2875 dev->class, new_class);
623a3128
TH
2876 return 0;
2877 }
2878
2879 ata_id_c_string(old_id, model[0], ATA_ID_PROD_OFS, sizeof(model[0]));
2880 ata_id_c_string(new_id, model[1], ATA_ID_PROD_OFS, sizeof(model[1]));
2881 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO_OFS, sizeof(serial[0]));
2882 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO_OFS, sizeof(serial[1]));
2883 new_n_sectors = ata_id_n_sectors(new_id);
2884
2885 if (strcmp(model[0], model[1])) {
f15a1daf
TH
2886 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
2887 "'%s' != '%s'\n", model[0], model[1]);
623a3128
TH
2888 return 0;
2889 }
2890
2891 if (strcmp(serial[0], serial[1])) {
f15a1daf
TH
2892 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
2893 "'%s' != '%s'\n", serial[0], serial[1]);
623a3128
TH
2894 return 0;
2895 }
2896
2897 if (dev->class == ATA_DEV_ATA && dev->n_sectors != new_n_sectors) {
f15a1daf
TH
2898 ata_dev_printk(dev, KERN_INFO, "n_sectors mismatch "
2899 "%llu != %llu\n",
2900 (unsigned long long)dev->n_sectors,
2901 (unsigned long long)new_n_sectors);
623a3128
TH
2902 return 0;
2903 }
2904
2905 return 1;
2906}
2907
2908/**
2909 * ata_dev_revalidate - Revalidate ATA device
623a3128
TH
2910 * @dev: device to revalidate
2911 * @post_reset: is this revalidation after reset?
2912 *
2913 * Re-read IDENTIFY page and make sure @dev is still attached to
2914 * the port.
2915 *
2916 * LOCKING:
2917 * Kernel thread context (may sleep)
2918 *
2919 * RETURNS:
2920 * 0 on success, negative errno otherwise
2921 */
3373efd8 2922int ata_dev_revalidate(struct ata_device *dev, int post_reset)
623a3128 2923{
5eb45c02 2924 unsigned int class = dev->class;
f15a1daf 2925 u16 *id = (void *)dev->ap->sector_buf;
623a3128
TH
2926 int rc;
2927
5eb45c02
TH
2928 if (!ata_dev_enabled(dev)) {
2929 rc = -ENODEV;
2930 goto fail;
2931 }
623a3128 2932
fe635c7e 2933 /* read ID data */
3373efd8 2934 rc = ata_dev_read_id(dev, &class, post_reset, id);
623a3128
TH
2935 if (rc)
2936 goto fail;
2937
2938 /* is the device still there? */
3373efd8 2939 if (!ata_dev_same_device(dev, class, id)) {
623a3128
TH
2940 rc = -ENODEV;
2941 goto fail;
2942 }
2943
fe635c7e 2944 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
623a3128
TH
2945
2946 /* configure device according to the new ID */
3373efd8 2947 rc = ata_dev_configure(dev, 0);
5eb45c02
TH
2948 if (rc == 0)
2949 return 0;
623a3128
TH
2950
2951 fail:
f15a1daf 2952 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
623a3128
TH
2953 return rc;
2954}
2955
98ac62de 2956static const char * const ata_dma_blacklist [] = {
f4b15fef
AC
2957 "WDC AC11000H", NULL,
2958 "WDC AC22100H", NULL,
2959 "WDC AC32500H", NULL,
2960 "WDC AC33100H", NULL,
2961 "WDC AC31600H", NULL,
2962 "WDC AC32100H", "24.09P07",
2963 "WDC AC23200L", "21.10N21",
2964 "Compaq CRD-8241B", NULL,
2965 "CRD-8400B", NULL,
2966 "CRD-8480B", NULL,
2967 "CRD-8482B", NULL,
2968 "CRD-84", NULL,
2969 "SanDisk SDP3B", NULL,
2970 "SanDisk SDP3B-64", NULL,
2971 "SANYO CD-ROM CRD", NULL,
2972 "HITACHI CDR-8", NULL,
2e9edbf8 2973 "HITACHI CDR-8335", NULL,
f4b15fef 2974 "HITACHI CDR-8435", NULL,
2e9edbf8
JG
2975 "Toshiba CD-ROM XM-6202B", NULL,
2976 "TOSHIBA CD-ROM XM-1702BC", NULL,
2977 "CD-532E-A", NULL,
2978 "E-IDE CD-ROM CR-840", NULL,
2979 "CD-ROM Drive/F5A", NULL,
2980 "WPI CDD-820", NULL,
f4b15fef 2981 "SAMSUNG CD-ROM SC-148C", NULL,
2e9edbf8 2982 "SAMSUNG CD-ROM SC", NULL,
f4b15fef
AC
2983 "SanDisk SDP3B-64", NULL,
2984 "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,
2985 "_NEC DV5800A", NULL,
2986 "SAMSUNG CD-ROM SN-124", "N001"
1da177e4 2987};
2e9edbf8 2988
f4b15fef
AC
2989static int ata_strim(char *s, size_t len)
2990{
2991 len = strnlen(s, len);
2992
2993 /* ATAPI specifies that empty space is blank-filled; remove blanks */
2994 while ((len > 0) && (s[len - 1] == ' ')) {
2995 len--;
2996 s[len] = 0;
2997 }
2998 return len;
2999}
1da177e4 3000
057ace5e 3001static int ata_dma_blacklisted(const struct ata_device *dev)
1da177e4 3002{
f4b15fef
AC
3003 unsigned char model_num[40];
3004 unsigned char model_rev[16];
3005 unsigned int nlen, rlen;
1da177e4
LT
3006 int i;
3007
3a778275
AL
3008 /* We don't support polling DMA.
3009 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
3010 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
3011 */
3012 if ((dev->ap->flags & ATA_FLAG_PIO_POLLING) &&
3013 (dev->flags & ATA_DFLAG_CDB_INTR))
3014 return 1;
3015
f4b15fef
AC
3016 ata_id_string(dev->id, model_num, ATA_ID_PROD_OFS,
3017 sizeof(model_num));
3018 ata_id_string(dev->id, model_rev, ATA_ID_FW_REV_OFS,
3019 sizeof(model_rev));
3020 nlen = ata_strim(model_num, sizeof(model_num));
3021 rlen = ata_strim(model_rev, sizeof(model_rev));
1da177e4 3022
f4b15fef
AC
3023 for (i = 0; i < ARRAY_SIZE(ata_dma_blacklist); i += 2) {
3024 if (!strncmp(ata_dma_blacklist[i], model_num, nlen)) {
3025 if (ata_dma_blacklist[i+1] == NULL)
3026 return 1;
3027 if (!strncmp(ata_dma_blacklist[i], model_rev, rlen))
3028 return 1;
3029 }
3030 }
1da177e4
LT
3031 return 0;
3032}
3033
a6d5a51c
TH
3034/**
3035 * ata_dev_xfermask - Compute supported xfermask of the given device
a6d5a51c
TH
3036 * @dev: Device to compute xfermask for
3037 *
acf356b1
TH
3038 * Compute supported xfermask of @dev and store it in
3039 * dev->*_mask. This function is responsible for applying all
3040 * known limits including host controller limits, device
3041 * blacklist, etc...
a6d5a51c
TH
3042 *
3043 * LOCKING:
3044 * None.
a6d5a51c 3045 */
3373efd8 3046static void ata_dev_xfermask(struct ata_device *dev)
1da177e4 3047{
3373efd8 3048 struct ata_port *ap = dev->ap;
5444a6f4 3049 struct ata_host_set *hs = ap->host_set;
a6d5a51c 3050 unsigned long xfer_mask;
1da177e4 3051
37deecb5 3052 /* controller modes available */
565083e1
TH
3053 xfer_mask = ata_pack_xfermask(ap->pio_mask,
3054 ap->mwdma_mask, ap->udma_mask);
3055
3056 /* Apply cable rule here. Don't apply it early because when
3057 * we handle hot plug the cable type can itself change.
3058 */
3059 if (ap->cbl == ATA_CBL_PATA40)
3060 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
1da177e4 3061
37deecb5
TH
3062 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
3063 dev->mwdma_mask, dev->udma_mask);
3064 xfer_mask &= ata_id_xfermask(dev->id);
565083e1 3065
37deecb5
TH
3066 if (ata_dma_blacklisted(dev)) {
3067 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
f15a1daf
TH
3068 ata_dev_printk(dev, KERN_WARNING,
3069 "device is on DMA blacklist, disabling DMA\n");
37deecb5 3070 }
a6d5a51c 3071
37deecb5
TH
3072 if ((hs->flags & ATA_HOST_SIMPLEX) && hs->simplex_claimed) {
3073 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
3074 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
3075 "other device, disabling DMA\n");
5444a6f4 3076 }
565083e1 3077
5444a6f4
AC
3078 if (ap->ops->mode_filter)
3079 xfer_mask = ap->ops->mode_filter(ap, dev, xfer_mask);
3080
565083e1
TH
3081 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
3082 &dev->mwdma_mask, &dev->udma_mask);
1da177e4
LT
3083}
3084
1da177e4
LT
3085/**
3086 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
1da177e4
LT
3087 * @dev: Device to which command will be sent
3088 *
780a87f7
JG
3089 * Issue SET FEATURES - XFER MODE command to device @dev
3090 * on port @ap.
3091 *
1da177e4 3092 * LOCKING:
0cba632b 3093 * PCI/etc. bus probe sem.
83206a29
TH
3094 *
3095 * RETURNS:
3096 * 0 on success, AC_ERR_* mask otherwise.
1da177e4
LT
3097 */
3098
3373efd8 3099static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
1da177e4 3100{
a0123703 3101 struct ata_taskfile tf;
83206a29 3102 unsigned int err_mask;
1da177e4
LT
3103
3104 /* set up set-features taskfile */
3105 DPRINTK("set features - xfer mode\n");
3106
3373efd8 3107 ata_tf_init(dev, &tf);
a0123703
TH
3108 tf.command = ATA_CMD_SET_FEATURES;
3109 tf.feature = SETFEATURES_XFER;
3110 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3111 tf.protocol = ATA_PROT_NODATA;
3112 tf.nsect = dev->xfer_mode;
1da177e4 3113
3373efd8 3114 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
1da177e4 3115
83206a29
TH
3116 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3117 return err_mask;
1da177e4
LT
3118}
3119
8bf62ece
AL
3120/**
3121 * ata_dev_init_params - Issue INIT DEV PARAMS command
8bf62ece 3122 * @dev: Device to which command will be sent
e2a7f77a
RD
3123 * @heads: Number of heads (taskfile parameter)
3124 * @sectors: Number of sectors (taskfile parameter)
8bf62ece
AL
3125 *
3126 * LOCKING:
6aff8f1f
TH
3127 * Kernel thread context (may sleep)
3128 *
3129 * RETURNS:
3130 * 0 on success, AC_ERR_* mask otherwise.
8bf62ece 3131 */
3373efd8
TH
3132static unsigned int ata_dev_init_params(struct ata_device *dev,
3133 u16 heads, u16 sectors)
8bf62ece 3134{
a0123703 3135 struct ata_taskfile tf;
6aff8f1f 3136 unsigned int err_mask;
8bf62ece
AL
3137
3138 /* Number of sectors per track 1-255. Number of heads 1-16 */
3139 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
00b6f5e9 3140 return AC_ERR_INVALID;
8bf62ece
AL
3141
3142 /* set up init dev params taskfile */
3143 DPRINTK("init dev params \n");
3144
3373efd8 3145 ata_tf_init(dev, &tf);
a0123703
TH
3146 tf.command = ATA_CMD_INIT_DEV_PARAMS;
3147 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
3148 tf.protocol = ATA_PROT_NODATA;
3149 tf.nsect = sectors;
3150 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
8bf62ece 3151
3373efd8 3152 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0);
8bf62ece 3153
6aff8f1f
TH
3154 DPRINTK("EXIT, err_mask=%x\n", err_mask);
3155 return err_mask;
8bf62ece
AL
3156}
3157
1da177e4 3158/**
0cba632b
JG
3159 * ata_sg_clean - Unmap DMA memory associated with command
3160 * @qc: Command containing DMA memory to be released
3161 *
3162 * Unmap all mapped DMA memory associated with this command.
1da177e4
LT
3163 *
3164 * LOCKING:
0cba632b 3165 * spin_lock_irqsave(host_set lock)
1da177e4
LT
3166 */
3167
3168static void ata_sg_clean(struct ata_queued_cmd *qc)
3169{
3170 struct ata_port *ap = qc->ap;
cedc9a47 3171 struct scatterlist *sg = qc->__sg;
1da177e4 3172 int dir = qc->dma_dir;
cedc9a47 3173 void *pad_buf = NULL;
1da177e4 3174
a4631474
TH
3175 WARN_ON(!(qc->flags & ATA_QCFLAG_DMAMAP));
3176 WARN_ON(sg == NULL);
1da177e4
LT
3177
3178 if (qc->flags & ATA_QCFLAG_SINGLE)
f131883e 3179 WARN_ON(qc->n_elem > 1);
1da177e4 3180
2c13b7ce 3181 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
1da177e4 3182
cedc9a47
JG
3183 /* if we padded the buffer out to 32-bit bound, and data
3184 * xfer direction is from-device, we must copy from the
3185 * pad buffer back into the supplied buffer
3186 */
3187 if (qc->pad_len && !(qc->tf.flags & ATA_TFLAG_WRITE))
3188 pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3189
3190 if (qc->flags & ATA_QCFLAG_SG) {
e1410f2d 3191 if (qc->n_elem)
2f1f610b 3192 dma_unmap_sg(ap->dev, sg, qc->n_elem, dir);
cedc9a47
JG
3193 /* restore last sg */
3194 sg[qc->orig_n_elem - 1].length += qc->pad_len;
3195 if (pad_buf) {
3196 struct scatterlist *psg = &qc->pad_sgent;
3197 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3198 memcpy(addr + psg->offset, pad_buf, qc->pad_len);
dfa15988 3199 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3200 }
3201 } else {
2e242fa9 3202 if (qc->n_elem)
2f1f610b 3203 dma_unmap_single(ap->dev,
e1410f2d
JG
3204 sg_dma_address(&sg[0]), sg_dma_len(&sg[0]),
3205 dir);
cedc9a47
JG
3206 /* restore sg */
3207 sg->length += qc->pad_len;
3208 if (pad_buf)
3209 memcpy(qc->buf_virt + sg->length - qc->pad_len,
3210 pad_buf, qc->pad_len);
3211 }
1da177e4
LT
3212
3213 qc->flags &= ~ATA_QCFLAG_DMAMAP;
cedc9a47 3214 qc->__sg = NULL;
1da177e4
LT
3215}
3216
3217/**
3218 * ata_fill_sg - Fill PCI IDE PRD table
3219 * @qc: Metadata associated with taskfile to be transferred
3220 *
780a87f7
JG
3221 * Fill PCI IDE PRD (scatter-gather) table with segments
3222 * associated with the current disk command.
3223 *
1da177e4 3224 * LOCKING:
780a87f7 3225 * spin_lock_irqsave(host_set lock)
1da177e4
LT
3226 *
3227 */
3228static void ata_fill_sg(struct ata_queued_cmd *qc)
3229{
1da177e4 3230 struct ata_port *ap = qc->ap;
cedc9a47
JG
3231 struct scatterlist *sg;
3232 unsigned int idx;
1da177e4 3233
a4631474 3234 WARN_ON(qc->__sg == NULL);
f131883e 3235 WARN_ON(qc->n_elem == 0 && qc->pad_len == 0);
1da177e4
LT
3236
3237 idx = 0;
cedc9a47 3238 ata_for_each_sg(sg, qc) {
1da177e4
LT
3239 u32 addr, offset;
3240 u32 sg_len, len;
3241
3242 /* determine if physical DMA addr spans 64K boundary.
3243 * Note h/w doesn't support 64-bit, so we unconditionally
3244 * truncate dma_addr_t to u32.
