sfc: Move all I2C stuff into struct falcon_board
[linux-2.6-block.git] / drivers / net / sfc / efx.c
CommitLineData
8ceee660
BH
1/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2008 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/module.h>
12#include <linux/pci.h>
13#include <linux/netdevice.h>
14#include <linux/etherdevice.h>
15#include <linux/delay.h>
16#include <linux/notifier.h>
17#include <linux/ip.h>
18#include <linux/tcp.h>
19#include <linux/in.h>
20#include <linux/crc32.h>
21#include <linux/ethtool.h>
aa6ef27e 22#include <linux/topology.h>
8ceee660 23#include "net_driver.h"
8ceee660
BH
24#include "ethtool.h"
25#include "tx.h"
26#include "rx.h"
27#include "efx.h"
28#include "mdio_10g.h"
29#include "falcon.h"
8ceee660
BH
30
31#define EFX_MAX_MTU (9 * 1024)
32
33/* RX slow fill workqueue. If memory allocation fails in the fast path,
34 * a work item is pushed onto this work queue to retry the allocation later,
35 * to avoid the NIC being starved of RX buffers. Since this is a per cpu
36 * workqueue, there is nothing to be gained in making it per NIC
37 */
38static struct workqueue_struct *refill_workqueue;
39
1ab00629
SH
40/* Reset workqueue. If any NIC has a hardware failure then a reset will be
41 * queued onto this work queue. This is not a per-nic work queue, because
42 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
43 */
44static struct workqueue_struct *reset_workqueue;
45
8ceee660
BH
46/**************************************************************************
47 *
48 * Configurable values
49 *
50 *************************************************************************/
51
8ceee660
BH
52/*
53 * Use separate channels for TX and RX events
54 *
28b581ab
NT
55 * Set this to 1 to use separate channels for TX and RX. It allows us
56 * to control interrupt affinity separately for TX and RX.
8ceee660 57 *
28b581ab 58 * This is only used in MSI-X interrupt mode
8ceee660 59 */
28b581ab
NT
60static unsigned int separate_tx_channels;
61module_param(separate_tx_channels, uint, 0644);
62MODULE_PARM_DESC(separate_tx_channels,
63 "Use separate channels for TX and RX");
8ceee660
BH
64
65/* This is the weight assigned to each of the (per-channel) virtual
66 * NAPI devices.
67 */
68static int napi_weight = 64;
69
70/* This is the time (in jiffies) between invocations of the hardware
71 * monitor, which checks for known hardware bugs and resets the
72 * hardware and driver as necessary.
73 */
74unsigned int efx_monitor_interval = 1 * HZ;
75
8ceee660
BH
76/* This controls whether or not the driver will initialise devices
77 * with invalid MAC addresses stored in the EEPROM or flash. If true,
78 * such devices will be initialised with a random locally-generated
79 * MAC address. This allows for loading the sfc_mtd driver to
80 * reprogram the flash, even if the flash contents (including the MAC
81 * address) have previously been erased.
82 */
83static unsigned int allow_bad_hwaddr;
84
85/* Initial interrupt moderation settings. They can be modified after
86 * module load with ethtool.
87 *
88 * The default for RX should strike a balance between increasing the
89 * round-trip latency and reducing overhead.
90 */
91static unsigned int rx_irq_mod_usec = 60;
92
93/* Initial interrupt moderation settings. They can be modified after
94 * module load with ethtool.
95 *
96 * This default is chosen to ensure that a 10G link does not go idle
97 * while a TX queue is stopped after it has become full. A queue is
98 * restarted when it drops below half full. The time this takes (assuming
99 * worst case 3 descriptors per packet and 1024 descriptors) is
100 * 512 / 3 * 1.2 = 205 usec.
101 */
102static unsigned int tx_irq_mod_usec = 150;
103
104/* This is the first interrupt mode to try out of:
105 * 0 => MSI-X
106 * 1 => MSI
107 * 2 => legacy
108 */
109static unsigned int interrupt_mode;
110
111/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
112 * i.e. the number of CPUs among which we may distribute simultaneous
113 * interrupt handling.
114 *
115 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
116 * The default (0) means to assign an interrupt to each package (level II cache)
117 */
118static unsigned int rss_cpus;
119module_param(rss_cpus, uint, 0444);
120MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
121
84ae48fe
BH
122static int phy_flash_cfg;
123module_param(phy_flash_cfg, int, 0644);
124MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
125
6fb70fd1
BH
126static unsigned irq_adapt_low_thresh = 10000;
127module_param(irq_adapt_low_thresh, uint, 0644);
128MODULE_PARM_DESC(irq_adapt_low_thresh,
129 "Threshold score for reducing IRQ moderation");
130
131static unsigned irq_adapt_high_thresh = 20000;
132module_param(irq_adapt_high_thresh, uint, 0644);
133MODULE_PARM_DESC(irq_adapt_high_thresh,
134 "Threshold score for increasing IRQ moderation");
135
8ceee660
BH
136/**************************************************************************
137 *
138 * Utility functions and prototypes
139 *
140 *************************************************************************/
141static void efx_remove_channel(struct efx_channel *channel);
142static void efx_remove_port(struct efx_nic *efx);
143static void efx_fini_napi(struct efx_nic *efx);
144static void efx_fini_channels(struct efx_nic *efx);
145
146#define EFX_ASSERT_RESET_SERIALISED(efx) \
147 do { \
3c78708f 148 if (efx->state == STATE_RUNNING) \
8ceee660
BH
149 ASSERT_RTNL(); \
150 } while (0)
151
152/**************************************************************************
153 *
154 * Event queue processing
155 *
156 *************************************************************************/
157
158/* Process channel's event queue
159 *
160 * This function is responsible for processing the event queue of a
161 * single channel. The caller must guarantee that this function will
162 * never be concurrently called more than once on the same channel,
163 * though different channels may be being processed concurrently.
164 */
4d566063 165static int efx_process_channel(struct efx_channel *channel, int rx_quota)
8ceee660 166{
42cbe2d7
BH
167 struct efx_nic *efx = channel->efx;
168 int rx_packets;
8ceee660 169
42cbe2d7 170 if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
8ceee660 171 !channel->enabled))
42cbe2d7 172 return 0;
8ceee660 173
42cbe2d7
BH
174 rx_packets = falcon_process_eventq(channel, rx_quota);
175 if (rx_packets == 0)
176 return 0;
8ceee660
BH
177
178 /* Deliver last RX packet. */
179 if (channel->rx_pkt) {
180 __efx_rx_packet(channel, channel->rx_pkt,
181 channel->rx_pkt_csummed);
182 channel->rx_pkt = NULL;
183 }
184
8ceee660
BH
185 efx_rx_strategy(channel);
186
42cbe2d7 187 efx_fast_push_rx_descriptors(&efx->rx_queue[channel->channel]);
8ceee660 188
42cbe2d7 189 return rx_packets;
8ceee660
BH
190}
191
192/* Mark channel as finished processing
193 *
194 * Note that since we will not receive further interrupts for this
195 * channel before we finish processing and call the eventq_read_ack()
196 * method, there is no need to use the interrupt hold-off timers.
197 */
198static inline void efx_channel_processed(struct efx_channel *channel)
199{
5b9e207c
BH
200 /* The interrupt handler for this channel may set work_pending
201 * as soon as we acknowledge the events we've seen. Make sure
202 * it's cleared before then. */
dc8cfa55 203 channel->work_pending = false;
5b9e207c
BH
204 smp_wmb();
205
8ceee660
BH
206 falcon_eventq_read_ack(channel);
207}
208
209/* NAPI poll handler
210 *
211 * NAPI guarantees serialisation of polls of the same device, which
212 * provides the guarantee required by efx_process_channel().
213 */
214static int efx_poll(struct napi_struct *napi, int budget)
215{
216 struct efx_channel *channel =
217 container_of(napi, struct efx_channel, napi_str);
8ceee660
BH
218 int rx_packets;
219
220 EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n",
221 channel->channel, raw_smp_processor_id());
222
42cbe2d7 223 rx_packets = efx_process_channel(channel, budget);
8ceee660
BH
224
225 if (rx_packets < budget) {
6fb70fd1
BH
226 struct efx_nic *efx = channel->efx;
227
228 if (channel->used_flags & EFX_USED_BY_RX &&
229 efx->irq_rx_adaptive &&
230 unlikely(++channel->irq_count == 1000)) {
6fb70fd1
BH
231 if (unlikely(channel->irq_mod_score <
232 irq_adapt_low_thresh)) {
0d86ebd8
BH
233 if (channel->irq_moderation > 1) {
234 channel->irq_moderation -= 1;
235 falcon_set_int_moderation(channel);
236 }
6fb70fd1
BH
237 } else if (unlikely(channel->irq_mod_score >
238 irq_adapt_high_thresh)) {
0d86ebd8
BH
239 if (channel->irq_moderation <
240 efx->irq_rx_moderation) {
241 channel->irq_moderation += 1;
242 falcon_set_int_moderation(channel);
243 }
6fb70fd1 244 }
6fb70fd1
BH
245 channel->irq_count = 0;
246 channel->irq_mod_score = 0;
247 }
248
8ceee660 249 /* There is no race here; although napi_disable() will
288379f0 250 * only wait for napi_complete(), this isn't a problem
8ceee660
BH
251 * since efx_channel_processed() will have no effect if
252 * interrupts have already been disabled.
253 */
288379f0 254 napi_complete(napi);
8ceee660
BH
255 efx_channel_processed(channel);
256 }
257
258 return rx_packets;
259}
260
261/* Process the eventq of the specified channel immediately on this CPU
262 *
263 * Disable hardware generated interrupts, wait for any existing
264 * processing to finish, then directly poll (and ack ) the eventq.
265 * Finally reenable NAPI and interrupts.
266 *
267 * Since we are touching interrupts the caller should hold the suspend lock
268 */
269void efx_process_channel_now(struct efx_channel *channel)
270{
271 struct efx_nic *efx = channel->efx;
272
273 BUG_ON(!channel->used_flags);
274 BUG_ON(!channel->enabled);
275
276 /* Disable interrupts and wait for ISRs to complete */
277 falcon_disable_interrupts(efx);
278 if (efx->legacy_irq)
279 synchronize_irq(efx->legacy_irq);
64ee3120 280 if (channel->irq)
8ceee660
BH
281 synchronize_irq(channel->irq);
282
283 /* Wait for any NAPI processing to complete */
284 napi_disable(&channel->napi_str);
285
286 /* Poll the channel */
3ffeabdd 287 efx_process_channel(channel, EFX_EVQ_SIZE);
8ceee660
BH
288
289 /* Ack the eventq. This may cause an interrupt to be generated
290 * when they are reenabled */
291 efx_channel_processed(channel);
292
293 napi_enable(&channel->napi_str);
294 falcon_enable_interrupts(efx);
295}
296
297/* Create event queue
298 * Event queue memory allocations are done only once. If the channel
299 * is reset, the memory buffer will be reused; this guards against
300 * errors during channel reset and also simplifies interrupt handling.
