be2iscsi: Remove unnecessary synchronize_irq() before free_irq()
[linux-2.6-block.git] / drivers / scsi / cxlflash / main.c
CommitLineData
c21e0bbf
MO
1/*
2 * CXL Flash Device Driver
3 *
4 * Written by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>, IBM Corporation
5 * Matthew R. Ochs <mrochs@linux.vnet.ibm.com>, IBM Corporation
6 *
7 * Copyright (C) 2015 IBM Corporation
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
13 */
14
15#include <linux/delay.h>
16#include <linux/list.h>
17#include <linux/module.h>
18#include <linux/pci.h>
19
20#include <asm/unaligned.h>
21
22#include <misc/cxl.h>
23
24#include <scsi/scsi_cmnd.h>
25#include <scsi/scsi_host.h>
65be2c79 26#include <uapi/scsi/cxlflash_ioctl.h>
c21e0bbf
MO
27
28#include "main.h"
29#include "sislite.h"
30#include "common.h"
31
32MODULE_DESCRIPTION(CXLFLASH_ADAPTER_NAME);
33MODULE_AUTHOR("Manoj N. Kumar <manoj@linux.vnet.ibm.com>");
34MODULE_AUTHOR("Matthew R. Ochs <mrochs@linux.vnet.ibm.com>");
35MODULE_LICENSE("GPL");
36
c21e0bbf 37/**
15305514 38 * cmd_checkout() - checks out an AFU command
c21e0bbf
MO
39 * @afu: AFU to checkout from.
40 *
41 * Commands are checked out in a round-robin fashion. Note that since
42 * the command pool is larger than the hardware queue, the majority of
43 * times we will only loop once or twice before getting a command. The
44 * buffer and CDB within the command are initialized (zeroed) prior to
45 * returning.
46 *
47 * Return: The checked out command or NULL when command pool is empty.
48 */
15305514 49static struct afu_cmd *cmd_checkout(struct afu *afu)
c21e0bbf
MO
50{
51 int k, dec = CXLFLASH_NUM_CMDS;
52 struct afu_cmd *cmd;
53
54 while (dec--) {
55 k = (afu->cmd_couts++ & (CXLFLASH_NUM_CMDS - 1));
56
57 cmd = &afu->cmd[k];
58
59 if (!atomic_dec_if_positive(&cmd->free)) {
4392ba49
MO
60 pr_devel("%s: returning found index=%d cmd=%p\n",
61 __func__, cmd->slot, cmd);
c21e0bbf
MO
62 memset(cmd->buf, 0, CMD_BUFSIZE);
63 memset(cmd->rcb.cdb, 0, sizeof(cmd->rcb.cdb));
64 return cmd;
65 }
66 }
67
68 return NULL;
69}
70
71/**
15305514 72 * cmd_checkin() - checks in an AFU command
c21e0bbf
MO
73 * @cmd: AFU command to checkin.
74 *
75 * Safe to pass commands that have already been checked in. Several
76 * internal tracking fields are reset as part of the checkin. Note
77 * that these are intentionally reset prior to toggling the free bit
78 * to avoid clobbering values in the event that the command is checked
79 * out right away.
80 */
15305514 81static void cmd_checkin(struct afu_cmd *cmd)
c21e0bbf
MO
82{
83 cmd->rcb.scp = NULL;
84 cmd->rcb.timeout = 0;
85 cmd->sa.ioasc = 0;
86 cmd->cmd_tmf = false;
87 cmd->sa.host_use[0] = 0; /* clears both completion and retry bytes */
88
89 if (unlikely(atomic_inc_return(&cmd->free) != 1)) {
90 pr_err("%s: Freeing cmd (%d) that is not in use!\n",
91 __func__, cmd->slot);
92 return;
93 }
94
4392ba49 95 pr_devel("%s: released cmd %p index=%d\n", __func__, cmd, cmd->slot);
c21e0bbf
MO
96}
97
98/**
99 * process_cmd_err() - command error handler
100 * @cmd: AFU command that experienced the error.
101 * @scp: SCSI command associated with the AFU command in error.
102 *
103 * Translates error bits from AFU command to SCSI command results.
104 */
105static void process_cmd_err(struct afu_cmd *cmd, struct scsi_cmnd *scp)
106{
107 struct sisl_ioarcb *ioarcb;
108 struct sisl_ioasa *ioasa;
8396012f 109 u32 resid;
c21e0bbf
MO
110
111 if (unlikely(!cmd))
112 return;
113
114 ioarcb = &(cmd->rcb);
115 ioasa = &(cmd->sa);
116
117 if (ioasa->rc.flags & SISL_RC_FLAGS_UNDERRUN) {
8396012f
MO
118 resid = ioasa->resid;
119 scsi_set_resid(scp, resid);
120 pr_debug("%s: cmd underrun cmd = %p scp = %p, resid = %d\n",
121 __func__, cmd, scp, resid);
c21e0bbf
MO
122 }
123
124 if (ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN) {
125 pr_debug("%s: cmd underrun cmd = %p scp = %p\n",
126 __func__, cmd, scp);
127 scp->result = (DID_ERROR << 16);
128 }
129
130 pr_debug("%s: cmd failed afu_rc=%d scsi_rc=%d fc_rc=%d "
4392ba49 131 "afu_extra=0x%X, scsi_extra=0x%X, fc_extra=0x%X\n",
c21e0bbf
MO
132 __func__, ioasa->rc.afu_rc, ioasa->rc.scsi_rc,
133 ioasa->rc.fc_rc, ioasa->afu_extra, ioasa->scsi_extra,
134 ioasa->fc_extra);
135
136 if (ioasa->rc.scsi_rc) {
137 /* We have a SCSI status */
138 if (ioasa->rc.flags & SISL_RC_FLAGS_SENSE_VALID) {
139 memcpy(scp->sense_buffer, ioasa->sense_data,
140 SISL_SENSE_DATA_LEN);
141 scp->result = ioasa->rc.scsi_rc;
142 } else
143 scp->result = ioasa->rc.scsi_rc | (DID_ERROR << 16);
144 }
145
146 /*
147 * We encountered an error. Set scp->result based on nature
148 * of error.
149 */
150 if (ioasa->rc.fc_rc) {
151 /* We have an FC status */
152 switch (ioasa->rc.fc_rc) {
153 case SISL_FC_RC_LINKDOWN:
154 scp->result = (DID_REQUEUE << 16);
155 break;
156 case SISL_FC_RC_RESID:
157 /* This indicates an FCP resid underrun */
158 if (!(ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN)) {
159 /* If the SISL_RC_FLAGS_OVERRUN flag was set,
160 * then we will handle this error else where.
161 * If not then we must handle it here.
8396012f 162 * This is probably an AFU bug.
c21e0bbf
MO
163 */
164 scp->result = (DID_ERROR << 16);
165 }
166 break;
167 case SISL_FC_RC_RESIDERR:
168 /* Resid mismatch between adapter and device */
169 case SISL_FC_RC_TGTABORT:
170 case SISL_FC_RC_ABORTOK:
171 case SISL_FC_RC_ABORTFAIL:
172 case SISL_FC_RC_NOLOGI:
173 case SISL_FC_RC_ABORTPEND:
174 case SISL_FC_RC_WRABORTPEND:
175 case SISL_FC_RC_NOEXP:
176 case SISL_FC_RC_INUSE:
177 scp->result = (DID_ERROR << 16);
178 break;
179 }
180 }
181
182 if (ioasa->rc.afu_rc) {
183 /* We have an AFU error */
184 switch (ioasa->rc.afu_rc) {
185 case SISL_AFU_RC_NO_CHANNELS:
8396012f 186 scp->result = (DID_NO_CONNECT << 16);
c21e0bbf
MO
187 break;
188 case SISL_AFU_RC_DATA_DMA_ERR:
189 switch (ioasa->afu_extra) {
190 case SISL_AFU_DMA_ERR_PAGE_IN:
191 /* Retry */
192 scp->result = (DID_IMM_RETRY << 16);
193 break;
194 case SISL_AFU_DMA_ERR_INVALID_EA:
195 default:
196 scp->result = (DID_ERROR << 16);
197 }
198 break;
199 case SISL_AFU_RC_OUT_OF_DATA_BUFS:
200 /* Retry */
201 scp->result = (DID_ALLOC_FAILURE << 16);
202 break;
203 default:
204 scp->result = (DID_ERROR << 16);
205 }
206 }
207}
208
209/**
210 * cmd_complete() - command completion handler
211 * @cmd: AFU command that has completed.
212 *
213 * Prepares and submits command that has either completed or timed out to
214 * the SCSI stack. Checks AFU command back into command pool for non-internal
215 * (rcb.scp populated) commands.
216 */
217static void cmd_complete(struct afu_cmd *cmd)
218{
219 struct scsi_cmnd *scp;
c21e0bbf
MO
220 ulong lock_flags;
221 struct afu *afu = cmd->parent;
222 struct cxlflash_cfg *cfg = afu->parent;
223 bool cmd_is_tmf;
224
225 spin_lock_irqsave(&cmd->slock, lock_flags);
226 cmd->sa.host_use_b[0] |= B_DONE;
227 spin_unlock_irqrestore(&cmd->slock, lock_flags);
228
229 if (cmd->rcb.scp) {
230 scp = cmd->rcb.scp;
8396012f 231 if (unlikely(cmd->sa.ioasc))
c21e0bbf
MO
232 process_cmd_err(cmd, scp);
233 else
234 scp->result = (DID_OK << 16);
235
c21e0bbf 236 cmd_is_tmf = cmd->cmd_tmf;
15305514 237 cmd_checkin(cmd); /* Don't use cmd after here */
c21e0bbf 238
4392ba49
MO
239 pr_debug_ratelimited("%s: calling scsi_done scp=%p result=%X "
240 "ioasc=%d\n", __func__, scp, scp->result,
241 cmd->sa.ioasc);
c21e0bbf 242
c21e0bbf
MO
243 scsi_dma_unmap(scp);
244 scp->scsi_done(scp);
245
246 if (cmd_is_tmf) {
018d1dc9 247 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
c21e0bbf
MO
248 cfg->tmf_active = false;
249 wake_up_all_locked(&cfg->tmf_waitq);
018d1dc9 250 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
c21e0bbf
MO
251 }
252 } else
253 complete(&cmd->cevent);
254}
255
15305514
MO
256/**
257 * context_reset() - timeout handler for AFU commands
258 * @cmd: AFU command that timed out.
259 *
260 * Sends a reset to the AFU.
261 */
262static void context_reset(struct afu_cmd *cmd)
263{
264 int nretry = 0;
265 u64 rrin = 0x1;
266 u64 room = 0;
267 struct afu *afu = cmd->parent;
268 ulong lock_flags;
269
270 pr_debug("%s: cmd=%p\n", __func__, cmd);
271
272 spin_lock_irqsave(&cmd->slock, lock_flags);
273
274 /* Already completed? */
275 if (cmd->sa.host_use_b[0] & B_DONE) {
276 spin_unlock_irqrestore(&cmd->slock, lock_flags);
277 return;
278 }
279
280 cmd->sa.host_use_b[0] |= (B_DONE | B_ERROR | B_TIMEOUT);
281 spin_unlock_irqrestore(&cmd->slock, lock_flags);
282
283 /*
284 * We really want to send this reset at all costs, so spread
285 * out wait time on successive retries for available room.
286 */
287 do {
288 room = readq_be(&afu->host_map->cmd_room);
289 atomic64_set(&afu->room, room);
290 if (room)
291 goto write_rrin;
292 udelay(nretry);
293 } while (nretry++ < MC_ROOM_RETRY_CNT);
294
295 pr_err("%s: no cmd_room to send reset\n", __func__);
296 return;
297
298write_rrin:
299 nretry = 0;
300 writeq_be(rrin, &afu->host_map->ioarrin);
301 do {
302 rrin = readq_be(&afu->host_map->ioarrin);
303 if (rrin != 0x1)
304 break;
305 /* Double delay each time */
b22b4037 306 udelay(2 << nretry);
15305514
MO
307 } while (nretry++ < MC_ROOM_RETRY_CNT);
308}
309
310/**
311 * send_cmd() - sends an AFU command
312 * @afu: AFU associated with the host.
313 * @cmd: AFU command to send.
314 *
315 * Return:
1284fb0c 316 * 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
15305514
MO
317 */
318static int send_cmd(struct afu *afu, struct afu_cmd *cmd)
319{
320 struct cxlflash_cfg *cfg = afu->parent;
321 struct device *dev = &cfg->dev->dev;
322 int nretry = 0;
323 int rc = 0;
324 u64 room;
325 long newval;
326
327 /*
328 * This routine is used by critical users such an AFU sync and to
329 * send a task management function (TMF). Thus we want to retry a
330 * bit before returning an error. To avoid the performance penalty
331 * of MMIO, we spread the update of 'room' over multiple commands.
332 */
333retry:
334 newval = atomic64_dec_if_positive(&afu->room);
335 if (!newval) {
336 do {
337 room = readq_be(&afu->host_map->cmd_room);
338 atomic64_set(&afu->room, room);
339 if (room)
340 goto write_ioarrin;
341 udelay(nretry);
342 } while (nretry++ < MC_ROOM_RETRY_CNT);
343
344 dev_err(dev, "%s: no cmd_room to send 0x%X\n",
345 __func__, cmd->rcb.cdb[0]);
346
347 goto no_room;
348 } else if (unlikely(newval < 0)) {
349 /* This should be rare. i.e. Only if two threads race and
350 * decrement before the MMIO read is done. In this case
351 * just benefit from the other thread having updated
352 * afu->room.