3245 */
3246 addr = (u32) sg_dma_address(sg);
3247 sg_len = sg_dma_len(sg);
3248
3249 while (sg_len) {
3250 offset = addr & 0xffff;
3251 len = sg_len;
3252 if ((offset + sg_len) > 0x10000)
3253 len = 0x10000 - offset;
3254
3255 ap->prd[idx].addr = cpu_to_le32(addr);
3256 ap->prd[idx].flags_len = cpu_to_le32(len & 0xffff);
3257 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", idx, addr, len);
3258
3259 idx++;
3260 sg_len -= len;
3261 addr += len;
3262 }
3263 }
3264
3265 if (idx)
3266 ap->prd[idx - 1].flags_len |= cpu_to_le32(ATA_PRD_EOT);
3267}
3268/**
3269 * ata_check_atapi_dma - Check whether ATAPI DMA can be supported
3270 * @qc: Metadata associated with taskfile to check
3271 *
780a87f7
JG
3272 * Allow low-level driver to filter ATA PACKET commands, returning
3273 * a status indicating whether or not it is OK to use DMA for the
3274 * supplied PACKET command.
3275 *
1da177e4 3276 * LOCKING:
0cba632b
JG
3277 * spin_lock_irqsave(host_set lock)
3278 *
1da177e4
LT
3279 * RETURNS: 0 when ATAPI DMA can be used
3280 * nonzero otherwise
3281 */
3282int ata_check_atapi_dma(struct ata_queued_cmd *qc)
3283{
3284 struct ata_port *ap = qc->ap;
3285 int rc = 0; /* Assume ATAPI DMA is OK by default */
3286
3287 if (ap->ops->check_atapi_dma)
3288 rc = ap->ops->check_atapi_dma(qc);
3289
3290 return rc;
3291}
3292/**
3293 * ata_qc_prep - Prepare taskfile for submission
3294 * @qc: Metadata associated with taskfile to be prepared
3295 *
780a87f7
JG
3296 * Prepare ATA taskfile for submission.
3297 *
1da177e4
LT
3298 * LOCKING:
3299 * spin_lock_irqsave(host_set lock)
3300 */
3301void ata_qc_prep(struct ata_queued_cmd *qc)
3302{
3303 if (!(qc->flags & ATA_QCFLAG_DMAMAP))
3304 return;
3305
3306 ata_fill_sg(qc);
3307}
3308
e46834cd
BK
3309void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
3310
0cba632b
JG
3311/**
3312 * ata_sg_init_one - Associate command with memory buffer
3313 * @qc: Command to be associated
3314 * @buf: Memory buffer
3315 * @buflen: Length of memory buffer, in bytes.
3316 *
3317 * Initialize the data-related elements of queued_cmd @qc
3318 * to point to a single memory buffer, @buf of byte length @buflen.
3319 *
3320 * LOCKING:
3321 * spin_lock_irqsave(host_set lock)
3322 */
3323
1da177e4
LT
3324void ata_sg_init_one(struct ata_queued_cmd *qc, void *buf, unsigned int buflen)
3325{
3326 struct scatterlist *sg;
3327
3328 qc->flags |= ATA_QCFLAG_SINGLE;
3329
3330 memset(&qc->sgent, 0, sizeof(qc->sgent));
cedc9a47 3331 qc->__sg = &qc->sgent;
1da177e4 3332 qc->n_elem = 1;
cedc9a47 3333 qc->orig_n_elem = 1;
1da177e4 3334 qc->buf_virt = buf;
233277ca 3335 qc->nbytes = buflen;
1da177e4 3336
cedc9a47 3337 sg = qc->__sg;
f0612bbc 3338 sg_init_one(sg, buf, buflen);
1da177e4
LT
3339}
3340
0cba632b
JG
3341/**
3342 * ata_sg_init - Associate command with scatter-gather table.
3343 * @qc: Command to be associated
3344 * @sg: Scatter-gather table.
3345 * @n_elem: Number of elements in s/g table.
3346 *
3347 * Initialize the data-related elements of queued_cmd @qc
3348 * to point to a scatter-gather table @sg, containing @n_elem
3349 * elements.
3350 *
3351 * LOCKING:
3352 * spin_lock_irqsave(host_set lock)
3353 */
3354
1da177e4
LT
3355void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
3356 unsigned int n_elem)
3357{
3358 qc->flags |= ATA_QCFLAG_SG;
cedc9a47 3359 qc->__sg = sg;
1da177e4 3360 qc->n_elem = n_elem;
cedc9a47 3361 qc->orig_n_elem = n_elem;
1da177e4
LT
3362}
3363
3364/**
0cba632b
JG
3365 * ata_sg_setup_one - DMA-map the memory buffer associated with a command.
3366 * @qc: Command with memory buffer to be mapped.
3367 *
3368 * DMA-map the memory buffer associated with queued_cmd @qc.
1da177e4
LT
3369 *
3370 * LOCKING:
3371 * spin_lock_irqsave(host_set lock)
3372 *
3373 * RETURNS:
0cba632b 3374 * Zero on success, negative on error.
1da177e4
LT
3375 */
3376
3377static int ata_sg_setup_one(struct ata_queued_cmd *qc)
3378{
3379 struct ata_port *ap = qc->ap;
3380 int dir = qc->dma_dir;
cedc9a47 3381 struct scatterlist *sg = qc->__sg;
1da177e4 3382 dma_addr_t dma_address;
2e242fa9 3383 int trim_sg = 0;
1da177e4 3384
cedc9a47
JG
3385 /* we must lengthen transfers to end on a 32-bit boundary */
3386 qc->pad_len = sg->length & 3;
3387 if (qc->pad_len) {
3388 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3389 struct scatterlist *psg = &qc->pad_sgent;
3390
a4631474 3391 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3392
3393 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3394
3395 if (qc->tf.flags & ATA_TFLAG_WRITE)
3396 memcpy(pad_buf, qc->buf_virt + sg->length - qc->pad_len,
3397 qc->pad_len);
3398
3399 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3400 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3401 /* trim sg */
3402 sg->length -= qc->pad_len;
2e242fa9
TH
3403 if (sg->length == 0)
3404 trim_sg = 1;
cedc9a47
JG
3405
3406 DPRINTK("padding done, sg->length=%u pad_len=%u\n",
3407 sg->length, qc->pad_len);
3408 }
3409
2e242fa9
TH
3410 if (trim_sg) {
3411 qc->n_elem--;
e1410f2d
JG
3412 goto skip_map;
3413 }
3414
2f1f610b 3415 dma_address = dma_map_single(ap->dev, qc->buf_virt,
32529e01 3416 sg->length, dir);
537a95d9
TH
3417 if (dma_mapping_error(dma_address)) {
3418 /* restore sg */
3419 sg->length += qc->pad_len;
1da177e4 3420 return -1;
537a95d9 3421 }
1da177e4
LT
3422
3423 sg_dma_address(sg) = dma_address;
32529e01 3424 sg_dma_len(sg) = sg->length;
1da177e4 3425
2e242fa9 3426skip_map:
1da177e4
LT
3427 DPRINTK("mapped buffer of %d bytes for %s\n", sg_dma_len(sg),
3428 qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3429
3430 return 0;
3431}
3432
3433/**
0cba632b
JG
3434 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
3435 * @qc: Command with scatter-gather table to be mapped.
3436 *
3437 * DMA-map the scatter-gather table associated with queued_cmd @qc.
1da177e4
LT
3438 *
3439 * LOCKING:
3440 * spin_lock_irqsave(host_set lock)
3441 *
3442 * RETURNS:
0cba632b 3443 * Zero on success, negative on error.
1da177e4
LT
3444 *
3445 */
3446
3447static int ata_sg_setup(struct ata_queued_cmd *qc)
3448{
3449 struct ata_port *ap = qc->ap;
cedc9a47
JG
3450 struct scatterlist *sg = qc->__sg;
3451 struct scatterlist *lsg = &sg[qc->n_elem - 1];
e1410f2d 3452 int n_elem, pre_n_elem, dir, trim_sg = 0;
1da177e4
LT
3453
3454 VPRINTK("ENTER, ata%u\n", ap->id);
a4631474 3455 WARN_ON(!(qc->flags & ATA_QCFLAG_SG));
1da177e4 3456
cedc9a47
JG
3457 /* we must lengthen transfers to end on a 32-bit boundary */
3458 qc->pad_len = lsg->length & 3;
3459 if (qc->pad_len) {
3460 void *pad_buf = ap->pad + (qc->tag * ATA_DMA_PAD_SZ);
3461 struct scatterlist *psg = &qc->pad_sgent;
3462 unsigned int offset;
3463
a4631474 3464 WARN_ON(qc->dev->class != ATA_DEV_ATAPI);
cedc9a47
JG
3465
3466 memset(pad_buf, 0, ATA_DMA_PAD_SZ);
3467
3468 /*
3469 * psg->page/offset are used to copy to-be-written
3470 * data in this function or read data in ata_sg_clean.
3471 */
3472 offset = lsg->offset + lsg->length - qc->pad_len;
3473 psg->page = nth_page(lsg->page, offset >> PAGE_SHIFT);
3474 psg->offset = offset_in_page(offset);
3475
3476 if (qc->tf.flags & ATA_TFLAG_WRITE) {
3477 void *addr = kmap_atomic(psg->page, KM_IRQ0);
3478 memcpy(pad_buf, addr + psg->offset, qc->pad_len);
dfa15988 3479 kunmap_atomic(addr, KM_IRQ0);
cedc9a47
JG
3480 }
3481
3482 sg_dma_address(psg) = ap->pad_dma + (qc->tag * ATA_DMA_PAD_SZ);
3483 sg_dma_len(psg) = ATA_DMA_PAD_SZ;
3484 /* trim last sg */
3485 lsg->length -= qc->pad_len;
e1410f2d
JG
3486 if (lsg->length == 0)
3487 trim_sg = 1;
cedc9a47
JG
3488
3489 DPRINTK("padding done, sg[%d].length=%u pad_len=%u\n",
3490 qc->n_elem - 1, lsg->length, qc->pad_len);
3491 }
3492
e1410f2d
JG
3493 pre_n_elem = qc->n_elem;
3494 if (trim_sg && pre_n_elem)
3495 pre_n_elem--;
3496
3497 if (!pre_n_elem) {
3498 n_elem = 0;
3499 goto skip_map;
3500 }
3501
1da177e4 3502 dir = qc->dma_dir;
2f1f610b 3503 n_elem = dma_map_sg(ap->dev, sg, pre_n_elem, dir);
537a95d9
TH
3504 if (n_elem < 1) {
3505 /* restore last sg */
3506 lsg->length += qc->pad_len;
1da177e4 3507 return -1;
537a95d9 3508 }
1da177e4
LT
3509
3510 DPRINTK("%d sg elements mapped\n", n_elem);
3511
e1410f2d 3512skip_map:
1da177e4
LT
3513 qc->n_elem = n_elem;
3514
3515 return 0;
3516}
3517
0baab86b 3518/**
c893a3ae 3519 * swap_buf_le16 - swap halves of 16-bit words in place
0baab86b
EF
3520 * @buf: Buffer to swap
3521 * @buf_words: Number of 16-bit words in buffer.
3522 *
3523 * Swap halves of 16-bit words if needed to convert from
3524 * little-endian byte order to native cpu byte order, or
3525 * vice-versa.
3526 *
3527 * LOCKING:
6f0ef4fa 3528 * Inherited from caller.
0baab86b 3529 */
1da177e4
LT
3530void swap_buf_le16(u16 *buf, unsigned int buf_words)
3531{
3532#ifdef __BIG_ENDIAN
3533 unsigned int i;
3534
3535 for (i = 0; i < buf_words; i++)
3536 buf[i] = le16_to_cpu(buf[i]);
3537#endif /* __BIG_ENDIAN */
3538}
3539
6ae4cfb5
AL
3540/**
3541 * ata_mmio_data_xfer - Transfer data by MMIO
bf717b11 3542 * @adev: device for this I/O
6ae4cfb5
AL
3543 * @buf: data buffer
3544 * @buflen: buffer length
344babaa 3545 * @write_data: read/write
6ae4cfb5
AL
3546 *
3547 * Transfer data from/to the device data register by MMIO.
3548 *
3549 * LOCKING:
3550 * Inherited from caller.
6ae4cfb5
AL
3551 */
3552
88574551 3553void ata_mmio_data_xfer(struct ata_device *adev, unsigned char *buf,
a6b2c5d4 3554 unsigned int buflen, int write_data)
1da177e4 3555{
a6b2c5d4 3556 struct ata_port *ap = adev->ap;
1da177e4
LT
3557 unsigned int i;
3558 unsigned int words = buflen >> 1;
3559 u16 *buf16 = (u16 *) buf;
3560 void __iomem *mmio = (void __iomem *)ap->ioaddr.data_addr;
3561
6ae4cfb5 3562 /* Transfer multiple of 2 bytes */
1da177e4
LT
3563 if (write_data) {
3564 for (i = 0; i < words; i++)
3565 writew(le16_to_cpu(buf16[i]), mmio);
3566 } else {
3567 for (i = 0; i < words; i++)
3568 buf16[i] = cpu_to_le16(readw(mmio));
3569 }
6ae4cfb5
AL
3570
3571 /* Transfer trailing 1 byte, if any. */
3572 if (unlikely(buflen & 0x01)) {
3573 u16 align_buf[1] = { 0 };
3574 unsigned char *trailing_buf = buf + buflen - 1;
3575
3576 if (write_data) {
3577 memcpy(align_buf, trailing_buf, 1);
3578 writew(le16_to_cpu(align_buf[0]), mmio);
3579 } else {
3580 align_buf[0] = cpu_to_le16(readw(mmio));
3581 memcpy(trailing_buf, align_buf, 1);
3582 }
3583 }
1da177e4
LT
3584}
3585
6ae4cfb5
AL
3586/**
3587 * ata_pio_data_xfer - Transfer data by PIO
a6b2c5d4 3588 * @adev: device to target
6ae4cfb5
AL
3589 * @buf: data buffer
3590 * @buflen: buffer length
344babaa 3591 * @write_data: read/write
6ae4cfb5
AL
3592 *
3593 * Transfer data from/to the device data register by PIO.
3594 *
3595 * LOCKING:
3596 * Inherited from caller.
6ae4cfb5
AL
3597 */
3598
88574551 3599void ata_pio_data_xfer(struct ata_device *adev, unsigned char *buf,
a6b2c5d4 3600 unsigned int buflen, int write_data)
1da177e4 3601{
a6b2c5d4 3602 struct ata_port *ap = adev->ap;
6ae4cfb5 3603 unsigned int words = buflen >> 1;
1da177e4 3604
6ae4cfb5 3605 /* Transfer multiple of 2 bytes */
1da177e4 3606 if (write_data)
6ae4cfb5 3607 outsw(ap->ioaddr.data_addr, buf, words);
1da177e4 3608 else
6ae4cfb5
AL
3609 insw(ap->ioaddr.data_addr, buf, words);
3610
3611 /* Transfer trailing 1 byte, if any. */
3612 if (unlikely(buflen & 0x01)) {
3613 u16 align_buf[1] = { 0 };
3614 unsigned char *trailing_buf = buf + buflen - 1;
3615
3616 if (write_data) {
3617 memcpy(align_buf, trailing_buf, 1);
3618 outw(le16_to_cpu(align_buf[0]), ap->ioaddr.data_addr);
3619 } else {
3620 align_buf[0] = cpu_to_le16(inw(ap->ioaddr.data_addr));
3621 memcpy(trailing_buf, align_buf, 1);
3622 }
3623 }
1da177e4
LT
3624}
3625
75e99585
AC
3626/**
3627 * ata_pio_data_xfer_noirq - Transfer data by PIO
3628 * @adev: device to target
3629 * @buf: data buffer
3630 * @buflen: buffer length
3631 * @write_data: read/write
3632 *
88574551 3633 * Transfer data from/to the device data register by PIO. Do the
75e99585
AC
3634 * transfer with interrupts disabled.
3635 *
3636 * LOCKING:
3637 * Inherited from caller.
3638 */
3639
3640void ata_pio_data_xfer_noirq(struct ata_device *adev, unsigned char *buf,
3641 unsigned int buflen, int write_data)
3642{
3643 unsigned long flags;
3644 local_irq_save(flags);
3645 ata_pio_data_xfer(adev, buf, buflen, write_data);
3646 local_irq_restore(flags);
3647}
3648
3649
6ae4cfb5
AL
3650/**
3651 * ata_pio_sector - Transfer ATA_SECT_SIZE (512 bytes) of data.
3652 * @qc: Command on going
3653 *
3654 * Transfer ATA_SECT_SIZE of data from/to the ATA device.
