cpusets: fix obsolete comment
[linux-2.6-block.git] / drivers / parisc / ccio-dma.c
CommitLineData
1da177e4
LT
1/*
2** ccio-dma.c:
3** DMA management routines for first generation cache-coherent machines.
4** Program U2/Uturn in "Virtual Mode" and use the I/O MMU.
5**
6** (c) Copyright 2000 Grant Grundler
7** (c) Copyright 2000 Ryan Bradetich
8** (c) Copyright 2000 Hewlett-Packard Company
9**
10** This program is free software; you can redistribute it and/or modify
11** it under the terms of the GNU General Public License as published by
12** the Free Software Foundation; either version 2 of the License, or
13** (at your option) any later version.
14**
15**
16** "Real Mode" operation refers to U2/Uturn chip operation.
17** U2/Uturn were designed to perform coherency checks w/o using
18** the I/O MMU - basically what x86 does.
19**
20** Philipp Rumpf has a "Real Mode" driver for PCX-W machines at:
21** CVSROOT=:pserver:anonymous@198.186.203.37:/cvsroot/linux-parisc
22** cvs -z3 co linux/arch/parisc/kernel/dma-rm.c
23**
24** I've rewritten his code to work under TPG's tree. See ccio-rm-dma.c.
25**
26** Drawbacks of using Real Mode are:
27** o outbound DMA is slower - U2 won't prefetch data (GSC+ XQL signal).
28** o Inbound DMA less efficient - U2 can't use DMA_FAST attribute.
29** o Ability to do scatter/gather in HW is lost.
30** o Doesn't work under PCX-U/U+ machines since they didn't follow
31** the coherency design originally worked out. Only PCX-W does.
32*/
33
1da177e4 34#include <linux/types.h>
3cb1d958 35#include <linux/kernel.h>
1da177e4
LT
36#include <linux/init.h>
37#include <linux/mm.h>
38#include <linux/spinlock.h>
39#include <linux/slab.h>
40#include <linux/string.h>
41#include <linux/pci.h>
42#include <linux/reboot.h>
f823bcae
KM
43#include <linux/proc_fs.h>
44#include <linux/seq_file.h>
b61e8f48 45#include <linux/scatterlist.h>
46663448 46#include <linux/iommu-helper.h>
1da177e4
LT
47
48#include <asm/byteorder.h>
49#include <asm/cache.h> /* for L1_CACHE_BYTES */
50#include <asm/uaccess.h>
51#include <asm/page.h>
52#include <asm/dma.h>
53#include <asm/io.h>
54#include <asm/hardware.h> /* for register_module() */
55#include <asm/parisc-device.h>
56
57/*
58** Choose "ccio" since that's what HP-UX calls it.
59** Make it easier for folks to migrate from one to the other :^)
60*/
61#define MODULE_NAME "ccio"
62
63#undef DEBUG_CCIO_RES
64#undef DEBUG_CCIO_RUN
65#undef DEBUG_CCIO_INIT
66#undef DEBUG_CCIO_RUN_SG
67
68#ifdef CONFIG_PROC_FS
69/*
70 * CCIO_SEARCH_TIME can help measure how fast the bitmap search is.
71 * impacts performance though - ditch it if you don't use it.
72 */
73#define CCIO_SEARCH_TIME
74#undef CCIO_MAP_STATS
75#else
76#undef CCIO_SEARCH_TIME
77#undef CCIO_MAP_STATS
78#endif
79
80#include <linux/proc_fs.h>
81#include <asm/runway.h> /* for proc_runway_root */
82
83#ifdef DEBUG_CCIO_INIT
84#define DBG_INIT(x...) printk(x)
85#else
86#define DBG_INIT(x...)
87#endif
88
89#ifdef DEBUG_CCIO_RUN
90#define DBG_RUN(x...) printk(x)
91#else
92#define DBG_RUN(x...)
93#endif
94
95#ifdef DEBUG_CCIO_RES
96#define DBG_RES(x...) printk(x)
97#else
98#define DBG_RES(x...)
99#endif
100
101#ifdef DEBUG_CCIO_RUN_SG
102#define DBG_RUN_SG(x...) printk(x)
103#else
104#define DBG_RUN_SG(x...)
105#endif
106
86a61ee9
GG
107#define CCIO_INLINE inline
108#define WRITE_U32(value, addr) __raw_writel(value, addr)
109#define READ_U32(addr) __raw_readl(addr)
1da177e4
LT
110
111#define U2_IOA_RUNWAY 0x580
112#define U2_BC_GSC 0x501
113#define UTURN_IOA_RUNWAY 0x581
114#define UTURN_BC_GSC 0x502
115
116#define IOA_NORMAL_MODE 0x00020080 /* IO_CONTROL to turn on CCIO */
117#define CMD_TLB_DIRECT_WRITE 35 /* IO_COMMAND for I/O TLB Writes */
118#define CMD_TLB_PURGE 33 /* IO_COMMAND to Purge I/O TLB entry */
119
120struct ioa_registers {
121 /* Runway Supervisory Set */
86a61ee9
GG
122 int32_t unused1[12];
123 uint32_t io_command; /* Offset 12 */
124 uint32_t io_status; /* Offset 13 */
125 uint32_t io_control; /* Offset 14 */
126 int32_t unused2[1];
1da177e4
LT
127
128 /* Runway Auxiliary Register Set */
86a61ee9
GG
129 uint32_t io_err_resp; /* Offset 0 */
130 uint32_t io_err_info; /* Offset 1 */
131 uint32_t io_err_req; /* Offset 2 */
132 uint32_t io_err_resp_hi; /* Offset 3 */
133 uint32_t io_tlb_entry_m; /* Offset 4 */
134 uint32_t io_tlb_entry_l; /* Offset 5 */
135 uint32_t unused3[1];
136 uint32_t io_pdir_base; /* Offset 7 */
137 uint32_t io_io_low_hv; /* Offset 8 */
138 uint32_t io_io_high_hv; /* Offset 9 */
139 uint32_t unused4[1];
140 uint32_t io_chain_id_mask; /* Offset 11 */
141 uint32_t unused5[2];
142 uint32_t io_io_low; /* Offset 14 */
143 uint32_t io_io_high; /* Offset 15 */
1da177e4
LT
144};
145
146/*
147** IOA Registers
148** -------------
149**
150** Runway IO_CONTROL Register (+0x38)
151**
152** The Runway IO_CONTROL register controls the forwarding of transactions.
153**
154** | 0 ... 13 | 14 15 | 16 ... 21 | 22 | 23 24 | 25 ... 31 |
155** | HV | TLB | reserved | HV | mode | reserved |
156**
157** o mode field indicates the address translation of transactions
158** forwarded from Runway to GSC+:
159** Mode Name Value Definition
160** Off (default) 0 Opaque to matching addresses.
161** Include 1 Transparent for matching addresses.
162** Peek 3 Map matching addresses.
163**
164** + "Off" mode: Runway transactions which match the I/O range
165** specified by the IO_IO_LOW/IO_IO_HIGH registers will be ignored.
166** + "Include" mode: all addresses within the I/O range specified
167** by the IO_IO_LOW and IO_IO_HIGH registers are transparently
168** forwarded. This is the I/O Adapter's normal operating mode.
169** + "Peek" mode: used during system configuration to initialize the
170** GSC+ bus. Runway Write_Shorts in the address range specified by
171** IO_IO_LOW and IO_IO_HIGH are forwarded through the I/O Adapter
172** *AND* the GSC+ address is remapped to the Broadcast Physical
173** Address space by setting the 14 high order address bits of the
174** 32 bit GSC+ address to ones.
175**
176** o TLB field affects transactions which are forwarded from GSC+ to Runway.
177** "Real" mode is the poweron default.
178**
179** TLB Mode Value Description
180** Real 0 No TLB translation. Address is directly mapped and the
181** virtual address is composed of selected physical bits.
182** Error 1 Software fills the TLB manually.
183** Normal 2 IOA fetches IO TLB misses from IO PDIR (in host memory).
184**
185**
186** IO_IO_LOW_HV +0x60 (HV dependent)
187** IO_IO_HIGH_HV +0x64 (HV dependent)
188** IO_IO_LOW +0x78 (Architected register)
189** IO_IO_HIGH +0x7c (Architected register)
190**
191** IO_IO_LOW and IO_IO_HIGH set the lower and upper bounds of the
192** I/O Adapter address space, respectively.
193**
194** 0 ... 7 | 8 ... 15 | 16 ... 31 |
195** 11111111 | 11111111 | address |
196**
197** Each LOW/HIGH pair describes a disjoint address space region.
