rtc: driver for Conexant Digicolor CX92755 on-chip RTC
[linux-2.6-block.git] / drivers / rtc / rtc-cmos.c
CommitLineData
7be2c7c9
DB
1/*
2 * RTC class driver for "CMOS RTC": PCs, ACPI, etc
3 *
4 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
5 * Copyright (C) 2006 David Brownell (convert to new framework)
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13/*
14 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
15 * That defined the register interface now provided by all PCs, some
16 * non-PC systems, and incorporated into ACPI. Modern PC chipsets
17 * integrate an MC146818 clone in their southbridge, and boards use
18 * that instead of discrete clones like the DS12887 or M48T86. There
19 * are also clones that connect using the LPC bus.
20 *
21 * That register API is also used directly by various other drivers
22 * (notably for integrated NVRAM), infrastructure (x86 has code to
23 * bypass the RTC framework, directly reading the RTC during boot
24 * and updating minutes/seconds for systems using NTP synch) and
25 * utilities (like userspace 'hwclock', if no /dev node exists).
26 *
27 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
28 * interrupts disabled, holding the global rtc_lock, to exclude those
29 * other drivers and utilities on correctly configured systems.
30 */
31#include <linux/kernel.h>
32#include <linux/module.h>
33#include <linux/init.h>
34#include <linux/interrupt.h>
35#include <linux/spinlock.h>
36#include <linux/platform_device.h>
5d2a5037 37#include <linux/log2.h>
2fb08e6c 38#include <linux/pm.h>
3bcbaf6e
SAS
39#include <linux/of.h>
40#include <linux/of_platform.h>
d5a1c7e3 41#include <linux/dmi.h>
7be2c7c9
DB
42
43/* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
44#include <asm-generic/rtc.h>
45
7be2c7c9
DB
46struct cmos_rtc {
47 struct rtc_device *rtc;
48 struct device *dev;
49 int irq;
50 struct resource *iomem;
51
87ac84f4
DB
52 void (*wake_on)(struct device *);
53 void (*wake_off)(struct device *);
54
55 u8 enabled_wake;
7be2c7c9
DB
56 u8 suspend_ctrl;
57
58 /* newer hardware extends the original register set */
59 u8 day_alrm;
60 u8 mon_alrm;
61 u8 century;
62};
63
64/* both platform and pnp busses use negative numbers for invalid irqs */
2fac6674 65#define is_valid_irq(n) ((n) > 0)
7be2c7c9
DB
66
67static const char driver_name[] = "rtc_cmos";
68
bcd9b89c
DB
69/* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
70 * always mask it against the irq enable bits in RTC_CONTROL. Bit values
71 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
72 */
73#define RTC_IRQMASK (RTC_PF | RTC_AF | RTC_UF)
74
75static inline int is_intr(u8 rtc_intr)
76{
77 if (!(rtc_intr & RTC_IRQF))
78 return 0;
79 return rtc_intr & RTC_IRQMASK;
80}
81
7be2c7c9
DB
82/*----------------------------------------------------------------*/
83
35d3fdd5
DB
84/* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
85 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
86 * used in a broken "legacy replacement" mode. The breakage includes
87 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
88 * other (better) use.
89 *
90 * When that broken mode is in use, platform glue provides a partial
91 * emulation of hardware RTC IRQ facilities using HPET #1. We don't
92 * want to use HPET for anything except those IRQs though...
93 */
94#ifdef CONFIG_HPET_EMULATE_RTC
95#include <asm/hpet.h>
96#else
97
98static inline int is_hpet_enabled(void)
99{
100 return 0;
101}
102
103static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
104{
105 return 0;
106}
107
108static inline int hpet_set_rtc_irq_bit(unsigned long mask)
109{
110 return 0;
111}
112
113static inline int
114hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
115{
116 return 0;
117}
118
119static inline int hpet_set_periodic_freq(unsigned long freq)
120{
121 return 0;
122}
123
124static inline int hpet_rtc_dropped_irq(void)
125{
126 return 0;
127}
128
129static inline int hpet_rtc_timer_init(void)
130{
131 return 0;
132}
133
134extern irq_handler_t hpet_rtc_interrupt;
135
136static inline int hpet_register_irq_handler(irq_handler_t handler)
137{
138 return 0;
139}
140
141static inline int hpet_unregister_irq_handler(irq_handler_t handler)
142{
143 return 0;
144}
145
146#endif
147
148/*----------------------------------------------------------------*/
149
c8fc40cd
DB
150#ifdef RTC_PORT
151
152/* Most newer x86 systems have two register banks, the first used
153 * for RTC and NVRAM and the second only for NVRAM. Caller must
154 * own rtc_lock ... and we won't worry about access during NMI.
155 */
156#define can_bank2 true
157
158static inline unsigned char cmos_read_bank2(unsigned char addr)
159{
160 outb(addr, RTC_PORT(2));
161 return inb(RTC_PORT(3));
162}
163
164static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
165{
166 outb(addr, RTC_PORT(2));
b43c1ea4 167 outb(val, RTC_PORT(3));
c8fc40cd
DB
168}
169
170#else
171
172#define can_bank2 false
173
174static inline unsigned char cmos_read_bank2(unsigned char addr)
175{
176 return 0;
177}
178
179static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
180{
181}
182
183#endif
184
185/*----------------------------------------------------------------*/
186
7be2c7c9
DB
187static int cmos_read_time(struct device *dev, struct rtc_time *t)
188{
189 /* REVISIT: if the clock has a "century" register, use
190 * that instead of the heuristic in get_rtc_time().
191 * That'll make Y3K compatility (year > 2070) easy!
192 */
193 get_rtc_time(t);
194 return 0;
195}
196
197static int cmos_set_time(struct device *dev, struct rtc_time *t)
198{
199 /* REVISIT: set the "century" register if available
200 *
201 * NOTE: this ignores the issue whereby updating the seconds
202 * takes effect exactly 500ms after we write the register.