3655 *
3656 * LOCKING:
3657 * Inherited from caller.
3658 */
3659
1da177e4
LT
3660static void ata_pio_sector(struct ata_queued_cmd *qc)
3661{
3662 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3663 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3664 struct ata_port *ap = qc->ap;
3665 struct page *page;
3666 unsigned int offset;
3667 unsigned char *buf;
3668
3669 if (qc->cursect == (qc->nsect - 1))
14be71f4 3670 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3671
3672 page = sg[qc->cursg].page;
3673 offset = sg[qc->cursg].offset + qc->cursg_ofs * ATA_SECT_SIZE;
3674
3675 /* get the current page and offset */
3676 page = nth_page(page, (offset >> PAGE_SHIFT));
3677 offset %= PAGE_SIZE;
3678
1da177e4
LT
3679 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3680
91b8b313
AL
3681 if (PageHighMem(page)) {
3682 unsigned long flags;
3683
a6b2c5d4 3684 /* FIXME: use a bounce buffer */
91b8b313
AL
3685 local_irq_save(flags);
3686 buf = kmap_atomic(page, KM_IRQ0);
083958d3 3687
91b8b313 3688 /* do the actual data transfer */
a6b2c5d4 3689 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
1da177e4 3690
91b8b313
AL
3691 kunmap_atomic(buf, KM_IRQ0);
3692 local_irq_restore(flags);
3693 } else {
3694 buf = page_address(page);
a6b2c5d4 3695 ap->ops->data_xfer(qc->dev, buf + offset, ATA_SECT_SIZE, do_write);
91b8b313 3696 }
1da177e4
LT
3697
3698 qc->cursect++;
3699 qc->cursg_ofs++;
3700
32529e01 3701 if ((qc->cursg_ofs * ATA_SECT_SIZE) == (&sg[qc->cursg])->length) {
1da177e4
LT
3702 qc->cursg++;
3703 qc->cursg_ofs = 0;
3704 }
1da177e4 3705}
1da177e4 3706
07f6f7d0
AL
3707/**
3708 * ata_pio_sectors - Transfer one or many 512-byte sectors.
3709 * @qc: Command on going
3710 *
c81e29b4 3711 * Transfer one or many ATA_SECT_SIZE of data from/to the
07f6f7d0
AL
3712 * ATA device for the DRQ request.
3713 *
3714 * LOCKING:
3715 * Inherited from caller.
3716 */
1da177e4 3717
07f6f7d0
AL
3718static void ata_pio_sectors(struct ata_queued_cmd *qc)
3719{
3720 if (is_multi_taskfile(&qc->tf)) {
3721 /* READ/WRITE MULTIPLE */
3722 unsigned int nsect;
3723
587005de 3724 WARN_ON(qc->dev->multi_count == 0);
1da177e4 3725
07f6f7d0
AL
3726 nsect = min(qc->nsect - qc->cursect, qc->dev->multi_count);
3727 while (nsect--)
3728 ata_pio_sector(qc);
3729 } else
3730 ata_pio_sector(qc);
3731}
3732
c71c1857
AL
3733/**
3734 * atapi_send_cdb - Write CDB bytes to hardware
3735 * @ap: Port to which ATAPI device is attached.
3736 * @qc: Taskfile currently active
3737 *
3738 * When device has indicated its readiness to accept
3739 * a CDB, this function is called. Send the CDB.
3740 *
3741 * LOCKING:
3742 * caller.
3743 */
3744
3745static void atapi_send_cdb(struct ata_port *ap, struct ata_queued_cmd *qc)
3746{
3747 /* send SCSI cdb */
3748 DPRINTK("send cdb\n");
db024d53 3749 WARN_ON(qc->dev->cdb_len < 12);
c71c1857 3750
a6b2c5d4 3751 ap->ops->data_xfer(qc->dev, qc->cdb, qc->dev->cdb_len, 1);
c71c1857
AL
3752 ata_altstatus(ap); /* flush */
3753
3754 switch (qc->tf.protocol) {
3755 case ATA_PROT_ATAPI:
3756 ap->hsm_task_state = HSM_ST;
3757 break;
3758 case ATA_PROT_ATAPI_NODATA:
3759 ap->hsm_task_state = HSM_ST_LAST;
3760 break;
3761 case ATA_PROT_ATAPI_DMA:
3762 ap->hsm_task_state = HSM_ST_LAST;
3763 /* initiate bmdma */
3764 ap->ops->bmdma_start(qc);
3765 break;
3766 }
1da177e4
LT
3767}
3768
6ae4cfb5
AL
3769/**
3770 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
3771 * @qc: Command on going
3772 * @bytes: number of bytes
3773 *
3774 * Transfer Transfer data from/to the ATAPI device.
3775 *
3776 * LOCKING:
3777 * Inherited from caller.
3778 *
3779 */
3780
1da177e4
LT
3781static void __atapi_pio_bytes(struct ata_queued_cmd *qc, unsigned int bytes)
3782{
3783 int do_write = (qc->tf.flags & ATA_TFLAG_WRITE);
cedc9a47 3784 struct scatterlist *sg = qc->__sg;
1da177e4
LT
3785 struct ata_port *ap = qc->ap;
3786 struct page *page;
3787 unsigned char *buf;
3788 unsigned int offset, count;
3789
563a6e1f 3790 if (qc->curbytes + bytes >= qc->nbytes)
14be71f4 3791 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
3792
3793next_sg:
563a6e1f 3794 if (unlikely(qc->cursg >= qc->n_elem)) {
7fb6ec28 3795 /*
563a6e1f
AL
3796 * The end of qc->sg is reached and the device expects
3797 * more data to transfer. In order not to overrun qc->sg
3798 * and fulfill length specified in the byte count register,
3799 * - for read case, discard trailing data from the device
3800 * - for write case, padding zero data to the device
3801 */
3802 u16 pad_buf[1] = { 0 };
3803 unsigned int words = bytes >> 1;
3804 unsigned int i;
3805
3806 if (words) /* warning if bytes > 1 */
f15a1daf
TH
3807 ata_dev_printk(qc->dev, KERN_WARNING,
3808 "%u bytes trailing data\n", bytes);
563a6e1f
AL
3809
3810 for (i = 0; i < words; i++)
a6b2c5d4 3811 ap->ops->data_xfer(qc->dev, (unsigned char*)pad_buf, 2, do_write);
563a6e1f 3812
14be71f4 3813 ap->hsm_task_state = HSM_ST_LAST;
563a6e1f
AL
3814 return;
3815 }
3816
cedc9a47 3817 sg = &qc->__sg[qc->cursg];
1da177e4 3818
1da177e4
LT
3819 page = sg->page;
3820 offset = sg->offset + qc->cursg_ofs;
3821
3822 /* get the current page and offset */
3823 page = nth_page(page, (offset >> PAGE_SHIFT));
3824 offset %= PAGE_SIZE;
3825
6952df03 3826 /* don't overrun current sg */
32529e01 3827 count = min(sg->length - qc->cursg_ofs, bytes);
1da177e4
LT
3828
3829 /* don't cross page boundaries */
3830 count = min(count, (unsigned int)PAGE_SIZE - offset);
3831
7282aa4b
AL
3832 DPRINTK("data %s\n", qc->tf.flags & ATA_TFLAG_WRITE ? "write" : "read");
3833
91b8b313
AL
3834 if (PageHighMem(page)) {
3835 unsigned long flags;
3836
a6b2c5d4 3837 /* FIXME: use bounce buffer */
91b8b313
AL
3838 local_irq_save(flags);
3839 buf = kmap_atomic(page, KM_IRQ0);
083958d3 3840
91b8b313 3841 /* do the actual data transfer */
a6b2c5d4 3842 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
7282aa4b 3843
91b8b313
AL
3844 kunmap_atomic(buf, KM_IRQ0);
3845 local_irq_restore(flags);
3846 } else {
3847 buf = page_address(page);
a6b2c5d4 3848 ap->ops->data_xfer(qc->dev, buf + offset, count, do_write);
91b8b313 3849 }
1da177e4
LT
3850
3851 bytes -= count;
3852 qc->curbytes += count;
3853 qc->cursg_ofs += count;
3854
32529e01 3855 if (qc->cursg_ofs == sg->length) {
1da177e4
LT
3856 qc->cursg++;
3857 qc->cursg_ofs = 0;
3858 }
3859
563a6e1f 3860 if (bytes)
1da177e4 3861 goto next_sg;
1da177e4
LT
3862}
3863
6ae4cfb5
AL
3864/**
3865 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
3866 * @qc: Command on going
3867 *
3868 * Transfer Transfer data from/to the ATAPI device.
3869 *
3870 * LOCKING:
3871 * Inherited from caller.
6ae4cfb5
AL
3872 */
3873
1da177e4
LT
3874static void atapi_pio_bytes(struct ata_queued_cmd *qc)
3875{
3876 struct ata_port *ap = qc->ap;
3877 struct ata_device *dev = qc->dev;
3878 unsigned int ireason, bc_lo, bc_hi, bytes;
3879 int i_write, do_write = (qc->tf.flags & ATA_TFLAG_WRITE) ? 1 : 0;
3880
eec4c3f3
AL
3881 /* Abuse qc->result_tf for temp storage of intermediate TF
3882 * here to save some kernel stack usage.
3883 * For normal completion, qc->result_tf is not relevant. For
3884 * error, qc->result_tf is later overwritten by ata_qc_complete().
3885 * So, the correctness of qc->result_tf is not affected.
3886 */
3887 ap->ops->tf_read(ap, &qc->result_tf);
3888 ireason = qc->result_tf.nsect;
3889 bc_lo = qc->result_tf.lbam;
3890 bc_hi = qc->result_tf.lbah;
1da177e4
LT
3891 bytes = (bc_hi << 8) | bc_lo;
3892
3893 /* shall be cleared to zero, indicating xfer of data */
3894 if (ireason & (1 << 0))
3895 goto err_out;
3896
3897 /* make sure transfer direction matches expected */
3898 i_write = ((ireason & (1 << 1)) == 0) ? 1 : 0;
3899 if (do_write != i_write)
3900 goto err_out;
3901
312f7da2
AL
3902 VPRINTK("ata%u: xfering %d bytes\n", ap->id, bytes);
3903
1da177e4
LT
3904 __atapi_pio_bytes(qc, bytes);
3905
3906 return;
3907
3908err_out:
f15a1daf 3909 ata_dev_printk(dev, KERN_INFO, "ATAPI check failed\n");
11a56d24 3910 qc->err_mask |= AC_ERR_HSM;
14be71f4 3911 ap->hsm_task_state = HSM_ST_ERR;
1da177e4
LT
3912}
3913
3914/**
c234fb00
AL
3915 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
3916 * @ap: the target ata_port
3917 * @qc: qc on going
1da177e4 3918 *
c234fb00
AL
3919 * RETURNS:
3920 * 1 if ok in workqueue, 0 otherwise.
1da177e4 3921 */
c234fb00
AL
3922
3923static inline int ata_hsm_ok_in_wq(struct ata_port *ap, struct ata_queued_cmd *qc)
1da177e4 3924{
c234fb00
AL
3925 if (qc->tf.flags & ATA_TFLAG_POLLING)
3926 return 1;
1da177e4 3927
c234fb00
AL
3928 if (ap->hsm_task_state == HSM_ST_FIRST) {
3929 if (qc->tf.protocol == ATA_PROT_PIO &&
3930 (qc->tf.flags & ATA_TFLAG_WRITE))
3931 return 1;
1da177e4 3932
c234fb00
AL
3933 if (is_atapi_taskfile(&qc->tf) &&
3934 !(qc->dev->flags & ATA_DFLAG_CDB_INTR))
3935 return 1;
fe79e683
AL
3936 }
3937
c234fb00
AL
3938 return 0;
3939}
1da177e4 3940
c17ea20d
TH
3941/**
3942 * ata_hsm_qc_complete - finish a qc running on standard HSM
3943 * @qc: Command to complete
3944 * @in_wq: 1 if called from workqueue, 0 otherwise
3945 *
3946 * Finish @qc which is running on standard HSM.
3947 *
3948 * LOCKING:
3949 * If @in_wq is zero, spin_lock_irqsave(host_set lock).
3950 * Otherwise, none on entry and grabs host lock.
3951 */
3952static void ata_hsm_qc_complete(struct ata_queued_cmd *qc, int in_wq)
3953{
3954 struct ata_port *ap = qc->ap;
3955 unsigned long flags;
3956
3957 if (ap->ops->error_handler) {
3958 if (in_wq) {
ba6a1308 3959 spin_lock_irqsave(ap->lock, flags);
c17ea20d
TH
3960
3961 /* EH might have kicked in while host_set lock
3962 * is released.
3963 */
3964 qc = ata_qc_from_tag(ap, qc->tag);
3965 if (qc) {
3966 if (likely(!(qc->err_mask & AC_ERR_HSM))) {
3967 ata_irq_on(ap);
3968 ata_qc_complete(qc);
3969 } else
3970 ata_port_freeze(ap);
3971 }
3972
ba6a1308 3973 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
3974 } else {
3975 if (likely(!(qc->err_mask & AC_ERR_HSM)))
3976 ata_qc_complete(qc);
3977 else
3978 ata_port_freeze(ap);
3979 }
3980 } else {
3981 if (in_wq) {
ba6a1308 3982 spin_lock_irqsave(ap->lock, flags);
c17ea20d
TH
3983 ata_irq_on(ap);
3984 ata_qc_complete(qc);
ba6a1308 3985 spin_unlock_irqrestore(ap->lock, flags);
c17ea20d
TH
3986 } else
3987 ata_qc_complete(qc);
3988 }
1da177e4 3989
c81e29b4 3990 ata_altstatus(ap); /* flush */
c17ea20d
TH
3991}
3992
bb5cb290
AL
3993/**
3994 * ata_hsm_move - move the HSM to the next state.
3995 * @ap: the target ata_port
3996 * @qc: qc on going
3997 * @status: current device status
3998 * @in_wq: 1 if called from workqueue, 0 otherwise
3999 *
4000 * RETURNS:
4001 * 1 when poll next status needed, 0 otherwise.
4002 */
9a1004d0
TH
4003int ata_hsm_move(struct ata_port *ap, struct ata_queued_cmd *qc,
4004 u8 status, int in_wq)
e2cec771 4005{
bb5cb290
AL
4006 unsigned long flags = 0;
4007 int poll_next;
4008
6912ccd5
AL
4009 WARN_ON((qc->flags & ATA_QCFLAG_ACTIVE) == 0);
4010
bb5cb290
AL
4011 /* Make sure ata_qc_issue_prot() does not throw things
4012 * like DMA polling into the workqueue. Notice that
4013 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
4014 */
c234fb00 4015 WARN_ON(in_wq != ata_hsm_ok_in_wq(ap, qc));
bb5cb290 4016
e2cec771 4017fsm_start:
999bb6f4
AL
4018 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
4019 ap->id, qc->tf.protocol, ap->hsm_task_state, status);
4020
e2cec771
AL
4021 switch (ap->hsm_task_state) {
4022 case HSM_ST_FIRST:
bb5cb290
AL
4023 /* Send first data block or PACKET CDB */
4024
4025 /* If polling, we will stay in the work queue after
4026 * sending the data. Otherwise, interrupt handler
4027 * takes over after sending the data.
4028 */
4029 poll_next = (qc->tf.flags & ATA_TFLAG_POLLING);
4030
e2cec771 4031 /* check device status */
3655d1d3
AL
4032 if (unlikely((status & ATA_DRQ) == 0)) {
4033 /* handle BSY=0, DRQ=0 as error */
4034 if (likely(status & (ATA_ERR | ATA_DF)))
4035 /* device stops HSM for abort/error */
4036 qc->err_mask |= AC_ERR_DEV;
4037 else
4038 /* HSM violation. Let EH handle this */
4039 qc->err_mask |= AC_ERR_HSM;
4040
14be71f4 4041 ap->hsm_task_state = HSM_ST_ERR;
e2cec771 4042 goto fsm_start;
1da177e4
LT
4043 }
4044
71601958
AL
4045 /* Device should not ask for data transfer (DRQ=1)
4046 * when it finds something wrong.
eee6c32f
AL
4047 * We ignore DRQ here and stop the HSM by
4048 * changing hsm_task_state to HSM_ST_ERR and
4049 * let the EH abort the command or reset the device.
