mn10300: add the MN10300/AM33 architecture to the kernel
[linux-block.git] / drivers / net / smc91x.h
CommitLineData
1da177e4
LT
1/*------------------------------------------------------------------------
2 . smc91x.h - macros for SMSC's 91C9x/91C1xx single-chip Ethernet device.
3 .
4 . Copyright (C) 1996 by Erik Stahlman
5 . Copyright (C) 2001 Standard Microsystems Corporation
6 . Developed by Simple Network Magic Corporation
7 . Copyright (C) 2003 Monta Vista Software, Inc.
8 . Unified SMC91x driver by Nicolas Pitre
9 .
10 . This program is free software; you can redistribute it and/or modify
11 . it under the terms of the GNU General Public License as published by
12 . the Free Software Foundation; either version 2 of the License, or
13 . (at your option) any later version.
14 .
15 . This program is distributed in the hope that it will be useful,
16 . but WITHOUT ANY WARRANTY; without even the implied warranty of
17 . MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 . GNU General Public License for more details.
19 .
20 . You should have received a copy of the GNU General Public License
21 . along with this program; if not, write to the Free Software
22 . Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 .
24 . Information contained in this file was obtained from the LAN91C111
25 . manual from SMC. To get a copy, if you really want one, you can find
26 . information under www.smsc.com.
27 .
28 . Authors
29 . Erik Stahlman <erik@vt.edu>
30 . Daris A Nevil <dnevil@snmc.com>
31 . Nicolas Pitre <nico@cam.org>
32 .
33 ---------------------------------------------------------------------------*/
34#ifndef _SMC91X_H_
35#define _SMC91X_H_
36
37
38/*
39 * Define your architecture specific bus configuration parameters here.
40 */
41
42#if defined(CONFIG_ARCH_LUBBOCK)
43
44/* We can only do 16-bit reads and writes in the static memory space. */
45#define SMC_CAN_USE_8BIT 0
46#define SMC_CAN_USE_16BIT 1
47#define SMC_CAN_USE_32BIT 0
48#define SMC_NOWAIT 1
49
50/* The first two address lines aren't connected... */
51#define SMC_IO_SHIFT 2
52
53#define SMC_inw(a, r) readw((a) + (r))
54#define SMC_outw(v, a, r) writew(v, (a) + (r))
55#define SMC_insw(a, r, p, l) readsw((a) + (r), p, l)
56#define SMC_outsw(a, r, p, l) writesw((a) + (r), p, l)
e7b3dc7e 57#define SMC_IRQ_FLAGS (-1) /* from resource */
1da177e4 58
95af9feb 59#elif defined(CONFIG_BLACKFIN)
0851a284
WB
60
61#define SMC_IRQ_FLAGS IRQF_TRIGGER_HIGH
c5760abd
JCR
62#define RPC_LSA_DEFAULT RPC_LED_100_10
63#define RPC_LSB_DEFAULT RPC_LED_TX_RX
0851a284
WB
64
65# if defined (CONFIG_BFIN561_EZKIT)
66#define SMC_CAN_USE_8BIT 0
67#define SMC_CAN_USE_16BIT 1
68#define SMC_CAN_USE_32BIT 1
69#define SMC_IO_SHIFT 0
70#define SMC_NOWAIT 1
71#define SMC_USE_BFIN_DMA 0
72
73
74#define SMC_inw(a, r) readw((a) + (r))
75#define SMC_outw(v, a, r) writew(v, (a) + (r))
76#define SMC_inl(a, r) readl((a) + (r))
77#define SMC_outl(v, a, r) writel(v, (a) + (r))
78#define SMC_outsl(a, r, p, l) outsl((unsigned long *)((a) + (r)), p, l)
79#define SMC_insl(a, r, p, l) insl ((unsigned long *)((a) + (r)), p, l)
80# else
81#define SMC_CAN_USE_8BIT 0
82#define SMC_CAN_USE_16BIT 1
83#define SMC_CAN_USE_32BIT 0
84#define SMC_IO_SHIFT 0
85#define SMC_NOWAIT 1
86#define SMC_USE_BFIN_DMA 0
87
88
89#define SMC_inw(a, r) readw((a) + (r))
90#define SMC_outw(v, a, r) writew(v, (a) + (r))
91#define SMC_outsw(a, r, p, l) outsw((unsigned long *)((a) + (r)), p, l)
92#define SMC_insw(a, r, p, l) insw ((unsigned long *)((a) + (r)), p, l)
93# endif
94/* check if the mac in reg is valid */
95#define SMC_GET_MAC_ADDR(addr) \
96 do { \
97 unsigned int __v; \
98 __v = SMC_inw(ioaddr, ADDR0_REG); \
99 addr[0] = __v; addr[1] = __v >> 8; \
100 __v = SMC_inw(ioaddr, ADDR1_REG); \
101 addr[2] = __v; addr[3] = __v >> 8; \
102 __v = SMC_inw(ioaddr, ADDR2_REG); \
103 addr[4] = __v; addr[5] = __v >> 8; \
104 if (*(u32 *)(&addr[0]) == 0xFFFFFFFF) { \
105 random_ether_addr(addr); \
106 } \
107 } while (0)
1da177e4
LT
108#elif defined(CONFIG_REDWOOD_5) || defined(CONFIG_REDWOOD_6)
109
110/* We can only do 16-bit reads and writes in the static memory space. */
111#define SMC_CAN_USE_8BIT 0
112#define SMC_CAN_USE_16BIT 1
113#define SMC_CAN_USE_32BIT 0
114#define SMC_NOWAIT 1
115
116#define SMC_IO_SHIFT 0
117
118#define SMC_inw(a, r) in_be16((volatile u16 *)((a) + (r)))
119#define SMC_outw(v, a, r) out_be16((volatile u16 *)((a) + (r)), v)
120#define SMC_insw(a, r, p, l) \
121 do { \
122 unsigned long __port = (a) + (r); \
123 u16 *__p = (u16 *)(p); \
124 int __l = (l); \
125 insw(__port, __p, __l); \
126 while (__l > 0) { \
127 *__p = swab16(*__p); \
128 __p++; \
129 __l--; \
130 } \
131 } while (0)
132#define SMC_outsw(a, r, p, l) \
133 do { \
134 unsigned long __port = (a) + (r); \
135 u16 *__p = (u16 *)(p); \
136 int __l = (l); \
137 while (__l > 0) { \
138 /* Believe it or not, the swab isn't needed. */ \
139 outw( /* swab16 */ (*__p++), __port); \
140 __l--; \
141 } \
142 } while (0)
9ded96f2 143#define SMC_IRQ_FLAGS (0)
1da177e4
LT
144
145#elif defined(CONFIG_SA1100_PLEB)
146/* We can only do 16-bit reads and writes in the static memory space. */
147#define SMC_CAN_USE_8BIT 1
148#define SMC_CAN_USE_16BIT 1
149#define SMC_CAN_USE_32BIT 0
150#define SMC_IO_SHIFT 0
151#define SMC_NOWAIT 1
152
1cf99be5
RK
153#define SMC_inb(a, r) readb((a) + (r))
154#define SMC_insb(a, r, p, l) readsb((a) + (r), p, (l))
155#define SMC_inw(a, r) readw((a) + (r))
156#define SMC_insw(a, r, p, l) readsw((a) + (r), p, l)
157#define SMC_outb(v, a, r) writeb(v, (a) + (r))
158#define SMC_outsb(a, r, p, l) writesb((a) + (r), p, (l))
159#define SMC_outw(v, a, r) writew(v, (a) + (r))
160#define SMC_outsw(a, r, p, l) writesw((a) + (r), p, l)
1da177e4 161
e7b3dc7e 162#define SMC_IRQ_FLAGS (-1)
1da177e4
LT
163
164#elif defined(CONFIG_SA1100_ASSABET)
165
166#include <asm/arch/neponset.h>
167
168/* We can only do 8-bit reads and writes in the static memory space. */
169#define SMC_CAN_USE_8BIT 1
170#define SMC_CAN_USE_16BIT 0
171#define SMC_CAN_USE_32BIT 0
172#define SMC_NOWAIT 1
173
174/* The first two address lines aren't connected... */
175#define SMC_IO_SHIFT 2
176
177#define SMC_inb(a, r) readb((a) + (r))
178#define SMC_outb(v, a, r) writeb(v, (a) + (r))
179#define SMC_insb(a, r, p, l) readsb((a) + (r), p, (l))
180#define SMC_outsb(a, r, p, l) writesb((a) + (r), p, (l))