203 * (Also queueing and other delays before we get this far.)
204 */
205 return set_rtc_time(t);
206}
207
208static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
209{
210 struct cmos_rtc *cmos = dev_get_drvdata(dev);
211 unsigned char rtc_control;
212
213 if (!is_valid_irq(cmos->irq))
214 return -EIO;
215
216 /* Basic alarms only support hour, minute, and seconds fields.
217 * Some also support day and month, for alarms up to a year in
218 * the future.
219 */
220 t->time.tm_mday = -1;
221 t->time.tm_mon = -1;
222
223 spin_lock_irq(&rtc_lock);
224 t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
225 t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
226 t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
227
228 if (cmos->day_alrm) {
615bb29c
ML
229 /* ignore upper bits on readback per ACPI spec */
230 t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
7be2c7c9
DB
231 if (!t->time.tm_mday)
232 t->time.tm_mday = -1;
233
234 if (cmos->mon_alrm) {
235 t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
236 if (!t->time.tm_mon)
237 t->time.tm_mon = -1;
238 }
239 }
240
241 rtc_control = CMOS_READ(RTC_CONTROL);
242 spin_unlock_irq(&rtc_lock);
243
3804a89b
AP
244 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
245 if (((unsigned)t->time.tm_sec) < 0x60)
246 t->time.tm_sec = bcd2bin(t->time.tm_sec);
7be2c7c9 247 else
3804a89b
AP
248 t->time.tm_sec = -1;
249 if (((unsigned)t->time.tm_min) < 0x60)
250 t->time.tm_min = bcd2bin(t->time.tm_min);
251 else
252 t->time.tm_min = -1;
253 if (((unsigned)t->time.tm_hour) < 0x24)
254 t->time.tm_hour = bcd2bin(t->time.tm_hour);
255 else
256 t->time.tm_hour = -1;
257
258 if (cmos->day_alrm) {
259 if (((unsigned)t->time.tm_mday) <= 0x31)
260 t->time.tm_mday = bcd2bin(t->time.tm_mday);
7be2c7c9 261 else
3804a89b
AP
262 t->time.tm_mday = -1;
263
264 if (cmos->mon_alrm) {
265 if (((unsigned)t->time.tm_mon) <= 0x12)
266 t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
267 else
268 t->time.tm_mon = -1;
269 }
7be2c7c9
DB
270 }
271 }
272 t->time.tm_year = -1;
273
274 t->enabled = !!(rtc_control & RTC_AIE);
275 t->pending = 0;
276
277 return 0;
278}
279
7e2a31da
DB
280static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
281{
282 unsigned char rtc_intr;
283
284 /* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
285 * allegedly some older rtcs need that to handle irqs properly
286 */
287 rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
288
289 if (is_hpet_enabled())
290 return;
291
292 rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
293 if (is_intr(rtc_intr))
294 rtc_update_irq(cmos->rtc, 1, rtc_intr);
295}
296
297static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
298{
299 unsigned char rtc_control;
300
301 /* flush any pending IRQ status, notably for update irqs,
302 * before we enable new IRQs
303 */
304 rtc_control = CMOS_READ(RTC_CONTROL);
305 cmos_checkintr(cmos, rtc_control);
306
307 rtc_control |= mask;
308 CMOS_WRITE(rtc_control, RTC_CONTROL);
309 hpet_set_rtc_irq_bit(mask);
310
311 cmos_checkintr(cmos, rtc_control);
312}
313
314static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
315{
316 unsigned char rtc_control;
317
318 rtc_control = CMOS_READ(RTC_CONTROL);
319 rtc_control &= ~mask;
320 CMOS_WRITE(rtc_control, RTC_CONTROL);
321 hpet_mask_rtc_irq_bit(mask);
322
323 cmos_checkintr(cmos, rtc_control);
324}
325
7be2c7c9
DB
326static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
327{
328 struct cmos_rtc *cmos = dev_get_drvdata(dev);
5e8599d2 329 unsigned char mon, mday, hrs, min, sec, rtc_control;
7be2c7c9
DB
330
331 if (!is_valid_irq(cmos->irq))
332 return -EIO;
333
2b653e06 334 mon = t->time.tm_mon + 1;
7be2c7c9 335 mday = t->time.tm_mday;
7be2c7c9 336 hrs = t->time.tm_hour;
7be2c7c9 337 min = t->time.tm_min;
7be2c7c9 338 sec = t->time.tm_sec;
3804a89b
AP
339
340 rtc_control = CMOS_READ(RTC_CONTROL);
341 if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
342 /* Writing 0xff means "don't care" or "match all". */
343 mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
344 mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
345 hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
346 min = (min < 60) ? bin2bcd(min) : 0xff;
347 sec = (sec < 60) ? bin2bcd(sec) : 0xff;
348 }
7be2c7c9
DB
349
350 spin_lock_irq(&rtc_lock);
351
352 /* next rtc irq must not be from previous alarm setting */
7e2a31da 353 cmos_irq_disable(cmos, RTC_AIE);
7be2c7c9
DB
354
355 /* update alarm */
356 CMOS_WRITE(hrs, RTC_HOURS_ALARM);
357 CMOS_WRITE(min, RTC_MINUTES_ALARM);
358 CMOS_WRITE(sec, RTC_SECONDS_ALARM);
359
360 /* the system may support an "enhanced" alarm */
361 if (cmos->day_alrm) {
362 CMOS_WRITE(mday, cmos->day_alrm);
363 if (cmos->mon_alrm)
364 CMOS_WRITE(mon, cmos->mon_alrm);
365 }
366
35d3fdd5
DB
367 /* FIXME the HPET alarm glue currently ignores day_alrm
368 * and mon_alrm ...
369 */
370 hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
371
7e2a31da
DB
372 if (t->enabled)
373 cmos_irq_enable(cmos, RTC_AIE);
7be2c7c9
DB
374
375 spin_unlock_irq(&rtc_lock);
376
377 return 0;
378}
379
d5a1c7e3
BP
380/*
381 * Do not disable RTC alarm on shutdown - workaround for b0rked BIOSes.
