sfc: Remove efx_channel::evqnum field
[linux-2.6-block.git] / drivers / net / sfc / efx.c
CommitLineData
8ceee660
BH
1/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2008 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/module.h>
12#include <linux/pci.h>
13#include <linux/netdevice.h>
14#include <linux/etherdevice.h>
15#include <linux/delay.h>
16#include <linux/notifier.h>
17#include <linux/ip.h>
18#include <linux/tcp.h>
19#include <linux/in.h>
20#include <linux/crc32.h>
21#include <linux/ethtool.h>
aa6ef27e 22#include <linux/topology.h>
8ceee660
BH
23#include "net_driver.h"
24#include "gmii.h"
25#include "ethtool.h"
26#include "tx.h"
27#include "rx.h"
28#include "efx.h"
29#include "mdio_10g.h"
30#include "falcon.h"
8ceee660
BH
31#include "mac.h"
32
33#define EFX_MAX_MTU (9 * 1024)
34
35/* RX slow fill workqueue. If memory allocation fails in the fast path,
36 * a work item is pushed onto this work queue to retry the allocation later,
37 * to avoid the NIC being starved of RX buffers. Since this is a per cpu
38 * workqueue, there is nothing to be gained in making it per NIC
39 */
40static struct workqueue_struct *refill_workqueue;
41
42/**************************************************************************
43 *
44 * Configurable values
45 *
46 *************************************************************************/
47
48/*
49 * Enable large receive offload (LRO) aka soft segment reassembly (SSR)
50 *
51 * This sets the default for new devices. It can be controlled later
52 * using ethtool.
53 */
dc8cfa55 54static int lro = true;
8ceee660
BH
55module_param(lro, int, 0644);
56MODULE_PARM_DESC(lro, "Large receive offload acceleration");
57
58/*
59 * Use separate channels for TX and RX events
60 *
61 * Set this to 1 to use separate channels for TX and RX. It allows us to
62 * apply a higher level of interrupt moderation to TX events.
63 *
64 * This is forced to 0 for MSI interrupt mode as the interrupt vector
65 * is not written
66 */
dc8cfa55 67static unsigned int separate_tx_and_rx_channels = true;
8ceee660
BH
68
69/* This is the weight assigned to each of the (per-channel) virtual
70 * NAPI devices.
71 */
72static int napi_weight = 64;
73
74/* This is the time (in jiffies) between invocations of the hardware
75 * monitor, which checks for known hardware bugs and resets the
76 * hardware and driver as necessary.
77 */
78unsigned int efx_monitor_interval = 1 * HZ;
79
80/* This controls whether or not the hardware monitor will trigger a
81 * reset when it detects an error condition.
82 */
dc8cfa55 83static unsigned int monitor_reset = true;
8ceee660
BH
84
85/* This controls whether or not the driver will initialise devices
86 * with invalid MAC addresses stored in the EEPROM or flash. If true,
87 * such devices will be initialised with a random locally-generated
88 * MAC address. This allows for loading the sfc_mtd driver to
89 * reprogram the flash, even if the flash contents (including the MAC
90 * address) have previously been erased.
91 */
92static unsigned int allow_bad_hwaddr;
93
94/* Initial interrupt moderation settings. They can be modified after
95 * module load with ethtool.
96 *
97 * The default for RX should strike a balance between increasing the
98 * round-trip latency and reducing overhead.
99 */
100static unsigned int rx_irq_mod_usec = 60;
101
102/* Initial interrupt moderation settings. They can be modified after
103 * module load with ethtool.
104 *
105 * This default is chosen to ensure that a 10G link does not go idle
106 * while a TX queue is stopped after it has become full. A queue is
107 * restarted when it drops below half full. The time this takes (assuming
108 * worst case 3 descriptors per packet and 1024 descriptors) is
109 * 512 / 3 * 1.2 = 205 usec.
110 */
111static unsigned int tx_irq_mod_usec = 150;
112
113/* This is the first interrupt mode to try out of:
114 * 0 => MSI-X
115 * 1 => MSI
116 * 2 => legacy
117 */
118static unsigned int interrupt_mode;
119
120/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
121 * i.e. the number of CPUs among which we may distribute simultaneous
122 * interrupt handling.
