intel_scu_ipc: fix data packing of PMIC command on Moorestown
[linux-2.6-block.git] / drivers / platform / x86 / intel_scu_ipc.c
CommitLineData
9a58a333
SD
1/*
2 * intel_scu_ipc.c: Driver for the Intel SCU IPC mechanism
3 *
4 * (C) Copyright 2008-2010 Intel Corporation
5 * Author: Sreedhara DS (sreedhara.ds@intel.com)
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 *
12 * SCU runing in ARC processor communicates with other entity running in IA
13 * core through IPC mechanism which in turn messaging between IA core ad SCU.
14 * SCU has two IPC mechanism IPC-1 and IPC-2. IPC-1 is used between IA32 and
15 * SCU where IPC-2 is used between P-Unit and SCU. This driver delas with
16 * IPC-1 Driver provides an API for power control unit registers (e.g. MSIC)
17 * along with other APIs.
18 */
19#include <linux/delay.h>
20#include <linux/errno.h>
21#include <linux/init.h>
22#include <linux/sysdev.h>
23#include <linux/pm.h>
24#include <linux/pci.h>
25#include <linux/interrupt.h>
14d10f0a 26#include <asm/mrst.h>
9a58a333
SD
27#include <asm/intel_scu_ipc.h>
28
29/* IPC defines the following message types */
30#define IPCMSG_WATCHDOG_TIMER 0xF8 /* Set Kernel Watchdog Threshold */
31#define IPCMSG_BATTERY 0xEF /* Coulomb Counter Accumulator */
32#define IPCMSG_FW_UPDATE 0xFE /* Firmware update */
33#define IPCMSG_PCNTRL 0xFF /* Power controller unit read/write */
34#define IPCMSG_FW_REVISION 0xF4 /* Get firmware revision */
35
36/* Command id associated with message IPCMSG_PCNTRL */
37#define IPC_CMD_PCNTRL_W 0 /* Register write */
38#define IPC_CMD_PCNTRL_R 1 /* Register read */
39#define IPC_CMD_PCNTRL_M 2 /* Register read-modify-write */
40
9a58a333
SD
41/*
42 * IPC register summary
43 *
44 * IPC register blocks are memory mapped at fixed address of 0xFF11C000
45 * To read or write information to the SCU, driver writes to IPC-1 memory
46 * mapped registers (base address 0xFF11C000). The following is the IPC
47 * mechanism
48 *
49 * 1. IA core cDMI interface claims this transaction and converts it to a
50 * Transaction Layer Packet (TLP) message which is sent across the cDMI.
51 *
52 * 2. South Complex cDMI block receives this message and writes it to
53 * the IPC-1 register block, causing an interrupt to the SCU
54 *
55 * 3. SCU firmware decodes this interrupt and IPC message and the appropriate
56 * message handler is called within firmware.
57 */
58
59#define IPC_BASE_ADDR 0xFF11C000 /* IPC1 base register address */
60#define IPC_MAX_ADDR 0x100 /* Maximum IPC regisers */
51cd525d
AV
61#define IPC_WWBUF_SIZE 20 /* IPC Write buffer Size */
62#define IPC_RWBUF_SIZE 20 /* IPC Read buffer Size */
9a58a333
SD
63#define IPC_I2C_BASE 0xFF12B000 /* I2C control register base address */
64#define IPC_I2C_MAX_ADDR 0x10 /* Maximum I2C regisers */
65
66static int ipc_probe(struct pci_dev *dev, const struct pci_device_id *id);
67static void ipc_remove(struct pci_dev *pdev);
68
69struct intel_scu_ipc_dev {
70 struct pci_dev *pdev;
71 void __iomem *ipc_base;
72 void __iomem *i2c_base;
73};
74
75static struct intel_scu_ipc_dev ipcdev; /* Only one for now */
76
14d10f0a 77static int platform; /* Platform type */
9a58a333
SD
78
79/*
80 * IPC Read Buffer (Read Only):
81 * 16 byte buffer for receiving data from SCU, if IPC command
