iwlwifi: don't include iwl-dev.h from iwl-devtrace.h
[linux-2.6-block.git] / drivers / net / sfc / efx.c
CommitLineData
8ceee660
BH
1/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
906bb26c 4 * Copyright 2005-2009 Solarflare Communications Inc.
8ceee660
BH
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/module.h>
12#include <linux/pci.h>
13#include <linux/netdevice.h>
14#include <linux/etherdevice.h>
15#include <linux/delay.h>
16#include <linux/notifier.h>
17#include <linux/ip.h>
18#include <linux/tcp.h>
19#include <linux/in.h>
20#include <linux/crc32.h>
21#include <linux/ethtool.h>
aa6ef27e 22#include <linux/topology.h>
8ceee660 23#include "net_driver.h"
8ceee660
BH
24#include "efx.h"
25#include "mdio_10g.h"
744093c9 26#include "nic.h"
8ceee660 27
8880f4ec
BH
28#include "mcdi.h"
29
c459302d
BH
30/**************************************************************************
31 *
32 * Type name strings
33 *
34 **************************************************************************
35 */
36
37/* Loopback mode names (see LOOPBACK_MODE()) */
38const unsigned int efx_loopback_mode_max = LOOPBACK_MAX;
39const char *efx_loopback_mode_names[] = {
40 [LOOPBACK_NONE] = "NONE",
e58f69f4 41 [LOOPBACK_DATA] = "DATAPATH",
c459302d
BH
42 [LOOPBACK_GMAC] = "GMAC",
43 [LOOPBACK_XGMII] = "XGMII",
44 [LOOPBACK_XGXS] = "XGXS",
45 [LOOPBACK_XAUI] = "XAUI",
e58f69f4
BH
46 [LOOPBACK_GMII] = "GMII",
47 [LOOPBACK_SGMII] = "SGMII",
48 [LOOPBACK_XGBR] = "XGBR",
49 [LOOPBACK_XFI] = "XFI",
50 [LOOPBACK_XAUI_FAR] = "XAUI_FAR",
51 [LOOPBACK_GMII_FAR] = "GMII_FAR",
52 [LOOPBACK_SGMII_FAR] = "SGMII_FAR",
53 [LOOPBACK_XFI_FAR] = "XFI_FAR",
c459302d
BH
54 [LOOPBACK_GPHY] = "GPHY",
55 [LOOPBACK_PHYXS] = "PHYXS",
56 [LOOPBACK_PCS] = "PCS",
57 [LOOPBACK_PMAPMD] = "PMA/PMD",
e58f69f4
BH
58 [LOOPBACK_XPORT] = "XPORT",
59 [LOOPBACK_XGMII_WS] = "XGMII_WS",
60 [LOOPBACK_XAUI_WS] = "XAUI_WS",
61 [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR",
62 [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR",
63 [LOOPBACK_GMII_WS] = "GMII_WS",
64 [LOOPBACK_XFI_WS] = "XFI_WS",
65 [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR",
66 [LOOPBACK_PHYXS_WS] = "PHYXS_WS",
c459302d
BH
67};
68
69/* Interrupt mode names (see INT_MODE())) */
70const unsigned int efx_interrupt_mode_max = EFX_INT_MODE_MAX;
71const char *efx_interrupt_mode_names[] = {
72 [EFX_INT_MODE_MSIX] = "MSI-X",
73 [EFX_INT_MODE_MSI] = "MSI",
74 [EFX_INT_MODE_LEGACY] = "legacy",
75};
76
77const unsigned int efx_reset_type_max = RESET_TYPE_MAX;
78const char *efx_reset_type_names[] = {
79 [RESET_TYPE_INVISIBLE] = "INVISIBLE",
80 [RESET_TYPE_ALL] = "ALL",
81 [RESET_TYPE_WORLD] = "WORLD",
82 [RESET_TYPE_DISABLE] = "DISABLE",
83 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG",
84 [RESET_TYPE_INT_ERROR] = "INT_ERROR",
85 [RESET_TYPE_RX_RECOVERY] = "RX_RECOVERY",
86 [RESET_TYPE_RX_DESC_FETCH] = "RX_DESC_FETCH",
87 [RESET_TYPE_TX_DESC_FETCH] = "TX_DESC_FETCH",
88 [RESET_TYPE_TX_SKIP] = "TX_SKIP",
8880f4ec 89 [RESET_TYPE_MC_FAILURE] = "MC_FAILURE",
c459302d
BH
90};
91
8ceee660
BH
92#define EFX_MAX_MTU (9 * 1024)
93
94/* RX slow fill workqueue. If memory allocation fails in the fast path,
95 * a work item is pushed onto this work queue to retry the allocation later,
96 * to avoid the NIC being starved of RX buffers. Since this is a per cpu
97 * workqueue, there is nothing to be gained in making it per NIC
98 */
99static struct workqueue_struct *refill_workqueue;
100
1ab00629
SH
101/* Reset workqueue. If any NIC has a hardware failure then a reset will be
102 * queued onto this work queue. This is not a per-nic work queue, because
103 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
104 */
105static struct workqueue_struct *reset_workqueue;
106
8ceee660
BH
107/**************************************************************************
108 *
109 * Configurable values
110 *
111 *************************************************************************/
112
8ceee660
BH
113/*
114 * Use separate channels for TX and RX events
115 *
28b581ab
NT
116 * Set this to 1 to use separate channels for TX and RX. It allows us
117 * to control interrupt affinity separately for TX and RX.
8ceee660 118 *
28b581ab 119 * This is only used in MSI-X interrupt mode
8ceee660 120 */
28b581ab
NT
121static unsigned int separate_tx_channels;
122module_param(separate_tx_channels, uint, 0644);
123MODULE_PARM_DESC(separate_tx_channels,
124 "Use separate channels for TX and RX");
8ceee660
BH
125
126/* This is the weight assigned to each of the (per-channel) virtual
127 * NAPI devices.
128 */
129static int napi_weight = 64;
130
131/* This is the time (in jiffies) between invocations of the hardware
132 * monitor, which checks for known hardware bugs and resets the
133 * hardware and driver as necessary.
134 */
135unsigned int efx_monitor_interval = 1 * HZ;
136
8ceee660
BH
137/* This controls whether or not the driver will initialise devices
138 * with invalid MAC addresses stored in the EEPROM or flash. If true,
139 * such devices will be initialised with a random locally-generated
140 * MAC address. This allows for loading the sfc_mtd driver to
141 * reprogram the flash, even if the flash contents (including the MAC
142 * address) have previously been erased.
143 */
144static unsigned int allow_bad_hwaddr;
145
146/* Initial interrupt moderation settings. They can be modified after
147 * module load with ethtool.
148 *
149 * The default for RX should strike a balance between increasing the
150 * round-trip latency and reducing overhead.
151 */
152static unsigned int rx_irq_mod_usec = 60;
153
154/* Initial interrupt moderation settings. They can be modified after
155 * module load with ethtool.
156 *
157 * This default is chosen to ensure that a 10G link does not go idle
158 * while a TX queue is stopped after it has become full. A queue is
159 * restarted when it drops below half full. The time this takes (assuming
160 * worst case 3 descriptors per packet and 1024 descriptors) is
161 * 512 / 3 * 1.2 = 205 usec.
162 */
163static unsigned int tx_irq_mod_usec = 150;
164
165/* This is the first interrupt mode to try out of:
166 * 0 => MSI-X
167 * 1 => MSI
168 * 2 => legacy
169 */
170static unsigned int interrupt_mode;
171
172/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
173 * i.e. the number of CPUs among which we may distribute simultaneous
174 * interrupt handling.
175 *
176 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
177 * The default (0) means to assign an interrupt to each package (level II cache)
178 */
179static unsigned int rss_cpus;
180module_param(rss_cpus, uint, 0444);
181MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
182
84ae48fe
BH
183static int phy_flash_cfg;
184module_param(phy_flash_cfg, int, 0644);
185MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
186
6fb70fd1
BH
187static unsigned irq_adapt_low_thresh = 10000;
188module_param(irq_adapt_low_thresh, uint, 0644);
189MODULE_PARM_DESC(irq_adapt_low_thresh,
190 "Threshold score for reducing IRQ moderation");
191
192static unsigned irq_adapt_high_thresh = 20000;
193module_param(irq_adapt_high_thresh, uint, 0644);
194MODULE_PARM_DESC(irq_adapt_high_thresh,
195 "Threshold score for increasing IRQ moderation");
196
8ceee660
BH
197/**************************************************************************
198 *
199 * Utility functions and prototypes
200 *
201 *************************************************************************/
202static void efx_remove_channel(struct efx_channel *channel);
203static void efx_remove_port(struct efx_nic *efx);
204static void efx_fini_napi(struct efx_nic *efx);
205static void efx_fini_channels(struct efx_nic *efx);
206
207#define EFX_ASSERT_RESET_SERIALISED(efx) \
208 do { \
332c1ce9
BH
209 if ((efx->state == STATE_RUNNING) || \
210 (efx->state == STATE_DISABLED)) \
8ceee660
BH
211 ASSERT_RTNL(); \
212 } while (0)
213
214/**************************************************************************
215 *
216 * Event queue processing
217 *
218 *************************************************************************/
219
220/* Process channel's event queue
221 *
222 * This function is responsible for processing the event queue of a
223 * single channel. The caller must guarantee that this function will
224 * never be concurrently called more than once on the same channel,
225 * though different channels may be being processed concurrently.
226 */
4d566063 227static int efx_process_channel(struct efx_channel *channel, int rx_quota)
8ceee660 228{
42cbe2d7
BH
229 struct efx_nic *efx = channel->efx;
230 int rx_packets;
8ceee660 231
42cbe2d7 232 if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
8ceee660 233 !channel->enabled))
42cbe2d7 234 return 0;
8ceee660 235
152b6a62 236 rx_packets = efx_nic_process_eventq(channel, rx_quota);
42cbe2d7
BH
237 if (rx_packets == 0)
238 return 0;
8ceee660
BH
239
240 /* Deliver last RX packet. */
241 if (channel->rx_pkt) {
242 __efx_rx_packet(channel, channel->rx_pkt,
243 channel->rx_pkt_csummed);
244 channel->rx_pkt = NULL;
245 }
246
8ceee660
BH
247 efx_rx_strategy(channel);
248
42cbe2d7 249 efx_fast_push_rx_descriptors(&efx->rx_queue[channel->channel]);
8ceee660 250
42cbe2d7 251 return rx_packets;
8ceee660
BH
252}
253
254/* Mark channel as finished processing
255 *
256 * Note that since we will not receive further interrupts for this
257 * channel before we finish processing and call the eventq_read_ack()
258 * method, there is no need to use the interrupt hold-off timers.
259 */
260static inline void efx_channel_processed(struct efx_channel *channel)
261{
5b9e207c
BH
262 /* The interrupt handler for this channel may set work_pending
263 * as soon as we acknowledge the events we've seen. Make sure
264 * it's cleared before then. */
dc8cfa55 265 channel->work_pending = false;
5b9e207c
BH
266 smp_wmb();
267
152b6a62 268 efx_nic_eventq_read_ack(channel);
8ceee660
BH
269}
270
271/* NAPI poll handler
272 *
273 * NAPI guarantees serialisation of polls of the same device, which
274 * provides the guarantee required by efx_process_channel().