198** (2 per GSC+ port). Each incoming Runway transaction address is compared
199** with both sets of LOW/HIGH registers. If the address is in the range
200** greater than or equal to IO_IO_LOW and less than IO_IO_HIGH the transaction
201** for forwarded to the respective GSC+ bus.
202** Specify IO_IO_LOW equal to or greater than IO_IO_HIGH to avoid specifying
203** an address space region.
204**
205** In order for a Runway address to reside within GSC+ extended address space:
206** Runway Address [0:7] must identically compare to 8'b11111111
207** Runway Address [8:11] must be equal to IO_IO_LOW(_HV)[16:19]
208** Runway Address [12:23] must be greater than or equal to
209** IO_IO_LOW(_HV)[20:31] and less than IO_IO_HIGH(_HV)[20:31].
210** Runway Address [24:39] is not used in the comparison.
211**
212** When the Runway transaction is forwarded to GSC+, the GSC+ address is
213** as follows:
214** GSC+ Address[0:3] 4'b1111
215** GSC+ Address[4:29] Runway Address[12:37]
216** GSC+ Address[30:31] 2'b00
217**
218** All 4 Low/High registers must be initialized (by PDC) once the lower bus
219** is interrogated and address space is defined. The operating system will
220** modify the architectural IO_IO_LOW and IO_IO_HIGH registers following
221** the PDC initialization. However, the hardware version dependent IO_IO_LOW
222** and IO_IO_HIGH registers should not be subsequently altered by the OS.
223**
224** Writes to both sets of registers will take effect immediately, bypassing
225** the queues, which ensures that subsequent Runway transactions are checked
226** against the updated bounds values. However reads are queued, introducing
227** the possibility of a read being bypassed by a subsequent write to the same
228** register. This sequence can be avoided by having software wait for read
229** returns before issuing subsequent writes.
230*/
231
232struct ioc {
86a61ee9 233 struct ioa_registers __iomem *ioc_regs; /* I/O MMU base address */
1da177e4
LT
234 u8 *res_map; /* resource map, bit == pdir entry */
235 u64 *pdir_base; /* physical base address */
236 u32 pdir_size; /* bytes, function of IOV Space size */
237 u32 res_hint; /* next available IOVP -
238 circular search */
239 u32 res_size; /* size of resource map in bytes */
240 spinlock_t res_lock;
241
242#ifdef CCIO_SEARCH_TIME
243#define CCIO_SEARCH_SAMPLE 0x100
244 unsigned long avg_search[CCIO_SEARCH_SAMPLE];
245 unsigned long avg_idx; /* current index into avg_search */
246#endif
247#ifdef CCIO_MAP_STATS
248 unsigned long used_pages;
249 unsigned long msingle_calls;
250 unsigned long msingle_pages;
251 unsigned long msg_calls;
252 unsigned long msg_pages;
253 unsigned long usingle_calls;
254 unsigned long usingle_pages;
255 unsigned long usg_calls;
256 unsigned long usg_pages;
257#endif
258 unsigned short cujo20_bug;
259
260 /* STUFF We don't need in performance path */
261 u32 chainid_shift; /* specify bit location of chain_id */
262 struct ioc *next; /* Linked list of discovered iocs */
263 const char *name; /* device name from firmware */
264 unsigned int hw_path; /* the hardware path this ioc is associatd with */
265 struct pci_dev *fake_pci_dev; /* the fake pci_dev for non-pci devs */
266 struct resource mmio_region[2]; /* The "routed" MMIO regions */
267};
268
269static struct ioc *ioc_list;
270static int ioc_count;
271
272/**************************************************************
273*
274* I/O Pdir Resource Management
275*
276* Bits set in the resource map are in use.
277* Each bit can represent a number of pages.
278* LSbs represent lower addresses (IOVA's).
279*
280* This was was copied from sba_iommu.c. Don't try to unify
281* the two resource managers unless a way to have different
282* allocation policies is also adjusted. We'd like to avoid
283* I/O TLB thrashing by having resource allocation policy
284* match the I/O TLB replacement policy.
285*
286***************************************************************/
287#define IOVP_SIZE PAGE_SIZE
288#define IOVP_SHIFT PAGE_SHIFT
289#define IOVP_MASK PAGE_MASK
290
291/* Convert from IOVP to IOVA and vice versa. */
292#define CCIO_IOVA(iovp,offset) ((iovp) | (offset))
293#define CCIO_IOVP(iova) ((iova) & IOVP_MASK)
294
295#define PDIR_INDEX(iovp) ((iovp)>>IOVP_SHIFT)
296#define MKIOVP(pdir_idx) ((long)(pdir_idx) << IOVP_SHIFT)
297#define MKIOVA(iovp,offset) (dma_addr_t)((long)iovp | (long)offset)
1da177e4
LT
298
299/*
300** Don't worry about the 150% average search length on a miss.
301** If the search wraps around, and passes the res_hint, it will
302** cause the kernel to panic anyhow.
303*/
304#define CCIO_SEARCH_LOOP(ioc, res_idx, mask, size) \
305 for(; res_ptr < res_end; ++res_ptr) { \
46663448
FT
306 int ret;\
307 unsigned int idx;\
308 idx = (unsigned int)((unsigned long)res_ptr - (unsigned long)ioc->res_map); \
309 ret = iommu_is_span_boundary(idx << 3, pages_needed, 0, boundary_size);\
310 if ((0 == (*res_ptr & mask)) && !ret) { \
311 *res_ptr |= mask; \
312 res_idx = idx;\
313 ioc->res_hint = res_idx + (size >> 3); \
314 goto resource_found; \
315 } \
316 }
1da177e4
LT
317
318#define CCIO_FIND_FREE_MAPPING(ioa, res_idx, mask, size) \
319 u##size *res_ptr = (u##size *)&((ioc)->res_map[ioa->res_hint & ~((size >> 3) - 1)]); \
320 u##size *res_end = (u##size *)&(ioc)->res_map[ioa->res_size]; \
321 CCIO_SEARCH_LOOP(ioc, res_idx, mask, size); \
322 res_ptr = (u##size *)&(ioc)->res_map[0]; \
323 CCIO_SEARCH_LOOP(ioa, res_idx, mask, size);
324
325/*
326** Find available bit in this ioa's resource map.
327** Use a "circular" search:
328** o Most IOVA's are "temporary" - avg search time should be small.
329** o keep a history of what happened for debugging
330** o KISS.
331**
332** Perf optimizations:
333** o search for log2(size) bits at a time.
334** o search for available resource bits using byte/word/whatever.
335** o use different search for "large" (eg > 4 pages) or "very large"
336** (eg > 16 pages) mappings.
337*/
338
339/**
340 * ccio_alloc_range - Allocate pages in the ioc's resource map.
341 * @ioc: The I/O Controller.
342 * @pages_needed: The requested number of pages to be mapped into the
343 * I/O Pdir...
344 *
345 * This function searches the resource map of the ioc to locate a range
346 * of available pages for the requested size.
347 */
348static int
7c8cda62 349ccio_alloc_range(struct ioc *ioc, struct device *dev, size_t size)
1da177e4
LT
350{
351 unsigned int pages_needed = size >> IOVP_SHIFT;
352 unsigned int res_idx;
46663448 353 unsigned long boundary_size;
1da177e4
LT
354#ifdef CCIO_SEARCH_TIME
355 unsigned long cr_start = mfctl(16);
356#endif
357
358 BUG_ON(pages_needed == 0);
359 BUG_ON((pages_needed * IOVP_SIZE) > DMA_CHUNK_SIZE);
360
361 DBG_RES("%s() size: %d pages_needed %d\n",
362 __FUNCTION__, size, pages_needed);
363
364 /*
365 ** "seek and ye shall find"...praying never hurts either...
366 ** ggg sacrifices another 710 to the computer gods.
367 */
368
46663448
FT
369 boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1, 1 << IOVP_SHIFT);
370 boundary_size >>= IOVP_SHIFT;
371
1da177e4
LT
372 if (pages_needed <= 8) {
373 /*
374 * LAN traffic will not thrash the TLB IFF the same NIC
4f63ba17 375 * uses 8 adjacent pages to map separate payload data.
1da177e4
LT
376 * ie the same byte in the resource bit map.
377 */
378#if 0
379 /* FIXME: bit search should shift it's way through
380 * an unsigned long - not byte at a time. As it is now,
381 * we effectively allocate this byte to this mapping.
