cxlflash: Fix function prolog parameters and return codes
[linux-2.6-block.git] / drivers / scsi / cxlflash / main.c
CommitLineData
c21e0bbf
MO
1/*
2 * CXL Flash Device Driver
3 *
4 * Written by: Manoj N. Kumar <manoj@linux.vnet.ibm.com>, IBM Corporation
5 * Matthew R. Ochs <mrochs@linux.vnet.ibm.com>, IBM Corporation
6 *
7 * Copyright (C) 2015 IBM Corporation
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
13 */
14
15#include <linux/delay.h>
16#include <linux/list.h>
17#include <linux/module.h>
18#include <linux/pci.h>
19
20#include <asm/unaligned.h>
21
22#include <misc/cxl.h>
23
24#include <scsi/scsi_cmnd.h>
25#include <scsi/scsi_host.h>
65be2c79 26#include <uapi/scsi/cxlflash_ioctl.h>
c21e0bbf
MO
27
28#include "main.h"
29#include "sislite.h"
30#include "common.h"
31
32MODULE_DESCRIPTION(CXLFLASH_ADAPTER_NAME);
33MODULE_AUTHOR("Manoj N. Kumar <manoj@linux.vnet.ibm.com>");
34MODULE_AUTHOR("Matthew R. Ochs <mrochs@linux.vnet.ibm.com>");
35MODULE_LICENSE("GPL");
36
37
38/**
15305514 39 * cmd_checkout() - checks out an AFU command
c21e0bbf
MO
40 * @afu: AFU to checkout from.
41 *
42 * Commands are checked out in a round-robin fashion. Note that since
43 * the command pool is larger than the hardware queue, the majority of
44 * times we will only loop once or twice before getting a command. The
45 * buffer and CDB within the command are initialized (zeroed) prior to
46 * returning.
47 *
48 * Return: The checked out command or NULL when command pool is empty.
49 */
15305514 50static struct afu_cmd *cmd_checkout(struct afu *afu)
c21e0bbf
MO
51{
52 int k, dec = CXLFLASH_NUM_CMDS;
53 struct afu_cmd *cmd;
54
55 while (dec--) {
56 k = (afu->cmd_couts++ & (CXLFLASH_NUM_CMDS - 1));
57
58 cmd = &afu->cmd[k];
59
60 if (!atomic_dec_if_positive(&cmd->free)) {
4392ba49
MO
61 pr_devel("%s: returning found index=%d cmd=%p\n",
62 __func__, cmd->slot, cmd);
c21e0bbf
MO
63 memset(cmd->buf, 0, CMD_BUFSIZE);
64 memset(cmd->rcb.cdb, 0, sizeof(cmd->rcb.cdb));
65 return cmd;
66 }
67 }
68
69 return NULL;
70}
71
72/**
15305514 73 * cmd_checkin() - checks in an AFU command
c21e0bbf
MO
74 * @cmd: AFU command to checkin.
75 *
76 * Safe to pass commands that have already been checked in. Several
77 * internal tracking fields are reset as part of the checkin. Note
78 * that these are intentionally reset prior to toggling the free bit
79 * to avoid clobbering values in the event that the command is checked
80 * out right away.
81 */
15305514 82static void cmd_checkin(struct afu_cmd *cmd)
c21e0bbf
MO
83{
84 cmd->rcb.scp = NULL;
85 cmd->rcb.timeout = 0;
86 cmd->sa.ioasc = 0;
87 cmd->cmd_tmf = false;
88 cmd->sa.host_use[0] = 0; /* clears both completion and retry bytes */
89
90 if (unlikely(atomic_inc_return(&cmd->free) != 1)) {
91 pr_err("%s: Freeing cmd (%d) that is not in use!\n",
92 __func__, cmd->slot);
93 return;
94 }
95
4392ba49 96 pr_devel("%s: released cmd %p index=%d\n", __func__, cmd, cmd->slot);
c21e0bbf
MO
97}
98
99/**
100 * process_cmd_err() - command error handler
101 * @cmd: AFU command that experienced the error.
102 * @scp: SCSI command associated with the AFU command in error.
103 *
104 * Translates error bits from AFU command to SCSI command results.
105 */
106static void process_cmd_err(struct afu_cmd *cmd, struct scsi_cmnd *scp)
107{
108 struct sisl_ioarcb *ioarcb;
109 struct sisl_ioasa *ioasa;
8396012f 110 u32 resid;
c21e0bbf
MO
111
112 if (unlikely(!cmd))
113 return;
114
115 ioarcb = &(cmd->rcb);
116 ioasa = &(cmd->sa);
117
118 if (ioasa->rc.flags & SISL_RC_FLAGS_UNDERRUN) {
8396012f
MO
119 resid = ioasa->resid;
120 scsi_set_resid(scp, resid);
121 pr_debug("%s: cmd underrun cmd = %p scp = %p, resid = %d\n",
122 __func__, cmd, scp, resid);
c21e0bbf
MO
123 }
124
125 if (ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN) {
126 pr_debug("%s: cmd underrun cmd = %p scp = %p\n",
127 __func__, cmd, scp);
128 scp->result = (DID_ERROR << 16);
129 }
130
131 pr_debug("%s: cmd failed afu_rc=%d scsi_rc=%d fc_rc=%d "
4392ba49 132 "afu_extra=0x%X, scsi_extra=0x%X, fc_extra=0x%X\n",
c21e0bbf
MO
133 __func__, ioasa->rc.afu_rc, ioasa->rc.scsi_rc,
134 ioasa->rc.fc_rc, ioasa->afu_extra, ioasa->scsi_extra,
135 ioasa->fc_extra);
136
137 if (ioasa->rc.scsi_rc) {
138 /* We have a SCSI status */
139 if (ioasa->rc.flags & SISL_RC_FLAGS_SENSE_VALID) {
140 memcpy(scp->sense_buffer, ioasa->sense_data,
141 SISL_SENSE_DATA_LEN);
142 scp->result = ioasa->rc.scsi_rc;
143 } else
144 scp->result = ioasa->rc.scsi_rc | (DID_ERROR << 16);
145 }
146
147 /*
148 * We encountered an error. Set scp->result based on nature
149 * of error.
150 */
151 if (ioasa->rc.fc_rc) {
152 /* We have an FC status */
153 switch (ioasa->rc.fc_rc) {
154 case SISL_FC_RC_LINKDOWN:
155 scp->result = (DID_REQUEUE << 16);
156 break;
157 case SISL_FC_RC_RESID:
158 /* This indicates an FCP resid underrun */
159 if (!(ioasa->rc.flags & SISL_RC_FLAGS_OVERRUN)) {
160 /* If the SISL_RC_FLAGS_OVERRUN flag was set,
161 * then we will handle this error else where.
162 * If not then we must handle it here.
8396012f 163 * This is probably an AFU bug.
c21e0bbf
MO
164 */
165 scp->result = (DID_ERROR << 16);
166 }
167 break;
168 case SISL_FC_RC_RESIDERR:
169 /* Resid mismatch between adapter and device */
170 case SISL_FC_RC_TGTABORT:
171 case SISL_FC_RC_ABORTOK:
172 case SISL_FC_RC_ABORTFAIL:
173 case SISL_FC_RC_NOLOGI:
174 case SISL_FC_RC_ABORTPEND:
175 case SISL_FC_RC_WRABORTPEND:
176 case SISL_FC_RC_NOEXP:
177 case SISL_FC_RC_INUSE:
178 scp->result = (DID_ERROR << 16);
179 break;
180 }
181 }
182
183 if (ioasa->rc.afu_rc) {
184 /* We have an AFU error */
185 switch (ioasa->rc.afu_rc) {
186 case SISL_AFU_RC_NO_CHANNELS:
8396012f 187 scp->result = (DID_NO_CONNECT << 16);
c21e0bbf
MO
188 break;
189 case SISL_AFU_RC_DATA_DMA_ERR:
190 switch (ioasa->afu_extra) {
191 case SISL_AFU_DMA_ERR_PAGE_IN:
192 /* Retry */
193 scp->result = (DID_IMM_RETRY << 16);
194 break;
195 case SISL_AFU_DMA_ERR_INVALID_EA:
196 default:
197 scp->result = (DID_ERROR << 16);
198 }
199 break;
200 case SISL_AFU_RC_OUT_OF_DATA_BUFS:
201 /* Retry */
202 scp->result = (DID_ALLOC_FAILURE << 16);
203 break;
204 default:
205 scp->result = (DID_ERROR << 16);
206 }
207 }
208}
209
210/**
211 * cmd_complete() - command completion handler
212 * @cmd: AFU command that has completed.
213 *
214 * Prepares and submits command that has either completed or timed out to
215 * the SCSI stack. Checks AFU command back into command pool for non-internal
216 * (rcb.scp populated) commands.
217 */
218static void cmd_complete(struct afu_cmd *cmd)
219{
220 struct scsi_cmnd *scp;
c21e0bbf
MO
221 ulong lock_flags;
222 struct afu *afu = cmd->parent;
223 struct cxlflash_cfg *cfg = afu->parent;
224 bool cmd_is_tmf;
225
226 spin_lock_irqsave(&cmd->slock, lock_flags);
227 cmd->sa.host_use_b[0] |= B_DONE;
228 spin_unlock_irqrestore(&cmd->slock, lock_flags);
229
230 if (cmd->rcb.scp) {
231 scp = cmd->rcb.scp;
8396012f 232 if (unlikely(cmd->sa.ioasc))
c21e0bbf
MO
233 process_cmd_err(cmd, scp);
234 else
235 scp->result = (DID_OK << 16);
236
c21e0bbf 237 cmd_is_tmf = cmd->cmd_tmf;
15305514 238 cmd_checkin(cmd); /* Don't use cmd after here */
c21e0bbf 239
4392ba49
MO
240 pr_debug_ratelimited("%s: calling scsi_done scp=%p result=%X "
241 "ioasc=%d\n", __func__, scp, scp->result,
242 cmd->sa.ioasc);
c21e0bbf 243
c21e0bbf
MO
244 scsi_dma_unmap(scp);
245 scp->scsi_done(scp);
246
247 if (cmd_is_tmf) {
018d1dc9 248 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
c21e0bbf
MO
249 cfg->tmf_active = false;
250 wake_up_all_locked(&cfg->tmf_waitq);
018d1dc9 251 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
c21e0bbf
MO
252 }
253 } else
254 complete(&cmd->cevent);
255}
256
15305514
MO
257/**
258 * context_reset() - timeout handler for AFU commands
259 * @cmd: AFU command that timed out.
260 *
261 * Sends a reset to the AFU.
262 */
263static void context_reset(struct afu_cmd *cmd)
264{
265 int nretry = 0;
266 u64 rrin = 0x1;
267 u64 room = 0;
268 struct afu *afu = cmd->parent;
269 ulong lock_flags;
270
271 pr_debug("%s: cmd=%p\n", __func__, cmd);
272
273 spin_lock_irqsave(&cmd->slock, lock_flags);
274
275 /* Already completed? */
276 if (cmd->sa.host_use_b[0] & B_DONE) {
277 spin_unlock_irqrestore(&cmd->slock, lock_flags);
278 return;
279 }
280
281 cmd->sa.host_use_b[0] |= (B_DONE | B_ERROR | B_TIMEOUT);
282 spin_unlock_irqrestore(&cmd->slock, lock_flags);
283
284 /*
285 * We really want to send this reset at all costs, so spread
286 * out wait time on successive retries for available room.
287 */
288 do {
289 room = readq_be(&afu->host_map->cmd_room);
290 atomic64_set(&afu->room, room);
291 if (room)
292 goto write_rrin;
293 udelay(nretry);
294 } while (nretry++ < MC_ROOM_RETRY_CNT);
295
296 pr_err("%s: no cmd_room to send reset\n", __func__);
297 return;
298
299write_rrin:
300 nretry = 0;
301 writeq_be(rrin, &afu->host_map->ioarrin);
302 do {
303 rrin = readq_be(&afu->host_map->ioarrin);
304 if (rrin != 0x1)
305 break;
306 /* Double delay each time */
307 udelay(2 ^ nretry);
308 } while (nretry++ < MC_ROOM_RETRY_CNT);
309}
310
311/**
312 * send_cmd() - sends an AFU command
313 * @afu: AFU associated with the host.
314 * @cmd: AFU command to send.
315 *
316 * Return:
1284fb0c 317 * 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
15305514
MO
318 */
319static int send_cmd(struct afu *afu, struct afu_cmd *cmd)
320{
321 struct cxlflash_cfg *cfg = afu->parent;
322 struct device *dev = &cfg->dev->dev;
323 int nretry = 0;
324 int rc = 0;
325 u64 room;
326 long newval;
327
328 /*
329 * This routine is used by critical users such an AFU sync and to
330 * send a task management function (TMF). Thus we want to retry a
331 * bit before returning an error. To avoid the performance penalty
332 * of MMIO, we spread the update of 'room' over multiple commands.
333 */
334retry:
335 newval = atomic64_dec_if_positive(&afu->room);
336 if (!newval) {
337 do {
338 room = readq_be(&afu->host_map->cmd_room);
339 atomic64_set(&afu->room, room);
340 if (room)
341 goto write_ioarrin;
342 udelay(nretry);
343 } while (nretry++ < MC_ROOM_RETRY_CNT);
344
345 dev_err(dev, "%s: no cmd_room to send 0x%X\n",
346 __func__, cmd->rcb.cdb[0]);
347
348 goto no_room;
349 } else if (unlikely(newval < 0)) {
350 /* This should be rare. i.e. Only if two threads race and
351 * decrement before the MMIO read is done. In this case
352 * just benefit from the other thread having updated
353 * afu->room.