e7b3dc7e 181#define SMC_IRQ_FLAGS (-1) /* from resource */
1da177e4 182
b0348b90
LB
183#elif defined(CONFIG_MACH_LOGICPD_PXA270)
184
185#define SMC_CAN_USE_8BIT 0
186#define SMC_CAN_USE_16BIT 1
187#define SMC_CAN_USE_32BIT 0
188#define SMC_IO_SHIFT 0
189#define SMC_NOWAIT 1
b0348b90 190
b0348b90 191#define SMC_inw(a, r) readw((a) + (r))
b0348b90 192#define SMC_outw(v, a, r) writew(v, (a) + (r))
b0348b90
LB
193#define SMC_insw(a, r, p, l) readsw((a) + (r), p, l)
194#define SMC_outsw(a, r, p, l) writesw((a) + (r), p, l)
195
1da177e4
LT
196#elif defined(CONFIG_ARCH_INNOKOM) || \
197 defined(CONFIG_MACH_MAINSTONE) || \
198 defined(CONFIG_ARCH_PXA_IDP) || \
4f15a980
RS
199 defined(CONFIG_ARCH_RAMSES) || \
200 defined(CONFIG_ARCH_PCM027)
1da177e4
LT
201
202#define SMC_CAN_USE_8BIT 1
203#define SMC_CAN_USE_16BIT 1
204#define SMC_CAN_USE_32BIT 1
205#define SMC_IO_SHIFT 0
206#define SMC_NOWAIT 1
207#define SMC_USE_PXA_DMA 1
208
209#define SMC_inb(a, r) readb((a) + (r))
210#define SMC_inw(a, r) readw((a) + (r))
211#define SMC_inl(a, r) readl((a) + (r))
212#define SMC_outb(v, a, r) writeb(v, (a) + (r))
213#define SMC_outl(v, a, r) writel(v, (a) + (r))
214#define SMC_insl(a, r, p, l) readsl((a) + (r), p, l)
215#define SMC_outsl(a, r, p, l) writesl((a) + (r), p, l)
e7b3dc7e 216#define SMC_IRQ_FLAGS (-1) /* from resource */
1da177e4
LT
217
218/* We actually can't write halfwords properly if not word aligned */
219static inline void
eb1d6988 220SMC_outw(u16 val, void __iomem *ioaddr, int reg)
1da177e4
LT
221{
222 if (reg & 2) {
223 unsigned int v = val << 16;
224 v |= readl(ioaddr + (reg & ~2)) & 0xffff;
225 writel(v, ioaddr + (reg & ~2));
226 } else {
227 writew(val, ioaddr + reg);
228 }
229}
230
7c826a0b 231#elif defined(CONFIG_MACH_ZYLONITE)
232
233#define SMC_CAN_USE_8BIT 1
234#define SMC_CAN_USE_16BIT 1
235#define SMC_CAN_USE_32BIT 0
236#define SMC_IO_SHIFT 0
237#define SMC_NOWAIT 1
238#define SMC_USE_PXA_DMA 1
239#define SMC_inb(a, r) readb((a) + (r))
240#define SMC_inw(a, r) readw((a) + (r))
241#define SMC_insw(a, r, p, l) insw((a) + (r), p, l)
242#define SMC_outsw(a, r, p, l) outsw((a) + (r), p, l)
243#define SMC_outb(v, a, r) writeb(v, (a) + (r))
244#define SMC_outw(v, a, r) writew(v, (a) + (r))
e7b3dc7e 245#define SMC_IRQ_FLAGS (-1) /* from resource */
7c826a0b 246
1da177e4
LT
247#elif defined(CONFIG_ARCH_OMAP)
248
249/* We can only do 16-bit reads and writes in the static memory space. */
250#define SMC_CAN_USE_8BIT 0
251#define SMC_CAN_USE_16BIT 1
252#define SMC_CAN_USE_32BIT 0
253#define SMC_IO_SHIFT 0
254#define SMC_NOWAIT 1
255
1da177e4
LT
256#define SMC_inw(a, r) readw((a) + (r))
257#define SMC_outw(v, a, r) writew(v, (a) + (r))
258#define SMC_insw(a, r, p, l) readsw((a) + (r), p, l)
259#define SMC_outsw(a, r, p, l) writesw((a) + (r), p, l)
e7b3dc7e 260#define SMC_IRQ_FLAGS (-1) /* from resource */
5f13e7ec 261
1da177e4
LT
262#elif defined(CONFIG_SH_SH4202_MICRODEV)
263
264#define SMC_CAN_USE_8BIT 0
265#define SMC_CAN_USE_16BIT 1
266#define SMC_CAN_USE_32BIT 0
267
268#define SMC_inb(a, r) inb((a) + (r) - 0xa0000000)
269#define SMC_inw(a, r) inw((a) + (r) - 0xa0000000)
270#define SMC_inl(a, r) inl((a) + (r) - 0xa0000000)
271#define SMC_outb(v, a, r) outb(v, (a) + (r) - 0xa0000000)
272#define SMC_outw(v, a, r) outw(v, (a) + (r) - 0xa0000000)
273#define SMC_outl(v, a, r) outl(v, (a) + (r) - 0xa0000000)
274#define SMC_insl(a, r, p, l) insl((a) + (r) - 0xa0000000, p, l)
275#define SMC_outsl(a, r, p, l) outsl((a) + (r) - 0xa0000000, p, l)
276#define SMC_insw(a, r, p, l) insw((a) + (r) - 0xa0000000, p, l)
277#define SMC_outsw(a, r, p, l) outsw((a) + (r) - 0xa0000000, p, l)
278
9ded96f2 279#define SMC_IRQ_FLAGS (0)
1da177e4
LT
280
281#elif defined(CONFIG_ISA)
282
283#define SMC_CAN_USE_8BIT 1
284#define SMC_CAN_USE_16BIT 1
285#define SMC_CAN_USE_32BIT 0
286
287#define SMC_inb(a, r) inb((a) + (r))
288#define SMC_inw(a, r) inw((a) + (r))
289#define SMC_outb(v, a, r) outb(v, (a) + (r))
290#define SMC_outw(v, a, r) outw(v, (a) + (r))
291#define SMC_insw(a, r, p, l) insw((a) + (r), p, l)
292#define SMC_outsw(a, r, p, l) outsw((a) + (r), p, l)
293
5125ed91
NI
294#elif defined(CONFIG_SUPERH)
295
6026ee67 296#ifdef CONFIG_SOLUTION_ENGINE
18ad4e70 297#define SMC_IRQ_FLAGS (0)
5125ed91
NI
298#define SMC_CAN_USE_8BIT 0
299#define SMC_CAN_USE_16BIT 1
300#define SMC_CAN_USE_32BIT 0
301#define SMC_IO_SHIFT 0
302#define SMC_NOWAIT 1
303
5125ed91 304#define SMC_inw(a, r) inw((a) + (r))
5125ed91
NI
305#define SMC_outw(v, a, r) outw(v, (a) + (r))
306#define SMC_insw(a, r, p, l) insw((a) + (r), p, l)
307#define SMC_outsw(a, r, p, l) outsw((a) + (r), p, l)
308
309#else /* BOARDS */
310
311#define SMC_CAN_USE_8BIT 1
312#define SMC_CAN_USE_16BIT 1
092ed997 313#define SMC_CAN_USE_32BIT 0
5125ed91
NI
314
315#define SMC_inb(a, r) inb((a) + (r))
316#define SMC_inw(a, r) inw((a) + (r))
317#define SMC_outb(v, a, r) outb(v, (a) + (r))
318#define SMC_outw(v, a, r) outw(v, (a) + (r))
319#define SMC_insw(a, r, p, l) insw((a) + (r), p, l)
320#define SMC_outsw(a, r, p, l) outsw((a) + (r), p, l)
321
322#endif /* BOARDS */
323
1da177e4
LT
324#elif defined(CONFIG_M32R)
325
326#define SMC_CAN_USE_8BIT 0
327#define SMC_CAN_USE_16BIT 1
328#define SMC_CAN_USE_32BIT 0
329
59dc76a4 330#define SMC_inb(a, r) inb(((u32)a) + (r))
f3ac9fbf
HT
331#define SMC_inw(a, r) inw(((u32)a) + (r))
332#define SMC_outb(v, a, r) outb(v, ((u32)a) + (r))
333#define SMC_outw(v, a, r) outw(v, ((u32)a) + (r))
334#define SMC_insw(a, r, p, l) insw(((u32)a) + (r), p, l)
335#define SMC_outsw(a, r, p, l) outsw(((u32)a) + (r), p, l)
1da177e4 336
9ded96f2 337#define SMC_IRQ_FLAGS (0)
1da177e4
LT
338
339#define RPC_LSA_DEFAULT RPC_LED_TX_RX
340#define RPC_LSB_DEFAULT RPC_LED_100_10
341
d4adcffb
MS
342#elif defined(CONFIG_MACH_LPD79520) \
343 || defined(CONFIG_MACH_LPD7A400) \
344 || defined(CONFIG_MACH_LPD7A404)
1da177e4 345
d4adcffb
MS
346/* The LPD7X_IOBARRIER is necessary to overcome a mismatch between the
347 * way that the CPU handles chip selects and the way that the SMC chip
348 * expects the chip select to operate. Refer to
1da177e4 349 * Documentation/arm/Sharp-LH/IOBarrier for details. The read from
d4adcffb
MS
350 * IOBARRIER is a byte, in order that we read the least-common
351 * denominator. It would be wasteful to read 32 bits from an 8-bit
352 * accessible region.