382 */
383 unsigned long mask = ~(~0UL >> pages_needed);
384 CCIO_FIND_FREE_MAPPING(ioc, res_idx, mask, 8);
385#else
386 CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xff, 8);
387#endif
388 } else if (pages_needed <= 16) {
389 CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xffff, 16);
390 } else if (pages_needed <= 32) {
391 CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~(unsigned int)0, 32);
392#ifdef __LP64__
393 } else if (pages_needed <= 64) {
394 CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~0UL, 64);
395#endif
396 } else {
397 panic("%s: %s() Too many pages to map. pages_needed: %u\n",
398 __FILE__, __FUNCTION__, pages_needed);
399 }
400
401 panic("%s: %s() I/O MMU is out of mapping resources.\n", __FILE__,
402 __FUNCTION__);
403
404resource_found:
405
406 DBG_RES("%s() res_idx %d res_hint: %d\n",
407 __FUNCTION__, res_idx, ioc->res_hint);
408
409#ifdef CCIO_SEARCH_TIME
410 {
411 unsigned long cr_end = mfctl(16);
412 unsigned long tmp = cr_end - cr_start;
413 /* check for roll over */
414 cr_start = (cr_end < cr_start) ? -(tmp) : (tmp);
415 }
416 ioc->avg_search[ioc->avg_idx++] = cr_start;
417 ioc->avg_idx &= CCIO_SEARCH_SAMPLE - 1;
418#endif
419#ifdef CCIO_MAP_STATS
420 ioc->used_pages += pages_needed;
421#endif
422 /*
423 ** return the bit address.
424 */
425 return res_idx << 3;
426}
427
428#define CCIO_FREE_MAPPINGS(ioc, res_idx, mask, size) \
429 u##size *res_ptr = (u##size *)&((ioc)->res_map[res_idx]); \
430 BUG_ON((*res_ptr & mask) != mask); \
431 *res_ptr &= ~(mask);
432
433/**
434 * ccio_free_range - Free pages from the ioc's resource map.
435 * @ioc: The I/O Controller.
436 * @iova: The I/O Virtual Address.
437 * @pages_mapped: The requested number of pages to be freed from the
438 * I/O Pdir.
439 *
440 * This function frees the resouces allocated for the iova.
441 */
442static void
443ccio_free_range(struct ioc *ioc, dma_addr_t iova, unsigned long pages_mapped)
444{
445 unsigned long iovp = CCIO_IOVP(iova);
446 unsigned int res_idx = PDIR_INDEX(iovp) >> 3;
447
448 BUG_ON(pages_mapped == 0);
449 BUG_ON((pages_mapped * IOVP_SIZE) > DMA_CHUNK_SIZE);
450 BUG_ON(pages_mapped > BITS_PER_LONG);
451
452 DBG_RES("%s(): res_idx: %d pages_mapped %d\n",
453 __FUNCTION__, res_idx, pages_mapped);
454
455#ifdef CCIO_MAP_STATS
456 ioc->used_pages -= pages_mapped;
457#endif
458
459 if(pages_mapped <= 8) {
460#if 0
461 /* see matching comments in alloc_range */
462 unsigned long mask = ~(~0UL >> pages_mapped);
463 CCIO_FREE_MAPPINGS(ioc, res_idx, mask, 8);
464#else
465 CCIO_FREE_MAPPINGS(ioc, res_idx, 0xff, 8);
466#endif
467 } else if(pages_mapped <= 16) {
468 CCIO_FREE_MAPPINGS(ioc, res_idx, 0xffff, 16);
469 } else if(pages_mapped <= 32) {
470 CCIO_FREE_MAPPINGS(ioc, res_idx, ~(unsigned int)0, 32);
471#ifdef __LP64__
472 } else if(pages_mapped <= 64) {
473 CCIO_FREE_MAPPINGS(ioc, res_idx, ~0UL, 64);
474#endif
475 } else {
476 panic("%s:%s() Too many pages to unmap.\n", __FILE__,
477 __FUNCTION__);
478 }
479}
480
481/****************************************************************
482**
483** CCIO dma_ops support routines
484**
485*****************************************************************/
486
487typedef unsigned long space_t;
488#define KERNEL_SPACE 0
489
490/*
491** DMA "Page Type" and Hints
492** o if SAFE_DMA isn't set, mapping is for FAST_DMA. SAFE_DMA should be
493** set for subcacheline DMA transfers since we don't want to damage the
494** other part of a cacheline.
495** o SAFE_DMA must be set for "memory" allocated via pci_alloc_consistent().
496** This bit tells U2 to do R/M/W for partial cachelines. "Streaming"
497** data can avoid this if the mapping covers full cache lines.
498** o STOP_MOST is needed for atomicity across cachelines.
0779bf2d 499** Apparently only "some EISA devices" need this.
1da177e4
LT
500** Using CONFIG_ISA is hack. Only the IOA with EISA under it needs
501** to use this hint iff the EISA devices needs this feature.
502** According to the U2 ERS, STOP_MOST enabled pages hurt performance.
503** o PREFETCH should *not* be set for cases like Multiple PCI devices
504** behind GSCtoPCI (dino) bus converter. Only one cacheline per GSC
505** device can be fetched and multiply DMA streams will thrash the
506** prefetch buffer and burn memory bandwidth. See 6.7.3 "Prefetch Rules
507** and Invalidation of Prefetch Entries".
508**
509** FIXME: the default hints need to be per GSC device - not global.
510**
511** HP-UX dorks: linux device driver programming model is totally different
512** than HP-UX's. HP-UX always sets HINT_PREFETCH since it's drivers
513** do special things to work on non-coherent platforms...linux has to
514** be much more careful with this.
515*/
516#define IOPDIR_VALID 0x01UL
517#define HINT_SAFE_DMA 0x02UL /* used for pci_alloc_consistent() pages */
518#ifdef CONFIG_EISA
519#define HINT_STOP_MOST 0x04UL /* LSL support */
520#else
521#define HINT_STOP_MOST 0x00UL /* only needed for "some EISA devices" */
522#endif
523#define HINT_UDPATE_ENB 0x08UL /* not used/supported by U2 */
524#define HINT_PREFETCH 0x10UL /* for outbound pages which are not SAFE */
525
526
527/*
528** Use direction (ie PCI_DMA_TODEVICE) to pick hint.
529** ccio_alloc_consistent() depends on this to get SAFE_DMA
530** when it passes in BIDIRECTIONAL flag.
531*/
532static u32 hint_lookup[] = {
533 [PCI_DMA_BIDIRECTIONAL] = HINT_STOP_MOST | HINT_SAFE_DMA | IOPDIR_VALID,
534 [PCI_DMA_TODEVICE] = HINT_STOP_MOST | HINT_PREFETCH | IOPDIR_VALID,
535 [PCI_DMA_FROMDEVICE] = HINT_STOP_MOST | IOPDIR_VALID,
536};
537
538/**
539 * ccio_io_pdir_entry - Initialize an I/O Pdir.
540 * @pdir_ptr: A pointer into I/O Pdir.
541 * @sid: The Space Identifier.
542 * @vba: The virtual address.
543 * @hints: The DMA Hint.
544 *
545 * Given a virtual address (vba, arg2) and space id, (sid, arg1),
546 * load the I/O PDIR entry pointed to by pdir_ptr (arg0). Each IO Pdir
547 * entry consists of 8 bytes as shown below (MSB == bit 0):
548 *
549 *
550 * WORD 0:
551 * +------+----------------+-----------------------------------------------+
552 * | Phys | Virtual Index | Phys |
553 * | 0:3 | 0:11 | 4:19 |
554 * |4 bits| 12 bits | 16 bits |
555 * +------+----------------+-----------------------------------------------+
556 * WORD 1:
557 * +-----------------------+-----------------------------------------------+
558 * | Phys | Rsvd | Prefetch |Update |Rsvd |Lock |Safe |Valid |
559 * | 20:39 | | Enable |Enable | |Enable|DMA | |
560 * | 20 bits | 5 bits | 1 bit |1 bit |2 bits|1 bit |1 bit |1 bit |
561 * +-----------------------+-----------------------------------------------+
562 *
563 * The virtual index field is filled with the results of the LCI
564 * (Load Coherence Index) instruction. The 8 bits used for the virtual
565 * index are bits 12:19 of the value returned by LCI.
566 */
567void CCIO_INLINE
568ccio_io_pdir_entry(u64 *pdir_ptr, space_t sid, unsigned long vba,
569 unsigned long hints)
570{
571 register unsigned long pa;
572 register unsigned long ci; /* coherent index */
573
574 /* We currently only support kernel addresses */
575 BUG_ON(sid != KERNEL_SPACE);
576
577 mtsp(sid,1);
578
579 /*
580 ** WORD 1 - low order word
581 ** "hints" parm includes the VALID bit!