301 */
302static int efx_probe_eventq(struct efx_channel *channel)
303{
304 EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel);
305
306 return falcon_probe_eventq(channel);
307}
308
309/* Prepare channel's event queue */
bc3c90a2 310static void efx_init_eventq(struct efx_channel *channel)
8ceee660
BH
311{
312 EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel);
313
314 channel->eventq_read_ptr = 0;
315
bc3c90a2 316 falcon_init_eventq(channel);
8ceee660
BH
317}
318
319static void efx_fini_eventq(struct efx_channel *channel)
320{
321 EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel);
322
323 falcon_fini_eventq(channel);
324}
325
326static void efx_remove_eventq(struct efx_channel *channel)
327{
328 EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel);
329
330 falcon_remove_eventq(channel);
331}
332
333/**************************************************************************
334 *
335 * Channel handling
336 *
337 *************************************************************************/
338
8ceee660
BH
339static int efx_probe_channel(struct efx_channel *channel)
340{
341 struct efx_tx_queue *tx_queue;
342 struct efx_rx_queue *rx_queue;
343 int rc;
344
345 EFX_LOG(channel->efx, "creating channel %d\n", channel->channel);
346
347 rc = efx_probe_eventq(channel);
348 if (rc)
349 goto fail1;
350
351 efx_for_each_channel_tx_queue(tx_queue, channel) {
352 rc = efx_probe_tx_queue(tx_queue);
353 if (rc)
354 goto fail2;
355 }
356
357 efx_for_each_channel_rx_queue(rx_queue, channel) {
358 rc = efx_probe_rx_queue(rx_queue);
359 if (rc)
360 goto fail3;
361 }
362
363 channel->n_rx_frm_trunc = 0;
364
365 return 0;
366
367 fail3:
368 efx_for_each_channel_rx_queue(rx_queue, channel)
369 efx_remove_rx_queue(rx_queue);
370 fail2:
371 efx_for_each_channel_tx_queue(tx_queue, channel)
372 efx_remove_tx_queue(tx_queue);
373 fail1:
374 return rc;
375}
376
377
56536e9c
BH
378static void efx_set_channel_names(struct efx_nic *efx)
379{
380 struct efx_channel *channel;
381 const char *type = "";
382 int number;
383
384 efx_for_each_channel(channel, efx) {
385 number = channel->channel;
386 if (efx->n_channels > efx->n_rx_queues) {
387 if (channel->channel < efx->n_rx_queues) {
388 type = "-rx";
389 } else {
390 type = "-tx";
391 number -= efx->n_rx_queues;
392 }
393 }
394 snprintf(channel->name, sizeof(channel->name),
395 "%s%s-%d", efx->name, type, number);
396 }
397}
398
8ceee660
BH
399/* Channels are shutdown and reinitialised whilst the NIC is running
400 * to propagate configuration changes (mtu, checksum offload), or
401 * to clear hardware error conditions
402 */
bc3c90a2 403static void efx_init_channels(struct efx_nic *efx)
8ceee660
BH
404{
405 struct efx_tx_queue *tx_queue;
406 struct efx_rx_queue *rx_queue;
407 struct efx_channel *channel;
8ceee660 408
f7f13b0b
BH
409 /* Calculate the rx buffer allocation parameters required to
410 * support the current MTU, including padding for header
411 * alignment and overruns.
412 */
413 efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
414 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
415 efx->type->rx_buffer_padding);
416 efx->rx_buffer_order = get_order(efx->rx_buffer_len);
8ceee660
BH
417
418 /* Initialise the channels */
419 efx_for_each_channel(channel, efx) {
420 EFX_LOG(channel->efx, "init chan %d\n", channel->channel);
421
bc3c90a2 422 efx_init_eventq(channel);
8ceee660 423
bc3c90a2
BH
424 efx_for_each_channel_tx_queue(tx_queue, channel)
425 efx_init_tx_queue(tx_queue);
8ceee660
BH
426
427 /* The rx buffer allocation strategy is MTU dependent */
428 efx_rx_strategy(channel);
429
bc3c90a2
BH
430 efx_for_each_channel_rx_queue(rx_queue, channel)
431 efx_init_rx_queue(rx_queue);
8ceee660
BH
432
433 WARN_ON(channel->rx_pkt != NULL);
434 efx_rx_strategy(channel);
435 }
8ceee660
BH
436}
437
438/* This enables event queue processing and packet transmission.
439 *
440 * Note that this function is not allowed to fail, since that would
441 * introduce too much complexity into the suspend/resume path.
442 */
443static void efx_start_channel(struct efx_channel *channel)
444{
445 struct efx_rx_queue *rx_queue;
446
447 EFX_LOG(channel->efx, "starting chan %d\n", channel->channel);
448
5b9e207c
BH
449 /* The interrupt handler for this channel may set work_pending
450 * as soon as we enable it. Make sure it's cleared before
451 * then. Similarly, make sure it sees the enabled flag set. */
dc8cfa55
BH
452 channel->work_pending = false;
453 channel->enabled = true;
5b9e207c 454 smp_wmb();
8ceee660
BH
455
456 napi_enable(&channel->napi_str);
457
458 /* Load up RX descriptors */
459 efx_for_each_channel_rx_queue(rx_queue, channel)
460 efx_fast_push_rx_descriptors(rx_queue);
461}
462
463/* This disables event queue processing and packet transmission.
464 * This function does not guarantee that all queue processing
465 * (e.g. RX refill) is complete.
466 */
467static void efx_stop_channel(struct efx_channel *channel)
468{
469 struct efx_rx_queue *rx_queue;
470
471 if (!channel->enabled)
472 return;
473
474 EFX_LOG(channel->efx, "stop chan %d\n", channel->channel);
475
dc8cfa55 476 channel->enabled = false;
8ceee660
BH
477 napi_disable(&channel->napi_str);
478
479 /* Ensure that any worker threads have exited or will be no-ops */
480 efx_for_each_channel_rx_queue(rx_queue, channel) {
481 spin_lock_bh(&rx_queue->add_lock);
482 spin_unlock_bh(&rx_queue->add_lock);
483 }
484}
485
486static void efx_fini_channels(struct efx_nic *efx)
487{
488 struct efx_channel *channel;
489 struct efx_tx_queue *tx_queue;
490 struct efx_rx_queue *rx_queue;
6bc5d3a9 491 int rc;
8ceee660
BH
492
493 EFX_ASSERT_RESET_SERIALISED(efx);
494 BUG_ON(efx->port_enabled);
495
6bc5d3a9
BH
496 rc = falcon_flush_queues(efx);
497 if (rc)
498 EFX_ERR(efx, "failed to flush queues\n");
499 else
500 EFX_LOG(efx, "successfully flushed all queues\n");
501
8ceee660
BH
502 efx_for_each_channel(channel, efx) {
503 EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel);
504
505 efx_for_each_channel_rx_queue(rx_queue, channel)
506 efx_fini_rx_queue(rx_queue);
507 efx_for_each_channel_tx_queue(tx_queue, channel)
508 efx_fini_tx_queue(tx_queue);
8ceee660
BH
509 efx_fini_eventq(channel);
510 }
511}
512
513static void efx_remove_channel(struct efx_channel *channel)
514{
515 struct efx_tx_queue *tx_queue;
516 struct efx_rx_queue *rx_queue;
517
518 EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel);
519
520 efx_for_each_channel_rx_queue(rx_queue, channel)
521 efx_remove_rx_queue(rx_queue);
522 efx_for_each_channel_tx_queue(tx_queue, channel)
523 efx_remove_tx_queue(tx_queue);
524 efx_remove_eventq(channel);
525
526 channel->used_flags = 0;
527}
528
529void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay)
530{
531 queue_delayed_work(refill_workqueue, &rx_queue->work, delay);
532}
533
534/**************************************************************************
535 *
536 * Port handling
537 *
538 **************************************************************************/
539
540/* This ensures that the kernel is kept informed (via
541 * netif_carrier_on/off) of the link status, and also maintains the
542 * link status's stop on the port's TX queue.