353 */
354 if (nretry++ < MC_ROOM_RETRY_CNT) {
355 udelay(nretry);
356 goto retry;
357 }
358
359 goto no_room;
360 }
361
362write_ioarrin:
363 writeq_be((u64)&cmd->rcb, &afu->host_map->ioarrin);
364out:
365 pr_devel("%s: cmd=%p len=%d ea=%p rc=%d\n", __func__, cmd,
366 cmd->rcb.data_len, (void *)cmd->rcb.data_ea, rc);
367 return rc;
368
369no_room:
370 afu->read_room = true;
b45cdbaf 371 kref_get(&cfg->afu->mapcount);
15305514
MO
372 schedule_work(&cfg->work_q);
373 rc = SCSI_MLQUEUE_HOST_BUSY;
374 goto out;
375}
376
377/**
378 * wait_resp() - polls for a response or timeout to a sent AFU command
379 * @afu: AFU associated with the host.
380 * @cmd: AFU command that was sent.
381 */
382static void wait_resp(struct afu *afu, struct afu_cmd *cmd)
383{
384 ulong timeout = msecs_to_jiffies(cmd->rcb.timeout * 2 * 1000);
385
386 timeout = wait_for_completion_timeout(&cmd->cevent, timeout);
387 if (!timeout)
388 context_reset(cmd);
389
390 if (unlikely(cmd->sa.ioasc != 0))
391 pr_err("%s: CMD 0x%X failed, IOASC: flags 0x%X, afu_rc 0x%X, "
392 "scsi_rc 0x%X, fc_rc 0x%X\n", __func__, cmd->rcb.cdb[0],
393 cmd->sa.rc.flags, cmd->sa.rc.afu_rc, cmd->sa.rc.scsi_rc,
394 cmd->sa.rc.fc_rc);
395}
396
c21e0bbf
MO
397/**
398 * send_tmf() - sends a Task Management Function (TMF)
399 * @afu: AFU to checkout from.
400 * @scp: SCSI command from stack.
401 * @tmfcmd: TMF command to send.
402 *
403 * Return:
1284fb0c 404 * 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
c21e0bbf
MO
405 */
406static int send_tmf(struct afu *afu, struct scsi_cmnd *scp, u64 tmfcmd)
407{
408 struct afu_cmd *cmd;
409
410 u32 port_sel = scp->device->channel + 1;
411 short lflag = 0;
412 struct Scsi_Host *host = scp->device->host;
413 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)host->hostdata;
4392ba49 414 struct device *dev = &cfg->dev->dev;
c21e0bbf
MO
415 ulong lock_flags;
416 int rc = 0;
018d1dc9 417 ulong to;
c21e0bbf 418
15305514 419 cmd = cmd_checkout(afu);
c21e0bbf 420 if (unlikely(!cmd)) {
4392ba49 421 dev_err(dev, "%s: could not get a free command\n", __func__);
c21e0bbf
MO
422 rc = SCSI_MLQUEUE_HOST_BUSY;
423 goto out;
424 }
425
018d1dc9
MO
426 /* When Task Management Function is active do not send another */
427 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
c21e0bbf 428 if (cfg->tmf_active)
018d1dc9
MO
429 wait_event_interruptible_lock_irq(cfg->tmf_waitq,
430 !cfg->tmf_active,
431 cfg->tmf_slock);
c21e0bbf
MO
432 cfg->tmf_active = true;
433 cmd->cmd_tmf = true;
018d1dc9 434 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
c21e0bbf
MO
435
436 cmd->rcb.ctx_id = afu->ctx_hndl;
437 cmd->rcb.port_sel = port_sel;
438 cmd->rcb.lun_id = lun_to_lunid(scp->device->lun);
439
440 lflag = SISL_REQ_FLAGS_TMF_CMD;
441
442 cmd->rcb.req_flags = (SISL_REQ_FLAGS_PORT_LUN_ID |
443 SISL_REQ_FLAGS_SUP_UNDERRUN | lflag);
444
445 /* Stash the scp in the reserved field, for reuse during interrupt */
446 cmd->rcb.scp = scp;
447
448 /* Copy the CDB from the cmd passed in */
449 memcpy(cmd->rcb.cdb, &tmfcmd, sizeof(tmfcmd));
450
451 /* Send the command */
15305514 452 rc = send_cmd(afu, cmd);
c21e0bbf 453 if (unlikely(rc)) {
15305514 454 cmd_checkin(cmd);
018d1dc9 455 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
c21e0bbf 456 cfg->tmf_active = false;
018d1dc9 457 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
c21e0bbf
MO
458 goto out;
459 }
460
018d1dc9
MO
461 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
462 to = msecs_to_jiffies(5000);
463 to = wait_event_interruptible_lock_irq_timeout(cfg->tmf_waitq,
464 !cfg->tmf_active,
465 cfg->tmf_slock,
466 to);
467 if (!to) {
468 cfg->tmf_active = false;
469 dev_err(dev, "%s: TMF timed out!\n", __func__);
470 rc = -1;
471 }
472 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
c21e0bbf
MO
473out:
474 return rc;
475}
476
b45cdbaf
MK
477static void afu_unmap(struct kref *ref)
478{
479 struct afu *afu = container_of(ref, struct afu, mapcount);
480
481 if (likely(afu->afu_map)) {
482 cxl_psa_unmap((void __iomem *)afu->afu_map);
483 afu->afu_map = NULL;
484 }
485}
486
c21e0bbf
MO
487/**
488 * cxlflash_driver_info() - information handler for this host driver
489 * @host: SCSI host associated with device.
490 *
491 * Return: A string describing the device.
492 */
493static const char *cxlflash_driver_info(struct Scsi_Host *host)
494{
495 return CXLFLASH_ADAPTER_NAME;
496}
497
498/**
499 * cxlflash_queuecommand() - sends a mid-layer request
500 * @host: SCSI host associated with device.
501 * @scp: SCSI command to send.
502 *
1284fb0c 503 * Return: 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
c21e0bbf
MO
504 */
505static int cxlflash_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scp)
506{
507 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)host->hostdata;
508 struct afu *afu = cfg->afu;
4392ba49 509 struct device *dev = &cfg->dev->dev;
c21e0bbf
MO
510 struct afu_cmd *cmd;
511 u32 port_sel = scp->device->channel + 1;
512 int nseg, i, ncount;
513 struct scatterlist *sg;
514 ulong lock_flags;
515 short lflag = 0;
516 int rc = 0;
b45cdbaf 517 int kref_got = 0;
c21e0bbf 518
4392ba49
MO
519 dev_dbg_ratelimited(dev, "%s: (scp=%p) %d/%d/%d/%llu "
520 "cdb=(%08X-%08X-%08X-%08X)\n",
521 __func__, scp, host->host_no, scp->device->channel,
522 scp->device->id, scp->device->lun,
523 get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
524 get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
525 get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
526 get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
c21e0bbf 527
018d1dc9
MO
528 /*
529 * If a Task Management Function is active, wait for it to complete
c21e0bbf
MO
530 * before continuing with regular commands.
531 */
018d1dc9 532 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
c21e0bbf 533 if (cfg->tmf_active) {
018d1dc9 534 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
c21e0bbf
MO
535 rc = SCSI_MLQUEUE_HOST_BUSY;
536 goto out;
537 }
018d1dc9 538 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
c21e0bbf 539
5cdac81a 540 switch (cfg->state) {
439e85c1 541 case STATE_RESET:
4392ba49 542 dev_dbg_ratelimited(dev, "%s: device is in reset!\n", __func__);
5cdac81a
MO
543 rc = SCSI_MLQUEUE_HOST_BUSY;
544 goto out;
545 case STATE_FAILTERM:
4392ba49 546 dev_dbg_ratelimited(dev, "%s: device has failed!\n", __func__);
5cdac81a
MO
547 scp->result = (DID_NO_CONNECT << 16);
548 scp->scsi_done(scp);
549 rc = 0;
550 goto out;
551 default:
552 break;
553 }
554
15305514 555 cmd = cmd_checkout(afu);
c21e0bbf 556 if (unlikely(!cmd)) {
4392ba49 557 dev_err(dev, "%s: could not get a free command\n", __func__);
c21e0bbf
MO
558 rc = SCSI_MLQUEUE_HOST_BUSY;
559 goto out;
560 }
561
b45cdbaf
MK
562 kref_get(&cfg->afu->mapcount);
563 kref_got = 1;
564
c21e0bbf
MO
565 cmd->rcb.ctx_id = afu->ctx_hndl;
566 cmd->rcb.port_sel = port_sel;
567 cmd->rcb.lun_id = lun_to_lunid(scp->device->lun);
568
569 if (scp->sc_data_direction == DMA_TO_DEVICE)
570 lflag = SISL_REQ_FLAGS_HOST_WRITE;
571 else
572 lflag = SISL_REQ_FLAGS_HOST_READ;
573
574 cmd->rcb.req_flags = (SISL_REQ_FLAGS_PORT_LUN_ID |
575 SISL_REQ_FLAGS_SUP_UNDERRUN | lflag);
576
577 /* Stash the scp in the reserved field, for reuse during interrupt */
578 cmd->rcb.scp = scp;
579
580 nseg = scsi_dma_map(scp);
581 if (unlikely(nseg < 0)) {
4392ba49 582 dev_err(dev, "%s: Fail DMA map! nseg=%d\n",
c21e0bbf
MO
583 __func__, nseg);
584 rc = SCSI_MLQUEUE_HOST_BUSY;
585 goto out;
586 }
587
588 ncount = scsi_sg_count(scp);
589 scsi_for_each_sg(scp, sg, ncount, i) {
590 cmd->rcb.data_len = sg_dma_len(sg);
591 cmd->rcb.data_ea = sg_dma_address(sg);
592 }
593
594 /* Copy the CDB from the scsi_cmnd passed in */
595 memcpy(cmd->rcb.cdb, scp->cmnd, sizeof(cmd->rcb.cdb));
596
597 /* Send the command */
15305514 598 rc = send_cmd(afu, cmd);
c21e0bbf 599 if (unlikely(rc)) {
15305514 600 cmd_checkin(cmd);
c21e0bbf
MO
601 scsi_dma_unmap(scp);
602 }
603
604out:
b45cdbaf
MK
605 if (kref_got)
606 kref_put(&afu->mapcount, afu_unmap);
4392ba49 607 pr_devel("%s: returning rc=%d\n", __func__, rc);
c21e0bbf
MO
608 return rc;
609}
610
611/**
15305514 612 * cxlflash_wait_for_pci_err_recovery() - wait for error recovery during probe
1284fb0c 613 * @cfg: Internal structure associated with the host.
c21e0bbf 614 */
15305514 615static void cxlflash_wait_for_pci_err_recovery(struct cxlflash_cfg *cfg)
c21e0bbf 616{
15305514 617 struct pci_dev *pdev = cfg->dev;
c21e0bbf 618
15305514
MO
619 if (pci_channel_offline(pdev))
620 wait_event_timeout(cfg->reset_waitq,
621 !pci_channel_offline(pdev),
622 CXLFLASH_PCI_ERROR_RECOVERY_TIMEOUT);
c21e0bbf
MO
623}
624
625/**
15305514 626 * free_mem() - free memory associated with the AFU
1284fb0c 627 * @cfg: Internal structure associated with the host.
c21e0bbf 628 */
15305514 629static void free_mem(struct cxlflash_cfg *cfg)
c21e0bbf 630{
15305514
MO
631 int i;
632 char *buf = NULL;
633 struct afu *afu = cfg->afu;
c21e0bbf 634
15305514
MO
635 if (cfg->afu) {
636 for (i = 0; i < CXLFLASH_NUM_CMDS; i++) {
637 buf = afu->cmd[i].buf;
638 if (!((u64)buf & (PAGE_SIZE - 1)))
639 free_page((ulong)buf);
640 }
c21e0bbf 641
15305514
MO
642 free_pages((ulong)afu, get_order(sizeof(struct afu)));
643 cfg->afu = NULL;
5cdac81a 644 }
c21e0bbf
MO
645}
646
647/**
15305514 648 * stop_afu() - stops the AFU command timers and unmaps the MMIO space
1284fb0c 649 * @cfg: Internal structure associated with the host.
c21e0bbf 650 *
15305514 651 * Safe to call with AFU in a partially allocated/initialized state.
ee91e332
MK
652 *
653 * Cleans up all state associated with the command queue, and unmaps
654 * the MMIO space.
655 *
656 * - complete() will take care of commands we initiated (they'll be checked
657 * in as part of the cleanup that occurs after the completion)
658 *
659 * - cmd_checkin() will take care of entries that we did not initiate and that
660 * have not (and will not) complete because they are sitting on a [now stale]
661 * hardware queue
c21e0bbf 662 */
15305514 663static void stop_afu(struct cxlflash_cfg *cfg)
c21e0bbf 664{
15305514
MO
665 int i;
666 struct afu *afu = cfg->afu;
ee91e332 667 struct afu_cmd *cmd;
c21e0bbf 668
15305514 669 if (likely(afu)) {
ee91e332
MK
670 for (i = 0; i < CXLFLASH_NUM_CMDS; i++) {
671 cmd = &afu->cmd[i];
672 complete(&cmd->cevent);
673 if (!atomic_read(&cmd->free))
674 cmd_checkin(cmd);
675 }
c21e0bbf
MO
676
677 if (likely(afu->afu_map)) {
1786f4a0 678 cxl_psa_unmap((void __iomem *)afu->afu_map);
c21e0bbf
MO
679 afu->afu_map = NULL;
680 }
b45cdbaf 681 kref_put(&afu->mapcount, afu_unmap);
c21e0bbf
MO
682 }
683}
684
685/**
686 * term_mc() - terminates the master context
1284fb0c 687 * @cfg: Internal structure associated with the host.
c21e0bbf
MO
688 * @level: Depth of allocation, where to begin waterfall tear down.
689 *
690 * Safe to call with AFU/MC in partially allocated/initialized state.