275 */
276static int efx_poll(struct napi_struct *napi, int budget)
277{
278 struct efx_channel *channel =
279 container_of(napi, struct efx_channel, napi_str);
8ceee660
BH
280 int rx_packets;
281
282 EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n",
283 channel->channel, raw_smp_processor_id());
284
42cbe2d7 285 rx_packets = efx_process_channel(channel, budget);
8ceee660
BH
286
287 if (rx_packets < budget) {
6fb70fd1
BH
288 struct efx_nic *efx = channel->efx;
289
290 if (channel->used_flags & EFX_USED_BY_RX &&
291 efx->irq_rx_adaptive &&
292 unlikely(++channel->irq_count == 1000)) {
6fb70fd1
BH
293 if (unlikely(channel->irq_mod_score <
294 irq_adapt_low_thresh)) {
0d86ebd8
BH
295 if (channel->irq_moderation > 1) {
296 channel->irq_moderation -= 1;
ef2b90ee 297 efx->type->push_irq_moderation(channel);
0d86ebd8 298 }
6fb70fd1
BH
299 } else if (unlikely(channel->irq_mod_score >
300 irq_adapt_high_thresh)) {
0d86ebd8
BH
301 if (channel->irq_moderation <
302 efx->irq_rx_moderation) {
303 channel->irq_moderation += 1;
ef2b90ee 304 efx->type->push_irq_moderation(channel);
0d86ebd8 305 }
6fb70fd1 306 }
6fb70fd1
BH
307 channel->irq_count = 0;
308 channel->irq_mod_score = 0;
309 }
310
8ceee660 311 /* There is no race here; although napi_disable() will
288379f0 312 * only wait for napi_complete(), this isn't a problem
8ceee660
BH
313 * since efx_channel_processed() will have no effect if
314 * interrupts have already been disabled.
315 */
288379f0 316 napi_complete(napi);
8ceee660
BH
317 efx_channel_processed(channel);
318 }
319
320 return rx_packets;
321}
322
323/* Process the eventq of the specified channel immediately on this CPU
324 *
325 * Disable hardware generated interrupts, wait for any existing
326 * processing to finish, then directly poll (and ack ) the eventq.
327 * Finally reenable NAPI and interrupts.
328 *
329 * Since we are touching interrupts the caller should hold the suspend lock
330 */
331void efx_process_channel_now(struct efx_channel *channel)
332{
333 struct efx_nic *efx = channel->efx;
334
335 BUG_ON(!channel->used_flags);
336 BUG_ON(!channel->enabled);
337
338 /* Disable interrupts and wait for ISRs to complete */
152b6a62 339 efx_nic_disable_interrupts(efx);
8ceee660
BH
340 if (efx->legacy_irq)
341 synchronize_irq(efx->legacy_irq);
64ee3120 342 if (channel->irq)
8ceee660
BH
343 synchronize_irq(channel->irq);
344
345 /* Wait for any NAPI processing to complete */
346 napi_disable(&channel->napi_str);
347
348 /* Poll the channel */
3ffeabdd 349 efx_process_channel(channel, EFX_EVQ_SIZE);
8ceee660
BH
350
351 /* Ack the eventq. This may cause an interrupt to be generated
352 * when they are reenabled */
353 efx_channel_processed(channel);
354
355 napi_enable(&channel->napi_str);
152b6a62 356 efx_nic_enable_interrupts(efx);
8ceee660
BH
357}
358
359/* Create event queue
360 * Event queue memory allocations are done only once. If the channel
361 * is reset, the memory buffer will be reused; this guards against
362 * errors during channel reset and also simplifies interrupt handling.
363 */
364static int efx_probe_eventq(struct efx_channel *channel)
365{
366 EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel);
367
152b6a62 368 return efx_nic_probe_eventq(channel);
8ceee660
BH
369}
370
371/* Prepare channel's event queue */
bc3c90a2 372static void efx_init_eventq(struct efx_channel *channel)
8ceee660
BH
373{
374 EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel);
375
376 channel->eventq_read_ptr = 0;
377
152b6a62 378 efx_nic_init_eventq(channel);
8ceee660
BH
379}
380
381static void efx_fini_eventq(struct efx_channel *channel)
382{
383 EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel);
384
152b6a62 385 efx_nic_fini_eventq(channel);
8ceee660
BH
386}
387
388static void efx_remove_eventq(struct efx_channel *channel)
389{
390 EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel);
391
152b6a62 392 efx_nic_remove_eventq(channel);
8ceee660
BH
393}
394
395/**************************************************************************
396 *
397 * Channel handling
398 *
399 *************************************************************************/
400
8ceee660
BH
401static int efx_probe_channel(struct efx_channel *channel)
402{
403 struct efx_tx_queue *tx_queue;
404 struct efx_rx_queue *rx_queue;
405 int rc;
406
407 EFX_LOG(channel->efx, "creating channel %d\n", channel->channel);
408
409 rc = efx_probe_eventq(channel);
410 if (rc)
411 goto fail1;
412
413 efx_for_each_channel_tx_queue(tx_queue, channel) {
414 rc = efx_probe_tx_queue(tx_queue);
415 if (rc)
416 goto fail2;
417 }
418
419 efx_for_each_channel_rx_queue(rx_queue, channel) {
420 rc = efx_probe_rx_queue(rx_queue);
421 if (rc)
422 goto fail3;
423 }
424
425 channel->n_rx_frm_trunc = 0;
426
427 return 0;
428
429 fail3:
430 efx_for_each_channel_rx_queue(rx_queue, channel)
431 efx_remove_rx_queue(rx_queue);
432 fail2:
433 efx_for_each_channel_tx_queue(tx_queue, channel)
434 efx_remove_tx_queue(tx_queue);
435 fail1:
436 return rc;
437}
438
439
56536e9c
BH
440static void efx_set_channel_names(struct efx_nic *efx)
441{
442 struct efx_channel *channel;
443 const char *type = "";
444 int number;
445
446 efx_for_each_channel(channel, efx) {
447 number = channel->channel;
448 if (efx->n_channels > efx->n_rx_queues) {
449 if (channel->channel < efx->n_rx_queues) {
450 type = "-rx";
451 } else {
452 type = "-tx";
453 number -= efx->n_rx_queues;
454 }
455 }
456 snprintf(channel->name, sizeof(channel->name),
457 "%s%s-%d", efx->name, type, number);
458 }
459}
460
8ceee660
BH
461/* Channels are shutdown and reinitialised whilst the NIC is running
462 * to propagate configuration changes (mtu, checksum offload), or
463 * to clear hardware error conditions
464 */
bc3c90a2 465static void efx_init_channels(struct efx_nic *efx)
8ceee660
BH
466{
467 struct efx_tx_queue *tx_queue;
468 struct efx_rx_queue *rx_queue;
469 struct efx_channel *channel;
8ceee660 470
f7f13b0b
BH
471 /* Calculate the rx buffer allocation parameters required to
472 * support the current MTU, including padding for header
473 * alignment and overruns.
474 */
475 efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
476 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
477 efx->type->rx_buffer_padding);
478 efx->rx_buffer_order = get_order(efx->rx_buffer_len);
8ceee660
BH
479
480 /* Initialise the channels */
481 efx_for_each_channel(channel, efx) {
482 EFX_LOG(channel->efx, "init chan %d\n", channel->channel);
483
bc3c90a2 484 efx_init_eventq(channel);
8ceee660 485
bc3c90a2
BH
486 efx_for_each_channel_tx_queue(tx_queue, channel)
487 efx_init_tx_queue(tx_queue);
8ceee660
BH
488
489 /* The rx buffer allocation strategy is MTU dependent */
490 efx_rx_strategy(channel);
491
bc3c90a2
BH
492 efx_for_each_channel_rx_queue(rx_queue, channel)
493 efx_init_rx_queue(rx_queue);
8ceee660
BH
494
495 WARN_ON(channel->rx_pkt != NULL);
496 efx_rx_strategy(channel);
497 }
8ceee660
BH
498}
499
500/* This enables event queue processing and packet transmission.
501 *
502 * Note that this function is not allowed to fail, since that would
503 * introduce too much complexity into the suspend/resume path.
504 */
505static void efx_start_channel(struct efx_channel *channel)
506{
507 struct efx_rx_queue *rx_queue;
508
509 EFX_LOG(channel->efx, "starting chan %d\n", channel->channel);
510
5b9e207c
BH
511 /* The interrupt handler for this channel may set work_pending
512 * as soon as we enable it. Make sure it's cleared before
513 * then. Similarly, make sure it sees the enabled flag set. */
dc8cfa55
BH
514 channel->work_pending = false;
515 channel->enabled = true;
5b9e207c 516 smp_wmb();
8ceee660
BH
517
518 napi_enable(&channel->napi_str);
519
520 /* Load up RX descriptors */
521 efx_for_each_channel_rx_queue(rx_queue, channel)
522 efx_fast_push_rx_descriptors(rx_queue);
523}
524
525/* This disables event queue processing and packet transmission.
526 * This function does not guarantee that all queue processing
527 * (e.g. RX refill) is complete.
528 */
529static void efx_stop_channel(struct efx_channel *channel)
530{
531 struct efx_rx_queue *rx_queue;
532
533 if (!channel->enabled)
534 return;
535
536 EFX_LOG(channel->efx, "stop chan %d\n", channel->channel);
537
dc8cfa55 538 channel->enabled = false;
8ceee660
BH
539 napi_disable(&channel->napi_str);
540
541 /* Ensure that any worker threads have exited or will be no-ops */
542 efx_for_each_channel_rx_queue(rx_queue, channel) {
543 spin_lock_bh(&rx_queue->add_lock);
544 spin_unlock_bh(&rx_queue->add_lock);
545 }
546}
547
548static void efx_fini_channels(struct efx_nic *efx)
549{
550 struct efx_channel *channel;
551 struct efx_tx_queue *tx_queue;
552 struct efx_rx_queue *rx_queue;
6bc5d3a9 553 int rc;
8ceee660
BH
554
555 EFX_ASSERT_RESET_SERIALISED(efx);
556 BUG_ON(efx->port_enabled);
557
152b6a62 558 rc = efx_nic_flush_queues(efx);
6bc5d3a9
BH
559 if (rc)
560 EFX_ERR(efx, "failed to flush queues\n");
561 else
562 EFX_LOG(efx, "successfully flushed all queues\n");
563
8ceee660
BH
564 efx_for_each_channel(channel, efx) {
565 EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel);
566
567 efx_for_each_channel_rx_queue(rx_queue, channel)
568 efx_fini_rx_queue(rx_queue);
569 efx_for_each_channel_tx_queue(tx_queue, channel)
570 efx_fini_tx_queue(tx_queue);
8ceee660
BH
571 efx_fini_eventq(channel);
572 }
573}
574
575static void efx_remove_channel(struct efx_channel *channel)
576{
577 struct efx_tx_queue *tx_queue;
578 struct efx_rx_queue *rx_queue;
579
580 EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel);
581
582 efx_for_each_channel_rx_queue(rx_queue, channel)
583 efx_remove_rx_queue(rx_queue);
584 efx_for_each_channel_tx_queue(tx_queue, channel)
585 efx_remove_tx_queue(tx_queue);
586 efx_remove_eventq(channel);
587
588 channel->used_flags = 0;
589}
590
591void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay)
592{
593 queue_delayed_work(refill_workqueue, &rx_queue->work, delay);
594}
595
596/**************************************************************************
597 *
598 * Port handling
599 *
600 **************************************************************************/
601
602/* This ensures that the kernel is kept informed (via
603 * netif_carrier_on/off) of the link status, and also maintains the
604 * link status's stop on the port's TX queue.