382 */
383static bool alarm_disable_quirk;
384
385static int __init set_alarm_disable_quirk(const struct dmi_system_id *id)
386{
387 alarm_disable_quirk = true;
388 pr_info("rtc-cmos: BIOS has alarm-disable quirk. ");
389 pr_info("RTC alarms disabled\n");
390 return 0;
391}
392
393static const struct dmi_system_id rtc_quirks[] __initconst = {
394 /* https://bugzilla.novell.com/show_bug.cgi?id=805740 */
395 {
396 .callback = set_alarm_disable_quirk,
397 .ident = "IBM Truman",
398 .matches = {
399 DMI_MATCH(DMI_SYS_VENDOR, "TOSHIBA"),
400 DMI_MATCH(DMI_PRODUCT_NAME, "4852570"),
401 },
402 },
403 /* https://bugzilla.novell.com/show_bug.cgi?id=812592 */
404 {
405 .callback = set_alarm_disable_quirk,
406 .ident = "Gigabyte GA-990XA-UD3",
407 .matches = {
408 DMI_MATCH(DMI_SYS_VENDOR,
409 "Gigabyte Technology Co., Ltd."),
410 DMI_MATCH(DMI_PRODUCT_NAME, "GA-990XA-UD3"),
411 },
412 },
413 /* http://permalink.gmane.org/gmane.linux.kernel/1604474 */
414 {
415 .callback = set_alarm_disable_quirk,
416 .ident = "Toshiba Satellite L300",
417 .matches = {
418 DMI_MATCH(DMI_SYS_VENDOR, "TOSHIBA"),
419 DMI_MATCH(DMI_PRODUCT_NAME, "Satellite L300"),
420 },
421 },
422 {}
423};
424
a8462ef6 425static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
7be2c7c9
DB
426{
427 struct cmos_rtc *cmos = dev_get_drvdata(dev);
7be2c7c9
DB
428 unsigned long flags;
429
a8462ef6
HRK
430 if (!is_valid_irq(cmos->irq))
431 return -EINVAL;
7be2c7c9 432
d5a1c7e3
BP
433 if (alarm_disable_quirk)
434 return 0;
435
7be2c7c9 436 spin_lock_irqsave(&rtc_lock, flags);
a8462ef6
HRK
437
438 if (enabled)
7e2a31da 439 cmos_irq_enable(cmos, RTC_AIE);
a8462ef6
HRK
440 else
441 cmos_irq_disable(cmos, RTC_AIE);
442
7be2c7c9
DB
443 spin_unlock_irqrestore(&rtc_lock, flags);
444 return 0;
445}
446
7be2c7c9
DB
447#if defined(CONFIG_RTC_INTF_PROC) || defined(CONFIG_RTC_INTF_PROC_MODULE)
448
449static int cmos_procfs(struct device *dev, struct seq_file *seq)
450{
451 struct cmos_rtc *cmos = dev_get_drvdata(dev);
452 unsigned char rtc_control, valid;
453
454 spin_lock_irq(&rtc_lock);
455 rtc_control = CMOS_READ(RTC_CONTROL);
456 valid = CMOS_READ(RTC_VALID);
457 spin_unlock_irq(&rtc_lock);
458
459 /* NOTE: at least ICH6 reports battery status using a different
460 * (non-RTC) bit; and SQWE is ignored on many current systems.
461 */
4395eb1f
JP
462 seq_printf(seq,
463 "periodic_IRQ\t: %s\n"
464 "update_IRQ\t: %s\n"
465 "HPET_emulated\t: %s\n"
466 // "square_wave\t: %s\n"
467 "BCD\t\t: %s\n"
468 "DST_enable\t: %s\n"
469 "periodic_freq\t: %d\n"
470 "batt_status\t: %s\n",
471 (rtc_control & RTC_PIE) ? "yes" : "no",
472 (rtc_control & RTC_UIE) ? "yes" : "no",
473 is_hpet_enabled() ? "yes" : "no",
474 // (rtc_control & RTC_SQWE) ? "yes" : "no",
475 (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
476 (rtc_control & RTC_DST_EN) ? "yes" : "no",
477 cmos->rtc->irq_freq,
478 (valid & RTC_VRT) ? "okay" : "dead");
479
480 return 0;
7be2c7c9
DB
481}
482
483#else
484#define cmos_procfs NULL
485#endif
486
487static const struct rtc_class_ops cmos_rtc_ops = {
a8462ef6
HRK
488 .read_time = cmos_read_time,
489 .set_time = cmos_set_time,
490 .read_alarm = cmos_read_alarm,
491 .set_alarm = cmos_set_alarm,
492 .proc = cmos_procfs,
a8462ef6 493 .alarm_irq_enable = cmos_alarm_irq_enable,
7be2c7c9
DB
494};
495
496/*----------------------------------------------------------------*/
497
e07e232c
DB
498/*
499 * All these chips have at least 64 bytes of address space, shared by
500 * RTC registers and NVRAM. Most of those bytes of NVRAM are used
501 * by boot firmware. Modern chips have 128 or 256 bytes.