691 */
692static void term_mc(struct cxlflash_cfg *cfg, enum undo_level level)
693{
694 int rc = 0;
695 struct afu *afu = cfg->afu;
4392ba49 696 struct device *dev = &cfg->dev->dev;
c21e0bbf
MO
697
698 if (!afu || !cfg->mcctx) {
4392ba49 699 dev_err(dev, "%s: returning from term_mc with NULL afu or MC\n",
c21e0bbf
MO
700 __func__);
701 return;
702 }
703
704 switch (level) {
705 case UNDO_START:
706 rc = cxl_stop_context(cfg->mcctx);
707 BUG_ON(rc);
708 case UNMAP_THREE:
709 cxl_unmap_afu_irq(cfg->mcctx, 3, afu);
710 case UNMAP_TWO:
711 cxl_unmap_afu_irq(cfg->mcctx, 2, afu);
712 case UNMAP_ONE:
713 cxl_unmap_afu_irq(cfg->mcctx, 1, afu);
714 case FREE_IRQ:
715 cxl_free_afu_irqs(cfg->mcctx);
716 case RELEASE_CONTEXT:
717 cfg->mcctx = NULL;
718 }
719}
720
721/**
722 * term_afu() - terminates the AFU
1284fb0c 723 * @cfg: Internal structure associated with the host.
c21e0bbf
MO
724 *
725 * Safe to call with AFU/MC in partially allocated/initialized state.
726 */
727static void term_afu(struct cxlflash_cfg *cfg)
728{
729 term_mc(cfg, UNDO_START);
730
731 if (cfg->afu)
732 stop_afu(cfg);
733
734 pr_debug("%s: returning\n", __func__);
735}
736
737/**
738 * cxlflash_remove() - PCI entry point to tear down host
739 * @pdev: PCI device associated with the host.
740 *
741 * Safe to use as a cleanup in partially allocated/initialized state.
742 */
743static void cxlflash_remove(struct pci_dev *pdev)
744{
745 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
746 ulong lock_flags;
747
748 /* If a Task Management Function is active, wait for it to complete
749 * before continuing with remove.
750 */
018d1dc9 751 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
c21e0bbf 752 if (cfg->tmf_active)
018d1dc9
MO
753 wait_event_interruptible_lock_irq(cfg->tmf_waitq,
754 !cfg->tmf_active,
755 cfg->tmf_slock);
756 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
c21e0bbf 757
5cdac81a 758 cfg->state = STATE_FAILTERM;
65be2c79 759 cxlflash_stop_term_user_contexts(cfg);
5cdac81a 760
c21e0bbf
MO
761 switch (cfg->init_state) {
762 case INIT_STATE_SCSI:
65be2c79 763 cxlflash_term_local_luns(cfg);
c21e0bbf 764 scsi_remove_host(cfg->host);
f15fbf8d 765 /* fall through */
c21e0bbf 766 case INIT_STATE_AFU:
d804621d 767 cancel_work_sync(&cfg->work_q);
b45cdbaf 768 term_afu(cfg);
c21e0bbf
MO
769 case INIT_STATE_PCI:
770 pci_release_regions(cfg->dev);
771 pci_disable_device(pdev);
772 case INIT_STATE_NONE:
c21e0bbf 773 free_mem(cfg);
8b5b1e87 774 scsi_host_put(cfg->host);
c21e0bbf
MO
775 break;
776 }
777
778 pr_debug("%s: returning\n", __func__);
779}
780
781/**
782 * alloc_mem() - allocates the AFU and its command pool
1284fb0c 783 * @cfg: Internal structure associated with the host.
c21e0bbf
MO
784 *
785 * A partially allocated state remains on failure.
786 *
787 * Return:
788 * 0 on success
789 * -ENOMEM on failure to allocate memory
790 */
791static int alloc_mem(struct cxlflash_cfg *cfg)
792{
793 int rc = 0;
794 int i;
795 char *buf = NULL;
4392ba49 796 struct device *dev = &cfg->dev->dev;
c21e0bbf 797
f15fbf8d 798 /* AFU is ~12k, i.e. only one 64k page or up to four 4k pages */
c21e0bbf
MO
799 cfg->afu = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
800 get_order(sizeof(struct afu)));
801 if (unlikely(!cfg->afu)) {
4392ba49
MO
802 dev_err(dev, "%s: cannot get %d free pages\n",
803 __func__, get_order(sizeof(struct afu)));
c21e0bbf
MO
804 rc = -ENOMEM;
805 goto out;
806 }
807 cfg->afu->parent = cfg;
808 cfg->afu->afu_map = NULL;
809
810 for (i = 0; i < CXLFLASH_NUM_CMDS; buf += CMD_BUFSIZE, i++) {
811 if (!((u64)buf & (PAGE_SIZE - 1))) {
812 buf = (void *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
813 if (unlikely(!buf)) {
4392ba49
MO
814 dev_err(dev,
815 "%s: Allocate command buffers fail!\n",
c21e0bbf
MO
816 __func__);
817 rc = -ENOMEM;
818 free_mem(cfg);
819 goto out;
820 }
821 }
822
823 cfg->afu->cmd[i].buf = buf;
824 atomic_set(&cfg->afu->cmd[i].free, 1);
825 cfg->afu->cmd[i].slot = i;
826 }
827
828out:
829 return rc;
830}
831
832/**
833 * init_pci() - initializes the host as a PCI device
1284fb0c 834 * @cfg: Internal structure associated with the host.
c21e0bbf 835 *
1284fb0c 836 * Return: 0 on success, -errno on failure
c21e0bbf
MO
837 */
838static int init_pci(struct cxlflash_cfg *cfg)
839{
840 struct pci_dev *pdev = cfg->dev;
841 int rc = 0;
842
843 cfg->cxlflash_regs_pci = pci_resource_start(pdev, 0);
844 rc = pci_request_regions(pdev, CXLFLASH_NAME);
845 if (rc < 0) {
846 dev_err(&pdev->dev,
847 "%s: Couldn't register memory range of registers\n",
848 __func__);
849 goto out;
850 }
851
852 rc = pci_enable_device(pdev);
853 if (rc || pci_channel_offline(pdev)) {
854 if (pci_channel_offline(pdev)) {
855 cxlflash_wait_for_pci_err_recovery(cfg);
856 rc = pci_enable_device(pdev);
857 }
858
859 if (rc) {
860 dev_err(&pdev->dev, "%s: Cannot enable adapter\n",
861 __func__);
862 cxlflash_wait_for_pci_err_recovery(cfg);
863 goto out_release_regions;
864 }
865 }
866
867 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
868 if (rc < 0) {
869 dev_dbg(&pdev->dev, "%s: Failed to set 64 bit PCI DMA mask\n",
870 __func__);
871 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
872 }
873
874 if (rc < 0) {
875 dev_err(&pdev->dev, "%s: Failed to set PCI DMA mask\n",
876 __func__);
877 goto out_disable;
878 }
879
880 pci_set_master(pdev);
881
882 if (pci_channel_offline(pdev)) {
883 cxlflash_wait_for_pci_err_recovery(cfg);
884 if (pci_channel_offline(pdev)) {
885 rc = -EIO;
886 goto out_msi_disable;
887 }
888 }
889
890 rc = pci_save_state(pdev);
891
892 if (rc != PCIBIOS_SUCCESSFUL) {
893 dev_err(&pdev->dev, "%s: Failed to save PCI config space\n",
894 __func__);
895 rc = -EIO;
896 goto cleanup_nolog;
897 }
898
899out:
900 pr_debug("%s: returning rc=%d\n", __func__, rc);
901 return rc;
902
903cleanup_nolog:
904out_msi_disable:
905 cxlflash_wait_for_pci_err_recovery(cfg);
906out_disable:
907 pci_disable_device(pdev);
908out_release_regions:
909 pci_release_regions(pdev);
910 goto out;
911
912}
913
914/**
915 * init_scsi() - adds the host to the SCSI stack and kicks off host scan
1284fb0c 916 * @cfg: Internal structure associated with the host.
c21e0bbf 917 *
1284fb0c 918 * Return: 0 on success, -errno on failure
c21e0bbf
MO
919 */
920static int init_scsi(struct cxlflash_cfg *cfg)
921{
922 struct pci_dev *pdev = cfg->dev;
923 int rc = 0;
924
925 rc = scsi_add_host(cfg->host, &pdev->dev);
926 if (rc) {
927 dev_err(&pdev->dev, "%s: scsi_add_host failed (rc=%d)\n",
928 __func__, rc);
929 goto out;
930 }
931
932 scsi_scan_host(cfg->host);
933
934out:
935 pr_debug("%s: returning rc=%d\n", __func__, rc);
936 return rc;
937}
938
939/**
940 * set_port_online() - transitions the specified host FC port to online state
941 * @fc_regs: Top of MMIO region defined for specified port.
942 *
943 * The provided MMIO region must be mapped prior to call. Online state means
944 * that the FC link layer has synced, completed the handshaking process, and
945 * is ready for login to start.
946 */
1786f4a0 947static void set_port_online(__be64 __iomem *fc_regs)
c21e0bbf
MO
948{
949 u64 cmdcfg;
950
951 cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]);
952 cmdcfg &= (~FC_MTIP_CMDCONFIG_OFFLINE); /* clear OFF_LINE */
953 cmdcfg |= (FC_MTIP_CMDCONFIG_ONLINE); /* set ON_LINE */
954 writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]);
955}
956
957/**
958 * set_port_offline() - transitions the specified host FC port to offline state
959 * @fc_regs: Top of MMIO region defined for specified port.
960 *
961 * The provided MMIO region must be mapped prior to call.
962 */
1786f4a0 963static void set_port_offline(__be64 __iomem *fc_regs)
c21e0bbf
MO
964{
965 u64 cmdcfg;
966
967 cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]);
968 cmdcfg &= (~FC_MTIP_CMDCONFIG_ONLINE); /* clear ON_LINE */
969 cmdcfg |= (FC_MTIP_CMDCONFIG_OFFLINE); /* set OFF_LINE */
970 writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]);
971}
972
973/**
974 * wait_port_online() - waits for the specified host FC port come online
975 * @fc_regs: Top of MMIO region defined for specified port.
976 * @delay_us: Number of microseconds to delay between reading port status.
977 * @nretry: Number of cycles to retry reading port status.
978 *
979 * The provided MMIO region must be mapped prior to call. This will timeout
980 * when the cable is not plugged in.
981 *
982 * Return:
983 * TRUE (1) when the specified port is online
984 * FALSE (0) when the specified port fails to come online after timeout
985 * -EINVAL when @delay_us is less than 1000
986 */
1786f4a0 987static int wait_port_online(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry)
c21e0bbf
MO
988{
989 u64 status;
990
991 if (delay_us < 1000) {
992 pr_err("%s: invalid delay specified %d\n", __func__, delay_us);
993 return -EINVAL;
994 }
995
996 do {
997 msleep(delay_us / 1000);
998 status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
999 } while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_ONLINE &&
1000 nretry--);
1001
1002 return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_ONLINE);
1003}
1004
1005/**
1006 * wait_port_offline() - waits for the specified host FC port go offline
1007 * @fc_regs: Top of MMIO region defined for specified port.
1008 * @delay_us: Number of microseconds to delay between reading port status.
1009 * @nretry: Number of cycles to retry reading port status.
1010 *
1011 * The provided MMIO region must be mapped prior to call.
1012 *
1013 * Return:
1014 * TRUE (1) when the specified port is offline
1015 * FALSE (0) when the specified port fails to go offline after timeout
1016 * -EINVAL when @delay_us is less than 1000
1017 */
1786f4a0 1018static int wait_port_offline(__be64 __iomem *fc_regs, u32 delay_us, u32 nretry)
c21e0bbf
MO
1019{
1020 u64 status;
1021
1022 if (delay_us < 1000) {
1023 pr_err("%s: invalid delay specified %d\n", __func__, delay_us);
1024 return -EINVAL;
1025 }
1026
1027 do {
1028 msleep(delay_us / 1000);
1029 status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
1030 } while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_OFFLINE &&
1031 nretry--);
1032
1033 return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_OFFLINE);
1034}
1035
1036/**
1037 * afu_set_wwpn() - configures the WWPN for the specified host FC port
1038 * @afu: AFU associated with the host that owns the specified FC port.
1039 * @port: Port number being configured.
1040 * @fc_regs: Top of MMIO region defined for specified port.
1041 * @wwpn: The world-wide-port-number previously discovered for port.
1042 *
1043 * The provided MMIO region must be mapped prior to call. As part of the
1044 * sequence to configure the WWPN, the port is toggled offline and then back
1045 * online. This toggling action can cause this routine to delay up to a few
1046 * seconds. When configured to use the internal LUN feature of the AFU, a
1047 * failure to come online is overridden.
1048 *
1049 * Return:
1050 * 0 when the WWPN is successfully written and the port comes back online
1051 * -1 when the port fails to go offline or come back up online
1052 */
1786f4a0
MO
1053static int afu_set_wwpn(struct afu *afu, int port, __be64 __iomem *fc_regs,
1054 u64 wwpn)
c21e0bbf 1055{
964497b3 1056 int rc = 0;
c21e0bbf
MO
1057
1058 set_port_offline(fc_regs);
1059
1060 if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1061 FC_PORT_STATUS_RETRY_CNT)) {
1062 pr_debug("%s: wait on port %d to go offline timed out\n",
1063 __func__, port);
964497b3 1064 rc = -1; /* but continue on to leave the port back online */
c21e0bbf
MO
1065 }
1066
964497b3 1067 if (rc == 0)
c21e0bbf
MO
1068 writeq_be(wwpn, &fc_regs[FC_PNAME / 8]);
1069
964497b3
MO
1070 /* Always return success after programming WWPN */
1071 rc = 0;
1072
c21e0bbf
MO
1073 set_port_online(fc_regs);
1074
1075 if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1076 FC_PORT_STATUS_RETRY_CNT)) {
964497b3
MO
1077 pr_err("%s: wait on port %d to go online timed out\n",
1078 __func__, port);
c21e0bbf
MO
1079 }
1080
964497b3 1081 pr_debug("%s: returning rc=%d\n", __func__, rc);
c21e0bbf 1082
964497b3 1083 return rc;
c21e0bbf
MO
1084}
1085
1086/**
1087 * afu_link_reset() - resets the specified host FC port
1088 * @afu: AFU associated with the host that owns the specified FC port.