582 ** "dep" clobbers the physical address offset bits as well.
583 */
584 pa = virt_to_phys(vba);
585 asm volatile("depw %1,31,12,%0" : "+r" (pa) : "r" (hints));
586 ((u32 *)pdir_ptr)[1] = (u32) pa;
587
588 /*
589 ** WORD 0 - high order word
590 */
591
592#ifdef __LP64__
593 /*
594 ** get bits 12:15 of physical address
595 ** shift bits 16:31 of physical address
596 ** and deposit them
597 */
598 asm volatile ("extrd,u %1,15,4,%0" : "=r" (ci) : "r" (pa));
599 asm volatile ("extrd,u %1,31,16,%0" : "+r" (pa) : "r" (pa));
600 asm volatile ("depd %1,35,4,%0" : "+r" (pa) : "r" (ci));
601#else
602 pa = 0;
603#endif
604 /*
605 ** get CPU coherency index bits
606 ** Grab virtual index [0:11]
607 ** Deposit virt_idx bits into I/O PDIR word
608 */
86a61ee9 609 asm volatile ("lci %%r0(%%sr1, %1), %0" : "=r" (ci) : "r" (vba));
1da177e4
LT
610 asm volatile ("extru %1,19,12,%0" : "+r" (ci) : "r" (ci));
611 asm volatile ("depw %1,15,12,%0" : "+r" (pa) : "r" (ci));
612
613 ((u32 *)pdir_ptr)[0] = (u32) pa;
614
615
616 /* FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360)
617 ** PCX-U/U+ do. (eg C200/C240)
618 ** PCX-T'? Don't know. (eg C110 or similar K-class)
619 **
620 ** See PDC_MODEL/option 0/SW_CAP word for "Non-coherent IO-PDIR bit".
621 ** Hopefully we can patch (NOP) these out at boot time somehow.
622 **
623 ** "Since PCX-U employs an offset hash that is incompatible with
624 ** the real mode coherence index generation of U2, the PDIR entry
625 ** must be flushed to memory to retain coherence."
626 */
86a61ee9 627 asm volatile("fdc %%r0(%0)" : : "r" (pdir_ptr));
1da177e4
LT
628 asm volatile("sync");
629}
630
631/**
632 * ccio_clear_io_tlb - Remove stale entries from the I/O TLB.
633 * @ioc: The I/O Controller.
634 * @iovp: The I/O Virtual Page.
635 * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir.
636 *
637 * Purge invalid I/O PDIR entries from the I/O TLB.
638 *
639 * FIXME: Can we change the byte_cnt to pages_mapped?
640 */
641static CCIO_INLINE void
642ccio_clear_io_tlb(struct ioc *ioc, dma_addr_t iovp, size_t byte_cnt)
643{
644 u32 chain_size = 1 << ioc->chainid_shift;
645
646 iovp &= IOVP_MASK; /* clear offset bits, just want pagenum */
647 byte_cnt += chain_size;
648
649 while(byte_cnt > chain_size) {
86a61ee9 650 WRITE_U32(CMD_TLB_PURGE | iovp, &ioc->ioc_regs->io_command);
1da177e4
LT
651 iovp += chain_size;
652 byte_cnt -= chain_size;
653 }
654}
655
656/**
657 * ccio_mark_invalid - Mark the I/O Pdir entries invalid.
658 * @ioc: The I/O Controller.
659 * @iova: The I/O Virtual Address.
660 * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir.
661 *
662 * Mark the I/O Pdir entries invalid and blow away the corresponding I/O
663 * TLB entries.
664 *
665 * FIXME: at some threshhold it might be "cheaper" to just blow
666 * away the entire I/O TLB instead of individual entries.
667 *
668 * FIXME: Uturn has 256 TLB entries. We don't need to purge every
669 * PDIR entry - just once for each possible TLB entry.
670 * (We do need to maker I/O PDIR entries invalid regardless).
671 *
672 * FIXME: Can we change byte_cnt to pages_mapped?
673 */
674static CCIO_INLINE void
675ccio_mark_invalid(struct ioc *ioc, dma_addr_t iova, size_t byte_cnt)
676{
677 u32 iovp = (u32)CCIO_IOVP(iova);
678 size_t saved_byte_cnt;
679
680 /* round up to nearest page size */
3cb1d958 681 saved_byte_cnt = byte_cnt = ALIGN(byte_cnt, IOVP_SIZE);
1da177e4
LT
682
683 while(byte_cnt > 0) {
684 /* invalidate one page at a time */
685 unsigned int idx = PDIR_INDEX(iovp);
686 char *pdir_ptr = (char *) &(ioc->pdir_base[idx]);
687
688 BUG_ON(idx >= (ioc->pdir_size / sizeof(u64)));
689 pdir_ptr[7] = 0; /* clear only VALID bit */
690 /*
691 ** FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360)
692 ** PCX-U/U+ do. (eg C200/C240)
693 ** See PDC_MODEL/option 0/SW_CAP for "Non-coherent IO-PDIR bit".
694 **
695 ** Hopefully someone figures out how to patch (NOP) the
696 ** FDC/SYNC out at boot time.
697 */
86a61ee9 698 asm volatile("fdc %%r0(%0)" : : "r" (pdir_ptr[7]));
1da177e4
LT
699
700 iovp += IOVP_SIZE;
701 byte_cnt -= IOVP_SIZE;
702 }
703
704 asm volatile("sync");
705 ccio_clear_io_tlb(ioc, CCIO_IOVP(iova), saved_byte_cnt);
706}
707
708/****************************************************************
709**
710** CCIO dma_ops
711**
712*****************************************************************/
713
714/**
715 * ccio_dma_supported - Verify the IOMMU supports the DMA address range.
716 * @dev: The PCI device.
717 * @mask: A bit mask describing the DMA address range of the device.
718 *
719 * This function implements the pci_dma_supported function.
720 */
721static int
722ccio_dma_supported(struct device *dev, u64 mask)
723{
724 if(dev == NULL) {
725 printk(KERN_ERR MODULE_NAME ": EISA/ISA/et al not supported\n");
726 BUG();
727 return 0;
728 }
729
730 /* only support 32-bit devices (ie PCI/GSC) */
731 return (int)(mask == 0xffffffffUL);
732}
733
734/**
735 * ccio_map_single - Map an address range into the IOMMU.
736 * @dev: The PCI device.
737 * @addr: The start address of the DMA region.
738 * @size: The length of the DMA region.
739 * @direction: The direction of the DMA transaction (to/from device).
740 *
741 * This function implements the pci_map_single function.
742 */
743static dma_addr_t
744ccio_map_single(struct device *dev, void *addr, size_t size,
745 enum dma_data_direction direction)
746{
747 int idx;
748 struct ioc *ioc;
749 unsigned long flags;
750 dma_addr_t iovp;
751 dma_addr_t offset;
752 u64 *pdir_start;
753 unsigned long hint = hint_lookup[(int)direction];
754
755 BUG_ON(!dev);
756 ioc = GET_IOC(dev);
757
758 BUG_ON(size <= 0);
759
760 /* save offset bits */
761 offset = ((unsigned long) addr) & ~IOVP_MASK;
762
763 /* round up to nearest IOVP_SIZE */
3cb1d958 764 size = ALIGN(size + offset, IOVP_SIZE);
1da177e4
LT
765 spin_lock_irqsave(&ioc->res_lock, flags);
766
767#ifdef CCIO_MAP_STATS
768 ioc->msingle_calls++;
769 ioc->msingle_pages += size >> IOVP_SHIFT;
770#endif
771
7c8cda62 772 idx = ccio_alloc_range(ioc, dev, size);
1da177e4
LT
773 iovp = (dma_addr_t)MKIOVP(idx);
774
775 pdir_start = &(ioc->pdir_base[idx]);
776
777 DBG_RUN("%s() 0x%p -> 0x%lx size: %0x%x\n",
778 __FUNCTION__, addr, (long)iovp | offset, size);
779
780 /* If not cacheline aligned, force SAFE_DMA on the whole mess */
781 if((size % L1_CACHE_BYTES) || ((unsigned long)addr % L1_CACHE_BYTES))
782 hint |= HINT_SAFE_DMA;
783
784 while(size > 0) {
785 ccio_io_pdir_entry(pdir_start, KERNEL_SPACE, (unsigned long)addr, hint);
786
787 DBG_RUN(" pdir %p %08x%08x\n",
788 pdir_start,
789 (u32) (((u32 *) pdir_start)[0]),
790 (u32) (((u32 *) pdir_start)[1]));
791 ++pdir_start;
792 addr += IOVP_SIZE;
793 size -= IOVP_SIZE;
794 }
795
796 spin_unlock_irqrestore(&ioc->res_lock, flags);
797
798 /* form complete address */
799 return CCIO_IOVA(iovp, offset);
800}
801
802/**
803 * ccio_unmap_single - Unmap an address range from the IOMMU.