71601958
AL
4050 */
4051 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4052 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4053 ap->id, status);
3655d1d3 4054 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4055 ap->hsm_task_state = HSM_ST_ERR;
4056 goto fsm_start;
71601958 4057 }
1da177e4 4058
bb5cb290
AL
4059 /* Send the CDB (atapi) or the first data block (ata pio out).
4060 * During the state transition, interrupt handler shouldn't
4061 * be invoked before the data transfer is complete and
4062 * hsm_task_state is changed. Hence, the following locking.
4063 */
4064 if (in_wq)
ba6a1308 4065 spin_lock_irqsave(ap->lock, flags);
1da177e4 4066
bb5cb290
AL
4067 if (qc->tf.protocol == ATA_PROT_PIO) {
4068 /* PIO data out protocol.
4069 * send first data block.
4070 */
0565c26d 4071
bb5cb290
AL
4072 /* ata_pio_sectors() might change the state
4073 * to HSM_ST_LAST. so, the state is changed here
4074 * before ata_pio_sectors().
4075 */
4076 ap->hsm_task_state = HSM_ST;
4077 ata_pio_sectors(qc);
4078 ata_altstatus(ap); /* flush */
4079 } else
4080 /* send CDB */
4081 atapi_send_cdb(ap, qc);
4082
4083 if (in_wq)
ba6a1308 4084 spin_unlock_irqrestore(ap->lock, flags);
bb5cb290
AL
4085
4086 /* if polling, ata_pio_task() handles the rest.
4087 * otherwise, interrupt handler takes over from here.
4088 */
e2cec771 4089 break;
1c848984 4090
e2cec771
AL
4091 case HSM_ST:
4092 /* complete command or read/write the data register */
4093 if (qc->tf.protocol == ATA_PROT_ATAPI) {
4094 /* ATAPI PIO protocol */
4095 if ((status & ATA_DRQ) == 0) {
3655d1d3
AL
4096 /* No more data to transfer or device error.
4097 * Device error will be tagged in HSM_ST_LAST.
4098 */
e2cec771
AL
4099 ap->hsm_task_state = HSM_ST_LAST;
4100 goto fsm_start;
4101 }
1da177e4 4102
71601958
AL
4103 /* Device should not ask for data transfer (DRQ=1)
4104 * when it finds something wrong.
eee6c32f
AL
4105 * We ignore DRQ here and stop the HSM by
4106 * changing hsm_task_state to HSM_ST_ERR and
4107 * let the EH abort the command or reset the device.
71601958
AL
4108 */
4109 if (unlikely(status & (ATA_ERR | ATA_DF))) {
4110 printk(KERN_WARNING "ata%d: DRQ=1 with device error, dev_stat 0x%X\n",
4111 ap->id, status);
3655d1d3 4112 qc->err_mask |= AC_ERR_HSM;
eee6c32f
AL
4113 ap->hsm_task_state = HSM_ST_ERR;
4114 goto fsm_start;
71601958 4115 }
1da177e4 4116
e2cec771 4117 atapi_pio_bytes(qc);
7fb6ec28 4118
e2cec771
AL
4119 if (unlikely(ap->hsm_task_state == HSM_ST_ERR))
4120 /* bad ireason reported by device */
4121 goto fsm_start;
1da177e4 4122
e2cec771
AL
4123 } else {
4124 /* ATA PIO protocol */
4125 if (unlikely((status & ATA_DRQ) == 0)) {
4126 /* handle BSY=0, DRQ=0 as error */
3655d1d3
AL
4127 if (likely(status & (ATA_ERR | ATA_DF)))
4128 /* device stops HSM for abort/error */
4129 qc->err_mask |= AC_ERR_DEV;
4130 else
4131 /* HSM violation. Let EH handle this */
4132 qc->err_mask |= AC_ERR_HSM;
4133
e2cec771
AL
4134 ap->hsm_task_state = HSM_ST_ERR;
4135 goto fsm_start;
4136 }
1da177e4 4137
eee6c32f
AL
4138 /* For PIO reads, some devices may ask for
4139 * data transfer (DRQ=1) alone with ERR=1.
4140 * We respect DRQ here and transfer one
4141 * block of junk data before changing the
4142 * hsm_task_state to HSM_ST_ERR.
4143 *
4144 * For PIO writes, ERR=1 DRQ=1 doesn't make
4145 * sense since the data block has been
4146 * transferred to the device.
71601958
AL
4147 */
4148 if (unlikely(status & (ATA_ERR | ATA_DF))) {
71601958
AL
4149 /* data might be corrputed */
4150 qc->err_mask |= AC_ERR_DEV;
eee6c32f
AL
4151
4152 if (!(qc->tf.flags & ATA_TFLAG_WRITE)) {
4153 ata_pio_sectors(qc);
4154 ata_altstatus(ap);
4155 status = ata_wait_idle(ap);
4156 }
4157
3655d1d3
AL
4158 if (status & (ATA_BUSY | ATA_DRQ))
4159 qc->err_mask |= AC_ERR_HSM;
4160
eee6c32f
AL
4161 /* ata_pio_sectors() might change the
4162 * state to HSM_ST_LAST. so, the state
4163 * is changed after ata_pio_sectors().
4164 */
4165 ap->hsm_task_state = HSM_ST_ERR;
4166 goto fsm_start;
71601958
AL
4167 }
4168
e2cec771
AL
4169 ata_pio_sectors(qc);
4170
4171 if (ap->hsm_task_state == HSM_ST_LAST &&
4172 (!(qc->tf.flags & ATA_TFLAG_WRITE))) {
4173 /* all data read */
4174 ata_altstatus(ap);
52a32205 4175 status = ata_wait_idle(ap);
e2cec771
AL
4176 goto fsm_start;
4177 }
4178 }
4179
4180 ata_altstatus(ap); /* flush */
bb5cb290 4181 poll_next = 1;
1da177e4
LT
4182 break;
4183
14be71f4 4184 case HSM_ST_LAST:
6912ccd5
AL
4185 if (unlikely(!ata_ok(status))) {
4186 qc->err_mask |= __ac_err_mask(status);
e2cec771
AL
4187 ap->hsm_task_state = HSM_ST_ERR;
4188 goto fsm_start;
4189 }
4190
4191 /* no more data to transfer */
4332a771
AL
4192 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
4193 ap->id, qc->dev->devno, status);
e2cec771 4194
6912ccd5
AL
4195 WARN_ON(qc->err_mask);
4196
e2cec771 4197 ap->hsm_task_state = HSM_ST_IDLE;
1da177e4 4198
e2cec771 4199 /* complete taskfile transaction */
c17ea20d 4200 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
4201
4202 poll_next = 0;
1da177e4
LT
4203 break;
4204
14be71f4 4205 case HSM_ST_ERR:
e2cec771
AL
4206 /* make sure qc->err_mask is available to
4207 * know what's wrong and recover
4208 */
4209 WARN_ON(qc->err_mask == 0);
4210
4211 ap->hsm_task_state = HSM_ST_IDLE;
bb5cb290 4212
999bb6f4 4213 /* complete taskfile transaction */
c17ea20d 4214 ata_hsm_qc_complete(qc, in_wq);
bb5cb290
AL
4215
4216 poll_next = 0;
e2cec771
AL
4217 break;
4218 default:
bb5cb290 4219 poll_next = 0;
6912ccd5 4220 BUG();
1da177e4
LT
4221 }
4222
bb5cb290 4223 return poll_next;
1da177e4
LT
4224}
4225
1da177e4 4226static void ata_pio_task(void *_data)
8061f5f0 4227{
c91af2c8
TH
4228 struct ata_queued_cmd *qc = _data;
4229 struct ata_port *ap = qc->ap;
8061f5f0 4230 u8 status;
a1af3734 4231 int poll_next;
8061f5f0 4232
7fb6ec28 4233fsm_start:
a1af3734 4234 WARN_ON(ap->hsm_task_state == HSM_ST_IDLE);
8061f5f0 4235
a1af3734
AL
4236 /*
4237 * This is purely heuristic. This is a fast path.
4238 * Sometimes when we enter, BSY will be cleared in
4239 * a chk-status or two. If not, the drive is probably seeking
4240 * or something. Snooze for a couple msecs, then
4241 * chk-status again. If still busy, queue delayed work.
4242 */
4243 status = ata_busy_wait(ap, ATA_BUSY, 5);
4244 if (status & ATA_BUSY) {
4245 msleep(2);
4246 status = ata_busy_wait(ap, ATA_BUSY, 10);
4247 if (status & ATA_BUSY) {
31ce6dae 4248 ata_port_queue_task(ap, ata_pio_task, qc, ATA_SHORT_PAUSE);
a1af3734
AL
4249 return;
4250 }
8061f5f0
TH
4251 }
4252
a1af3734
AL
4253 /* move the HSM */
4254 poll_next = ata_hsm_move(ap, qc, status, 1);
8061f5f0 4255
a1af3734
AL
4256 /* another command or interrupt handler
4257 * may be running at this point.
4258 */
4259 if (poll_next)
7fb6ec28 4260 goto fsm_start;
8061f5f0
TH
4261}
4262
1da177e4
LT
4263/**
4264 * ata_qc_new - Request an available ATA command, for queueing
4265 * @ap: Port associated with device @dev
4266 * @dev: Device from whom we request an available command structure
4267 *
4268 * LOCKING:
0cba632b 4269 * None.
1da177e4
LT
4270 */
4271
4272static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4273{
4274 struct ata_queued_cmd *qc = NULL;
4275 unsigned int i;
4276
e3180499 4277 /* no command while frozen */
b51e9e5d 4278 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
e3180499
TH
4279 return NULL;
4280
2ab7db1f
TH
4281 /* the last tag is reserved for internal command. */
4282 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
6cec4a39 4283 if (!test_and_set_bit(i, &ap->qc_allocated)) {
f69499f4 4284 qc = __ata_qc_from_tag(ap, i);
1da177e4
LT
4285 break;
4286 }
4287
4288 if (qc)
4289 qc->tag = i;
4290
4291 return qc;
4292}
4293
4294/**
4295 * ata_qc_new_init - Request an available ATA command, and initialize it
1da177e4
LT
4296 * @dev: Device from whom we request an available command structure
4297 *
4298 * LOCKING:
0cba632b 4299 * None.
1da177e4
LT
4300 */
4301
3373efd8 4302struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
1da177e4 4303{
3373efd8 4304 struct ata_port *ap = dev->ap;
1da177e4
LT
4305 struct ata_queued_cmd *qc;
4306
4307 qc = ata_qc_new(ap);
4308 if (qc) {
1da177e4
LT
4309 qc->scsicmd = NULL;
4310 qc->ap = ap;
4311 qc->dev = dev;
1da177e4 4312
2c13b7ce 4313 ata_qc_reinit(qc);
1da177e4
LT
4314 }
4315
4316 return qc;
4317}
4318
1da177e4
LT
4319/**
4320 * ata_qc_free - free unused ata_queued_cmd
4321 * @qc: Command to complete
4322 *
4323 * Designed to free unused ata_queued_cmd object
4324 * in case something prevents using it.
4325 *
4326 * LOCKING:
0cba632b 4327 * spin_lock_irqsave(host_set lock)
1da177e4
LT
4328 */
4329void ata_qc_free(struct ata_queued_cmd *qc)
4330{
4ba946e9
TH
4331 struct ata_port *ap = qc->ap;
4332 unsigned int tag;
4333
a4631474 4334 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
1da177e4 4335
4ba946e9
TH
4336 qc->flags = 0;
4337 tag = qc->tag;
4338 if (likely(ata_tag_valid(tag))) {
4ba946e9 4339 qc->tag = ATA_TAG_POISON;
6cec4a39 4340 clear_bit(tag, &ap->qc_allocated);
4ba946e9 4341 }
1da177e4
LT
4342}
4343
76014427 4344void __ata_qc_complete(struct ata_queued_cmd *qc)
1da177e4 4345{
dedaf2b0
TH
4346 struct ata_port *ap = qc->ap;
4347
a4631474
TH
4348 WARN_ON(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4349 WARN_ON(!(qc->flags & ATA_QCFLAG_ACTIVE));
1da177e4
LT
4350
4351 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4352 ata_sg_clean(qc);
4353
7401abf2 4354 /* command should be marked inactive atomically with qc completion */
dedaf2b0
TH
4355 if (qc->tf.protocol == ATA_PROT_NCQ)
4356 ap->sactive &= ~(1 << qc->tag);
4357 else
4358 ap->active_tag = ATA_TAG_POISON;
7401abf2 4359
3f3791d3
AL
4360 /* atapi: mark qc as inactive to prevent the interrupt handler
4361 * from completing the command twice later, before the error handler
4362 * is called. (when rc != 0 and atapi request sense is needed)
4363 */
4364 qc->flags &= ~ATA_QCFLAG_ACTIVE;
dedaf2b0 4365 ap->qc_active &= ~(1 << qc->tag);
3f3791d3 4366
1da177e4 4367 /* call completion callback */
77853bf2 4368 qc->complete_fn(qc);
1da177e4
LT
4369}
4370
f686bcb8
TH
4371/**
4372 * ata_qc_complete - Complete an active ATA command
4373 * @qc: Command to complete
4374 * @err_mask: ATA Status register contents
4375 *
4376 * Indicate to the mid and upper layers that an ATA
4377 * command has completed, with either an ok or not-ok status.
4378 *
4379 * LOCKING:
4380 * spin_lock_irqsave(host_set lock)
4381 */
4382void ata_qc_complete(struct ata_queued_cmd *qc)
4383{
4384 struct ata_port *ap = qc->ap;
4385
4386 /* XXX: New EH and old EH use different mechanisms to
4387 * synchronize EH with regular execution path.
4388 *
4389 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4390 * Normal execution path is responsible for not accessing a
4391 * failed qc. libata core enforces the rule by returning NULL
4392 * from ata_qc_from_tag() for failed qcs.
4393 *
4394 * Old EH depends on ata_qc_complete() nullifying completion
4395 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4396 * not synchronize with interrupt handler. Only PIO task is
4397 * taken care of.
4398 */
4399 if (ap->ops->error_handler) {
b51e9e5d 4400 WARN_ON(ap->pflags & ATA_PFLAG_FROZEN);
f686bcb8
TH
4401
4402 if (unlikely(qc->err_mask))
4403 qc->flags |= ATA_QCFLAG_FAILED;
4404
4405 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4406 if (!ata_tag_internal(qc->tag)) {
4407 /* always fill result TF for failed qc */
4408 ap->ops->tf_read(ap, &qc->result_tf);
4409 ata_qc_schedule_eh(qc);
4410 return;
4411 }
4412 }
4413
4414 /* read result TF if requested */
4415 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4416 ap->ops->tf_read(ap, &qc->result_tf);
4417
4418 __ata_qc_complete(qc);
4419 } else {
4420 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
4421 return;
4422
4423 /* read result TF if failed or requested */
4424 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
4425 ap->ops->tf_read(ap, &qc->result_tf);
4426
4427 __ata_qc_complete(qc);
4428 }
4429}
4430
dedaf2b0
TH
4431/**
4432 * ata_qc_complete_multiple - Complete multiple qcs successfully
4433 * @ap: port in question
4434 * @qc_active: new qc_active mask
4435 * @finish_qc: LLDD callback invoked before completing a qc
4436 *
4437 * Complete in-flight commands. This functions is meant to be
4438 * called from low-level driver's interrupt routine to complete
4439 * requests normally. ap->qc_active and @qc_active is compared
4440 * and commands are completed accordingly.
4441 *
4442 * LOCKING:
4443 * spin_lock_irqsave(host_set lock)
4444 *
4445 * RETURNS:
4446 * Number of completed commands on success, -errno otherwise.