1089 * @port: Port number being configured.
1090 * @fc_regs: Top of MMIO region defined for specified port.
1091 *
1092 * The provided MMIO region must be mapped prior to call. The sequence to
1093 * reset the port involves toggling it offline and then back online. This
1094 * action can cause this routine to delay up to a few seconds. An effort
1095 * is made to maintain link with the device by switching to host to use
1096 * the alternate port exclusively while the reset takes place.
1097 * failure to come online is overridden.
1098 */
1786f4a0 1099static void afu_link_reset(struct afu *afu, int port, __be64 __iomem *fc_regs)
c21e0bbf
MO
1100{
1101 u64 port_sel;
1102
1103 /* first switch the AFU to the other links, if any */
1104 port_sel = readq_be(&afu->afu_map->global.regs.afu_port_sel);
4da74db0 1105 port_sel &= ~(1ULL << port);
c21e0bbf
MO
1106 writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel);
1107 cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC);
1108
1109 set_port_offline(fc_regs);
1110 if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1111 FC_PORT_STATUS_RETRY_CNT))
1112 pr_err("%s: wait on port %d to go offline timed out\n",
1113 __func__, port);
1114
1115 set_port_online(fc_regs);
1116 if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1117 FC_PORT_STATUS_RETRY_CNT))
1118 pr_err("%s: wait on port %d to go online timed out\n",
1119 __func__, port);
1120
1121 /* switch back to include this port */
4da74db0 1122 port_sel |= (1ULL << port);
c21e0bbf
MO
1123 writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel);
1124 cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC);
1125
1126 pr_debug("%s: returning port_sel=%lld\n", __func__, port_sel);
1127}
1128
1129/*
1130 * Asynchronous interrupt information table
1131 */
1132static const struct asyc_intr_info ainfo[] = {
1133 {SISL_ASTATUS_FC0_OTHER, "other error", 0, CLR_FC_ERROR | LINK_RESET},
1134 {SISL_ASTATUS_FC0_LOGO, "target initiated LOGO", 0, 0},
1135 {SISL_ASTATUS_FC0_CRC_T, "CRC threshold exceeded", 0, LINK_RESET},
e6e6df3f 1136 {SISL_ASTATUS_FC0_LOGI_R, "login timed out, retrying", 0, LINK_RESET},
c21e0bbf 1137 {SISL_ASTATUS_FC0_LOGI_F, "login failed", 0, CLR_FC_ERROR},
ef51074a 1138 {SISL_ASTATUS_FC0_LOGI_S, "login succeeded", 0, SCAN_HOST},
c21e0bbf 1139 {SISL_ASTATUS_FC0_LINK_DN, "link down", 0, 0},
ef51074a 1140 {SISL_ASTATUS_FC0_LINK_UP, "link up", 0, SCAN_HOST},
c21e0bbf
MO
1141 {SISL_ASTATUS_FC1_OTHER, "other error", 1, CLR_FC_ERROR | LINK_RESET},
1142 {SISL_ASTATUS_FC1_LOGO, "target initiated LOGO", 1, 0},
1143 {SISL_ASTATUS_FC1_CRC_T, "CRC threshold exceeded", 1, LINK_RESET},
a9be294e 1144 {SISL_ASTATUS_FC1_LOGI_R, "login timed out, retrying", 1, LINK_RESET},
c21e0bbf 1145 {SISL_ASTATUS_FC1_LOGI_F, "login failed", 1, CLR_FC_ERROR},
ef51074a 1146 {SISL_ASTATUS_FC1_LOGI_S, "login succeeded", 1, SCAN_HOST},
c21e0bbf 1147 {SISL_ASTATUS_FC1_LINK_DN, "link down", 1, 0},
ef51074a 1148 {SISL_ASTATUS_FC1_LINK_UP, "link up", 1, SCAN_HOST},
c21e0bbf
MO
1149 {0x0, "", 0, 0} /* terminator */
1150};
1151
1152/**
1153 * find_ainfo() - locates and returns asynchronous interrupt information
1154 * @status: Status code set by AFU on error.
1155 *
1156 * Return: The located information or NULL when the status code is invalid.
1157 */
1158static const struct asyc_intr_info *find_ainfo(u64 status)
1159{
1160 const struct asyc_intr_info *info;
1161
1162 for (info = &ainfo[0]; info->status; info++)
1163 if (info->status == status)
1164 return info;
1165
1166 return NULL;
1167}
1168
1169/**
1170 * afu_err_intr_init() - clears and initializes the AFU for error interrupts
1171 * @afu: AFU associated with the host.
1172 */
1173static void afu_err_intr_init(struct afu *afu)
1174{
1175 int i;
1176 u64 reg;
1177
1178 /* global async interrupts: AFU clears afu_ctrl on context exit
1179 * if async interrupts were sent to that context. This prevents
1180 * the AFU form sending further async interrupts when
1181 * there is
1182 * nobody to receive them.
1183 */
1184
1185 /* mask all */
1186 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_mask);
1187 /* set LISN# to send and point to master context */
1188 reg = ((u64) (((afu->ctx_hndl << 8) | SISL_MSI_ASYNC_ERROR)) << 40);
1189
1190 if (afu->internal_lun)
1191 reg |= 1; /* Bit 63 indicates local lun */
1192 writeq_be(reg, &afu->afu_map->global.regs.afu_ctrl);
1193 /* clear all */
1194 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear);
1195 /* unmask bits that are of interest */
1196 /* note: afu can send an interrupt after this step */
1197 writeq_be(SISL_ASTATUS_MASK, &afu->afu_map->global.regs.aintr_mask);
1198 /* clear again in case a bit came on after previous clear but before */
1199 /* unmask */
1200 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear);
1201
1202 /* Clear/Set internal lun bits */
1203 reg = readq_be(&afu->afu_map->global.fc_regs[0][FC_CONFIG2 / 8]);
1204 reg &= SISL_FC_INTERNAL_MASK;
1205 if (afu->internal_lun)
1206 reg |= ((u64)(afu->internal_lun - 1) << SISL_FC_INTERNAL_SHIFT);
1207 writeq_be(reg, &afu->afu_map->global.fc_regs[0][FC_CONFIG2 / 8]);
1208
1209 /* now clear FC errors */
1210 for (i = 0; i < NUM_FC_PORTS; i++) {
1211 writeq_be(0xFFFFFFFFU,
1212 &afu->afu_map->global.fc_regs[i][FC_ERROR / 8]);
1213 writeq_be(0, &afu->afu_map->global.fc_regs[i][FC_ERRCAP / 8]);
1214 }
1215
1216 /* sync interrupts for master's IOARRIN write */
1217 /* note that unlike asyncs, there can be no pending sync interrupts */
1218 /* at this time (this is a fresh context and master has not written */
1219 /* IOARRIN yet), so there is nothing to clear. */
1220
1221 /* set LISN#, it is always sent to the context that wrote IOARRIN */
1222 writeq_be(SISL_MSI_SYNC_ERROR, &afu->host_map->ctx_ctrl);
1223 writeq_be(SISL_ISTATUS_MASK, &afu->host_map->intr_mask);
1224}
1225
1226/**
1227 * cxlflash_sync_err_irq() - interrupt handler for synchronous errors
1228 * @irq: Interrupt number.
1229 * @data: Private data provided at interrupt registration, the AFU.
1230 *
1231 * Return: Always return IRQ_HANDLED.
1232 */
1233static irqreturn_t cxlflash_sync_err_irq(int irq, void *data)
1234{
1235 struct afu *afu = (struct afu *)data;
1236 u64 reg;
1237 u64 reg_unmasked;
1238
1239 reg = readq_be(&afu->host_map->intr_status);
1240 reg_unmasked = (reg & SISL_ISTATUS_UNMASK);
1241
1242 if (reg_unmasked == 0UL) {
1243 pr_err("%s: %llX: spurious interrupt, intr_status %016llX\n",
1244 __func__, (u64)afu, reg);
1245 goto cxlflash_sync_err_irq_exit;
1246 }
1247
1248 pr_err("%s: %llX: unexpected interrupt, intr_status %016llX\n",
1249 __func__, (u64)afu, reg);
1250
1251 writeq_be(reg_unmasked, &afu->host_map->intr_clear);
1252
1253cxlflash_sync_err_irq_exit:
1254 pr_debug("%s: returning rc=%d\n", __func__, IRQ_HANDLED);
1255 return IRQ_HANDLED;
1256}
1257
1258/**
1259 * cxlflash_rrq_irq() - interrupt handler for read-response queue (normal path)
1260 * @irq: Interrupt number.
1261 * @data: Private data provided at interrupt registration, the AFU.
1262 *
1263 * Return: Always return IRQ_HANDLED.
1264 */
1265static irqreturn_t cxlflash_rrq_irq(int irq, void *data)
1266{
1267 struct afu *afu = (struct afu *)data;
1268 struct afu_cmd *cmd;
1269 bool toggle = afu->toggle;
1270 u64 entry,
1271 *hrrq_start = afu->hrrq_start,
1272 *hrrq_end = afu->hrrq_end,
1273 *hrrq_curr = afu->hrrq_curr;
1274
1275 /* Process however many RRQ entries that are ready */
1276 while (true) {
1277 entry = *hrrq_curr;
1278
1279 if ((entry & SISL_RESP_HANDLE_T_BIT) != toggle)
1280 break;
1281
1282 cmd = (struct afu_cmd *)(entry & ~SISL_RESP_HANDLE_T_BIT);
1283 cmd_complete(cmd);
1284
1285 /* Advance to next entry or wrap and flip the toggle bit */
1286 if (hrrq_curr < hrrq_end)
1287 hrrq_curr++;
1288 else {
1289 hrrq_curr = hrrq_start;
1290 toggle ^= SISL_RESP_HANDLE_T_BIT;
1291 }
1292 }
1293
1294 afu->hrrq_curr = hrrq_curr;
1295 afu->toggle = toggle;
1296
1297 return IRQ_HANDLED;
1298}
1299
1300/**
1301 * cxlflash_async_err_irq() - interrupt handler for asynchronous errors
1302 * @irq: Interrupt number.
1303 * @data: Private data provided at interrupt registration, the AFU.
1304 *
1305 * Return: Always return IRQ_HANDLED.
1306 */
1307static irqreturn_t cxlflash_async_err_irq(int irq, void *data)
1308{
1309 struct afu *afu = (struct afu *)data;
4392ba49
MO
1310 struct cxlflash_cfg *cfg = afu->parent;
1311 struct device *dev = &cfg->dev->dev;
c21e0bbf
MO
1312 u64 reg_unmasked;
1313 const struct asyc_intr_info *info;
1786f4a0 1314 struct sisl_global_map __iomem *global = &afu->afu_map->global;
c21e0bbf
MO
1315 u64 reg;
1316 u8 port;
1317 int i;
1318
c21e0bbf
MO
1319 reg = readq_be(&global->regs.aintr_status);
1320 reg_unmasked = (reg & SISL_ASTATUS_UNMASK);
1321
1322 if (reg_unmasked == 0) {
4392ba49
MO
1323 dev_err(dev, "%s: spurious interrupt, aintr_status 0x%016llX\n",
1324 __func__, reg);
c21e0bbf
MO
1325 goto out;
1326 }
1327
f15fbf8d 1328 /* FYI, it is 'okay' to clear AFU status before FC_ERROR */
c21e0bbf
MO
1329 writeq_be(reg_unmasked, &global->regs.aintr_clear);
1330
f15fbf8d 1331 /* Check each bit that is on */
c21e0bbf
MO
1332 for (i = 0; reg_unmasked; i++, reg_unmasked = (reg_unmasked >> 1)) {
1333 info = find_ainfo(1ULL << i);
16798d34 1334 if (((reg_unmasked & 0x1) == 0) || !info)
c21e0bbf
MO
1335 continue;
1336
1337 port = info->port;
1338
4392ba49
MO
1339 dev_err(dev, "%s: FC Port %d -> %s, fc_status 0x%08llX\n",
1340 __func__, port, info->desc,
c21e0bbf
MO
1341 readq_be(&global->fc_regs[port][FC_STATUS / 8]));
1342
1343 /*
f15fbf8d 1344 * Do link reset first, some OTHER errors will set FC_ERROR
c21e0bbf
MO
1345 * again if cleared before or w/o a reset
1346 */
1347 if (info->action & LINK_RESET) {
4392ba49
MO
1348 dev_err(dev, "%s: FC Port %d: resetting link\n",
1349 __func__, port);
c21e0bbf
MO
1350 cfg->lr_state = LINK_RESET_REQUIRED;
1351 cfg->lr_port = port;
b45cdbaf 1352 kref_get(&cfg->afu->mapcount);
c21e0bbf
MO
1353 schedule_work(&cfg->work_q);
1354 }
1355
1356 if (info->action & CLR_FC_ERROR) {
1357 reg = readq_be(&global->fc_regs[port][FC_ERROR / 8]);
1358
1359 /*
f15fbf8d 1360 * Since all errors are unmasked, FC_ERROR and FC_ERRCAP
c21e0bbf
MO
1361 * should be the same and tracing one is sufficient.