804 * @dev: The PCI device.
805 * @addr: The start address of the DMA region.
806 * @size: The length of the DMA region.
807 * @direction: The direction of the DMA transaction (to/from device).
808 *
809 * This function implements the pci_unmap_single function.
810 */
811static void
812ccio_unmap_single(struct device *dev, dma_addr_t iova, size_t size,
813 enum dma_data_direction direction)
814{
815 struct ioc *ioc;
816 unsigned long flags;
817 dma_addr_t offset = iova & ~IOVP_MASK;
818
819 BUG_ON(!dev);
820 ioc = GET_IOC(dev);
821
822 DBG_RUN("%s() iovp 0x%lx/%x\n",
823 __FUNCTION__, (long)iova, size);
824
825 iova ^= offset; /* clear offset bits */
826 size += offset;
3cb1d958 827 size = ALIGN(size, IOVP_SIZE);
1da177e4
LT
828
829 spin_lock_irqsave(&ioc->res_lock, flags);
830
831#ifdef CCIO_MAP_STATS
832 ioc->usingle_calls++;
833 ioc->usingle_pages += size >> IOVP_SHIFT;
834#endif
835
836 ccio_mark_invalid(ioc, iova, size);
837 ccio_free_range(ioc, iova, (size >> IOVP_SHIFT));
838 spin_unlock_irqrestore(&ioc->res_lock, flags);
839}
840
841/**
842 * ccio_alloc_consistent - Allocate a consistent DMA mapping.
843 * @dev: The PCI device.
844 * @size: The length of the DMA region.
845 * @dma_handle: The DMA address handed back to the device (not the cpu).
846 *
847 * This function implements the pci_alloc_consistent function.
848 */
849static void *
5c1fb41f 850ccio_alloc_consistent(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag)
1da177e4
LT
851{
852 void *ret;
853#if 0
854/* GRANT Need to establish hierarchy for non-PCI devs as well
855** and then provide matching gsc_map_xxx() functions for them as well.
856*/
857 if(!hwdev) {
858 /* only support PCI */
859 *dma_handle = 0;
860 return 0;
861 }
862#endif
863 ret = (void *) __get_free_pages(flag, get_order(size));
864
865 if (ret) {
866 memset(ret, 0, size);
867 *dma_handle = ccio_map_single(dev, ret, size, PCI_DMA_BIDIRECTIONAL);
868 }
869
870 return ret;
871}
872
873/**
874 * ccio_free_consistent - Free a consistent DMA mapping.
875 * @dev: The PCI device.
876 * @size: The length of the DMA region.
877 * @cpu_addr: The cpu address returned from the ccio_alloc_consistent.
878 * @dma_handle: The device address returned from the ccio_alloc_consistent.
879 *
880 * This function implements the pci_free_consistent function.
881 */
882static void
883ccio_free_consistent(struct device *dev, size_t size, void *cpu_addr,
884 dma_addr_t dma_handle)
885{
886 ccio_unmap_single(dev, dma_handle, size, 0);
887 free_pages((unsigned long)cpu_addr, get_order(size));
888}
889
890/*
891** Since 0 is a valid pdir_base index value, can't use that
892** to determine if a value is valid or not. Use a flag to indicate
893** the SG list entry contains a valid pdir index.
894*/
895#define PIDE_FLAG 0x80000000UL
896
897#ifdef CCIO_MAP_STATS
898#define IOMMU_MAP_STATS
899#endif
900#include "iommu-helpers.h"
901
902/**
903 * ccio_map_sg - Map the scatter/gather list into the IOMMU.
904 * @dev: The PCI device.
905 * @sglist: The scatter/gather list to be mapped in the IOMMU.
906 * @nents: The number of entries in the scatter/gather list.
907 * @direction: The direction of the DMA transaction (to/from device).
908 *
909 * This function implements the pci_map_sg function.
910 */
911static int
912ccio_map_sg(struct device *dev, struct scatterlist *sglist, int nents,
913 enum dma_data_direction direction)
914{
915 struct ioc *ioc;
916 int coalesced, filled = 0;
917 unsigned long flags;
918 unsigned long hint = hint_lookup[(int)direction];
919 unsigned long prev_len = 0, current_len = 0;
920 int i;
921
922 BUG_ON(!dev);
923 ioc = GET_IOC(dev);
924
925 DBG_RUN_SG("%s() START %d entries\n", __FUNCTION__, nents);
926
927 /* Fast path single entry scatterlists. */
928 if (nents == 1) {
929 sg_dma_address(sglist) = ccio_map_single(dev,
930 (void *)sg_virt_addr(sglist), sglist->length,
931 direction);
932 sg_dma_len(sglist) = sglist->length;
933 return 1;
934 }
935
936 for(i = 0; i < nents; i++)
937 prev_len += sglist[i].length;
938
939 spin_lock_irqsave(&ioc->res_lock, flags);
940
941#ifdef CCIO_MAP_STATS
942 ioc->msg_calls++;
943#endif
944
945 /*
946 ** First coalesce the chunks and allocate I/O pdir space
947 **
948 ** If this is one DMA stream, we can properly map using the
949 ** correct virtual address associated with each DMA page.
950 ** w/o this association, we wouldn't have coherent DMA!
951 ** Access to the virtual address is what forces a two pass algorithm.
952 */
d1b51632 953 coalesced = iommu_coalesce_chunks(ioc, dev, sglist, nents, ccio_alloc_range);
1da177e4
LT
954
955 /*
956 ** Program the I/O Pdir
957 **
958 ** map the virtual addresses to the I/O Pdir
959 ** o dma_address will contain the pdir index
960 ** o dma_len will contain the number of bytes to map
961 ** o page/offset contain the virtual address.
962 */
963 filled = iommu_fill_pdir(ioc, sglist, nents, hint, ccio_io_pdir_entry);
964
965 spin_unlock_irqrestore(&ioc->res_lock, flags);
966
967 BUG_ON(coalesced != filled);
968
969 DBG_RUN_SG("%s() DONE %d mappings\n", __FUNCTION__, filled);
970
971 for (i = 0; i < filled; i++)
972 current_len += sg_dma_len(sglist + i);
973
974 BUG_ON(current_len != prev_len);
975
976 return filled;
977}
978
979/**
980 * ccio_unmap_sg - Unmap the scatter/gather list from the IOMMU.
981 * @dev: The PCI device.
982 * @sglist: The scatter/gather list to be unmapped from the IOMMU.
983 * @nents: The number of entries in the scatter/gather list.
984 * @direction: The direction of the DMA transaction (to/from device).
985 *
986 * This function implements the pci_unmap_sg function.