1da177e4
LT
353 *
354 * There is no explicit protection against interrupts intervening
355 * between the writew and the IOBARRIER. In SMC ISR there is a
356 * preamble that performs an IOBARRIER in the extremely unlikely event
357 * that the driver interrupts itself between a writew to the chip an
358 * the IOBARRIER that follows *and* the cache is large enough that the
359 * first off-chip access while handing the interrupt is to the SMC
360 * chip. Other devices in the same address space as the SMC chip must
361 * be aware of the potential for trouble and perform a similar
362 * IOBARRIER on entry to their ISR.
363 */
364
365#include <asm/arch/constants.h> /* IOBARRIER_VIRT */
366
367#define SMC_CAN_USE_8BIT 0
368#define SMC_CAN_USE_16BIT 1
369#define SMC_CAN_USE_32BIT 0
370#define SMC_NOWAIT 0
d4adcffb 371#define LPD7X_IOBARRIER readb (IOBARRIER_VIRT)
1da177e4 372
d4adcffb
MS
373#define SMC_inw(a,r)\
374 ({ unsigned short v = readw ((void*) ((a) + (r))); LPD7X_IOBARRIER; v; })
375#define SMC_outw(v,a,r) ({ writew ((v), (a) + (r)); LPD7X_IOBARRIER; })
1da177e4 376
d4adcffb
MS
377#define SMC_insw LPD7_SMC_insw
378static inline void LPD7_SMC_insw (unsigned char* a, int r,
379 unsigned char* p, int l)
380{
381 unsigned short* ps = (unsigned short*) p;
382 while (l-- > 0) {
383 *ps++ = readw (a + r);
384 LPD7X_IOBARRIER;
385 }
386}
09779c6d 387
d4adcffb
MS
388#define SMC_outsw LPD7_SMC_outsw
389static inline void LPD7_SMC_outsw (unsigned char* a, int r,
390 unsigned char* p, int l)
1da177e4
LT
391{
392 unsigned short* ps = (unsigned short*) p;
393 while (l-- > 0) {
394 writew (*ps++, a + r);
d4adcffb 395 LPD7X_IOBARRIER;
1da177e4
LT
396 }
397}
398
d4adcffb 399#define SMC_INTERRUPT_PREAMBLE LPD7X_IOBARRIER
1da177e4
LT
400
401#define RPC_LSA_DEFAULT RPC_LED_TX_RX
402#define RPC_LSB_DEFAULT RPC_LED_100_10
403
55793455
PP
404#elif defined(CONFIG_SOC_AU1X00)
405
406#include <au1xxx.h>
407
408/* We can only do 16-bit reads and writes in the static memory space. */
409#define SMC_CAN_USE_8BIT 0
410#define SMC_CAN_USE_16BIT 1
411#define SMC_CAN_USE_32BIT 0
412#define SMC_IO_SHIFT 0
413#define SMC_NOWAIT 1
414
415#define SMC_inw(a, r) au_readw((unsigned long)((a) + (r)))
416#define SMC_insw(a, r, p, l) \
417 do { \
418 unsigned long _a = (unsigned long)((a) + (r)); \
419 int _l = (l); \
420 u16 *_p = (u16 *)(p); \
421 while (_l-- > 0) \
422 *_p++ = au_readw(_a); \
423 } while(0)
424#define SMC_outw(v, a, r) au_writew(v, (unsigned long)((a) + (r)))
425#define SMC_outsw(a, r, p, l) \
426 do { \
427 unsigned long _a = (unsigned long)((a) + (r)); \
428 int _l = (l); \
429 const u16 *_p = (const u16 *)(p); \
430 while (_l-- > 0) \
431 au_writew(*_p++ , _a); \
432 } while(0)
433
9ded96f2 434#define SMC_IRQ_FLAGS (0)
33fee56a
DS
435
436#elif defined(CONFIG_ARCH_VERSATILE)
437
438#define SMC_CAN_USE_8BIT 1
439#define SMC_CAN_USE_16BIT 1
440#define SMC_CAN_USE_32BIT 1
441#define SMC_NOWAIT 1
442
443#define SMC_inb(a, r) readb((a) + (r))
444#define SMC_inw(a, r) readw((a) + (r))
445#define SMC_inl(a, r) readl((a) + (r))
446#define SMC_outb(v, a, r) writeb(v, (a) + (r))
447#define SMC_outw(v, a, r) writew(v, (a) + (r))
448#define SMC_outl(v, a, r) writel(v, (a) + (r))
449#define SMC_insl(a, r, p, l) readsl((a) + (r), p, l)
450#define SMC_outsl(a, r, p, l) writesl((a) + (r), p, l)
e7b3dc7e 451#define SMC_IRQ_FLAGS (-1) /* from resource */
55793455 452
b920de1b
DH
453#elif defined(CONFIG_MN10300)
454
455/*
456 * MN10300/AM33 configuration
457 */
458
459#include <asm/unit/smc91111.h>
460
1da177e4
LT
461#else
462
b920de1b
DH
463/*
464 * Default configuration
465 */
466
1da177e4
LT
467#define SMC_CAN_USE_8BIT 1
468#define SMC_CAN_USE_16BIT 1
469#define SMC_CAN_USE_32BIT 1
470#define SMC_NOWAIT 1
471
472#define SMC_inb(a, r) readb((a) + (r))
473#define SMC_inw(a, r) readw((a) + (r))
474#define SMC_inl(a, r) readl((a) + (r))
475#define SMC_outb(v, a, r) writeb(v, (a) + (r))
476#define SMC_outw(v, a, r) writew(v, (a) + (r))
477#define SMC_outl(v, a, r) writel(v, (a) + (r))
478#define SMC_insl(a, r, p, l) readsl((a) + (r), p, l)
479#define SMC_outsl(a, r, p, l) writesl((a) + (r), p, l)
480
481#define RPC_LSA_DEFAULT RPC_LED_100_10
482#define RPC_LSB_DEFAULT RPC_LED_TX_RX
483
484#endif
485
073ac8fd
RK
486
487/* store this information for the driver.. */
488struct smc_local {
489 /*
490 * If I have to wait until memory is available to send a
491 * packet, I will store the skbuff here, until I get the
492 * desired memory. Then, I'll send it out and free it.