502 */
503
504#define NVRAM_OFFSET (RTC_REG_D + 1)
505
506static ssize_t
2c3c8bea
CW
507cmos_nvram_read(struct file *filp, struct kobject *kobj,
508 struct bin_attribute *attr,
e07e232c
DB
509 char *buf, loff_t off, size_t count)
510{
511 int retval;
512
513 if (unlikely(off >= attr->size))
514 return 0;
c8fc40cd
DB
515 if (unlikely(off < 0))
516 return -EINVAL;
e07e232c
DB
517 if ((off + count) > attr->size)
518 count = attr->size - off;
519
c8fc40cd 520 off += NVRAM_OFFSET;
e07e232c 521 spin_lock_irq(&rtc_lock);
c8fc40cd
DB
522 for (retval = 0; count; count--, off++, retval++) {
523 if (off < 128)
524 *buf++ = CMOS_READ(off);
525 else if (can_bank2)
526 *buf++ = cmos_read_bank2(off);
527 else
528 break;
529 }
e07e232c
DB
530 spin_unlock_irq(&rtc_lock);
531
532 return retval;
533}
534
535static ssize_t
2c3c8bea
CW
536cmos_nvram_write(struct file *filp, struct kobject *kobj,
537 struct bin_attribute *attr,
e07e232c
DB
538 char *buf, loff_t off, size_t count)
539{
540 struct cmos_rtc *cmos;
541 int retval;
542
543 cmos = dev_get_drvdata(container_of(kobj, struct device, kobj));
544 if (unlikely(off >= attr->size))
545 return -EFBIG;
c8fc40cd
DB
546 if (unlikely(off < 0))
547 return -EINVAL;
e07e232c
DB
548 if ((off + count) > attr->size)
549 count = attr->size - off;
550
551 /* NOTE: on at least PCs and Ataris, the boot firmware uses a
552 * checksum on part of the NVRAM data. That's currently ignored
553 * here. If userspace is smart enough to know what fields of
554 * NVRAM to update, updating checksums is also part of its job.
555 */
c8fc40cd 556 off += NVRAM_OFFSET;
e07e232c 557 spin_lock_irq(&rtc_lock);
c8fc40cd 558 for (retval = 0; count; count--, off++, retval++) {
e07e232c
DB
559 /* don't trash RTC registers */
560 if (off == cmos->day_alrm
561 || off == cmos->mon_alrm
562 || off == cmos->century)
563 buf++;
c8fc40cd 564 else if (off < 128)
e07e232c 565 CMOS_WRITE(*buf++, off);
c8fc40cd
DB
566 else if (can_bank2)
567 cmos_write_bank2(*buf++, off);
568 else
569 break;
e07e232c
DB
570 }
571 spin_unlock_irq(&rtc_lock);
572
573 return retval;
574}
575
576static struct bin_attribute nvram = {
577 .attr = {
578 .name = "nvram",
579 .mode = S_IRUGO | S_IWUSR,
e07e232c
DB
580 },
581
582 .read = cmos_nvram_read,
583 .write = cmos_nvram_write,
584 /* size gets set up later */
585};
586
587/*----------------------------------------------------------------*/
588
7be2c7c9
DB
589static struct cmos_rtc cmos_rtc;
590
591static irqreturn_t cmos_interrupt(int irq, void *p)
592{
593 u8 irqstat;
8a0bdfd7 594 u8 rtc_control;
7be2c7c9
DB
595
596 spin_lock(&rtc_lock);
35d3fdd5
DB
597
598 /* When the HPET interrupt handler calls us, the interrupt
599 * status is passed as arg1 instead of the irq number. But
600 * always clear irq status, even when HPET is in the way.
601 *
602 * Note that HPET and RTC are almost certainly out of phase,
603 * giving different IRQ status ...
9d8af78b 604 */
35d3fdd5
DB
605 irqstat = CMOS_READ(RTC_INTR_FLAGS);
606 rtc_control = CMOS_READ(RTC_CONTROL);
9d8af78b
BW
607 if (is_hpet_enabled())
608 irqstat = (unsigned long)irq & 0xF0;
998a0605
DB
609
610 /* If we were suspended, RTC_CONTROL may not be accurate since the
611 * bios may have cleared it.
612 */
613 if (!cmos_rtc.suspend_ctrl)
614 irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
615 else
616 irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
8a0bdfd7
DB
617
618 /* All Linux RTC alarms should be treated as if they were oneshot.
619 * Similar code may be needed in system wakeup paths, in case the
620 * alarm woke the system.
621 */
622 if (irqstat & RTC_AIE) {
998a0605 623 cmos_rtc.suspend_ctrl &= ~RTC_AIE;
8a0bdfd7
DB
624 rtc_control &= ~RTC_AIE;
625 CMOS_WRITE(rtc_control, RTC_CONTROL);
35d3fdd5 626 hpet_mask_rtc_irq_bit(RTC_AIE);
8a0bdfd7
DB
627 CMOS_READ(RTC_INTR_FLAGS);
628 }
7be2c7c9
DB
629 spin_unlock(&rtc_lock);
630
bcd9b89c 631 if (is_intr(irqstat)) {
7be2c7c9
DB
632 rtc_update_irq(p, 1, irqstat);
633 return IRQ_HANDLED;
634 } else
635 return IRQ_NONE;
636}
637
41ac8df9 638#ifdef CONFIG_PNP
7be2c7c9
DB
639#define INITSECTION
640
641#else
7be2c7c9
DB
642#define INITSECTION __init
643#endif
644
645static int INITSECTION
646cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
647{
97a92e77 648 struct cmos_rtc_board_info *info = dev_get_platdata(dev);
7be2c7c9
DB
649 int retval = 0;
650 unsigned char rtc_control;
e07e232c 651 unsigned address_space;
31632dbd 652 u32 flags = 0;
7be2c7c9
DB
653
654 /* there can be only one ... */
655 if (cmos_rtc.dev)
656 return -EBUSY;
657
658 if (!ports)
659 return -ENODEV;
660
05440dfc
DB
661 /* Claim I/O ports ASAP, minimizing conflict with legacy driver.
662 *
663 * REVISIT non-x86 systems may instead use memory space resources
664 * (needing ioremap etc), not i/o space resources like this ...