123 *
124 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
125 * The default (0) means to assign an interrupt to each package (level II cache)
126 */
127static unsigned int rss_cpus;
128module_param(rss_cpus, uint, 0444);
129MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
130
131/**************************************************************************
132 *
133 * Utility functions and prototypes
134 *
135 *************************************************************************/
136static void efx_remove_channel(struct efx_channel *channel);
137static void efx_remove_port(struct efx_nic *efx);
138static void efx_fini_napi(struct efx_nic *efx);
139static void efx_fini_channels(struct efx_nic *efx);
140
141#define EFX_ASSERT_RESET_SERIALISED(efx) \
142 do { \
143 if ((efx->state == STATE_RUNNING) || \
144 (efx->state == STATE_RESETTING)) \
145 ASSERT_RTNL(); \
146 } while (0)
147
148/**************************************************************************
149 *
150 * Event queue processing
151 *
152 *************************************************************************/
153
154/* Process channel's event queue
155 *
156 * This function is responsible for processing the event queue of a
157 * single channel. The caller must guarantee that this function will
158 * never be concurrently called more than once on the same channel,
159 * though different channels may be being processed concurrently.
160 */
4d566063 161static int efx_process_channel(struct efx_channel *channel, int rx_quota)
8ceee660
BH
162{
163 int rxdmaqs;
164 struct efx_rx_queue *rx_queue;
165
166 if (unlikely(channel->efx->reset_pending != RESET_TYPE_NONE ||
167 !channel->enabled))
168 return rx_quota;
169
170 rxdmaqs = falcon_process_eventq(channel, &rx_quota);
171
172 /* Deliver last RX packet. */
173 if (channel->rx_pkt) {
174 __efx_rx_packet(channel, channel->rx_pkt,
175 channel->rx_pkt_csummed);
176 channel->rx_pkt = NULL;
177 }
178
179 efx_flush_lro(channel);
180 efx_rx_strategy(channel);
181
182 /* Refill descriptor rings as necessary */
183 rx_queue = &channel->efx->rx_queue[0];
184 while (rxdmaqs) {
185 if (rxdmaqs & 0x01)
186 efx_fast_push_rx_descriptors(rx_queue);
187 rx_queue++;
188 rxdmaqs >>= 1;
189 }
190
191 return rx_quota;
192}
193
194/* Mark channel as finished processing
195 *
196 * Note that since we will not receive further interrupts for this
197 * channel before we finish processing and call the eventq_read_ack()
198 * method, there is no need to use the interrupt hold-off timers.
199 */
200static inline void efx_channel_processed(struct efx_channel *channel)
201{
5b9e207c
BH
202 /* The interrupt handler for this channel may set work_pending
203 * as soon as we acknowledge the events we've seen. Make sure
204 * it's cleared before then. */
dc8cfa55 205 channel->work_pending = false;
5b9e207c
BH
206 smp_wmb();
207
8ceee660
BH
208 falcon_eventq_read_ack(channel);
209}
210
211/* NAPI poll handler
212 *
213 * NAPI guarantees serialisation of polls of the same device, which
214 * provides the guarantee required by efx_process_channel().
215 */
216static int efx_poll(struct napi_struct *napi, int budget)
217{
218 struct efx_channel *channel =
219 container_of(napi, struct efx_channel, napi_str);
220 struct net_device *napi_dev = channel->napi_dev;
221 int unused;
222 int rx_packets;
223
224 EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n",
225 channel->channel, raw_smp_processor_id());
226
227 unused = efx_process_channel(channel, budget);
228 rx_packets = (budget - unused);
229
230 if (rx_packets < budget) {
231 /* There is no race here; although napi_disable() will
232 * only wait for netif_rx_complete(), this isn't a problem
233 * since efx_channel_processed() will have no effect if
234 * interrupts have already been disabled.
235 */
236 netif_rx_complete(napi_dev, napi);
237 efx_channel_processed(channel);
238 }
239
240 return rx_packets;
241}
242
243/* Process the eventq of the specified channel immediately on this CPU
244 *
245 * Disable hardware generated interrupts, wait for any existing
246 * processing to finish, then directly poll (and ack ) the eventq.
247 * Finally reenable NAPI and interrupts.