493 */
494 struct sk_buff *pending_tx_skb;
495 struct tasklet_struct tx_task;
496
497 /* version/revision of the SMC91x chip */
498 int version;
499
500 /* Contains the current active transmission mode */
501 int tcr_cur_mode;
502
503 /* Contains the current active receive mode */
504 int rcr_cur_mode;
505
506 /* Contains the current active receive/phy mode */
507 int rpc_cur_mode;
508 int ctl_rfduplx;
509 int ctl_rspeed;
510
511 u32 msg_enable;
512 u32 phy_type;
513 struct mii_if_info mii;
514
515 /* work queue */
516 struct work_struct phy_configure;
517 struct net_device *dev;
518 int work_pending;
519
520 spinlock_t lock;
521
522#ifdef SMC_USE_PXA_DMA
523 /* DMA needs the physical address of the chip */
524 u_long physaddr;
525 struct device *device;
526#endif
527 void __iomem *base;
528 void __iomem *datacs;
529};
530
531
1da177e4
LT
532#ifdef SMC_USE_PXA_DMA
533/*
534 * Let's use the DMA engine on the XScale PXA2xx for RX packets. This is
535 * always happening in irq context so no need to worry about races. TX is
536 * different and probably not worth it for that reason, and not as critical
537 * as RX which can overrun memory and lose packets.
538 */
539#include <linux/dma-mapping.h>
540#include <asm/dma.h>
541#include <asm/arch/pxa-regs.h>
542
543#ifdef SMC_insl
544#undef SMC_insl
545#define SMC_insl(a, r, p, l) \
073ac8fd 546 smc_pxa_dma_insl(a, lp, r, dev->dma, p, l)
1da177e4 547static inline void
073ac8fd 548smc_pxa_dma_insl(void __iomem *ioaddr, struct smc_local *lp, int reg, int dma,
1da177e4
LT
549 u_char *buf, int len)
550{
073ac8fd 551 u_long physaddr = lp->physaddr;
1da177e4
LT
552 dma_addr_t dmabuf;
553
554 /* fallback if no DMA available */
555 if (dma == (unsigned char)-1) {
556 readsl(ioaddr + reg, buf, len);
557 return;
558 }
559
560 /* 64 bit alignment is required for memory to memory DMA */
561 if ((long)buf & 4) {
562 *((u32 *)buf) = SMC_inl(ioaddr, reg);
563 buf += 4;
564 len--;
565 }
566
567 len *= 4;
073ac8fd 568 dmabuf = dma_map_single(lp->device, buf, len, DMA_FROM_DEVICE);
1da177e4
LT
569 DCSR(dma) = DCSR_NODESC;
570 DTADR(dma) = dmabuf;
571 DSADR(dma) = physaddr + reg;
572 DCMD(dma) = (DCMD_INCTRGADDR | DCMD_BURST32 |
573 DCMD_WIDTH4 | (DCMD_LENGTH & len));
574 DCSR(dma) = DCSR_NODESC | DCSR_RUN;
575 while (!(DCSR(dma) & DCSR_STOPSTATE))
576 cpu_relax();
577 DCSR(dma) = 0;
073ac8fd 578 dma_unmap_single(lp->device, dmabuf, len, DMA_FROM_DEVICE);
1da177e4
LT
579}
580#endif
581
582#ifdef SMC_insw
583#undef SMC_insw
584#define SMC_insw(a, r, p, l) \
073ac8fd 585 smc_pxa_dma_insw(a, lp, r, dev->dma, p, l)
1da177e4 586static inline void
073ac8fd 587smc_pxa_dma_insw(void __iomem *ioaddr, struct smc_local *lp, int reg, int dma,
1da177e4
LT
588 u_char *buf, int len)
589{
073ac8fd 590 u_long physaddr = lp->physaddr;
1da177e4
LT
591 dma_addr_t dmabuf;
592
593 /* fallback if no DMA available */
594 if (dma == (unsigned char)-1) {
595 readsw(ioaddr + reg, buf, len);
596 return;
597 }
598
599 /* 64 bit alignment is required for memory to memory DMA */
600 while ((long)buf & 6) {
601 *((u16 *)buf) = SMC_inw(ioaddr, reg);
602 buf += 2;
603 len--;
604 }
605
606 len *= 2;
073ac8fd 607 dmabuf = dma_map_single(lp->device, buf, len, DMA_FROM_DEVICE);
1da177e4
LT
608 DCSR(dma) = DCSR_NODESC;
609 DTADR(dma) = dmabuf;
610 DSADR(dma) = physaddr + reg;
611 DCMD(dma) = (DCMD_INCTRGADDR | DCMD_BURST32 |
612 DCMD_WIDTH2 | (DCMD_LENGTH & len));
613 DCSR(dma) = DCSR_NODESC | DCSR_RUN;
614 while (!(DCSR(dma) & DCSR_STOPSTATE))
615 cpu_relax();
616 DCSR(dma) = 0;
073ac8fd 617 dma_unmap_single(lp->device, dmabuf, len, DMA_FROM_DEVICE);
1da177e4
LT
618}
619#endif
620
621static void
7d12e780 622smc_pxa_dma_irq(int dma, void *dummy)
1da177e4
LT
623{
624 DCSR(dma) = 0;
625}
626#endif /* SMC_USE_PXA_DMA */
627
628
09779c6d
NP
629/*
630 * Everything a particular hardware setup needs should have been defined
631 * at this point. Add stubs for the undefined cases, mainly to avoid
632 * compilation warnings since they'll be optimized away, or to prevent buggy
633 * use of them.
634 */
635
636#if ! SMC_CAN_USE_32BIT
637#define SMC_inl(ioaddr, reg) ({ BUG(); 0; })
638#define SMC_outl(x, ioaddr, reg) BUG()
639#define SMC_insl(a, r, p, l) BUG()
640#define SMC_outsl(a, r, p, l) BUG()
641#endif
642
643#if !defined(SMC_insl) || !defined(SMC_outsl)
644#define SMC_insl(a, r, p, l) BUG()
645#define SMC_outsl(a, r, p, l) BUG()
646#endif
647
648#if ! SMC_CAN_USE_16BIT
649
650/*
651 * Any 16-bit access is performed with two 8-bit accesses if the hardware
652 * can't do it directly. Most registers are 16-bit so those are mandatory.
653 */
654#define SMC_outw(x, ioaddr, reg) \
655 do { \
656 unsigned int __val16 = (x); \
657 SMC_outb( __val16, ioaddr, reg ); \
658 SMC_outb( __val16 >> 8, ioaddr, reg + (1 << SMC_IO_SHIFT));\
659 } while (0)
660#define SMC_inw(ioaddr, reg) \
661 ({ \
662 unsigned int __val16; \
663 __val16 = SMC_inb( ioaddr, reg ); \
664 __val16 |= SMC_inb( ioaddr, reg + (1 << SMC_IO_SHIFT)) << 8; \
665 __val16; \
666 })
667
668#define SMC_insw(a, r, p, l) BUG()
669#define SMC_outsw(a, r, p, l) BUG()
670
671#endif
672
673#if !defined(SMC_insw) || !defined(SMC_outsw)
674#define SMC_insw(a, r, p, l) BUG()
675#define SMC_outsw(a, r, p, l) BUG()
676#endif
677
678#if ! SMC_CAN_USE_8BIT
679#define SMC_inb(ioaddr, reg) ({ BUG(); 0; })
680#define SMC_outb(x, ioaddr, reg) BUG()
681#define SMC_insb(a, r, p, l) BUG()
682#define SMC_outsb(a, r, p, l) BUG()
683#endif
684
685#if !defined(SMC_insb) || !defined(SMC_outsb)
686#define SMC_insb(a, r, p, l) BUG()
687#define SMC_outsb(a, r, p, l) BUG()
688#endif
689
690#ifndef SMC_CAN_USE_DATACS
691#define SMC_CAN_USE_DATACS 0
692#endif
693
1da177e4
LT
694#ifndef SMC_IO_SHIFT
695#define SMC_IO_SHIFT 0
696#endif
09779c6d
NP
697
698#ifndef SMC_IRQ_FLAGS
1fb9df5d 699#define SMC_IRQ_FLAGS IRQF_TRIGGER_RISING
09779c6d
NP
700#endif
701
702#ifndef SMC_INTERRUPT_PREAMBLE
703#define SMC_INTERRUPT_PREAMBLE
704#endif
705
706
707/* Because of bank switching, the LAN91x uses only 16 I/O ports */
1da177e4
LT
708#define SMC_IO_EXTENT (16 << SMC_IO_SHIFT)
709#define SMC_DATA_EXTENT (4)
710
711/*
712 . Bank Select Register:
713 .