665 */
31632dbd
MR
666 if (RTC_IOMAPPED)
667 ports = request_region(ports->start, resource_size(ports),
668 driver_name);
669 else
670 ports = request_mem_region(ports->start, resource_size(ports),
671 driver_name);
05440dfc
DB
672 if (!ports) {
673 dev_dbg(dev, "i/o registers already in use\n");
674 return -EBUSY;
675 }
676
7be2c7c9
DB
677 cmos_rtc.irq = rtc_irq;
678 cmos_rtc.iomem = ports;
679
e07e232c
DB
680 /* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
681 * driver did, but don't reject unknown configs. Old hardware
c8fc40cd
DB
682 * won't address 128 bytes. Newer chips have multiple banks,
683 * though they may not be listed in one I/O resource.
e07e232c
DB
684 */
685#if defined(CONFIG_ATARI)
686 address_space = 64;
95abd0df 687#elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
8cb7c71b
SK
688 || defined(__sparc__) || defined(__mips__) \
689 || defined(__powerpc__)
e07e232c
DB
690 address_space = 128;
691#else
692#warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
693 address_space = 128;
694#endif
c8fc40cd
DB
695 if (can_bank2 && ports->end > (ports->start + 1))
696 address_space = 256;
e07e232c 697
87ac84f4
DB
698 /* For ACPI systems extension info comes from the FADT. On others,
699 * board specific setup provides it as appropriate. Systems where
700 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
701 * some almost-clones) can provide hooks to make that behave.
e07e232c
DB
702 *
703 * Note that ACPI doesn't preclude putting these registers into
704 * "extended" areas of the chip, including some that we won't yet
705 * expect CMOS_READ and friends to handle.
7be2c7c9
DB
706 */
707 if (info) {
31632dbd
MR
708 if (info->flags)
709 flags = info->flags;
710 if (info->address_space)
711 address_space = info->address_space;
712
e07e232c
DB
713 if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
714 cmos_rtc.day_alrm = info->rtc_day_alarm;
715 if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
716 cmos_rtc.mon_alrm = info->rtc_mon_alarm;
717 if (info->rtc_century && info->rtc_century < 128)
718 cmos_rtc.century = info->rtc_century;
87ac84f4
DB
719
720 if (info->wake_on && info->wake_off) {
721 cmos_rtc.wake_on = info->wake_on;
722 cmos_rtc.wake_off = info->wake_off;
723 }
7be2c7c9
DB
724 }
725
6ba8bcd4
DC
726 cmos_rtc.dev = dev;
727 dev_set_drvdata(dev, &cmos_rtc);
728
7be2c7c9
DB
729 cmos_rtc.rtc = rtc_device_register(driver_name, dev,
730 &cmos_rtc_ops, THIS_MODULE);
05440dfc
DB
731 if (IS_ERR(cmos_rtc.rtc)) {
732 retval = PTR_ERR(cmos_rtc.rtc);
733 goto cleanup0;
734 }
7be2c7c9 735
d4afc76c 736 rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
7be2c7c9
DB
737
738 spin_lock_irq(&rtc_lock);
739
31632dbd
MR
740 if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
741 /* force periodic irq to CMOS reset default of 1024Hz;
742 *
743 * REVISIT it's been reported that at least one x86_64 ALI
744 * mobo doesn't use 32KHz here ... for portability we might
745 * need to do something about other clock frequencies.
746 */
747 cmos_rtc.rtc->irq_freq = 1024;
748 hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
749 CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
750 }
7be2c7c9 751
7e2a31da 752 /* disable irqs */
31632dbd
MR
753 if (is_valid_irq(rtc_irq))
754 cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
35d3fdd5 755
7e2a31da 756 rtc_control = CMOS_READ(RTC_CONTROL);
7be2c7c9
DB
757
758 spin_unlock_irq(&rtc_lock);
759
3804a89b 760 /* FIXME:
7be2c7c9
DB
761 * <asm-generic/rtc.h> doesn't know 12-hour mode either.
762 */
5e8599d2 763 if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
3804a89b 764 dev_warn(dev, "only 24-hr supported\n");
7be2c7c9
DB
765 retval = -ENXIO;
766 goto cleanup1;
767 }
768
9d8af78b
BW
769 if (is_valid_irq(rtc_irq)) {
770 irq_handler_t rtc_cmos_int_handler;
771
772 if (is_hpet_enabled()) {
9d8af78b 773 rtc_cmos_int_handler = hpet_rtc_interrupt;
24b34472
AM
774 retval = hpet_register_irq_handler(cmos_interrupt);
775 if (retval) {
ee443357 776 dev_warn(dev, "hpet_register_irq_handler "
9d8af78b
BW
777 " failed in rtc_init().");
778 goto cleanup1;
779 }
780 } else
781 rtc_cmos_int_handler = cmos_interrupt;
782
783 retval = request_irq(rtc_irq, rtc_cmos_int_handler,
2f6e5f94 784 0, dev_name(&cmos_rtc.rtc->dev),
ab6a2d70 785 cmos_rtc.rtc);
9d8af78b
BW
786 if (retval < 0) {
787 dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
788 goto cleanup1;
789 }
7be2c7c9 790 }
9d8af78b 791 hpet_rtc_timer_init();
7be2c7c9 792
e07e232c
DB
793 /* export at least the first block of NVRAM */
794 nvram.size = address_space - NVRAM_OFFSET;
795 retval = sysfs_create_bin_file(&dev->kobj, &nvram);
796 if (retval < 0) {
797 dev_dbg(dev, "can't create nvram file? %d\n", retval);
798 goto cleanup2;
799 }
7be2c7c9 800
ee443357 801 dev_info(dev, "%s%s, %zd bytes nvram%s\n",
6d029b64
KH
802 !is_valid_irq(rtc_irq) ? "no alarms" :
803 cmos_rtc.mon_alrm ? "alarms up to one year" :
804 cmos_rtc.day_alrm ? "alarms up to one month" :
805 "alarms up to one day",
806 cmos_rtc.century ? ", y3k" : "",
807 nvram.size,