543 */
544static void efx_link_status_changed(struct efx_nic *efx)
545{
8ceee660
BH
546 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
547 * that no events are triggered between unregister_netdev() and the
548 * driver unloading. A more general condition is that NETDEV_CHANGE
549 * can only be generated between NETDEV_UP and NETDEV_DOWN */
550 if (!netif_running(efx->net_dev))
551 return;
552
8c8661e4
BH
553 if (efx->port_inhibited) {
554 netif_carrier_off(efx->net_dev);
555 return;
556 }
557
dc8cfa55 558 if (efx->link_up != netif_carrier_ok(efx->net_dev)) {
8ceee660
BH
559 efx->n_link_state_changes++;
560
561 if (efx->link_up)
562 netif_carrier_on(efx->net_dev);
563 else
564 netif_carrier_off(efx->net_dev);
565 }
566
567 /* Status message for kernel log */
568 if (efx->link_up) {
f31a45d2
BH
569 EFX_INFO(efx, "link up at %uMbps %s-duplex (MTU %d)%s\n",
570 efx->link_speed, efx->link_fd ? "full" : "half",
8ceee660
BH
571 efx->net_dev->mtu,
572 (efx->promiscuous ? " [PROMISC]" : ""));
573 } else {
574 EFX_INFO(efx, "link down\n");
575 }
576
577}
578
115122af
BH
579static void efx_fini_port(struct efx_nic *efx);
580
8ceee660
BH
581/* This call reinitialises the MAC to pick up new PHY settings. The
582 * caller must hold the mac_lock */
8c8661e4 583void __efx_reconfigure_port(struct efx_nic *efx)
8ceee660
BH
584{
585 WARN_ON(!mutex_is_locked(&efx->mac_lock));
586
587 EFX_LOG(efx, "reconfiguring MAC from PHY settings on CPU %d\n",
588 raw_smp_processor_id());
589
a816f75a
BH
590 /* Serialise the promiscuous flag with efx_set_multicast_list. */
591 if (efx_dev_registered(efx)) {
592 netif_addr_lock_bh(efx->net_dev);
593 netif_addr_unlock_bh(efx->net_dev);
594 }
595
177dfcd8
BH
596 falcon_deconfigure_mac_wrapper(efx);
597
598 /* Reconfigure the PHY, disabling transmit in mac level loopback. */
599 if (LOOPBACK_INTERNAL(efx))
600 efx->phy_mode |= PHY_MODE_TX_DISABLED;
601 else
602 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
603 efx->phy_op->reconfigure(efx);
604
605 if (falcon_switch_mac(efx))
606 goto fail;
607
608 efx->mac_op->reconfigure(efx);
8ceee660
BH
609
610 /* Inform kernel of loss/gain of carrier */
611 efx_link_status_changed(efx);
177dfcd8
BH
612 return;
613
614fail:
615 EFX_ERR(efx, "failed to reconfigure MAC\n");
115122af
BH
616 efx->port_enabled = false;
617 efx_fini_port(efx);
8ceee660
BH
618}
619
620/* Reinitialise the MAC to pick up new PHY settings, even if the port is
621 * disabled. */
622void efx_reconfigure_port(struct efx_nic *efx)
623{
624 EFX_ASSERT_RESET_SERIALISED(efx);
625
626 mutex_lock(&efx->mac_lock);
627 __efx_reconfigure_port(efx);
628 mutex_unlock(&efx->mac_lock);
629}
630
631/* Asynchronous efx_reconfigure_port work item. To speed up efx_flush_all()
632 * we don't efx_reconfigure_port() if the port is disabled. Care is taken
633 * in efx_stop_all() and efx_start_port() to prevent PHY events being lost */
766ca0fa 634static void efx_phy_work(struct work_struct *data)
8ceee660 635{
766ca0fa 636 struct efx_nic *efx = container_of(data, struct efx_nic, phy_work);
8ceee660
BH
637
638 mutex_lock(&efx->mac_lock);
639 if (efx->port_enabled)
640 __efx_reconfigure_port(efx);
641 mutex_unlock(&efx->mac_lock);
642}
643
766ca0fa
BH
644static void efx_mac_work(struct work_struct *data)
645{
646 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
647
648 mutex_lock(&efx->mac_lock);
649 if (efx->port_enabled)
650 efx->mac_op->irq(efx);
651 mutex_unlock(&efx->mac_lock);
652}
653
8ceee660
BH
654static int efx_probe_port(struct efx_nic *efx)
655{
656 int rc;
657
658 EFX_LOG(efx, "create port\n");
659
660 /* Connect up MAC/PHY operations table and read MAC address */
661 rc = falcon_probe_port(efx);
662 if (rc)
663 goto err;
664
84ae48fe
BH
665 if (phy_flash_cfg)
666 efx->phy_mode = PHY_MODE_SPECIAL;
667
8ceee660
BH
668 /* Sanity check MAC address */
669 if (is_valid_ether_addr(efx->mac_address)) {
670 memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
671 } else {
e174961c
JB
672 EFX_ERR(efx, "invalid MAC address %pM\n",
673 efx->mac_address);
8ceee660
BH
674 if (!allow_bad_hwaddr) {
675 rc = -EINVAL;
676 goto err;
677 }
678 random_ether_addr(efx->net_dev->dev_addr);
e174961c
JB
679 EFX_INFO(efx, "using locally-generated MAC %pM\n",
680 efx->net_dev->dev_addr);
8ceee660
BH
681 }
682
683 return 0;
684
685 err:
686 efx_remove_port(efx);
687 return rc;
688}
689
690static int efx_init_port(struct efx_nic *efx)
691{
692 int rc;
693
694 EFX_LOG(efx, "init port\n");
695
177dfcd8 696 rc = efx->phy_op->init(efx);
8ceee660
BH
697 if (rc)
698 return rc;
177dfcd8 699 mutex_lock(&efx->mac_lock);
4b988280 700 efx->phy_op->reconfigure(efx);
177dfcd8
BH
701 rc = falcon_switch_mac(efx);
702 mutex_unlock(&efx->mac_lock);
703 if (rc)
704 goto fail;
705 efx->mac_op->reconfigure(efx);
8ceee660 706
dc8cfa55 707 efx->port_initialized = true;
1974cc20 708 efx_stats_enable(efx);
8ceee660 709 return 0;
177dfcd8
BH
710
711fail:
712 efx->phy_op->fini(efx);
713 return rc;
8ceee660
BH
714}
715
716/* Allow efx_reconfigure_port() to be scheduled, and close the window
717 * between efx_stop_port and efx_flush_all whereby a previously scheduled
766ca0fa 718 * efx_phy_work()/efx_mac_work() may have been cancelled */
8ceee660
BH
719static void efx_start_port(struct efx_nic *efx)
720{
721 EFX_LOG(efx, "start port\n");
722 BUG_ON(efx->port_enabled);
723
724 mutex_lock(&efx->mac_lock);
dc8cfa55 725 efx->port_enabled = true;
8ceee660 726 __efx_reconfigure_port(efx);
766ca0fa 727 efx->mac_op->irq(efx);
8ceee660
BH
728 mutex_unlock(&efx->mac_lock);
729}
730
766ca0fa
BH
731/* Prevent efx_phy_work, efx_mac_work, and efx_monitor() from executing,
732 * and efx_set_multicast_list() from scheduling efx_phy_work. efx_phy_work
733 * and efx_mac_work may still be scheduled via NAPI processing until
734 * efx_flush_all() is called */
8ceee660
BH
735static void efx_stop_port(struct efx_nic *efx)
736{
737 EFX_LOG(efx, "stop port\n");
738
739 mutex_lock(&efx->mac_lock);
dc8cfa55 740 efx->port_enabled = false;
8ceee660
BH
741 mutex_unlock(&efx->mac_lock);
742
743 /* Serialise against efx_set_multicast_list() */
55668611 744 if (efx_dev_registered(efx)) {
b9e40857
DM
745 netif_addr_lock_bh(efx->net_dev);
746 netif_addr_unlock_bh(efx->net_dev);
8ceee660
BH
747 }
748}
749
750static void efx_fini_port(struct efx_nic *efx)
751{
752 EFX_LOG(efx, "shut down port\n");
753
754 if (!efx->port_initialized)
755 return;
756
1974cc20 757 efx_stats_disable(efx);
177dfcd8 758 efx->phy_op->fini(efx);
dc8cfa55 759 efx->port_initialized = false;
8ceee660 760
dc8cfa55 761 efx->link_up = false;
8ceee660
BH
762 efx_link_status_changed(efx);
763}
764
765static void efx_remove_port(struct efx_nic *efx)
766{
767 EFX_LOG(efx, "destroying port\n");
768
769 falcon_remove_port(efx);
770}
771
772/**************************************************************************
773 *
774 * NIC handling
775 *
776 **************************************************************************/
777
778/* This configures the PCI device to enable I/O and DMA. */
779static int efx_init_io(struct efx_nic *efx)
780{
781 struct pci_dev *pci_dev = efx->pci_dev;
782 dma_addr_t dma_mask = efx->type->max_dma_mask;
783 int rc;
784
785 EFX_LOG(efx, "initialising I/O\n");
786
787 rc = pci_enable_device(pci_dev);
788 if (rc) {
789 EFX_ERR(efx, "failed to enable PCI device\n");
790 goto fail1;
791 }
792
793 pci_set_master(pci_dev);
794
795 /* Set the PCI DMA mask. Try all possibilities from our
796 * genuine mask down to 32 bits, because some architectures
797 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
798 * masks event though they reject 46 bit masks.
799 */
800 while (dma_mask > 0x7fffffffUL) {
801 if (pci_dma_supported(pci_dev, dma_mask) &&
802 ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
803 break;
804 dma_mask >>= 1;
805 }
806 if (rc) {
807 EFX_ERR(efx, "could not find a suitable DMA mask\n");
808 goto fail2;
809 }
810 EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask);
811 rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
812 if (rc) {
813 /* pci_set_consistent_dma_mask() is not *allowed* to
814 * fail with a mask that pci_set_dma_mask() accepted,
815 * but just in case...
816 */
817 EFX_ERR(efx, "failed to set consistent DMA mask\n");
818 goto fail2;
819 }
820
dc803df8
BH
821 efx->membase_phys = pci_resource_start(efx->pci_dev, EFX_MEM_BAR);
822 rc = pci_request_region(pci_dev, EFX_MEM_BAR, "sfc");
8ceee660
BH
823 if (rc) {
824 EFX_ERR(efx, "request for memory BAR failed\n");
825 rc = -EIO;
826 goto fail3;
827 }
828 efx->membase = ioremap_nocache(efx->membase_phys,
829 efx->type->mem_map_size);
830 if (!efx->membase) {
dc803df8 831 EFX_ERR(efx, "could not map memory BAR at %llx+%x\n",
086ea356 832 (unsigned long long)efx->membase_phys,
8ceee660
BH
833 efx->type->mem_map_size);
834 rc = -ENOMEM;
835 goto fail4;
836 }
dc803df8
BH
837 EFX_LOG(efx, "memory BAR at %llx+%x (virtual %p)\n",
838 (unsigned long long)efx->membase_phys,
086ea356 839 efx->type->mem_map_size, efx->membase);
8ceee660
BH
840
841 return 0;
842
843 fail4:
dc803df8 844 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
8ceee660 845 fail3:
2c118e0f 846 efx->membase_phys = 0;
8ceee660
BH
847 fail2:
848 pci_disable_device(efx->pci_dev);
849 fail1:
850 return rc;
851}
852
853static void efx_fini_io(struct efx_nic *efx)
854{
855 EFX_LOG(efx, "shutting down I/O\n");
856
857 if (efx->membase) {
858 iounmap(efx->membase);
859 efx->membase = NULL;
860 }
861
862 if (efx->membase_phys) {
dc803df8 863 pci_release_region(efx->pci_dev, EFX_MEM_BAR);
2c118e0f 864 efx->membase_phys = 0;
8ceee660
BH
865 }
866
867 pci_disable_device(efx->pci_dev);
868}
869
46123d04
BH
870/* Get number of RX queues wanted. Return number of online CPU
871 * packages in the expectation that an IRQ balancer will spread
872 * interrupts across them. */
873static int efx_wanted_rx_queues(void)
874{
2f8975fb 875 cpumask_var_t core_mask;
46123d04
BH
876 int count;
877 int cpu;
878
79f55997 879 if (unlikely(!zalloc_cpumask_var(&core_mask, GFP_KERNEL))) {
2f8975fb 880 printk(KERN_WARNING
3977d033 881 "sfc: RSS disabled due to allocation failure\n");
2f8975fb
RR
882 return 1;
883 }
884
46123d04
BH
885 count = 0;
886 for_each_online_cpu(cpu) {
2f8975fb 887 if (!cpumask_test_cpu(cpu, core_mask)) {
46123d04 888 ++count;
2f8975fb 889 cpumask_or(core_mask, core_mask,
fbd59a8d 890 topology_core_cpumask(cpu));
46123d04
BH
891 }
892 }
893
2f8975fb 894 free_cpumask_var(core_mask);
46123d04
BH
895 return count;
896}
897
898/* Probe the number and type of interrupts we are able to obtain, and
899 * the resulting numbers of channels and RX queues.