605 */
fdaa9aed 606void efx_link_status_changed(struct efx_nic *efx)
8ceee660 607{
eb50c0d6
BH
608 struct efx_link_state *link_state = &efx->link_state;
609
8ceee660
BH
610 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
611 * that no events are triggered between unregister_netdev() and the
612 * driver unloading. A more general condition is that NETDEV_CHANGE
613 * can only be generated between NETDEV_UP and NETDEV_DOWN */
614 if (!netif_running(efx->net_dev))
615 return;
616
8c8661e4
BH
617 if (efx->port_inhibited) {
618 netif_carrier_off(efx->net_dev);
619 return;
620 }
621
eb50c0d6 622 if (link_state->up != netif_carrier_ok(efx->net_dev)) {
8ceee660
BH
623 efx->n_link_state_changes++;
624
eb50c0d6 625 if (link_state->up)
8ceee660
BH
626 netif_carrier_on(efx->net_dev);
627 else
628 netif_carrier_off(efx->net_dev);
629 }
630
631 /* Status message for kernel log */
eb50c0d6 632 if (link_state->up) {
f31a45d2 633 EFX_INFO(efx, "link up at %uMbps %s-duplex (MTU %d)%s\n",
eb50c0d6 634 link_state->speed, link_state->fd ? "full" : "half",
8ceee660
BH
635 efx->net_dev->mtu,
636 (efx->promiscuous ? " [PROMISC]" : ""));
637 } else {
638 EFX_INFO(efx, "link down\n");
639 }
640
641}
642
d3245b28
BH
643void efx_link_set_advertising(struct efx_nic *efx, u32 advertising)
644{
645 efx->link_advertising = advertising;
646 if (advertising) {
647 if (advertising & ADVERTISED_Pause)
648 efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX);
649 else
650 efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX);
651 if (advertising & ADVERTISED_Asym_Pause)
652 efx->wanted_fc ^= EFX_FC_TX;
653 }
654}
655
656void efx_link_set_wanted_fc(struct efx_nic *efx, enum efx_fc_type wanted_fc)
657{
658 efx->wanted_fc = wanted_fc;
659 if (efx->link_advertising) {
660 if (wanted_fc & EFX_FC_RX)
661 efx->link_advertising |= (ADVERTISED_Pause |
662 ADVERTISED_Asym_Pause);
663 else
664 efx->link_advertising &= ~(ADVERTISED_Pause |
665 ADVERTISED_Asym_Pause);
666 if (wanted_fc & EFX_FC_TX)
667 efx->link_advertising ^= ADVERTISED_Asym_Pause;
668 }
669}
670
115122af
BH
671static void efx_fini_port(struct efx_nic *efx);
672
d3245b28
BH
673/* Push loopback/power/transmit disable settings to the PHY, and reconfigure
674 * the MAC appropriately. All other PHY configuration changes are pushed
675 * through phy_op->set_settings(), and pushed asynchronously to the MAC
676 * through efx_monitor().
677 *
678 * Callers must hold the mac_lock
679 */
680int __efx_reconfigure_port(struct efx_nic *efx)
8ceee660 681{
d3245b28
BH
682 enum efx_phy_mode phy_mode;
683 int rc;
8ceee660 684
d3245b28 685 WARN_ON(!mutex_is_locked(&efx->mac_lock));
8ceee660 686
a816f75a
BH
687 /* Serialise the promiscuous flag with efx_set_multicast_list. */
688 if (efx_dev_registered(efx)) {
689 netif_addr_lock_bh(efx->net_dev);
690 netif_addr_unlock_bh(efx->net_dev);
691 }
692
d3245b28
BH
693 /* Disable PHY transmit in mac level loopbacks */
694 phy_mode = efx->phy_mode;
177dfcd8
BH
695 if (LOOPBACK_INTERNAL(efx))
696 efx->phy_mode |= PHY_MODE_TX_DISABLED;
697 else
698 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
177dfcd8 699
d3245b28 700 rc = efx->type->reconfigure_port(efx);
8ceee660 701
d3245b28
BH
702 if (rc)
703 efx->phy_mode = phy_mode;
177dfcd8 704
d3245b28 705 return rc;
8ceee660
BH
706}
707
708/* Reinitialise the MAC to pick up new PHY settings, even if the port is
709 * disabled. */
d3245b28 710int efx_reconfigure_port(struct efx_nic *efx)
8ceee660 711{
d3245b28
BH
712 int rc;
713
8ceee660
BH
714 EFX_ASSERT_RESET_SERIALISED(efx);
715
716 mutex_lock(&efx->mac_lock);
d3245b28 717 rc = __efx_reconfigure_port(efx);
8ceee660 718 mutex_unlock(&efx->mac_lock);
d3245b28
BH
719
720 return rc;
8ceee660
BH
721}
722
8be4f3e6
BH
723/* Asynchronous work item for changing MAC promiscuity and multicast
724 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current
725 * MAC directly. */
766ca0fa
BH
726static void efx_mac_work(struct work_struct *data)
727{
728 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
729
730 mutex_lock(&efx->mac_lock);
8be4f3e6 731 if (efx->port_enabled) {
ef2b90ee 732 efx->type->push_multicast_hash(efx);
8be4f3e6
BH
733 efx->mac_op->reconfigure(efx);
734 }
766ca0fa
BH
735 mutex_unlock(&efx->mac_lock);
736}
737
8ceee660
BH
738static int efx_probe_port(struct efx_nic *efx)
739{
740 int rc;
741
742 EFX_LOG(efx, "create port\n");
743
ff3b00a0
SH
744 if (phy_flash_cfg)
745 efx->phy_mode = PHY_MODE_SPECIAL;
746
ef2b90ee
BH
747 /* Connect up MAC/PHY operations table */
748 rc = efx->type->probe_port(efx);
8ceee660
BH
749 if (rc)
750 goto err;
751
752 /* Sanity check MAC address */
753 if (is_valid_ether_addr(efx->mac_address)) {
754 memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
755 } else {
e174961c
JB
756 EFX_ERR(efx, "invalid MAC address %pM\n",
757 efx->mac_address);
8ceee660
BH
758 if (!allow_bad_hwaddr) {
759 rc = -EINVAL;
760 goto err;
761 }
762 random_ether_addr(efx->net_dev->dev_addr);
e174961c
JB
763 EFX_INFO(efx, "using locally-generated MAC %pM\n",
764 efx->net_dev->dev_addr);
8ceee660
BH
765 }
766
767 return 0;
768
769 err:
770 efx_remove_port(efx);
771 return rc;
772}
773
774static int efx_init_port(struct efx_nic *efx)
775{
776 int rc;
777
778 EFX_LOG(efx, "init port\n");
779
1dfc5cea
BH
780 mutex_lock(&efx->mac_lock);
781
177dfcd8 782 rc = efx->phy_op->init(efx);
8ceee660 783 if (rc)
1dfc5cea 784 goto fail1;
8ceee660 785
dc8cfa55 786 efx->port_initialized = true;
1dfc5cea 787
d3245b28
BH
788 /* Reconfigure the MAC before creating dma queues (required for
789 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */
790 efx->mac_op->reconfigure(efx);
791
792 /* Ensure the PHY advertises the correct flow control settings */
793 rc = efx->phy_op->reconfigure(efx);
794 if (rc)
795 goto fail2;
796
1dfc5cea 797 mutex_unlock(&efx->mac_lock);
8ceee660 798 return 0;
177dfcd8 799
1dfc5cea 800fail2:
177dfcd8 801 efx->phy_op->fini(efx);
1dfc5cea
BH
802fail1:
803 mutex_unlock(&efx->mac_lock);
177dfcd8 804 return rc;
8ceee660
BH
805}
806
8ceee660
BH
807static void efx_start_port(struct efx_nic *efx)
808{
809 EFX_LOG(efx, "start port\n");
810 BUG_ON(efx->port_enabled);
811
812 mutex_lock(&efx->mac_lock);
dc8cfa55 813 efx->port_enabled = true;
8be4f3e6
BH
814
815 /* efx_mac_work() might have been scheduled after efx_stop_port(),
816 * and then cancelled by efx_flush_all() */
ef2b90ee 817 efx->type->push_multicast_hash(efx);
8be4f3e6
BH
818 efx->mac_op->reconfigure(efx);
819
8ceee660
BH
820 mutex_unlock(&efx->mac_lock);
821}
822
fdaa9aed 823/* Prevent efx_mac_work() and efx_monitor() from working */
8ceee660
BH
824static void efx_stop_port(struct efx_nic *efx)
825{
826 EFX_LOG(efx, "stop port\n");
827
828 mutex_lock(&efx->mac_lock);
dc8cfa55 829 efx->port_enabled = false;
8ceee660
BH
830 mutex_unlock(&efx->mac_lock);
831
832 /* Serialise against efx_set_multicast_list() */
55668611 833 if (efx_dev_registered(efx)) {
b9e40857
DM
834 netif_addr_lock_bh(efx->net_dev);
835 netif_addr_unlock_bh(efx->net_dev);
8ceee660
BH
836 }
837}
838
839static void efx_fini_port(struct efx_nic *efx)
840{
841 EFX_LOG(efx, "shut down port\n");
842
843 if (!efx->port_initialized)
844 return;
845
177dfcd8 846 efx->phy_op->fini(efx);
dc8cfa55 847 efx->port_initialized = false;
8ceee660 848
eb50c0d6 849 efx->link_state.up = false;
8ceee660
BH
850 efx_link_status_changed(efx);
851}
852
853static void efx_remove_port(struct efx_nic *efx)
854{
855 EFX_LOG(efx, "destroying port\n");
856
ef2b90ee 857 efx->type->remove_port(efx);
8ceee660
BH
858}
859
860/**************************************************************************
861 *
862 * NIC handling
863 *
864 **************************************************************************/
865
866/* This configures the PCI device to enable I/O and DMA. */
867static int efx_init_io(struct efx_nic *efx)
868{
869 struct pci_dev *pci_dev = efx->pci_dev;
870 dma_addr_t dma_mask = efx->type->max_dma_mask;
871 int rc;
872
873 EFX_LOG(efx, "initialising I/O\n");
874
875 rc = pci_enable_device(pci_dev);
876 if (rc) {
877 EFX_ERR(efx, "failed to enable PCI device\n");
878 goto fail1;
879 }
880
881 pci_set_master(pci_dev);
882
883 /* Set the PCI DMA mask. Try all possibilities from our
884 * genuine mask down to 32 bits, because some architectures
885 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
886 * masks event though they reject 46 bit masks.
887 */
888 while (dma_mask > 0x7fffffffUL) {
889 if (pci_dma_supported(pci_dev, dma_mask) &&
890 ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
891 break;
892 dma_mask >>= 1;
893 }
894 if (rc) {
895 EFX_ERR(efx, "could not find a suitable DMA mask\n");
896 goto fail2;
897 }
898 EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask);
899 rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
900 if (rc) {
901 /* pci_set_consistent_dma_mask() is not *allowed* to
902 * fail with a mask that pci_set_dma_mask() accepted,
903 * but just in case...