354 */
355 if (nretry++ < MC_ROOM_RETRY_CNT) {
356 udelay(nretry);
357 goto retry;
358 }
359
360 goto no_room;
361 }
362
363write_ioarrin:
364 writeq_be((u64)&cmd->rcb, &afu->host_map->ioarrin);
365out:
366 pr_devel("%s: cmd=%p len=%d ea=%p rc=%d\n", __func__, cmd,
367 cmd->rcb.data_len, (void *)cmd->rcb.data_ea, rc);
368 return rc;
369
370no_room:
371 afu->read_room = true;
372 schedule_work(&cfg->work_q);
373 rc = SCSI_MLQUEUE_HOST_BUSY;
374 goto out;
375}
376
377/**
378 * wait_resp() - polls for a response or timeout to a sent AFU command
379 * @afu: AFU associated with the host.
380 * @cmd: AFU command that was sent.
381 */
382static void wait_resp(struct afu *afu, struct afu_cmd *cmd)
383{
384 ulong timeout = msecs_to_jiffies(cmd->rcb.timeout * 2 * 1000);
385
386 timeout = wait_for_completion_timeout(&cmd->cevent, timeout);
387 if (!timeout)
388 context_reset(cmd);
389
390 if (unlikely(cmd->sa.ioasc != 0))
391 pr_err("%s: CMD 0x%X failed, IOASC: flags 0x%X, afu_rc 0x%X, "
392 "scsi_rc 0x%X, fc_rc 0x%X\n", __func__, cmd->rcb.cdb[0],
393 cmd->sa.rc.flags, cmd->sa.rc.afu_rc, cmd->sa.rc.scsi_rc,
394 cmd->sa.rc.fc_rc);
395}
396
c21e0bbf
MO
397/**
398 * send_tmf() - sends a Task Management Function (TMF)
399 * @afu: AFU to checkout from.
400 * @scp: SCSI command from stack.
401 * @tmfcmd: TMF command to send.
402 *
403 * Return:
1284fb0c 404 * 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
c21e0bbf
MO
405 */
406static int send_tmf(struct afu *afu, struct scsi_cmnd *scp, u64 tmfcmd)
407{
408 struct afu_cmd *cmd;
409
410 u32 port_sel = scp->device->channel + 1;
411 short lflag = 0;
412 struct Scsi_Host *host = scp->device->host;
413 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)host->hostdata;
4392ba49 414 struct device *dev = &cfg->dev->dev;
c21e0bbf
MO
415 ulong lock_flags;
416 int rc = 0;
018d1dc9 417 ulong to;
c21e0bbf 418
15305514 419 cmd = cmd_checkout(afu);
c21e0bbf 420 if (unlikely(!cmd)) {
4392ba49 421 dev_err(dev, "%s: could not get a free command\n", __func__);
c21e0bbf
MO
422 rc = SCSI_MLQUEUE_HOST_BUSY;
423 goto out;
424 }
425
018d1dc9
MO
426 /* When Task Management Function is active do not send another */
427 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
c21e0bbf 428 if (cfg->tmf_active)
018d1dc9
MO
429 wait_event_interruptible_lock_irq(cfg->tmf_waitq,
430 !cfg->tmf_active,
431 cfg->tmf_slock);
c21e0bbf
MO
432 cfg->tmf_active = true;
433 cmd->cmd_tmf = true;
018d1dc9 434 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
c21e0bbf
MO
435
436 cmd->rcb.ctx_id = afu->ctx_hndl;
437 cmd->rcb.port_sel = port_sel;
438 cmd->rcb.lun_id = lun_to_lunid(scp->device->lun);
439
440 lflag = SISL_REQ_FLAGS_TMF_CMD;
441
442 cmd->rcb.req_flags = (SISL_REQ_FLAGS_PORT_LUN_ID |
443 SISL_REQ_FLAGS_SUP_UNDERRUN | lflag);
444
445 /* Stash the scp in the reserved field, for reuse during interrupt */
446 cmd->rcb.scp = scp;
447
448 /* Copy the CDB from the cmd passed in */
449 memcpy(cmd->rcb.cdb, &tmfcmd, sizeof(tmfcmd));
450
451 /* Send the command */
15305514 452 rc = send_cmd(afu, cmd);
c21e0bbf 453 if (unlikely(rc)) {
15305514 454 cmd_checkin(cmd);
018d1dc9 455 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
c21e0bbf 456 cfg->tmf_active = false;
018d1dc9 457 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
c21e0bbf
MO
458 goto out;
459 }
460
018d1dc9
MO
461 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
462 to = msecs_to_jiffies(5000);
463 to = wait_event_interruptible_lock_irq_timeout(cfg->tmf_waitq,
464 !cfg->tmf_active,
465 cfg->tmf_slock,
466 to);
467 if (!to) {
468 cfg->tmf_active = false;
469 dev_err(dev, "%s: TMF timed out!\n", __func__);
470 rc = -1;
471 }
472 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
c21e0bbf
MO
473out:
474 return rc;
475}
476
477/**
478 * cxlflash_driver_info() - information handler for this host driver
479 * @host: SCSI host associated with device.
480 *
481 * Return: A string describing the device.
482 */
483static const char *cxlflash_driver_info(struct Scsi_Host *host)
484{
485 return CXLFLASH_ADAPTER_NAME;
486}
487
488/**
489 * cxlflash_queuecommand() - sends a mid-layer request
490 * @host: SCSI host associated with device.
491 * @scp: SCSI command to send.
492 *
1284fb0c 493 * Return: 0 on success, SCSI_MLQUEUE_HOST_BUSY on failure
c21e0bbf
MO
494 */
495static int cxlflash_queuecommand(struct Scsi_Host *host, struct scsi_cmnd *scp)
496{
497 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)host->hostdata;
498 struct afu *afu = cfg->afu;
4392ba49 499 struct device *dev = &cfg->dev->dev;
c21e0bbf
MO
500 struct afu_cmd *cmd;
501 u32 port_sel = scp->device->channel + 1;
502 int nseg, i, ncount;
503 struct scatterlist *sg;
504 ulong lock_flags;
505 short lflag = 0;
506 int rc = 0;
507
4392ba49
MO
508 dev_dbg_ratelimited(dev, "%s: (scp=%p) %d/%d/%d/%llu "
509 "cdb=(%08X-%08X-%08X-%08X)\n",
510 __func__, scp, host->host_no, scp->device->channel,
511 scp->device->id, scp->device->lun,
512 get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
513 get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
514 get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
515 get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
c21e0bbf 516
018d1dc9
MO
517 /*
518 * If a Task Management Function is active, wait for it to complete
c21e0bbf
MO
519 * before continuing with regular commands.
520 */
018d1dc9 521 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
c21e0bbf 522 if (cfg->tmf_active) {
018d1dc9 523 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
c21e0bbf
MO
524 rc = SCSI_MLQUEUE_HOST_BUSY;
525 goto out;
526 }
018d1dc9 527 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
c21e0bbf 528
5cdac81a 529 switch (cfg->state) {
439e85c1 530 case STATE_RESET:
4392ba49 531 dev_dbg_ratelimited(dev, "%s: device is in reset!\n", __func__);
5cdac81a
MO
532 rc = SCSI_MLQUEUE_HOST_BUSY;
533 goto out;
534 case STATE_FAILTERM:
4392ba49 535 dev_dbg_ratelimited(dev, "%s: device has failed!\n", __func__);
5cdac81a
MO
536 scp->result = (DID_NO_CONNECT << 16);
537 scp->scsi_done(scp);
538 rc = 0;
539 goto out;
540 default:
541 break;
542 }
543
15305514 544 cmd = cmd_checkout(afu);
c21e0bbf 545 if (unlikely(!cmd)) {
4392ba49 546 dev_err(dev, "%s: could not get a free command\n", __func__);
c21e0bbf
MO
547 rc = SCSI_MLQUEUE_HOST_BUSY;
548 goto out;
549 }
550
551 cmd->rcb.ctx_id = afu->ctx_hndl;
552 cmd->rcb.port_sel = port_sel;
553 cmd->rcb.lun_id = lun_to_lunid(scp->device->lun);
554
555 if (scp->sc_data_direction == DMA_TO_DEVICE)
556 lflag = SISL_REQ_FLAGS_HOST_WRITE;
557 else
558 lflag = SISL_REQ_FLAGS_HOST_READ;
559
560 cmd->rcb.req_flags = (SISL_REQ_FLAGS_PORT_LUN_ID |
561 SISL_REQ_FLAGS_SUP_UNDERRUN | lflag);
562
563 /* Stash the scp in the reserved field, for reuse during interrupt */
564 cmd->rcb.scp = scp;
565
566 nseg = scsi_dma_map(scp);
567 if (unlikely(nseg < 0)) {
4392ba49 568 dev_err(dev, "%s: Fail DMA map! nseg=%d\n",
c21e0bbf
MO
569 __func__, nseg);
570 rc = SCSI_MLQUEUE_HOST_BUSY;
571 goto out;
572 }
573
574 ncount = scsi_sg_count(scp);
575 scsi_for_each_sg(scp, sg, ncount, i) {
576 cmd->rcb.data_len = sg_dma_len(sg);
577 cmd->rcb.data_ea = sg_dma_address(sg);
578 }
579
580 /* Copy the CDB from the scsi_cmnd passed in */
581 memcpy(cmd->rcb.cdb, scp->cmnd, sizeof(cmd->rcb.cdb));
582
583 /* Send the command */
15305514 584 rc = send_cmd(afu, cmd);
c21e0bbf 585 if (unlikely(rc)) {
15305514 586 cmd_checkin(cmd);
c21e0bbf
MO
587 scsi_dma_unmap(scp);
588 }
589
590out:
4392ba49 591 pr_devel("%s: returning rc=%d\n", __func__, rc);
c21e0bbf
MO
592 return rc;
593}
594
595/**
15305514 596 * cxlflash_wait_for_pci_err_recovery() - wait for error recovery during probe
1284fb0c 597 * @cfg: Internal structure associated with the host.
c21e0bbf 598 */
15305514 599static void cxlflash_wait_for_pci_err_recovery(struct cxlflash_cfg *cfg)
c21e0bbf 600{
15305514 601 struct pci_dev *pdev = cfg->dev;
c21e0bbf 602
15305514
MO
603 if (pci_channel_offline(pdev))
604 wait_event_timeout(cfg->reset_waitq,
605 !pci_channel_offline(pdev),
606 CXLFLASH_PCI_ERROR_RECOVERY_TIMEOUT);
c21e0bbf
MO
607}
608
609/**
15305514 610 * free_mem() - free memory associated with the AFU
1284fb0c 611 * @cfg: Internal structure associated with the host.
c21e0bbf 612 */
15305514 613static void free_mem(struct cxlflash_cfg *cfg)
c21e0bbf 614{
15305514
MO
615 int i;
616 char *buf = NULL;
617 struct afu *afu = cfg->afu;
c21e0bbf 618
15305514
MO
619 if (cfg->afu) {
620 for (i = 0; i < CXLFLASH_NUM_CMDS; i++) {
621 buf = afu->cmd[i].buf;
622 if (!((u64)buf & (PAGE_SIZE - 1)))
623 free_page((ulong)buf);
624 }
c21e0bbf 625
15305514
MO
626 free_pages((ulong)afu, get_order(sizeof(struct afu)));
627 cfg->afu = NULL;
5cdac81a 628 }
c21e0bbf
MO
629}
630
631/**
15305514 632 * stop_afu() - stops the AFU command timers and unmaps the MMIO space
1284fb0c 633 * @cfg: Internal structure associated with the host.
c21e0bbf 634 *
15305514 635 * Safe to call with AFU in a partially allocated/initialized state.
c21e0bbf 636 */
15305514 637static void stop_afu(struct cxlflash_cfg *cfg)
c21e0bbf 638{
15305514
MO
639 int i;
640 struct afu *afu = cfg->afu;
c21e0bbf 641
15305514
MO
642 if (likely(afu)) {
643 for (i = 0; i < CXLFLASH_NUM_CMDS; i++)
644 complete(&afu->cmd[i].cevent);
c21e0bbf
MO
645
646 if (likely(afu->afu_map)) {
647 cxl_psa_unmap((void *)afu->afu_map);
648 afu->afu_map = NULL;
649 }
650 }
651}
652
653/**
654 * term_mc() - terminates the master context
1284fb0c 655 * @cfg: Internal structure associated with the host.
c21e0bbf
MO
656 * @level: Depth of allocation, where to begin waterfall tear down.
657 *
658 * Safe to call with AFU/MC in partially allocated/initialized state.
659 */
660static void term_mc(struct cxlflash_cfg *cfg, enum undo_level level)
661{
662 int rc = 0;
663 struct afu *afu = cfg->afu;
4392ba49 664 struct device *dev = &cfg->dev->dev;
c21e0bbf
MO
665
666 if (!afu || !cfg->mcctx) {
4392ba49 667 dev_err(dev, "%s: returning from term_mc with NULL afu or MC\n",
c21e0bbf
MO
668 __func__);
669 return;
670 }
671
672 switch (level) {
673 case UNDO_START:
674 rc = cxl_stop_context(cfg->mcctx);
675 BUG_ON(rc);
676 case UNMAP_THREE:
677 cxl_unmap_afu_irq(cfg->mcctx, 3, afu);
678 case UNMAP_TWO:
679 cxl_unmap_afu_irq(cfg->mcctx, 2, afu);
680 case UNMAP_ONE:
681 cxl_unmap_afu_irq(cfg->mcctx, 1, afu);
682 case FREE_IRQ:
683 cxl_free_afu_irqs(cfg->mcctx);
684 case RELEASE_CONTEXT:
685 cfg->mcctx = NULL;
686 }
687}
688
689/**
690 * term_afu() - terminates the AFU
1284fb0c 691 * @cfg: Internal structure associated with the host.
c21e0bbf
MO
692 *
693 * Safe to call with AFU/MC in partially allocated/initialized state.