900 */
8ceee660
BH
901static void efx_probe_interrupts(struct efx_nic *efx)
902{
46123d04
BH
903 int max_channels =
904 min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
8ceee660
BH
905 int rc, i;
906
907 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
46123d04
BH
908 struct msix_entry xentries[EFX_MAX_CHANNELS];
909 int wanted_ints;
28b581ab 910 int rx_queues;
aa6ef27e 911
46123d04
BH
912 /* We want one RX queue and interrupt per CPU package
913 * (or as specified by the rss_cpus module parameter).
914 * We will need one channel per interrupt.
915 */
28b581ab
NT
916 rx_queues = rss_cpus ? rss_cpus : efx_wanted_rx_queues();
917 wanted_ints = rx_queues + (separate_tx_channels ? 1 : 0);
918 wanted_ints = min(wanted_ints, max_channels);
8ceee660 919
28b581ab 920 for (i = 0; i < wanted_ints; i++)
8ceee660 921 xentries[i].entry = i;
28b581ab 922 rc = pci_enable_msix(efx->pci_dev, xentries, wanted_ints);
8ceee660 923 if (rc > 0) {
28b581ab
NT
924 EFX_ERR(efx, "WARNING: Insufficient MSI-X vectors"
925 " available (%d < %d).\n", rc, wanted_ints);
926 EFX_ERR(efx, "WARNING: Performance may be reduced.\n");
927 EFX_BUG_ON_PARANOID(rc >= wanted_ints);
928 wanted_ints = rc;
8ceee660 929 rc = pci_enable_msix(efx->pci_dev, xentries,
28b581ab 930 wanted_ints);
8ceee660
BH
931 }
932
933 if (rc == 0) {
28b581ab
NT
934 efx->n_rx_queues = min(rx_queues, wanted_ints);
935 efx->n_channels = wanted_ints;
936 for (i = 0; i < wanted_ints; i++)
8ceee660 937 efx->channel[i].irq = xentries[i].vector;
8ceee660
BH
938 } else {
939 /* Fall back to single channel MSI */
940 efx->interrupt_mode = EFX_INT_MODE_MSI;
941 EFX_ERR(efx, "could not enable MSI-X\n");
942 }
943 }
944
945 /* Try single interrupt MSI */
946 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
8831da7b 947 efx->n_rx_queues = 1;
28b581ab 948 efx->n_channels = 1;
8ceee660
BH
949 rc = pci_enable_msi(efx->pci_dev);
950 if (rc == 0) {
951 efx->channel[0].irq = efx->pci_dev->irq;
8ceee660
BH
952 } else {
953 EFX_ERR(efx, "could not enable MSI\n");
954 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
955 }
956 }
957
958 /* Assume legacy interrupts */
959 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
8831da7b 960 efx->n_rx_queues = 1;
28b581ab 961 efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
8ceee660
BH
962 efx->legacy_irq = efx->pci_dev->irq;
963 }
964}
965
966static void efx_remove_interrupts(struct efx_nic *efx)
967{
968 struct efx_channel *channel;
969
970 /* Remove MSI/MSI-X interrupts */
64ee3120 971 efx_for_each_channel(channel, efx)
8ceee660
BH
972 channel->irq = 0;
973 pci_disable_msi(efx->pci_dev);
974 pci_disable_msix(efx->pci_dev);
975
976 /* Remove legacy interrupt */
977 efx->legacy_irq = 0;
978}
979
8831da7b 980static void efx_set_channels(struct efx_nic *efx)
8ceee660
BH
981{
982 struct efx_tx_queue *tx_queue;
983 struct efx_rx_queue *rx_queue;
8ceee660 984
60ac1065 985 efx_for_each_tx_queue(tx_queue, efx) {
28b581ab
NT
986 if (separate_tx_channels)
987 tx_queue->channel = &efx->channel[efx->n_channels-1];
60ac1065
BH
988 else
989 tx_queue->channel = &efx->channel[0];
990 tx_queue->channel->used_flags |= EFX_USED_BY_TX;
991 }
8ceee660 992
8831da7b
BH
993 efx_for_each_rx_queue(rx_queue, efx) {
994 rx_queue->channel = &efx->channel[rx_queue->queue];
995 rx_queue->channel->used_flags |= EFX_USED_BY_RX;
8ceee660
BH
996 }
997}
998
999static int efx_probe_nic(struct efx_nic *efx)
1000{
1001 int rc;
1002
1003 EFX_LOG(efx, "creating NIC\n");
1004
1005 /* Carry out hardware-type specific initialisation */
1006 rc = falcon_probe_nic(efx);
1007 if (rc)
1008 return rc;
1009
1010 /* Determine the number of channels and RX queues by trying to hook
1011 * in MSI-X interrupts. */
1012 efx_probe_interrupts(efx);
1013
8831da7b 1014 efx_set_channels(efx);
8ceee660
BH
1015
1016 /* Initialise the interrupt moderation settings */
6fb70fd1 1017 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true);
8ceee660
BH
1018
1019 return 0;
1020}
1021
1022static void efx_remove_nic(struct efx_nic *efx)
1023{
1024 EFX_LOG(efx, "destroying NIC\n");
1025
1026 efx_remove_interrupts(efx);
1027 falcon_remove_nic(efx);
1028}
1029
1030/**************************************************************************
1031 *
1032 * NIC startup/shutdown
1033 *
1034 *************************************************************************/
1035
1036static int efx_probe_all(struct efx_nic *efx)
1037{
1038 struct efx_channel *channel;
1039 int rc;
1040
1041 /* Create NIC */
1042 rc = efx_probe_nic(efx);
1043 if (rc) {
1044 EFX_ERR(efx, "failed to create NIC\n");
1045 goto fail1;
1046 }
1047
1048 /* Create port */
1049 rc = efx_probe_port(efx);
1050 if (rc) {
1051 EFX_ERR(efx, "failed to create port\n");
1052 goto fail2;
1053 }
1054
1055 /* Create channels */
1056 efx_for_each_channel(channel, efx) {
1057 rc = efx_probe_channel(channel);
1058 if (rc) {
1059 EFX_ERR(efx, "failed to create channel %d\n",
1060 channel->channel);
1061 goto fail3;
1062 }
1063 }
56536e9c 1064 efx_set_channel_names(efx);
8ceee660
BH
1065
1066 return 0;
1067
1068 fail3:
1069 efx_for_each_channel(channel, efx)
1070 efx_remove_channel(channel);
1071 efx_remove_port(efx);
1072 fail2:
1073 efx_remove_nic(efx);
1074 fail1:
1075 return rc;
1076}
1077
1078/* Called after previous invocation(s) of efx_stop_all, restarts the
1079 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1080 * and ensures that the port is scheduled to be reconfigured.
1081 * This function is safe to call multiple times when the NIC is in any
1082 * state. */
1083static void efx_start_all(struct efx_nic *efx)
1084{
1085 struct efx_channel *channel;
1086
1087 EFX_ASSERT_RESET_SERIALISED(efx);
1088
1089 /* Check that it is appropriate to restart the interface. All
1090 * of these flags are safe to read under just the rtnl lock */
1091 if (efx->port_enabled)
1092 return;
1093 if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1094 return;
55668611 1095 if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
8ceee660
BH
1096 return;
1097
1098 /* Mark the port as enabled so port reconfigurations can start, then
1099 * restart the transmit interface early so the watchdog timer stops */
1100 efx_start_port(efx);
dacccc74
SH
1101 if (efx_dev_registered(efx))
1102 efx_wake_queue(efx);
8ceee660
BH
1103
1104 efx_for_each_channel(channel, efx)
1105 efx_start_channel(channel);
1106
1107 falcon_enable_interrupts(efx);
1108
1109 /* Start hardware monitor if we're in RUNNING */
1110 if (efx->state == STATE_RUNNING)
1111 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1112 efx_monitor_interval);
1113}
1114
1115/* Flush all delayed work. Should only be called when no more delayed work
1116 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1117 * since we're holding the rtnl_lock at this point. */
1118static void efx_flush_all(struct efx_nic *efx)
1119{
1120 struct efx_rx_queue *rx_queue;
1121
1122 /* Make sure the hardware monitor is stopped */
1123 cancel_delayed_work_sync(&efx->monitor_work);
1124
1125 /* Ensure that all RX slow refills are complete. */
b3475645 1126 efx_for_each_rx_queue(rx_queue, efx)
8ceee660 1127 cancel_delayed_work_sync(&rx_queue->work);
8ceee660
BH
1128
1129 /* Stop scheduled port reconfigurations */
766ca0fa
BH
1130 cancel_work_sync(&efx->mac_work);
1131 cancel_work_sync(&efx->phy_work);
8ceee660
BH
1132
1133}
1134
1135/* Quiesce hardware and software without bringing the link down.