714 . yyyy yyyy 0000 00xx
715 . xx = bank number
716 . yyyy yyyy = 0x33, for identification purposes.
717*/
718#define BANK_SELECT (14 << SMC_IO_SHIFT)
719
720
721// Transmit Control Register
722/* BANK 0 */
723#define TCR_REG SMC_REG(0x0000, 0)
724#define TCR_ENABLE 0x0001 // When 1 we can transmit
725#define TCR_LOOP 0x0002 // Controls output pin LBK
726#define TCR_FORCOL 0x0004 // When 1 will force a collision
727#define TCR_PAD_EN 0x0080 // When 1 will pad tx frames < 64 bytes w/0
728#define TCR_NOCRC 0x0100 // When 1 will not append CRC to tx frames
729#define TCR_MON_CSN 0x0400 // When 1 tx monitors carrier
730#define TCR_FDUPLX 0x0800 // When 1 enables full duplex operation
731#define TCR_STP_SQET 0x1000 // When 1 stops tx if Signal Quality Error
732#define TCR_EPH_LOOP 0x2000 // When 1 enables EPH block loopback
733#define TCR_SWFDUP 0x8000 // When 1 enables Switched Full Duplex mode
734
735#define TCR_CLEAR 0 /* do NOTHING */
736/* the default settings for the TCR register : */
737#define TCR_DEFAULT (TCR_ENABLE | TCR_PAD_EN)
738
739
740// EPH Status Register
741/* BANK 0 */
742#define EPH_STATUS_REG SMC_REG(0x0002, 0)
743#define ES_TX_SUC 0x0001 // Last TX was successful
744#define ES_SNGL_COL 0x0002 // Single collision detected for last tx
745#define ES_MUL_COL 0x0004 // Multiple collisions detected for last tx
746#define ES_LTX_MULT 0x0008 // Last tx was a multicast
747#define ES_16COL 0x0010 // 16 Collisions Reached
748#define ES_SQET 0x0020 // Signal Quality Error Test
749#define ES_LTXBRD 0x0040 // Last tx was a broadcast
750#define ES_TXDEFR 0x0080 // Transmit Deferred
751#define ES_LATCOL 0x0200 // Late collision detected on last tx
752#define ES_LOSTCARR 0x0400 // Lost Carrier Sense
753#define ES_EXC_DEF 0x0800 // Excessive Deferral
754#define ES_CTR_ROL 0x1000 // Counter Roll Over indication
755#define ES_LINK_OK 0x4000 // Driven by inverted value of nLNK pin
756#define ES_TXUNRN 0x8000 // Tx Underrun
757
758
759// Receive Control Register
760/* BANK 0 */
761#define RCR_REG SMC_REG(0x0004, 0)
762#define RCR_RX_ABORT 0x0001 // Set if a rx frame was aborted
763#define RCR_PRMS 0x0002 // Enable promiscuous mode
764#define RCR_ALMUL 0x0004 // When set accepts all multicast frames
765#define RCR_RXEN 0x0100 // IFF this is set, we can receive packets
766#define RCR_STRIP_CRC 0x0200 // When set strips CRC from rx packets
767#define RCR_ABORT_ENB 0x0200 // When set will abort rx on collision
768#define RCR_FILT_CAR 0x0400 // When set filters leading 12 bit s of carrier
769#define RCR_SOFTRST 0x8000 // resets the chip
770
771/* the normal settings for the RCR register : */
772#define RCR_DEFAULT (RCR_STRIP_CRC | RCR_RXEN)
773#define RCR_CLEAR 0x0 // set it to a base state
774
775
776// Counter Register
777/* BANK 0 */
778#define COUNTER_REG SMC_REG(0x0006, 0)
779
780
781// Memory Information Register
782/* BANK 0 */
783#define MIR_REG SMC_REG(0x0008, 0)
784
785
786// Receive/Phy Control Register
787/* BANK 0 */
788#define RPC_REG SMC_REG(0x000A, 0)
789#define RPC_SPEED 0x2000 // When 1 PHY is in 100Mbps mode.
790#define RPC_DPLX 0x1000 // When 1 PHY is in Full-Duplex Mode
791#define RPC_ANEG 0x0800 // When 1 PHY is in Auto-Negotiate Mode
792#define RPC_LSXA_SHFT 5 // Bits to shift LS2A,LS1A,LS0A to lsb
793#define RPC_LSXB_SHFT 2 // Bits to get LS2B,LS1B,LS0B to lsb
794#define RPC_LED_100_10 (0x00) // LED = 100Mbps OR's with 10Mbps link detect
795#define RPC_LED_RES (0x01) // LED = Reserved
796#define RPC_LED_10 (0x02) // LED = 10Mbps link detect
797#define RPC_LED_FD (0x03) // LED = Full Duplex Mode
798#define RPC_LED_TX_RX (0x04) // LED = TX or RX packet occurred
799#define RPC_LED_100 (0x05) // LED = 100Mbps link dectect
800#define RPC_LED_TX (0x06) // LED = TX packet occurred
801#define RPC_LED_RX (0x07) // LED = RX packet occurred
802
803#ifndef RPC_LSA_DEFAULT
804#define RPC_LSA_DEFAULT RPC_LED_100
805#endif
806#ifndef RPC_LSB_DEFAULT
807#define RPC_LSB_DEFAULT RPC_LED_FD
808#endif
809
810#define RPC_DEFAULT (RPC_ANEG | (RPC_LSA_DEFAULT << RPC_LSXA_SHFT) | (RPC_LSB_DEFAULT << RPC_LSXB_SHFT) | RPC_SPEED | RPC_DPLX)
811
812
813/* Bank 0 0x0C is reserved */
814
815// Bank Select Register
816/* All Banks */
817#define BSR_REG 0x000E
818
819
820// Configuration Reg
821/* BANK 1 */
822#define CONFIG_REG SMC_REG(0x0000, 1)
823#define CONFIG_EXT_PHY 0x0200 // 1=external MII, 0=internal Phy
824#define CONFIG_GPCNTRL 0x0400 // Inverse value drives pin nCNTRL
825#define CONFIG_NO_WAIT 0x1000 // When 1 no extra wait states on ISA bus
826#define CONFIG_EPH_POWER_EN 0x8000 // When 0 EPH is placed into low power mode.