694 */
695static void term_afu(struct cxlflash_cfg *cfg)
696{
697 term_mc(cfg, UNDO_START);
698
699 if (cfg->afu)
700 stop_afu(cfg);
701
702 pr_debug("%s: returning\n", __func__);
703}
704
705/**
706 * cxlflash_remove() - PCI entry point to tear down host
707 * @pdev: PCI device associated with the host.
708 *
709 * Safe to use as a cleanup in partially allocated/initialized state.
710 */
711static void cxlflash_remove(struct pci_dev *pdev)
712{
713 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
714 ulong lock_flags;
715
716 /* If a Task Management Function is active, wait for it to complete
717 * before continuing with remove.
718 */
018d1dc9 719 spin_lock_irqsave(&cfg->tmf_slock, lock_flags);
c21e0bbf 720 if (cfg->tmf_active)
018d1dc9
MO
721 wait_event_interruptible_lock_irq(cfg->tmf_waitq,
722 !cfg->tmf_active,
723 cfg->tmf_slock);
724 spin_unlock_irqrestore(&cfg->tmf_slock, lock_flags);
c21e0bbf 725
5cdac81a 726 cfg->state = STATE_FAILTERM;
65be2c79 727 cxlflash_stop_term_user_contexts(cfg);
5cdac81a 728
c21e0bbf
MO
729 switch (cfg->init_state) {
730 case INIT_STATE_SCSI:
65be2c79 731 cxlflash_term_local_luns(cfg);
c21e0bbf 732 scsi_remove_host(cfg->host);
c21e0bbf
MO
733 /* Fall through */
734 case INIT_STATE_AFU:
735 term_afu(cfg);
d804621d 736 cancel_work_sync(&cfg->work_q);
c21e0bbf
MO
737 case INIT_STATE_PCI:
738 pci_release_regions(cfg->dev);
739 pci_disable_device(pdev);
740 case INIT_STATE_NONE:
c21e0bbf 741 free_mem(cfg);
8b5b1e87 742 scsi_host_put(cfg->host);
c21e0bbf
MO
743 break;
744 }
745
746 pr_debug("%s: returning\n", __func__);
747}
748
749/**
750 * alloc_mem() - allocates the AFU and its command pool
1284fb0c 751 * @cfg: Internal structure associated with the host.
c21e0bbf
MO
752 *
753 * A partially allocated state remains on failure.
754 *
755 * Return:
756 * 0 on success
757 * -ENOMEM on failure to allocate memory
758 */
759static int alloc_mem(struct cxlflash_cfg *cfg)
760{
761 int rc = 0;
762 int i;
763 char *buf = NULL;
4392ba49 764 struct device *dev = &cfg->dev->dev;
c21e0bbf
MO
765
766 /* This allocation is about 12K, i.e. only 1 64k page
767 * and upto 4 4k pages
768 */
769 cfg->afu = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
770 get_order(sizeof(struct afu)));
771 if (unlikely(!cfg->afu)) {
4392ba49
MO
772 dev_err(dev, "%s: cannot get %d free pages\n",
773 __func__, get_order(sizeof(struct afu)));
c21e0bbf
MO
774 rc = -ENOMEM;
775 goto out;
776 }
777 cfg->afu->parent = cfg;
778 cfg->afu->afu_map = NULL;
779
780 for (i = 0; i < CXLFLASH_NUM_CMDS; buf += CMD_BUFSIZE, i++) {
781 if (!((u64)buf & (PAGE_SIZE - 1))) {
782 buf = (void *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
783 if (unlikely(!buf)) {
4392ba49
MO
784 dev_err(dev,
785 "%s: Allocate command buffers fail!\n",
c21e0bbf
MO
786 __func__);
787 rc = -ENOMEM;
788 free_mem(cfg);
789 goto out;
790 }
791 }
792
793 cfg->afu->cmd[i].buf = buf;
794 atomic_set(&cfg->afu->cmd[i].free, 1);
795 cfg->afu->cmd[i].slot = i;
796 }
797
798out:
799 return rc;
800}
801
802/**
803 * init_pci() - initializes the host as a PCI device
1284fb0c 804 * @cfg: Internal structure associated with the host.
c21e0bbf 805 *
1284fb0c 806 * Return: 0 on success, -errno on failure
c21e0bbf
MO
807 */
808static int init_pci(struct cxlflash_cfg *cfg)
809{
810 struct pci_dev *pdev = cfg->dev;
811 int rc = 0;
812
813 cfg->cxlflash_regs_pci = pci_resource_start(pdev, 0);
814 rc = pci_request_regions(pdev, CXLFLASH_NAME);
815 if (rc < 0) {
816 dev_err(&pdev->dev,
817 "%s: Couldn't register memory range of registers\n",
818 __func__);
819 goto out;
820 }
821
822 rc = pci_enable_device(pdev);
823 if (rc || pci_channel_offline(pdev)) {
824 if (pci_channel_offline(pdev)) {
825 cxlflash_wait_for_pci_err_recovery(cfg);
826 rc = pci_enable_device(pdev);
827 }
828
829 if (rc) {
830 dev_err(&pdev->dev, "%s: Cannot enable adapter\n",
831 __func__);
832 cxlflash_wait_for_pci_err_recovery(cfg);
833 goto out_release_regions;
834 }
835 }
836
837 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
838 if (rc < 0) {
839 dev_dbg(&pdev->dev, "%s: Failed to set 64 bit PCI DMA mask\n",
840 __func__);
841 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
842 }
843
844 if (rc < 0) {
845 dev_err(&pdev->dev, "%s: Failed to set PCI DMA mask\n",
846 __func__);
847 goto out_disable;
848 }
849
850 pci_set_master(pdev);
851
852 if (pci_channel_offline(pdev)) {
853 cxlflash_wait_for_pci_err_recovery(cfg);
854 if (pci_channel_offline(pdev)) {
855 rc = -EIO;
856 goto out_msi_disable;
857 }
858 }
859
860 rc = pci_save_state(pdev);
861
862 if (rc != PCIBIOS_SUCCESSFUL) {
863 dev_err(&pdev->dev, "%s: Failed to save PCI config space\n",
864 __func__);
865 rc = -EIO;
866 goto cleanup_nolog;
867 }
868
869out:
870 pr_debug("%s: returning rc=%d\n", __func__, rc);
871 return rc;
872
873cleanup_nolog:
874out_msi_disable:
875 cxlflash_wait_for_pci_err_recovery(cfg);
876out_disable:
877 pci_disable_device(pdev);
878out_release_regions:
879 pci_release_regions(pdev);
880 goto out;
881
882}
883
884/**
885 * init_scsi() - adds the host to the SCSI stack and kicks off host scan
1284fb0c 886 * @cfg: Internal structure associated with the host.
c21e0bbf 887 *
1284fb0c 888 * Return: 0 on success, -errno on failure
c21e0bbf
MO
889 */
890static int init_scsi(struct cxlflash_cfg *cfg)
891{
892 struct pci_dev *pdev = cfg->dev;
893 int rc = 0;
894
895 rc = scsi_add_host(cfg->host, &pdev->dev);
896 if (rc) {
897 dev_err(&pdev->dev, "%s: scsi_add_host failed (rc=%d)\n",
898 __func__, rc);
899 goto out;
900 }
901
902 scsi_scan_host(cfg->host);
903
904out:
905 pr_debug("%s: returning rc=%d\n", __func__, rc);
906 return rc;
907}
908
909/**
910 * set_port_online() - transitions the specified host FC port to online state
911 * @fc_regs: Top of MMIO region defined for specified port.
912 *
913 * The provided MMIO region must be mapped prior to call. Online state means
914 * that the FC link layer has synced, completed the handshaking process, and
915 * is ready for login to start.
916 */
917static void set_port_online(u64 *fc_regs)
918{
919 u64 cmdcfg;
920
921 cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]);
922 cmdcfg &= (~FC_MTIP_CMDCONFIG_OFFLINE); /* clear OFF_LINE */
923 cmdcfg |= (FC_MTIP_CMDCONFIG_ONLINE); /* set ON_LINE */
924 writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]);
925}
926
927/**
928 * set_port_offline() - transitions the specified host FC port to offline state
929 * @fc_regs: Top of MMIO region defined for specified port.
930 *
931 * The provided MMIO region must be mapped prior to call.
932 */
933static void set_port_offline(u64 *fc_regs)
934{
935 u64 cmdcfg;
936
937 cmdcfg = readq_be(&fc_regs[FC_MTIP_CMDCONFIG / 8]);
938 cmdcfg &= (~FC_MTIP_CMDCONFIG_ONLINE); /* clear ON_LINE */
939 cmdcfg |= (FC_MTIP_CMDCONFIG_OFFLINE); /* set OFF_LINE */
940 writeq_be(cmdcfg, &fc_regs[FC_MTIP_CMDCONFIG / 8]);
941}
942
943/**
944 * wait_port_online() - waits for the specified host FC port come online
945 * @fc_regs: Top of MMIO region defined for specified port.
946 * @delay_us: Number of microseconds to delay between reading port status.
947 * @nretry: Number of cycles to retry reading port status.
948 *
949 * The provided MMIO region must be mapped prior to call. This will timeout
950 * when the cable is not plugged in.
951 *
952 * Return:
953 * TRUE (1) when the specified port is online
954 * FALSE (0) when the specified port fails to come online after timeout
955 * -EINVAL when @delay_us is less than 1000
956 */
957static int wait_port_online(u64 *fc_regs, u32 delay_us, u32 nretry)
958{
959 u64 status;
960
961 if (delay_us < 1000) {
962 pr_err("%s: invalid delay specified %d\n", __func__, delay_us);
963 return -EINVAL;
964 }
965
966 do {
967 msleep(delay_us / 1000);
968 status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
969 } while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_ONLINE &&
970 nretry--);
971
972 return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_ONLINE);
973}
974
975/**
976 * wait_port_offline() - waits for the specified host FC port go offline
977 * @fc_regs: Top of MMIO region defined for specified port.
978 * @delay_us: Number of microseconds to delay between reading port status.
979 * @nretry: Number of cycles to retry reading port status.
980 *
981 * The provided MMIO region must be mapped prior to call.
982 *
983 * Return:
984 * TRUE (1) when the specified port is offline
985 * FALSE (0) when the specified port fails to go offline after timeout
986 * -EINVAL when @delay_us is less than 1000
987 */
988static int wait_port_offline(u64 *fc_regs, u32 delay_us, u32 nretry)
989{
990 u64 status;
991
992 if (delay_us < 1000) {
993 pr_err("%s: invalid delay specified %d\n", __func__, delay_us);
994 return -EINVAL;
995 }
996
997 do {
998 msleep(delay_us / 1000);
999 status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
1000 } while ((status & FC_MTIP_STATUS_MASK) != FC_MTIP_STATUS_OFFLINE &&
1001 nretry--);
1002
1003 return ((status & FC_MTIP_STATUS_MASK) == FC_MTIP_STATUS_OFFLINE);
1004}
1005
1006/**
1007 * afu_set_wwpn() - configures the WWPN for the specified host FC port
1008 * @afu: AFU associated with the host that owns the specified FC port.
1009 * @port: Port number being configured.
1010 * @fc_regs: Top of MMIO region defined for specified port.
1011 * @wwpn: The world-wide-port-number previously discovered for port.
1012 *
1013 * The provided MMIO region must be mapped prior to call. As part of the
1014 * sequence to configure the WWPN, the port is toggled offline and then back
1015 * online. This toggling action can cause this routine to delay up to a few
1016 * seconds. When configured to use the internal LUN feature of the AFU, a
1017 * failure to come online is overridden.
1018 *
1019 * Return:
1020 * 0 when the WWPN is successfully written and the port comes back online
1021 * -1 when the port fails to go offline or come back up online
1022 */
1023static int afu_set_wwpn(struct afu *afu, int port, u64 *fc_regs, u64 wwpn)
1024{
964497b3 1025 int rc = 0;
c21e0bbf
MO
1026
1027 set_port_offline(fc_regs);
1028
1029 if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1030 FC_PORT_STATUS_RETRY_CNT)) {
1031 pr_debug("%s: wait on port %d to go offline timed out\n",
1032 __func__, port);
964497b3 1033 rc = -1; /* but continue on to leave the port back online */
c21e0bbf
MO
1034 }
1035
964497b3 1036 if (rc == 0)
c21e0bbf
MO
1037 writeq_be(wwpn, &fc_regs[FC_PNAME / 8]);
1038
964497b3
MO
1039 /* Always return success after programming WWPN */
1040 rc = 0;
1041
c21e0bbf
MO
1042 set_port_online(fc_regs);
1043
1044 if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1045 FC_PORT_STATUS_RETRY_CNT)) {
964497b3
MO
1046 pr_err("%s: wait on port %d to go online timed out\n",
1047 __func__, port);
c21e0bbf
MO
1048 }
1049
964497b3 1050 pr_debug("%s: returning rc=%d\n", __func__, rc);
c21e0bbf 1051
964497b3 1052 return rc;
c21e0bbf
MO
1053}
1054
1055/**
1056 * afu_link_reset() - resets the specified host FC port
1057 * @afu: AFU associated with the host that owns the specified FC port.