1136 * Safe to call multiple times, when the nic and interface is in any
1137 * state. The caller is guaranteed to subsequently be in a position
1138 * to modify any hardware and software state they see fit without
1139 * taking locks. */
1140static void efx_stop_all(struct efx_nic *efx)
1141{
1142 struct efx_channel *channel;
1143
1144 EFX_ASSERT_RESET_SERIALISED(efx);
1145
1146 /* port_enabled can be read safely under the rtnl lock */
1147 if (!efx->port_enabled)
1148 return;
1149
1150 /* Disable interrupts and wait for ISR to complete */
1151 falcon_disable_interrupts(efx);
1152 if (efx->legacy_irq)
1153 synchronize_irq(efx->legacy_irq);
64ee3120 1154 efx_for_each_channel(channel, efx) {
8ceee660
BH
1155 if (channel->irq)
1156 synchronize_irq(channel->irq);
b3475645 1157 }
8ceee660
BH
1158
1159 /* Stop all NAPI processing and synchronous rx refills */
1160 efx_for_each_channel(channel, efx)
1161 efx_stop_channel(channel);
1162
1163 /* Stop all asynchronous port reconfigurations. Since all
1164 * event processing has already been stopped, there is no
1165 * window to loose phy events */
1166 efx_stop_port(efx);
1167
766ca0fa 1168 /* Flush efx_phy_work, efx_mac_work, refill_workqueue, monitor_work */
8ceee660
BH
1169 efx_flush_all(efx);
1170
1171 /* Isolate the MAC from the TX and RX engines, so that queue
1172 * flushes will complete in a timely fashion. */
5c8af3b9
BH
1173 falcon_deconfigure_mac_wrapper(efx);
1174 msleep(10); /* Let the Rx FIFO drain */
8ceee660
BH
1175 falcon_drain_tx_fifo(efx);
1176
1177 /* Stop the kernel transmit interface late, so the watchdog
1178 * timer isn't ticking over the flush */
55668611 1179 if (efx_dev_registered(efx)) {
dacccc74 1180 efx_stop_queue(efx);
8ceee660
BH
1181 netif_tx_lock_bh(efx->net_dev);
1182 netif_tx_unlock_bh(efx->net_dev);
1183 }
1184}
1185
1186static void efx_remove_all(struct efx_nic *efx)
1187{
1188 struct efx_channel *channel;
1189
1190 efx_for_each_channel(channel, efx)
1191 efx_remove_channel(channel);
1192 efx_remove_port(efx);
1193 efx_remove_nic(efx);
1194}
1195
1196/* A convinience function to safely flush all the queues */
bc3c90a2 1197void efx_flush_queues(struct efx_nic *efx)
8ceee660 1198{
8ceee660
BH
1199 EFX_ASSERT_RESET_SERIALISED(efx);
1200
1201 efx_stop_all(efx);
1202
1203 efx_fini_channels(efx);
bc3c90a2 1204 efx_init_channels(efx);
8ceee660
BH
1205
1206 efx_start_all(efx);
8ceee660
BH
1207}
1208
1209/**************************************************************************
1210 *
1211 * Interrupt moderation
1212 *
1213 **************************************************************************/
1214
0d86ebd8
BH
1215static unsigned irq_mod_ticks(int usecs, int resolution)
1216{
1217 if (usecs <= 0)
1218 return 0; /* cannot receive interrupts ahead of time :-) */
1219 if (usecs < resolution)
1220 return 1; /* never round down to 0 */
1221 return usecs / resolution;
1222}
1223
8ceee660 1224/* Set interrupt moderation parameters */
6fb70fd1
BH
1225void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs,
1226 bool rx_adaptive)
8ceee660
BH
1227{
1228 struct efx_tx_queue *tx_queue;
1229 struct efx_rx_queue *rx_queue;
0d86ebd8
BH
1230 unsigned tx_ticks = irq_mod_ticks(tx_usecs, FALCON_IRQ_MOD_RESOLUTION);
1231 unsigned rx_ticks = irq_mod_ticks(rx_usecs, FALCON_IRQ_MOD_RESOLUTION);
8ceee660
BH
1232
1233 EFX_ASSERT_RESET_SERIALISED(efx);
1234
1235 efx_for_each_tx_queue(tx_queue, efx)
0d86ebd8 1236 tx_queue->channel->irq_moderation = tx_ticks;
8ceee660 1237
6fb70fd1 1238 efx->irq_rx_adaptive = rx_adaptive;
0d86ebd8 1239 efx->irq_rx_moderation = rx_ticks;
8ceee660 1240 efx_for_each_rx_queue(rx_queue, efx)
0d86ebd8 1241 rx_queue->channel->irq_moderation = rx_ticks;
8ceee660
BH
1242}
1243
1244/**************************************************************************
1245 *
1246 * Hardware monitor
1247 *
1248 **************************************************************************/
1249
1250/* Run periodically off the general workqueue. Serialised against
1251 * efx_reconfigure_port via the mac_lock */
1252static void efx_monitor(struct work_struct *data)
1253{
1254 struct efx_nic *efx = container_of(data, struct efx_nic,
1255 monitor_work.work);
766ca0fa 1256 int rc;
8ceee660
BH
1257
1258 EFX_TRACE(efx, "hardware monitor executing on CPU %d\n",
1259 raw_smp_processor_id());
1260
8ceee660
BH
1261 /* If the mac_lock is already held then it is likely a port
1262 * reconfiguration is already in place, which will likely do
1263 * most of the work of check_hw() anyway. */
766ca0fa
BH
1264 if (!mutex_trylock(&efx->mac_lock))
1265 goto out_requeue;
1266 if (!efx->port_enabled)
1267 goto out_unlock;
278c0621 1268 rc = falcon_board(efx)->monitor(efx);
766ca0fa
BH
1269 if (rc) {
1270 EFX_ERR(efx, "Board sensor %s; shutting down PHY\n",
1271 (rc == -ERANGE) ? "reported fault" : "failed");
1272 efx->phy_mode |= PHY_MODE_LOW_POWER;
1273 falcon_sim_phy_event(efx);
8ceee660 1274 }
766ca0fa
BH
1275 efx->phy_op->poll(efx);
1276 efx->mac_op->poll(efx);
8ceee660 1277
766ca0fa 1278out_unlock:
8ceee660 1279 mutex_unlock(&efx->mac_lock);
766ca0fa 1280out_requeue:
8ceee660
BH
1281 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1282 efx_monitor_interval);
1283}
1284
1285/**************************************************************************
1286 *
1287 * ioctls
1288 *
1289 *************************************************************************/
1290
1291/* Net device ioctl
1292 * Context: process, rtnl_lock() held.
1293 */
1294static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1295{
767e468c 1296 struct efx_nic *efx = netdev_priv(net_dev);
68e7f45e 1297 struct mii_ioctl_data *data = if_mii(ifr);
8ceee660
BH
1298
1299 EFX_ASSERT_RESET_SERIALISED(efx);
1300
68e7f45e
BH
1301 /* Convert phy_id from older PRTAD/DEVAD format */
1302 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) &&
1303 (data->phy_id & 0xfc00) == 0x0400)
1304 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400;
1305
1306 return mdio_mii_ioctl(&efx->mdio, data, cmd);
8ceee660
BH
1307}
1308
1309/**************************************************************************
1310 *
1311 * NAPI interface
1312 *
1313 **************************************************************************/
1314
1315static int efx_init_napi(struct efx_nic *efx)
1316{
1317 struct efx_channel *channel;
8ceee660
BH
1318
1319 efx_for_each_channel(channel, efx) {
1320 channel->napi_dev = efx->net_dev;
718cff1e
BH
1321 netif_napi_add(channel->napi_dev, &channel->napi_str,
1322 efx_poll, napi_weight);
8ceee660
BH
1323 }
1324 return 0;
8ceee660
BH
1325}
1326
1327static void efx_fini_napi(struct efx_nic *efx)
1328{
1329 struct efx_channel *channel;
1330
1331 efx_for_each_channel(channel, efx) {
718cff1e
BH
1332 if (channel->napi_dev)
1333 netif_napi_del(&channel->napi_str);
8ceee660
BH
1334 channel->napi_dev = NULL;
1335 }
1336}
1337
1338/**************************************************************************
1339 *
1340 * Kernel netpoll interface
1341 *
1342 *************************************************************************/
1343
1344#ifdef CONFIG_NET_POLL_CONTROLLER
1345
1346/* Although in the common case interrupts will be disabled, this is not
1347 * guaranteed. However, all our work happens inside the NAPI callback,
1348 * so no locking is required.
1349 */
1350static void efx_netpoll(struct net_device *net_dev)
1351{
767e468c 1352 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1353 struct efx_channel *channel;
1354
64ee3120 1355 efx_for_each_channel(channel, efx)
8ceee660
BH
1356 efx_schedule_channel(channel);
1357}
1358
1359#endif
1360
1361/**************************************************************************
1362 *
1363 * Kernel net device interface
1364 *
1365 *************************************************************************/
1366
1367/* Context: process, rtnl_lock() held. */
1368static int efx_net_open(struct net_device *net_dev)
1369{
767e468c 1370 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1371 EFX_ASSERT_RESET_SERIALISED(efx);
1372
1373 EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name,
1374 raw_smp_processor_id());
1375
f4bd954e
BH
1376 if (efx->state == STATE_DISABLED)
1377 return -EIO;
f8b87c17
BH
1378 if (efx->phy_mode & PHY_MODE_SPECIAL)
1379 return -EBUSY;
1380
8ceee660
BH
1381 efx_start_all(efx);
1382 return 0;
1383}
1384
1385/* Context: process, rtnl_lock() held.
1386 * Note that the kernel will ignore our return code; this method
1387 * should really be a void.
1388 */
1389static int efx_net_stop(struct net_device *net_dev)
1390{
767e468c 1391 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1392
1393 EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name,
1394 raw_smp_processor_id());
1395
f4bd954e
BH
1396 if (efx->state != STATE_DISABLED) {
1397 /* Stop the device and flush all the channels */
1398 efx_stop_all(efx);
1399 efx_fini_channels(efx);
1400 efx_init_channels(efx);
1401 }
8ceee660
BH
1402
1403 return 0;
1404}
1405
1974cc20
BH
1406void efx_stats_disable(struct efx_nic *efx)
1407{
1408 spin_lock(&efx->stats_lock);
1409 ++efx->stats_disable_count;
1410 spin_unlock(&efx->stats_lock);
1411}
1412
1413void efx_stats_enable(struct efx_nic *efx)
1414{
1415 spin_lock(&efx->stats_lock);
1416 --efx->stats_disable_count;
1417 spin_unlock(&efx->stats_lock);
1418}
1419
5b9e207c 1420/* Context: process, dev_base_lock or RTNL held, non-blocking. */
8ceee660
BH
1421static struct net_device_stats *efx_net_stats(struct net_device *net_dev)
1422{
767e468c 1423 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1424 struct efx_mac_stats *mac_stats = &efx->mac_stats;
1425 struct net_device_stats *stats = &net_dev->stats;
1426
5b9e207c 1427 /* Update stats if possible, but do not wait if another thread
1974cc20
BH
1428 * is updating them or if MAC stats fetches are temporarily
1429 * disabled; slightly stale stats are acceptable.