82 * processing results in response data
83 */
84#define IPC_READ_BUFFER 0x90
85
86#define IPC_I2C_CNTRL_ADDR 0
87#define I2C_DATA_ADDR 0x04
88
89static DEFINE_MUTEX(ipclock); /* lock used to prevent multiple call to SCU */
90
91/*
92 * Command Register (Write Only):
93 * A write to this register results in an interrupt to the SCU core processor
94 * Format:
95 * |rfu2(8) | size(8) | command id(4) | rfu1(3) | ioc(1) | command(8)|
96 */
97static inline void ipc_command(u32 cmd) /* Send ipc command */
98{
99 writel(cmd, ipcdev.ipc_base);
100}
101
102/*
103 * IPC Write Buffer (Write Only):
104 * 16-byte buffer for sending data associated with IPC command to
105 * SCU. Size of the data is specified in the IPC_COMMAND_REG register
106 */
107static inline void ipc_data_writel(u32 data, u32 offset) /* Write ipc data */
108{
109 writel(data, ipcdev.ipc_base + 0x80 + offset);
110}
111
9a58a333
SD
112/*
113 * Status Register (Read Only):
114 * Driver will read this register to get the ready/busy status of the IPC
115 * block and error status of the IPC command that was just processed by SCU
116 * Format:
117 * |rfu3(8)|error code(8)|initiator id(8)|cmd id(4)|rfu1(2)|error(1)|busy(1)|
118 */
119
120static inline u8 ipc_read_status(void)
121{
122 return __raw_readl(ipcdev.ipc_base + 0x04);
123}
124
125static inline u8 ipc_data_readb(u32 offset) /* Read ipc byte data */
126{
127 return readb(ipcdev.ipc_base + IPC_READ_BUFFER + offset);
128}
129
e3359fd5 130static inline u32 ipc_data_readl(u32 offset) /* Read ipc u32 data */
9a58a333
SD
131{
132 return readl(ipcdev.ipc_base + IPC_READ_BUFFER + offset);
133}
134
135static inline int busy_loop(void) /* Wait till scu status is busy */
136{
137 u32 status = 0;
138 u32 loop_count = 0;
139
140 status = ipc_read_status();
141 while (status & 1) {
142 udelay(1); /* scu processing time is in few u secods */
143 status = ipc_read_status();
144 loop_count++;
145 /* break if scu doesn't reset busy bit after huge retry */
146 if (loop_count > 100000) {
147 dev_err(&ipcdev.pdev->dev, "IPC timed out");
148 return -ETIMEDOUT;
149 }
150 }
151 return (status >> 1) & 1;
152}
153
154/* Read/Write power control(PMIC in Langwell, MSIC in PenWell) registers */
155static int pwr_reg_rdwr(u16 *addr, u8 *data, u32 count, u32 op, u32 id)
156{
215c330f 157 int i, nc, bytes, d;
9a58a333
SD
158 u32 offset = 0;
159 u32 err = 0;
e3359fd5 160 u8 cbuf[IPC_WWBUF_SIZE] = { };
9a58a333
SD
161 u32 *wbuf = (u32 *)&cbuf;
162
163 mutex_lock(&ipclock);
e3359fd5 164
ed6f2b4d
AV
165 memset(cbuf, 0, sizeof(cbuf));
166
9a58a333
SD
167 if (ipcdev.pdev == NULL) {
168 mutex_unlock(&ipclock);
169 return -ENODEV;
170 }
171
9dd3adeb 172 if (platform != MRST_CPU_CHIP_PENWELL) {
6c8d0fdb 173 bytes = 0;
215c330f
HL
174 d = 0;
175 for (i = 0; i < count; i++) {
6c8d0fdb
AR
176 cbuf[bytes++] = addr[i];
177 cbuf[bytes++] = addr[i] >> 8;
9a58a333 178 if (id != IPC_CMD_PCNTRL_R)
215c330f 179 cbuf[bytes++] = data[d++];
6c8d0fdb 180 if (id == IPC_CMD_PCNTRL_M)
215c330f 181 cbuf[bytes++] = data[d++];
9a58a333 182 }
215c330f 183 for (i = 0; i < bytes; i += 4)
6c8d0fdb
AR
184 ipc_data_writel(wbuf[i/4], i);
185 ipc_command(bytes << 16 | id << 12 | 0 << 8 | op);
9a58a333 186 } else {
e3359fd5
SD
187 for (nc = 0; nc < count; nc++, offset += 2) {