4447 */
4448int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active,
4449 void (*finish_qc)(struct ata_queued_cmd *))
4450{
4451 int nr_done = 0;
4452 u32 done_mask;
4453 int i;
4454
4455 done_mask = ap->qc_active ^ qc_active;
4456
4457 if (unlikely(done_mask & qc_active)) {
4458 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
4459 "(%08x->%08x)\n", ap->qc_active, qc_active);
4460 return -EINVAL;
4461 }
4462
4463 for (i = 0; i < ATA_MAX_QUEUE; i++) {
4464 struct ata_queued_cmd *qc;
4465
4466 if (!(done_mask & (1 << i)))
4467 continue;
4468
4469 if ((qc = ata_qc_from_tag(ap, i))) {
4470 if (finish_qc)
4471 finish_qc(qc);
4472 ata_qc_complete(qc);
4473 nr_done++;
4474 }
4475 }
4476
4477 return nr_done;
4478}
4479
1da177e4
LT
4480static inline int ata_should_dma_map(struct ata_queued_cmd *qc)
4481{
4482 struct ata_port *ap = qc->ap;
4483
4484 switch (qc->tf.protocol) {
3dc1d881 4485 case ATA_PROT_NCQ:
1da177e4
LT
4486 case ATA_PROT_DMA:
4487 case ATA_PROT_ATAPI_DMA:
4488 return 1;
4489
4490 case ATA_PROT_ATAPI:
4491 case ATA_PROT_PIO:
1da177e4
LT
4492 if (ap->flags & ATA_FLAG_PIO_DMA)
4493 return 1;
4494
4495 /* fall through */
4496
4497 default:
4498 return 0;
4499 }
4500
4501 /* never reached */
4502}
4503
4504/**
4505 * ata_qc_issue - issue taskfile to device
4506 * @qc: command to issue to device
4507 *
4508 * Prepare an ATA command to submission to device.
4509 * This includes mapping the data into a DMA-able
4510 * area, filling in the S/G table, and finally
4511 * writing the taskfile to hardware, starting the command.
4512 *
4513 * LOCKING:
4514 * spin_lock_irqsave(host_set lock)
1da177e4 4515 */
8e0e694a 4516void ata_qc_issue(struct ata_queued_cmd *qc)
1da177e4
LT
4517{
4518 struct ata_port *ap = qc->ap;
4519
dedaf2b0
TH
4520 /* Make sure only one non-NCQ command is outstanding. The
4521 * check is skipped for old EH because it reuses active qc to
4522 * request ATAPI sense.
4523 */
4524 WARN_ON(ap->ops->error_handler && ata_tag_valid(ap->active_tag));
4525
4526 if (qc->tf.protocol == ATA_PROT_NCQ) {
4527 WARN_ON(ap->sactive & (1 << qc->tag));
4528 ap->sactive |= 1 << qc->tag;
4529 } else {
4530 WARN_ON(ap->sactive);
4531 ap->active_tag = qc->tag;
4532 }
4533
e4a70e76 4534 qc->flags |= ATA_QCFLAG_ACTIVE;
dedaf2b0 4535 ap->qc_active |= 1 << qc->tag;
e4a70e76 4536
1da177e4
LT
4537 if (ata_should_dma_map(qc)) {
4538 if (qc->flags & ATA_QCFLAG_SG) {
4539 if (ata_sg_setup(qc))
8e436af9 4540 goto sg_err;
1da177e4
LT
4541 } else if (qc->flags & ATA_QCFLAG_SINGLE) {
4542 if (ata_sg_setup_one(qc))
8e436af9 4543 goto sg_err;
1da177e4
LT
4544 }
4545 } else {
4546 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4547 }
4548
4549 ap->ops->qc_prep(qc);
4550
8e0e694a
TH
4551 qc->err_mask |= ap->ops->qc_issue(qc);
4552 if (unlikely(qc->err_mask))
4553 goto err;
4554 return;
1da177e4 4555
8e436af9
TH
4556sg_err:
4557 qc->flags &= ~ATA_QCFLAG_DMAMAP;
8e0e694a
TH
4558 qc->err_mask |= AC_ERR_SYSTEM;
4559err:
4560 ata_qc_complete(qc);
1da177e4
LT
4561}
4562
4563/**
4564 * ata_qc_issue_prot - issue taskfile to device in proto-dependent manner
4565 * @qc: command to issue to device
4566 *
4567 * Using various libata functions and hooks, this function
4568 * starts an ATA command. ATA commands are grouped into
4569 * classes called "protocols", and issuing each type of protocol
4570 * is slightly different.
4571 *
0baab86b
EF
4572 * May be used as the qc_issue() entry in ata_port_operations.
4573 *
1da177e4
LT
4574 * LOCKING:
4575 * spin_lock_irqsave(host_set lock)
4576 *
4577 * RETURNS:
9a3d9eb0 4578 * Zero on success, AC_ERR_* mask on failure
1da177e4
LT
4579 */
4580
9a3d9eb0 4581unsigned int ata_qc_issue_prot(struct ata_queued_cmd *qc)
1da177e4
LT
4582{
4583 struct ata_port *ap = qc->ap;
4584
e50362ec
AL
4585 /* Use polling pio if the LLD doesn't handle
4586 * interrupt driven pio and atapi CDB interrupt.
4587 */
4588 if (ap->flags & ATA_FLAG_PIO_POLLING) {
4589 switch (qc->tf.protocol) {
4590 case ATA_PROT_PIO:
4591 case ATA_PROT_ATAPI:
4592 case ATA_PROT_ATAPI_NODATA:
4593 qc->tf.flags |= ATA_TFLAG_POLLING;
4594 break;
4595 case ATA_PROT_ATAPI_DMA:
4596 if (qc->dev->flags & ATA_DFLAG_CDB_INTR)
3a778275 4597 /* see ata_dma_blacklisted() */
e50362ec
AL
4598 BUG();
4599 break;
4600 default:
4601 break;
4602 }
4603 }
4604
312f7da2 4605 /* select the device */
1da177e4
LT
4606 ata_dev_select(ap, qc->dev->devno, 1, 0);
4607
312f7da2 4608 /* start the command */
1da177e4
LT
4609 switch (qc->tf.protocol) {
4610 case ATA_PROT_NODATA:
312f7da2
AL
4611 if (qc->tf.flags & ATA_TFLAG_POLLING)
4612 ata_qc_set_polling(qc);
4613
e5338254 4614 ata_tf_to_host(ap, &qc->tf);
312f7da2
AL
4615 ap->hsm_task_state = HSM_ST_LAST;
4616
4617 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 4618 ata_port_queue_task(ap, ata_pio_task, qc, 0);
312f7da2 4619
1da177e4
LT
4620 break;
4621
4622 case ATA_PROT_DMA:
587005de 4623 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 4624
1da177e4
LT
4625 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4626 ap->ops->bmdma_setup(qc); /* set up bmdma */
4627 ap->ops->bmdma_start(qc); /* initiate bmdma */
312f7da2 4628 ap->hsm_task_state = HSM_ST_LAST;
1da177e4
LT
4629 break;
4630
312f7da2
AL
4631 case ATA_PROT_PIO:
4632 if (qc->tf.flags & ATA_TFLAG_POLLING)
4633 ata_qc_set_polling(qc);
1da177e4 4634
e5338254 4635 ata_tf_to_host(ap, &qc->tf);
312f7da2 4636
54f00389
AL
4637 if (qc->tf.flags & ATA_TFLAG_WRITE) {
4638 /* PIO data out protocol */
4639 ap->hsm_task_state = HSM_ST_FIRST;
31ce6dae 4640 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
4641
4642 /* always send first data block using
e27486db 4643 * the ata_pio_task() codepath.
54f00389 4644 */
312f7da2 4645 } else {
54f00389
AL
4646 /* PIO data in protocol */
4647 ap->hsm_task_state = HSM_ST;
4648
4649 if (qc->tf.flags & ATA_TFLAG_POLLING)
31ce6dae 4650 ata_port_queue_task(ap, ata_pio_task, qc, 0);
54f00389
AL
4651
4652 /* if polling, ata_pio_task() handles the rest.
4653 * otherwise, interrupt handler takes over from here.
4654 */
312f7da2
AL
4655 }
4656
1da177e4
LT
4657 break;
4658
1da177e4 4659 case ATA_PROT_ATAPI:
1da177e4 4660 case ATA_PROT_ATAPI_NODATA:
312f7da2
AL
4661 if (qc->tf.flags & ATA_TFLAG_POLLING)
4662 ata_qc_set_polling(qc);
4663
e5338254 4664 ata_tf_to_host(ap, &qc->tf);
f6ef65e6 4665
312f7da2
AL
4666 ap->hsm_task_state = HSM_ST_FIRST;
4667
4668 /* send cdb by polling if no cdb interrupt */
4669 if ((!(qc->dev->flags & ATA_DFLAG_CDB_INTR)) ||
4670 (qc->tf.flags & ATA_TFLAG_POLLING))
31ce6dae 4671 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
4672 break;
4673
4674 case ATA_PROT_ATAPI_DMA:
587005de 4675 WARN_ON(qc->tf.flags & ATA_TFLAG_POLLING);
312f7da2 4676
1da177e4
LT
4677 ap->ops->tf_load(ap, &qc->tf); /* load tf registers */
4678 ap->ops->bmdma_setup(qc); /* set up bmdma */
312f7da2
AL
4679 ap->hsm_task_state = HSM_ST_FIRST;
4680
4681 /* send cdb by polling if no cdb interrupt */
4682 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
31ce6dae 4683 ata_port_queue_task(ap, ata_pio_task, qc, 0);
1da177e4
LT
4684 break;
4685
4686 default:
4687 WARN_ON(1);
9a3d9eb0 4688 return AC_ERR_SYSTEM;
1da177e4
LT
4689 }
4690
4691 return 0;
4692}
4693
1da177e4
LT
4694/**
4695 * ata_host_intr - Handle host interrupt for given (port, task)
4696 * @ap: Port on which interrupt arrived (possibly...)
4697 * @qc: Taskfile currently active in engine
4698 *
4699 * Handle host interrupt for given queued command. Currently,
4700 * only DMA interrupts are handled. All other commands are
4701 * handled via polling with interrupts disabled (nIEN bit).
4702 *
4703 * LOCKING:
4704 * spin_lock_irqsave(host_set lock)
4705 *
4706 * RETURNS:
4707 * One if interrupt was handled, zero if not (shared irq).
4708 */
4709
4710inline unsigned int ata_host_intr (struct ata_port *ap,
4711 struct ata_queued_cmd *qc)
4712{
312f7da2 4713 u8 status, host_stat = 0;
1da177e4 4714
312f7da2
AL
4715 VPRINTK("ata%u: protocol %d task_state %d\n",
4716 ap->id, qc->tf.protocol, ap->hsm_task_state);
1da177e4 4717
312f7da2
AL
4718 /* Check whether we are expecting interrupt in this state */
4719 switch (ap->hsm_task_state) {
4720 case HSM_ST_FIRST:
6912ccd5
AL
4721 /* Some pre-ATAPI-4 devices assert INTRQ
4722 * at this state when ready to receive CDB.
4723 */
1da177e4 4724
312f7da2
AL
4725 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
4726 * The flag was turned on only for atapi devices.
4727 * No need to check is_atapi_taskfile(&qc->tf) again.
4728 */
4729 if (!(qc->dev->flags & ATA_DFLAG_CDB_INTR))
1da177e4 4730 goto idle_irq;
1da177e4 4731 break;
312f7da2
AL
4732 case HSM_ST_LAST:
4733 if (qc->tf.protocol == ATA_PROT_DMA ||
4734 qc->tf.protocol == ATA_PROT_ATAPI_DMA) {
4735 /* check status of DMA engine */
4736 host_stat = ap->ops->bmdma_status(ap);
4737 VPRINTK("ata%u: host_stat 0x%X\n", ap->id, host_stat);
4738
4739 /* if it's not our irq... */
4740 if (!(host_stat & ATA_DMA_INTR))
4741 goto idle_irq;
4742
4743 /* before we do anything else, clear DMA-Start bit */
4744 ap->ops->bmdma_stop(qc);
a4f16610
AL
4745
4746 if (unlikely(host_stat & ATA_DMA_ERR)) {
4747 /* error when transfering data to/from memory */
4748 qc->err_mask |= AC_ERR_HOST_BUS;
4749 ap->hsm_task_state = HSM_ST_ERR;
4750 }
312f7da2
AL
4751 }
4752 break;
4753 case HSM_ST:
4754 break;
1da177e4
LT
4755 default:
4756 goto idle_irq;
4757 }
4758
312f7da2
AL
4759 /* check altstatus */
4760 status = ata_altstatus(ap);
4761 if (status & ATA_BUSY)
4762 goto idle_irq;
1da177e4 4763
312f7da2
AL
4764 /* check main status, clearing INTRQ */
4765 status = ata_chk_status(ap);
4766 if (unlikely(status & ATA_BUSY))
4767 goto idle_irq;
1da177e4 4768
312f7da2
AL
4769 /* ack bmdma irq events */
4770 ap->ops->irq_clear(ap);
1da177e4 4771
bb5cb290 4772 ata_hsm_move(ap, qc, status, 0);
1da177e4
LT
4773 return 1; /* irq handled */
4774
4775idle_irq:
4776 ap->stats.idle_irq++;
4777
4778#ifdef ATA_IRQ_TRAP
4779 if ((ap->stats.idle_irq % 1000) == 0) {
1da177e4 4780 ata_irq_ack(ap, 0); /* debug trap */
f15a1daf 4781 ata_port_printk(ap, KERN_WARNING, "irq trap\n");
23cfce89 4782 return 1;
1da177e4
LT
4783 }
4784#endif
4785 return 0; /* irq not handled */
4786}
4787
4788/**
4789 * ata_interrupt - Default ATA host interrupt handler
0cba632b
JG
4790 * @irq: irq line (unused)
4791 * @dev_instance: pointer to our ata_host_set information structure
1da177e4
LT
4792 * @regs: unused
4793 *
0cba632b
JG
4794 * Default interrupt handler for PCI IDE devices. Calls
4795 * ata_host_intr() for each port that is not disabled.
4796 *
1da177e4 4797 * LOCKING:
0cba632b 4798 * Obtains host_set lock during operation.
1da177e4
LT
4799 *
4800 * RETURNS:
0cba632b 4801 * IRQ_NONE or IRQ_HANDLED.
1da177e4
LT
4802 */
4803
4804irqreturn_t ata_interrupt (int irq, void *dev_instance, struct pt_regs *regs)
4805{
4806 struct ata_host_set *host_set = dev_instance;
4807 unsigned int i;
4808 unsigned int handled = 0;
4809 unsigned long flags;
4810
4811 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
4812 spin_lock_irqsave(&host_set->lock, flags);
4813
4814 for (i = 0; i < host_set->n_ports; i++) {
4815 struct ata_port *ap;
4816
4817 ap = host_set->ports[i];
c1389503 4818 if (ap &&
029f5468 4819 !(ap->flags & ATA_FLAG_DISABLED)) {
1da177e4
LT
4820 struct ata_queued_cmd *qc;
4821
4822 qc = ata_qc_from_tag(ap, ap->active_tag);
312f7da2 4823 if (qc && (!(qc->tf.flags & ATA_TFLAG_POLLING)) &&
21b1ed74 4824 (qc->flags & ATA_QCFLAG_ACTIVE))
1da177e4
LT
4825 handled |= ata_host_intr(ap, qc);
4826 }
4827 }
4828
4829 spin_unlock_irqrestore(&host_set->lock, flags);
4830
4831 return IRQ_RETVAL(handled);
4832}
4833
34bf2170
TH
4834/**
4835 * sata_scr_valid - test whether SCRs are accessible
4836 * @ap: ATA port to test SCR accessibility for
4837 *
4838 * Test whether SCRs are accessible for @ap.
4839 *
4840 * LOCKING:
4841 * None.
4842 *
4843 * RETURNS:
4844 * 1 if SCRs are accessible, 0 otherwise.
4845 */
4846int sata_scr_valid(struct ata_port *ap)
4847{
4848 return ap->cbl == ATA_CBL_SATA && ap->ops->scr_read;
4849}
4850
4851/**
4852 * sata_scr_read - read SCR register of the specified port
4853 * @ap: ATA port to read SCR for
4854 * @reg: SCR to read
4855 * @val: Place to store read value
4856 *
4857 * Read SCR register @reg of @ap into *@val. This function is
4858 * guaranteed to succeed if the cable type of the port is SATA
4859 * and the port implements ->scr_read.
4860 *
4861 * LOCKING:
4862 * None.
4863 *
4864 * RETURNS:
4865 * 0 on success, negative errno on failure.