1362 */
1363
4392ba49
MO
1364 dev_err(dev, "%s: fc %d: clearing fc_error 0x%08llX\n",
1365 __func__, port, reg);
c21e0bbf
MO
1366
1367 writeq_be(reg, &global->fc_regs[port][FC_ERROR / 8]);
1368 writeq_be(0, &global->fc_regs[port][FC_ERRCAP / 8]);
1369 }
ef51074a
MO
1370
1371 if (info->action & SCAN_HOST) {
1372 atomic_inc(&cfg->scan_host_needed);
b45cdbaf 1373 kref_get(&cfg->afu->mapcount);
ef51074a
MO
1374 schedule_work(&cfg->work_q);
1375 }
c21e0bbf
MO
1376 }
1377
1378out:
4392ba49 1379 dev_dbg(dev, "%s: returning IRQ_HANDLED, afu=%p\n", __func__, afu);
c21e0bbf
MO
1380 return IRQ_HANDLED;
1381}
1382
1383/**
1384 * start_context() - starts the master context
1284fb0c 1385 * @cfg: Internal structure associated with the host.
c21e0bbf
MO
1386 *
1387 * Return: A success or failure value from CXL services.
1388 */
1389static int start_context(struct cxlflash_cfg *cfg)
1390{
1391 int rc = 0;
1392
1393 rc = cxl_start_context(cfg->mcctx,
1394 cfg->afu->work.work_element_descriptor,
1395 NULL);
1396
1397 pr_debug("%s: returning rc=%d\n", __func__, rc);
1398 return rc;
1399}
1400
1401/**
1402 * read_vpd() - obtains the WWPNs from VPD
1284fb0c 1403 * @cfg: Internal structure associated with the host.
c21e0bbf
MO
1404 * @wwpn: Array of size NUM_FC_PORTS to pass back WWPNs
1405 *
1284fb0c 1406 * Return: 0 on success, -errno on failure
c21e0bbf
MO
1407 */
1408static int read_vpd(struct cxlflash_cfg *cfg, u64 wwpn[])
1409{
1410 struct pci_dev *dev = cfg->parent_dev;
1411 int rc = 0;
1412 int ro_start, ro_size, i, j, k;
1413 ssize_t vpd_size;
1414 char vpd_data[CXLFLASH_VPD_LEN];
1415 char tmp_buf[WWPN_BUF_LEN] = { 0 };
1416 char *wwpn_vpd_tags[NUM_FC_PORTS] = { "V5", "V6" };
1417
1418 /* Get the VPD data from the device */
1419 vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
1420 if (unlikely(vpd_size <= 0)) {
4392ba49 1421 dev_err(&dev->dev, "%s: Unable to read VPD (size = %ld)\n",
c21e0bbf
MO
1422 __func__, vpd_size);
1423 rc = -ENODEV;
1424 goto out;
1425 }
1426
1427 /* Get the read only section offset */
1428 ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size,
1429 PCI_VPD_LRDT_RO_DATA);
1430 if (unlikely(ro_start < 0)) {
4392ba49
MO
1431 dev_err(&dev->dev, "%s: VPD Read-only data not found\n",
1432 __func__);
c21e0bbf
MO
1433 rc = -ENODEV;
1434 goto out;
1435 }
1436
1437 /* Get the read only section size, cap when extends beyond read VPD */
1438 ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
1439 j = ro_size;
1440 i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
1441 if (unlikely((i + j) > vpd_size)) {
1442 pr_debug("%s: Might need to read more VPD (%d > %ld)\n",
1443 __func__, (i + j), vpd_size);
1444 ro_size = vpd_size - i;
1445 }
1446
1447 /*
1448 * Find the offset of the WWPN tag within the read only
1449 * VPD data and validate the found field (partials are
1450 * no good to us). Convert the ASCII data to an integer
1451 * value. Note that we must copy to a temporary buffer
1452 * because the conversion service requires that the ASCII
1453 * string be terminated.
1454 */
1455 for (k = 0; k < NUM_FC_PORTS; k++) {
1456 j = ro_size;
1457 i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
1458
1459 i = pci_vpd_find_info_keyword(vpd_data, i, j, wwpn_vpd_tags[k]);
1460 if (unlikely(i < 0)) {
4392ba49
MO
1461 dev_err(&dev->dev, "%s: Port %d WWPN not found "
1462 "in VPD\n", __func__, k);
c21e0bbf
MO
1463 rc = -ENODEV;
1464 goto out;
1465 }
1466
1467 j = pci_vpd_info_field_size(&vpd_data[i]);
1468 i += PCI_VPD_INFO_FLD_HDR_SIZE;
1469 if (unlikely((i + j > vpd_size) || (j != WWPN_LEN))) {
4392ba49
MO
1470 dev_err(&dev->dev, "%s: Port %d WWPN incomplete or "
1471 "VPD corrupt\n",
c21e0bbf
MO
1472 __func__, k);
1473 rc = -ENODEV;
1474 goto out;
1475 }
1476
1477 memcpy(tmp_buf, &vpd_data[i], WWPN_LEN);
1478 rc = kstrtoul(tmp_buf, WWPN_LEN, (ulong *)&wwpn[k]);
1479 if (unlikely(rc)) {
4392ba49
MO
1480 dev_err(&dev->dev, "%s: Fail to convert port %d WWPN "
1481 "to integer\n", __func__, k);
c21e0bbf
MO
1482 rc = -ENODEV;
1483 goto out;
1484 }
1485 }
1486
1487out:
1488 pr_debug("%s: returning rc=%d\n", __func__, rc);
1489 return rc;
1490}
1491
1492/**
15305514 1493 * init_pcr() - initialize the provisioning and control registers
1284fb0c 1494 * @cfg: Internal structure associated with the host.
c21e0bbf 1495 *
15305514
MO
1496 * Also sets up fast access to the mapped registers and initializes AFU
1497 * command fields that never change.
c21e0bbf 1498 */
15305514 1499static void init_pcr(struct cxlflash_cfg *cfg)
c21e0bbf
MO
1500{
1501 struct afu *afu = cfg->afu;
1786f4a0 1502 struct sisl_ctrl_map __iomem *ctrl_map;
c21e0bbf
MO
1503 int i;
1504
1505 for (i = 0; i < MAX_CONTEXT; i++) {
1506 ctrl_map = &afu->afu_map->ctrls[i].ctrl;
f15fbf8d
MO
1507 /* Disrupt any clients that could be running */
1508 /* e.g. clients that survived a master restart */
c21e0bbf
MO
1509 writeq_be(0, &ctrl_map->rht_start);
1510 writeq_be(0, &ctrl_map->rht_cnt_id);
1511 writeq_be(0, &ctrl_map->ctx_cap);
1512 }
1513
f15fbf8d 1514 /* Copy frequently used fields into afu */
c21e0bbf 1515 afu->ctx_hndl = (u16) cxl_process_element(cfg->mcctx);
c21e0bbf
MO
1516 afu->host_map = &afu->afu_map->hosts[afu->ctx_hndl].host;
1517 afu->ctrl_map = &afu->afu_map->ctrls[afu->ctx_hndl].ctrl;
1518
1519 /* Program the Endian Control for the master context */
1520 writeq_be(SISL_ENDIAN_CTRL, &afu->host_map->endian_ctrl);
1521
f15fbf8d 1522 /* Initialize cmd fields that never change */
c21e0bbf
MO
1523 for (i = 0; i < CXLFLASH_NUM_CMDS; i++) {
1524 afu->cmd[i].rcb.ctx_id = afu->ctx_hndl;
1525 afu->cmd[i].rcb.msi = SISL_MSI_RRQ_UPDATED;
1526 afu->cmd[i].rcb.rrq = 0x0;
1527 }
1528}
1529
1530/**
1531 * init_global() - initialize AFU global registers
1284fb0c 1532 * @cfg: Internal structure associated with the host.
c21e0bbf 1533 */
15305514 1534static int init_global(struct cxlflash_cfg *cfg)
c21e0bbf
MO
1535{
1536 struct afu *afu = cfg->afu;
4392ba49 1537 struct device *dev = &cfg->dev->dev;
c21e0bbf
MO
1538 u64 wwpn[NUM_FC_PORTS]; /* wwpn of AFU ports */
1539 int i = 0, num_ports = 0;
1540 int rc = 0;
1541 u64 reg;
1542
1543 rc = read_vpd(cfg, &wwpn[0]);
1544 if (rc) {
4392ba49 1545 dev_err(dev, "%s: could not read vpd rc=%d\n", __func__, rc);
c21e0bbf
MO
1546 goto out;
1547 }
1548
1549 pr_debug("%s: wwpn0=0x%llX wwpn1=0x%llX\n", __func__, wwpn[0], wwpn[1]);
1550
f15fbf8d 1551 /* Set up RRQ in AFU for master issued cmds */
c21e0bbf
MO
1552 writeq_be((u64) afu->hrrq_start, &afu->host_map->rrq_start);
1553 writeq_be((u64) afu->hrrq_end, &afu->host_map->rrq_end);
1554
1555 /* AFU configuration */
1556 reg = readq_be(&afu->afu_map->global.regs.afu_config);
1557 reg |= SISL_AFUCONF_AR_ALL|SISL_AFUCONF_ENDIAN;
1558 /* enable all auto retry options and control endianness */
1559 /* leave others at default: */
1560 /* CTX_CAP write protected, mbox_r does not clear on read and */
1561 /* checker on if dual afu */
1562 writeq_be(reg, &afu->afu_map->global.regs.afu_config);
1563
f15fbf8d 1564 /* Global port select: select either port */
c21e0bbf 1565 if (afu->internal_lun) {
f15fbf8d 1566 /* Only use port 0 */
c21e0bbf
MO
1567 writeq_be(PORT0, &afu->afu_map->global.regs.afu_port_sel);
1568 num_ports = NUM_FC_PORTS - 1;
1569 } else {
1570 writeq_be(BOTH_PORTS, &afu->afu_map->global.regs.afu_port_sel);
1571 num_ports = NUM_FC_PORTS;
1572 }
1573
1574 for (i = 0; i < num_ports; i++) {
f15fbf8d 1575 /* Unmask all errors (but they are still masked at AFU) */
c21e0bbf 1576 writeq_be(0, &afu->afu_map->global.fc_regs[i][FC_ERRMSK / 8]);
f15fbf8d 1577 /* Clear CRC error cnt & set a threshold */
c21e0bbf
MO
1578 (void)readq_be(&afu->afu_map->global.
1579 fc_regs[i][FC_CNT_CRCERR / 8]);
1580 writeq_be(MC_CRC_THRESH, &afu->afu_map->global.fc_regs[i]
1581 [FC_CRC_THRESH / 8]);
1582
f15fbf8d 1583 /* Set WWPNs. If already programmed, wwpn[i] is 0 */
c21e0bbf
MO
1584 if (wwpn[i] != 0 &&
1585 afu_set_wwpn(afu, i,
1586 &afu->afu_map->global.fc_regs[i][0],
1587 wwpn[i])) {
4392ba49 1588 dev_err(dev, "%s: failed to set WWPN on port %d\n",
c21e0bbf
MO
1589 __func__, i);
1590 rc = -EIO;
1591 goto out;
1592 }
1593 /* Programming WWPN back to back causes additional
1594 * offline/online transitions and a PLOGI
1595 */
1596 msleep(100);
c21e0bbf
MO
1597 }
1598
f15fbf8d
MO
1599 /* Set up master's own CTX_CAP to allow real mode, host translation */
1600 /* tables, afu cmds and read/write GSCSI cmds. */
c21e0bbf
MO
1601 /* First, unlock ctx_cap write by reading mbox */
1602 (void)readq_be(&afu->ctrl_map->mbox_r); /* unlock ctx_cap */
1603 writeq_be((SISL_CTX_CAP_REAL_MODE | SISL_CTX_CAP_HOST_XLATE |
1604 SISL_CTX_CAP_READ_CMD | SISL_CTX_CAP_WRITE_CMD |
1605 SISL_CTX_CAP_AFU_CMD | SISL_CTX_CAP_GSCSI_CMD),
1606 &afu->ctrl_map->ctx_cap);
f15fbf8d 1607 /* Initialize heartbeat */
c21e0bbf
MO
1608 afu->hb = readq_be(&afu->afu_map->global.regs.afu_hb);
1609
1610out:
1611 return rc;
1612}
1613
1614/**
1615 * start_afu() - initializes and starts the AFU
1284fb0c 1616 * @cfg: Internal structure associated with the host.
c21e0bbf
MO
1617 */
1618static int start_afu(struct cxlflash_cfg *cfg)
1619{
1620 struct afu *afu = cfg->afu;
1621 struct afu_cmd *cmd;
1622
1623 int i = 0;
1624 int rc = 0;
1625
1626 for (i = 0; i < CXLFLASH_NUM_CMDS; i++) {
1627 cmd = &afu->cmd[i];
1628
1629 init_completion(&cmd->cevent);
1630 spin_lock_init(&cmd->slock);
1631 cmd->parent = afu;
1632 }
1633
1634 init_pcr(cfg);
1635
af10483e
MO
1636 /* After an AFU reset, RRQ entries are stale, clear them */
1637 memset(&afu->rrq_entry, 0, sizeof(afu->rrq_entry));
1638
f15fbf8d 1639 /* Initialize RRQ pointers */
c21e0bbf
MO
1640 afu->hrrq_start = &afu->rrq_entry[0];
1641 afu->hrrq_end = &afu->rrq_entry[NUM_RRQ_ENTRY - 1];
1642 afu->hrrq_curr = afu->hrrq_start;
1643 afu->toggle = 1;
1644
1645 rc = init_global(cfg);
1646
1647 pr_debug("%s: returning rc=%d\n", __func__, rc);
1648 return rc;
1649}
1650
1651/**
1652 * init_mc() - create and register as the master context
1284fb0c 1653 * @cfg: Internal structure associated with the host.