1058 * @port: Port number being configured.
1059 * @fc_regs: Top of MMIO region defined for specified port.
1060 *
1061 * The provided MMIO region must be mapped prior to call. The sequence to
1062 * reset the port involves toggling it offline and then back online. This
1063 * action can cause this routine to delay up to a few seconds. An effort
1064 * is made to maintain link with the device by switching to host to use
1065 * the alternate port exclusively while the reset takes place.
1066 * failure to come online is overridden.
1067 */
1068static void afu_link_reset(struct afu *afu, int port, u64 *fc_regs)
1069{
1070 u64 port_sel;
1071
1072 /* first switch the AFU to the other links, if any */
1073 port_sel = readq_be(&afu->afu_map->global.regs.afu_port_sel);
4da74db0 1074 port_sel &= ~(1ULL << port);
c21e0bbf
MO
1075 writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel);
1076 cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC);
1077
1078 set_port_offline(fc_regs);
1079 if (!wait_port_offline(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1080 FC_PORT_STATUS_RETRY_CNT))
1081 pr_err("%s: wait on port %d to go offline timed out\n",
1082 __func__, port);
1083
1084 set_port_online(fc_regs);
1085 if (!wait_port_online(fc_regs, FC_PORT_STATUS_RETRY_INTERVAL_US,
1086 FC_PORT_STATUS_RETRY_CNT))
1087 pr_err("%s: wait on port %d to go online timed out\n",
1088 __func__, port);
1089
1090 /* switch back to include this port */
4da74db0 1091 port_sel |= (1ULL << port);
c21e0bbf
MO
1092 writeq_be(port_sel, &afu->afu_map->global.regs.afu_port_sel);
1093 cxlflash_afu_sync(afu, 0, 0, AFU_GSYNC);
1094
1095 pr_debug("%s: returning port_sel=%lld\n", __func__, port_sel);
1096}
1097
1098/*
1099 * Asynchronous interrupt information table
1100 */
1101static const struct asyc_intr_info ainfo[] = {
1102 {SISL_ASTATUS_FC0_OTHER, "other error", 0, CLR_FC_ERROR | LINK_RESET},
1103 {SISL_ASTATUS_FC0_LOGO, "target initiated LOGO", 0, 0},
1104 {SISL_ASTATUS_FC0_CRC_T, "CRC threshold exceeded", 0, LINK_RESET},
1105 {SISL_ASTATUS_FC0_LOGI_R, "login timed out, retrying", 0, 0},
1106 {SISL_ASTATUS_FC0_LOGI_F, "login failed", 0, CLR_FC_ERROR},
ef51074a 1107 {SISL_ASTATUS_FC0_LOGI_S, "login succeeded", 0, SCAN_HOST},
c21e0bbf 1108 {SISL_ASTATUS_FC0_LINK_DN, "link down", 0, 0},
ef51074a 1109 {SISL_ASTATUS_FC0_LINK_UP, "link up", 0, SCAN_HOST},
c21e0bbf
MO
1110 {SISL_ASTATUS_FC1_OTHER, "other error", 1, CLR_FC_ERROR | LINK_RESET},
1111 {SISL_ASTATUS_FC1_LOGO, "target initiated LOGO", 1, 0},
1112 {SISL_ASTATUS_FC1_CRC_T, "CRC threshold exceeded", 1, LINK_RESET},
1113 {SISL_ASTATUS_FC1_LOGI_R, "login timed out, retrying", 1, 0},
1114 {SISL_ASTATUS_FC1_LOGI_F, "login failed", 1, CLR_FC_ERROR},
ef51074a 1115 {SISL_ASTATUS_FC1_LOGI_S, "login succeeded", 1, SCAN_HOST},
c21e0bbf 1116 {SISL_ASTATUS_FC1_LINK_DN, "link down", 1, 0},
ef51074a 1117 {SISL_ASTATUS_FC1_LINK_UP, "link up", 1, SCAN_HOST},
c21e0bbf
MO
1118 {0x0, "", 0, 0} /* terminator */
1119};
1120
1121/**
1122 * find_ainfo() - locates and returns asynchronous interrupt information
1123 * @status: Status code set by AFU on error.
1124 *
1125 * Return: The located information or NULL when the status code is invalid.
1126 */
1127static const struct asyc_intr_info *find_ainfo(u64 status)
1128{
1129 const struct asyc_intr_info *info;
1130
1131 for (info = &ainfo[0]; info->status; info++)
1132 if (info->status == status)
1133 return info;
1134
1135 return NULL;
1136}
1137
1138/**
1139 * afu_err_intr_init() - clears and initializes the AFU for error interrupts
1140 * @afu: AFU associated with the host.
1141 */
1142static void afu_err_intr_init(struct afu *afu)
1143{
1144 int i;
1145 u64 reg;
1146
1147 /* global async interrupts: AFU clears afu_ctrl on context exit
1148 * if async interrupts were sent to that context. This prevents
1149 * the AFU form sending further async interrupts when
1150 * there is
1151 * nobody to receive them.
1152 */
1153
1154 /* mask all */
1155 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_mask);
1156 /* set LISN# to send and point to master context */
1157 reg = ((u64) (((afu->ctx_hndl << 8) | SISL_MSI_ASYNC_ERROR)) << 40);
1158
1159 if (afu->internal_lun)
1160 reg |= 1; /* Bit 63 indicates local lun */
1161 writeq_be(reg, &afu->afu_map->global.regs.afu_ctrl);
1162 /* clear all */
1163 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear);
1164 /* unmask bits that are of interest */
1165 /* note: afu can send an interrupt after this step */
1166 writeq_be(SISL_ASTATUS_MASK, &afu->afu_map->global.regs.aintr_mask);
1167 /* clear again in case a bit came on after previous clear but before */
1168 /* unmask */
1169 writeq_be(-1ULL, &afu->afu_map->global.regs.aintr_clear);
1170
1171 /* Clear/Set internal lun bits */
1172 reg = readq_be(&afu->afu_map->global.fc_regs[0][FC_CONFIG2 / 8]);
1173 reg &= SISL_FC_INTERNAL_MASK;
1174 if (afu->internal_lun)
1175 reg |= ((u64)(afu->internal_lun - 1) << SISL_FC_INTERNAL_SHIFT);
1176 writeq_be(reg, &afu->afu_map->global.fc_regs[0][FC_CONFIG2 / 8]);
1177
1178 /* now clear FC errors */
1179 for (i = 0; i < NUM_FC_PORTS; i++) {
1180 writeq_be(0xFFFFFFFFU,
1181 &afu->afu_map->global.fc_regs[i][FC_ERROR / 8]);
1182 writeq_be(0, &afu->afu_map->global.fc_regs[i][FC_ERRCAP / 8]);
1183 }
1184
1185 /* sync interrupts for master's IOARRIN write */
1186 /* note that unlike asyncs, there can be no pending sync interrupts */
1187 /* at this time (this is a fresh context and master has not written */
1188 /* IOARRIN yet), so there is nothing to clear. */
1189
1190 /* set LISN#, it is always sent to the context that wrote IOARRIN */
1191 writeq_be(SISL_MSI_SYNC_ERROR, &afu->host_map->ctx_ctrl);
1192 writeq_be(SISL_ISTATUS_MASK, &afu->host_map->intr_mask);
1193}
1194
1195/**
1196 * cxlflash_sync_err_irq() - interrupt handler for synchronous errors
1197 * @irq: Interrupt number.
1198 * @data: Private data provided at interrupt registration, the AFU.
1199 *
1200 * Return: Always return IRQ_HANDLED.
1201 */
1202static irqreturn_t cxlflash_sync_err_irq(int irq, void *data)
1203{
1204 struct afu *afu = (struct afu *)data;
1205 u64 reg;
1206 u64 reg_unmasked;
1207
1208 reg = readq_be(&afu->host_map->intr_status);
1209 reg_unmasked = (reg & SISL_ISTATUS_UNMASK);
1210
1211 if (reg_unmasked == 0UL) {
1212 pr_err("%s: %llX: spurious interrupt, intr_status %016llX\n",
1213 __func__, (u64)afu, reg);
1214 goto cxlflash_sync_err_irq_exit;
1215 }
1216
1217 pr_err("%s: %llX: unexpected interrupt, intr_status %016llX\n",
1218 __func__, (u64)afu, reg);
1219
1220 writeq_be(reg_unmasked, &afu->host_map->intr_clear);
1221
1222cxlflash_sync_err_irq_exit:
1223 pr_debug("%s: returning rc=%d\n", __func__, IRQ_HANDLED);
1224 return IRQ_HANDLED;
1225}
1226
1227/**
1228 * cxlflash_rrq_irq() - interrupt handler for read-response queue (normal path)
1229 * @irq: Interrupt number.
1230 * @data: Private data provided at interrupt registration, the AFU.
1231 *
1232 * Return: Always return IRQ_HANDLED.
1233 */
1234static irqreturn_t cxlflash_rrq_irq(int irq, void *data)
1235{
1236 struct afu *afu = (struct afu *)data;
1237 struct afu_cmd *cmd;
1238 bool toggle = afu->toggle;
1239 u64 entry,
1240 *hrrq_start = afu->hrrq_start,
1241 *hrrq_end = afu->hrrq_end,
1242 *hrrq_curr = afu->hrrq_curr;
1243
1244 /* Process however many RRQ entries that are ready */
1245 while (true) {
1246 entry = *hrrq_curr;
1247
1248 if ((entry & SISL_RESP_HANDLE_T_BIT) != toggle)
1249 break;
1250
1251 cmd = (struct afu_cmd *)(entry & ~SISL_RESP_HANDLE_T_BIT);
1252 cmd_complete(cmd);
1253
1254 /* Advance to next entry or wrap and flip the toggle bit */
1255 if (hrrq_curr < hrrq_end)
1256 hrrq_curr++;
1257 else {
1258 hrrq_curr = hrrq_start;
1259 toggle ^= SISL_RESP_HANDLE_T_BIT;
1260 }
1261 }
1262
1263 afu->hrrq_curr = hrrq_curr;
1264 afu->toggle = toggle;
1265
1266 return IRQ_HANDLED;
1267}
1268
1269/**
1270 * cxlflash_async_err_irq() - interrupt handler for asynchronous errors
1271 * @irq: Interrupt number.
1272 * @data: Private data provided at interrupt registration, the AFU.
1273 *
1274 * Return: Always return IRQ_HANDLED.
1275 */
1276static irqreturn_t cxlflash_async_err_irq(int irq, void *data)
1277{
1278 struct afu *afu = (struct afu *)data;
4392ba49
MO
1279 struct cxlflash_cfg *cfg = afu->parent;
1280 struct device *dev = &cfg->dev->dev;
c21e0bbf
MO
1281 u64 reg_unmasked;
1282 const struct asyc_intr_info *info;
1283 struct sisl_global_map *global = &afu->afu_map->global;
1284 u64 reg;
1285 u8 port;
1286 int i;
1287
c21e0bbf
MO
1288 reg = readq_be(&global->regs.aintr_status);
1289 reg_unmasked = (reg & SISL_ASTATUS_UNMASK);
1290
1291 if (reg_unmasked == 0) {
4392ba49
MO
1292 dev_err(dev, "%s: spurious interrupt, aintr_status 0x%016llX\n",
1293 __func__, reg);
c21e0bbf
MO
1294 goto out;
1295 }
1296
1297 /* it is OK to clear AFU status before FC_ERROR */
1298 writeq_be(reg_unmasked, &global->regs.aintr_clear);
1299
1300 /* check each bit that is on */
1301 for (i = 0; reg_unmasked; i++, reg_unmasked = (reg_unmasked >> 1)) {
1302 info = find_ainfo(1ULL << i);
16798d34 1303 if (((reg_unmasked & 0x1) == 0) || !info)
c21e0bbf
MO
1304 continue;
1305
1306 port = info->port;
1307
4392ba49
MO
1308 dev_err(dev, "%s: FC Port %d -> %s, fc_status 0x%08llX\n",
1309 __func__, port, info->desc,
c21e0bbf
MO
1310 readq_be(&global->fc_regs[port][FC_STATUS / 8]));
1311
1312 /*
1313 * do link reset first, some OTHER errors will set FC_ERROR
1314 * again if cleared before or w/o a reset
1315 */
1316 if (info->action & LINK_RESET) {
4392ba49
MO
1317 dev_err(dev, "%s: FC Port %d: resetting link\n",
1318 __func__, port);
c21e0bbf
MO
1319 cfg->lr_state = LINK_RESET_REQUIRED;
1320 cfg->lr_port = port;
1321 schedule_work(&cfg->work_q);
1322 }
1323
1324 if (info->action & CLR_FC_ERROR) {
1325 reg = readq_be(&global->fc_regs[port][FC_ERROR / 8]);
1326
1327 /*
1328 * since all errors are unmasked, FC_ERROR and FC_ERRCAP
1329 * should be the same and tracing one is sufficient.