4866 */
4867int sata_scr_read(struct ata_port *ap, int reg, u32 *val)
4868{
4869 if (sata_scr_valid(ap)) {
4870 *val = ap->ops->scr_read(ap, reg);
4871 return 0;
4872 }
4873 return -EOPNOTSUPP;
4874}
4875
4876/**
4877 * sata_scr_write - write SCR register of the specified port
4878 * @ap: ATA port to write SCR for
4879 * @reg: SCR to write
4880 * @val: value to write
4881 *
4882 * Write @val to SCR register @reg of @ap. This function is
4883 * guaranteed to succeed if the cable type of the port is SATA
4884 * and the port implements ->scr_read.
4885 *
4886 * LOCKING:
4887 * None.
4888 *
4889 * RETURNS:
4890 * 0 on success, negative errno on failure.
4891 */
4892int sata_scr_write(struct ata_port *ap, int reg, u32 val)
4893{
4894 if (sata_scr_valid(ap)) {
4895 ap->ops->scr_write(ap, reg, val);
4896 return 0;
4897 }
4898 return -EOPNOTSUPP;
4899}
4900
4901/**
4902 * sata_scr_write_flush - write SCR register of the specified port and flush
4903 * @ap: ATA port to write SCR for
4904 * @reg: SCR to write
4905 * @val: value to write
4906 *
4907 * This function is identical to sata_scr_write() except that this
4908 * function performs flush after writing to the register.
4909 *
4910 * LOCKING:
4911 * None.
4912 *
4913 * RETURNS:
4914 * 0 on success, negative errno on failure.
4915 */
4916int sata_scr_write_flush(struct ata_port *ap, int reg, u32 val)
4917{
4918 if (sata_scr_valid(ap)) {
4919 ap->ops->scr_write(ap, reg, val);
4920 ap->ops->scr_read(ap, reg);
4921 return 0;
4922 }
4923 return -EOPNOTSUPP;
4924}
4925
4926/**
4927 * ata_port_online - test whether the given port is online
4928 * @ap: ATA port to test
4929 *
4930 * Test whether @ap is online. Note that this function returns 0
4931 * if online status of @ap cannot be obtained, so
4932 * ata_port_online(ap) != !ata_port_offline(ap).
4933 *
4934 * LOCKING:
4935 * None.
4936 *
4937 * RETURNS:
4938 * 1 if the port online status is available and online.
4939 */
4940int ata_port_online(struct ata_port *ap)
4941{
4942 u32 sstatus;
4943
4944 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) == 0x3)
4945 return 1;
4946 return 0;
4947}
4948
4949/**
4950 * ata_port_offline - test whether the given port is offline
4951 * @ap: ATA port to test
4952 *
4953 * Test whether @ap is offline. Note that this function returns
4954 * 0 if offline status of @ap cannot be obtained, so
4955 * ata_port_online(ap) != !ata_port_offline(ap).
4956 *
4957 * LOCKING:
4958 * None.
4959 *
4960 * RETURNS:
4961 * 1 if the port offline status is available and offline.
4962 */
4963int ata_port_offline(struct ata_port *ap)
4964{
4965 u32 sstatus;
4966
4967 if (!sata_scr_read(ap, SCR_STATUS, &sstatus) && (sstatus & 0xf) != 0x3)
4968 return 1;
4969 return 0;
4970}
0baab86b 4971
77b08fb5 4972int ata_flush_cache(struct ata_device *dev)
9b847548 4973{
977e6b9f 4974 unsigned int err_mask;
9b847548
JA
4975 u8 cmd;
4976
4977 if (!ata_try_flush_cache(dev))
4978 return 0;
4979
4980 if (ata_id_has_flush_ext(dev->id))
4981 cmd = ATA_CMD_FLUSH_EXT;
4982 else
4983 cmd = ATA_CMD_FLUSH;
4984
977e6b9f
TH
4985 err_mask = ata_do_simple_cmd(dev, cmd);
4986 if (err_mask) {
4987 ata_dev_printk(dev, KERN_ERR, "failed to flush cache\n");
4988 return -EIO;
4989 }
4990
4991 return 0;
9b847548
JA
4992}
4993
500530f6
TH
4994static int ata_host_set_request_pm(struct ata_host_set *host_set,
4995 pm_message_t mesg, unsigned int action,
4996 unsigned int ehi_flags, int wait)
4997{
4998 unsigned long flags;
4999 int i, rc;
5000
5001 for (i = 0; i < host_set->n_ports; i++) {
5002 struct ata_port *ap = host_set->ports[i];
5003
5004 /* Previous resume operation might still be in
5005 * progress. Wait for PM_PENDING to clear.
5006 */
5007 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5008 ata_port_wait_eh(ap);
5009 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5010 }
5011
5012 /* request PM ops to EH */
5013 spin_lock_irqsave(ap->lock, flags);
5014
5015 ap->pm_mesg = mesg;
5016 if (wait) {
5017 rc = 0;
5018 ap->pm_result = &rc;
5019 }
5020
5021 ap->pflags |= ATA_PFLAG_PM_PENDING;
5022 ap->eh_info.action |= action;
5023 ap->eh_info.flags |= ehi_flags;
5024
5025 ata_port_schedule_eh(ap);
5026
5027 spin_unlock_irqrestore(ap->lock, flags);
5028
5029 /* wait and check result */
5030 if (wait) {
5031 ata_port_wait_eh(ap);
5032 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5033 if (rc)
5034 return rc;
5035 }
5036 }
5037
5038 return 0;
5039}
5040
5041/**
5042 * ata_host_set_suspend - suspend host_set
5043 * @host_set: host_set to suspend
5044 * @mesg: PM message
5045 *
5046 * Suspend @host_set. Actual operation is performed by EH. This
5047 * function requests EH to perform PM operations and waits for EH
5048 * to finish.
5049 *
5050 * LOCKING:
5051 * Kernel thread context (may sleep).
5052 *
5053 * RETURNS:
5054 * 0 on success, -errno on failure.
5055 */
5056int ata_host_set_suspend(struct ata_host_set *host_set, pm_message_t mesg)
5057{
5058 int i, j, rc;
5059
5060 rc = ata_host_set_request_pm(host_set, mesg, 0, ATA_EHI_QUIET, 1);
5061 if (rc)
5062 goto fail;
5063
5064 /* EH is quiescent now. Fail if we have any ready device.
5065 * This happens if hotplug occurs between completion of device
5066 * suspension and here.
5067 */
5068 for (i = 0; i < host_set->n_ports; i++) {
5069 struct ata_port *ap = host_set->ports[i];
5070
5071 for (j = 0; j < ATA_MAX_DEVICES; j++) {
5072 struct ata_device *dev = &ap->device[j];
5073
5074 if (ata_dev_ready(dev)) {
5075 ata_port_printk(ap, KERN_WARNING,
5076 "suspend failed, device %d "
5077 "still active\n", dev->devno);
5078 rc = -EBUSY;
5079 goto fail;
5080 }
5081 }
5082 }
5083
5084 host_set->dev->power.power_state = mesg;
5085 return 0;
5086
5087 fail:
5088 ata_host_set_resume(host_set);
5089 return rc;
5090}
5091
5092/**
5093 * ata_host_set_resume - resume host_set
5094 * @host_set: host_set to resume
5095 *
5096 * Resume @host_set. Actual operation is performed by EH. This
5097 * function requests EH to perform PM operations and returns.
5098 * Note that all resume operations are performed parallely.
5099 *
5100 * LOCKING:
5101 * Kernel thread context (may sleep).
5102 */
5103void ata_host_set_resume(struct ata_host_set *host_set)
5104{
5105 ata_host_set_request_pm(host_set, PMSG_ON, ATA_EH_SOFTRESET,
5106 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5107 host_set->dev->power.power_state = PMSG_ON;
5108}
5109
c893a3ae
RD
5110/**
5111 * ata_port_start - Set port up for dma.
5112 * @ap: Port to initialize
5113 *
5114 * Called just after data structures for each port are
5115 * initialized. Allocates space for PRD table.
5116 *
5117 * May be used as the port_start() entry in ata_port_operations.
5118 *
5119 * LOCKING:
5120 * Inherited from caller.
5121 */
5122
1da177e4
LT
5123int ata_port_start (struct ata_port *ap)
5124{
2f1f610b 5125 struct device *dev = ap->dev;
6037d6bb 5126 int rc;
1da177e4
LT
5127
5128 ap->prd = dma_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma, GFP_KERNEL);
5129 if (!ap->prd)
5130 return -ENOMEM;
5131
6037d6bb
JG
5132 rc = ata_pad_alloc(ap, dev);
5133 if (rc) {
cedc9a47 5134 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 5135 return rc;
cedc9a47
JG
5136 }
5137
1da177e4
LT
5138 DPRINTK("prd alloc, virt %p, dma %llx\n", ap->prd, (unsigned long long) ap->prd_dma);
5139
5140 return 0;
5141}
5142
0baab86b
EF
5143
5144/**
5145 * ata_port_stop - Undo ata_port_start()
5146 * @ap: Port to shut down
5147 *
5148 * Frees the PRD table.
5149 *
5150 * May be used as the port_stop() entry in ata_port_operations.
5151 *
5152 * LOCKING:
6f0ef4fa 5153 * Inherited from caller.
0baab86b
EF
5154 */
5155
1da177e4
LT
5156void ata_port_stop (struct ata_port *ap)
5157{
2f1f610b 5158 struct device *dev = ap->dev;
1da177e4
LT
5159
5160 dma_free_coherent(dev, ATA_PRD_TBL_SZ, ap->prd, ap->prd_dma);
6037d6bb 5161 ata_pad_free(ap, dev);
1da177e4
LT
5162}
5163
aa8f0dc6
JG
5164void ata_host_stop (struct ata_host_set *host_set)
5165{
5166 if (host_set->mmio_base)
5167 iounmap(host_set->mmio_base);
5168}
5169
3ef3b43d
TH
5170/**
5171 * ata_dev_init - Initialize an ata_device structure
5172 * @dev: Device structure to initialize
5173 *
5174 * Initialize @dev in preparation for probing.
5175 *
5176 * LOCKING:
5177 * Inherited from caller.
5178 */
5179void ata_dev_init(struct ata_device *dev)
5180{
5181 struct ata_port *ap = dev->ap;
72fa4b74
TH
5182 unsigned long flags;
5183
5a04bf4b
TH
5184 /* SATA spd limit is bound to the first device */
5185 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5186
72fa4b74
TH
5187 /* High bits of dev->flags are used to record warm plug
5188 * requests which occur asynchronously. Synchronize using
5189 * host_set lock.
5190 */
ba6a1308 5191 spin_lock_irqsave(ap->lock, flags);
72fa4b74 5192 dev->flags &= ~ATA_DFLAG_INIT_MASK;
ba6a1308 5193 spin_unlock_irqrestore(ap->lock, flags);
3ef3b43d 5194
72fa4b74
TH
5195 memset((void *)dev + ATA_DEVICE_CLEAR_OFFSET, 0,
5196 sizeof(*dev) - ATA_DEVICE_CLEAR_OFFSET);
3ef3b43d
TH
5197 dev->pio_mask = UINT_MAX;
5198 dev->mwdma_mask = UINT_MAX;
5199 dev->udma_mask = UINT_MAX;
5200}
5201
1da177e4 5202/**
155a8a9c 5203 * ata_port_init - Initialize an ata_port structure
1da177e4 5204 * @ap: Structure to initialize
1da177e4
LT
5205 * @host_set: Collection of hosts to which @ap belongs
5206 * @ent: Probe information provided by low-level driver
5207 * @port_no: Port number associated with this ata_port
5208 *
155a8a9c 5209 * Initialize a new ata_port structure.
0cba632b 5210 *
1da177e4 5211 * LOCKING:
0cba632b 5212 * Inherited from caller.
1da177e4 5213 */
155a8a9c
BK
5214void ata_port_init(struct ata_port *ap, struct ata_host_set *host_set,
5215 const struct ata_probe_ent *ent, unsigned int port_no)
1da177e4
LT
5216{
5217 unsigned int i;
5218
ba6a1308 5219 ap->lock = &host_set->lock;
198e0fed 5220 ap->flags = ATA_FLAG_DISABLED;
155a8a9c 5221 ap->id = ata_unique_id++;
1da177e4
LT
5222 ap->ctl = ATA_DEVCTL_OBS;
5223 ap->host_set = host_set;
2f1f610b 5224 ap->dev = ent->dev;
1da177e4 5225 ap->port_no = port_no;
2ec7df04
AC
5226 ap->hard_port_no = port_no;
5227 if (ent->legacy_mode)
5228 ap->hard_port_no += ent->hard_port_no;
1da177e4
LT
5229 ap->pio_mask = ent->pio_mask;
5230 ap->mwdma_mask = ent->mwdma_mask;
5231 ap->udma_mask = ent->udma_mask;
5232 ap->flags |= ent->host_flags;
5233 ap->ops = ent->port_ops;
5a04bf4b 5234 ap->hw_sata_spd_limit = UINT_MAX;
1da177e4
LT
5235 ap->active_tag = ATA_TAG_POISON;
5236 ap->last_ctl = 0xFF;
bd5d825c
BP
5237
5238#if defined(ATA_VERBOSE_DEBUG)
5239 /* turn on all debugging levels */
5240 ap->msg_enable = 0x00FF;
5241#elif defined(ATA_DEBUG)
5242 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
88574551 5243#else
0dd4b21f 5244 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
bd5d825c 5245#endif
1da177e4 5246
86e45b6b 5247 INIT_WORK(&ap->port_task, NULL, NULL);
580b2102 5248 INIT_WORK(&ap->hotplug_task, ata_scsi_hotplug, ap);
3057ac3c 5249 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan, ap);
a72ec4ce 5250 INIT_LIST_HEAD(&ap->eh_done_q);
c6cf9e99 5251 init_waitqueue_head(&ap->eh_wait_q);
1da177e4 5252
838df628
TH
5253 /* set cable type */
5254 ap->cbl = ATA_CBL_NONE;
5255 if (ap->flags & ATA_FLAG_SATA)
5256 ap->cbl = ATA_CBL_SATA;
5257
acf356b1
TH
5258 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5259 struct ata_device *dev = &ap->device[i];
38d87234 5260 dev->ap = ap;
72fa4b74 5261 dev->devno = i;
3ef3b43d 5262 ata_dev_init(dev);
acf356b1 5263 }
1da177e4
LT
5264
5265#ifdef ATA_IRQ_TRAP
5266 ap->stats.unhandled_irq = 1;
5267 ap->stats.idle_irq = 1;
5268#endif
5269
5270 memcpy(&ap->ioaddr, &ent->port[port_no], sizeof(struct ata_ioports));
5271}
5272
155a8a9c 5273/**
4608c160
TH
5274 * ata_port_init_shost - Initialize SCSI host associated with ATA port
5275 * @ap: ATA port to initialize SCSI host for
5276 * @shost: SCSI host associated with @ap
155a8a9c 5277 *
4608c160 5278 * Initialize SCSI host @shost associated with ATA port @ap.
155a8a9c
BK
5279 *
5280 * LOCKING:
5281 * Inherited from caller.
5282 */
4608c160 5283static void ata_port_init_shost(struct ata_port *ap, struct Scsi_Host *shost)
155a8a9c 5284{
4608c160 5285 ap->host = shost;
155a8a9c 5286
4608c160
TH
5287 shost->unique_id = ap->id;
5288 shost->max_id = 16;
5289 shost->max_lun = 1;
5290 shost->max_channel = 1;
5291 shost->max_cmd_len = 12;
155a8a9c
BK
5292}
5293
1da177e4 5294/**
996139f1 5295 * ata_port_add - Attach low-level ATA driver to system
1da177e4
LT
5296 * @ent: Information provided by low-level driver
5297 * @host_set: Collections of ports to which we add
5298 * @port_no: Port number associated with this host
5299 *
0cba632b
JG
5300 * Attach low-level ATA driver to system.
5301 *
1da177e4 5302 * LOCKING:
0cba632b 5303 * PCI/etc. bus probe sem.
1da177e4
LT
5304 *
5305 * RETURNS:
0cba632b 5306 * New ata_port on success, for NULL on error.