904 */
905 EFX_ERR(efx, "failed to set consistent DMA mask\n");
906 goto fail2;
907 }
908
dc803df8
BH
909 efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
910 rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
8ceee660
BH
911 if (rc) {
912 EFX_ERR(efx, "request for memory BAR failed\n");
913 rc = -EIO;
914 goto fail3;
915 }
916 efx->membase = ioremap_nocache(efx->membase_phys,
917 efx->type->mem_map_size);
918 if (!efx->membase) {
dc803df8 919 EFX_ERR(efx, "could not map memory BAR at %llx+%x\n",
086ea356 920 (unsigned long long)efx->membase_phys,
8ceee660
BH
921 efx->type->mem_map_size);
922 rc = -ENOMEM;
923 goto fail4;
924 }
dc803df8
BH
925 EFX_LOG(efx, "memory BAR at %llx+%x (virtual %p)\n",
926 (unsigned long long)efx->membase_phys,
086ea356 927 efx->type->mem_map_size, efx->membase);
8ceee660
BH
928
929 return 0;
930
931 fail4:
dc803df8 932 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
8ceee660 933 fail3:
2c118e0f 934 efx->membase_phys = 0;
8ceee660
BH
935 fail2:
936 pci_disable_device(efx->pci_dev);
937 fail1:
938 return rc;
939}
940
941static void efx_fini_io(struct efx_nic *efx)
942{
943 EFX_LOG(efx, "shutting down I/O\n");
944
945 if (efx->membase) {
946 iounmap(efx->membase);
947 efx->membase = NULL;
948 }
949
950 if (efx->membase_phys) {
dc803df8 951 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
2c118e0f 952 efx->membase_phys = 0;
8ceee660
BH
953 }
954
955 pci_disable_device(efx->pci_dev);
956}
957
46123d04
BH
958/* Get number of RX queues wanted. Return number of online CPU
959 * packages in the expectation that an IRQ balancer will spread
960 * interrupts across them. */
961static int efx_wanted_rx_queues(void)
962{
2f8975fb 963 cpumask_var_t core_mask;
46123d04
BH
964 int count;
965 int cpu;
966
79f55997 967 if (unlikely(!zalloc_cpumask_var(&core_mask, GFP_KERNEL))) {
2f8975fb 968 printk(KERN_WARNING
3977d033 969 "sfc: RSS disabled due to allocation failure\n");
2f8975fb
RR
970 return 1;
971 }
972
46123d04
BH
973 count = 0;
974 for_each_online_cpu(cpu) {
2f8975fb 975 if (!cpumask_test_cpu(cpu, core_mask)) {
46123d04 976 ++count;
2f8975fb 977 cpumask_or(core_mask, core_mask,
fbd59a8d 978 topology_core_cpumask(cpu));
46123d04
BH
979 }
980 }
981
2f8975fb 982 free_cpumask_var(core_mask);
46123d04
BH
983 return count;
984}
985
986/* Probe the number and type of interrupts we are able to obtain, and
987 * the resulting numbers of channels and RX queues.
988 */
8ceee660
BH
989static void efx_probe_interrupts(struct efx_nic *efx)
990{
46123d04
BH
991 int max_channels =
992 min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
8ceee660
BH
993 int rc, i;
994
995 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
46123d04
BH
996 struct msix_entry xentries[EFX_MAX_CHANNELS];
997 int wanted_ints;
28b581ab 998 int rx_queues;
aa6ef27e 999
46123d04
BH
1000 /* We want one RX queue and interrupt per CPU package
1001 * (or as specified by the rss_cpus module parameter).
1002 * We will need one channel per interrupt.
1003 */
28b581ab
NT
1004 rx_queues = rss_cpus ? rss_cpus : efx_wanted_rx_queues();
1005 wanted_ints = rx_queues + (separate_tx_channels ? 1 : 0);
1006 wanted_ints = min(wanted_ints, max_channels);
8ceee660 1007
28b581ab 1008 for (i = 0; i < wanted_ints; i++)
8ceee660 1009 xentries[i].entry = i;
28b581ab 1010 rc = pci_enable_msix(efx->pci_dev, xentries, wanted_ints);
8ceee660 1011 if (rc > 0) {
28b581ab
NT
1012 EFX_ERR(efx, "WARNING: Insufficient MSI-X vectors"
1013 " available (%d < %d).\n", rc, wanted_ints);
1014 EFX_ERR(efx, "WARNING: Performance may be reduced.\n");
1015 EFX_BUG_ON_PARANOID(rc >= wanted_ints);
1016 wanted_ints = rc;
8ceee660 1017 rc = pci_enable_msix(efx->pci_dev, xentries,
28b581ab 1018 wanted_ints);
8ceee660
BH
1019 }
1020
1021 if (rc == 0) {
28b581ab
NT
1022 efx->n_rx_queues = min(rx_queues, wanted_ints);
1023 efx->n_channels = wanted_ints;
1024 for (i = 0; i < wanted_ints; i++)
8ceee660 1025 efx->channel[i].irq = xentries[i].vector;
8ceee660
BH
1026 } else {
1027 /* Fall back to single channel MSI */
1028 efx->interrupt_mode = EFX_INT_MODE_MSI;
1029 EFX_ERR(efx, "could not enable MSI-X\n");
1030 }
1031 }
1032
1033 /* Try single interrupt MSI */
1034 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
8831da7b 1035 efx->n_rx_queues = 1;
28b581ab 1036 efx->n_channels = 1;
8ceee660
BH
1037 rc = pci_enable_msi(efx->pci_dev);
1038 if (rc == 0) {
1039 efx->channel[0].irq = efx->pci_dev->irq;
8ceee660
BH
1040 } else {
1041 EFX_ERR(efx, "could not enable MSI\n");
1042 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
1043 }
1044 }
1045
1046 /* Assume legacy interrupts */
1047 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
8831da7b 1048 efx->n_rx_queues = 1;
28b581ab 1049 efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
8ceee660
BH
1050 efx->legacy_irq = efx->pci_dev->irq;
1051 }
1052}
1053
1054static void efx_remove_interrupts(struct efx_nic *efx)
1055{
1056 struct efx_channel *channel;
1057
1058 /* Remove MSI/MSI-X interrupts */
64ee3120 1059 efx_for_each_channel(channel, efx)
8ceee660
BH
1060 channel->irq = 0;
1061 pci_disable_msi(efx->pci_dev);
1062 pci_disable_msix(efx->pci_dev);
1063
1064 /* Remove legacy interrupt */
1065 efx->legacy_irq = 0;
1066}
1067
8831da7b 1068static void efx_set_channels(struct efx_nic *efx)
8ceee660
BH
1069{
1070 struct efx_tx_queue *tx_queue;
1071 struct efx_rx_queue *rx_queue;
8ceee660 1072
60ac1065 1073 efx_for_each_tx_queue(tx_queue, efx) {
28b581ab
NT
1074 if (separate_tx_channels)
1075 tx_queue->channel = &efx->channel[efx->n_channels-1];
60ac1065
BH
1076 else
1077 tx_queue->channel = &efx->channel[0];
1078 tx_queue->channel->used_flags |= EFX_USED_BY_TX;
1079 }
8ceee660 1080
8831da7b
BH
1081 efx_for_each_rx_queue(rx_queue, efx) {
1082 rx_queue->channel = &efx->channel[rx_queue->queue];
1083 rx_queue->channel->used_flags |= EFX_USED_BY_RX;
8ceee660
BH
1084 }
1085}
1086
1087static int efx_probe_nic(struct efx_nic *efx)
1088{
1089 int rc;
1090
1091 EFX_LOG(efx, "creating NIC\n");
1092
1093 /* Carry out hardware-type specific initialisation */
ef2b90ee 1094 rc = efx->type->probe(efx);
8ceee660
BH
1095 if (rc)
1096 return rc;
1097
1098 /* Determine the number of channels and RX queues by trying to hook
1099 * in MSI-X interrupts. */
1100 efx_probe_interrupts(efx);
1101
8831da7b 1102 efx_set_channels(efx);
8ceee660
BH
1103
1104 /* Initialise the interrupt moderation settings */
6fb70fd1 1105 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true);
8ceee660
BH
1106
1107 return 0;
1108}
1109
1110static void efx_remove_nic(struct efx_nic *efx)
1111{
1112 EFX_LOG(efx, "destroying NIC\n");
1113
1114 efx_remove_interrupts(efx);
ef2b90ee 1115 efx->type->remove(efx);
8ceee660
BH
1116}
1117
1118/**************************************************************************
1119 *
1120 * NIC startup/shutdown
1121 *
1122 *************************************************************************/
1123
1124static int efx_probe_all(struct efx_nic *efx)
1125{
1126 struct efx_channel *channel;
1127 int rc;
1128
1129 /* Create NIC */
1130 rc = efx_probe_nic(efx);
1131 if (rc) {
1132 EFX_ERR(efx, "failed to create NIC\n");
1133 goto fail1;
1134 }
1135
1136 /* Create port */
1137 rc = efx_probe_port(efx);
1138 if (rc) {
1139 EFX_ERR(efx, "failed to create port\n");
1140 goto fail2;
1141 }
1142
1143 /* Create channels */
1144 efx_for_each_channel(channel, efx) {
1145 rc = efx_probe_channel(channel);
1146 if (rc) {
1147 EFX_ERR(efx, "failed to create channel %d\n",
1148 channel->channel);
1149 goto fail3;
1150 }
1151 }
56536e9c 1152 efx_set_channel_names(efx);
8ceee660
BH
1153
1154 return 0;
1155
1156 fail3:
1157 efx_for_each_channel(channel, efx)
1158 efx_remove_channel(channel);
1159 efx_remove_port(efx);
1160 fail2:
1161 efx_remove_nic(efx);
1162 fail1:
1163 return rc;
1164}
1165
1166/* Called after previous invocation(s) of efx_stop_all, restarts the
1167 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1168 * and ensures that the port is scheduled to be reconfigured.
1169 * This function is safe to call multiple times when the NIC is in any
1170 * state. */
1171static void efx_start_all(struct efx_nic *efx)
1172{
1173 struct efx_channel *channel;
1174
1175 EFX_ASSERT_RESET_SERIALISED(efx);
1176
1177 /* Check that it is appropriate to restart the interface. All
1178 * of these flags are safe to read under just the rtnl lock */
1179 if (efx->port_enabled)
1180 return;
1181 if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1182 return;
55668611 1183 if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
8ceee660
BH
1184 return;
1185
1186 /* Mark the port as enabled so port reconfigurations can start, then
1187 * restart the transmit interface early so the watchdog timer stops */
1188 efx_start_port(efx);
dacccc74
SH
1189 if (efx_dev_registered(efx))
1190 efx_wake_queue(efx);
8ceee660
BH
1191
1192 efx_for_each_channel(channel, efx)
1193 efx_start_channel(channel);
1194
152b6a62 1195 efx_nic_enable_interrupts(efx);
8ceee660 1196
8880f4ec
BH
1197 /* Switch to event based MCDI completions after enabling interrupts.
1198 * If a reset has been scheduled, then we need to stay in polled mode.
1199 * Rather than serialising efx_mcdi_mode_event() [which sleeps] and
1200 * reset_pending [modified from an atomic context], we instead guarantee
1201 * that efx_mcdi_mode_poll() isn't reverted erroneously */
1202 efx_mcdi_mode_event(efx);
1203 if (efx->reset_pending != RESET_TYPE_NONE)
1204 efx_mcdi_mode_poll(efx);
1205
78c1f0a0
SH
1206 /* Start the hardware monitor if there is one. Otherwise (we're link
1207 * event driven), we have to poll the PHY because after an event queue
1208 * flush, we could have a missed a link state change */
1209 if (efx->type->monitor != NULL) {
8ceee660
BH
1210 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1211 efx_monitor_interval);
78c1f0a0
SH
1212 } else {
1213 mutex_lock(&efx->mac_lock);
1214 if (efx->phy_op->poll(efx))
1215 efx_link_status_changed(efx);
1216 mutex_unlock(&efx->mac_lock);
1217 }
55edc6e6 1218
ef2b90ee 1219 efx->type->start_stats(efx);
8ceee660
BH
1220}
1221
1222/* Flush all delayed work. Should only be called when no more delayed work
1223 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1224 * since we're holding the rtnl_lock at this point. */
1225static void efx_flush_all(struct efx_nic *efx)
1226{
1227 struct efx_rx_queue *rx_queue;
1228
1229 /* Make sure the hardware monitor is stopped */
1230 cancel_delayed_work_sync(&efx->monitor_work);
1231
1232 /* Ensure that all RX slow refills are complete. */
b3475645 1233 efx_for_each_rx_queue(rx_queue, efx)
8ceee660 1234 cancel_delayed_work_sync(&rx_queue->work);
8ceee660
BH
1235
1236 /* Stop scheduled port reconfigurations */
766ca0fa 1237 cancel_work_sync(&efx->mac_work);
8ceee660
BH
1238}
1239
1240/* Quiesce hardware and software without bringing the link down.