1330 */
1331
4392ba49
MO
1332 dev_err(dev, "%s: fc %d: clearing fc_error 0x%08llX\n",
1333 __func__, port, reg);
c21e0bbf
MO
1334
1335 writeq_be(reg, &global->fc_regs[port][FC_ERROR / 8]);
1336 writeq_be(0, &global->fc_regs[port][FC_ERRCAP / 8]);
1337 }
ef51074a
MO
1338
1339 if (info->action & SCAN_HOST) {
1340 atomic_inc(&cfg->scan_host_needed);
1341 schedule_work(&cfg->work_q);
1342 }
c21e0bbf
MO
1343 }
1344
1345out:
4392ba49 1346 dev_dbg(dev, "%s: returning IRQ_HANDLED, afu=%p\n", __func__, afu);
c21e0bbf
MO
1347 return IRQ_HANDLED;
1348}
1349
1350/**
1351 * start_context() - starts the master context
1284fb0c 1352 * @cfg: Internal structure associated with the host.
c21e0bbf
MO
1353 *
1354 * Return: A success or failure value from CXL services.
1355 */
1356static int start_context(struct cxlflash_cfg *cfg)
1357{
1358 int rc = 0;
1359
1360 rc = cxl_start_context(cfg->mcctx,
1361 cfg->afu->work.work_element_descriptor,
1362 NULL);
1363
1364 pr_debug("%s: returning rc=%d\n", __func__, rc);
1365 return rc;
1366}
1367
1368/**
1369 * read_vpd() - obtains the WWPNs from VPD
1284fb0c 1370 * @cfg: Internal structure associated with the host.
c21e0bbf
MO
1371 * @wwpn: Array of size NUM_FC_PORTS to pass back WWPNs
1372 *
1284fb0c 1373 * Return: 0 on success, -errno on failure
c21e0bbf
MO
1374 */
1375static int read_vpd(struct cxlflash_cfg *cfg, u64 wwpn[])
1376{
1377 struct pci_dev *dev = cfg->parent_dev;
1378 int rc = 0;
1379 int ro_start, ro_size, i, j, k;
1380 ssize_t vpd_size;
1381 char vpd_data[CXLFLASH_VPD_LEN];
1382 char tmp_buf[WWPN_BUF_LEN] = { 0 };
1383 char *wwpn_vpd_tags[NUM_FC_PORTS] = { "V5", "V6" };
1384
1385 /* Get the VPD data from the device */
1386 vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data);
1387 if (unlikely(vpd_size <= 0)) {
4392ba49 1388 dev_err(&dev->dev, "%s: Unable to read VPD (size = %ld)\n",
c21e0bbf
MO
1389 __func__, vpd_size);
1390 rc = -ENODEV;
1391 goto out;
1392 }
1393
1394 /* Get the read only section offset */
1395 ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size,
1396 PCI_VPD_LRDT_RO_DATA);
1397 if (unlikely(ro_start < 0)) {
4392ba49
MO
1398 dev_err(&dev->dev, "%s: VPD Read-only data not found\n",
1399 __func__);
c21e0bbf
MO
1400 rc = -ENODEV;
1401 goto out;
1402 }
1403
1404 /* Get the read only section size, cap when extends beyond read VPD */
1405 ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]);
1406 j = ro_size;
1407 i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
1408 if (unlikely((i + j) > vpd_size)) {
1409 pr_debug("%s: Might need to read more VPD (%d > %ld)\n",
1410 __func__, (i + j), vpd_size);
1411 ro_size = vpd_size - i;
1412 }
1413
1414 /*
1415 * Find the offset of the WWPN tag within the read only
1416 * VPD data and validate the found field (partials are
1417 * no good to us). Convert the ASCII data to an integer
1418 * value. Note that we must copy to a temporary buffer
1419 * because the conversion service requires that the ASCII
1420 * string be terminated.
1421 */
1422 for (k = 0; k < NUM_FC_PORTS; k++) {
1423 j = ro_size;
1424 i = ro_start + PCI_VPD_LRDT_TAG_SIZE;
1425
1426 i = pci_vpd_find_info_keyword(vpd_data, i, j, wwpn_vpd_tags[k]);
1427 if (unlikely(i < 0)) {
4392ba49
MO
1428 dev_err(&dev->dev, "%s: Port %d WWPN not found "
1429 "in VPD\n", __func__, k);
c21e0bbf
MO
1430 rc = -ENODEV;
1431 goto out;
1432 }
1433
1434 j = pci_vpd_info_field_size(&vpd_data[i]);
1435 i += PCI_VPD_INFO_FLD_HDR_SIZE;
1436 if (unlikely((i + j > vpd_size) || (j != WWPN_LEN))) {
4392ba49
MO
1437 dev_err(&dev->dev, "%s: Port %d WWPN incomplete or "
1438 "VPD corrupt\n",
c21e0bbf
MO
1439 __func__, k);
1440 rc = -ENODEV;
1441 goto out;
1442 }
1443
1444 memcpy(tmp_buf, &vpd_data[i], WWPN_LEN);
1445 rc = kstrtoul(tmp_buf, WWPN_LEN, (ulong *)&wwpn[k]);
1446 if (unlikely(rc)) {
4392ba49
MO
1447 dev_err(&dev->dev, "%s: Fail to convert port %d WWPN "
1448 "to integer\n", __func__, k);
c21e0bbf
MO
1449 rc = -ENODEV;
1450 goto out;
1451 }
1452 }
1453
1454out:
1455 pr_debug("%s: returning rc=%d\n", __func__, rc);
1456 return rc;
1457}
1458
1459/**
15305514 1460 * init_pcr() - initialize the provisioning and control registers
1284fb0c 1461 * @cfg: Internal structure associated with the host.
c21e0bbf 1462 *
15305514
MO
1463 * Also sets up fast access to the mapped registers and initializes AFU
1464 * command fields that never change.
c21e0bbf 1465 */
15305514 1466static void init_pcr(struct cxlflash_cfg *cfg)
c21e0bbf
MO
1467{
1468 struct afu *afu = cfg->afu;
1469 struct sisl_ctrl_map *ctrl_map;
1470 int i;
1471
1472 for (i = 0; i < MAX_CONTEXT; i++) {
1473 ctrl_map = &afu->afu_map->ctrls[i].ctrl;
1474 /* disrupt any clients that could be running */
1475 /* e. g. clients that survived a master restart */
1476 writeq_be(0, &ctrl_map->rht_start);
1477 writeq_be(0, &ctrl_map->rht_cnt_id);
1478 writeq_be(0, &ctrl_map->ctx_cap);
1479 }
1480
1481 /* copy frequently used fields into afu */
1482 afu->ctx_hndl = (u16) cxl_process_element(cfg->mcctx);
1483 /* ctx_hndl is 16 bits in CAIA */
1484 afu->host_map = &afu->afu_map->hosts[afu->ctx_hndl].host;
1485 afu->ctrl_map = &afu->afu_map->ctrls[afu->ctx_hndl].ctrl;
1486
1487 /* Program the Endian Control for the master context */
1488 writeq_be(SISL_ENDIAN_CTRL, &afu->host_map->endian_ctrl);
1489
1490 /* initialize cmd fields that never change */
1491 for (i = 0; i < CXLFLASH_NUM_CMDS; i++) {
1492 afu->cmd[i].rcb.ctx_id = afu->ctx_hndl;
1493 afu->cmd[i].rcb.msi = SISL_MSI_RRQ_UPDATED;
1494 afu->cmd[i].rcb.rrq = 0x0;
1495 }
1496}
1497
1498/**
1499 * init_global() - initialize AFU global registers
1284fb0c 1500 * @cfg: Internal structure associated with the host.
c21e0bbf 1501 */
15305514 1502static int init_global(struct cxlflash_cfg *cfg)
c21e0bbf
MO
1503{
1504 struct afu *afu = cfg->afu;
4392ba49 1505 struct device *dev = &cfg->dev->dev;
c21e0bbf
MO
1506 u64 wwpn[NUM_FC_PORTS]; /* wwpn of AFU ports */
1507 int i = 0, num_ports = 0;
1508 int rc = 0;
1509 u64 reg;
1510
1511 rc = read_vpd(cfg, &wwpn[0]);
1512 if (rc) {
4392ba49 1513 dev_err(dev, "%s: could not read vpd rc=%d\n", __func__, rc);
c21e0bbf
MO
1514 goto out;
1515 }
1516
1517 pr_debug("%s: wwpn0=0x%llX wwpn1=0x%llX\n", __func__, wwpn[0], wwpn[1]);
1518
1519 /* set up RRQ in AFU for master issued cmds */
1520 writeq_be((u64) afu->hrrq_start, &afu->host_map->rrq_start);
1521 writeq_be((u64) afu->hrrq_end, &afu->host_map->rrq_end);
1522
1523 /* AFU configuration */
1524 reg = readq_be(&afu->afu_map->global.regs.afu_config);
1525 reg |= SISL_AFUCONF_AR_ALL|SISL_AFUCONF_ENDIAN;
1526 /* enable all auto retry options and control endianness */
1527 /* leave others at default: */
1528 /* CTX_CAP write protected, mbox_r does not clear on read and */
1529 /* checker on if dual afu */
1530 writeq_be(reg, &afu->afu_map->global.regs.afu_config);
1531
1532 /* global port select: select either port */
1533 if (afu->internal_lun) {
1534 /* only use port 0 */
1535 writeq_be(PORT0, &afu->afu_map->global.regs.afu_port_sel);
1536 num_ports = NUM_FC_PORTS - 1;
1537 } else {
1538 writeq_be(BOTH_PORTS, &afu->afu_map->global.regs.afu_port_sel);
1539 num_ports = NUM_FC_PORTS;
1540 }
1541
1542 for (i = 0; i < num_ports; i++) {
1543 /* unmask all errors (but they are still masked at AFU) */
1544 writeq_be(0, &afu->afu_map->global.fc_regs[i][FC_ERRMSK / 8]);
1545 /* clear CRC error cnt & set a threshold */
1546 (void)readq_be(&afu->afu_map->global.
1547 fc_regs[i][FC_CNT_CRCERR / 8]);
1548 writeq_be(MC_CRC_THRESH, &afu->afu_map->global.fc_regs[i]
1549 [FC_CRC_THRESH / 8]);
1550
1551 /* set WWPNs. If already programmed, wwpn[i] is 0 */
1552 if (wwpn[i] != 0 &&
1553 afu_set_wwpn(afu, i,
1554 &afu->afu_map->global.fc_regs[i][0],
1555 wwpn[i])) {
4392ba49 1556 dev_err(dev, "%s: failed to set WWPN on port %d\n",
c21e0bbf
MO
1557 __func__, i);
1558 rc = -EIO;
1559 goto out;
1560 }
1561 /* Programming WWPN back to back causes additional
1562 * offline/online transitions and a PLOGI
1563 */
1564 msleep(100);
1565
1566 }
1567
1568 /* set up master's own CTX_CAP to allow real mode, host translation */
1569 /* tbls, afu cmds and read/write GSCSI cmds. */
1570 /* First, unlock ctx_cap write by reading mbox */
1571 (void)readq_be(&afu->ctrl_map->mbox_r); /* unlock ctx_cap */
1572 writeq_be((SISL_CTX_CAP_REAL_MODE | SISL_CTX_CAP_HOST_XLATE |
1573 SISL_CTX_CAP_READ_CMD | SISL_CTX_CAP_WRITE_CMD |
1574 SISL_CTX_CAP_AFU_CMD | SISL_CTX_CAP_GSCSI_CMD),
1575 &afu->ctrl_map->ctx_cap);
1576 /* init heartbeat */
1577 afu->hb = readq_be(&afu->afu_map->global.regs.afu_hb);
1578
1579out:
1580 return rc;
1581}
1582
1583/**
1584 * start_afu() - initializes and starts the AFU
1284fb0c 1585 * @cfg: Internal structure associated with the host.
c21e0bbf
MO
1586 */
1587static int start_afu(struct cxlflash_cfg *cfg)
1588{
1589 struct afu *afu = cfg->afu;
1590 struct afu_cmd *cmd;
1591
1592 int i = 0;
1593 int rc = 0;
1594
1595 for (i = 0; i < CXLFLASH_NUM_CMDS; i++) {
1596 cmd = &afu->cmd[i];
1597
1598 init_completion(&cmd->cevent);
1599 spin_lock_init(&cmd->slock);
1600 cmd->parent = afu;
1601 }
1602
1603 init_pcr(cfg);
1604
1605 /* initialize RRQ pointers */
1606 afu->hrrq_start = &afu->rrq_entry[0];
1607 afu->hrrq_end = &afu->rrq_entry[NUM_RRQ_ENTRY - 1];
1608 afu->hrrq_curr = afu->hrrq_start;
1609 afu->toggle = 1;
1610
1611 rc = init_global(cfg);
1612
1613 pr_debug("%s: returning rc=%d\n", __func__, rc);
1614 return rc;
1615}
1616
1617/**
1618 * init_mc() - create and register as the master context
1284fb0c 1619 * @cfg: Internal structure associated with the host.