1da177e4 5307 */
996139f1 5308static struct ata_port * ata_port_add(const struct ata_probe_ent *ent,
1da177e4
LT
5309 struct ata_host_set *host_set,
5310 unsigned int port_no)
5311{
996139f1 5312 struct Scsi_Host *shost;
1da177e4
LT
5313 struct ata_port *ap;
5314 int rc;
5315
5316 DPRINTK("ENTER\n");
aec5c3c1 5317
52783c5d 5318 if (!ent->port_ops->error_handler &&
aec5c3c1
TH
5319 !(ent->host_flags & (ATA_FLAG_SATA_RESET | ATA_FLAG_SRST))) {
5320 printk(KERN_ERR "ata%u: no reset mechanism available\n",
5321 port_no);
5322 return NULL;
5323 }
5324
996139f1
JG
5325 shost = scsi_host_alloc(ent->sht, sizeof(struct ata_port));
5326 if (!shost)
1da177e4
LT
5327 return NULL;
5328
996139f1 5329 shost->transportt = &ata_scsi_transport_template;
30afc84c 5330
996139f1 5331 ap = ata_shost_to_port(shost);
1da177e4 5332
4608c160 5333 ata_port_init(ap, host_set, ent, port_no);
996139f1 5334 ata_port_init_shost(ap, shost);
1da177e4
LT
5335
5336 rc = ap->ops->port_start(ap);
5337 if (rc)
5338 goto err_out;
5339
5340 return ap;
5341
5342err_out:
996139f1 5343 scsi_host_put(shost);
1da177e4
LT
5344 return NULL;
5345}
5346
b03732f0
BK
5347/**
5348 * ata_sas_host_init - Initialize a host_set struct
5349 * @host_set: host_set to initialize
5350 * @dev: device host_set is attached to
5351 * @flags: host_set flags
5352 * @ops: port_ops
5353 *
5354 * LOCKING:
5355 * PCI/etc. bus probe sem.
5356 *
5357 */
5358
5359void ata_host_set_init(struct ata_host_set *host_set,
5360 struct device *dev, unsigned long flags,
5361 const struct ata_port_operations *ops)
5362{
5363 spin_lock_init(&host_set->lock);
5364 host_set->dev = dev;
5365 host_set->flags = flags;
5366 host_set->ops = ops;
5367}
5368
1da177e4 5369/**
0cba632b
JG
5370 * ata_device_add - Register hardware device with ATA and SCSI layers
5371 * @ent: Probe information describing hardware device to be registered
5372 *
5373 * This function processes the information provided in the probe
5374 * information struct @ent, allocates the necessary ATA and SCSI
5375 * host information structures, initializes them, and registers
5376 * everything with requisite kernel subsystems.
5377 *
5378 * This function requests irqs, probes the ATA bus, and probes
5379 * the SCSI bus.
1da177e4
LT
5380 *
5381 * LOCKING:
0cba632b 5382 * PCI/etc. bus probe sem.
1da177e4
LT
5383 *
5384 * RETURNS:
0cba632b 5385 * Number of ports registered. Zero on error (no ports registered).
1da177e4 5386 */
057ace5e 5387int ata_device_add(const struct ata_probe_ent *ent)
1da177e4 5388{
6d0500df 5389 unsigned int i;
1da177e4
LT
5390 struct device *dev = ent->dev;
5391 struct ata_host_set *host_set;
39b07ce6 5392 int rc;
1da177e4
LT
5393
5394 DPRINTK("ENTER\n");
5395 /* alloc a container for our list of ATA ports (buses) */
57f3bda8 5396 host_set = kzalloc(sizeof(struct ata_host_set) +
1da177e4
LT
5397 (ent->n_ports * sizeof(void *)), GFP_KERNEL);
5398 if (!host_set)
5399 return 0;
1da177e4 5400
b03732f0 5401 ata_host_set_init(host_set, dev, ent->host_set_flags, ent->port_ops);
1da177e4
LT
5402 host_set->n_ports = ent->n_ports;
5403 host_set->irq = ent->irq;
2ec7df04 5404 host_set->irq2 = ent->irq2;
1da177e4
LT
5405 host_set->mmio_base = ent->mmio_base;
5406 host_set->private_data = ent->private_data;
1da177e4
LT
5407
5408 /* register each port bound to this device */
6d0500df 5409 for (i = 0; i < host_set->n_ports; i++) {
1da177e4
LT
5410 struct ata_port *ap;
5411 unsigned long xfer_mode_mask;
2ec7df04 5412 int irq_line = ent->irq;
1da177e4 5413
996139f1 5414 ap = ata_port_add(ent, host_set, i);
1da177e4
LT
5415 if (!ap)
5416 goto err_out;
5417
2ec7df04
AC
5418 /* Report the secondary IRQ for second channel legacy */
5419 if (i == 1 && ent->irq2)
5420 irq_line = ent->irq2;
5421
1da177e4
LT
5422 host_set->ports[i] = ap;
5423 xfer_mode_mask =(ap->udma_mask << ATA_SHIFT_UDMA) |
5424 (ap->mwdma_mask << ATA_SHIFT_MWDMA) |
5425 (ap->pio_mask << ATA_SHIFT_PIO);
5426
5427 /* print per-port info to dmesg */
f15a1daf 5428 ata_port_printk(ap, KERN_INFO, "%cATA max %s cmd 0x%lX "
2ec7df04 5429 "ctl 0x%lX bmdma 0x%lX irq %d\n",
f15a1daf
TH
5430 ap->flags & ATA_FLAG_SATA ? 'S' : 'P',
5431 ata_mode_string(xfer_mode_mask),
5432 ap->ioaddr.cmd_addr,
5433 ap->ioaddr.ctl_addr,
5434 ap->ioaddr.bmdma_addr,
2ec7df04 5435 irq_line);
1da177e4
LT
5436
5437 ata_chk_status(ap);
5438 host_set->ops->irq_clear(ap);
e3180499 5439 ata_eh_freeze_port(ap); /* freeze port before requesting IRQ */
1da177e4
LT
5440 }
5441
2ec7df04 5442 /* obtain irq, that may be shared between channels */
39b07ce6
JG
5443 rc = request_irq(ent->irq, ent->port_ops->irq_handler, ent->irq_flags,
5444 DRV_NAME, host_set);
5445 if (rc) {
5446 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5447 ent->irq, rc);
1da177e4 5448 goto err_out;
39b07ce6 5449 }
1da177e4 5450
2ec7df04
AC
5451 /* do we have a second IRQ for the other channel, eg legacy mode */
5452 if (ent->irq2) {
5453 /* We will get weird core code crashes later if this is true
5454 so trap it now */
5455 BUG_ON(ent->irq == ent->irq2);
5456
5457 rc = request_irq(ent->irq2, ent->port_ops->irq_handler, ent->irq_flags,
5458 DRV_NAME, host_set);
5459 if (rc) {
5460 dev_printk(KERN_ERR, dev, "irq %lu request failed: %d\n",
5461 ent->irq2, rc);
5462 goto err_out_free_irq;
5463 }
5464 }
5465
1da177e4
LT
5466 /* perform each probe synchronously */
5467 DPRINTK("probe begin\n");
6d0500df
JG
5468 for (i = 0; i < host_set->n_ports; i++) {
5469 struct ata_port *ap = host_set->ports[i];
5a04bf4b 5470 u32 scontrol;
1da177e4
LT
5471 int rc;
5472
5a04bf4b
TH
5473 /* init sata_spd_limit to the current value */
5474 if (sata_scr_read(ap, SCR_CONTROL, &scontrol) == 0) {
5475 int spd = (scontrol >> 4) & 0xf;
5476 ap->hw_sata_spd_limit &= (1 << spd) - 1;
5477 }
5478 ap->sata_spd_limit = ap->hw_sata_spd_limit;
5479
1da177e4
LT
5480 rc = scsi_add_host(ap->host, dev);
5481 if (rc) {
f15a1daf 5482 ata_port_printk(ap, KERN_ERR, "scsi_add_host failed\n");
1da177e4
LT
5483 /* FIXME: do something useful here */
5484 /* FIXME: handle unconditional calls to
5485 * scsi_scan_host and ata_host_remove, below,
5486 * at the very least
5487 */
5488 }
3e706399 5489
52783c5d 5490 if (ap->ops->error_handler) {
1cdaf534 5491 struct ata_eh_info *ehi = &ap->eh_info;
3e706399
TH
5492 unsigned long flags;
5493
5494 ata_port_probe(ap);
5495
5496 /* kick EH for boot probing */
ba6a1308 5497 spin_lock_irqsave(ap->lock, flags);
3e706399 5498
1cdaf534
TH
5499 ehi->probe_mask = (1 << ATA_MAX_DEVICES) - 1;
5500 ehi->action |= ATA_EH_SOFTRESET;
5501 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
3e706399 5502
b51e9e5d 5503 ap->pflags |= ATA_PFLAG_LOADING;
3e706399
TH
5504 ata_port_schedule_eh(ap);
5505
ba6a1308 5506 spin_unlock_irqrestore(ap->lock, flags);
3e706399
TH
5507
5508 /* wait for EH to finish */
5509 ata_port_wait_eh(ap);
5510 } else {
5511 DPRINTK("ata%u: bus probe begin\n", ap->id);
5512 rc = ata_bus_probe(ap);
5513 DPRINTK("ata%u: bus probe end\n", ap->id);
5514
5515 if (rc) {
5516 /* FIXME: do something useful here?
5517 * Current libata behavior will
5518 * tear down everything when
5519 * the module is removed
5520 * or the h/w is unplugged.
5521 */
5522 }
5523 }
1da177e4
LT
5524 }
5525
5526 /* probes are done, now scan each port's disk(s) */
c893a3ae 5527 DPRINTK("host probe begin\n");
6d0500df 5528 for (i = 0; i < host_set->n_ports; i++) {
1da177e4
LT
5529 struct ata_port *ap = host_set->ports[i];
5530
644dd0cc 5531 ata_scsi_scan_host(ap);
1da177e4
LT
5532 }
5533
5534 dev_set_drvdata(dev, host_set);
5535
5536 VPRINTK("EXIT, returning %u\n", ent->n_ports);
5537 return ent->n_ports; /* success */
5538
2ec7df04
AC
5539err_out_free_irq:
5540 free_irq(ent->irq, host_set);
1da177e4 5541err_out:
6d0500df 5542 for (i = 0; i < host_set->n_ports; i++) {
6543bc07 5543 struct ata_port *ap = host_set->ports[i];
77f3f879
TH
5544 if (ap) {
5545 ap->ops->port_stop(ap);
5546 scsi_host_put(ap->host);
5547 }
1da177e4 5548 }
6d0500df 5549
1da177e4
LT
5550 kfree(host_set);
5551 VPRINTK("EXIT, returning 0\n");
5552 return 0;
5553}
5554
720ba126
TH
5555/**
5556 * ata_port_detach - Detach ATA port in prepration of device removal
5557 * @ap: ATA port to be detached
5558 *
5559 * Detach all ATA devices and the associated SCSI devices of @ap;
5560 * then, remove the associated SCSI host. @ap is guaranteed to
5561 * be quiescent on return from this function.
5562 *
5563 * LOCKING:
5564 * Kernel thread context (may sleep).
5565 */
5566void ata_port_detach(struct ata_port *ap)
5567{
5568 unsigned long flags;
5569 int i;
5570
5571 if (!ap->ops->error_handler)
c3cf30a9 5572 goto skip_eh;
720ba126
TH
5573
5574 /* tell EH we're leaving & flush EH */
ba6a1308 5575 spin_lock_irqsave(ap->lock, flags);
b51e9e5d 5576 ap->pflags |= ATA_PFLAG_UNLOADING;
ba6a1308 5577 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
5578
5579 ata_port_wait_eh(ap);
5580
5581 /* EH is now guaranteed to see UNLOADING, so no new device
5582 * will be attached. Disable all existing devices.
5583 */
ba6a1308 5584 spin_lock_irqsave(ap->lock, flags);
720ba126
TH
5585
5586 for (i = 0; i < ATA_MAX_DEVICES; i++)
5587 ata_dev_disable(&ap->device[i]);
5588
ba6a1308 5589 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
5590
5591 /* Final freeze & EH. All in-flight commands are aborted. EH
5592 * will be skipped and retrials will be terminated with bad
5593 * target.
5594 */
ba6a1308 5595 spin_lock_irqsave(ap->lock, flags);
720ba126 5596 ata_port_freeze(ap); /* won't be thawed */
ba6a1308 5597 spin_unlock_irqrestore(ap->lock, flags);
720ba126
TH
5598
5599 ata_port_wait_eh(ap);
5600
5601 /* Flush hotplug task. The sequence is similar to
5602 * ata_port_flush_task().
5603 */
5604 flush_workqueue(ata_aux_wq);
5605 cancel_delayed_work(&ap->hotplug_task);
5606 flush_workqueue(ata_aux_wq);
5607
c3cf30a9 5608 skip_eh:
720ba126
TH
5609 /* remove the associated SCSI host */
5610 scsi_remove_host(ap->host);
5611}
5612
17b14451
AC
5613/**
5614 * ata_host_set_remove - PCI layer callback for device removal
5615 * @host_set: ATA host set that was removed
5616 *
2e9edbf8 5617 * Unregister all objects associated with this host set. Free those
17b14451
AC
5618 * objects.
5619 *
5620 * LOCKING:
5621 * Inherited from calling layer (may sleep).
5622 */
5623
17b14451
AC
5624void ata_host_set_remove(struct ata_host_set *host_set)
5625{
17b14451
AC
5626 unsigned int i;
5627
720ba126
TH
5628 for (i = 0; i < host_set->n_ports; i++)
5629 ata_port_detach(host_set->ports[i]);
17b14451
AC
5630
5631 free_irq(host_set->irq, host_set);
2ec7df04
AC
5632 if (host_set->irq2)
5633 free_irq(host_set->irq2, host_set);
17b14451
AC
5634
5635 for (i = 0; i < host_set->n_ports; i++) {
720ba126 5636 struct ata_port *ap = host_set->ports[i];
17b14451
AC
5637
5638 ata_scsi_release(ap->host);
5639
5640 if ((ap->flags & ATA_FLAG_NO_LEGACY) == 0) {
5641 struct ata_ioports *ioaddr = &ap->ioaddr;
5642
2ec7df04
AC
5643 /* FIXME: Add -ac IDE pci mods to remove these special cases */
5644 if (ioaddr->cmd_addr == ATA_PRIMARY_CMD)
5645 release_region(ATA_PRIMARY_CMD, 8);
5646 else if (ioaddr->cmd_addr == ATA_SECONDARY_CMD)
5647 release_region(ATA_SECONDARY_CMD, 8);
17b14451
AC
5648 }
5649
5650 scsi_host_put(ap->host);
5651 }
5652
5653 if (host_set->ops->host_stop)
5654 host_set->ops->host_stop(host_set);
5655
5656 kfree(host_set);
5657}
5658
1da177e4
LT
5659/**
5660 * ata_scsi_release - SCSI layer callback hook for host unload
5661 * @host: libata host to be unloaded
5662 *
5663 * Performs all duties necessary to shut down a libata port...
5664 * Kill port kthread, disable port, and release resources.
5665 *
5666 * LOCKING:
5667 * Inherited from SCSI layer.
5668 *
5669 * RETURNS:
5670 * One.
5671 */
5672
5673int ata_scsi_release(struct Scsi_Host *host)
5674{
35bb94b1 5675 struct ata_port *ap = ata_shost_to_port(host);
1da177e4
LT
5676
5677 DPRINTK("ENTER\n");
5678
5679 ap->ops->port_disable(ap);
6543bc07 5680 ap->ops->port_stop(ap);
1da177e4
LT
5681
5682 DPRINTK("EXIT\n");
5683 return 1;
5684}
5685
f6d950e2
BK
5686struct ata_probe_ent *
5687ata_probe_ent_alloc(struct device *dev, const struct ata_port_info *port)
5688{
5689 struct ata_probe_ent *probe_ent;
5690
5691 probe_ent = kzalloc(sizeof(*probe_ent), GFP_KERNEL);
5692 if (!probe_ent) {
5693 printk(KERN_ERR DRV_NAME "(%s): out of memory\n",
5694 kobject_name(&(dev->kobj)));
5695 return NULL;
5696 }
5697
5698 INIT_LIST_HEAD(&probe_ent->node);
5699 probe_ent->dev = dev;
5700
5701 probe_ent->sht = port->sht;
5702 probe_ent->host_flags = port->host_flags;
5703 probe_ent->pio_mask = port->pio_mask;
5704 probe_ent->mwdma_mask = port->mwdma_mask;
5705 probe_ent->udma_mask = port->udma_mask;
5706 probe_ent->port_ops = port->port_ops;
5707
5708 return probe_ent;
5709}
5710
1da177e4
LT
5711/**
5712 * ata_std_ports - initialize ioaddr with standard port offsets.