808 is_hpet_enabled() ? ", hpet irqs" : "");
7be2c7c9
DB
809
810 return 0;
811
e07e232c
DB
812cleanup2:
813 if (is_valid_irq(rtc_irq))
814 free_irq(rtc_irq, cmos_rtc.rtc);
7be2c7c9 815cleanup1:
05440dfc 816 cmos_rtc.dev = NULL;
7be2c7c9 817 rtc_device_unregister(cmos_rtc.rtc);
05440dfc 818cleanup0:
31632dbd
MR
819 if (RTC_IOMAPPED)
820 release_region(ports->start, resource_size(ports));
821 else
822 release_mem_region(ports->start, resource_size(ports));
7be2c7c9
DB
823 return retval;
824}
825
31632dbd 826static void cmos_do_shutdown(int rtc_irq)
7be2c7c9 827{
7be2c7c9 828 spin_lock_irq(&rtc_lock);
31632dbd
MR
829 if (is_valid_irq(rtc_irq))
830 cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
7be2c7c9
DB
831 spin_unlock_irq(&rtc_lock);
832}
833
834static void __exit cmos_do_remove(struct device *dev)
835{
836 struct cmos_rtc *cmos = dev_get_drvdata(dev);
05440dfc 837 struct resource *ports;
7be2c7c9 838
31632dbd 839 cmos_do_shutdown(cmos->irq);
7be2c7c9 840
e07e232c
DB
841 sysfs_remove_bin_file(&dev->kobj, &nvram);
842
9d8af78b 843 if (is_valid_irq(cmos->irq)) {
05440dfc 844 free_irq(cmos->irq, cmos->rtc);
9d8af78b
BW
845 hpet_unregister_irq_handler(cmos_interrupt);
846 }
7be2c7c9 847
05440dfc
DB
848 rtc_device_unregister(cmos->rtc);
849 cmos->rtc = NULL;
7be2c7c9 850
05440dfc 851 ports = cmos->iomem;
31632dbd
MR
852 if (RTC_IOMAPPED)
853 release_region(ports->start, resource_size(ports));
854 else
855 release_mem_region(ports->start, resource_size(ports));
05440dfc
DB
856 cmos->iomem = NULL;
857
858 cmos->dev = NULL;
7be2c7c9
DB
859}
860
a882b14f 861#ifdef CONFIG_PM
7be2c7c9 862
2fb08e6c 863static int cmos_suspend(struct device *dev)
7be2c7c9
DB
864{
865 struct cmos_rtc *cmos = dev_get_drvdata(dev);
bcd9b89c 866 unsigned char tmp;
7be2c7c9
DB
867
868 /* only the alarm might be a wakeup event source */
869 spin_lock_irq(&rtc_lock);
870 cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
871 if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
35d3fdd5 872 unsigned char mask;
bcd9b89c 873
74c4633d 874 if (device_may_wakeup(dev))
35d3fdd5 875 mask = RTC_IRQMASK & ~RTC_AIE;
7be2c7c9 876 else
35d3fdd5
DB
877 mask = RTC_IRQMASK;
878 tmp &= ~mask;
7be2c7c9 879 CMOS_WRITE(tmp, RTC_CONTROL);
e005715e 880 hpet_mask_rtc_irq_bit(mask);
35d3fdd5 881
7e2a31da 882 cmos_checkintr(cmos, tmp);
bcd9b89c 883 }
7be2c7c9
DB
884 spin_unlock_irq(&rtc_lock);
885
87ac84f4
DB
886 if (tmp & RTC_AIE) {
887 cmos->enabled_wake = 1;
888 if (cmos->wake_on)
889 cmos->wake_on(dev);
890 else
891 enable_irq_wake(cmos->irq);
892 }
7be2c7c9 893
ee443357 894 dev_dbg(dev, "suspend%s, ctrl %02x\n",
7be2c7c9
DB
895 (tmp & RTC_AIE) ? ", alarm may wake" : "",
896 tmp);
897
898 return 0;
899}
900
74c4633d
RW
901/* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
902 * after a detour through G3 "mechanical off", although the ACPI spec
903 * says wakeup should only work from G1/S4 "hibernate". To most users,
904 * distinctions between S4 and S5 are pointless. So when the hardware
905 * allows, don't draw that distinction.
906 */
907static inline int cmos_poweroff(struct device *dev)
908{
2fb08e6c 909 return cmos_suspend(dev);
74c4633d
RW
910}
911
a882b14f
DG
912#ifdef CONFIG_PM_SLEEP
913
7be2c7c9
DB
914static int cmos_resume(struct device *dev)
915{
916 struct cmos_rtc *cmos = dev_get_drvdata(dev);
998a0605
DB
917 unsigned char tmp;
918
919 if (cmos->enabled_wake) {
920 if (cmos->wake_off)
921 cmos->wake_off(dev);
922 else
923 disable_irq_wake(cmos->irq);
924 cmos->enabled_wake = 0;
925 }
7be2c7c9 926
998a0605
DB
927 spin_lock_irq(&rtc_lock);
928 tmp = cmos->suspend_ctrl;
929 cmos->suspend_ctrl = 0;
7be2c7c9 930 /* re-enable any irqs previously active */
35d3fdd5
DB
931 if (tmp & RTC_IRQMASK) {
932 unsigned char mask;
7be2c7c9 933
ebf8d6c8
DB
934 if (device_may_wakeup(dev))
935 hpet_rtc_timer_init();
936
35d3fdd5
DB
937 do {
938 CMOS_WRITE(tmp, RTC_CONTROL);
939 hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
940
941 mask = CMOS_READ(RTC_INTR_FLAGS);
942 mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
7e2a31da 943 if (!is_hpet_enabled() || !is_intr(mask))
35d3fdd5
DB
944 break;
945
946 /* force one-shot behavior if HPET blocked
947 * the wake alarm's irq
948 */
949 rtc_update_irq(cmos->rtc, 1, mask);
950 tmp &= ~RTC_AIE;
951 hpet_mask_rtc_irq_bit(RTC_AIE);
952 } while (mask & RTC_AIE);
7be2c7c9 953 }
998a0605 954 spin_unlock_irq(&rtc_lock);
7be2c7c9 955
ee443357 956 dev_dbg(dev, "resume, ctrl %02x\n", tmp);
7be2c7c9
DB
957
958 return 0;
959}
960
a882b14f 961#endif
7be2c7c9 962#else
74c4633d
RW
963
964static inline int cmos_poweroff(struct device *dev)
965{
966 return -ENOSYS;
967}
968
7be2c7c9
DB
969#endif
970
b5ada460
MW
971static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
972
7be2c7c9
DB
973/*----------------------------------------------------------------*/
974
e07e232c
DB
975/* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
976 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
977 * probably list them in similar PNPBIOS tables; so PNP is more common.