248 *
249 * Since we are touching interrupts the caller should hold the suspend lock
250 */
251void efx_process_channel_now(struct efx_channel *channel)
252{
253 struct efx_nic *efx = channel->efx;
254
255 BUG_ON(!channel->used_flags);
256 BUG_ON(!channel->enabled);
257
258 /* Disable interrupts and wait for ISRs to complete */
259 falcon_disable_interrupts(efx);
260 if (efx->legacy_irq)
261 synchronize_irq(efx->legacy_irq);
64ee3120 262 if (channel->irq)
8ceee660
BH
263 synchronize_irq(channel->irq);
264
265 /* Wait for any NAPI processing to complete */
266 napi_disable(&channel->napi_str);
267
268 /* Poll the channel */
91ad757c 269 efx_process_channel(channel, efx->type->evq_size);
8ceee660
BH
270
271 /* Ack the eventq. This may cause an interrupt to be generated
272 * when they are reenabled */
273 efx_channel_processed(channel);
274
275 napi_enable(&channel->napi_str);
276 falcon_enable_interrupts(efx);
277}
278
279/* Create event queue
280 * Event queue memory allocations are done only once. If the channel
281 * is reset, the memory buffer will be reused; this guards against
282 * errors during channel reset and also simplifies interrupt handling.
283 */
284static int efx_probe_eventq(struct efx_channel *channel)
285{
286 EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel);
287
288 return falcon_probe_eventq(channel);
289}
290
291/* Prepare channel's event queue */
292static int efx_init_eventq(struct efx_channel *channel)
293{
294 EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel);
295
296 channel->eventq_read_ptr = 0;
297
298 return falcon_init_eventq(channel);
299}
300
301static void efx_fini_eventq(struct efx_channel *channel)
302{
303 EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel);
304
305 falcon_fini_eventq(channel);
306}
307
308static void efx_remove_eventq(struct efx_channel *channel)
309{
310 EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel);
311
312 falcon_remove_eventq(channel);
313}
314
315/**************************************************************************
316 *
317 * Channel handling
318 *
319 *************************************************************************/
320
8ceee660
BH
321static int efx_probe_channel(struct efx_channel *channel)
322{
323 struct efx_tx_queue *tx_queue;
324 struct efx_rx_queue *rx_queue;
325 int rc;
326
327 EFX_LOG(channel->efx, "creating channel %d\n", channel->channel);
328
329 rc = efx_probe_eventq(channel);
330 if (rc)
331 goto fail1;
332
333 efx_for_each_channel_tx_queue(tx_queue, channel) {
334 rc = efx_probe_tx_queue(tx_queue);
335 if (rc)
336 goto fail2;
337 }
338
339 efx_for_each_channel_rx_queue(rx_queue, channel) {
340 rc = efx_probe_rx_queue(rx_queue);
341 if (rc)
342 goto fail3;
343 }
344
345 channel->n_rx_frm_trunc = 0;
346
347 return 0;
348
349 fail3:
350 efx_for_each_channel_rx_queue(rx_queue, channel)
351 efx_remove_rx_queue(rx_queue);
352 fail2:
353 efx_for_each_channel_tx_queue(tx_queue, channel)
354 efx_remove_tx_queue(tx_queue);
355 fail1:
356 return rc;
357}
358
359
360/* Channels are shutdown and reinitialised whilst the NIC is running
361 * to propagate configuration changes (mtu, checksum offload), or
362 * to clear hardware error conditions
363 */
364static int efx_init_channels(struct efx_nic *efx)
365{
366 struct efx_tx_queue *tx_queue;
367 struct efx_rx_queue *rx_queue;
368 struct efx_channel *channel;
369 int rc = 0;
370
f7f13b0b
BH
371 /* Calculate the rx buffer allocation parameters required to
372 * support the current MTU, including padding for header
373 * alignment and overruns.
374 */
375 efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
376 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
377 efx->type->rx_buffer_padding);
378 efx->rx_buffer_order = get_order(efx->rx_buffer_len);
8ceee660
BH
379
380 /* Initialise the channels */
381 efx_for_each_channel(channel, efx) {
382 EFX_LOG(channel->efx, "init chan %d\n", channel->channel);
383
384 rc = efx_init_eventq(channel);
385 if (rc)
386 goto err;
387
388 efx_for_each_channel_tx_queue(tx_queue, channel) {
389 rc = efx_init_tx_queue(tx_queue);
390 if (rc)
391 goto err;
392 }
393
394 /* The rx buffer allocation strategy is MTU dependent */
395 efx_rx_strategy(channel);
396
397 efx_for_each_channel_rx_queue(rx_queue, channel) {
398 rc = efx_init_rx_queue(rx_queue);
399 if (rc)
400 goto err;
401 }
402
403 WARN_ON(channel->rx_pkt != NULL);
404 efx_rx_strategy(channel);
405 }
406
407 return 0;
408
409 err:
410 EFX_ERR(efx, "failed to initialise channel %d\n",
411 channel ? channel->channel : -1);
412 efx_fini_channels(efx);
413 return rc;
414}
415
416/* This enables event queue processing and packet transmission.