188 cbuf[offset] = addr[nc];
189 cbuf[offset + 1] = addr[nc] >> 8;
9a58a333 190 }
9a58a333 191
e3359fd5
SD
192 if (id == IPC_CMD_PCNTRL_R) {
193 for (nc = 0, offset = 0; nc < count; nc++, offset += 4)
194 ipc_data_writel(wbuf[nc], offset);
195 ipc_command((count*2) << 16 | id << 12 | 0 << 8 | op);
196 } else if (id == IPC_CMD_PCNTRL_W) {
197 for (nc = 0; nc < count; nc++, offset += 1)
198 cbuf[offset] = data[nc];
199 for (nc = 0, offset = 0; nc < count; nc++, offset += 4)
200 ipc_data_writel(wbuf[nc], offset);
201 ipc_command((count*3) << 16 | id << 12 | 0 << 8 | op);
202 } else if (id == IPC_CMD_PCNTRL_M) {
203 cbuf[offset] = data[0];
204 cbuf[offset + 1] = data[1];
205 ipc_data_writel(wbuf[0], 0); /* Write wbuff */
206 ipc_command(4 << 16 | id << 12 | 0 << 8 | op);
207 }
208 }
9a58a333
SD
209
210 err = busy_loop();
9a58a333
SD
211 if (id == IPC_CMD_PCNTRL_R) { /* Read rbuf */
212 /* Workaround: values are read as 0 without memcpy_fromio */
e3359fd5 213 memcpy_fromio(cbuf, ipcdev.ipc_base + 0x90, 16);
9dd3adeb 214 if (platform != MRST_CPU_CHIP_PENWELL) {
9a58a333
SD
215 for (nc = 0, offset = 2; nc < count; nc++, offset += 3)
216 data[nc] = ipc_data_readb(offset);
217 } else {
218 for (nc = 0; nc < count; nc++)
219 data[nc] = ipc_data_readb(nc);
220 }
221 }
222 mutex_unlock(&ipclock);
223 return err;
224}
225
226/**
227 * intel_scu_ipc_ioread8 - read a word via the SCU
228 * @addr: register on SCU
229 * @data: return pointer for read byte
230 *
231 * Read a single register. Returns 0 on success or an error code. All
232 * locking between SCU accesses is handled for the caller.
233 *
234 * This function may sleep.
235 */
236int intel_scu_ipc_ioread8(u16 addr, u8 *data)
237{
238 return pwr_reg_rdwr(&addr, data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
239}
240EXPORT_SYMBOL(intel_scu_ipc_ioread8);
241
242/**
243 * intel_scu_ipc_ioread16 - read a word via the SCU
244 * @addr: register on SCU
245 * @data: return pointer for read word
246 *
247 * Read a register pair. Returns 0 on success or an error code. All
248 * locking between SCU accesses is handled for the caller.
249 *
250 * This function may sleep.
251 */
252int intel_scu_ipc_ioread16(u16 addr, u16 *data)
253{
254 u16 x[2] = {addr, addr + 1 };
255 return pwr_reg_rdwr(x, (u8 *)data, 2, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
256}
257EXPORT_SYMBOL(intel_scu_ipc_ioread16);
258
259/**
260 * intel_scu_ipc_ioread32 - read a dword via the SCU
261 * @addr: register on SCU
262 * @data: return pointer for read dword
263 *
264 * Read four registers. Returns 0 on success or an error code. All
265 * locking between SCU accesses is handled for the caller.
266 *
267 * This function may sleep.
268 */
269int intel_scu_ipc_ioread32(u16 addr, u32 *data)
270{
271 u16 x[4] = {addr, addr + 1, addr + 2, addr + 3};
272 return pwr_reg_rdwr(x, (u8 *)data, 4, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
273}
274EXPORT_SYMBOL(intel_scu_ipc_ioread32);
275
276/**
277 * intel_scu_ipc_iowrite8 - write a byte via the SCU
278 * @addr: register on SCU
279 * @data: byte to write
280 *
281 * Write a single register. Returns 0 on success or an error code. All
282 * locking between SCU accesses is handled for the caller.
283 *
284 * This function may sleep.