1241 * Safe to call multiple times, when the nic and interface is in any
1242 * state. The caller is guaranteed to subsequently be in a position
1243 * to modify any hardware and software state they see fit without
1244 * taking locks. */
1245static void efx_stop_all(struct efx_nic *efx)
1246{
1247 struct efx_channel *channel;
1248
1249 EFX_ASSERT_RESET_SERIALISED(efx);
1250
1251 /* port_enabled can be read safely under the rtnl lock */
1252 if (!efx->port_enabled)
1253 return;
1254
ef2b90ee 1255 efx->type->stop_stats(efx);
55edc6e6 1256
8880f4ec
BH
1257 /* Switch to MCDI polling on Siena before disabling interrupts */
1258 efx_mcdi_mode_poll(efx);
1259
8ceee660 1260 /* Disable interrupts and wait for ISR to complete */
152b6a62 1261 efx_nic_disable_interrupts(efx);
8ceee660
BH
1262 if (efx->legacy_irq)
1263 synchronize_irq(efx->legacy_irq);
64ee3120 1264 efx_for_each_channel(channel, efx) {
8ceee660
BH
1265 if (channel->irq)
1266 synchronize_irq(channel->irq);
b3475645 1267 }
8ceee660
BH
1268
1269 /* Stop all NAPI processing and synchronous rx refills */
1270 efx_for_each_channel(channel, efx)
1271 efx_stop_channel(channel);
1272
1273 /* Stop all asynchronous port reconfigurations. Since all
1274 * event processing has already been stopped, there is no
1275 * window to loose phy events */
1276 efx_stop_port(efx);
1277
fdaa9aed 1278 /* Flush efx_mac_work(), refill_workqueue, monitor_work */
8ceee660
BH
1279 efx_flush_all(efx);
1280
8ceee660
BH
1281 /* Stop the kernel transmit interface late, so the watchdog
1282 * timer isn't ticking over the flush */
55668611 1283 if (efx_dev_registered(efx)) {
dacccc74 1284 efx_stop_queue(efx);
8ceee660
BH
1285 netif_tx_lock_bh(efx->net_dev);
1286 netif_tx_unlock_bh(efx->net_dev);
1287 }
1288}
1289
1290static void efx_remove_all(struct efx_nic *efx)
1291{
1292 struct efx_channel *channel;
1293
1294 efx_for_each_channel(channel, efx)
1295 efx_remove_channel(channel);
1296 efx_remove_port(efx);
1297 efx_remove_nic(efx);
1298}
1299
8ceee660
BH
1300/**************************************************************************
1301 *
1302 * Interrupt moderation
1303 *
1304 **************************************************************************/
1305
0d86ebd8
BH
1306static unsigned irq_mod_ticks(int usecs, int resolution)
1307{
1308 if (usecs <= 0)
1309 return 0; /* cannot receive interrupts ahead of time :-) */
1310 if (usecs < resolution)
1311 return 1; /* never round down to 0 */
1312 return usecs / resolution;
1313}
1314
8ceee660 1315/* Set interrupt moderation parameters */
6fb70fd1
BH
1316void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs,
1317 bool rx_adaptive)
8ceee660
BH
1318{
1319 struct efx_tx_queue *tx_queue;
1320 struct efx_rx_queue *rx_queue;
152b6a62
BH
1321 unsigned tx_ticks = irq_mod_ticks(tx_usecs, EFX_IRQ_MOD_RESOLUTION);
1322 unsigned rx_ticks = irq_mod_ticks(rx_usecs, EFX_IRQ_MOD_RESOLUTION);
8ceee660
BH
1323
1324 EFX_ASSERT_RESET_SERIALISED(efx);
1325
1326 efx_for_each_tx_queue(tx_queue, efx)
0d86ebd8 1327 tx_queue->channel->irq_moderation = tx_ticks;
8ceee660 1328
6fb70fd1 1329 efx->irq_rx_adaptive = rx_adaptive;
0d86ebd8 1330 efx->irq_rx_moderation = rx_ticks;
8ceee660 1331 efx_for_each_rx_queue(rx_queue, efx)
0d86ebd8 1332 rx_queue->channel->irq_moderation = rx_ticks;
8ceee660
BH
1333}
1334
1335/**************************************************************************
1336 *
1337 * Hardware monitor
1338 *
1339 **************************************************************************/
1340
1341/* Run periodically off the general workqueue. Serialised against
1342 * efx_reconfigure_port via the mac_lock */
1343static void efx_monitor(struct work_struct *data)
1344{
1345 struct efx_nic *efx = container_of(data, struct efx_nic,
1346 monitor_work.work);
8ceee660
BH
1347
1348 EFX_TRACE(efx, "hardware monitor executing on CPU %d\n",
1349 raw_smp_processor_id());
ef2b90ee 1350 BUG_ON(efx->type->monitor == NULL);
8ceee660 1351
8ceee660
BH
1352 /* If the mac_lock is already held then it is likely a port
1353 * reconfiguration is already in place, which will likely do
1354 * most of the work of check_hw() anyway. */
766ca0fa
BH
1355 if (!mutex_trylock(&efx->mac_lock))
1356 goto out_requeue;
1357 if (!efx->port_enabled)
1358 goto out_unlock;
ef2b90ee 1359 efx->type->monitor(efx);
8ceee660 1360
766ca0fa 1361out_unlock:
8ceee660 1362 mutex_unlock(&efx->mac_lock);
766ca0fa 1363out_requeue:
8ceee660
BH
1364 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1365 efx_monitor_interval);
1366}
1367
1368/**************************************************************************
1369 *
1370 * ioctls
1371 *
1372 *************************************************************************/
1373
1374/* Net device ioctl
1375 * Context: process, rtnl_lock() held.
1376 */
1377static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1378{
767e468c 1379 struct efx_nic *efx = netdev_priv(net_dev);
68e7f45e 1380 struct mii_ioctl_data *data = if_mii(ifr);
8ceee660
BH
1381
1382 EFX_ASSERT_RESET_SERIALISED(efx);
1383
68e7f45e
BH
1384 /* Convert phy_id from older PRTAD/DEVAD format */
1385 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1386 (data->phy_id & 0xfc00) == 0x0400)
1387 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
1388
1389 return mdio_mii_ioctl(&efx->mdio, data, cmd);
8ceee660
BH
1390}
1391
1392/**************************************************************************
1393 *
1394 * NAPI interface
1395 *
1396 **************************************************************************/
1397
1398static int efx_init_napi(struct efx_nic *efx)
1399{
1400 struct efx_channel *channel;
8ceee660
BH
1401
1402 efx_for_each_channel(channel, efx) {
1403 channel->napi_dev = efx->net_dev;
718cff1e
BH
1404 netif_napi_add(channel->napi_dev, &channel->napi_str,
1405 efx_poll, napi_weight);
8ceee660
BH
1406 }
1407 return 0;
8ceee660
BH
1408}
1409
1410static void efx_fini_napi(struct efx_nic *efx)
1411{
1412 struct efx_channel *channel;
1413
1414 efx_for_each_channel(channel, efx) {
718cff1e
BH
1415 if (channel->napi_dev)
1416 netif_napi_del(&channel->napi_str);
8ceee660
BH
1417 channel->napi_dev = NULL;
1418 }
1419}
1420
1421/**************************************************************************
1422 *
1423 * Kernel netpoll interface
1424 *
1425 *************************************************************************/
1426
1427#ifdef CONFIG_NET_POLL_CONTROLLER
1428
1429/* Although in the common case interrupts will be disabled, this is not
1430 * guaranteed. However, all our work happens inside the NAPI callback,
1431 * so no locking is required.
1432 */
1433static void efx_netpoll(struct net_device *net_dev)
1434{
767e468c 1435 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1436 struct efx_channel *channel;
1437
64ee3120 1438 efx_for_each_channel(channel, efx)
8ceee660
BH
1439 efx_schedule_channel(channel);
1440}
1441
1442#endif
1443
1444/**************************************************************************
1445 *
1446 * Kernel net device interface
1447 *
1448 *************************************************************************/
1449
1450/* Context: process, rtnl_lock() held. */
1451static int efx_net_open(struct net_device *net_dev)
1452{
767e468c 1453 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1454 EFX_ASSERT_RESET_SERIALISED(efx);
1455
1456 EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name,
1457 raw_smp_processor_id());
1458
f4bd954e
BH
1459 if (efx->state == STATE_DISABLED)
1460 return -EIO;
f8b87c17
BH
1461 if (efx->phy_mode & PHY_MODE_SPECIAL)
1462 return -EBUSY;
8880f4ec
BH
1463 if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL))
1464 return -EIO;
f8b87c17 1465
78c1f0a0
SH
1466 /* Notify the kernel of the link state polled during driver load,
1467 * before the monitor starts running */
1468 efx_link_status_changed(efx);
1469
8ceee660
BH
1470 efx_start_all(efx);
1471 return 0;
1472}
1473
1474/* Context: process, rtnl_lock() held.
1475 * Note that the kernel will ignore our return code; this method
1476 * should really be a void.