c21e0bbf 1654 *
1284fb0c 1655 * Return: 0 on success, -errno on failure
c21e0bbf
MO
1656 */
1657static int init_mc(struct cxlflash_cfg *cfg)
1658{
1659 struct cxl_context *ctx;
1660 struct device *dev = &cfg->dev->dev;
1661 struct afu *afu = cfg->afu;
1662 int rc = 0;
1663 enum undo_level level;
1664
1665 ctx = cxl_get_context(cfg->dev);
1666 if (unlikely(!ctx))
1667 return -ENOMEM;
1668 cfg->mcctx = ctx;
1669
1670 /* Set it up as a master with the CXL */
1671 cxl_set_master(ctx);
1672
1673 /* During initialization reset the AFU to start from a clean slate */
1674 rc = cxl_afu_reset(cfg->mcctx);
1675 if (unlikely(rc)) {
1676 dev_err(dev, "%s: initial AFU reset failed rc=%d\n",
1677 __func__, rc);
1678 level = RELEASE_CONTEXT;
1679 goto out;
1680 }
1681
1682 rc = cxl_allocate_afu_irqs(ctx, 3);
1683 if (unlikely(rc)) {
1684 dev_err(dev, "%s: call to allocate_afu_irqs failed rc=%d!\n",
1685 __func__, rc);
1686 level = RELEASE_CONTEXT;
1687 goto out;
1688 }
1689
1690 rc = cxl_map_afu_irq(ctx, 1, cxlflash_sync_err_irq, afu,
1691 "SISL_MSI_SYNC_ERROR");
1692 if (unlikely(rc <= 0)) {
1693 dev_err(dev, "%s: IRQ 1 (SISL_MSI_SYNC_ERROR) map failed!\n",
1694 __func__);
1695 level = FREE_IRQ;
1696 goto out;
1697 }
1698
1699 rc = cxl_map_afu_irq(ctx, 2, cxlflash_rrq_irq, afu,
1700 "SISL_MSI_RRQ_UPDATED");
1701 if (unlikely(rc <= 0)) {
1702 dev_err(dev, "%s: IRQ 2 (SISL_MSI_RRQ_UPDATED) map failed!\n",
1703 __func__);
1704 level = UNMAP_ONE;
1705 goto out;
1706 }
1707
1708 rc = cxl_map_afu_irq(ctx, 3, cxlflash_async_err_irq, afu,
1709 "SISL_MSI_ASYNC_ERROR");
1710 if (unlikely(rc <= 0)) {
1711 dev_err(dev, "%s: IRQ 3 (SISL_MSI_ASYNC_ERROR) map failed!\n",
1712 __func__);
1713 level = UNMAP_TWO;
1714 goto out;
1715 }
1716
1717 rc = 0;
1718
1719 /* This performs the equivalent of the CXL_IOCTL_START_WORK.
1720 * The CXL_IOCTL_GET_PROCESS_ELEMENT is implicit in the process
1721 * element (pe) that is embedded in the context (ctx)
1722 */
1723 rc = start_context(cfg);
1724 if (unlikely(rc)) {
1725 dev_err(dev, "%s: start context failed rc=%d\n", __func__, rc);
1726 level = UNMAP_THREE;
1727 goto out;
1728 }
1729ret:
1730 pr_debug("%s: returning rc=%d\n", __func__, rc);
1731 return rc;
1732out:
1733 term_mc(cfg, level);
1734 goto ret;
1735}
1736
1737/**
1738 * init_afu() - setup as master context and start AFU
1284fb0c 1739 * @cfg: Internal structure associated with the host.
c21e0bbf
MO
1740 *
1741 * This routine is a higher level of control for configuring the
1742 * AFU on probe and reset paths.
1743 *
1284fb0c 1744 * Return: 0 on success, -errno on failure
c21e0bbf
MO
1745 */
1746static int init_afu(struct cxlflash_cfg *cfg)
1747{
1748 u64 reg;
1749 int rc = 0;
1750 struct afu *afu = cfg->afu;
1751 struct device *dev = &cfg->dev->dev;
1752
5cdac81a
MO
1753 cxl_perst_reloads_same_image(cfg->cxl_afu, true);
1754
c21e0bbf
MO
1755 rc = init_mc(cfg);
1756 if (rc) {
1757 dev_err(dev, "%s: call to init_mc failed, rc=%d!\n",
1758 __func__, rc);
ee3491ba 1759 goto out;
c21e0bbf
MO
1760 }
1761
f15fbf8d 1762 /* Map the entire MMIO space of the AFU */
c21e0bbf
MO
1763 afu->afu_map = cxl_psa_map(cfg->mcctx);
1764 if (!afu->afu_map) {
c21e0bbf 1765 dev_err(dev, "%s: call to cxl_psa_map failed!\n", __func__);
ee3491ba 1766 rc = -ENOMEM;
c21e0bbf
MO
1767 goto err1;
1768 }
b45cdbaf 1769 kref_init(&afu->mapcount);
c21e0bbf 1770
e5ce067b
MO
1771 /* No byte reverse on reading afu_version or string will be backwards */
1772 reg = readq(&afu->afu_map->global.regs.afu_version);
1773 memcpy(afu->version, &reg, sizeof(reg));
c21e0bbf
MO
1774 afu->interface_version =
1775 readq_be(&afu->afu_map->global.regs.interface_version);
e5ce067b
MO
1776 if ((afu->interface_version + 1) == 0) {
1777 pr_err("Back level AFU, please upgrade. AFU version %s "
1778 "interface version 0x%llx\n", afu->version,
1779 afu->interface_version);
1780 rc = -EINVAL;
ee3491ba
MO
1781 goto err2;
1782 }
1783
1784 pr_debug("%s: afu version %s, interface version 0x%llX\n", __func__,
1785 afu->version, afu->interface_version);
c21e0bbf
MO
1786
1787 rc = start_afu(cfg);
1788 if (rc) {
1789 dev_err(dev, "%s: call to start_afu failed, rc=%d!\n",
1790 __func__, rc);
ee3491ba 1791 goto err2;
c21e0bbf
MO
1792 }
1793
1794 afu_err_intr_init(cfg->afu);
1795 atomic64_set(&afu->room, readq_be(&afu->host_map->cmd_room));
1796
2cb79266
MO
1797 /* Restore the LUN mappings */
1798 cxlflash_restore_luntable(cfg);
ee3491ba 1799out:
c21e0bbf
MO
1800 pr_debug("%s: returning rc=%d\n", __func__, rc);
1801 return rc;
ee3491ba
MO
1802
1803err2:
b45cdbaf 1804 kref_put(&afu->mapcount, afu_unmap);
ee3491ba
MO
1805err1:
1806 term_mc(cfg, UNDO_START);
1807 goto out;
c21e0bbf
MO
1808}
1809
c21e0bbf
MO
1810/**
1811 * cxlflash_afu_sync() - builds and sends an AFU sync command
1812 * @afu: AFU associated with the host.
1813 * @ctx_hndl_u: Identifies context requesting sync.
1814 * @res_hndl_u: Identifies resource requesting sync.
1815 * @mode: Type of sync to issue (lightweight, heavyweight, global).
1816 *
1817 * The AFU can only take 1 sync command at a time. This routine enforces this
f15fbf8d 1818 * limitation by using a mutex to provide exclusive access to the AFU during
c21e0bbf
MO
1819 * the sync. This design point requires calling threads to not be on interrupt
1820 * context due to the possibility of sleeping during concurrent sync operations.
1821 *
5cdac81a
MO
1822 * AFU sync operations are only necessary and allowed when the device is
1823 * operating normally. When not operating normally, sync requests can occur as
1824 * part of cleaning up resources associated with an adapter prior to removal.
1825 * In this scenario, these requests are simply ignored (safe due to the AFU
1826 * going away).
1827 *
c21e0bbf
MO
1828 * Return:
1829 * 0 on success
1830 * -1 on failure
1831 */
1832int cxlflash_afu_sync(struct afu *afu, ctx_hndl_t ctx_hndl_u,
1833 res_hndl_t res_hndl_u, u8 mode)
1834{
5cdac81a 1835 struct cxlflash_cfg *cfg = afu->parent;
4392ba49 1836 struct device *dev = &cfg->dev->dev;
c21e0bbf
MO
1837 struct afu_cmd *cmd = NULL;
1838 int rc = 0;
1839 int retry_cnt = 0;
1840 static DEFINE_MUTEX(sync_active);
1841
5cdac81a
MO
1842 if (cfg->state != STATE_NORMAL) {
1843 pr_debug("%s: Sync not required! (%u)\n", __func__, cfg->state);
1844 return 0;
1845 }
1846
c21e0bbf
MO
1847 mutex_lock(&sync_active);
1848retry:
15305514 1849 cmd = cmd_checkout(afu);
c21e0bbf
MO
1850 if (unlikely(!cmd)) {
1851 retry_cnt++;
1852 udelay(1000 * retry_cnt);
1853 if (retry_cnt < MC_RETRY_CNT)
1854 goto retry;
4392ba49 1855 dev_err(dev, "%s: could not get a free command\n", __func__);
c21e0bbf
MO
1856 rc = -1;
1857 goto out;
1858 }
1859
1860 pr_debug("%s: afu=%p cmd=%p %d\n", __func__, afu, cmd, ctx_hndl_u);
1861
1862 memset(cmd->rcb.cdb, 0, sizeof(cmd->rcb.cdb));
1863
1864 cmd->rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD;
1865 cmd->rcb.port_sel = 0x0; /* NA */
1866 cmd->rcb.lun_id = 0x0; /* NA */
1867 cmd->rcb.data_len = 0x0;
1868 cmd->rcb.data_ea = 0x0;
1869 cmd->rcb.timeout = MC_AFU_SYNC_TIMEOUT;
1870
1871 cmd->rcb.cdb[0] = 0xC0; /* AFU Sync */
1872 cmd->rcb.cdb[1] = mode;
1873
1874 /* The cdb is aligned, no unaligned accessors required */
1786f4a0
MO
1875 *((__be16 *)&cmd->rcb.cdb[2]) = cpu_to_be16(ctx_hndl_u);
1876 *((__be32 *)&cmd->rcb.cdb[4]) = cpu_to_be32(res_hndl_u);
c21e0bbf 1877
15305514 1878 rc = send_cmd(afu, cmd);
c21e0bbf
MO
1879 if (unlikely(rc))
1880 goto out;
1881
15305514 1882 wait_resp(afu, cmd);
c21e0bbf 1883
f15fbf8d 1884 /* Set on timeout */
c21e0bbf
MO
1885 if (unlikely((cmd->sa.ioasc != 0) ||
1886 (cmd->sa.host_use_b[0] & B_ERROR)))
1887 rc = -1;
1888out:
1889 mutex_unlock(&sync_active);
1890 if (cmd)
15305514 1891 cmd_checkin(cmd);
c21e0bbf
MO
1892 pr_debug("%s: returning rc=%d\n", __func__, rc);
1893 return rc;
1894}
1895
1896/**
15305514
MO
1897 * afu_reset() - resets the AFU
1898 * @cfg: Internal structure associated with the host.
c21e0bbf 1899 *
1284fb0c 1900 * Return: 0 on success, -errno on failure
c21e0bbf 1901 */
15305514 1902static int afu_reset(struct cxlflash_cfg *cfg)
c21e0bbf
MO
1903{
1904 int rc = 0;
1905 /* Stop the context before the reset. Since the context is
1906 * no longer available restart it after the reset is complete
1907 */
1908
1909 term_afu(cfg);
1910
1911 rc = init_afu(cfg);
1912
1913 pr_debug("%s: returning rc=%d\n", __func__, rc);
1914 return rc;
1915}
1916
15305514
MO
1917/**
1918 * cxlflash_eh_device_reset_handler() - reset a single LUN
1919 * @scp: SCSI command to send.
1920 *
1921 * Return:
1922 * SUCCESS as defined in scsi/scsi.h
1923 * FAILED as defined in scsi/scsi.h
1924 */
1925static int cxlflash_eh_device_reset_handler(struct scsi_cmnd *scp)
1926{
1927 int rc = SUCCESS;
1928 struct Scsi_Host *host = scp->device->host;
1929 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)host->hostdata;
1930 struct afu *afu = cfg->afu;
1931 int rcr = 0;
1932
1933 pr_debug("%s: (scp=%p) %d/%d/%d/%llu "
1934 "cdb=(%08X-%08X-%08X-%08X)\n", __func__, scp,
1935 host->host_no, scp->device->channel,
1936 scp->device->id, scp->device->lun,
1937 get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
1938 get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
1939 get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
1940 get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
1941
ed486daa 1942retry:
15305514
MO
1943 switch (cfg->state) {
1944 case STATE_NORMAL:
1945 rcr = send_tmf(afu, scp, TMF_LUN_RESET);
1946 if (unlikely(rcr))
1947 rc = FAILED;
1948 break;
1949 case STATE_RESET:
1950 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
ed486daa 1951 goto retry;
15305514
MO
1952 default:
1953 rc = FAILED;
1954 break;
1955 }
1956
1957 pr_debug("%s: returning rc=%d\n", __func__, rc);
1958 return rc;
1959}
1960
1961/**
1962 * cxlflash_eh_host_reset_handler() - reset the host adapter
1963 * @scp: SCSI command from stack identifying host.