978 *
979 * We don't use legacy "poke at the hardware" probing. Ancient PCs that
980 * predate even PNPBIOS should set up platform_bus devices.
7be2c7c9
DB
981 */
982
a474aaed
BH
983#ifdef CONFIG_ACPI
984
985#include <linux/acpi.h>
986
a474aaed
BH
987static u32 rtc_handler(void *context)
988{
b2201e54
DD
989 struct device *dev = context;
990
991 pm_wakeup_event(dev, 0);
a474aaed
BH
992 acpi_clear_event(ACPI_EVENT_RTC);
993 acpi_disable_event(ACPI_EVENT_RTC, 0);
994 return ACPI_INTERRUPT_HANDLED;
995}
996
b2201e54 997static inline void rtc_wake_setup(struct device *dev)
a474aaed 998{
b2201e54 999 acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
a474aaed
BH
1000 /*
1001 * After the RTC handler is installed, the Fixed_RTC event should
1002 * be disabled. Only when the RTC alarm is set will it be enabled.
1003 */
1004 acpi_clear_event(ACPI_EVENT_RTC);
1005 acpi_disable_event(ACPI_EVENT_RTC, 0);
1006}
1007
1008static void rtc_wake_on(struct device *dev)
1009{
1010 acpi_clear_event(ACPI_EVENT_RTC);
1011 acpi_enable_event(ACPI_EVENT_RTC, 0);
1012}
1013
1014static void rtc_wake_off(struct device *dev)
1015{
1016 acpi_disable_event(ACPI_EVENT_RTC, 0);
1017}
a474aaed
BH
1018
1019/* Every ACPI platform has a mc146818 compatible "cmos rtc". Here we find
1020 * its device node and pass extra config data. This helps its driver use
1021 * capabilities that the now-obsolete mc146818 didn't have, and informs it
1022 * that this board's RTC is wakeup-capable (per ACPI spec).
1023 */
1024static struct cmos_rtc_board_info acpi_rtc_info;
1025
5a167f45 1026static void cmos_wake_setup(struct device *dev)
a474aaed
BH
1027{
1028 if (acpi_disabled)
1029 return;
1030
b2201e54 1031 rtc_wake_setup(dev);
a474aaed
BH
1032 acpi_rtc_info.wake_on = rtc_wake_on;
1033 acpi_rtc_info.wake_off = rtc_wake_off;
1034
1035 /* workaround bug in some ACPI tables */
1036 if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1037 dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1038 acpi_gbl_FADT.month_alarm);
1039 acpi_gbl_FADT.month_alarm = 0;
1040 }
1041
1042 acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1043 acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1044 acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1045
1046 /* NOTE: S4_RTC_WAKE is NOT currently useful to Linux */
1047 if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1048 dev_info(dev, "RTC can wake from S4\n");
1049
1050 dev->platform_data = &acpi_rtc_info;
1051
1052 /* RTC always wakes from S1/S2/S3, and often S4/STD */
1053 device_init_wakeup(dev, 1);
1054}
1055
1056#else
1057
5a167f45 1058static void cmos_wake_setup(struct device *dev)
a474aaed
BH
1059{
1060}
1061
1062#endif
1063
41ac8df9 1064#ifdef CONFIG_PNP
7be2c7c9
DB
1065
1066#include <linux/pnp.h>
1067
5a167f45 1068static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
7be2c7c9 1069{
a474aaed
BH
1070 cmos_wake_setup(&pnp->dev);
1071
5e8599d2 1072 if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0))
6cd8fa87
MG
1073 /* Some machines contain a PNP entry for the RTC, but
1074 * don't define the IRQ. It should always be safe to
1075 * hardcode it in these cases
1076 */
8766ad0c
BH
1077 return cmos_do_probe(&pnp->dev,
1078 pnp_get_resource(pnp, IORESOURCE_IO, 0), 8);
6cd8fa87
MG
1079 else
1080 return cmos_do_probe(&pnp->dev,
8766ad0c
BH
1081 pnp_get_resource(pnp, IORESOURCE_IO, 0),
1082 pnp_irq(pnp, 0));
7be2c7c9
DB
1083}
1084
1085static void __exit cmos_pnp_remove(struct pnp_dev *pnp)
1086{
1087 cmos_do_remove(&pnp->dev);
1088}
1089
004731b2 1090static void cmos_pnp_shutdown(struct pnp_dev *pnp)
74c4633d 1091{
31632dbd
MR
1092 struct device *dev = &pnp->dev;
1093 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1094
1095 if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(dev))
74c4633d
RW
1096 return;
1097
31632dbd 1098 cmos_do_shutdown(cmos->irq);
74c4633d 1099}
7be2c7c9
DB
1100
1101static const struct pnp_device_id rtc_ids[] = {
1102 { .id = "PNP0b00", },
1103 { .id = "PNP0b01", },
1104 { .id = "PNP0b02", },
1105 { },
1106};
1107MODULE_DEVICE_TABLE(pnp, rtc_ids);
1108
1109static struct pnp_driver cmos_pnp_driver = {
1110 .name = (char *) driver_name,
1111 .id_table = rtc_ids,
1112 .probe = cmos_pnp_probe,
1113 .remove = __exit_p(cmos_pnp_remove),
004731b2 1114 .shutdown = cmos_pnp_shutdown,
7be2c7c9
DB
1115
1116 /* flag ensures resume() gets called, and stops syslog spam */