1477 */
1478static int efx_net_stop(struct net_device *net_dev)
1479{
767e468c 1480 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1481
1482 EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name,
1483 raw_smp_processor_id());
1484
f4bd954e
BH
1485 if (efx->state != STATE_DISABLED) {
1486 /* Stop the device and flush all the channels */
1487 efx_stop_all(efx);
1488 efx_fini_channels(efx);
1489 efx_init_channels(efx);
1490 }
8ceee660
BH
1491
1492 return 0;
1493}
1494
5b9e207c 1495/* Context: process, dev_base_lock or RTNL held, non-blocking. */
8ceee660
BH
1496static struct net_device_stats *efx_net_stats(struct net_device *net_dev)
1497{
767e468c 1498 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1499 struct efx_mac_stats *mac_stats = &efx->mac_stats;
1500 struct net_device_stats *stats = &net_dev->stats;
1501
55edc6e6 1502 spin_lock_bh(&efx->stats_lock);
ef2b90ee 1503 efx->type->update_stats(efx);
55edc6e6 1504 spin_unlock_bh(&efx->stats_lock);
8ceee660
BH
1505
1506 stats->rx_packets = mac_stats->rx_packets;
1507 stats->tx_packets = mac_stats->tx_packets;
1508 stats->rx_bytes = mac_stats->rx_bytes;
1509 stats->tx_bytes = mac_stats->tx_bytes;
1510 stats->multicast = mac_stats->rx_multicast;
1511 stats->collisions = mac_stats->tx_collision;
1512 stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1513 mac_stats->rx_length_error);
1514 stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
1515 stats->rx_crc_errors = mac_stats->rx_bad;
1516 stats->rx_frame_errors = mac_stats->rx_align_error;
1517 stats->rx_fifo_errors = mac_stats->rx_overflow;
1518 stats->rx_missed_errors = mac_stats->rx_missed;
1519 stats->tx_window_errors = mac_stats->tx_late_collision;
1520
1521 stats->rx_errors = (stats->rx_length_errors +
1522 stats->rx_over_errors +
1523 stats->rx_crc_errors +
1524 stats->rx_frame_errors +
1525 stats->rx_fifo_errors +
1526 stats->rx_missed_errors +
1527 mac_stats->rx_symbol_error);
1528 stats->tx_errors = (stats->tx_window_errors +
1529 mac_stats->tx_bad);
1530
1531 return stats;
1532}
1533
1534/* Context: netif_tx_lock held, BHs disabled. */
1535static void efx_watchdog(struct net_device *net_dev)
1536{
767e468c 1537 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 1538
739bb23d
BH
1539 EFX_ERR(efx, "TX stuck with stop_count=%d port_enabled=%d:"
1540 " resetting channels\n",
1541 atomic_read(&efx->netif_stop_count), efx->port_enabled);
8ceee660 1542
739bb23d 1543 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
8ceee660
BH
1544}
1545
1546
1547/* Context: process, rtnl_lock() held. */
1548static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1549{
767e468c 1550 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1551 int rc = 0;
1552
1553 EFX_ASSERT_RESET_SERIALISED(efx);
1554
1555 if (new_mtu > EFX_MAX_MTU)
1556 return -EINVAL;
1557
1558 efx_stop_all(efx);
1559
1560 EFX_LOG(efx, "changing MTU to %d\n", new_mtu);
1561
1562 efx_fini_channels(efx);
d3245b28
BH
1563
1564 mutex_lock(&efx->mac_lock);
1565 /* Reconfigure the MAC before enabling the dma queues so that
1566 * the RX buffers don't overflow */
8ceee660 1567 net_dev->mtu = new_mtu;
d3245b28
BH
1568 efx->mac_op->reconfigure(efx);
1569 mutex_unlock(&efx->mac_lock);
1570
bc3c90a2 1571 efx_init_channels(efx);
8ceee660
BH
1572
1573 efx_start_all(efx);
1574 return rc;
8ceee660
BH
1575}
1576
1577static int efx_set_mac_address(struct net_device *net_dev, void *data)
1578{
767e468c 1579 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1580 struct sockaddr *addr = data;
1581 char *new_addr = addr->sa_data;
1582
1583 EFX_ASSERT_RESET_SERIALISED(efx);
1584
1585 if (!is_valid_ether_addr(new_addr)) {
e174961c
JB
1586 EFX_ERR(efx, "invalid ethernet MAC address requested: %pM\n",
1587 new_addr);
8ceee660
BH
1588 return -EINVAL;
1589 }
1590
1591 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1592
1593 /* Reconfigure the MAC */
d3245b28
BH
1594 mutex_lock(&efx->mac_lock);
1595 efx->mac_op->reconfigure(efx);
1596 mutex_unlock(&efx->mac_lock);
8ceee660
BH
1597
1598 return 0;
1599}
1600
a816f75a 1601/* Context: netif_addr_lock held, BHs disabled. */
8ceee660
BH
1602static void efx_set_multicast_list(struct net_device *net_dev)
1603{
767e468c 1604 struct efx_nic *efx = netdev_priv(net_dev);
5508590c 1605 struct dev_mc_list *mc_list;
8ceee660 1606 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
8ceee660
BH
1607 u32 crc;
1608 int bit;
8ceee660 1609
8be4f3e6 1610 efx->promiscuous = !!(net_dev->flags & IFF_PROMISC);
8ceee660
BH
1611
1612 /* Build multicast hash table */
8be4f3e6 1613 if (efx->promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
8ceee660
BH
1614 memset(mc_hash, 0xff, sizeof(*mc_hash));
1615 } else {
1616 memset(mc_hash, 0x00, sizeof(*mc_hash));
5508590c 1617 netdev_for_each_mc_addr(mc_list, net_dev) {
8ceee660
BH
1618 crc = ether_crc_le(ETH_ALEN, mc_list->dmi_addr);
1619 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1620 set_bit_le(bit, mc_hash->byte);
8ceee660 1621 }
8ceee660 1622
8be4f3e6
BH
1623 /* Broadcast packets go through the multicast hash filter.
1624 * ether_crc_le() of the broadcast address is 0xbe2612ff
1625 * so we always add bit 0xff to the mask.
1626 */
1627 set_bit_le(0xff, mc_hash->byte);
1628 }
a816f75a 1629
8be4f3e6
BH
1630 if (efx->port_enabled)
1631 queue_work(efx->workqueue, &efx->mac_work);
1632 /* Otherwise efx_start_port() will do this */
8ceee660
BH
1633}
1634
c3ecb9f3
SH
1635static const struct net_device_ops efx_netdev_ops = {
1636 .ndo_open = efx_net_open,
1637 .ndo_stop = efx_net_stop,
1638 .ndo_get_stats = efx_net_stats,
1639 .ndo_tx_timeout = efx_watchdog,
1640 .ndo_start_xmit = efx_hard_start_xmit,
1641 .ndo_validate_addr = eth_validate_addr,
1642 .ndo_do_ioctl = efx_ioctl,
1643 .ndo_change_mtu = efx_change_mtu,
1644 .ndo_set_mac_address = efx_set_mac_address,
1645 .ndo_set_multicast_list = efx_set_multicast_list,
1646#ifdef CONFIG_NET_POLL_CONTROLLER
1647 .ndo_poll_controller = efx_netpoll,
1648#endif
1649};
1650
7dde596e
BH
1651static void efx_update_name(struct efx_nic *efx)
1652{
1653 strcpy(efx->name, efx->net_dev->name);
1654 efx_mtd_rename(efx);
1655 efx_set_channel_names(efx);
1656}
1657
8ceee660
BH
1658static int efx_netdev_event(struct notifier_block *this,
1659 unsigned long event, void *ptr)
1660{
d3208b5e 1661 struct net_device *net_dev = ptr;
8ceee660 1662
7dde596e
BH
1663 if (net_dev->netdev_ops == &efx_netdev_ops &&
1664 event == NETDEV_CHANGENAME)
1665 efx_update_name(netdev_priv(net_dev));
8ceee660
BH
1666
1667 return NOTIFY_DONE;
1668}
1669
1670static struct notifier_block efx_netdev_notifier = {
1671 .notifier_call = efx_netdev_event,
1672};
1673
06d5e193
BH
1674static ssize_t
1675show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
1676{
1677 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
1678 return sprintf(buf, "%d\n", efx->phy_type);
1679}
1680static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
1681
8ceee660
BH
1682static int efx_register_netdev(struct efx_nic *efx)
1683{
1684 struct net_device *net_dev = efx->net_dev;
1685 int rc;
1686
1687 net_dev->watchdog_timeo = 5 * HZ;
1688 net_dev->irq = efx->pci_dev->irq;
c3ecb9f3 1689 net_dev->netdev_ops = &efx_netdev_ops;
8ceee660
BH
1690 SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev);
1691 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1692
8ceee660 1693 /* Clear MAC statistics */
177dfcd8 1694 efx->mac_op->update_stats(efx);
8ceee660
BH
1695 memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
1696
7dde596e 1697 rtnl_lock();
aed0628d
BH
1698
1699 rc = dev_alloc_name(net_dev, net_dev->name);
1700 if (rc < 0)
1701 goto fail_locked;
7dde596e 1702 efx_update_name(efx);
aed0628d
BH
1703
1704 rc = register_netdevice(net_dev);
1705 if (rc)
1706 goto fail_locked;
1707
1708 /* Always start with carrier off; PHY events will detect the link */
1709 netif_carrier_off(efx->net_dev);
1710
7dde596e 1711 rtnl_unlock();
8ceee660 1712
06d5e193
BH
1713 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1714 if (rc) {
1715 EFX_ERR(efx, "failed to init net dev attributes\n");
1716 goto fail_registered;
1717 }
1718
8ceee660 1719 return 0;
06d5e193 1720
aed0628d
BH
1721fail_locked:
1722 rtnl_unlock();
1723 EFX_ERR(efx, "could not register net dev\n");
1724 return rc;
1725
06d5e193
BH
1726fail_registered:
1727 unregister_netdev(net_dev);
1728 return rc;
8ceee660
BH
1729}
1730
1731static void efx_unregister_netdev(struct efx_nic *efx)
1732{
1733 struct efx_tx_queue *tx_queue;
1734
1735 if (!efx->net_dev)
1736 return;
1737
767e468c 1738 BUG_ON(netdev_priv(efx->net_dev) != efx);
8ceee660
BH
1739
1740 /* Free up any skbs still remaining. This has to happen before
1741 * we try to unregister the netdev as running their destructors
1742 * may be needed to get the device ref. count to 0. */
1743 efx_for_each_tx_queue(tx_queue, efx)
1744 efx_release_tx_buffers(tx_queue);
1745
55668611 1746 if (efx_dev_registered(efx)) {
8ceee660 1747 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
06d5e193 1748 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
8ceee660
BH
1749 unregister_netdev(efx->net_dev);
1750 }
1751}
1752
1753/**************************************************************************
1754 *
1755 * Device reset and suspend
1756 *
1757 **************************************************************************/
1758
2467ca46
BH
1759/* Tears down the entire software state and most of the hardware state
1760 * before reset. */
d3245b28 1761void efx_reset_down(struct efx_nic *efx, enum reset_type method)
8ceee660 1762{
8ceee660
BH
1763 EFX_ASSERT_RESET_SERIALISED(efx);
1764
2467ca46
BH
1765 efx_stop_all(efx);
1766 mutex_lock(&efx->mac_lock);
f4150724 1767 mutex_lock(&efx->spi_lock);
2467ca46 1768
8ceee660 1769 efx_fini_channels(efx);
4b988280
SH
1770 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
1771 efx->phy_op->fini(efx);
ef2b90ee 1772 efx->type->fini(efx);
8ceee660
BH
1773}
1774
2467ca46
BH
1775/* This function will always ensure that the locks acquired in
1776 * efx_reset_down() are released. A failure return code indicates
1777 * that we were unable to reinitialise the hardware, and the
1778 * driver should be disabled. If ok is false, then the rx and tx
1779 * engines are not restarted, pending a RESET_DISABLE. */
d3245b28 1780int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok)
8ceee660
BH
1781{
1782 int rc;
1783
2467ca46 1784 EFX_ASSERT_RESET_SERIALISED(efx);
8ceee660 1785
ef2b90ee 1786 rc = efx->type->init(efx);
8ceee660 1787 if (rc) {
2467ca46 1788 EFX_ERR(efx, "failed to initialise NIC\n");
eb9f6744 1789 goto fail;
8ceee660
BH
1790 }
1791
eb9f6744
BH
1792 if (!ok)
1793 goto fail;
1794
4b988280 1795 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
eb9f6744
BH
1796 rc = efx->phy_op->init(efx);
1797 if (rc)
1798 goto fail;
1799 if (efx->phy_op->reconfigure(efx))
1800 EFX_ERR(efx, "could not restore PHY settings\n");
4b988280
SH
1801 }
1802
eb9f6744 1803 efx->mac_op->reconfigure(efx);
8ceee660 1804
eb9f6744
BH
1805 efx_init_channels(efx);
1806
1807 mutex_unlock(&efx->spi_lock);
1808 mutex_unlock(&efx->mac_lock);
1809
1810 efx_start_all(efx);
1811
1812 return 0;
1813
1814fail:
1815 efx->port_initialized = false;
2467ca46 1816
f4150724 1817 mutex_unlock(&efx->spi_lock);
2467ca46
BH
1818 mutex_unlock(&efx->mac_lock);
1819
8ceee660
BH
1820 return rc;
1821}
1822
eb9f6744
BH
1823/* Reset the NIC using the specified method. Note that the reset may
1824 * fail, in which case the card will be left in an unusable state.
8ceee660 1825 *
eb9f6744 1826 * Caller must hold the rtnl_lock.