1964 *
1965 * Return:
1966 * SUCCESS as defined in scsi/scsi.h
1967 * FAILED as defined in scsi/scsi.h
1968 */
1969static int cxlflash_eh_host_reset_handler(struct scsi_cmnd *scp)
1970{
1971 int rc = SUCCESS;
1972 int rcr = 0;
1973 struct Scsi_Host *host = scp->device->host;
1974 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)host->hostdata;
1975
1976 pr_debug("%s: (scp=%p) %d/%d/%d/%llu "
1977 "cdb=(%08X-%08X-%08X-%08X)\n", __func__, scp,
1978 host->host_no, scp->device->channel,
1979 scp->device->id, scp->device->lun,
1980 get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
1981 get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
1982 get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
1983 get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
1984
1985 switch (cfg->state) {
1986 case STATE_NORMAL:
1987 cfg->state = STATE_RESET;
15305514
MO
1988 cxlflash_mark_contexts_error(cfg);
1989 rcr = afu_reset(cfg);
1990 if (rcr) {
1991 rc = FAILED;
1992 cfg->state = STATE_FAILTERM;
1993 } else
1994 cfg->state = STATE_NORMAL;
1995 wake_up_all(&cfg->reset_waitq);
15305514
MO
1996 break;
1997 case STATE_RESET:
1998 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
1999 if (cfg->state == STATE_NORMAL)
2000 break;
2001 /* fall through */
2002 default:
2003 rc = FAILED;
2004 break;
2005 }
2006
2007 pr_debug("%s: returning rc=%d\n", __func__, rc);
2008 return rc;
2009}
2010
2011/**
2012 * cxlflash_change_queue_depth() - change the queue depth for the device
2013 * @sdev: SCSI device destined for queue depth change.
2014 * @qdepth: Requested queue depth value to set.
2015 *
2016 * The requested queue depth is capped to the maximum supported value.
2017 *
2018 * Return: The actual queue depth set.
2019 */
2020static int cxlflash_change_queue_depth(struct scsi_device *sdev, int qdepth)
2021{
2022
2023 if (qdepth > CXLFLASH_MAX_CMDS_PER_LUN)
2024 qdepth = CXLFLASH_MAX_CMDS_PER_LUN;
2025
2026 scsi_change_queue_depth(sdev, qdepth);
2027 return sdev->queue_depth;
2028}
2029
2030/**
2031 * cxlflash_show_port_status() - queries and presents the current port status
e0f01a21
MO
2032 * @port: Desired port for status reporting.
2033 * @afu: AFU owning the specified port.
15305514
MO
2034 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2035 *
2036 * Return: The size of the ASCII string returned in @buf.
2037 */
e0f01a21 2038static ssize_t cxlflash_show_port_status(u32 port, struct afu *afu, char *buf)
15305514 2039{
15305514 2040 char *disp_status;
15305514 2041 u64 status;
e0f01a21 2042 __be64 __iomem *fc_regs;
15305514 2043
e0f01a21 2044 if (port >= NUM_FC_PORTS)
15305514
MO
2045 return 0;
2046
2047 fc_regs = &afu->afu_map->global.fc_regs[port][0];
e0f01a21
MO
2048 status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
2049 status &= FC_MTIP_STATUS_MASK;
15305514
MO
2050
2051 if (status == FC_MTIP_STATUS_ONLINE)
2052 disp_status = "online";
2053 else if (status == FC_MTIP_STATUS_OFFLINE)
2054 disp_status = "offline";
2055 else
2056 disp_status = "unknown";
2057
e0f01a21
MO
2058 return scnprintf(buf, PAGE_SIZE, "%s\n", disp_status);
2059}
2060
2061/**
2062 * port0_show() - queries and presents the current status of port 0
2063 * @dev: Generic device associated with the host owning the port.
2064 * @attr: Device attribute representing the port.
2065 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2066 *
2067 * Return: The size of the ASCII string returned in @buf.
2068 */
2069static ssize_t port0_show(struct device *dev,
2070 struct device_attribute *attr,
2071 char *buf)
2072{
2073 struct Scsi_Host *shost = class_to_shost(dev);
2074 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata;
2075 struct afu *afu = cfg->afu;
2076
2077 return cxlflash_show_port_status(0, afu, buf);
15305514
MO
2078}
2079
2080/**
e0f01a21
MO
2081 * port1_show() - queries and presents the current status of port 1
2082 * @dev: Generic device associated with the host owning the port.
2083 * @attr: Device attribute representing the port.
2084 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2085 *
2086 * Return: The size of the ASCII string returned in @buf.
2087 */
2088static ssize_t port1_show(struct device *dev,
2089 struct device_attribute *attr,
2090 char *buf)
2091{
2092 struct Scsi_Host *shost = class_to_shost(dev);
2093 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata;
2094 struct afu *afu = cfg->afu;
2095
2096 return cxlflash_show_port_status(1, afu, buf);
2097}
2098
2099/**
2100 * lun_mode_show() - presents the current LUN mode of the host
15305514 2101 * @dev: Generic device associated with the host.
e0f01a21 2102 * @attr: Device attribute representing the LUN mode.
15305514
MO
2103 * @buf: Buffer of length PAGE_SIZE to report back the LUN mode in ASCII.
2104 *
2105 * Return: The size of the ASCII string returned in @buf.
2106 */
e0f01a21
MO
2107static ssize_t lun_mode_show(struct device *dev,
2108 struct device_attribute *attr, char *buf)
15305514
MO
2109{
2110 struct Scsi_Host *shost = class_to_shost(dev);
2111 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata;
2112 struct afu *afu = cfg->afu;
2113
e0f01a21 2114 return scnprintf(buf, PAGE_SIZE, "%u\n", afu->internal_lun);
15305514
MO
2115}
2116
2117/**
e0f01a21 2118 * lun_mode_store() - sets the LUN mode of the host
15305514 2119 * @dev: Generic device associated with the host.
e0f01a21 2120 * @attr: Device attribute representing the LUN mode.
15305514
MO
2121 * @buf: Buffer of length PAGE_SIZE containing the LUN mode in ASCII.
2122 * @count: Length of data resizing in @buf.
2123 *
2124 * The CXL Flash AFU supports a dummy LUN mode where the external
2125 * links and storage are not required. Space on the FPGA is used
2126 * to create 1 or 2 small LUNs which are presented to the system
2127 * as if they were a normal storage device. This feature is useful
2128 * during development and also provides manufacturing with a way
2129 * to test the AFU without an actual device.
2130 *
2131 * 0 = external LUN[s] (default)
2132 * 1 = internal LUN (1 x 64K, 512B blocks, id 0)
2133 * 2 = internal LUN (1 x 64K, 4K blocks, id 0)
2134 * 3 = internal LUN (2 x 32K, 512B blocks, ids 0,1)
2135 * 4 = internal LUN (2 x 32K, 4K blocks, ids 0,1)
2136 *
2137 * Return: The size of the ASCII string returned in @buf.
2138 */
e0f01a21
MO
2139static ssize_t lun_mode_store(struct device *dev,
2140 struct device_attribute *attr,
2141 const char *buf, size_t count)
15305514
MO
2142{
2143 struct Scsi_Host *shost = class_to_shost(dev);
2144 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata;
2145 struct afu *afu = cfg->afu;
2146 int rc;
2147 u32 lun_mode;
2148
2149 rc = kstrtouint(buf, 10, &lun_mode);
2150 if (!rc && (lun_mode < 5) && (lun_mode != afu->internal_lun)) {
2151 afu->internal_lun = lun_mode;
2152 afu_reset(cfg);
2153 scsi_scan_host(cfg->host);
2154 }
2155
2156 return count;
2157}
2158
2159/**
e0f01a21 2160 * ioctl_version_show() - presents the current ioctl version of the host
15305514
MO
2161 * @dev: Generic device associated with the host.
2162 * @attr: Device attribute representing the ioctl version.
2163 * @buf: Buffer of length PAGE_SIZE to report back the ioctl version.
2164 *
2165 * Return: The size of the ASCII string returned in @buf.
2166 */
e0f01a21
MO
2167static ssize_t ioctl_version_show(struct device *dev,
2168 struct device_attribute *attr, char *buf)
15305514
MO
2169{
2170 return scnprintf(buf, PAGE_SIZE, "%u\n", DK_CXLFLASH_VERSION_0);
2171}
2172
2173/**
e0f01a21
MO
2174 * cxlflash_show_port_lun_table() - queries and presents the port LUN table
2175 * @port: Desired port for status reporting.
2176 * @afu: AFU owning the specified port.
2177 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2178 *
2179 * Return: The size of the ASCII string returned in @buf.
2180 */
2181static ssize_t cxlflash_show_port_lun_table(u32 port,
2182 struct afu *afu,
2183 char *buf)
2184{
2185 int i;
2186 ssize_t bytes = 0;
2187 __be64 __iomem *fc_port;
2188
2189 if (port >= NUM_FC_PORTS)
2190 return 0;
2191
2192 fc_port = &afu->afu_map->global.fc_port[port][0];
2193
2194 for (i = 0; i < CXLFLASH_NUM_VLUNS; i++)
2195 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
2196 "%03d: %016llX\n", i, readq_be(&fc_port[i]));
2197 return bytes;
2198}
2199
2200/**
2201 * port0_lun_table_show() - presents the current LUN table of port 0
2202 * @dev: Generic device associated with the host owning the port.
2203 * @attr: Device attribute representing the port.
2204 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2205 *
2206 * Return: The size of the ASCII string returned in @buf.
2207 */
2208static ssize_t port0_lun_table_show(struct device *dev,
2209 struct device_attribute *attr,
2210 char *buf)
2211{
2212 struct Scsi_Host *shost = class_to_shost(dev);
2213 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata;
2214 struct afu *afu = cfg->afu;
2215
2216 return cxlflash_show_port_lun_table(0, afu, buf);
2217}
2218
2219/**
2220 * port1_lun_table_show() - presents the current LUN table of port 1
2221 * @dev: Generic device associated with the host owning the port.
2222 * @attr: Device attribute representing the port.
2223 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2224 *
2225 * Return: The size of the ASCII string returned in @buf.
2226 */
2227static ssize_t port1_lun_table_show(struct device *dev,
2228 struct device_attribute *attr,
2229 char *buf)
2230{
2231 struct Scsi_Host *shost = class_to_shost(dev);
2232 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata;
2233 struct afu *afu = cfg->afu;
2234
2235 return cxlflash_show_port_lun_table(1, afu, buf);
2236}
2237
2238/**
2239 * mode_show() - presents the current mode of the device
15305514
MO
2240 * @dev: Generic device associated with the device.
2241 * @attr: Device attribute representing the device mode.
2242 * @buf: Buffer of length PAGE_SIZE to report back the dev mode in ASCII.
2243 *
2244 * Return: The size of the ASCII string returned in @buf.
2245 */
e0f01a21
MO
2246static ssize_t mode_show(struct device *dev,
2247 struct device_attribute *attr, char *buf)
15305514
MO
2248{
2249 struct scsi_device *sdev = to_scsi_device(dev);
2250
e0f01a21
MO
2251 return scnprintf(buf, PAGE_SIZE, "%s\n",
2252 sdev->hostdata ? "superpipe" : "legacy");
15305514
MO
2253}
2254
2255/*
2256 * Host attributes
2257 */
e0f01a21
MO
2258static DEVICE_ATTR_RO(port0);
2259static DEVICE_ATTR_RO(port1);
2260static DEVICE_ATTR_RW(lun_mode);
2261static DEVICE_ATTR_RO(ioctl_version);
2262static DEVICE_ATTR_RO(port0_lun_table);
2263static DEVICE_ATTR_RO(port1_lun_table);
15305514
MO
2264
2265static struct device_attribute *cxlflash_host_attrs[] = {
2266 &dev_attr_port0,
2267 &dev_attr_port1,
2268 &dev_attr_lun_mode,
2269 &dev_attr_ioctl_version,
e0f01a21
MO
2270 &dev_attr_port0_lun_table,
2271 &dev_attr_port1_lun_table,
15305514
MO
2272 NULL
2273};
2274
2275/*
2276 * Device attributes
2277 */
e0f01a21 2278static DEVICE_ATTR_RO(mode);
15305514
MO
2279
2280static struct device_attribute *cxlflash_dev_attrs[] = {
2281 &dev_attr_mode,
2282 NULL
2283};
2284
2285/*
2286 * Host template
2287 */
2288static struct scsi_host_template driver_template = {
2289 .module = THIS_MODULE,
2290 .name = CXLFLASH_ADAPTER_NAME,
2291 .info = cxlflash_driver_info,
2292 .ioctl = cxlflash_ioctl,
2293 .proc_name = CXLFLASH_NAME,
2294 .queuecommand = cxlflash_queuecommand,
2295 .eh_device_reset_handler = cxlflash_eh_device_reset_handler,
2296 .eh_host_reset_handler = cxlflash_eh_host_reset_handler,
2297 .change_queue_depth = cxlflash_change_queue_depth,
2298 .cmd_per_lun = 16,
2299 .can_queue = CXLFLASH_MAX_CMDS,
2300 .this_id = -1,
f15fbf8d 2301 .sg_tablesize = SG_NONE, /* No scatter gather support */
15305514
MO
2302 .max_sectors = CXLFLASH_MAX_SECTORS,
2303 .use_clustering = ENABLE_CLUSTERING,
2304 .shost_attrs = cxlflash_host_attrs,
2305 .sdev_attrs = cxlflash_dev_attrs,
2306};
2307
2308/*
2309 * Device dependent values
2310 */
2311static struct dev_dependent_vals dev_corsa_vals = { CXLFLASH_MAX_SECTORS };
a2746fb1 2312static struct dev_dependent_vals dev_flash_gt_vals = { CXLFLASH_MAX_SECTORS };
15305514
MO
2313
2314/*
2315 * PCI device binding table
2316 */
2317static struct pci_device_id cxlflash_pci_table[] = {
2318 {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_CORSA,
2319 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_corsa_vals},
a2746fb1
MK
2320 {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_FLASH_GT,
2321 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_flash_gt_vals},
15305514
MO
2322 {}
2323};
2324
2325MODULE_DEVICE_TABLE(pci, cxlflash_pci_table);
2326
c21e0bbf
MO
2327/**
2328 * cxlflash_worker_thread() - work thread handler for the AFU
2329 * @work: Work structure contained within cxlflash associated with host.