827
828// Default is powered-up, Internal Phy, Wait States, and pin nCNTRL=low
829#define CONFIG_DEFAULT (CONFIG_EPH_POWER_EN)
830
831
832// Base Address Register
833/* BANK 1 */
834#define BASE_REG SMC_REG(0x0002, 1)
835
836
837// Individual Address Registers
838/* BANK 1 */
839#define ADDR0_REG SMC_REG(0x0004, 1)
840#define ADDR1_REG SMC_REG(0x0006, 1)
841#define ADDR2_REG SMC_REG(0x0008, 1)
842
843
844// General Purpose Register
845/* BANK 1 */
846#define GP_REG SMC_REG(0x000A, 1)
847
848
849// Control Register
850/* BANK 1 */
851#define CTL_REG SMC_REG(0x000C, 1)
852#define CTL_RCV_BAD 0x4000 // When 1 bad CRC packets are received
853#define CTL_AUTO_RELEASE 0x0800 // When 1 tx pages are released automatically
854#define CTL_LE_ENABLE 0x0080 // When 1 enables Link Error interrupt
855#define CTL_CR_ENABLE 0x0040 // When 1 enables Counter Rollover interrupt
856#define CTL_TE_ENABLE 0x0020 // When 1 enables Transmit Error interrupt
857#define CTL_EEPROM_SELECT 0x0004 // Controls EEPROM reload & store
858#define CTL_RELOAD 0x0002 // When set reads EEPROM into registers
859#define CTL_STORE 0x0001 // When set stores registers into EEPROM
860
861
862// MMU Command Register
863/* BANK 2 */
864#define MMU_CMD_REG SMC_REG(0x0000, 2)
865#define MC_BUSY 1 // When 1 the last release has not completed
866#define MC_NOP (0<<5) // No Op
867#define MC_ALLOC (1<<5) // OR with number of 256 byte packets
868#define MC_RESET (2<<5) // Reset MMU to initial state
869#define MC_REMOVE (3<<5) // Remove the current rx packet
870#define MC_RELEASE (4<<5) // Remove and release the current rx packet
871#define MC_FREEPKT (5<<5) // Release packet in PNR register
872#define MC_ENQUEUE (6<<5) // Enqueue the packet for transmit
873#define MC_RSTTXFIFO (7<<5) // Reset the TX FIFOs
874
875
876// Packet Number Register
877/* BANK 2 */
878#define PN_REG SMC_REG(0x0002, 2)
879
880
881// Allocation Result Register
882/* BANK 2 */
883#define AR_REG SMC_REG(0x0003, 2)
884#define AR_FAILED 0x80 // Alocation Failed
885
886
887// TX FIFO Ports Register
888/* BANK 2 */
889#define TXFIFO_REG SMC_REG(0x0004, 2)
890#define TXFIFO_TEMPTY 0x80 // TX FIFO Empty
891
892// RX FIFO Ports Register
893/* BANK 2 */
894#define RXFIFO_REG SMC_REG(0x0005, 2)
895#define RXFIFO_REMPTY 0x80 // RX FIFO Empty
896
897#define FIFO_REG SMC_REG(0x0004, 2)
898
899// Pointer Register
900/* BANK 2 */
901#define PTR_REG SMC_REG(0x0006, 2)
902#define PTR_RCV 0x8000 // 1=Receive area, 0=Transmit area
903#define PTR_AUTOINC 0x4000 // Auto increment the pointer on each access
904#define PTR_READ 0x2000 // When 1 the operation is a read
905
906
907// Data Register
908/* BANK 2 */
909#define DATA_REG SMC_REG(0x0008, 2)
910
911
912// Interrupt Status/Acknowledge Register
913/* BANK 2 */
914#define INT_REG SMC_REG(0x000C, 2)
915
916
917// Interrupt Mask Register
918/* BANK 2 */
919#define IM_REG SMC_REG(0x000D, 2)
920#define IM_MDINT 0x80 // PHY MI Register 18 Interrupt
921#define IM_ERCV_INT 0x40 // Early Receive Interrupt
922#define IM_EPH_INT 0x20 // Set by Ethernet Protocol Handler section
923#define IM_RX_OVRN_INT 0x10 // Set by Receiver Overruns
924#define IM_ALLOC_INT 0x08 // Set when allocation request is completed
925#define IM_TX_EMPTY_INT 0x04 // Set if the TX FIFO goes empty
926#define IM_TX_INT 0x02 // Transmit Interrupt
927#define IM_RCV_INT 0x01 // Receive Interrupt
928
929
930// Multicast Table Registers
931/* BANK 3 */
932#define MCAST_REG1 SMC_REG(0x0000, 3)
933#define MCAST_REG2 SMC_REG(0x0002, 3)
934#define MCAST_REG3 SMC_REG(0x0004, 3)
935#define MCAST_REG4 SMC_REG(0x0006, 3)
936
937
938// Management Interface Register (MII)
939/* BANK 3 */
940#define MII_REG SMC_REG(0x0008, 3)
941#define MII_MSK_CRS100 0x4000 // Disables CRS100 detection during tx half dup
942#define MII_MDOE 0x0008 // MII Output Enable
943#define MII_MCLK 0x0004 // MII Clock, pin MDCLK
944#define MII_MDI 0x0002 // MII Input, pin MDI
945#define MII_MDO 0x0001 // MII Output, pin MDO
946
947
948// Revision Register
949/* BANK 3 */
950/* ( hi: chip id low: rev # ) */
951#define REV_REG SMC_REG(0x000A, 3)
952
953
954// Early RCV Register
955/* BANK 3 */
956/* this is NOT on SMC9192 */
957#define ERCV_REG SMC_REG(0x000C, 3)
958#define ERCV_RCV_DISCRD 0x0080 // When 1 discards a packet being received
959#define ERCV_THRESHOLD 0x001F // ERCV Threshold Mask
960
961
962// External Register
963/* BANK 7 */
964#define EXT_REG SMC_REG(0x0000, 7)
965
966
967#define CHIP_9192 3
968#define CHIP_9194 4
969#define CHIP_9195 5
970#define CHIP_9196 6
971#define CHIP_91100 7
972#define CHIP_91100FD 8
973#define CHIP_91111FD 9
974
975static const char * chip_ids[ 16 ] = {
976 NULL, NULL, NULL,
977 /* 3 */ "SMC91C90/91C92",
978 /* 4 */ "SMC91C94",
979 /* 5 */ "SMC91C95",
980 /* 6 */ "SMC91C96",
981 /* 7 */ "SMC91C100",
982 /* 8 */ "SMC91C100FD",
983 /* 9 */ "SMC91C11xFD",
984 NULL, NULL, NULL,
985 NULL, NULL, NULL};
986
987
1da177e4
LT
988/*
989 . Receive status bits
990*/
991#define RS_ALGNERR 0x8000
992#define RS_BRODCAST 0x4000
993#define RS_BADCRC 0x2000
994#define RS_ODDFRAME 0x1000
995#define RS_TOOLONG 0x0800
996#define RS_TOOSHORT 0x0400
997#define RS_MULTICAST 0x0001
998#define RS_ERRORS (RS_ALGNERR | RS_BADCRC | RS_TOOLONG | RS_TOOSHORT)
999
1000
1001/*
1002 * PHY IDs
1003 * LAN83C183 == LAN91C111 Internal PHY
1004 */
1005#define PHY_LAN83C183 0x0016f840
1006#define PHY_LAN83C180 0x02821c50
1007
1008/*
1009 * PHY Register Addresses (LAN91C111 Internal PHY)
1010 *
1011 * Generic PHY registers can be found in <linux/mii.h>
1012 *
1013 * These phy registers are specific to our on-board phy.