987 */
988static void
989ccio_unmap_sg(struct device *dev, struct scatterlist *sglist, int nents,
990 enum dma_data_direction direction)
991{
992 struct ioc *ioc;
993
994 BUG_ON(!dev);
995 ioc = GET_IOC(dev);
996
997 DBG_RUN_SG("%s() START %d entries, %08lx,%x\n",
998 __FUNCTION__, nents, sg_virt_addr(sglist), sglist->length);
999
1000#ifdef CCIO_MAP_STATS
1001 ioc->usg_calls++;
1002#endif
1003
1004 while(sg_dma_len(sglist) && nents--) {
1005
1006#ifdef CCIO_MAP_STATS
1007 ioc->usg_pages += sg_dma_len(sglist) >> PAGE_SHIFT;
1008#endif
1009 ccio_unmap_single(dev, sg_dma_address(sglist),
1010 sg_dma_len(sglist), direction);
1011 ++sglist;
1012 }
1013
1014 DBG_RUN_SG("%s() DONE (nents %d)\n", __FUNCTION__, nents);
1015}
1016
1017static struct hppa_dma_ops ccio_ops = {
1018 .dma_supported = ccio_dma_supported,
1019 .alloc_consistent = ccio_alloc_consistent,
1020 .alloc_noncoherent = ccio_alloc_consistent,
1021 .free_consistent = ccio_free_consistent,
1022 .map_single = ccio_map_single,
1023 .unmap_single = ccio_unmap_single,
1024 .map_sg = ccio_map_sg,
1025 .unmap_sg = ccio_unmap_sg,
1026 .dma_sync_single_for_cpu = NULL, /* NOP for U2/Uturn */
1027 .dma_sync_single_for_device = NULL, /* NOP for U2/Uturn */
1028 .dma_sync_sg_for_cpu = NULL, /* ditto */
1029 .dma_sync_sg_for_device = NULL, /* ditto */
1030};
1031
1032#ifdef CONFIG_PROC_FS
f823bcae 1033static int ccio_proc_info(struct seq_file *m, void *p)
1da177e4 1034{
f823bcae 1035 int len = 0;
1da177e4
LT
1036 struct ioc *ioc = ioc_list;
1037
1038 while (ioc != NULL) {
1039 unsigned int total_pages = ioc->res_size << 3;
1040 unsigned long avg = 0, min, max;
f823bcae 1041 int j;
1da177e4 1042
f823bcae 1043 len += seq_printf(m, "%s\n", ioc->name);
1da177e4 1044
f823bcae
KM
1045 len += seq_printf(m, "Cujo 2.0 bug : %s\n",
1046 (ioc->cujo20_bug ? "yes" : "no"));
1da177e4 1047
f823bcae
KM
1048 len += seq_printf(m, "IO PDIR size : %d bytes (%d entries)\n",
1049 total_pages * 8, total_pages);
1050
1da177e4 1051#ifdef CCIO_MAP_STATS
f823bcae
KM
1052 len += seq_printf(m, "IO PDIR entries : %ld free %ld used (%d%%)\n",
1053 total_pages - ioc->used_pages, ioc->used_pages,
1054 (int)(ioc->used_pages * 100 / total_pages));
1da177e4 1055#endif
f823bcae
KM
1056
1057 len += seq_printf(m, "Resource bitmap : %d bytes (%d pages)\n",
1058 ioc->res_size, total_pages);
1059
1da177e4
LT
1060#ifdef CCIO_SEARCH_TIME
1061 min = max = ioc->avg_search[0];
1062 for(j = 0; j < CCIO_SEARCH_SAMPLE; ++j) {
1063 avg += ioc->avg_search[j];
1064 if(ioc->avg_search[j] > max)
1065 max = ioc->avg_search[j];
1066 if(ioc->avg_search[j] < min)
1067 min = ioc->avg_search[j];
1068 }
1069 avg /= CCIO_SEARCH_SAMPLE;
f823bcae
KM
1070 len += seq_printf(m, " Bitmap search : %ld/%ld/%ld (min/avg/max CPU Cycles)\n",
1071 min, avg, max);
1da177e4
LT
1072#endif
1073#ifdef CCIO_MAP_STATS
f823bcae
KM
1074 len += seq_printf(m, "pci_map_single(): %8ld calls %8ld pages (avg %d/1000)\n",
1075 ioc->msingle_calls, ioc->msingle_pages,
1076 (int)((ioc->msingle_pages * 1000)/ioc->msingle_calls));
1da177e4
LT
1077
1078 /* KLUGE - unmap_sg calls unmap_single for each mapped page */
1079 min = ioc->usingle_calls - ioc->usg_calls;
1080 max = ioc->usingle_pages - ioc->usg_pages;
f823bcae
KM
1081 len += seq_printf(m, "pci_unmap_single: %8ld calls %8ld pages (avg %d/1000)\n",
1082 min, max, (int)((max * 1000)/min));
1da177e4 1083
f823bcae
KM
1084 len += seq_printf(m, "pci_map_sg() : %8ld calls %8ld pages (avg %d/1000)\n",
1085 ioc->msg_calls, ioc->msg_pages,
1086 (int)((ioc->msg_pages * 1000)/ioc->msg_calls));
1087
1088 len += seq_printf(m, "pci_unmap_sg() : %8ld calls %8ld pages (avg %d/1000)\n\n\n",
1089 ioc->usg_calls, ioc->usg_pages,
1090 (int)((ioc->usg_pages * 1000)/ioc->usg_calls));
1da177e4 1091#endif /* CCIO_MAP_STATS */
f823bcae 1092
1da177e4
LT
1093 ioc = ioc->next;
1094 }
1095
f823bcae
KM
1096 return 0;
1097}
1098
1099static int ccio_proc_info_open(struct inode *inode, struct file *file)
1100{
1101 return single_open(file, &ccio_proc_info, NULL);
1da177e4
LT
1102}
1103
d54b1fdb 1104static const struct file_operations ccio_proc_info_fops = {
f823bcae
KM
1105 .owner = THIS_MODULE,
1106 .open = ccio_proc_info_open,
1107 .read = seq_read,
1108 .llseek = seq_lseek,
1109 .release = single_release,
1110};
1111
1112static int ccio_proc_bitmap_info(struct seq_file *m, void *p)
1da177e4 1113{
f823bcae 1114 int len = 0;
1da177e4
LT
1115 struct ioc *ioc = ioc_list;
1116
1da177e4
LT
1117 while (ioc != NULL) {
1118 u32 *res_ptr = (u32 *)ioc->res_map;
1119 int j;
1120
1121 for (j = 0; j < (ioc->res_size / sizeof(u32)); j++) {
1122 if ((j & 7) == 0)
f823bcae
KM
1123 len += seq_puts(m, "\n ");
1124 len += seq_printf(m, "%08x", *res_ptr);
1da177e4
LT
1125 res_ptr++;
1126 }
f823bcae 1127 len += seq_puts(m, "\n\n");
1da177e4
LT
1128 ioc = ioc->next;
1129 break; /* XXX - remove me */
1130 }
1131
f823bcae 1132 return 0;
1da177e4 1133}
f823bcae
KM
1134
1135static int ccio_proc_bitmap_open(struct inode *inode, struct file *file)
1136{
1137 return single_open(file, &ccio_proc_bitmap_info, NULL);
1138}
1139
d54b1fdb 1140static const struct file_operations ccio_proc_bitmap_fops = {
f823bcae
KM
1141 .owner = THIS_MODULE,
1142 .open = ccio_proc_bitmap_open,
1143 .read = seq_read,
1144 .llseek = seq_lseek,
1145 .release = single_release,
1146};
1da177e4
LT
1147#endif
1148
1149/**
1150 * ccio_find_ioc - Find the ioc in the ioc_list
1151 * @hw_path: The hardware path of the ioc.
1152 *
1153 * This function searches the ioc_list for an ioc that matches
1154 * the provide hardware path.
1155 */
1156static struct ioc * ccio_find_ioc(int hw_path)
1157{
1158 int i;
1159 struct ioc *ioc;
1160
1161 ioc = ioc_list;
1162 for (i = 0; i < ioc_count; i++) {
1163 if (ioc->hw_path == hw_path)
1164 return ioc;
1165
1166 ioc = ioc->next;
1167 }
1168
1169 return NULL;
1170}
1171
1172/**
1173 * ccio_get_iommu - Find the iommu which controls this device
1174 * @dev: The parisc device.
1175 *
1176 * This function searches through the registered IOMMU's and returns
1177 * the appropriate IOMMU for the device based on its hardware path.
1178 */
1179void * ccio_get_iommu(const struct parisc_device *dev)
1180{
1181 dev = find_pa_parent_type(dev, HPHW_IOA);
1182 if (!dev)
1183 return NULL;
1184
1185 return ccio_find_ioc(dev->hw_path);
1186}
1187
1188#define CUJO_20_STEP 0x10000000 /* inc upper nibble */
1189
1190/* Cujo 2.0 has a bug which will silently corrupt data being transferred
1191 * to/from certain pages. To avoid this happening, we mark these pages
1192 * as `used', and ensure that nothing will try to allocate from them.
1193 */
1194void ccio_cujo20_fixup(struct parisc_device *cujo, u32 iovp)
1195{
1196 unsigned int idx;
1197 struct parisc_device *dev = parisc_parent(cujo);
1198 struct ioc *ioc = ccio_get_iommu(dev);
1199 u8 *res_ptr;
1200
1201 ioc->cujo20_bug = 1;
1202 res_ptr = ioc->res_map;
1203 idx = PDIR_INDEX(iovp) >> 3;
1204
1205 while (idx < ioc->res_size) {
1206 res_ptr[idx] |= 0xff;
1207 idx += PDIR_INDEX(CUJO_20_STEP) >> 3;
1208 }
1209}
1210
1211#if 0
1212/* GRANT - is this needed for U2 or not? */
1213
1214/*
1215** Get the size of the I/O TLB for this I/O MMU.
1216**
1217** If spa_shift is non-zero (ie probably U2),
1218** then calculate the I/O TLB size using spa_shift.
1219**
1220** Otherwise we are supposed to get the IODC entry point ENTRY TLB
1221** and execute it. However, both U2 and Uturn firmware supplies spa_shift.
1222** I think only Java (K/D/R-class too?) systems don't do this.