285 */
286int intel_scu_ipc_iowrite8(u16 addr, u8 data)
287{
288 return pwr_reg_rdwr(&addr, &data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
289}
290EXPORT_SYMBOL(intel_scu_ipc_iowrite8);
291
292/**
293 * intel_scu_ipc_iowrite16 - write a word via the SCU
294 * @addr: register on SCU
295 * @data: word to write
296 *
297 * Write two registers. Returns 0 on success or an error code. All
298 * locking between SCU accesses is handled for the caller.
299 *
300 * This function may sleep.
301 */
302int intel_scu_ipc_iowrite16(u16 addr, u16 data)
303{
304 u16 x[2] = {addr, addr + 1 };
305 return pwr_reg_rdwr(x, (u8 *)&data, 2, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
306}
307EXPORT_SYMBOL(intel_scu_ipc_iowrite16);
308
309/**
310 * intel_scu_ipc_iowrite32 - write a dword via the SCU
311 * @addr: register on SCU
312 * @data: dword to write
313 *
314 * Write four registers. Returns 0 on success or an error code. All
315 * locking between SCU accesses is handled for the caller.
316 *
317 * This function may sleep.
318 */
319int intel_scu_ipc_iowrite32(u16 addr, u32 data)
320{
321 u16 x[4] = {addr, addr + 1, addr + 2, addr + 3};
322 return pwr_reg_rdwr(x, (u8 *)&data, 4, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
323}
324EXPORT_SYMBOL(intel_scu_ipc_iowrite32);
325
326/**
327 * intel_scu_ipc_readvv - read a set of registers
328 * @addr: register list
329 * @data: bytes to return
330 * @len: length of array
331 *
332 * Read registers. Returns 0 on success or an error code. All
333 * locking between SCU accesses is handled for the caller.
334 *
335 * The largest array length permitted by the hardware is 5 items.
336 *
337 * This function may sleep.
338 */
339int intel_scu_ipc_readv(u16 *addr, u8 *data, int len)
340{
341 return pwr_reg_rdwr(addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_R);
342}
343EXPORT_SYMBOL(intel_scu_ipc_readv);
344
345/**
346 * intel_scu_ipc_writev - write a set of registers
347 * @addr: register list
348 * @data: bytes to write
349 * @len: length of array
350 *
351 * Write registers. Returns 0 on success or an error code. All
352 * locking between SCU accesses is handled for the caller.
353 *
354 * The largest array length permitted by the hardware is 5 items.
355 *
356 * This function may sleep.
357 *
358 */
359int intel_scu_ipc_writev(u16 *addr, u8 *data, int len)
360{
361 return pwr_reg_rdwr(addr, data, len, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_W);
362}
363EXPORT_SYMBOL(intel_scu_ipc_writev);
364
365
366/**
367 * intel_scu_ipc_update_register - r/m/w a register
368 * @addr: register address
369 * @bits: bits to update
370 * @mask: mask of bits to update
371 *
372 * Read-modify-write power control unit register. The first data argument
373 * must be register value and second is mask value
374 * mask is a bitmap that indicates which bits to update.
375 * 0 = masked. Don't modify this bit, 1 = modify this bit.
376 * returns 0 on success or an error code.
377 *
378 * This function may sleep. Locking between SCU accesses is handled
379 * for the caller.
380 */
381int intel_scu_ipc_update_register(u16 addr, u8 bits, u8 mask)
382{
383 u8 data[2] = { bits, mask };
384 return pwr_reg_rdwr(&addr, data, 1, IPCMSG_PCNTRL, IPC_CMD_PCNTRL_M);
385}
386EXPORT_SYMBOL(intel_scu_ipc_update_register);
387
9a58a333
SD
388/**
389 * intel_scu_ipc_simple_command - send a simple command
390 * @cmd: command
391 * @sub: sub type
392 *
393 * Issue a simple command to the SCU. Do not use this interface if
394 * you must then access data as any data values may be overwritten
395 * by another SCU access by the time this function returns.
396 *
397 * This function may sleep. Locking for SCU accesses is handled for
398 * the caller.