417 *
418 * Note that this function is not allowed to fail, since that would
419 * introduce too much complexity into the suspend/resume path.
420 */
421static void efx_start_channel(struct efx_channel *channel)
422{
423 struct efx_rx_queue *rx_queue;
424
425 EFX_LOG(channel->efx, "starting chan %d\n", channel->channel);
426
427 if (!(channel->efx->net_dev->flags & IFF_UP))
428 netif_napi_add(channel->napi_dev, &channel->napi_str,
429 efx_poll, napi_weight);
430
5b9e207c
BH
431 /* The interrupt handler for this channel may set work_pending
432 * as soon as we enable it. Make sure it's cleared before
433 * then. Similarly, make sure it sees the enabled flag set. */
dc8cfa55
BH
434 channel->work_pending = false;
435 channel->enabled = true;
5b9e207c 436 smp_wmb();
8ceee660
BH
437
438 napi_enable(&channel->napi_str);
439
440 /* Load up RX descriptors */
441 efx_for_each_channel_rx_queue(rx_queue, channel)
442 efx_fast_push_rx_descriptors(rx_queue);
443}
444
445/* This disables event queue processing and packet transmission.
446 * This function does not guarantee that all queue processing
447 * (e.g. RX refill) is complete.
448 */
449static void efx_stop_channel(struct efx_channel *channel)
450{
451 struct efx_rx_queue *rx_queue;
452
453 if (!channel->enabled)
454 return;
455
456 EFX_LOG(channel->efx, "stop chan %d\n", channel->channel);
457
dc8cfa55 458 channel->enabled = false;
8ceee660
BH
459 napi_disable(&channel->napi_str);
460
461 /* Ensure that any worker threads have exited or will be no-ops */
462 efx_for_each_channel_rx_queue(rx_queue, channel) {
463 spin_lock_bh(&rx_queue->add_lock);
464 spin_unlock_bh(&rx_queue->add_lock);
465 }
466}
467
468static void efx_fini_channels(struct efx_nic *efx)
469{
470 struct efx_channel *channel;
471 struct efx_tx_queue *tx_queue;
472 struct efx_rx_queue *rx_queue;
473
474 EFX_ASSERT_RESET_SERIALISED(efx);
475 BUG_ON(efx->port_enabled);
476
477 efx_for_each_channel(channel, efx) {
478 EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel);
479
480 efx_for_each_channel_rx_queue(rx_queue, channel)
481 efx_fini_rx_queue(rx_queue);
482 efx_for_each_channel_tx_queue(tx_queue, channel)
483 efx_fini_tx_queue(tx_queue);
484 }
485
486 /* Do the event queues last so that we can handle flush events
487 * for all DMA queues. */
488 efx_for_each_channel(channel, efx) {
489 EFX_LOG(channel->efx, "shut down evq %d\n", channel->channel);
490
491 efx_fini_eventq(channel);
492 }
493}
494
495static void efx_remove_channel(struct efx_channel *channel)
496{
497 struct efx_tx_queue *tx_queue;
498 struct efx_rx_queue *rx_queue;
499
500 EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel);
501
502 efx_for_each_channel_rx_queue(rx_queue, channel)
503 efx_remove_rx_queue(rx_queue);
504 efx_for_each_channel_tx_queue(tx_queue, channel)
505 efx_remove_tx_queue(tx_queue);
506 efx_remove_eventq(channel);
507
508 channel->used_flags = 0;
509}
510
511void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay)
512{
513 queue_delayed_work(refill_workqueue, &rx_queue->work, delay);
514}
515
516/**************************************************************************
517 *
518 * Port handling
519 *
520 **************************************************************************/
521
522/* This ensures that the kernel is kept informed (via
523 * netif_carrier_on/off) of the link status, and also maintains the
524 * link status's stop on the port's TX queue.