2330 *
2331 * Handles the following events:
2332 * - Link reset which cannot be performed on interrupt context due to
2333 * blocking up to a few seconds
2334 * - Read AFU command room
ef51074a 2335 * - Rescan the host
c21e0bbf
MO
2336 */
2337static void cxlflash_worker_thread(struct work_struct *work)
2338{
5cdac81a
MO
2339 struct cxlflash_cfg *cfg = container_of(work, struct cxlflash_cfg,
2340 work_q);
c21e0bbf 2341 struct afu *afu = cfg->afu;
4392ba49 2342 struct device *dev = &cfg->dev->dev;
c21e0bbf
MO
2343 int port;
2344 ulong lock_flags;
2345
5cdac81a
MO
2346 /* Avoid MMIO if the device has failed */
2347
2348 if (cfg->state != STATE_NORMAL)
2349 return;
2350
c21e0bbf
MO
2351 spin_lock_irqsave(cfg->host->host_lock, lock_flags);
2352
2353 if (cfg->lr_state == LINK_RESET_REQUIRED) {
2354 port = cfg->lr_port;
2355 if (port < 0)
4392ba49
MO
2356 dev_err(dev, "%s: invalid port index %d\n",
2357 __func__, port);
c21e0bbf
MO
2358 else {
2359 spin_unlock_irqrestore(cfg->host->host_lock,
2360 lock_flags);
2361
2362 /* The reset can block... */
2363 afu_link_reset(afu, port,
f15fbf8d 2364 &afu->afu_map->global.fc_regs[port][0]);
c21e0bbf
MO
2365 spin_lock_irqsave(cfg->host->host_lock, lock_flags);
2366 }
2367
2368 cfg->lr_state = LINK_RESET_COMPLETE;
2369 }
2370
2371 if (afu->read_room) {
2372 atomic64_set(&afu->room, readq_be(&afu->host_map->cmd_room));
2373 afu->read_room = false;
2374 }
2375
2376 spin_unlock_irqrestore(cfg->host->host_lock, lock_flags);
ef51074a
MO
2377
2378 if (atomic_dec_if_positive(&cfg->scan_host_needed) >= 0)
2379 scsi_scan_host(cfg->host);
b45cdbaf 2380 kref_put(&afu->mapcount, afu_unmap);
c21e0bbf
MO
2381}
2382
2383/**
2384 * cxlflash_probe() - PCI entry point to add host
2385 * @pdev: PCI device associated with the host.
2386 * @dev_id: PCI device id associated with device.
2387 *
1284fb0c 2388 * Return: 0 on success, -errno on failure
c21e0bbf
MO
2389 */
2390static int cxlflash_probe(struct pci_dev *pdev,
2391 const struct pci_device_id *dev_id)
2392{
2393 struct Scsi_Host *host;
2394 struct cxlflash_cfg *cfg = NULL;
2395 struct device *phys_dev;
2396 struct dev_dependent_vals *ddv;
2397 int rc = 0;
2398
2399 dev_dbg(&pdev->dev, "%s: Found CXLFLASH with IRQ: %d\n",
2400 __func__, pdev->irq);
2401
2402 ddv = (struct dev_dependent_vals *)dev_id->driver_data;
2403 driver_template.max_sectors = ddv->max_sectors;
2404
2405 host = scsi_host_alloc(&driver_template, sizeof(struct cxlflash_cfg));
2406 if (!host) {
2407 dev_err(&pdev->dev, "%s: call to scsi_host_alloc failed!\n",
2408 __func__);
2409 rc = -ENOMEM;
2410 goto out;
2411 }
2412
2413 host->max_id = CXLFLASH_MAX_NUM_TARGETS_PER_BUS;
2414 host->max_lun = CXLFLASH_MAX_NUM_LUNS_PER_TARGET;
2415 host->max_channel = NUM_FC_PORTS - 1;
2416 host->unique_id = host->host_no;
2417 host->max_cmd_len = CXLFLASH_MAX_CDB_LEN;
2418
2419 cfg = (struct cxlflash_cfg *)host->hostdata;
2420 cfg->host = host;
2421 rc = alloc_mem(cfg);
2422 if (rc) {
fa3f2c6e 2423 dev_err(&pdev->dev, "%s: call to alloc_mem failed!\n",
c21e0bbf
MO
2424 __func__);
2425 rc = -ENOMEM;
8b5b1e87 2426 scsi_host_put(cfg->host);
c21e0bbf
MO
2427 goto out;
2428 }
2429
2430 cfg->init_state = INIT_STATE_NONE;
2431 cfg->dev = pdev;
17ead26f 2432 cfg->cxl_fops = cxlflash_cxl_fops;
2cb79266
MO
2433
2434 /*
2435 * The promoted LUNs move to the top of the LUN table. The rest stay
2436 * on the bottom half. The bottom half grows from the end
2437 * (index = 255), whereas the top half grows from the beginning
2438 * (index = 0).
2439 */
2440 cfg->promote_lun_index = 0;
2441 cfg->last_lun_index[0] = CXLFLASH_NUM_VLUNS/2 - 1;
2442 cfg->last_lun_index[1] = CXLFLASH_NUM_VLUNS/2 - 1;
2443
c21e0bbf 2444 cfg->dev_id = (struct pci_device_id *)dev_id;
c21e0bbf
MO
2445
2446 init_waitqueue_head(&cfg->tmf_waitq);
439e85c1 2447 init_waitqueue_head(&cfg->reset_waitq);
c21e0bbf
MO
2448
2449 INIT_WORK(&cfg->work_q, cxlflash_worker_thread);
2450 cfg->lr_state = LINK_RESET_INVALID;
2451 cfg->lr_port = -1;
0d73122c 2452 spin_lock_init(&cfg->tmf_slock);
65be2c79
MO
2453 mutex_init(&cfg->ctx_tbl_list_mutex);
2454 mutex_init(&cfg->ctx_recovery_mutex);
0a27ae51 2455 init_rwsem(&cfg->ioctl_rwsem);
65be2c79
MO
2456 INIT_LIST_HEAD(&cfg->ctx_err_recovery);
2457 INIT_LIST_HEAD(&cfg->lluns);
c21e0bbf
MO
2458
2459 pci_set_drvdata(pdev, cfg);
2460
f15fbf8d
MO
2461 /*
2462 * Use the special service provided to look up the physical
c21e0bbf
MO
2463 * PCI device, since we are called on the probe of the virtual
2464 * PCI host bus (vphb)
2465 */
2466 phys_dev = cxl_get_phys_dev(pdev);
2467 if (!dev_is_pci(phys_dev)) {
4392ba49 2468 dev_err(&pdev->dev, "%s: not a pci dev\n", __func__);
c21e0bbf
MO
2469 rc = -ENODEV;
2470 goto out_remove;
2471 }
2472 cfg->parent_dev = to_pci_dev(phys_dev);
2473
2474 cfg->cxl_afu = cxl_pci_to_afu(pdev);
2475
2476 rc = init_pci(cfg);
2477 if (rc) {
2478 dev_err(&pdev->dev, "%s: call to init_pci "
2479 "failed rc=%d!\n", __func__, rc);
2480 goto out_remove;
2481 }
2482 cfg->init_state = INIT_STATE_PCI;
2483
2484 rc = init_afu(cfg);
2485 if (rc) {
2486 dev_err(&pdev->dev, "%s: call to init_afu "
2487 "failed rc=%d!\n", __func__, rc);
2488 goto out_remove;
2489 }
2490 cfg->init_state = INIT_STATE_AFU;
2491
c21e0bbf
MO
2492 rc = init_scsi(cfg);
2493 if (rc) {
2494 dev_err(&pdev->dev, "%s: call to init_scsi "
2495 "failed rc=%d!\n", __func__, rc);
2496 goto out_remove;
2497 }
2498 cfg->init_state = INIT_STATE_SCSI;
2499
2500out:
2501 pr_debug("%s: returning rc=%d\n", __func__, rc);
2502 return rc;
2503
2504out_remove:
2505 cxlflash_remove(pdev);
2506 goto out;
2507}
2508
0a27ae51
MO
2509/**
2510 * drain_ioctls() - wait until all currently executing ioctls have completed
2511 * @cfg: Internal structure associated with the host.
2512 *
2513 * Obtain write access to read/write semaphore that wraps ioctl
2514 * handling to 'drain' ioctls currently executing.
2515 */
2516static void drain_ioctls(struct cxlflash_cfg *cfg)
2517{
2518 down_write(&cfg->ioctl_rwsem);
2519 up_write(&cfg->ioctl_rwsem);
2520}
2521
5cdac81a
MO
2522/**
2523 * cxlflash_pci_error_detected() - called when a PCI error is detected
2524 * @pdev: PCI device struct.
2525 * @state: PCI channel state.
2526 *
2527 * Return: PCI_ERS_RESULT_NEED_RESET or PCI_ERS_RESULT_DISCONNECT
2528 */
2529static pci_ers_result_t cxlflash_pci_error_detected(struct pci_dev *pdev,
2530 pci_channel_state_t state)
2531{
65be2c79 2532 int rc = 0;
5cdac81a
MO
2533 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
2534 struct device *dev = &cfg->dev->dev;
2535
2536 dev_dbg(dev, "%s: pdev=%p state=%u\n", __func__, pdev, state);
2537
2538 switch (state) {
2539 case pci_channel_io_frozen:
439e85c1 2540 cfg->state = STATE_RESET;
5cdac81a 2541 scsi_block_requests(cfg->host);
0a27ae51 2542 drain_ioctls(cfg);
65be2c79
MO
2543 rc = cxlflash_mark_contexts_error(cfg);
2544 if (unlikely(rc))
2545 dev_err(dev, "%s: Failed to mark user contexts!(%d)\n",
2546 __func__, rc);
5cdac81a
MO
2547 term_mc(cfg, UNDO_START);
2548 stop_afu(cfg);
5cdac81a
MO
2549 return PCI_ERS_RESULT_NEED_RESET;
2550 case pci_channel_io_perm_failure:
2551 cfg->state = STATE_FAILTERM;
439e85c1 2552 wake_up_all(&cfg->reset_waitq);
5cdac81a
MO
2553 scsi_unblock_requests(cfg->host);
2554 return PCI_ERS_RESULT_DISCONNECT;
2555 default:
2556 break;
2557 }
2558 return PCI_ERS_RESULT_NEED_RESET;
2559}
2560
2561/**
2562 * cxlflash_pci_slot_reset() - called when PCI slot has been reset
2563 * @pdev: PCI device struct.
2564 *
2565 * This routine is called by the pci error recovery code after the PCI
2566 * slot has been reset, just before we should resume normal operations.
2567 *
2568 * Return: PCI_ERS_RESULT_RECOVERED or PCI_ERS_RESULT_DISCONNECT
2569 */
2570static pci_ers_result_t cxlflash_pci_slot_reset(struct pci_dev *pdev)
2571{
2572 int rc = 0;
2573 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
2574 struct device *dev = &cfg->dev->dev;
2575
2576 dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev);
2577
2578 rc = init_afu(cfg);
2579 if (unlikely(rc)) {
2580 dev_err(dev, "%s: EEH recovery failed! (%d)\n", __func__, rc);
2581 return PCI_ERS_RESULT_DISCONNECT;
2582 }
2583
2584 return PCI_ERS_RESULT_RECOVERED;
2585}
2586
2587/**
2588 * cxlflash_pci_resume() - called when normal operation can resume
2589 * @pdev: PCI device struct
2590 */
2591static void cxlflash_pci_resume(struct pci_dev *pdev)
2592{
2593 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
2594 struct device *dev = &cfg->dev->dev;
2595
2596 dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev);
2597
2598 cfg->state = STATE_NORMAL;
439e85c1 2599 wake_up_all(&cfg->reset_waitq);
5cdac81a
MO
2600 scsi_unblock_requests(cfg->host);
2601}
2602
2603static const struct pci_error_handlers cxlflash_err_handler = {
2604 .error_detected = cxlflash_pci_error_detected,
2605 .slot_reset = cxlflash_pci_slot_reset,
2606 .resume = cxlflash_pci_resume,
2607};
2608
c21e0bbf
MO
2609/*
2610 * PCI device structure
2611 */
2612static struct pci_driver cxlflash_driver = {
2613 .name = CXLFLASH_NAME,
2614 .id_table = cxlflash_pci_table,
2615 .probe = cxlflash_probe,
2616 .remove = cxlflash_remove,
5cdac81a 2617 .err_handler = &cxlflash_err_handler,
c21e0bbf
MO
2618};
2619
2620/**
2621 * init_cxlflash() - module entry point
2622 *
1284fb0c 2623 * Return: 0 on success, -errno on failure
c21e0bbf
MO
2624 */
2625static int __init init_cxlflash(void)
2626{
85599218 2627 pr_info("%s: %s\n", __func__, CXLFLASH_ADAPTER_NAME);
c21e0bbf 2628
65be2c79
MO
2629 cxlflash_list_init();
2630
c21e0bbf
MO
2631 return pci_register_driver(&cxlflash_driver);
2632}
2633
2634/**
2635 * exit_cxlflash() - module exit point
2636 */
2637static void __exit exit_cxlflash(void)
2638{
65be2c79
MO
2639 cxlflash_term_global_luns();
2640 cxlflash_free_errpage();
2641
c21e0bbf
MO
2642 pci_unregister_driver(&cxlflash_driver);
2643}
2644
2645module_init(init_cxlflash);
2646module_exit(exit_cxlflash);