5b9e207c 1430 */
8ceee660
BH
1431 if (!spin_trylock(&efx->stats_lock))
1432 return stats;
1974cc20 1433 if (!efx->stats_disable_count) {
177dfcd8 1434 efx->mac_op->update_stats(efx);
8ceee660
BH
1435 falcon_update_nic_stats(efx);
1436 }
1437 spin_unlock(&efx->stats_lock);
1438
1439 stats->rx_packets = mac_stats->rx_packets;
1440 stats->tx_packets = mac_stats->tx_packets;
1441 stats->rx_bytes = mac_stats->rx_bytes;
1442 stats->tx_bytes = mac_stats->tx_bytes;
1443 stats->multicast = mac_stats->rx_multicast;
1444 stats->collisions = mac_stats->tx_collision;
1445 stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1446 mac_stats->rx_length_error);
1447 stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
1448 stats->rx_crc_errors = mac_stats->rx_bad;
1449 stats->rx_frame_errors = mac_stats->rx_align_error;
1450 stats->rx_fifo_errors = mac_stats->rx_overflow;
1451 stats->rx_missed_errors = mac_stats->rx_missed;
1452 stats->tx_window_errors = mac_stats->tx_late_collision;
1453
1454 stats->rx_errors = (stats->rx_length_errors +
1455 stats->rx_over_errors +
1456 stats->rx_crc_errors +
1457 stats->rx_frame_errors +
1458 stats->rx_fifo_errors +
1459 stats->rx_missed_errors +
1460 mac_stats->rx_symbol_error);
1461 stats->tx_errors = (stats->tx_window_errors +
1462 mac_stats->tx_bad);
1463
1464 return stats;
1465}
1466
1467/* Context: netif_tx_lock held, BHs disabled. */
1468static void efx_watchdog(struct net_device *net_dev)
1469{
767e468c 1470 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 1471
739bb23d
BH
1472 EFX_ERR(efx, "TX stuck with stop_count=%d port_enabled=%d:"
1473 " resetting channels\n",
1474 atomic_read(&efx->netif_stop_count), efx->port_enabled);
8ceee660 1475
739bb23d 1476 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
8ceee660
BH
1477}
1478
1479
1480/* Context: process, rtnl_lock() held. */
1481static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1482{
767e468c 1483 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1484 int rc = 0;
1485
1486 EFX_ASSERT_RESET_SERIALISED(efx);
1487
1488 if (new_mtu > EFX_MAX_MTU)
1489 return -EINVAL;
1490
1491 efx_stop_all(efx);
1492
1493 EFX_LOG(efx, "changing MTU to %d\n", new_mtu);
1494
1495 efx_fini_channels(efx);
1496 net_dev->mtu = new_mtu;
bc3c90a2 1497 efx_init_channels(efx);
8ceee660
BH
1498
1499 efx_start_all(efx);
1500 return rc;
8ceee660
BH
1501}
1502
1503static int efx_set_mac_address(struct net_device *net_dev, void *data)
1504{
767e468c 1505 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1506 struct sockaddr *addr = data;
1507 char *new_addr = addr->sa_data;
1508
1509 EFX_ASSERT_RESET_SERIALISED(efx);
1510
1511 if (!is_valid_ether_addr(new_addr)) {
e174961c
JB
1512 EFX_ERR(efx, "invalid ethernet MAC address requested: %pM\n",
1513 new_addr);
8ceee660
BH
1514 return -EINVAL;
1515 }
1516
1517 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1518
1519 /* Reconfigure the MAC */
1520 efx_reconfigure_port(efx);
1521
1522 return 0;
1523}
1524
a816f75a 1525/* Context: netif_addr_lock held, BHs disabled. */
8ceee660
BH
1526static void efx_set_multicast_list(struct net_device *net_dev)
1527{
767e468c 1528 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1529 struct dev_mc_list *mc_list = net_dev->mc_list;
1530 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
a816f75a
BH
1531 bool promiscuous = !!(net_dev->flags & IFF_PROMISC);
1532 bool changed = (efx->promiscuous != promiscuous);
8ceee660
BH
1533 u32 crc;
1534 int bit;
1535 int i;
1536
a816f75a 1537 efx->promiscuous = promiscuous;
8ceee660
BH
1538
1539 /* Build multicast hash table */
1540 if (promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1541 memset(mc_hash, 0xff, sizeof(*mc_hash));
1542 } else {
1543 memset(mc_hash, 0x00, sizeof(*mc_hash));
1544 for (i = 0; i < net_dev->mc_count; i++) {
1545 crc = ether_crc_le(ETH_ALEN, mc_list->dmi_addr);
1546 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1547 set_bit_le(bit, mc_hash->byte);
1548 mc_list = mc_list->next;
1549 }
1550 }
1551
a816f75a
BH
1552 if (!efx->port_enabled)
1553 /* Delay pushing settings until efx_start_port() */
1554 return;
1555
1556 if (changed)
766ca0fa 1557 queue_work(efx->workqueue, &efx->phy_work);
a816f75a 1558
8ceee660
BH
1559 /* Create and activate new global multicast hash table */
1560 falcon_set_multicast_hash(efx);
1561}
1562
c3ecb9f3
SH
1563static const struct net_device_ops efx_netdev_ops = {
1564 .ndo_open = efx_net_open,
1565 .ndo_stop = efx_net_stop,
1566 .ndo_get_stats = efx_net_stats,
1567 .ndo_tx_timeout = efx_watchdog,
1568 .ndo_start_xmit = efx_hard_start_xmit,
1569 .ndo_validate_addr = eth_validate_addr,
1570 .ndo_do_ioctl = efx_ioctl,
1571 .ndo_change_mtu = efx_change_mtu,
1572 .ndo_set_mac_address = efx_set_mac_address,
1573 .ndo_set_multicast_list = efx_set_multicast_list,
1574#ifdef CONFIG_NET_POLL_CONTROLLER
1575 .ndo_poll_controller = efx_netpoll,
1576#endif
1577};
1578
7dde596e
BH
1579static void efx_update_name(struct efx_nic *efx)
1580{
1581 strcpy(efx->name, efx->net_dev->name);
1582 efx_mtd_rename(efx);
1583 efx_set_channel_names(efx);
1584}
1585
8ceee660
BH
1586static int efx_netdev_event(struct notifier_block *this,
1587 unsigned long event, void *ptr)
1588{
d3208b5e 1589 struct net_device *net_dev = ptr;
8ceee660 1590
7dde596e
BH
1591 if (net_dev->netdev_ops == &efx_netdev_ops &&
1592 event == NETDEV_CHANGENAME)
1593 efx_update_name(netdev_priv(net_dev));
8ceee660
BH
1594
1595 return NOTIFY_DONE;
1596}
1597
1598static struct notifier_block efx_netdev_notifier = {
1599 .notifier_call = efx_netdev_event,
1600};
1601
06d5e193
BH
1602static ssize_t
1603show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
1604{
1605 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
1606 return sprintf(buf, "%d\n", efx->phy_type);
1607}
1608static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
1609
8ceee660
BH
1610static int efx_register_netdev(struct efx_nic *efx)
1611{
1612 struct net_device *net_dev = efx->net_dev;
1613 int rc;
1614
1615 net_dev->watchdog_timeo = 5 * HZ;
1616 net_dev->irq = efx->pci_dev->irq;
c3ecb9f3 1617 net_dev->netdev_ops = &efx_netdev_ops;
8ceee660
BH
1618 SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev);
1619 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1620
8ceee660 1621 /* Clear MAC statistics */
177dfcd8 1622 efx->mac_op->update_stats(efx);
8ceee660
BH
1623 memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
1624
7dde596e 1625 rtnl_lock();
aed0628d
BH
1626
1627 rc = dev_alloc_name(net_dev, net_dev->name);
1628 if (rc < 0)
1629 goto fail_locked;
7dde596e 1630 efx_update_name(efx);
aed0628d
BH
1631
1632 rc = register_netdevice(net_dev);
1633 if (rc)
1634 goto fail_locked;
1635
1636 /* Always start with carrier off; PHY events will detect the link */
1637 netif_carrier_off(efx->net_dev);
1638
7dde596e 1639 rtnl_unlock();
8ceee660 1640
06d5e193
BH
1641 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1642 if (rc) {
1643 EFX_ERR(efx, "failed to init net dev attributes\n");
1644 goto fail_registered;
1645 }
1646
8ceee660 1647 return 0;
06d5e193 1648
aed0628d
BH
1649fail_locked:
1650 rtnl_unlock();
1651 EFX_ERR(efx, "could not register net dev\n");
1652 return rc;
1653
06d5e193
BH
1654fail_registered:
1655 unregister_netdev(net_dev);
1656 return rc;
8ceee660
BH
1657}
1658
1659static void efx_unregister_netdev(struct efx_nic *efx)
1660{
1661 struct efx_tx_queue *tx_queue;
1662
1663 if (!efx->net_dev)
1664 return;
1665
767e468c 1666 BUG_ON(netdev_priv(efx->net_dev) != efx);
8ceee660
BH
1667
1668 /* Free up any skbs still remaining. This has to happen before
1669 * we try to unregister the netdev as running their destructors
1670 * may be needed to get the device ref. count to 0. */
1671 efx_for_each_tx_queue(tx_queue, efx)
1672 efx_release_tx_buffers(tx_queue);
1673
55668611 1674 if (efx_dev_registered(efx)) {
8ceee660 1675 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
06d5e193 1676 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
8ceee660
BH
1677 unregister_netdev(efx->net_dev);
1678 }
1679}
1680
1681/**************************************************************************
1682 *
1683 * Device reset and suspend
1684 *
1685 **************************************************************************/
1686
2467ca46
BH
1687/* Tears down the entire software state and most of the hardware state
1688 * before reset. */
4b988280
SH
1689void efx_reset_down(struct efx_nic *efx, enum reset_type method,
1690 struct ethtool_cmd *ecmd)
8ceee660 1691{
8ceee660
BH
1692 EFX_ASSERT_RESET_SERIALISED(efx);
1693
1974cc20 1694 efx_stats_disable(efx);
2467ca46
BH
1695 efx_stop_all(efx);
1696 mutex_lock(&efx->mac_lock);
f4150724 1697 mutex_lock(&efx->spi_lock);
2467ca46 1698
177dfcd8 1699 efx->phy_op->get_settings(efx, ecmd);
8ceee660
BH
1700
1701 efx_fini_channels(efx);
4b988280
SH
1702 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
1703 efx->phy_op->fini(efx);
8ceee660
BH
1704}
1705
2467ca46
BH
1706/* This function will always ensure that the locks acquired in
1707 * efx_reset_down() are released. A failure return code indicates
1708 * that we were unable to reinitialise the hardware, and the
1709 * driver should be disabled. If ok is false, then the rx and tx
1710 * engines are not restarted, pending a RESET_DISABLE. */
4b988280
SH
1711int efx_reset_up(struct efx_nic *efx, enum reset_type method,
1712 struct ethtool_cmd *ecmd, bool ok)
8ceee660
BH
1713{
1714 int rc;
1715
2467ca46 1716 EFX_ASSERT_RESET_SERIALISED(efx);
8ceee660 1717
2467ca46 1718 rc = falcon_init_nic(efx);
8ceee660 1719 if (rc) {
2467ca46
BH
1720 EFX_ERR(efx, "failed to initialise NIC\n");
1721 ok = false;
8ceee660
BH
1722 }
1723
4b988280
SH
1724 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
1725 if (ok) {
1726 rc = efx->phy_op->init(efx);
1727 if (rc)
1728 ok = false;
115122af
BH
1729 }
1730 if (!ok)
4b988280
SH
1731 efx->port_initialized = false;
1732 }
1733
2467ca46
BH
1734 if (ok) {
1735 efx_init_channels(efx);
8ceee660 1736
177dfcd8 1737 if (efx->phy_op->set_settings(efx, ecmd))
2467ca46
BH
1738 EFX_ERR(efx, "could not restore PHY settings\n");
1739 }
1740
f4150724 1741 mutex_unlock(&efx->spi_lock);
2467ca46
BH
1742 mutex_unlock(&efx->mac_lock);
1743
8c8661e4 1744 if (ok) {
2467ca46 1745 efx_start_all(efx);
1974cc20 1746 efx_stats_enable(efx);
8c8661e4 1747 }
8ceee660
BH
1748 return rc;
1749}
1750
1751/* Reset the NIC as transparently as possible. Do not reset the PHY
1752 * Note that the reset may fail, in which case the card will be left
1753 * in a most-probably-unusable state.