525 */
526static void efx_link_status_changed(struct efx_nic *efx)
527{
8ceee660
BH
528 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
529 * that no events are triggered between unregister_netdev() and the
530 * driver unloading. A more general condition is that NETDEV_CHANGE
531 * can only be generated between NETDEV_UP and NETDEV_DOWN */
532 if (!netif_running(efx->net_dev))
533 return;
534
dc8cfa55 535 if (efx->link_up != netif_carrier_ok(efx->net_dev)) {
8ceee660
BH
536 efx->n_link_state_changes++;
537
538 if (efx->link_up)
539 netif_carrier_on(efx->net_dev);
540 else
541 netif_carrier_off(efx->net_dev);
542 }
543
544 /* Status message for kernel log */
545 if (efx->link_up) {
546 struct mii_if_info *gmii = &efx->mii;
547 unsigned adv, lpa;
548 /* NONE here means direct XAUI from the controller, with no
549 * MDIO-attached device we can query. */
550 if (efx->phy_type != PHY_TYPE_NONE) {
551 adv = gmii_advertised(gmii);
552 lpa = gmii_lpa(gmii);
553 } else {
554 lpa = GM_LPA_10000 | LPA_DUPLEX;
555 adv = lpa;
556 }
557 EFX_INFO(efx, "link up at %dMbps %s-duplex "
558 "(adv %04x lpa %04x) (MTU %d)%s\n",
559 (efx->link_options & GM_LPA_10000 ? 10000 :
560 (efx->link_options & GM_LPA_1000 ? 1000 :
561 (efx->link_options & GM_LPA_100 ? 100 :
562 10))),
563 (efx->link_options & GM_LPA_DUPLEX ?
564 "full" : "half"),
565 adv, lpa,
566 efx->net_dev->mtu,
567 (efx->promiscuous ? " [PROMISC]" : ""));
568 } else {
569 EFX_INFO(efx, "link down\n");
570 }
571
572}
573
574/* This call reinitialises the MAC to pick up new PHY settings. The
575 * caller must hold the mac_lock */
576static void __efx_reconfigure_port(struct efx_nic *efx)
577{
578 WARN_ON(!mutex_is_locked(&efx->mac_lock));
579
580 EFX_LOG(efx, "reconfiguring MAC from PHY settings on CPU %d\n",
581 raw_smp_processor_id());
582
583 falcon_reconfigure_xmac(efx);
584
585 /* Inform kernel of loss/gain of carrier */
586 efx_link_status_changed(efx);
587}
588
589/* Reinitialise the MAC to pick up new PHY settings, even if the port is
590 * disabled. */
591void efx_reconfigure_port(struct efx_nic *efx)
592{
593 EFX_ASSERT_RESET_SERIALISED(efx);
594
595 mutex_lock(&efx->mac_lock);
596 __efx_reconfigure_port(efx);
597 mutex_unlock(&efx->mac_lock);
598}
599
600/* Asynchronous efx_reconfigure_port work item. To speed up efx_flush_all()
601 * we don't efx_reconfigure_port() if the port is disabled. Care is taken
602 * in efx_stop_all() and efx_start_port() to prevent PHY events being lost */
603static void efx_reconfigure_work(struct work_struct *data)
604{
605 struct efx_nic *efx = container_of(data, struct efx_nic,
606 reconfigure_work);
607
608 mutex_lock(&efx->mac_lock);
609 if (efx->port_enabled)
610 __efx_reconfigure_port(efx);
611 mutex_unlock(&efx->mac_lock);
612}
613
614static int efx_probe_port(struct efx_nic *efx)
615{
616 int rc;
617
618 EFX_LOG(efx, "create port\n");
619
620 /* Connect up MAC/PHY operations table and read MAC address */
621 rc = falcon_probe_port(efx);
622 if (rc)
623 goto err;
624
625 /* Sanity check MAC address */
626 if (is_valid_ether_addr(efx->mac_address)) {
627 memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
628 } else {
629 DECLARE_MAC_BUF(mac);
630
631 EFX_ERR(efx, "invalid MAC address %s\n",
632 print_mac(mac, efx->mac_address));
633 if (!allow_bad_hwaddr) {
634 rc = -EINVAL;
635 goto err;
636 }
637 random_ether_addr(efx->net_dev->dev_addr);
638 EFX_INFO(efx, "using locally-generated MAC %s\n",
639 print_mac(mac, efx->net_dev->dev_addr));
640 }
641
642 return 0;
643
644 err:
645 efx_remove_port(efx);
646 return rc;
647}
648