c21e0bbf 1620 *
1284fb0c 1621 * Return: 0 on success, -errno on failure
c21e0bbf
MO
1622 */
1623static int init_mc(struct cxlflash_cfg *cfg)
1624{
1625 struct cxl_context *ctx;
1626 struct device *dev = &cfg->dev->dev;
1627 struct afu *afu = cfg->afu;
1628 int rc = 0;
1629 enum undo_level level;
1630
1631 ctx = cxl_get_context(cfg->dev);
1632 if (unlikely(!ctx))
1633 return -ENOMEM;
1634 cfg->mcctx = ctx;
1635
1636 /* Set it up as a master with the CXL */
1637 cxl_set_master(ctx);
1638
1639 /* During initialization reset the AFU to start from a clean slate */
1640 rc = cxl_afu_reset(cfg->mcctx);
1641 if (unlikely(rc)) {
1642 dev_err(dev, "%s: initial AFU reset failed rc=%d\n",
1643 __func__, rc);
1644 level = RELEASE_CONTEXT;
1645 goto out;
1646 }
1647
1648 rc = cxl_allocate_afu_irqs(ctx, 3);
1649 if (unlikely(rc)) {
1650 dev_err(dev, "%s: call to allocate_afu_irqs failed rc=%d!\n",
1651 __func__, rc);
1652 level = RELEASE_CONTEXT;
1653 goto out;
1654 }
1655
1656 rc = cxl_map_afu_irq(ctx, 1, cxlflash_sync_err_irq, afu,
1657 "SISL_MSI_SYNC_ERROR");
1658 if (unlikely(rc <= 0)) {
1659 dev_err(dev, "%s: IRQ 1 (SISL_MSI_SYNC_ERROR) map failed!\n",
1660 __func__);
1661 level = FREE_IRQ;
1662 goto out;
1663 }
1664
1665 rc = cxl_map_afu_irq(ctx, 2, cxlflash_rrq_irq, afu,
1666 "SISL_MSI_RRQ_UPDATED");
1667 if (unlikely(rc <= 0)) {
1668 dev_err(dev, "%s: IRQ 2 (SISL_MSI_RRQ_UPDATED) map failed!\n",
1669 __func__);
1670 level = UNMAP_ONE;
1671 goto out;
1672 }
1673
1674 rc = cxl_map_afu_irq(ctx, 3, cxlflash_async_err_irq, afu,
1675 "SISL_MSI_ASYNC_ERROR");
1676 if (unlikely(rc <= 0)) {
1677 dev_err(dev, "%s: IRQ 3 (SISL_MSI_ASYNC_ERROR) map failed!\n",
1678 __func__);
1679 level = UNMAP_TWO;
1680 goto out;
1681 }
1682
1683 rc = 0;
1684
1685 /* This performs the equivalent of the CXL_IOCTL_START_WORK.
1686 * The CXL_IOCTL_GET_PROCESS_ELEMENT is implicit in the process
1687 * element (pe) that is embedded in the context (ctx)
1688 */
1689 rc = start_context(cfg);
1690 if (unlikely(rc)) {
1691 dev_err(dev, "%s: start context failed rc=%d\n", __func__, rc);
1692 level = UNMAP_THREE;
1693 goto out;
1694 }
1695ret:
1696 pr_debug("%s: returning rc=%d\n", __func__, rc);
1697 return rc;
1698out:
1699 term_mc(cfg, level);
1700 goto ret;
1701}
1702
1703/**
1704 * init_afu() - setup as master context and start AFU
1284fb0c 1705 * @cfg: Internal structure associated with the host.
c21e0bbf
MO
1706 *
1707 * This routine is a higher level of control for configuring the
1708 * AFU on probe and reset paths.
1709 *
1284fb0c 1710 * Return: 0 on success, -errno on failure
c21e0bbf
MO
1711 */
1712static int init_afu(struct cxlflash_cfg *cfg)
1713{
1714 u64 reg;
1715 int rc = 0;
1716 struct afu *afu = cfg->afu;
1717 struct device *dev = &cfg->dev->dev;
1718
5cdac81a
MO
1719 cxl_perst_reloads_same_image(cfg->cxl_afu, true);
1720
c21e0bbf
MO
1721 rc = init_mc(cfg);
1722 if (rc) {
1723 dev_err(dev, "%s: call to init_mc failed, rc=%d!\n",
1724 __func__, rc);
1725 goto err1;
1726 }
1727
1728 /* Map the entire MMIO space of the AFU.
1729 */
1730 afu->afu_map = cxl_psa_map(cfg->mcctx);
1731 if (!afu->afu_map) {
1732 rc = -ENOMEM;
1733 term_mc(cfg, UNDO_START);
1734 dev_err(dev, "%s: call to cxl_psa_map failed!\n", __func__);
1735 goto err1;
1736 }
1737
e5ce067b
MO
1738 /* No byte reverse on reading afu_version or string will be backwards */
1739 reg = readq(&afu->afu_map->global.regs.afu_version);
1740 memcpy(afu->version, &reg, sizeof(reg));
c21e0bbf
MO
1741 afu->interface_version =
1742 readq_be(&afu->afu_map->global.regs.interface_version);
e5ce067b
MO
1743 if ((afu->interface_version + 1) == 0) {
1744 pr_err("Back level AFU, please upgrade. AFU version %s "
1745 "interface version 0x%llx\n", afu->version,
1746 afu->interface_version);
1747 rc = -EINVAL;
1748 goto err1;
1749 } else
1750 pr_debug("%s: afu version %s, interface version 0x%llX\n",
1751 __func__, afu->version, afu->interface_version);
c21e0bbf
MO
1752
1753 rc = start_afu(cfg);
1754 if (rc) {
1755 dev_err(dev, "%s: call to start_afu failed, rc=%d!\n",
1756 __func__, rc);
1757 term_mc(cfg, UNDO_START);
1758 cxl_psa_unmap((void *)afu->afu_map);
1759 afu->afu_map = NULL;
1760 goto err1;
1761 }
1762
1763 afu_err_intr_init(cfg->afu);
1764 atomic64_set(&afu->room, readq_be(&afu->host_map->cmd_room));
1765
2cb79266
MO
1766 /* Restore the LUN mappings */
1767 cxlflash_restore_luntable(cfg);
c21e0bbf
MO
1768err1:
1769 pr_debug("%s: returning rc=%d\n", __func__, rc);
1770 return rc;
1771}
1772
c21e0bbf
MO
1773/**
1774 * cxlflash_afu_sync() - builds and sends an AFU sync command
1775 * @afu: AFU associated with the host.
1776 * @ctx_hndl_u: Identifies context requesting sync.
1777 * @res_hndl_u: Identifies resource requesting sync.
1778 * @mode: Type of sync to issue (lightweight, heavyweight, global).
1779 *
1780 * The AFU can only take 1 sync command at a time. This routine enforces this
1781 * limitation by using a mutex to provide exlusive access to the AFU during
1782 * the sync. This design point requires calling threads to not be on interrupt
1783 * context due to the possibility of sleeping during concurrent sync operations.
1784 *
5cdac81a
MO
1785 * AFU sync operations are only necessary and allowed when the device is
1786 * operating normally. When not operating normally, sync requests can occur as
1787 * part of cleaning up resources associated with an adapter prior to removal.
1788 * In this scenario, these requests are simply ignored (safe due to the AFU
1789 * going away).
1790 *
c21e0bbf
MO
1791 * Return:
1792 * 0 on success
1793 * -1 on failure
1794 */
1795int cxlflash_afu_sync(struct afu *afu, ctx_hndl_t ctx_hndl_u,
1796 res_hndl_t res_hndl_u, u8 mode)
1797{
5cdac81a 1798 struct cxlflash_cfg *cfg = afu->parent;
4392ba49 1799 struct device *dev = &cfg->dev->dev;
c21e0bbf
MO
1800 struct afu_cmd *cmd = NULL;
1801 int rc = 0;
1802 int retry_cnt = 0;
1803 static DEFINE_MUTEX(sync_active);
1804
5cdac81a
MO
1805 if (cfg->state != STATE_NORMAL) {
1806 pr_debug("%s: Sync not required! (%u)\n", __func__, cfg->state);
1807 return 0;
1808 }
1809
c21e0bbf
MO
1810 mutex_lock(&sync_active);
1811retry:
15305514 1812 cmd = cmd_checkout(afu);
c21e0bbf
MO
1813 if (unlikely(!cmd)) {
1814 retry_cnt++;
1815 udelay(1000 * retry_cnt);
1816 if (retry_cnt < MC_RETRY_CNT)
1817 goto retry;
4392ba49 1818 dev_err(dev, "%s: could not get a free command\n", __func__);
c21e0bbf
MO
1819 rc = -1;
1820 goto out;
1821 }
1822
1823 pr_debug("%s: afu=%p cmd=%p %d\n", __func__, afu, cmd, ctx_hndl_u);
1824
1825 memset(cmd->rcb.cdb, 0, sizeof(cmd->rcb.cdb));
1826
1827 cmd->rcb.req_flags = SISL_REQ_FLAGS_AFU_CMD;
1828 cmd->rcb.port_sel = 0x0; /* NA */
1829 cmd->rcb.lun_id = 0x0; /* NA */
1830 cmd->rcb.data_len = 0x0;
1831 cmd->rcb.data_ea = 0x0;
1832 cmd->rcb.timeout = MC_AFU_SYNC_TIMEOUT;
1833
1834 cmd->rcb.cdb[0] = 0xC0; /* AFU Sync */
1835 cmd->rcb.cdb[1] = mode;
1836
1837 /* The cdb is aligned, no unaligned accessors required */
1838 *((u16 *)&cmd->rcb.cdb[2]) = swab16(ctx_hndl_u);
1839 *((u32 *)&cmd->rcb.cdb[4]) = swab32(res_hndl_u);
1840
15305514 1841 rc = send_cmd(afu, cmd);
c21e0bbf
MO
1842 if (unlikely(rc))
1843 goto out;
1844
15305514 1845 wait_resp(afu, cmd);
c21e0bbf
MO
1846
1847 /* set on timeout */
1848 if (unlikely((cmd->sa.ioasc != 0) ||
1849 (cmd->sa.host_use_b[0] & B_ERROR)))
1850 rc = -1;
1851out:
1852 mutex_unlock(&sync_active);
1853 if (cmd)
15305514 1854 cmd_checkin(cmd);
c21e0bbf
MO
1855 pr_debug("%s: returning rc=%d\n", __func__, rc);
1856 return rc;
1857}
1858
1859/**
15305514
MO
1860 * afu_reset() - resets the AFU
1861 * @cfg: Internal structure associated with the host.
c21e0bbf 1862 *
1284fb0c 1863 * Return: 0 on success, -errno on failure
c21e0bbf 1864 */
15305514 1865static int afu_reset(struct cxlflash_cfg *cfg)
c21e0bbf
MO
1866{
1867 int rc = 0;
1868 /* Stop the context before the reset. Since the context is
1869 * no longer available restart it after the reset is complete
1870 */
1871
1872 term_afu(cfg);
1873
1874 rc = init_afu(cfg);
1875
1876 pr_debug("%s: returning rc=%d\n", __func__, rc);
1877 return rc;
1878}
1879
15305514
MO
1880/**
1881 * cxlflash_eh_device_reset_handler() - reset a single LUN
1882 * @scp: SCSI command to send.
1883 *
1884 * Return:
1885 * SUCCESS as defined in scsi/scsi.h
1886 * FAILED as defined in scsi/scsi.h
1887 */
1888static int cxlflash_eh_device_reset_handler(struct scsi_cmnd *scp)
1889{
1890 int rc = SUCCESS;
1891 struct Scsi_Host *host = scp->device->host;
1892 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)host->hostdata;
1893 struct afu *afu = cfg->afu;
1894 int rcr = 0;
1895
1896 pr_debug("%s: (scp=%p) %d/%d/%d/%llu "
1897 "cdb=(%08X-%08X-%08X-%08X)\n", __func__, scp,
1898 host->host_no, scp->device->channel,
1899 scp->device->id, scp->device->lun,
1900 get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
1901 get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
1902 get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
1903 get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
1904
ed486daa 1905retry:
15305514
MO
1906 switch (cfg->state) {
1907 case STATE_NORMAL:
1908 rcr = send_tmf(afu, scp, TMF_LUN_RESET);
1909 if (unlikely(rcr))
1910 rc = FAILED;
1911 break;
1912 case STATE_RESET:
1913 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
ed486daa 1914 goto retry;
15305514
MO
1915 default:
1916 rc = FAILED;
1917 break;
1918 }
1919
1920 pr_debug("%s: returning rc=%d\n", __func__, rc);
1921 return rc;
1922}
1923
1924/**
1925 * cxlflash_eh_host_reset_handler() - reset the host adapter
1926 * @scp: SCSI command from stack identifying host.
1927 *
1928 * Return:
1929 * SUCCESS as defined in scsi/scsi.h
1930 * FAILED as defined in scsi/scsi.h
1931 */
1932static int cxlflash_eh_host_reset_handler(struct scsi_cmnd *scp)
1933{
1934 int rc = SUCCESS;
1935 int rcr = 0;
1936 struct Scsi_Host *host = scp->device->host;
1937 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)host->hostdata;
1938
1939 pr_debug("%s: (scp=%p) %d/%d/%d/%llu "
1940 "cdb=(%08X-%08X-%08X-%08X)\n", __func__, scp,
1941 host->host_no, scp->device->channel,
1942 scp->device->id, scp->device->lun,
1943 get_unaligned_be32(&((u32 *)scp->cmnd)[0]),
1944 get_unaligned_be32(&((u32 *)scp->cmnd)[1]),
1945 get_unaligned_be32(&((u32 *)scp->cmnd)[2]),
1946 get_unaligned_be32(&((u32 *)scp->cmnd)[3]));
1947
1948 switch (cfg->state) {
1949 case STATE_NORMAL:
1950 cfg->state = STATE_RESET;
15305514
MO
1951 cxlflash_mark_contexts_error(cfg);
1952 rcr = afu_reset(cfg);
1953 if (rcr) {
1954 rc = FAILED;
1955 cfg->state = STATE_FAILTERM;
1956 } else
1957 cfg->state = STATE_NORMAL;
1958 wake_up_all(&cfg->reset_waitq);
15305514
MO
1959 break;
1960 case STATE_RESET:
1961 wait_event(cfg->reset_waitq, cfg->state != STATE_RESET);
1962 if (cfg->state == STATE_NORMAL)
1963 break;
1964 /* fall through */
1965 default:
1966 rc = FAILED;
1967 break;
1968 }
1969
1970 pr_debug("%s: returning rc=%d\n", __func__, rc);
1971 return rc;
1972}
1973
1974/**
1975 * cxlflash_change_queue_depth() - change the queue depth for the device
1976 * @sdev: SCSI device destined for queue depth change.