399 */
400int intel_scu_ipc_simple_command(int cmd, int sub)
401{
402 u32 err = 0;
403
404 mutex_lock(&ipclock);
405 if (ipcdev.pdev == NULL) {
406 mutex_unlock(&ipclock);
407 return -ENODEV;
408 }
b4fd4f89 409 ipc_command(sub << 12 | cmd);
9a58a333
SD
410 err = busy_loop();
411 mutex_unlock(&ipclock);
412 return err;
413}
414EXPORT_SYMBOL(intel_scu_ipc_simple_command);
415
416/**
417 * intel_scu_ipc_command - command with data
418 * @cmd: command
419 * @sub: sub type
420 * @in: input data
b4fd4f89 421 * @inlen: input length in dwords
9a58a333 422 * @out: output data
b4fd4f89 423 * @outlein: output length in dwords
9a58a333
SD
424 *
425 * Issue a command to the SCU which involves data transfers. Do the
426 * data copies under the lock but leave it for the caller to interpret
427 */
428
429int intel_scu_ipc_command(int cmd, int sub, u32 *in, int inlen,
430 u32 *out, int outlen)
431{
432 u32 err = 0;
433 int i = 0;
434
435 mutex_lock(&ipclock);
436 if (ipcdev.pdev == NULL) {
437 mutex_unlock(&ipclock);
438 return -ENODEV;
439 }
440
441 for (i = 0; i < inlen; i++)
442 ipc_data_writel(*in++, 4 * i);
443
b4fd4f89 444 ipc_command((sub << 12) | cmd | (inlen << 18));
9a58a333
SD
445 err = busy_loop();
446
447 for (i = 0; i < outlen; i++)
448 *out++ = ipc_data_readl(4 * i);
449
450 mutex_unlock(&ipclock);
451 return err;
452}
453EXPORT_SYMBOL(intel_scu_ipc_command);
454
455/*I2C commands */
456#define IPC_I2C_WRITE 1 /* I2C Write command */
457#define IPC_I2C_READ 2 /* I2C Read command */
458
459/**
460 * intel_scu_ipc_i2c_cntrl - I2C read/write operations
461 * @addr: I2C address + command bits
462 * @data: data to read/write
463 *
464 * Perform an an I2C read/write operation via the SCU. All locking is
465 * handled for the caller. This function may sleep.
466 *
467 * Returns an error code or 0 on success.
468 *
469 * This has to be in the IPC driver for the locking.
470 */
471int intel_scu_ipc_i2c_cntrl(u32 addr, u32 *data)
472{
473 u32 cmd = 0;
474
475 mutex_lock(&ipclock);
b4fd4f89
SD
476 if (ipcdev.pdev == NULL) {
477 mutex_unlock(&ipclock);
478 return -ENODEV;
479 }
9a58a333
SD
480 cmd = (addr >> 24) & 0xFF;
481 if (cmd == IPC_I2C_READ) {
482 writel(addr, ipcdev.i2c_base + IPC_I2C_CNTRL_ADDR);
483 /* Write not getting updated without delay */
484 mdelay(1);
485 *data = readl(ipcdev.i2c_base + I2C_DATA_ADDR);
486 } else if (cmd == IPC_I2C_WRITE) {
487 writel(addr, ipcdev.i2c_base + I2C_DATA_ADDR);
488 mdelay(1);
489 writel(addr, ipcdev.i2c_base + IPC_I2C_CNTRL_ADDR);
490 } else {
491 dev_err(&ipcdev.pdev->dev,
492 "intel_scu_ipc: I2C INVALID_CMD = 0x%x\n", cmd);
493
494 mutex_unlock(&ipclock);
495 return -1;
496 }
497 mutex_unlock(&ipclock);
498 return 0;
499}
500EXPORT_SYMBOL(intel_scu_ipc_i2c_cntrl);
501
502#define IPC_FW_LOAD_ADDR 0xFFFC0000 /* Storage location for FW image */
503#define IPC_FW_UPDATE_MBOX_ADDR 0xFFFFDFF4 /* Mailbox between ipc and scu */
504#define IPC_MAX_FW_SIZE 262144 /* 256K storage size for loading the FW image */
505#define IPC_FW_MIP_HEADER_SIZE 2048 /* Firmware MIP header size */
506/* IPC inform SCU to get ready for update process */
507#define IPC_CMD_FW_UPDATE_READY 0x10FE
508/* IPC inform SCU to go for update process */
509#define IPC_CMD_FW_UPDATE_GO 0x20FE
510/* Status code for fw update */
511#define IPC_FW_UPDATE_SUCCESS 0x444f4e45 /* Status code 'DONE' */
512#define IPC_FW_UPDATE_BADN 0x4241444E /* Status code 'BADN' */
513#define IPC_FW_TXHIGH 0x54784849 /* Status code 'IPC_FW_TXHIGH' */
514#define IPC_FW_TXLOW 0x54784c4f /* Status code 'IPC_FW_TXLOW' */
515
516struct fw_update_mailbox {
517 u32 status;
518 u32 scu_flag;
519 u32 driver_flag;
520};
521
522
523/**
524 * intel_scu_ipc_fw_update - Firmware update utility