1014 */
1015
1016// PHY Configuration Register 1
1017#define PHY_CFG1_REG 0x10
1018#define PHY_CFG1_LNKDIS 0x8000 // 1=Rx Link Detect Function disabled
1019#define PHY_CFG1_XMTDIS 0x4000 // 1=TP Transmitter Disabled
1020#define PHY_CFG1_XMTPDN 0x2000 // 1=TP Transmitter Powered Down
1021#define PHY_CFG1_BYPSCR 0x0400 // 1=Bypass scrambler/descrambler
1022#define PHY_CFG1_UNSCDS 0x0200 // 1=Unscramble Idle Reception Disable
1023#define PHY_CFG1_EQLZR 0x0100 // 1=Rx Equalizer Disabled
1024#define PHY_CFG1_CABLE 0x0080 // 1=STP(150ohm), 0=UTP(100ohm)
1025#define PHY_CFG1_RLVL0 0x0040 // 1=Rx Squelch level reduced by 4.5db
1026#define PHY_CFG1_TLVL_SHIFT 2 // Transmit Output Level Adjust
1027#define PHY_CFG1_TLVL_MASK 0x003C
1028#define PHY_CFG1_TRF_MASK 0x0003 // Transmitter Rise/Fall time
1029
1030
1031// PHY Configuration Register 2
1032#define PHY_CFG2_REG 0x11
1033#define PHY_CFG2_APOLDIS 0x0020 // 1=Auto Polarity Correction disabled
1034#define PHY_CFG2_JABDIS 0x0010 // 1=Jabber disabled
1035#define PHY_CFG2_MREG 0x0008 // 1=Multiple register access (MII mgt)
1036#define PHY_CFG2_INTMDIO 0x0004 // 1=Interrupt signaled with MDIO pulseo
1037
1038// PHY Status Output (and Interrupt status) Register
1039#define PHY_INT_REG 0x12 // Status Output (Interrupt Status)
1040#define PHY_INT_INT 0x8000 // 1=bits have changed since last read
1041#define PHY_INT_LNKFAIL 0x4000 // 1=Link Not detected
1042#define PHY_INT_LOSSSYNC 0x2000 // 1=Descrambler has lost sync
1043#define PHY_INT_CWRD 0x1000 // 1=Invalid 4B5B code detected on rx
1044#define PHY_INT_SSD 0x0800 // 1=No Start Of Stream detected on rx
1045#define PHY_INT_ESD 0x0400 // 1=No End Of Stream detected on rx
1046#define PHY_INT_RPOL 0x0200 // 1=Reverse Polarity detected
1047#define PHY_INT_JAB 0x0100 // 1=Jabber detected
1048#define PHY_INT_SPDDET 0x0080 // 1=100Base-TX mode, 0=10Base-T mode
1049#define PHY_INT_DPLXDET 0x0040 // 1=Device in Full Duplex
1050
1051// PHY Interrupt/Status Mask Register
1052#define PHY_MASK_REG 0x13 // Interrupt Mask
1053// Uses the same bit definitions as PHY_INT_REG
1054
1055
1056/*
1057 * SMC91C96 ethernet config and status registers.
1058 * These are in the "attribute" space.
1059 */
1060#define ECOR 0x8000
1061#define ECOR_RESET 0x80
1062#define ECOR_LEVEL_IRQ 0x40
1063#define ECOR_WR_ATTRIB 0x04
1064#define ECOR_ENABLE 0x01
1065
1066#define ECSR 0x8002
1067#define ECSR_IOIS8 0x20
1068#define ECSR_PWRDWN 0x04
1069#define ECSR_INT 0x02
1070
1071#define ATTRIB_SIZE ((64*1024) << SMC_IO_SHIFT)
1072
1073
1074/*
1075 * Macros to abstract register access according to the data bus
1076 * capabilities. Please use those and not the in/out primitives.
1077 * Note: the following macros do *not* select the bank -- this must
1078 * be done separately as needed in the main code. The SMC_REG() macro
1079 * only uses the bank argument for debugging purposes (when enabled).
09779c6d
NP
1080 *
1081 * Note: despite inline functions being safer, everything leading to this
1082 * should preferably be macros to let BUG() display the line number in
1083 * the core source code since we're interested in the top call site
1084 * not in any inline function location.
1da177e4
LT
1085 */
1086
1087#if SMC_DEBUG > 0
1088#define SMC_REG(reg, bank) \
1089 ({ \
1090 int __b = SMC_CURRENT_BANK(); \
1091 if (unlikely((__b & ~0xf0) != (0x3300 | bank))) { \
1092 printk( "%s: bank reg screwed (0x%04x)\n", \
1093 CARDNAME, __b ); \
1094 BUG(); \
1095 } \
1096 reg<<SMC_IO_SHIFT; \
1097 })
1098#else
1099#define SMC_REG(reg, bank) (reg<<SMC_IO_SHIFT)
1100#endif
1101
09779c6d
NP
1102/*
1103 * Hack Alert: Some setups just can't write 8 or 16 bits reliably when not
1104 * aligned to a 32 bit boundary. I tell you that does exist!
1105 * Fortunately the affected register accesses can be easily worked around
1106 * since we can write zeroes to the preceeding 16 bits without adverse
1107 * effects and use a 32-bit access.
1108 *
1109 * Enforce it on any 32-bit capable setup for now.
1110 */
1111#define SMC_MUST_ALIGN_WRITE SMC_CAN_USE_32BIT
1112
1113#define SMC_GET_PN() \
1114 ( SMC_CAN_USE_8BIT ? (SMC_inb(ioaddr, PN_REG)) \
1115 : (SMC_inw(ioaddr, PN_REG) & 0xFF) )
1116
1117#define SMC_SET_PN(x) \
1118 do { \
1119 if (SMC_MUST_ALIGN_WRITE) \
1120 SMC_outl((x)<<16, ioaddr, SMC_REG(0, 2)); \
1121 else if (SMC_CAN_USE_8BIT) \
1122 SMC_outb(x, ioaddr, PN_REG); \
1123 else \
1124 SMC_outw(x, ioaddr, PN_REG); \
1125 } while (0)
1126
1127#define SMC_GET_AR() \
1128 ( SMC_CAN_USE_8BIT ? (SMC_inb(ioaddr, AR_REG)) \
1129 : (SMC_inw(ioaddr, PN_REG) >> 8) )
1130
1131#define SMC_GET_TXFIFO() \
1132 ( SMC_CAN_USE_8BIT ? (SMC_inb(ioaddr, TXFIFO_REG)) \
1133 : (SMC_inw(ioaddr, TXFIFO_REG) & 0xFF) )
1134
1135#define SMC_GET_RXFIFO() \
1136 ( SMC_CAN_USE_8BIT ? (SMC_inb(ioaddr, RXFIFO_REG)) \
1137 : (SMC_inw(ioaddr, TXFIFO_REG) >> 8) )
1138
1139#define SMC_GET_INT() \
1140 ( SMC_CAN_USE_8BIT ? (SMC_inb(ioaddr, INT_REG)) \
1141 : (SMC_inw(ioaddr, INT_REG) & 0xFF) )
1142
1da177e4
LT
1143#define SMC_ACK_INT(x) \
1144 do { \
09779c6d
NP
1145 if (SMC_CAN_USE_8BIT) \
1146 SMC_outb(x, ioaddr, INT_REG); \
1147 else { \
1148 unsigned long __flags; \
1149 int __mask; \
1150 local_irq_save(__flags); \
1151 __mask = SMC_inw( ioaddr, INT_REG ) & ~0xff; \
1152 SMC_outw( __mask | (x), ioaddr, INT_REG ); \
1153 local_irq_restore(__flags); \
1154 } \
1155 } while (0)
1156
1157#define SMC_GET_INT_MASK() \
1158 ( SMC_CAN_USE_8BIT ? (SMC_inb(ioaddr, IM_REG)) \
1159 : (SMC_inw( ioaddr, INT_REG ) >> 8) )
1160
1161#define SMC_SET_INT_MASK(x) \
1162 do { \
1163 if (SMC_CAN_USE_8BIT) \
1164 SMC_outb(x, ioaddr, IM_REG); \
1165 else \
1166 SMC_outw((x) << 8, ioaddr, INT_REG); \
1167 } while (0)
1168
1169#define SMC_CURRENT_BANK() SMC_inw(ioaddr, BANK_SELECT)