1977 * @qdepth: Requested queue depth value to set.
1978 *
1979 * The requested queue depth is capped to the maximum supported value.
1980 *
1981 * Return: The actual queue depth set.
1982 */
1983static int cxlflash_change_queue_depth(struct scsi_device *sdev, int qdepth)
1984{
1985
1986 if (qdepth > CXLFLASH_MAX_CMDS_PER_LUN)
1987 qdepth = CXLFLASH_MAX_CMDS_PER_LUN;
1988
1989 scsi_change_queue_depth(sdev, qdepth);
1990 return sdev->queue_depth;
1991}
1992
1993/**
1994 * cxlflash_show_port_status() - queries and presents the current port status
e0f01a21
MO
1995 * @port: Desired port for status reporting.
1996 * @afu: AFU owning the specified port.
15305514
MO
1997 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
1998 *
1999 * Return: The size of the ASCII string returned in @buf.
2000 */
e0f01a21 2001static ssize_t cxlflash_show_port_status(u32 port, struct afu *afu, char *buf)
15305514 2002{
15305514 2003 char *disp_status;
15305514 2004 u64 status;
e0f01a21 2005 __be64 __iomem *fc_regs;
15305514 2006
e0f01a21 2007 if (port >= NUM_FC_PORTS)
15305514
MO
2008 return 0;
2009
2010 fc_regs = &afu->afu_map->global.fc_regs[port][0];
e0f01a21
MO
2011 status = readq_be(&fc_regs[FC_MTIP_STATUS / 8]);
2012 status &= FC_MTIP_STATUS_MASK;
15305514
MO
2013
2014 if (status == FC_MTIP_STATUS_ONLINE)
2015 disp_status = "online";
2016 else if (status == FC_MTIP_STATUS_OFFLINE)
2017 disp_status = "offline";
2018 else
2019 disp_status = "unknown";
2020
e0f01a21
MO
2021 return scnprintf(buf, PAGE_SIZE, "%s\n", disp_status);
2022}
2023
2024/**
2025 * port0_show() - queries and presents the current status of port 0
2026 * @dev: Generic device associated with the host owning the port.
2027 * @attr: Device attribute representing the port.
2028 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2029 *
2030 * Return: The size of the ASCII string returned in @buf.
2031 */
2032static ssize_t port0_show(struct device *dev,
2033 struct device_attribute *attr,
2034 char *buf)
2035{
2036 struct Scsi_Host *shost = class_to_shost(dev);
2037 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata;
2038 struct afu *afu = cfg->afu;
2039
2040 return cxlflash_show_port_status(0, afu, buf);
15305514
MO
2041}
2042
2043/**
e0f01a21
MO
2044 * port1_show() - queries and presents the current status of port 1
2045 * @dev: Generic device associated with the host owning the port.
2046 * @attr: Device attribute representing the port.
2047 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2048 *
2049 * Return: The size of the ASCII string returned in @buf.
2050 */
2051static ssize_t port1_show(struct device *dev,
2052 struct device_attribute *attr,
2053 char *buf)
2054{
2055 struct Scsi_Host *shost = class_to_shost(dev);
2056 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata;
2057 struct afu *afu = cfg->afu;
2058
2059 return cxlflash_show_port_status(1, afu, buf);
2060}
2061
2062/**
2063 * lun_mode_show() - presents the current LUN mode of the host
15305514 2064 * @dev: Generic device associated with the host.
e0f01a21 2065 * @attr: Device attribute representing the LUN mode.
15305514
MO
2066 * @buf: Buffer of length PAGE_SIZE to report back the LUN mode in ASCII.
2067 *
2068 * Return: The size of the ASCII string returned in @buf.
2069 */
e0f01a21
MO
2070static ssize_t lun_mode_show(struct device *dev,
2071 struct device_attribute *attr, char *buf)
15305514
MO
2072{
2073 struct Scsi_Host *shost = class_to_shost(dev);
2074 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata;
2075 struct afu *afu = cfg->afu;
2076
e0f01a21 2077 return scnprintf(buf, PAGE_SIZE, "%u\n", afu->internal_lun);
15305514
MO
2078}
2079
2080/**
e0f01a21 2081 * lun_mode_store() - sets the LUN mode of the host
15305514 2082 * @dev: Generic device associated with the host.
e0f01a21 2083 * @attr: Device attribute representing the LUN mode.
15305514
MO
2084 * @buf: Buffer of length PAGE_SIZE containing the LUN mode in ASCII.
2085 * @count: Length of data resizing in @buf.
2086 *
2087 * The CXL Flash AFU supports a dummy LUN mode where the external
2088 * links and storage are not required. Space on the FPGA is used
2089 * to create 1 or 2 small LUNs which are presented to the system
2090 * as if they were a normal storage device. This feature is useful
2091 * during development and also provides manufacturing with a way
2092 * to test the AFU without an actual device.
2093 *
2094 * 0 = external LUN[s] (default)
2095 * 1 = internal LUN (1 x 64K, 512B blocks, id 0)
2096 * 2 = internal LUN (1 x 64K, 4K blocks, id 0)
2097 * 3 = internal LUN (2 x 32K, 512B blocks, ids 0,1)
2098 * 4 = internal LUN (2 x 32K, 4K blocks, ids 0,1)
2099 *
2100 * Return: The size of the ASCII string returned in @buf.
2101 */
e0f01a21
MO
2102static ssize_t lun_mode_store(struct device *dev,
2103 struct device_attribute *attr,
2104 const char *buf, size_t count)
15305514
MO
2105{
2106 struct Scsi_Host *shost = class_to_shost(dev);
2107 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata;
2108 struct afu *afu = cfg->afu;
2109 int rc;
2110 u32 lun_mode;
2111
2112 rc = kstrtouint(buf, 10, &lun_mode);
2113 if (!rc && (lun_mode < 5) && (lun_mode != afu->internal_lun)) {
2114 afu->internal_lun = lun_mode;
2115 afu_reset(cfg);
2116 scsi_scan_host(cfg->host);
2117 }
2118
2119 return count;
2120}
2121
2122/**
e0f01a21 2123 * ioctl_version_show() - presents the current ioctl version of the host
15305514
MO
2124 * @dev: Generic device associated with the host.
2125 * @attr: Device attribute representing the ioctl version.
2126 * @buf: Buffer of length PAGE_SIZE to report back the ioctl version.
2127 *
2128 * Return: The size of the ASCII string returned in @buf.
2129 */
e0f01a21
MO
2130static ssize_t ioctl_version_show(struct device *dev,
2131 struct device_attribute *attr, char *buf)
15305514
MO
2132{
2133 return scnprintf(buf, PAGE_SIZE, "%u\n", DK_CXLFLASH_VERSION_0);
2134}
2135
2136/**
e0f01a21
MO
2137 * cxlflash_show_port_lun_table() - queries and presents the port LUN table
2138 * @port: Desired port for status reporting.
2139 * @afu: AFU owning the specified port.
2140 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2141 *
2142 * Return: The size of the ASCII string returned in @buf.
2143 */
2144static ssize_t cxlflash_show_port_lun_table(u32 port,
2145 struct afu *afu,
2146 char *buf)
2147{
2148 int i;
2149 ssize_t bytes = 0;
2150 __be64 __iomem *fc_port;
2151
2152 if (port >= NUM_FC_PORTS)
2153 return 0;
2154
2155 fc_port = &afu->afu_map->global.fc_port[port][0];
2156
2157 for (i = 0; i < CXLFLASH_NUM_VLUNS; i++)
2158 bytes += scnprintf(buf + bytes, PAGE_SIZE - bytes,
2159 "%03d: %016llX\n", i, readq_be(&fc_port[i]));
2160 return bytes;
2161}
2162
2163/**
2164 * port0_lun_table_show() - presents the current LUN table of port 0
2165 * @dev: Generic device associated with the host owning the port.
2166 * @attr: Device attribute representing the port.
2167 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2168 *
2169 * Return: The size of the ASCII string returned in @buf.
2170 */
2171static ssize_t port0_lun_table_show(struct device *dev,
2172 struct device_attribute *attr,
2173 char *buf)
2174{
2175 struct Scsi_Host *shost = class_to_shost(dev);
2176 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata;
2177 struct afu *afu = cfg->afu;
2178
2179 return cxlflash_show_port_lun_table(0, afu, buf);
2180}
2181
2182/**
2183 * port1_lun_table_show() - presents the current LUN table of port 1
2184 * @dev: Generic device associated with the host owning the port.
2185 * @attr: Device attribute representing the port.
2186 * @buf: Buffer of length PAGE_SIZE to report back port status in ASCII.
2187 *
2188 * Return: The size of the ASCII string returned in @buf.
2189 */
2190static ssize_t port1_lun_table_show(struct device *dev,
2191 struct device_attribute *attr,
2192 char *buf)
2193{
2194 struct Scsi_Host *shost = class_to_shost(dev);
2195 struct cxlflash_cfg *cfg = (struct cxlflash_cfg *)shost->hostdata;
2196 struct afu *afu = cfg->afu;
2197
2198 return cxlflash_show_port_lun_table(1, afu, buf);
2199}
2200
2201/**
2202 * mode_show() - presents the current mode of the device
15305514
MO
2203 * @dev: Generic device associated with the device.
2204 * @attr: Device attribute representing the device mode.
2205 * @buf: Buffer of length PAGE_SIZE to report back the dev mode in ASCII.
2206 *
2207 * Return: The size of the ASCII string returned in @buf.
2208 */
e0f01a21
MO
2209static ssize_t mode_show(struct device *dev,
2210 struct device_attribute *attr, char *buf)
15305514
MO
2211{
2212 struct scsi_device *sdev = to_scsi_device(dev);
2213
e0f01a21
MO
2214 return scnprintf(buf, PAGE_SIZE, "%s\n",
2215 sdev->hostdata ? "superpipe" : "legacy");
15305514
MO
2216}
2217
2218/*
2219 * Host attributes
2220 */
e0f01a21
MO
2221static DEVICE_ATTR_RO(port0);
2222static DEVICE_ATTR_RO(port1);
2223static DEVICE_ATTR_RW(lun_mode);
2224static DEVICE_ATTR_RO(ioctl_version);
2225static DEVICE_ATTR_RO(port0_lun_table);
2226static DEVICE_ATTR_RO(port1_lun_table);
15305514
MO
2227
2228static struct device_attribute *cxlflash_host_attrs[] = {
2229 &dev_attr_port0,
2230 &dev_attr_port1,
2231 &dev_attr_lun_mode,
2232 &dev_attr_ioctl_version,
e0f01a21
MO
2233 &dev_attr_port0_lun_table,
2234 &dev_attr_port1_lun_table,
15305514
MO
2235 NULL
2236};
2237
2238/*
2239 * Device attributes
2240 */
e0f01a21 2241static DEVICE_ATTR_RO(mode);
15305514
MO
2242
2243static struct device_attribute *cxlflash_dev_attrs[] = {
2244 &dev_attr_mode,
2245 NULL
2246};
2247
2248/*
2249 * Host template
2250 */
2251static struct scsi_host_template driver_template = {
2252 .module = THIS_MODULE,
2253 .name = CXLFLASH_ADAPTER_NAME,
2254 .info = cxlflash_driver_info,
2255 .ioctl = cxlflash_ioctl,
2256 .proc_name = CXLFLASH_NAME,
2257 .queuecommand = cxlflash_queuecommand,
2258 .eh_device_reset_handler = cxlflash_eh_device_reset_handler,
2259 .eh_host_reset_handler = cxlflash_eh_host_reset_handler,
2260 .change_queue_depth = cxlflash_change_queue_depth,
2261 .cmd_per_lun = 16,
2262 .can_queue = CXLFLASH_MAX_CMDS,
2263 .this_id = -1,
2264 .sg_tablesize = SG_NONE, /* No scatter gather support. */
2265 .max_sectors = CXLFLASH_MAX_SECTORS,
2266 .use_clustering = ENABLE_CLUSTERING,
2267 .shost_attrs = cxlflash_host_attrs,
2268 .sdev_attrs = cxlflash_dev_attrs,
2269};
2270
2271/*
2272 * Device dependent values
2273 */
2274static struct dev_dependent_vals dev_corsa_vals = { CXLFLASH_MAX_SECTORS };
2275
2276/*
2277 * PCI device binding table
2278 */
2279static struct pci_device_id cxlflash_pci_table[] = {
2280 {PCI_VENDOR_ID_IBM, PCI_DEVICE_ID_IBM_CORSA,
2281 PCI_ANY_ID, PCI_ANY_ID, 0, 0, (kernel_ulong_t)&dev_corsa_vals},
2282 {}
2283};
2284
2285MODULE_DEVICE_TABLE(pci, cxlflash_pci_table);
2286
c21e0bbf
MO
2287/**
2288 * cxlflash_worker_thread() - work thread handler for the AFU
2289 * @work: Work structure contained within cxlflash associated with host.