525 * @buffer: firmware buffer
526 * @length: size of firmware buffer
527 *
528 * This function provides an interface to load the firmware into
529 * the SCU. Returns 0 on success or -1 on failure
530 */
531int intel_scu_ipc_fw_update(u8 *buffer, u32 length)
532{
533 void __iomem *fw_update_base;
534 struct fw_update_mailbox __iomem *mailbox = NULL;
535 int retry_cnt = 0;
536 u32 status;
537
538 mutex_lock(&ipclock);
539 fw_update_base = ioremap_nocache(IPC_FW_LOAD_ADDR, (128*1024));
540 if (fw_update_base == NULL) {
541 mutex_unlock(&ipclock);
542 return -ENOMEM;
543 }
544 mailbox = ioremap_nocache(IPC_FW_UPDATE_MBOX_ADDR,
545 sizeof(struct fw_update_mailbox));
546 if (mailbox == NULL) {
547 iounmap(fw_update_base);
548 mutex_unlock(&ipclock);
549 return -ENOMEM;
550 }
551
552 ipc_command(IPC_CMD_FW_UPDATE_READY);
553
554 /* Intitialize mailbox */
555 writel(0, &mailbox->status);
556 writel(0, &mailbox->scu_flag);
557 writel(0, &mailbox->driver_flag);
558
559 /* Driver copies the 2KB MIP header to SRAM at 0xFFFC0000*/
560 memcpy_toio(fw_update_base, buffer, 0x800);
561
562 /* Driver sends "FW Update" IPC command (CMD_ID 0xFE; MSG_ID 0x02).
563 * Upon receiving this command, SCU will write the 2K MIP header
564 * from 0xFFFC0000 into NAND.
565 * SCU will write a status code into the Mailbox, and then set scu_flag.
566 */
567
568 ipc_command(IPC_CMD_FW_UPDATE_GO);
569
570 /*Driver stalls until scu_flag is set */
571 while (readl(&mailbox->scu_flag) != 1) {
572 rmb();
573 mdelay(1);
574 }
575
576 /* Driver checks Mailbox status.
577 * If the status is 'BADN', then abort (bad NAND).
578 * If the status is 'IPC_FW_TXLOW', then continue.
579 */
580 while (readl(&mailbox->status) != IPC_FW_TXLOW) {
581 rmb();
582 mdelay(10);
583 }
584 mdelay(10);
585
586update_retry:
587 if (retry_cnt > 5)
588 goto update_end;
589
590 if (readl(&mailbox->status) != IPC_FW_TXLOW)
591 goto update_end;
592 buffer = buffer + 0x800;
593 memcpy_toio(fw_update_base, buffer, 0x20000);
594 writel(1, &mailbox->driver_flag);
595 while (readl(&mailbox->scu_flag) == 1) {
596 rmb();
597 mdelay(1);
598 }
599
600 /* check for 'BADN' */
601 if (readl(&mailbox->status) == IPC_FW_UPDATE_BADN)
602 goto update_end;
603
604 while (readl(&mailbox->status) != IPC_FW_TXHIGH) {
605 rmb();
606 mdelay(10);
607 }
608 mdelay(10);
609
610 if (readl(&mailbox->status) != IPC_FW_TXHIGH)
611 goto update_end;
612
613 buffer = buffer + 0x20000;
614 memcpy_toio(fw_update_base, buffer, 0x20000);
615 writel(0, &mailbox->driver_flag);
616
617 while (mailbox->scu_flag == 0) {
618 rmb();
619 mdelay(1);
620 }
621
622 /* check for 'BADN' */
623 if (readl(&mailbox->status) == IPC_FW_UPDATE_BADN)
624 goto update_end;
625
626 if (readl(&mailbox->status) == IPC_FW_TXLOW) {
627 ++retry_cnt;
628 goto update_retry;
629 }
630
631update_end:
632 status = readl(&mailbox->status);
633
634 iounmap(fw_update_base);
635 iounmap(mailbox);
636 mutex_unlock(&ipclock);
637
638 if (status == IPC_FW_UPDATE_SUCCESS)
639 return 0;
640 return -1;
641}
642EXPORT_SYMBOL(intel_scu_ipc_fw_update);
643
644/*
645 * Interrupt handler gets called when ioc bit of IPC_COMMAND_REG set to 1
646 * When ioc bit is set to 1, caller api must wait for interrupt handler called
647 * which in turn unlocks the caller api. Currently this is not used
648 *
649 * This is edge triggered so we need take no action to clear anything
650 */
651static irqreturn_t ioc(int irq, void *dev_id)
652{
653 return IRQ_HANDLED;
654}
655
656/**
657 * ipc_probe - probe an Intel SCU IPC
658 * @dev: the PCI device matching
659 * @id: entry in the match table
660 *
661 * Enable and install an intel SCU IPC. This appears in the PCI space
662 * but uses some hard coded addresses as well.