1117 .flags = PNP_DRIVER_RES_DO_NOT_CHANGE,
a8a3808b
SK
1118 .driver = {
1119 .pm = &cmos_pm_ops,
1120 },
7be2c7c9
DB
1121};
1122
1da2e3d6 1123#endif /* CONFIG_PNP */
7be2c7c9 1124
3bcbaf6e
SAS
1125#ifdef CONFIG_OF
1126static const struct of_device_id of_cmos_match[] = {
1127 {
1128 .compatible = "motorola,mc146818",
1129 },
1130 { },
1131};
1132MODULE_DEVICE_TABLE(of, of_cmos_match);
1133
1134static __init void cmos_of_init(struct platform_device *pdev)
1135{
1136 struct device_node *node = pdev->dev.of_node;
1137 struct rtc_time time;
1138 int ret;
1139 const __be32 *val;
1140
1141 if (!node)
1142 return;
1143
1144 val = of_get_property(node, "ctrl-reg", NULL);
1145 if (val)
1146 CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1147
1148 val = of_get_property(node, "freq-reg", NULL);
1149 if (val)
1150 CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1151
1152 get_rtc_time(&time);
1153 ret = rtc_valid_tm(&time);
1154 if (ret) {
1155 struct rtc_time def_time = {
1156 .tm_year = 1,
1157 .tm_mday = 1,
1158 };
1159 set_rtc_time(&def_time);
1160 }
1161}
1162#else
1163static inline void cmos_of_init(struct platform_device *pdev) {}
3bcbaf6e 1164#endif
7be2c7c9
DB
1165/*----------------------------------------------------------------*/
1166
41ac8df9 1167/* Platform setup should have set up an RTC device, when PNP is
bcd9b89c 1168 * unavailable ... this could happen even on (older) PCs.
7be2c7c9
DB
1169 */
1170
1171static int __init cmos_platform_probe(struct platform_device *pdev)
1172{
31632dbd
MR
1173 struct resource *resource;
1174 int irq;
1175
3bcbaf6e 1176 cmos_of_init(pdev);
a474aaed 1177 cmos_wake_setup(&pdev->dev);
31632dbd
MR
1178
1179 if (RTC_IOMAPPED)
1180 resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1181 else
1182 resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1183 irq = platform_get_irq(pdev, 0);
1184 if (irq < 0)
1185 irq = -1;
1186
1187 return cmos_do_probe(&pdev->dev, resource, irq);
7be2c7c9
DB
1188}
1189
1190static int __exit cmos_platform_remove(struct platform_device *pdev)
1191{
1192 cmos_do_remove(&pdev->dev);
1193 return 0;
1194}
1195
1196static void cmos_platform_shutdown(struct platform_device *pdev)
1197{
31632dbd
MR
1198 struct device *dev = &pdev->dev;
1199 struct cmos_rtc *cmos = dev_get_drvdata(dev);
1200
1201 if (system_state == SYSTEM_POWER_OFF && !cmos_poweroff(dev))
74c4633d
RW
1202 return;
1203
31632dbd 1204 cmos_do_shutdown(cmos->irq);
7be2c7c9
DB
1205}
1206
ad28a07b
KS
1207/* work with hotplug and coldplug */
1208MODULE_ALIAS("platform:rtc_cmos");
1209
7be2c7c9
DB
1210static struct platform_driver cmos_platform_driver = {
1211 .remove = __exit_p(cmos_platform_remove),
1212 .shutdown = cmos_platform_shutdown,
1213 .driver = {
c823a202 1214 .name = driver_name,
2fb08e6c
PF
1215#ifdef CONFIG_PM
1216 .pm = &cmos_pm_ops,
1217#endif
c8a6046e 1218 .of_match_table = of_match_ptr(of_cmos_match),
7be2c7c9
DB
1219 }
1220};
1221
65909814
TLSC
1222#ifdef CONFIG_PNP
1223static bool pnp_driver_registered;
1224#endif
1225static bool platform_driver_registered;
1226
7be2c7c9
DB
1227static int __init cmos_init(void)
1228{
72f22b1e
BH
1229 int retval = 0;
1230
1da2e3d6 1231#ifdef CONFIG_PNP
65909814
TLSC
1232 retval = pnp_register_driver(&cmos_pnp_driver);
1233 if (retval == 0)
1234 pnp_driver_registered = true;
72f22b1e
BH
1235#endif
1236
65909814 1237 if (!cmos_rtc.dev) {
72f22b1e
BH
1238 retval = platform_driver_probe(&cmos_platform_driver,
1239 cmos_platform_probe);
65909814
TLSC
1240 if (retval == 0)
1241 platform_driver_registered = true;
1242 }
72f22b1e 1243
d5a1c7e3
BP
1244 dmi_check_system(rtc_quirks);
1245
72f22b1e
BH
1246 if (retval == 0)
1247 return 0;
1248
1249#ifdef CONFIG_PNP
65909814
TLSC
1250 if (pnp_driver_registered)
1251 pnp_unregister_driver(&cmos_pnp_driver);
72f22b1e
BH
1252#endif
1253 return retval;
7be2c7c9
DB
1254}
1255module_init(cmos_init);
1256
1257static void __exit cmos_exit(void)
1258{
1da2e3d6 1259#ifdef CONFIG_PNP
65909814
TLSC
1260 if (pnp_driver_registered)
1261 pnp_unregister_driver(&cmos_pnp_driver);
72f22b1e 1262#endif
65909814
TLSC
1263 if (platform_driver_registered)
1264 platform_driver_unregister(&cmos_platform_driver);
7be2c7c9
DB
1265}
1266module_exit(cmos_exit);
1267
1268
7be2c7c9
DB
1269MODULE_AUTHOR("David Brownell");
1270MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1271MODULE_LICENSE("GPL");