1754 *
1755 * This function will sleep. You cannot reset from within an atomic
1756 * state; use efx_schedule_reset() instead.
1757 *
1758 * Grabs the rtnl_lock.
1759 */
1760static int efx_reset(struct efx_nic *efx)
1761{
1762 struct ethtool_cmd ecmd;
1763 enum reset_type method = efx->reset_pending;
f4bd954e 1764 int rc = 0;
8ceee660
BH
1765
1766 /* Serialise with kernel interfaces */
1767 rtnl_lock();
1768
1769 /* If we're not RUNNING then don't reset. Leave the reset_pending
1770 * flag set so that efx_pci_probe_main will be retried */
1771 if (efx->state != STATE_RUNNING) {
1772 EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n");
f4bd954e 1773 goto out_unlock;
8ceee660
BH
1774 }
1775
8ceee660
BH
1776 EFX_INFO(efx, "resetting (%d)\n", method);
1777
4b988280 1778 efx_reset_down(efx, method, &ecmd);
8ceee660
BH
1779
1780 rc = falcon_reset_hw(efx, method);
1781 if (rc) {
1782 EFX_ERR(efx, "failed to reset hardware\n");
f4bd954e 1783 goto out_disable;
8ceee660
BH
1784 }
1785
1786 /* Allow resets to be rescheduled. */
1787 efx->reset_pending = RESET_TYPE_NONE;
1788
1789 /* Reinitialise bus-mastering, which may have been turned off before
1790 * the reset was scheduled. This is still appropriate, even in the
1791 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
1792 * can respond to requests. */
1793 pci_set_master(efx->pci_dev);
1794
8ceee660
BH
1795 /* Leave device stopped if necessary */
1796 if (method == RESET_TYPE_DISABLE) {
4b988280 1797 efx_reset_up(efx, method, &ecmd, false);
8ceee660 1798 rc = -EIO;
f4bd954e 1799 } else {
4b988280 1800 rc = efx_reset_up(efx, method, &ecmd, true);
8ceee660
BH
1801 }
1802
f4bd954e
BH
1803out_disable:
1804 if (rc) {
1805 EFX_ERR(efx, "has been disabled\n");
1806 efx->state = STATE_DISABLED;
1807 dev_close(efx->net_dev);
1808 } else {
1809 EFX_LOG(efx, "reset complete\n");
1810 }
8ceee660 1811
f4bd954e 1812out_unlock:
8ceee660 1813 rtnl_unlock();
8ceee660
BH
1814 return rc;
1815}
1816
1817/* The worker thread exists so that code that cannot sleep can
1818 * schedule a reset for later.
1819 */
1820static void efx_reset_work(struct work_struct *data)
1821{
1822 struct efx_nic *nic = container_of(data, struct efx_nic, reset_work);
1823
1824 efx_reset(nic);
1825}
1826
1827void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
1828{
1829 enum reset_type method;
1830
1831 if (efx->reset_pending != RESET_TYPE_NONE) {
1832 EFX_INFO(efx, "quenching already scheduled reset\n");
1833 return;
1834 }
1835
1836 switch (type) {
1837 case RESET_TYPE_INVISIBLE:
1838 case RESET_TYPE_ALL:
1839 case RESET_TYPE_WORLD:
1840 case RESET_TYPE_DISABLE:
1841 method = type;
1842 break;
1843 case RESET_TYPE_RX_RECOVERY:
1844 case RESET_TYPE_RX_DESC_FETCH:
1845 case RESET_TYPE_TX_DESC_FETCH:
1846 case RESET_TYPE_TX_SKIP:
1847 method = RESET_TYPE_INVISIBLE;
1848 break;
1849 default:
1850 method = RESET_TYPE_ALL;
1851 break;
1852 }
1853
1854 if (method != type)
1855 EFX_LOG(efx, "scheduling reset (%d:%d)\n", type, method);
1856 else
1857 EFX_LOG(efx, "scheduling reset (%d)\n", method);
1858
1859 efx->reset_pending = method;
1860
1ab00629 1861 queue_work(reset_workqueue, &efx->reset_work);
8ceee660
BH
1862}
1863
1864/**************************************************************************
1865 *
1866 * List of NICs we support
1867 *
1868 **************************************************************************/
1869
1870/* PCI device ID table */
1871static struct pci_device_id efx_pci_table[] __devinitdata = {
1872 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
1873 .driver_data = (unsigned long) &falcon_a_nic_type},
1874 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
1875 .driver_data = (unsigned long) &falcon_b_nic_type},
1876 {0} /* end of list */
1877};
1878
1879/**************************************************************************
1880 *
3759433d 1881 * Dummy PHY/MAC operations
8ceee660 1882 *
01aad7b6 1883 * Can be used for some unimplemented operations
8ceee660
BH
1884 * Needed so all function pointers are valid and do not have to be tested
1885 * before use
1886 *
1887 **************************************************************************/
1888int efx_port_dummy_op_int(struct efx_nic *efx)
1889{
1890 return 0;
1891}
1892void efx_port_dummy_op_void(struct efx_nic *efx) {}
398468ed
BH
1893void efx_port_dummy_op_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
1894{
1895}
8ceee660 1896
177dfcd8
BH
1897static struct efx_mac_operations efx_dummy_mac_operations = {
1898 .reconfigure = efx_port_dummy_op_void,
766ca0fa
BH
1899 .poll = efx_port_dummy_op_void,
1900 .irq = efx_port_dummy_op_void,
177dfcd8
BH
1901};
1902
8ceee660
BH
1903static struct efx_phy_operations efx_dummy_phy_operations = {
1904 .init = efx_port_dummy_op_int,
1905 .reconfigure = efx_port_dummy_op_void,
766ca0fa 1906 .poll = efx_port_dummy_op_void,
8ceee660
BH
1907 .fini = efx_port_dummy_op_void,
1908 .clear_interrupt = efx_port_dummy_op_void,
8ceee660
BH
1909};
1910
8ceee660
BH
1911/**************************************************************************
1912 *
1913 * Data housekeeping
1914 *
1915 **************************************************************************/
1916
1917/* This zeroes out and then fills in the invariants in a struct
1918 * efx_nic (including all sub-structures).
1919 */
1920static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
1921 struct pci_dev *pci_dev, struct net_device *net_dev)
1922{
1923 struct efx_channel *channel;
1924 struct efx_tx_queue *tx_queue;
1925 struct efx_rx_queue *rx_queue;
1ab00629 1926 int i;
8ceee660
BH
1927
1928 /* Initialise common structures */
1929 memset(efx, 0, sizeof(*efx));
1930 spin_lock_init(&efx->biu_lock);
1931 spin_lock_init(&efx->phy_lock);
f4150724 1932 mutex_init(&efx->spi_lock);
8ceee660
BH
1933 INIT_WORK(&efx->reset_work, efx_reset_work);
1934 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
1935 efx->pci_dev = pci_dev;
1936 efx->state = STATE_INIT;
1937 efx->reset_pending = RESET_TYPE_NONE;
1938 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
8ceee660
BH
1939
1940 efx->net_dev = net_dev;
dc8cfa55 1941 efx->rx_checksum_enabled = true;
8ceee660
BH
1942 spin_lock_init(&efx->netif_stop_lock);
1943 spin_lock_init(&efx->stats_lock);
1974cc20 1944 efx->stats_disable_count = 1;
8ceee660 1945 mutex_init(&efx->mac_lock);
177dfcd8 1946 efx->mac_op = &efx_dummy_mac_operations;
8ceee660 1947 efx->phy_op = &efx_dummy_phy_operations;
68e7f45e 1948 efx->mdio.dev = net_dev;
766ca0fa
BH
1949 INIT_WORK(&efx->phy_work, efx_phy_work);
1950 INIT_WORK(&efx->mac_work, efx_mac_work);
8ceee660
BH
1951 atomic_set(&efx->netif_stop_count, 1);
1952
1953 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
1954 channel = &efx->channel[i];
1955 channel->efx = efx;
1956 channel->channel = i;
dc8cfa55 1957 channel->work_pending = false;
8ceee660 1958 }
60ac1065 1959 for (i = 0; i < EFX_TX_QUEUE_COUNT; i++) {
8ceee660
BH
1960 tx_queue = &efx->tx_queue[i];
1961 tx_queue->efx = efx;
1962 tx_queue->queue = i;
1963 tx_queue->buffer = NULL;
1964 tx_queue->channel = &efx->channel[0]; /* for safety */
b9b39b62 1965 tx_queue->tso_headers_free = NULL;
8ceee660
BH
1966 }
1967 for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
1968 rx_queue = &efx->rx_queue[i];
1969 rx_queue->efx = efx;
1970 rx_queue->queue = i;
1971 rx_queue->channel = &efx->channel[0]; /* for safety */
1972 rx_queue->buffer = NULL;
1973 spin_lock_init(&rx_queue->add_lock);
1974 INIT_DELAYED_WORK(&rx_queue->work, efx_rx_work);
1975 }
1976
1977 efx->type = type;
1978
8ceee660 1979 /* As close as we can get to guaranteeing that we don't overflow */
3ffeabdd
BH
1980 BUILD_BUG_ON(EFX_EVQ_SIZE < EFX_TXQ_SIZE + EFX_RXQ_SIZE);
1981
8ceee660
BH
1982 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
1983
1984 /* Higher numbered interrupt modes are less capable! */
1985 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
1986 interrupt_mode);
1987
6977dc63
BH
1988 /* Would be good to use the net_dev name, but we're too early */
1989 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
1990 pci_name(pci_dev));
1991 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
1ab00629
SH
1992 if (!efx->workqueue)
1993 return -ENOMEM;
8d9853d9 1994
8ceee660 1995 return 0;
8ceee660
BH
1996}
1997
1998static void efx_fini_struct(struct efx_nic *efx)
1999{
2000 if (efx->workqueue) {
2001 destroy_workqueue(efx->workqueue);
2002 efx->workqueue = NULL;
2003 }
2004}
2005
2006/**************************************************************************
2007 *
2008 * PCI interface
2009 *
2010 **************************************************************************/
2011
2012/* Main body of final NIC shutdown code
2013 * This is called only at module unload (or hotplug removal).