8ceee660 1827 */
eb9f6744 1828int efx_reset(struct efx_nic *efx, enum reset_type method)
8ceee660 1829{
eb9f6744
BH
1830 int rc, rc2;
1831 bool disabled;
8ceee660 1832
c459302d 1833 EFX_INFO(efx, "resetting (%s)\n", RESET_TYPE(method));
8ceee660 1834
d3245b28 1835 efx_reset_down(efx, method);
8ceee660 1836
ef2b90ee 1837 rc = efx->type->reset(efx, method);
8ceee660
BH
1838 if (rc) {
1839 EFX_ERR(efx, "failed to reset hardware\n");
eb9f6744 1840 goto out;
8ceee660
BH
1841 }
1842
1843 /* Allow resets to be rescheduled. */
1844 efx->reset_pending = RESET_TYPE_NONE;
1845
1846 /* Reinitialise bus-mastering, which may have been turned off before
1847 * the reset was scheduled. This is still appropriate, even in the
1848 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
1849 * can respond to requests. */
1850 pci_set_master(efx->pci_dev);
1851
eb9f6744 1852out:
8ceee660 1853 /* Leave device stopped if necessary */
eb9f6744
BH
1854 disabled = rc || method == RESET_TYPE_DISABLE;
1855 rc2 = efx_reset_up(efx, method, !disabled);
1856 if (rc2) {
1857 disabled = true;
1858 if (!rc)
1859 rc = rc2;
8ceee660
BH
1860 }
1861
eb9f6744 1862 if (disabled) {
f4bd954e
BH
1863 EFX_ERR(efx, "has been disabled\n");
1864 efx->state = STATE_DISABLED;
f4bd954e
BH
1865 } else {
1866 EFX_LOG(efx, "reset complete\n");
1867 }
8ceee660
BH
1868 return rc;
1869}
1870
1871/* The worker thread exists so that code that cannot sleep can
1872 * schedule a reset for later.
1873 */
1874static void efx_reset_work(struct work_struct *data)
1875{
eb9f6744 1876 struct efx_nic *efx = container_of(data, struct efx_nic, reset_work);
8ceee660 1877
eb9f6744
BH
1878 /* If we're not RUNNING then don't reset. Leave the reset_pending
1879 * flag set so that efx_pci_probe_main will be retried */
1880 if (efx->state != STATE_RUNNING) {
1881 EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n");
1882 return;
1883 }
1884
1885 rtnl_lock();
1886 if (efx_reset(efx, efx->reset_pending))
1887 dev_close(efx->net_dev);
1888 rtnl_unlock();
8ceee660
BH
1889}
1890
1891void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
1892{
1893 enum reset_type method;
1894
1895 if (efx->reset_pending != RESET_TYPE_NONE) {
1896 EFX_INFO(efx, "quenching already scheduled reset\n");
1897 return;
1898 }
1899
1900 switch (type) {
1901 case RESET_TYPE_INVISIBLE:
1902 case RESET_TYPE_ALL:
1903 case RESET_TYPE_WORLD:
1904 case RESET_TYPE_DISABLE:
1905 method = type;
1906 break;
1907 case RESET_TYPE_RX_RECOVERY:
1908 case RESET_TYPE_RX_DESC_FETCH:
1909 case RESET_TYPE_TX_DESC_FETCH:
1910 case RESET_TYPE_TX_SKIP:
1911 method = RESET_TYPE_INVISIBLE;
1912 break;
8880f4ec 1913 case RESET_TYPE_MC_FAILURE:
8ceee660
BH
1914 default:
1915 method = RESET_TYPE_ALL;
1916 break;
1917 }
1918
1919 if (method != type)
c459302d
BH
1920 EFX_LOG(efx, "scheduling %s reset for %s\n",
1921 RESET_TYPE(method), RESET_TYPE(type));
8ceee660 1922 else
c459302d 1923 EFX_LOG(efx, "scheduling %s reset\n", RESET_TYPE(method));
8ceee660
BH
1924
1925 efx->reset_pending = method;
1926
8880f4ec
BH
1927 /* efx_process_channel() will no longer read events once a
1928 * reset is scheduled. So switch back to poll'd MCDI completions. */
1929 efx_mcdi_mode_poll(efx);
1930
1ab00629 1931 queue_work(reset_workqueue, &efx->reset_work);
8ceee660
BH
1932}
1933
1934/**************************************************************************
1935 *
1936 * List of NICs we support
1937 *
1938 **************************************************************************/
1939
1940/* PCI device ID table */
a3aa1884 1941static DEFINE_PCI_DEVICE_TABLE(efx_pci_table) = {
8ceee660 1942 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
daeda630 1943 .driver_data = (unsigned long) &falcon_a1_nic_type},
8ceee660 1944 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
daeda630 1945 .driver_data = (unsigned long) &falcon_b0_nic_type},
8880f4ec
BH
1946 {PCI_DEVICE(EFX_VENDID_SFC, BETHPAGE_A_P_DEVID),
1947 .driver_data = (unsigned long) &siena_a0_nic_type},
1948 {PCI_DEVICE(EFX_VENDID_SFC, SIENA_A_P_DEVID),
1949 .driver_data = (unsigned long) &siena_a0_nic_type},
8ceee660
BH
1950 {0} /* end of list */
1951};
1952
1953/**************************************************************************
1954 *
3759433d 1955 * Dummy PHY/MAC operations
8ceee660 1956 *
01aad7b6 1957 * Can be used for some unimplemented operations
8ceee660
BH
1958 * Needed so all function pointers are valid and do not have to be tested
1959 * before use
1960 *
1961 **************************************************************************/
1962int efx_port_dummy_op_int(struct efx_nic *efx)
1963{
1964 return 0;
1965}
1966void efx_port_dummy_op_void(struct efx_nic *efx) {}
398468ed
BH
1967void efx_port_dummy_op_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
1968{
1969}
fdaa9aed
SH
1970bool efx_port_dummy_op_poll(struct efx_nic *efx)
1971{
1972 return false;
1973}
8ceee660
BH
1974
1975static struct efx_phy_operations efx_dummy_phy_operations = {
1976 .init = efx_port_dummy_op_int,
d3245b28 1977 .reconfigure = efx_port_dummy_op_int,
fdaa9aed 1978 .poll = efx_port_dummy_op_poll,
8ceee660 1979 .fini = efx_port_dummy_op_void,
8ceee660
BH
1980};
1981
8ceee660
BH
1982/**************************************************************************
1983 *
1984 * Data housekeeping
1985 *
1986 **************************************************************************/
1987
1988/* This zeroes out and then fills in the invariants in a struct
1989 * efx_nic (including all sub-structures).
1990 */
1991static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
1992 struct pci_dev *pci_dev, struct net_device *net_dev)
1993{
1994 struct efx_channel *channel;
1995 struct efx_tx_queue *tx_queue;
1996 struct efx_rx_queue *rx_queue;
1ab00629 1997 int i;
8ceee660
BH
1998
1999 /* Initialise common structures */
2000 memset(efx, 0, sizeof(*efx));
2001 spin_lock_init(&efx->biu_lock);
ab867461 2002 mutex_init(&efx->mdio_lock);
f4150724 2003 mutex_init(&efx->spi_lock);
76884835
BH
2004#ifdef CONFIG_SFC_MTD
2005 INIT_LIST_HEAD(&efx->mtd_list);
2006#endif
8ceee660
BH
2007 INIT_WORK(&efx->reset_work, efx_reset_work);
2008 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
2009 efx->pci_dev = pci_dev;
2010 efx->state = STATE_INIT;
2011 efx->reset_pending = RESET_TYPE_NONE;
2012 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
8ceee660
BH
2013
2014 efx->net_dev = net_dev;
dc8cfa55 2015 efx->rx_checksum_enabled = true;
8ceee660
BH
2016 spin_lock_init(&efx->netif_stop_lock);
2017 spin_lock_init(&efx->stats_lock);
2018 mutex_init(&efx->mac_lock);
b895d73e 2019 efx->mac_op = type->default_mac_ops;
8ceee660 2020 efx->phy_op = &efx_dummy_phy_operations;
68e7f45e 2021 efx->mdio.dev = net_dev;
766ca0fa 2022 INIT_WORK(&efx->mac_work, efx_mac_work);
8ceee660
BH
2023 atomic_set(&efx->netif_stop_count, 1);
2024
2025 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
2026 channel = &efx->channel[i];
2027 channel->efx = efx;
2028 channel->channel = i;
dc8cfa55 2029 channel->work_pending = false;
8ceee660 2030 }
60ac1065 2031 for (i = 0; i < EFX_TX_QUEUE_COUNT; i++) {
8ceee660
BH
2032 tx_queue = &efx->tx_queue[i];
2033 tx_queue->efx = efx;
2034 tx_queue->queue = i;
2035 tx_queue->buffer = NULL;
2036 tx_queue->channel = &efx->channel[0]; /* for safety */
b9b39b62 2037 tx_queue->tso_headers_free = NULL;
8ceee660
BH
2038 }
2039 for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
2040 rx_queue = &efx->rx_queue[i];
2041 rx_queue->efx = efx;
2042 rx_queue->queue = i;
2043 rx_queue->channel = &efx->channel[0]; /* for safety */
2044 rx_queue->buffer = NULL;
2045 spin_lock_init(&rx_queue->add_lock);
2046 INIT_DELAYED_WORK(&rx_queue->work, efx_rx_work);
2047 }
2048
2049 efx->type = type;
2050
8ceee660 2051 /* As close as we can get to guaranteeing that we don't overflow */
3ffeabdd
BH
2052 BUILD_BUG_ON(EFX_EVQ_SIZE < EFX_TXQ_SIZE + EFX_RXQ_SIZE);
2053
8ceee660
BH
2054 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
2055
2056 /* Higher numbered interrupt modes are less capable! */
2057 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
2058 interrupt_mode);
2059
6977dc63
BH
2060 /* Would be good to use the net_dev name, but we're too early */
2061 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
2062 pci_name(pci_dev));
2063 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
1ab00629
SH
2064 if (!efx->workqueue)
2065 return -ENOMEM;
8d9853d9 2066
8ceee660 2067 return 0;
8ceee660
BH
2068}
2069
2070static void efx_fini_struct(struct efx_nic *efx)
2071{
2072 if (efx->workqueue) {
2073 destroy_workqueue(efx->workqueue);
2074 efx->workqueue = NULL;
2075 }
2076}
2077
2078/**************************************************************************
2079 *
2080 * PCI interface
2081 *
2082 **************************************************************************/
2083
2084/* Main body of final NIC shutdown code
2085 * This is called only at module unload (or hotplug removal).
2086 */
2087static void efx_pci_remove_main(struct efx_nic *efx)
2088{
152b6a62 2089 efx_nic_fini_interrupt(efx);
8ceee660
BH
2090 efx_fini_channels(efx);
2091 efx_fini_port(efx);
ef2b90ee 2092 efx->type->fini(efx);
8ceee660
BH
2093 efx_fini_napi(efx);
2094 efx_remove_all(efx);
2095}
2096
2097/* Final NIC shutdown
2098 * This is called only at module unload (or hotplug removal).
2099 */
2100static void efx_pci_remove(struct pci_dev *pci_dev)
2101{
2102 struct efx_nic *efx;
2103
2104 efx = pci_get_drvdata(pci_dev);
2105 if (!efx)
2106 return;
2107
2108 /* Mark the NIC as fini, then stop the interface */
2109 rtnl_lock();
2110 efx->state = STATE_FINI;
2111 dev_close(efx->net_dev);
2112
2113 /* Allow any queued efx_resets() to complete */
2114 rtnl_unlock();
2115
8ceee660
BH
2116 efx_unregister_netdev(efx);
2117
7dde596e
BH
2118 efx_mtd_remove(efx);
2119
8ceee660
BH
2120 /* Wait for any scheduled resets to complete. No more will be
2121 * scheduled from this point because efx_stop_all() has been
2122 * called, we are no longer registered with driverlink, and
2123 * the net_device's have been removed. */
1ab00629 2124 cancel_work_sync(&efx->reset_work);
8ceee660
BH
2125
2126 efx_pci_remove_main(efx);
2127
8ceee660
BH
2128 efx_fini_io(efx);
2129 EFX_LOG(efx, "shutdown successful\n");
2130
2131 pci_set_drvdata(pci_dev, NULL);
2132 efx_fini_struct(efx);
2133 free_netdev(efx->net_dev);
2134};
2135
2136/* Main body of NIC initialisation
2137 * This is called at module load (or hotplug insertion, theoretically).