5713 * @ioaddr: IO address structure to be initialized
0baab86b
EF
5714 *
5715 * Utility function which initializes data_addr, error_addr,
5716 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
5717 * device_addr, status_addr, and command_addr to standard offsets
5718 * relative to cmd_addr.
5719 *
5720 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
1da177e4 5721 */
0baab86b 5722
1da177e4
LT
5723void ata_std_ports(struct ata_ioports *ioaddr)
5724{
5725 ioaddr->data_addr = ioaddr->cmd_addr + ATA_REG_DATA;
5726 ioaddr->error_addr = ioaddr->cmd_addr + ATA_REG_ERR;
5727 ioaddr->feature_addr = ioaddr->cmd_addr + ATA_REG_FEATURE;
5728 ioaddr->nsect_addr = ioaddr->cmd_addr + ATA_REG_NSECT;
5729 ioaddr->lbal_addr = ioaddr->cmd_addr + ATA_REG_LBAL;
5730 ioaddr->lbam_addr = ioaddr->cmd_addr + ATA_REG_LBAM;
5731 ioaddr->lbah_addr = ioaddr->cmd_addr + ATA_REG_LBAH;
5732 ioaddr->device_addr = ioaddr->cmd_addr + ATA_REG_DEVICE;
5733 ioaddr->status_addr = ioaddr->cmd_addr + ATA_REG_STATUS;
5734 ioaddr->command_addr = ioaddr->cmd_addr + ATA_REG_CMD;
5735}
5736
0baab86b 5737
374b1873
JG
5738#ifdef CONFIG_PCI
5739
5740void ata_pci_host_stop (struct ata_host_set *host_set)
5741{
5742 struct pci_dev *pdev = to_pci_dev(host_set->dev);
5743
5744 pci_iounmap(pdev, host_set->mmio_base);
5745}
5746
1da177e4
LT
5747/**
5748 * ata_pci_remove_one - PCI layer callback for device removal
5749 * @pdev: PCI device that was removed
5750 *
5751 * PCI layer indicates to libata via this hook that
6f0ef4fa 5752 * hot-unplug or module unload event has occurred.
1da177e4
LT
5753 * Handle this by unregistering all objects associated
5754 * with this PCI device. Free those objects. Then finally
5755 * release PCI resources and disable device.
5756 *
5757 * LOCKING:
5758 * Inherited from PCI layer (may sleep).
5759 */
5760
5761void ata_pci_remove_one (struct pci_dev *pdev)
5762{
5763 struct device *dev = pci_dev_to_dev(pdev);
5764 struct ata_host_set *host_set = dev_get_drvdata(dev);
1da177e4 5765
17b14451 5766 ata_host_set_remove(host_set);
f0eb62b8 5767
1da177e4
LT
5768 pci_release_regions(pdev);
5769 pci_disable_device(pdev);
5770 dev_set_drvdata(dev, NULL);
5771}
5772
5773/* move to PCI subsystem */
057ace5e 5774int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
1da177e4
LT
5775{
5776 unsigned long tmp = 0;
5777
5778 switch (bits->width) {
5779 case 1: {
5780 u8 tmp8 = 0;
5781 pci_read_config_byte(pdev, bits->reg, &tmp8);
5782 tmp = tmp8;
5783 break;
5784 }
5785 case 2: {
5786 u16 tmp16 = 0;
5787 pci_read_config_word(pdev, bits->reg, &tmp16);
5788 tmp = tmp16;
5789 break;
5790 }
5791 case 4: {
5792 u32 tmp32 = 0;
5793 pci_read_config_dword(pdev, bits->reg, &tmp32);
5794 tmp = tmp32;
5795 break;
5796 }
5797
5798 default:
5799 return -EINVAL;
5800 }
5801
5802 tmp &= bits->mask;
5803
5804 return (tmp == bits->val) ? 1 : 0;
5805}
9b847548 5806
3c5100c1 5807void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
9b847548
JA
5808{
5809 pci_save_state(pdev);
500530f6 5810
3c5100c1 5811 if (mesg.event == PM_EVENT_SUSPEND) {
500530f6
TH
5812 pci_disable_device(pdev);
5813 pci_set_power_state(pdev, PCI_D3hot);
5814 }
9b847548
JA
5815}
5816
500530f6 5817void ata_pci_device_do_resume(struct pci_dev *pdev)
9b847548
JA
5818{
5819 pci_set_power_state(pdev, PCI_D0);
5820 pci_restore_state(pdev);
5821 pci_enable_device(pdev);
5822 pci_set_master(pdev);
500530f6
TH
5823}
5824
3c5100c1 5825int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
500530f6
TH
5826{
5827 struct ata_host_set *host_set = dev_get_drvdata(&pdev->dev);
5828 int rc = 0;
5829
3c5100c1 5830 rc = ata_host_set_suspend(host_set, mesg);
500530f6
TH
5831 if (rc)
5832 return rc;
5833
3c5100c1 5834 ata_pci_device_do_suspend(pdev, mesg);
500530f6
TH
5835
5836 return 0;
5837}
5838
5839int ata_pci_device_resume(struct pci_dev *pdev)
5840{
5841 struct ata_host_set *host_set = dev_get_drvdata(&pdev->dev);
5842
5843 ata_pci_device_do_resume(pdev);
5844 ata_host_set_resume(host_set);
9b847548
JA
5845 return 0;
5846}
1da177e4
LT
5847#endif /* CONFIG_PCI */
5848
5849
1da177e4
LT
5850static int __init ata_init(void)
5851{
a8601e5f 5852 ata_probe_timeout *= HZ;
1da177e4
LT
5853 ata_wq = create_workqueue("ata");
5854 if (!ata_wq)
5855 return -ENOMEM;
5856
453b07ac
TH
5857 ata_aux_wq = create_singlethread_workqueue("ata_aux");
5858 if (!ata_aux_wq) {
5859 destroy_workqueue(ata_wq);
5860 return -ENOMEM;
5861 }
5862
1da177e4
LT
5863 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
5864 return 0;
5865}
5866
5867static void __exit ata_exit(void)
5868{
5869 destroy_workqueue(ata_wq);
453b07ac 5870 destroy_workqueue(ata_aux_wq);
1da177e4
LT
5871}
5872
5873module_init(ata_init);
5874module_exit(ata_exit);
5875
67846b30 5876static unsigned long ratelimit_time;
34af946a 5877static DEFINE_SPINLOCK(ata_ratelimit_lock);
67846b30
JG
5878
5879int ata_ratelimit(void)
5880{
5881 int rc;
5882 unsigned long flags;
5883
5884 spin_lock_irqsave(&ata_ratelimit_lock, flags);
5885
5886 if (time_after(jiffies, ratelimit_time)) {
5887 rc = 1;
5888 ratelimit_time = jiffies + (HZ/5);
5889 } else
5890 rc = 0;
5891
5892 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
5893
5894 return rc;
5895}
5896
c22daff4
TH
5897/**
5898 * ata_wait_register - wait until register value changes
5899 * @reg: IO-mapped register
5900 * @mask: Mask to apply to read register value
5901 * @val: Wait condition
5902 * @interval_msec: polling interval in milliseconds
5903 * @timeout_msec: timeout in milliseconds
5904 *
5905 * Waiting for some bits of register to change is a common
5906 * operation for ATA controllers. This function reads 32bit LE
5907 * IO-mapped register @reg and tests for the following condition.
5908 *
5909 * (*@reg & mask) != val
5910 *
5911 * If the condition is met, it returns; otherwise, the process is
5912 * repeated after @interval_msec until timeout.
5913 *
5914 * LOCKING:
5915 * Kernel thread context (may sleep)
5916 *
5917 * RETURNS:
5918 * The final register value.
5919 */
5920u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
5921 unsigned long interval_msec,
5922 unsigned long timeout_msec)
5923{
5924 unsigned long timeout;
5925 u32 tmp;
5926
5927 tmp = ioread32(reg);
5928
5929 /* Calculate timeout _after_ the first read to make sure
5930 * preceding writes reach the controller before starting to
5931 * eat away the timeout.
5932 */
5933 timeout = jiffies + (timeout_msec * HZ) / 1000;
5934
5935 while ((tmp & mask) == val && time_before(jiffies, timeout)) {
5936 msleep(interval_msec);
5937 tmp = ioread32(reg);
5938 }
5939
5940 return tmp;
5941}
5942
1da177e4
LT
5943/*
5944 * libata is essentially a library of internal helper functions for
5945 * low-level ATA host controller drivers. As such, the API/ABI is
5946 * likely to change as new drivers are added and updated.
5947 * Do not depend on ABI/API stability.
5948 */
5949
e9c83914
TH
5950EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
5951EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
5952EXPORT_SYMBOL_GPL(sata_deb_timing_long);
1da177e4
LT
5953EXPORT_SYMBOL_GPL(ata_std_bios_param);
5954EXPORT_SYMBOL_GPL(ata_std_ports);
b03732f0 5955EXPORT_SYMBOL_GPL(ata_host_set_init);
1da177e4 5956EXPORT_SYMBOL_GPL(ata_device_add);
720ba126 5957EXPORT_SYMBOL_GPL(ata_port_detach);
17b14451 5958EXPORT_SYMBOL_GPL(ata_host_set_remove);
1da177e4
LT
5959EXPORT_SYMBOL_GPL(ata_sg_init);
5960EXPORT_SYMBOL_GPL(ata_sg_init_one);
9a1004d0 5961EXPORT_SYMBOL_GPL(ata_hsm_move);
f686bcb8 5962EXPORT_SYMBOL_GPL(ata_qc_complete);
dedaf2b0 5963EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
1da177e4 5964EXPORT_SYMBOL_GPL(ata_qc_issue_prot);
1da177e4
LT
5965EXPORT_SYMBOL_GPL(ata_tf_load);
5966EXPORT_SYMBOL_GPL(ata_tf_read);
5967EXPORT_SYMBOL_GPL(ata_noop_dev_select);
5968EXPORT_SYMBOL_GPL(ata_std_dev_select);
5969EXPORT_SYMBOL_GPL(ata_tf_to_fis);
5970EXPORT_SYMBOL_GPL(ata_tf_from_fis);
5971EXPORT_SYMBOL_GPL(ata_check_status);
5972EXPORT_SYMBOL_GPL(ata_altstatus);
1da177e4
LT
5973EXPORT_SYMBOL_GPL(ata_exec_command);
5974EXPORT_SYMBOL_GPL(ata_port_start);
5975EXPORT_SYMBOL_GPL(ata_port_stop);
aa8f0dc6 5976EXPORT_SYMBOL_GPL(ata_host_stop);
1da177e4 5977EXPORT_SYMBOL_GPL(ata_interrupt);
a6b2c5d4
AC
5978EXPORT_SYMBOL_GPL(ata_mmio_data_xfer);
5979EXPORT_SYMBOL_GPL(ata_pio_data_xfer);
75e99585 5980EXPORT_SYMBOL_GPL(ata_pio_data_xfer_noirq);
1da177e4 5981EXPORT_SYMBOL_GPL(ata_qc_prep);
e46834cd 5982EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
1da177e4
LT
5983EXPORT_SYMBOL_GPL(ata_bmdma_setup);
5984EXPORT_SYMBOL_GPL(ata_bmdma_start);
5985EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear);
5986EXPORT_SYMBOL_GPL(ata_bmdma_status);
5987EXPORT_SYMBOL_GPL(ata_bmdma_stop);
6d97dbd7
TH
5988EXPORT_SYMBOL_GPL(ata_bmdma_freeze);
5989EXPORT_SYMBOL_GPL(ata_bmdma_thaw);
5990EXPORT_SYMBOL_GPL(ata_bmdma_drive_eh);
5991EXPORT_SYMBOL_GPL(ata_bmdma_error_handler);
5992EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd);
1da177e4 5993EXPORT_SYMBOL_GPL(ata_port_probe);
3c567b7d 5994EXPORT_SYMBOL_GPL(sata_set_spd);
d7bb4cc7
TH
5995EXPORT_SYMBOL_GPL(sata_phy_debounce);
5996EXPORT_SYMBOL_GPL(sata_phy_resume);
1da177e4
LT
5997EXPORT_SYMBOL_GPL(sata_phy_reset);
5998EXPORT_SYMBOL_GPL(__sata_phy_reset);
5999EXPORT_SYMBOL_GPL(ata_bus_reset);
f5914a46 6000EXPORT_SYMBOL_GPL(ata_std_prereset);
c2bd5804
TH
6001EXPORT_SYMBOL_GPL(ata_std_softreset);
6002EXPORT_SYMBOL_GPL(sata_std_hardreset);
6003EXPORT_SYMBOL_GPL(ata_std_postreset);
623a3128 6004EXPORT_SYMBOL_GPL(ata_dev_revalidate);
2e9edbf8
JG
6005EXPORT_SYMBOL_GPL(ata_dev_classify);
6006EXPORT_SYMBOL_GPL(ata_dev_pair);
1da177e4 6007EXPORT_SYMBOL_GPL(ata_port_disable);
67846b30 6008EXPORT_SYMBOL_GPL(ata_ratelimit);
c22daff4 6009EXPORT_SYMBOL_GPL(ata_wait_register);
6f8b9958 6010EXPORT_SYMBOL_GPL(ata_busy_sleep);
86e45b6b 6011EXPORT_SYMBOL_GPL(ata_port_queue_task);
1da177e4
LT
6012EXPORT_SYMBOL_GPL(ata_scsi_ioctl);
6013EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
1da177e4 6014EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
83c47bcb 6015EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
a6e6ce8e 6016EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
1da177e4
LT
6017EXPORT_SYMBOL_GPL(ata_scsi_release);
6018EXPORT_SYMBOL_GPL(ata_host_intr);
34bf2170
TH
6019EXPORT_SYMBOL_GPL(sata_scr_valid);
6020EXPORT_SYMBOL_GPL(sata_scr_read);
6021EXPORT_SYMBOL_GPL(sata_scr_write);
6022EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6023EXPORT_SYMBOL_GPL(ata_port_online);
6024EXPORT_SYMBOL_GPL(ata_port_offline);
500530f6
TH
6025EXPORT_SYMBOL_GPL(ata_host_set_suspend);
6026EXPORT_SYMBOL_GPL(ata_host_set_resume);
6a62a04d
TH
6027EXPORT_SYMBOL_GPL(ata_id_string);
6028EXPORT_SYMBOL_GPL(ata_id_c_string);
1da177e4
LT
6029EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6030
1bc4ccff 6031EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
452503f9
AC
6032EXPORT_SYMBOL_GPL(ata_timing_compute);
6033EXPORT_SYMBOL_GPL(ata_timing_merge);
6034
1da177e4
LT
6035#ifdef CONFIG_PCI
6036EXPORT_SYMBOL_GPL(pci_test_config_bits);
374b1873 6037EXPORT_SYMBOL_GPL(ata_pci_host_stop);
1da177e4
LT
6038EXPORT_SYMBOL_GPL(ata_pci_init_native_mode);
6039EXPORT_SYMBOL_GPL(ata_pci_init_one);
6040EXPORT_SYMBOL_GPL(ata_pci_remove_one);
500530f6
TH
6041EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6042EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
9b847548
JA
6043EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6044EXPORT_SYMBOL_GPL(ata_pci_device_resume);
67951ade
AC
6045EXPORT_SYMBOL_GPL(ata_pci_default_filter);
6046EXPORT_SYMBOL_GPL(ata_pci_clear_simplex);
1da177e4 6047#endif /* CONFIG_PCI */
9b847548 6048
9b847548
JA
6049EXPORT_SYMBOL_GPL(ata_scsi_device_suspend);
6050EXPORT_SYMBOL_GPL(ata_scsi_device_resume);
ece1d636 6051
ece1d636 6052EXPORT_SYMBOL_GPL(ata_eng_timeout);
7b70fc03
TH
6053EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6054EXPORT_SYMBOL_GPL(ata_port_abort);
e3180499
TH
6055EXPORT_SYMBOL_GPL(ata_port_freeze);
6056EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6057EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
ece1d636
TH
6058EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6059EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
022bdb07 6060EXPORT_SYMBOL_GPL(ata_do_eh);