2014 */
2015static void efx_pci_remove_main(struct efx_nic *efx)
2016{
f01865f0 2017 falcon_fini_interrupt(efx);
8ceee660
BH
2018 efx_fini_channels(efx);
2019 efx_fini_port(efx);
8ceee660
BH
2020 efx_fini_napi(efx);
2021 efx_remove_all(efx);
2022}
2023
2024/* Final NIC shutdown
2025 * This is called only at module unload (or hotplug removal).
2026 */
2027static void efx_pci_remove(struct pci_dev *pci_dev)
2028{
2029 struct efx_nic *efx;
2030
2031 efx = pci_get_drvdata(pci_dev);
2032 if (!efx)
2033 return;
2034
2035 /* Mark the NIC as fini, then stop the interface */
2036 rtnl_lock();
2037 efx->state = STATE_FINI;
2038 dev_close(efx->net_dev);
2039
2040 /* Allow any queued efx_resets() to complete */
2041 rtnl_unlock();
2042
8ceee660
BH
2043 efx_unregister_netdev(efx);
2044
7dde596e
BH
2045 efx_mtd_remove(efx);
2046
8ceee660
BH
2047 /* Wait for any scheduled resets to complete. No more will be
2048 * scheduled from this point because efx_stop_all() has been
2049 * called, we are no longer registered with driverlink, and
2050 * the net_device's have been removed. */
1ab00629 2051 cancel_work_sync(&efx->reset_work);
8ceee660
BH
2052
2053 efx_pci_remove_main(efx);
2054
8ceee660
BH
2055 efx_fini_io(efx);
2056 EFX_LOG(efx, "shutdown successful\n");
2057
2058 pci_set_drvdata(pci_dev, NULL);
2059 efx_fini_struct(efx);
2060 free_netdev(efx->net_dev);
2061};
2062
2063/* Main body of NIC initialisation
2064 * This is called at module load (or hotplug insertion, theoretically).
2065 */
2066static int efx_pci_probe_main(struct efx_nic *efx)
2067{
2068 int rc;
2069
2070 /* Do start-of-day initialisation */
2071 rc = efx_probe_all(efx);
2072 if (rc)
2073 goto fail1;
2074
2075 rc = efx_init_napi(efx);
2076 if (rc)
2077 goto fail2;
2078
8ceee660
BH
2079 rc = falcon_init_nic(efx);
2080 if (rc) {
2081 EFX_ERR(efx, "failed to initialise NIC\n");
278c0621 2082 goto fail3;
8ceee660
BH
2083 }
2084
2085 rc = efx_init_port(efx);
2086 if (rc) {
2087 EFX_ERR(efx, "failed to initialise port\n");
278c0621 2088 goto fail4;
8ceee660
BH
2089 }
2090
bc3c90a2 2091 efx_init_channels(efx);
8ceee660
BH
2092
2093 rc = falcon_init_interrupt(efx);
2094 if (rc)
278c0621 2095 goto fail5;
8ceee660
BH
2096
2097 return 0;
2098
278c0621 2099 fail5:
bc3c90a2 2100 efx_fini_channels(efx);
8ceee660 2101 efx_fini_port(efx);
8ceee660
BH
2102 fail4:
2103 fail3:
2104 efx_fini_napi(efx);
2105 fail2:
2106 efx_remove_all(efx);
2107 fail1:
2108 return rc;
2109}
2110
2111/* NIC initialisation
2112 *
2113 * This is called at module load (or hotplug insertion,
2114 * theoretically). It sets up PCI mappings, tests and resets the NIC,
2115 * sets up and registers the network devices with the kernel and hooks
2116 * the interrupt service routine. It does not prepare the device for
2117 * transmission; this is left to the first time one of the network
2118 * interfaces is brought up (i.e. efx_net_open).
2119 */
2120static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2121 const struct pci_device_id *entry)
2122{
2123 struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
2124 struct net_device *net_dev;
2125 struct efx_nic *efx;
2126 int i, rc;
2127
2128 /* Allocate and initialise a struct net_device and struct efx_nic */
2129 net_dev = alloc_etherdev(sizeof(*efx));
2130 if (!net_dev)
2131 return -ENOMEM;
b9b39b62 2132 net_dev->features |= (NETIF_F_IP_CSUM | NETIF_F_SG |
97bc5415
BH
2133 NETIF_F_HIGHDMA | NETIF_F_TSO |
2134 NETIF_F_GRO);
28506563
BH
2135 /* Mask for features that also apply to VLAN devices */
2136 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
740847da 2137 NETIF_F_HIGHDMA | NETIF_F_TSO);
767e468c 2138 efx = netdev_priv(net_dev);
8ceee660
BH
2139 pci_set_drvdata(pci_dev, efx);
2140 rc = efx_init_struct(efx, type, pci_dev, net_dev);
2141 if (rc)
2142 goto fail1;
2143
2144 EFX_INFO(efx, "Solarflare Communications NIC detected\n");
2145
2146 /* Set up basic I/O (BAR mappings etc) */
2147 rc = efx_init_io(efx);
2148 if (rc)
2149 goto fail2;
2150
2151 /* No serialisation is required with the reset path because
2152 * we're in STATE_INIT. */
2153 for (i = 0; i < 5; i++) {
2154 rc = efx_pci_probe_main(efx);
8ceee660
BH
2155
2156 /* Serialise against efx_reset(). No more resets will be
2157 * scheduled since efx_stop_all() has been called, and we
2158 * have not and never have been registered with either
2159 * the rtnetlink or driverlink layers. */
1ab00629 2160 cancel_work_sync(&efx->reset_work);
8ceee660 2161
fa402b2e
SH
2162 if (rc == 0) {
2163 if (efx->reset_pending != RESET_TYPE_NONE) {
2164 /* If there was a scheduled reset during
2165 * probe, the NIC is probably hosed anyway */
2166 efx_pci_remove_main(efx);
2167 rc = -EIO;
2168 } else {
2169 break;
2170 }
2171 }
2172
8ceee660
BH
2173 /* Retry if a recoverably reset event has been scheduled */
2174 if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
2175 (efx->reset_pending != RESET_TYPE_ALL))
2176 goto fail3;
2177
2178 efx->reset_pending = RESET_TYPE_NONE;
2179 }
2180
2181 if (rc) {
2182 EFX_ERR(efx, "Could not reset NIC\n");
2183 goto fail4;
2184 }
2185
2186 /* Switch to the running state before we expose the device to
2187 * the OS. This is to ensure that the initial gathering of
2188 * MAC stats succeeds. */
8ceee660 2189 efx->state = STATE_RUNNING;
7dde596e 2190
8ceee660
BH
2191 rc = efx_register_netdev(efx);
2192 if (rc)
2193 goto fail5;
2194
2195 EFX_LOG(efx, "initialisation successful\n");
a5211bb5
BH
2196
2197 rtnl_lock();
2198 efx_mtd_probe(efx); /* allowed to fail */
2199 rtnl_unlock();
8ceee660
BH
2200 return 0;
2201
2202 fail5:
2203 efx_pci_remove_main(efx);
2204 fail4:
2205 fail3:
2206 efx_fini_io(efx);
2207 fail2:
2208 efx_fini_struct(efx);
2209 fail1:
2210 EFX_LOG(efx, "initialisation failed. rc=%d\n", rc);
2211 free_netdev(net_dev);
2212 return rc;
2213}
2214
2215static struct pci_driver efx_pci_driver = {
2216 .name = EFX_DRIVER_NAME,
2217 .id_table = efx_pci_table,
2218 .probe = efx_pci_probe,
2219 .remove = efx_pci_remove,
2220};
2221
2222/**************************************************************************
2223 *
2224 * Kernel module interface
2225 *
2226 *************************************************************************/
2227
2228module_param(interrupt_mode, uint, 0444);
2229MODULE_PARM_DESC(interrupt_mode,
2230 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2231
2232static int __init efx_init_module(void)
2233{
2234 int rc;
2235
2236 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2237
2238 rc = register_netdevice_notifier(&efx_netdev_notifier);
2239 if (rc)
2240 goto err_notifier;
2241
2242 refill_workqueue = create_workqueue("sfc_refill");
2243 if (!refill_workqueue) {
2244 rc = -ENOMEM;
2245 goto err_refill;
2246 }
1ab00629
SH
2247 reset_workqueue = create_singlethread_workqueue("sfc_reset");
2248 if (!reset_workqueue) {
2249 rc = -ENOMEM;
2250 goto err_reset;
2251 }
8ceee660
BH
2252
2253 rc = pci_register_driver(&efx_pci_driver);
2254 if (rc < 0)
2255 goto err_pci;
2256
2257 return 0;
2258
2259 err_pci:
1ab00629
SH
2260 destroy_workqueue(reset_workqueue);
2261 err_reset:
8ceee660
BH
2262 destroy_workqueue(refill_workqueue);
2263 err_refill:
2264 unregister_netdevice_notifier(&efx_netdev_notifier);
2265 err_notifier:
2266 return rc;
2267}
2268
2269static void __exit efx_exit_module(void)
2270{
2271 printk(KERN_INFO "Solarflare NET driver unloading\n");
2272
2273 pci_unregister_driver(&efx_pci_driver);
1ab00629 2274 destroy_workqueue(reset_workqueue);
8ceee660
BH
2275 destroy_workqueue(refill_workqueue);
2276 unregister_netdevice_notifier(&efx_netdev_notifier);
2277
2278}
2279
2280module_init(efx_init_module);
2281module_exit(efx_exit_module);
2282
2283MODULE_AUTHOR("Michael Brown <mbrown@fensystems.co.uk> and "
2284 "Solarflare Communications");
2285MODULE_DESCRIPTION("Solarflare Communications network driver");
2286MODULE_LICENSE("GPL");
2287MODULE_DEVICE_TABLE(pci, efx_pci_table);