1223*/
1224static int
1225ccio_get_iotlb_size(struct parisc_device *dev)
1226{
1227 if (dev->spa_shift == 0) {
1228 panic("%s() : Can't determine I/O TLB size.\n", __FUNCTION__);
1229 }
1230 return (1 << dev->spa_shift);
1231}
1232#else
1233
1234/* Uturn supports 256 TLB entries */
1235#define CCIO_CHAINID_SHIFT 8
1236#define CCIO_CHAINID_MASK 0xff
1237#endif /* 0 */
1238
1239/* We *can't* support JAVA (T600). Venture there at your own risk. */
25971f68 1240static const struct parisc_device_id ccio_tbl[] = {
1da177e4
LT
1241 { HPHW_IOA, HVERSION_REV_ANY_ID, U2_IOA_RUNWAY, 0xb }, /* U2 */
1242 { HPHW_IOA, HVERSION_REV_ANY_ID, UTURN_IOA_RUNWAY, 0xb }, /* UTurn */
1243 { 0, }
1244};
1245
1246static int ccio_probe(struct parisc_device *dev);
1247
1248static struct parisc_driver ccio_driver = {
bdad1f83 1249 .name = "ccio",
1da177e4
LT
1250 .id_table = ccio_tbl,
1251 .probe = ccio_probe,
1252};
1253
1254/**
1255 * ccio_ioc_init - Initalize the I/O Controller
1256 * @ioc: The I/O Controller.
1257 *
1258 * Initalize the I/O Controller which includes setting up the
1259 * I/O Page Directory, the resource map, and initalizing the
1260 * U2/Uturn chip into virtual mode.
1261 */
1262static void
1263ccio_ioc_init(struct ioc *ioc)
1264{
1265 int i;
1266 unsigned int iov_order;
1267 u32 iova_space_size;
1268
1269 /*
1270 ** Determine IOVA Space size from memory size.
1271 **
1272 ** Ideally, PCI drivers would register the maximum number
1273 ** of DMA they can have outstanding for each device they
1274 ** own. Next best thing would be to guess how much DMA
1275 ** can be outstanding based on PCI Class/sub-class. Both
1276 ** methods still require some "extra" to support PCI
1277 ** Hot-Plug/Removal of PCI cards. (aka PCI OLARD).
1278 */
1279
1280 iova_space_size = (u32) (num_physpages / count_parisc_driver(&ccio_driver));
1281
1282 /* limit IOVA space size to 1MB-1GB */
1283
1284 if (iova_space_size < (1 << (20 - PAGE_SHIFT))) {
1285 iova_space_size = 1 << (20 - PAGE_SHIFT);
1286#ifdef __LP64__
1287 } else if (iova_space_size > (1 << (30 - PAGE_SHIFT))) {
1288 iova_space_size = 1 << (30 - PAGE_SHIFT);
1289#endif
1290 }
1291
1292 /*
1293 ** iova space must be log2() in size.
1294 ** thus, pdir/res_map will also be log2().
1295 */
1296
1297 /* We could use larger page sizes in order to *decrease* the number
1298 ** of mappings needed. (ie 8k pages means 1/2 the mappings).
1299 **
1300 ** Note: Grant Grunder says "Using 8k I/O pages isn't trivial either
1301 ** since the pages must also be physically contiguous - typically
1302 ** this is the case under linux."
1303 */
1304
1305 iov_order = get_order(iova_space_size << PAGE_SHIFT);
1306
1307 /* iova_space_size is now bytes, not pages */
1308 iova_space_size = 1 << (iov_order + PAGE_SHIFT);
1309
1310 ioc->pdir_size = (iova_space_size / IOVP_SIZE) * sizeof(u64);
1311
86a61ee9 1312 BUG_ON(ioc->pdir_size > 8 * 1024 * 1024); /* max pdir size <= 8MB */
1da177e4
LT
1313
1314 /* Verify it's a power of two */
1315 BUG_ON((1 << get_order(ioc->pdir_size)) != (ioc->pdir_size >> PAGE_SHIFT));
1316
86a61ee9
GG
1317 DBG_INIT("%s() hpa 0x%p mem %luMB IOV %dMB (%d bits)\n",
1318 __FUNCTION__, ioc->ioc_regs,
1da177e4
LT
1319 (unsigned long) num_physpages >> (20 - PAGE_SHIFT),
1320 iova_space_size>>20,
1321 iov_order + PAGE_SHIFT);
1322
1323 ioc->pdir_base = (u64 *)__get_free_pages(GFP_KERNEL,
1324 get_order(ioc->pdir_size));
1325 if(NULL == ioc->pdir_base) {
86a61ee9 1326 panic("%s() could not allocate I/O Page Table\n", __FUNCTION__);
1da177e4
LT
1327 }
1328 memset(ioc->pdir_base, 0, ioc->pdir_size);
1329
1330 BUG_ON((((unsigned long)ioc->pdir_base) & PAGE_MASK) != (unsigned long)ioc->pdir_base);
86a61ee9 1331 DBG_INIT(" base %p\n", ioc->pdir_base);
1da177e4
LT
1332
1333 /* resource map size dictated by pdir_size */
1334 ioc->res_size = (ioc->pdir_size / sizeof(u64)) >> 3;
1335 DBG_INIT("%s() res_size 0x%x\n", __FUNCTION__, ioc->res_size);
1336
1337 ioc->res_map = (u8 *)__get_free_pages(GFP_KERNEL,
1338 get_order(ioc->res_size));
1339 if(NULL == ioc->res_map) {
86a61ee9 1340 panic("%s() could not allocate resource map\n", __FUNCTION__);
1da177e4
LT
1341 }
1342 memset(ioc->res_map, 0, ioc->res_size);
1343
1344 /* Initialize the res_hint to 16 */
1345 ioc->res_hint = 16;
1346
1347 /* Initialize the spinlock */
1348 spin_lock_init(&ioc->res_lock);
1349
1350 /*
1351 ** Chainid is the upper most bits of an IOVP used to determine
1352 ** which TLB entry an IOVP will use.
1353 */
1354 ioc->chainid_shift = get_order(iova_space_size) + PAGE_SHIFT - CCIO_CHAINID_SHIFT;
1355 DBG_INIT(" chainid_shift 0x%x\n", ioc->chainid_shift);
1356
1357 /*
1358 ** Initialize IOA hardware
1359 */
1360 WRITE_U32(CCIO_CHAINID_MASK << ioc->chainid_shift,
86a61ee9 1361 &ioc->ioc_regs->io_chain_id_mask);
1da177e4
LT
1362
1363 WRITE_U32(virt_to_phys(ioc->pdir_base),
86a61ee9 1364 &ioc->ioc_regs->io_pdir_base);
1da177e4
LT
1365
1366 /*
1367 ** Go to "Virtual Mode"
1368 */
86a61ee9 1369 WRITE_U32(IOA_NORMAL_MODE, &ioc->ioc_regs->io_control);
1da177e4
LT
1370
1371 /*
1372 ** Initialize all I/O TLB entries to 0 (Valid bit off).
1373 */
86a61ee9
GG
1374 WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_m);
1375 WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_l);
1da177e4
LT
1376
1377 for(i = 1 << CCIO_CHAINID_SHIFT; i ; i--) {
1378 WRITE_U32((CMD_TLB_DIRECT_WRITE | (i << ioc->chainid_shift)),
86a61ee9 1379 &ioc->ioc_regs->io_command);
1da177e4
LT
1380 }
1381}
1382
25971f68 1383static void __init
86a61ee9 1384ccio_init_resource(struct resource *res, char *name, void __iomem *ioaddr)
1da177e4
LT
1385{
1386 int result;
1387
1388 res->parent = NULL;
1389 res->flags = IORESOURCE_MEM;
86a61ee9
GG
1390 /*
1391 * bracing ((signed) ...) are required for 64bit kernel because
1392 * we only want to sign extend the lower 16 bits of the register.
1393 * The upper 16-bits of range registers are hardcoded to 0xffff.
1394 */
1395 res->start = (unsigned long)((signed) READ_U32(ioaddr) << 16);
1396 res->end = (unsigned long)((signed) (READ_U32(ioaddr + 4) << 16) - 1);
1da177e4 1397 res->name = name;
86a61ee9
GG
1398 /*
1399 * Check if this MMIO range is disable
1400 */
1da177e4
LT
1401 if (res->end + 1 == res->start)
1402 return;
86a61ee9
GG
1403
1404 /* On some platforms (e.g. K-Class), we have already registered
1405 * resources for devices reported by firmware. Some are children
1406 * of ccio.
1407 * "insert" ccio ranges in the mmio hierarchy (/proc/iomem).