663 */
664static int ipc_probe(struct pci_dev *dev, const struct pci_device_id *id)
665{
666 int err;
667 resource_size_t pci_resource;
668
669 if (ipcdev.pdev) /* We support only one SCU */
670 return -EBUSY;
671
672 ipcdev.pdev = pci_dev_get(dev);
673
674 err = pci_enable_device(dev);
675 if (err)
676 return err;
677
678 err = pci_request_regions(dev, "intel_scu_ipc");
679 if (err)
680 return err;
681
682 pci_resource = pci_resource_start(dev, 0);
683 if (!pci_resource)
684 return -ENOMEM;
685
686 if (request_irq(dev->irq, ioc, 0, "intel_scu_ipc", &ipcdev))
687 return -EBUSY;
688
689 ipcdev.ipc_base = ioremap_nocache(IPC_BASE_ADDR, IPC_MAX_ADDR);
690 if (!ipcdev.ipc_base)
691 return -ENOMEM;
692
693 ipcdev.i2c_base = ioremap_nocache(IPC_I2C_BASE, IPC_I2C_MAX_ADDR);
694 if (!ipcdev.i2c_base) {
695 iounmap(ipcdev.ipc_base);
696 return -ENOMEM;
697 }
698 return 0;
699}
700
701/**
702 * ipc_remove - remove a bound IPC device
703 * @pdev: PCI device
704 *
705 * In practice the SCU is not removable but this function is also
706 * called for each device on a module unload or cleanup which is the
707 * path that will get used.
708 *
709 * Free up the mappings and release the PCI resources
710 */
711static void ipc_remove(struct pci_dev *pdev)
712{
713 free_irq(pdev->irq, &ipcdev);
714 pci_release_regions(pdev);
715 pci_dev_put(ipcdev.pdev);
716 iounmap(ipcdev.ipc_base);
717 iounmap(ipcdev.i2c_base);
718 ipcdev.pdev = NULL;
719}
720
721static const struct pci_device_id pci_ids[] = {
722 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x080e)},
e3359fd5 723 {PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x082a)},
9a58a333
SD
724 { 0,}
725};
726MODULE_DEVICE_TABLE(pci, pci_ids);
727
728static struct pci_driver ipc_driver = {
729 .name = "intel_scu_ipc",
730 .id_table = pci_ids,
731 .probe = ipc_probe,
732 .remove = ipc_remove,
733};
734
735
736static int __init intel_scu_ipc_init(void)
737{
9dd3adeb
AC
738 platform = mrst_identify_cpu();
739 if (platform == 0)
740 return -ENODEV;
9a58a333
SD
741 return pci_register_driver(&ipc_driver);
742}
743
744static void __exit intel_scu_ipc_exit(void)
745{
746 pci_unregister_driver(&ipc_driver);
747}
748
749MODULE_AUTHOR("Sreedhara DS <sreedhara.ds@intel.com>");
750MODULE_DESCRIPTION("Intel SCU IPC driver");
751MODULE_LICENSE("GPL");
752
753module_init(intel_scu_ipc_init);
754module_exit(intel_scu_ipc_exit);