1170
1171#define SMC_SELECT_BANK(x) \
1172 do { \
1173 if (SMC_MUST_ALIGN_WRITE) \
1174 SMC_outl((x)<<16, ioaddr, 12<<SMC_IO_SHIFT); \
1175 else \
1176 SMC_outw(x, ioaddr, BANK_SELECT); \
1177 } while (0)
1178
1179#define SMC_GET_BASE() SMC_inw(ioaddr, BASE_REG)
1180
1181#define SMC_SET_BASE(x) SMC_outw(x, ioaddr, BASE_REG)
1182
1183#define SMC_GET_CONFIG() SMC_inw(ioaddr, CONFIG_REG)
1184
1185#define SMC_SET_CONFIG(x) SMC_outw(x, ioaddr, CONFIG_REG)
1186
1187#define SMC_GET_COUNTER() SMC_inw(ioaddr, COUNTER_REG)
1188
1189#define SMC_GET_CTL() SMC_inw(ioaddr, CTL_REG)
1190
1191#define SMC_SET_CTL(x) SMC_outw(x, ioaddr, CTL_REG)
1192
1193#define SMC_GET_MII() SMC_inw(ioaddr, MII_REG)
1194
1195#define SMC_SET_MII(x) SMC_outw(x, ioaddr, MII_REG)
1196
1197#define SMC_GET_MIR() SMC_inw(ioaddr, MIR_REG)
1198
1199#define SMC_SET_MIR(x) SMC_outw(x, ioaddr, MIR_REG)
1200
1201#define SMC_GET_MMU_CMD() SMC_inw(ioaddr, MMU_CMD_REG)
1202
1203#define SMC_SET_MMU_CMD(x) SMC_outw(x, ioaddr, MMU_CMD_REG)
1204
1205#define SMC_GET_FIFO() SMC_inw(ioaddr, FIFO_REG)
1206
1207#define SMC_GET_PTR() SMC_inw(ioaddr, PTR_REG)
1208
1209#define SMC_SET_PTR(x) \
1210 do { \
1211 if (SMC_MUST_ALIGN_WRITE) \
1212 SMC_outl((x)<<16, ioaddr, SMC_REG(4, 2)); \
1213 else \
1214 SMC_outw(x, ioaddr, PTR_REG); \
1da177e4 1215 } while (0)
1da177e4 1216
09779c6d
NP
1217#define SMC_GET_EPH_STATUS() SMC_inw(ioaddr, EPH_STATUS_REG)
1218
1219#define SMC_GET_RCR() SMC_inw(ioaddr, RCR_REG)
1220
1221#define SMC_SET_RCR(x) SMC_outw(x, ioaddr, RCR_REG)
1222
1223#define SMC_GET_REV() SMC_inw(ioaddr, REV_REG)
1224
1225#define SMC_GET_RPC() SMC_inw(ioaddr, RPC_REG)
1226
1227#define SMC_SET_RPC(x) \
1228 do { \
1229 if (SMC_MUST_ALIGN_WRITE) \
1230 SMC_outl((x)<<16, ioaddr, SMC_REG(8, 0)); \
1231 else \
1232 SMC_outw(x, ioaddr, RPC_REG); \
1233 } while (0)
1234
1235#define SMC_GET_TCR() SMC_inw(ioaddr, TCR_REG)
1236
1237#define SMC_SET_TCR(x) SMC_outw(x, ioaddr, TCR_REG)
1da177e4
LT
1238
1239#ifndef SMC_GET_MAC_ADDR
1240#define SMC_GET_MAC_ADDR(addr) \
1241 do { \
1242 unsigned int __v; \
1243 __v = SMC_inw( ioaddr, ADDR0_REG ); \
1244 addr[0] = __v; addr[1] = __v >> 8; \
1245 __v = SMC_inw( ioaddr, ADDR1_REG ); \
1246 addr[2] = __v; addr[3] = __v >> 8; \
1247 __v = SMC_inw( ioaddr, ADDR2_REG ); \
1248 addr[4] = __v; addr[5] = __v >> 8; \
1249 } while (0)
1250#endif
1251
1252#define SMC_SET_MAC_ADDR(addr) \
1253 do { \
1254 SMC_outw( addr[0]|(addr[1] << 8), ioaddr, ADDR0_REG ); \
1255 SMC_outw( addr[2]|(addr[3] << 8), ioaddr, ADDR1_REG ); \
1256 SMC_outw( addr[4]|(addr[5] << 8), ioaddr, ADDR2_REG ); \
1257 } while (0)
1258
1259#define SMC_SET_MCAST(x) \
1260 do { \
1261 const unsigned char *mt = (x); \
1262 SMC_outw( mt[0] | (mt[1] << 8), ioaddr, MCAST_REG1 ); \
1263 SMC_outw( mt[2] | (mt[3] << 8), ioaddr, MCAST_REG2 ); \
1264 SMC_outw( mt[4] | (mt[5] << 8), ioaddr, MCAST_REG3 ); \
1265 SMC_outw( mt[6] | (mt[7] << 8), ioaddr, MCAST_REG4 ); \
1266 } while (0)
1267
1da177e4
LT
1268#define SMC_PUT_PKT_HDR(status, length) \
1269 do { \
09779c6d
NP
1270 if (SMC_CAN_USE_32BIT) \
1271 SMC_outl((status) | (length)<<16, ioaddr, DATA_REG); \
1272 else { \
1273 SMC_outw(status, ioaddr, DATA_REG); \
1274 SMC_outw(length, ioaddr, DATA_REG); \
1275 } \
1da177e4 1276 } while (0)
1da177e4 1277
09779c6d 1278#define SMC_GET_PKT_HDR(status, length) \
1da177e4 1279 do { \
09779c6d
NP
1280 if (SMC_CAN_USE_32BIT) { \
1281 unsigned int __val = SMC_inl(ioaddr, DATA_REG); \
1282 (status) = __val & 0xffff; \
1283 (length) = __val >> 16; \
1284 } else { \
1285 (status) = SMC_inw(ioaddr, DATA_REG); \
1286 (length) = SMC_inw(ioaddr, DATA_REG); \
1da177e4
LT
1287 } \
1288 } while (0)
1da177e4 1289
09779c6d 1290#define SMC_PUSH_DATA(p, l) \
1da177e4 1291 do { \
09779c6d
NP
1292 if (SMC_CAN_USE_32BIT) { \
1293 void *__ptr = (p); \
1294 int __len = (l); \
fbd81976 1295 void __iomem *__ioaddr = ioaddr; \
09779c6d
NP
1296 if (__len >= 2 && (unsigned long)__ptr & 2) { \
1297 __len -= 2; \
1298 SMC_outw(*(u16 *)__ptr, ioaddr, DATA_REG); \
1299 __ptr += 2; \
1300 } \
1301 if (SMC_CAN_USE_DATACS && lp->datacs) \
1302 __ioaddr = lp->datacs; \
1303 SMC_outsl(__ioaddr, DATA_REG, __ptr, __len>>2); \
1304 if (__len & 2) { \
1305 __ptr += (__len & ~3); \
1306 SMC_outw(*((u16 *)__ptr), ioaddr, DATA_REG); \
1307 } \
1308 } else if (SMC_CAN_USE_16BIT) \
1309 SMC_outsw(ioaddr, DATA_REG, p, (l) >> 1); \
1310 else if (SMC_CAN_USE_8BIT) \
1311 SMC_outsb(ioaddr, DATA_REG, p, l); \
1da177e4 1312 } while (0)
1da177e4
LT
1313
1314#define SMC_PULL_DATA(p, l) \
09779c6d
NP
1315 do { \
1316 if (SMC_CAN_USE_32BIT) { \
1317 void *__ptr = (p); \
1318 int __len = (l); \
fbd81976 1319 void __iomem *__ioaddr = ioaddr; \
09779c6d
NP
1320 if ((unsigned long)__ptr & 2) { \
1321 /* \
1322 * We want 32bit alignment here. \
1323 * Since some buses perform a full \
1324 * 32bit fetch even for 16bit data \
1325 * we can't use SMC_inw() here. \
1326 * Back both source (on-chip) and \
1327 * destination pointers of 2 bytes. \
1328 * This is possible since the call to \
1329 * SMC_GET_PKT_HDR() already advanced \
1330 * the source pointer of 4 bytes, and \
1331 * the skb_reserve(skb, 2) advanced \
1332 * the destination pointer of 2 bytes. \
1333 */ \
1334 __ptr -= 2; \
1335 __len += 2; \
1336 SMC_SET_PTR(2|PTR_READ|PTR_RCV|PTR_AUTOINC); \
1337 } \
1338 if (SMC_CAN_USE_DATACS && lp->datacs) \
1339 __ioaddr = lp->datacs; \
1da177e4 1340 __len += 2; \
09779c6d
NP
1341 SMC_insl(__ioaddr, DATA_REG, __ptr, __len>>2); \
1342 } else if (SMC_CAN_USE_16BIT) \
1343 SMC_insw(ioaddr, DATA_REG, p, (l) >> 1); \
1344 else if (SMC_CAN_USE_8BIT) \
1345 SMC_insb(ioaddr, DATA_REG, p, l); \
1346 } while (0)
1da177e4
LT
1347
1348#endif /* _SMC91X_H_ */