1408 */
1409 result = insert_resource(&iomem_resource, res);
1da177e4 1410 if (result < 0) {
86a61ee9
GG
1411 printk(KERN_ERR "%s() failed to claim CCIO bus address space (%08lx,%08lx)\n",
1412 __FUNCTION__, res->start, res->end);
1da177e4
LT
1413 }
1414}
1415
1416static void __init ccio_init_resources(struct ioc *ioc)
1417{
1418 struct resource *res = ioc->mmio_region;
1419 char *name = kmalloc(14, GFP_KERNEL);
1420
cb6fc18e 1421 snprintf(name, 14, "GSC Bus [%d/]", ioc->hw_path);
1da177e4 1422
86a61ee9
GG
1423 ccio_init_resource(res, name, &ioc->ioc_regs->io_io_low);
1424 ccio_init_resource(res + 1, name, &ioc->ioc_regs->io_io_low_hv);
1da177e4
LT
1425}
1426
1427static int new_ioc_area(struct resource *res, unsigned long size,
1428 unsigned long min, unsigned long max, unsigned long align)
1429{
1430 if (max <= min)
1431 return -EBUSY;
1432
1433 res->start = (max - size + 1) &~ (align - 1);
1434 res->end = res->start + size;
86a61ee9
GG
1435
1436 /* We might be trying to expand the MMIO range to include
1437 * a child device that has already registered it's MMIO space.
1438 * Use "insert" instead of request_resource().
1439 */
1440 if (!insert_resource(&iomem_resource, res))
1da177e4
LT
1441 return 0;
1442
1443 return new_ioc_area(res, size, min, max - size, align);
1444}
1445
1446static int expand_ioc_area(struct resource *res, unsigned long size,
1447 unsigned long min, unsigned long max, unsigned long align)
1448{
1449 unsigned long start, len;
1450
1451 if (!res->parent)
1452 return new_ioc_area(res, size, min, max, align);
1453
1454 start = (res->start - size) &~ (align - 1);
1455 len = res->end - start + 1;
1456 if (start >= min) {
1457 if (!adjust_resource(res, start, len))
1458 return 0;
1459 }
1460
1461 start = res->start;
1462 len = ((size + res->end + align) &~ (align - 1)) - start;
1463 if (start + len <= max) {
1464 if (!adjust_resource(res, start, len))
1465 return 0;
1466 }
1467
1468 return -EBUSY;
1469}
1470
1471/*
1472 * Dino calls this function. Beware that we may get called on systems
1473 * which have no IOC (725, B180, C160L, etc) but do have a Dino.
1474 * So it's legal to find no parent IOC.
1475 *
1476 * Some other issues: one of the resources in the ioc may be unassigned.
1477 */
1478int ccio_allocate_resource(const struct parisc_device *dev,
1479 struct resource *res, unsigned long size,
1480 unsigned long min, unsigned long max, unsigned long align)
1481{
1482 struct resource *parent = &iomem_resource;
1483 struct ioc *ioc = ccio_get_iommu(dev);
1484 if (!ioc)
1485 goto out;
1486
1487 parent = ioc->mmio_region;
1488 if (parent->parent &&
1489 !allocate_resource(parent, res, size, min, max, align, NULL, NULL))
1490 return 0;
1491
1492 if ((parent + 1)->parent &&
1493 !allocate_resource(parent + 1, res, size, min, max, align,
1494 NULL, NULL))
1495 return 0;
1496
1497 if (!expand_ioc_area(parent, size, min, max, align)) {
1498 __raw_writel(((parent->start)>>16) | 0xffff0000,
86a61ee9 1499 &ioc->ioc_regs->io_io_low);
1da177e4 1500 __raw_writel(((parent->end)>>16) | 0xffff0000,
86a61ee9 1501 &ioc->ioc_regs->io_io_high);
1da177e4
LT
1502 } else if (!expand_ioc_area(parent + 1, size, min, max, align)) {
1503 parent++;
1504 __raw_writel(((parent->start)>>16) | 0xffff0000,
86a61ee9 1505 &ioc->ioc_regs->io_io_low_hv);
1da177e4 1506 __raw_writel(((parent->end)>>16) | 0xffff0000,
86a61ee9 1507 &ioc->ioc_regs->io_io_high_hv);
1da177e4
LT
1508 } else {
1509 return -EBUSY;
1510 }
1511
1512 out:
1513 return allocate_resource(parent, res, size, min, max, align, NULL,NULL);
1514}
1515
1516int ccio_request_resource(const struct parisc_device *dev,
1517 struct resource *res)
1518{
1519 struct resource *parent;
1520 struct ioc *ioc = ccio_get_iommu(dev);
1521
1522 if (!ioc) {
1523 parent = &iomem_resource;
1524 } else if ((ioc->mmio_region->start <= res->start) &&
1525 (res->end <= ioc->mmio_region->end)) {
1526 parent = ioc->mmio_region;
1527 } else if (((ioc->mmio_region + 1)->start <= res->start) &&
1528 (res->end <= (ioc->mmio_region + 1)->end)) {
1529 parent = ioc->mmio_region + 1;
1530 } else {
1531 return -EBUSY;
1532 }
1533
86a61ee9
GG
1534 /* "transparent" bus bridges need to register MMIO resources
1535 * firmware assigned them. e.g. children of hppb.c (e.g. K-class)
1536 * registered their resources in the PDC "bus walk" (See
1537 * arch/parisc/kernel/inventory.c).
1538 */
1539 return insert_resource(parent, res);
1da177e4
LT
1540}
1541
1542/**
1543 * ccio_probe - Determine if ccio should claim this device.
1544 * @dev: The device which has been found
1545 *
1546 * Determine if ccio should claim this chip (return 0) or not (return 1).
1547 * If so, initialize the chip and tell other partners in crime they
1548 * have work to do.
1549 */
25971f68 1550static int __init ccio_probe(struct parisc_device *dev)
1da177e4
LT
1551{
1552 int i;
1553 struct ioc *ioc, **ioc_p = &ioc_list;
f823bcae 1554 struct proc_dir_entry *info_entry, *bitmap_entry;
1da177e4 1555
cb6fc18e 1556 ioc = kzalloc(sizeof(struct ioc), GFP_KERNEL);
1da177e4
LT
1557 if (ioc == NULL) {
1558 printk(KERN_ERR MODULE_NAME ": memory allocation failure\n");
1559 return 1;
1560 }
1da177e4
LT
1561
1562 ioc->name = dev->id.hversion == U2_IOA_RUNWAY ? "U2" : "UTurn";
1563
53f01bba 1564 printk(KERN_INFO "Found %s at 0x%lx\n", ioc->name, dev->hpa.start);
1da177e4
LT
1565
1566 for (i = 0; i < ioc_count; i++) {
1567 ioc_p = &(*ioc_p)->next;
1568 }
1569 *ioc_p = ioc;
1570
1571 ioc->hw_path = dev->hw_path;
5076c158 1572 ioc->ioc_regs = ioremap_nocache(dev->hpa.start, 4096);
1da177e4
LT
1573 ccio_ioc_init(ioc);
1574 ccio_init_resources(ioc);
1575 hppa_dma_ops = &ccio_ops;
cb6fc18e 1576 dev->dev.platform_data = kzalloc(sizeof(struct pci_hba_data), GFP_KERNEL);
1da177e4
LT
1577
1578 /* if this fails, no I/O cards will work, so may as well bug */
1579 BUG_ON(dev->dev.platform_data == NULL);
1580 HBA_DATA(dev->dev.platform_data)->iommu = ioc;
1581
1da177e4 1582 if (ioc_count == 0) {
f823bcae
KM
1583 info_entry = create_proc_entry(MODULE_NAME, 0, proc_runway_root);
1584 if (info_entry)
1585 info_entry->proc_fops = &ccio_proc_info_fops;
1586
1587 bitmap_entry = create_proc_entry(MODULE_NAME"-bitmap", 0, proc_runway_root);
1588 if (bitmap_entry)
1589 bitmap_entry->proc_fops = &ccio_proc_bitmap_fops;
1da177e4
LT
1590 }
1591
1592 ioc_count++;
1593
1594 parisc_vmerge_boundary = IOVP_SIZE;
1595 parisc_vmerge_max_size = BITS_PER_LONG * IOVP_SIZE;
1596 parisc_has_iommu();
1597 return 0;
1598}
1599
1600/**
4f63ba17 1601 * ccio_init - ccio initialization procedure.
1da177e4
LT
1602 *
1603 * Register this driver.
1604 */
1605void __init ccio_init(void)
1606{
1607 register_parisc_driver(&ccio_driver);
1608}
1609