2290 *
2291 * Handles the following events:
2292 * - Link reset which cannot be performed on interrupt context due to
2293 * blocking up to a few seconds
2294 * - Read AFU command room
ef51074a 2295 * - Rescan the host
c21e0bbf
MO
2296 */
2297static void cxlflash_worker_thread(struct work_struct *work)
2298{
5cdac81a
MO
2299 struct cxlflash_cfg *cfg = container_of(work, struct cxlflash_cfg,
2300 work_q);
c21e0bbf 2301 struct afu *afu = cfg->afu;
4392ba49 2302 struct device *dev = &cfg->dev->dev;
c21e0bbf
MO
2303 int port;
2304 ulong lock_flags;
2305
5cdac81a
MO
2306 /* Avoid MMIO if the device has failed */
2307
2308 if (cfg->state != STATE_NORMAL)
2309 return;
2310
c21e0bbf
MO
2311 spin_lock_irqsave(cfg->host->host_lock, lock_flags);
2312
2313 if (cfg->lr_state == LINK_RESET_REQUIRED) {
2314 port = cfg->lr_port;
2315 if (port < 0)
4392ba49
MO
2316 dev_err(dev, "%s: invalid port index %d\n",
2317 __func__, port);
c21e0bbf
MO
2318 else {
2319 spin_unlock_irqrestore(cfg->host->host_lock,
2320 lock_flags);
2321
2322 /* The reset can block... */
2323 afu_link_reset(afu, port,
2324 &afu->afu_map->
2325 global.fc_regs[port][0]);
2326 spin_lock_irqsave(cfg->host->host_lock, lock_flags);
2327 }
2328
2329 cfg->lr_state = LINK_RESET_COMPLETE;
2330 }
2331
2332 if (afu->read_room) {
2333 atomic64_set(&afu->room, readq_be(&afu->host_map->cmd_room));
2334 afu->read_room = false;
2335 }
2336
2337 spin_unlock_irqrestore(cfg->host->host_lock, lock_flags);
ef51074a
MO
2338
2339 if (atomic_dec_if_positive(&cfg->scan_host_needed) >= 0)
2340 scsi_scan_host(cfg->host);
c21e0bbf
MO
2341}
2342
2343/**
2344 * cxlflash_probe() - PCI entry point to add host
2345 * @pdev: PCI device associated with the host.
2346 * @dev_id: PCI device id associated with device.
2347 *
1284fb0c 2348 * Return: 0 on success, -errno on failure
c21e0bbf
MO
2349 */
2350static int cxlflash_probe(struct pci_dev *pdev,
2351 const struct pci_device_id *dev_id)
2352{
2353 struct Scsi_Host *host;
2354 struct cxlflash_cfg *cfg = NULL;
2355 struct device *phys_dev;
2356 struct dev_dependent_vals *ddv;
2357 int rc = 0;
2358
2359 dev_dbg(&pdev->dev, "%s: Found CXLFLASH with IRQ: %d\n",
2360 __func__, pdev->irq);
2361
2362 ddv = (struct dev_dependent_vals *)dev_id->driver_data;
2363 driver_template.max_sectors = ddv->max_sectors;
2364
2365 host = scsi_host_alloc(&driver_template, sizeof(struct cxlflash_cfg));
2366 if (!host) {
2367 dev_err(&pdev->dev, "%s: call to scsi_host_alloc failed!\n",
2368 __func__);
2369 rc = -ENOMEM;
2370 goto out;
2371 }
2372
2373 host->max_id = CXLFLASH_MAX_NUM_TARGETS_PER_BUS;
2374 host->max_lun = CXLFLASH_MAX_NUM_LUNS_PER_TARGET;
2375 host->max_channel = NUM_FC_PORTS - 1;
2376 host->unique_id = host->host_no;
2377 host->max_cmd_len = CXLFLASH_MAX_CDB_LEN;
2378
2379 cfg = (struct cxlflash_cfg *)host->hostdata;
2380 cfg->host = host;
2381 rc = alloc_mem(cfg);
2382 if (rc) {
2383 dev_err(&pdev->dev, "%s: call to scsi_host_alloc failed!\n",
2384 __func__);
2385 rc = -ENOMEM;
8b5b1e87 2386 scsi_host_put(cfg->host);
c21e0bbf
MO
2387 goto out;
2388 }
2389
2390 cfg->init_state = INIT_STATE_NONE;
2391 cfg->dev = pdev;
2cb79266
MO
2392
2393 /*
2394 * The promoted LUNs move to the top of the LUN table. The rest stay
2395 * on the bottom half. The bottom half grows from the end
2396 * (index = 255), whereas the top half grows from the beginning
2397 * (index = 0).
2398 */
2399 cfg->promote_lun_index = 0;
2400 cfg->last_lun_index[0] = CXLFLASH_NUM_VLUNS/2 - 1;
2401 cfg->last_lun_index[1] = CXLFLASH_NUM_VLUNS/2 - 1;
2402
c21e0bbf
MO
2403 cfg->dev_id = (struct pci_device_id *)dev_id;
2404 cfg->mcctx = NULL;
c21e0bbf
MO
2405
2406 init_waitqueue_head(&cfg->tmf_waitq);
439e85c1 2407 init_waitqueue_head(&cfg->reset_waitq);
c21e0bbf
MO
2408
2409 INIT_WORK(&cfg->work_q, cxlflash_worker_thread);
2410 cfg->lr_state = LINK_RESET_INVALID;
2411 cfg->lr_port = -1;
65be2c79
MO
2412 mutex_init(&cfg->ctx_tbl_list_mutex);
2413 mutex_init(&cfg->ctx_recovery_mutex);
0a27ae51 2414 init_rwsem(&cfg->ioctl_rwsem);
65be2c79
MO
2415 INIT_LIST_HEAD(&cfg->ctx_err_recovery);
2416 INIT_LIST_HEAD(&cfg->lluns);
c21e0bbf
MO
2417
2418 pci_set_drvdata(pdev, cfg);
2419
2420 /* Use the special service provided to look up the physical
2421 * PCI device, since we are called on the probe of the virtual
2422 * PCI host bus (vphb)
2423 */
2424 phys_dev = cxl_get_phys_dev(pdev);
2425 if (!dev_is_pci(phys_dev)) {
4392ba49 2426 dev_err(&pdev->dev, "%s: not a pci dev\n", __func__);
c21e0bbf
MO
2427 rc = -ENODEV;
2428 goto out_remove;
2429 }
2430 cfg->parent_dev = to_pci_dev(phys_dev);
2431
2432 cfg->cxl_afu = cxl_pci_to_afu(pdev);
2433
2434 rc = init_pci(cfg);
2435 if (rc) {
2436 dev_err(&pdev->dev, "%s: call to init_pci "
2437 "failed rc=%d!\n", __func__, rc);
2438 goto out_remove;
2439 }
2440 cfg->init_state = INIT_STATE_PCI;
2441
2442 rc = init_afu(cfg);
2443 if (rc) {
2444 dev_err(&pdev->dev, "%s: call to init_afu "
2445 "failed rc=%d!\n", __func__, rc);
2446 goto out_remove;
2447 }
2448 cfg->init_state = INIT_STATE_AFU;
2449
2450
2451 rc = init_scsi(cfg);
2452 if (rc) {
2453 dev_err(&pdev->dev, "%s: call to init_scsi "
2454 "failed rc=%d!\n", __func__, rc);
2455 goto out_remove;
2456 }
2457 cfg->init_state = INIT_STATE_SCSI;
2458
2459out:
2460 pr_debug("%s: returning rc=%d\n", __func__, rc);
2461 return rc;
2462
2463out_remove:
2464 cxlflash_remove(pdev);
2465 goto out;
2466}
2467
0a27ae51
MO
2468/**
2469 * drain_ioctls() - wait until all currently executing ioctls have completed
2470 * @cfg: Internal structure associated with the host.
2471 *
2472 * Obtain write access to read/write semaphore that wraps ioctl
2473 * handling to 'drain' ioctls currently executing.
2474 */
2475static void drain_ioctls(struct cxlflash_cfg *cfg)
2476{
2477 down_write(&cfg->ioctl_rwsem);
2478 up_write(&cfg->ioctl_rwsem);
2479}
2480
5cdac81a
MO
2481/**
2482 * cxlflash_pci_error_detected() - called when a PCI error is detected
2483 * @pdev: PCI device struct.
2484 * @state: PCI channel state.
2485 *
2486 * Return: PCI_ERS_RESULT_NEED_RESET or PCI_ERS_RESULT_DISCONNECT
2487 */
2488static pci_ers_result_t cxlflash_pci_error_detected(struct pci_dev *pdev,
2489 pci_channel_state_t state)
2490{
65be2c79 2491 int rc = 0;
5cdac81a
MO
2492 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
2493 struct device *dev = &cfg->dev->dev;
2494
2495 dev_dbg(dev, "%s: pdev=%p state=%u\n", __func__, pdev, state);
2496
2497 switch (state) {
2498 case pci_channel_io_frozen:
439e85c1 2499 cfg->state = STATE_RESET;
5cdac81a 2500 scsi_block_requests(cfg->host);
0a27ae51 2501 drain_ioctls(cfg);
65be2c79
MO
2502 rc = cxlflash_mark_contexts_error(cfg);
2503 if (unlikely(rc))
2504 dev_err(dev, "%s: Failed to mark user contexts!(%d)\n",
2505 __func__, rc);
5cdac81a
MO
2506 term_mc(cfg, UNDO_START);
2507 stop_afu(cfg);
5cdac81a
MO
2508 return PCI_ERS_RESULT_NEED_RESET;
2509 case pci_channel_io_perm_failure:
2510 cfg->state = STATE_FAILTERM;
439e85c1 2511 wake_up_all(&cfg->reset_waitq);
5cdac81a
MO
2512 scsi_unblock_requests(cfg->host);
2513 return PCI_ERS_RESULT_DISCONNECT;
2514 default:
2515 break;
2516 }
2517 return PCI_ERS_RESULT_NEED_RESET;
2518}
2519
2520/**
2521 * cxlflash_pci_slot_reset() - called when PCI slot has been reset
2522 * @pdev: PCI device struct.
2523 *
2524 * This routine is called by the pci error recovery code after the PCI
2525 * slot has been reset, just before we should resume normal operations.
2526 *
2527 * Return: PCI_ERS_RESULT_RECOVERED or PCI_ERS_RESULT_DISCONNECT
2528 */
2529static pci_ers_result_t cxlflash_pci_slot_reset(struct pci_dev *pdev)
2530{
2531 int rc = 0;
2532 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
2533 struct device *dev = &cfg->dev->dev;
2534
2535 dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev);
2536
2537 rc = init_afu(cfg);
2538 if (unlikely(rc)) {
2539 dev_err(dev, "%s: EEH recovery failed! (%d)\n", __func__, rc);
2540 return PCI_ERS_RESULT_DISCONNECT;
2541 }
2542
2543 return PCI_ERS_RESULT_RECOVERED;
2544}
2545
2546/**
2547 * cxlflash_pci_resume() - called when normal operation can resume
2548 * @pdev: PCI device struct
2549 */
2550static void cxlflash_pci_resume(struct pci_dev *pdev)
2551{
2552 struct cxlflash_cfg *cfg = pci_get_drvdata(pdev);
2553 struct device *dev = &cfg->dev->dev;
2554
2555 dev_dbg(dev, "%s: pdev=%p\n", __func__, pdev);
2556
2557 cfg->state = STATE_NORMAL;
439e85c1 2558 wake_up_all(&cfg->reset_waitq);
5cdac81a
MO
2559 scsi_unblock_requests(cfg->host);
2560}
2561
2562static const struct pci_error_handlers cxlflash_err_handler = {
2563 .error_detected = cxlflash_pci_error_detected,
2564 .slot_reset = cxlflash_pci_slot_reset,
2565 .resume = cxlflash_pci_resume,
2566};
2567
c21e0bbf
MO
2568/*
2569 * PCI device structure
2570 */
2571static struct pci_driver cxlflash_driver = {
2572 .name = CXLFLASH_NAME,
2573 .id_table = cxlflash_pci_table,
2574 .probe = cxlflash_probe,
2575 .remove = cxlflash_remove,
5cdac81a 2576 .err_handler = &cxlflash_err_handler,
c21e0bbf
MO
2577};
2578
2579/**
2580 * init_cxlflash() - module entry point
2581 *
1284fb0c 2582 * Return: 0 on success, -errno on failure
c21e0bbf
MO
2583 */
2584static int __init init_cxlflash(void)
2585{
2586 pr_info("%s: IBM Power CXL Flash Adapter: %s\n",
2587 __func__, CXLFLASH_DRIVER_DATE);
2588
65be2c79
MO
2589 cxlflash_list_init();
2590
c21e0bbf
MO
2591 return pci_register_driver(&cxlflash_driver);
2592}
2593
2594/**
2595 * exit_cxlflash() - module exit point
2596 */
2597static void __exit exit_cxlflash(void)
2598{
65be2c79
MO
2599 cxlflash_term_global_luns();
2600 cxlflash_free_errpage();
2601
c21e0bbf
MO
2602 pci_unregister_driver(&cxlflash_driver);
2603}
2604
2605module_init(init_cxlflash);
2606module_exit(exit_cxlflash);