2138 */
2139static int efx_pci_probe_main(struct efx_nic *efx)
2140{
2141 int rc;
2142
2143 /* Do start-of-day initialisation */
2144 rc = efx_probe_all(efx);
2145 if (rc)
2146 goto fail1;
2147
2148 rc = efx_init_napi(efx);
2149 if (rc)
2150 goto fail2;
2151
ef2b90ee 2152 rc = efx->type->init(efx);
8ceee660
BH
2153 if (rc) {
2154 EFX_ERR(efx, "failed to initialise NIC\n");
278c0621 2155 goto fail3;
8ceee660
BH
2156 }
2157
2158 rc = efx_init_port(efx);
2159 if (rc) {
2160 EFX_ERR(efx, "failed to initialise port\n");
278c0621 2161 goto fail4;
8ceee660
BH
2162 }
2163
bc3c90a2 2164 efx_init_channels(efx);
8ceee660 2165
152b6a62 2166 rc = efx_nic_init_interrupt(efx);
8ceee660 2167 if (rc)
278c0621 2168 goto fail5;
8ceee660
BH
2169
2170 return 0;
2171
278c0621 2172 fail5:
bc3c90a2 2173 efx_fini_channels(efx);
8ceee660 2174 efx_fini_port(efx);
8ceee660 2175 fail4:
ef2b90ee 2176 efx->type->fini(efx);
8ceee660
BH
2177 fail3:
2178 efx_fini_napi(efx);
2179 fail2:
2180 efx_remove_all(efx);
2181 fail1:
2182 return rc;
2183}
2184
2185/* NIC initialisation
2186 *
2187 * This is called at module load (or hotplug insertion,
2188 * theoretically). It sets up PCI mappings, tests and resets the NIC,
2189 * sets up and registers the network devices with the kernel and hooks
2190 * the interrupt service routine. It does not prepare the device for
2191 * transmission; this is left to the first time one of the network
2192 * interfaces is brought up (i.e. efx_net_open).
2193 */
2194static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2195 const struct pci_device_id *entry)
2196{
2197 struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
2198 struct net_device *net_dev;
2199 struct efx_nic *efx;
2200 int i, rc;
2201
2202 /* Allocate and initialise a struct net_device and struct efx_nic */
2203 net_dev = alloc_etherdev(sizeof(*efx));
2204 if (!net_dev)
2205 return -ENOMEM;
c383b537 2206 net_dev->features |= (type->offload_features | NETIF_F_SG |
97bc5415
BH
2207 NETIF_F_HIGHDMA | NETIF_F_TSO |
2208 NETIF_F_GRO);
738a8f4b
BH
2209 if (type->offload_features & NETIF_F_V6_CSUM)
2210 net_dev->features |= NETIF_F_TSO6;
28506563
BH
2211 /* Mask for features that also apply to VLAN devices */
2212 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
740847da 2213 NETIF_F_HIGHDMA | NETIF_F_TSO);
767e468c 2214 efx = netdev_priv(net_dev);
8ceee660
BH
2215 pci_set_drvdata(pci_dev, efx);
2216 rc = efx_init_struct(efx, type, pci_dev, net_dev);
2217 if (rc)
2218 goto fail1;
2219
2220 EFX_INFO(efx, "Solarflare Communications NIC detected\n");
2221
2222 /* Set up basic I/O (BAR mappings etc) */
2223 rc = efx_init_io(efx);
2224 if (rc)
2225 goto fail2;
2226
2227 /* No serialisation is required with the reset path because
2228 * we're in STATE_INIT. */
2229 for (i = 0; i < 5; i++) {
2230 rc = efx_pci_probe_main(efx);
8ceee660
BH
2231
2232 /* Serialise against efx_reset(). No more resets will be
2233 * scheduled since efx_stop_all() has been called, and we
2234 * have not and never have been registered with either
2235 * the rtnetlink or driverlink layers. */
1ab00629 2236 cancel_work_sync(&efx->reset_work);
8ceee660 2237
fa402b2e
SH
2238 if (rc == 0) {
2239 if (efx->reset_pending != RESET_TYPE_NONE) {
2240 /* If there was a scheduled reset during
2241 * probe, the NIC is probably hosed anyway */
2242 efx_pci_remove_main(efx);
2243 rc = -EIO;
2244 } else {
2245 break;
2246 }
2247 }
2248
8ceee660
BH
2249 /* Retry if a recoverably reset event has been scheduled */
2250 if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
2251 (efx->reset_pending != RESET_TYPE_ALL))
2252 goto fail3;
2253
2254 efx->reset_pending = RESET_TYPE_NONE;
2255 }
2256
2257 if (rc) {
2258 EFX_ERR(efx, "Could not reset NIC\n");
2259 goto fail4;
2260 }
2261
55edc6e6
BH
2262 /* Switch to the running state before we expose the device to the OS,
2263 * so that dev_open()|efx_start_all() will actually start the device */
8ceee660 2264 efx->state = STATE_RUNNING;
7dde596e 2265
8ceee660
BH
2266 rc = efx_register_netdev(efx);
2267 if (rc)
2268 goto fail5;
2269
2270 EFX_LOG(efx, "initialisation successful\n");
a5211bb5
BH
2271
2272 rtnl_lock();
2273 efx_mtd_probe(efx); /* allowed to fail */
2274 rtnl_unlock();
8ceee660
BH
2275 return 0;
2276
2277 fail5:
2278 efx_pci_remove_main(efx);
2279 fail4:
2280 fail3:
2281 efx_fini_io(efx);
2282 fail2:
2283 efx_fini_struct(efx);
2284 fail1:
5e2a911c 2285 WARN_ON(rc > 0);
8ceee660
BH
2286 EFX_LOG(efx, "initialisation failed. rc=%d\n", rc);
2287 free_netdev(net_dev);
2288 return rc;
2289}
2290
89c758fa
BH
2291static int efx_pm_freeze(struct device *dev)
2292{
2293 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2294
2295 efx->state = STATE_FINI;
2296
2297 netif_device_detach(efx->net_dev);
2298
2299 efx_stop_all(efx);
2300 efx_fini_channels(efx);
2301
2302 return 0;
2303}
2304
2305static int efx_pm_thaw(struct device *dev)
2306{
2307 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
2308
2309 efx->state = STATE_INIT;
2310
2311 efx_init_channels(efx);
2312
2313 mutex_lock(&efx->mac_lock);
2314 efx->phy_op->reconfigure(efx);
2315 mutex_unlock(&efx->mac_lock);
2316
2317 efx_start_all(efx);
2318
2319 netif_device_attach(efx->net_dev);
2320
2321 efx->state = STATE_RUNNING;
2322
2323 efx->type->resume_wol(efx);
2324
2325 return 0;
2326}
2327
2328static int efx_pm_poweroff(struct device *dev)
2329{
2330 struct pci_dev *pci_dev = to_pci_dev(dev);
2331 struct efx_nic *efx = pci_get_drvdata(pci_dev);
2332
2333 efx->type->fini(efx);
2334
2335 efx->reset_pending = RESET_TYPE_NONE;
2336
2337 pci_save_state(pci_dev);
2338 return pci_set_power_state(pci_dev, PCI_D3hot);
2339}
2340
2341/* Used for both resume and restore */
2342static int efx_pm_resume(struct device *dev)
2343{
2344 struct pci_dev *pci_dev = to_pci_dev(dev);
2345 struct efx_nic *efx = pci_get_drvdata(pci_dev);
2346 int rc;
2347
2348 rc = pci_set_power_state(pci_dev, PCI_D0);
2349 if (rc)
2350 return rc;
2351 pci_restore_state(pci_dev);
2352 rc = pci_enable_device(pci_dev);
2353 if (rc)
2354 return rc;
2355 pci_set_master(efx->pci_dev);
2356 rc = efx->type->reset(efx, RESET_TYPE_ALL);
2357 if (rc)
2358 return rc;
2359 rc = efx->type->init(efx);
2360 if (rc)
2361 return rc;
2362 efx_pm_thaw(dev);
2363 return 0;
2364}
2365
2366static int efx_pm_suspend(struct device *dev)
2367{
2368 int rc;
2369
2370 efx_pm_freeze(dev);
2371 rc = efx_pm_poweroff(dev);
2372 if (rc)
2373 efx_pm_resume(dev);
2374 return rc;
2375}
2376
2377static struct dev_pm_ops efx_pm_ops = {
2378 .suspend = efx_pm_suspend,
2379 .resume = efx_pm_resume,
2380 .freeze = efx_pm_freeze,
2381 .thaw = efx_pm_thaw,
2382 .poweroff = efx_pm_poweroff,
2383 .restore = efx_pm_resume,
2384};
2385
8ceee660
BH
2386static struct pci_driver efx_pci_driver = {
2387 .name = EFX_DRIVER_NAME,
2388 .id_table = efx_pci_table,
2389 .probe = efx_pci_probe,
2390 .remove = efx_pci_remove,
89c758fa 2391 .driver.pm = &efx_pm_ops,
8ceee660
BH
2392};
2393
2394/**************************************************************************
2395 *
2396 * Kernel module interface
2397 *
2398 *************************************************************************/
2399
2400module_param(interrupt_mode, uint, 0444);
2401MODULE_PARM_DESC(interrupt_mode,
2402 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2403
2404static int __init efx_init_module(void)
2405{
2406 int rc;
2407
2408 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2409
2410 rc = register_netdevice_notifier(&efx_netdev_notifier);
2411 if (rc)
2412 goto err_notifier;
2413
2414 refill_workqueue = create_workqueue("sfc_refill");
2415 if (!refill_workqueue) {
2416 rc = -ENOMEM;
2417 goto err_refill;
2418 }
1ab00629
SH
2419 reset_workqueue = create_singlethread_workqueue("sfc_reset");
2420 if (!reset_workqueue) {
2421 rc = -ENOMEM;
2422 goto err_reset;
2423 }
8ceee660
BH
2424
2425 rc = pci_register_driver(&efx_pci_driver);
2426 if (rc < 0)
2427 goto err_pci;
2428
2429 return 0;
2430
2431 err_pci:
1ab00629
SH
2432 destroy_workqueue(reset_workqueue);
2433 err_reset:
8ceee660
BH
2434 destroy_workqueue(refill_workqueue);
2435 err_refill:
2436 unregister_netdevice_notifier(&efx_netdev_notifier);
2437 err_notifier:
2438 return rc;
2439}
2440
2441static void __exit efx_exit_module(void)
2442{
2443 printk(KERN_INFO "Solarflare NET driver unloading\n");
2444
2445 pci_unregister_driver(&efx_pci_driver);
1ab00629 2446 destroy_workqueue(reset_workqueue);
8ceee660
BH
2447 destroy_workqueue(refill_workqueue);
2448 unregister_netdevice_notifier(&efx_netdev_notifier);
2449
2450}
2451
2452module_init(efx_init_module);
2453module_exit(efx_exit_module);
2454
906bb26c
BH
2455MODULE_AUTHOR("Solarflare Communications and "
2456 "Michael Brown <mbrown@fensystems.co.uk>");
8ceee660
BH
2457MODULE_DESCRIPTION("Solarflare Communications network driver");
2458MODULE_LICENSE("GPL");
2459MODULE_DEVICE_TABLE(pci, efx_pci_table);