649static int efx_init_port(struct efx_nic *efx)
650{
651 int rc;
652
653 EFX_LOG(efx, "init port\n");
654
655 /* Initialise the MAC and PHY */
656 rc = falcon_init_xmac(efx);
657 if (rc)
658 return rc;
659
dc8cfa55 660 efx->port_initialized = true;
8ceee660
BH
661
662 /* Reconfigure port to program MAC registers */
663 falcon_reconfigure_xmac(efx);
664
665 return 0;
666}
667
668/* Allow efx_reconfigure_port() to be scheduled, and close the window
669 * between efx_stop_port and efx_flush_all whereby a previously scheduled
670 * efx_reconfigure_port() may have been cancelled */
671static void efx_start_port(struct efx_nic *efx)
672{
673 EFX_LOG(efx, "start port\n");
674 BUG_ON(efx->port_enabled);
675
676 mutex_lock(&efx->mac_lock);
dc8cfa55 677 efx->port_enabled = true;
8ceee660
BH
678 __efx_reconfigure_port(efx);
679 mutex_unlock(&efx->mac_lock);
680}
681
682/* Prevent efx_reconfigure_work and efx_monitor() from executing, and
683 * efx_set_multicast_list() from scheduling efx_reconfigure_work.
684 * efx_reconfigure_work can still be scheduled via NAPI processing
685 * until efx_flush_all() is called */
686static void efx_stop_port(struct efx_nic *efx)
687{
688 EFX_LOG(efx, "stop port\n");
689
690 mutex_lock(&efx->mac_lock);
dc8cfa55 691 efx->port_enabled = false;
8ceee660
BH
692 mutex_unlock(&efx->mac_lock);
693
694 /* Serialise against efx_set_multicast_list() */
55668611 695 if (efx_dev_registered(efx)) {
b9e40857
DM
696 netif_addr_lock_bh(efx->net_dev);
697 netif_addr_unlock_bh(efx->net_dev);
8ceee660
BH
698 }
699}
700
701static void efx_fini_port(struct efx_nic *efx)
702{
703 EFX_LOG(efx, "shut down port\n");
704
705 if (!efx->port_initialized)
706 return;
707
708 falcon_fini_xmac(efx);
dc8cfa55 709 efx->port_initialized = false;
8ceee660 710
dc8cfa55 711 efx->link_up = false;
8ceee660
BH
712 efx_link_status_changed(efx);
713}
714
715static void efx_remove_port(struct efx_nic *efx)
716{
717 EFX_LOG(efx, "destroying port\n");
718
719 falcon_remove_port(efx);
720}
721
722/**************************************************************************
723 *
724 * NIC handling
725 *
726 **************************************************************************/
727
728/* This configures the PCI device to enable I/O and DMA. */
729static int efx_init_io(struct efx_nic *efx)
730{
731 struct pci_dev *pci_dev = efx->pci_dev;
732 dma_addr_t dma_mask = efx->type->max_dma_mask;
733 int rc;
734
735 EFX_LOG(efx, "initialising I/O\n");
736
737 rc = pci_enable_device(pci_dev);
738 if (rc) {
739 EFX_ERR(efx, "failed to enable PCI device\n");
740 goto fail1;
741 }
742
743 pci_set_master(pci_dev);
744
745 /* Set the PCI DMA mask. Try all possibilities from our
746 * genuine mask down to 32 bits, because some architectures
747 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
748 * masks event though they reject 46 bit masks.
749 */
750 while (dma_mask > 0x7fffffffUL) {
751 if (pci_dma_supported(pci_dev, dma_mask) &&
752 ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
753 break;
754 dma_mask >>= 1;
755 }
756 if (rc) {
757 EFX_ERR(efx, "could not find a suitable DMA mask\n");
758 goto fail2;
759 }
760 EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask);
761 rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
762 if (rc) {
763 /* pci_set_consistent_dma_mask() is not *allowed* to
764 * fail with a mask that pci_set_dma_mask() accepted,
765 * but just in case...
766 */
767 EFX_ERR(efx, "failed to set consistent DMA mask\n");
768 goto fail2;
769 }
770
771 efx->membase_phys = pci_resource_start(efx->pci_dev,
772 efx->type->mem_bar);
773 rc = pci_request_region(pci_dev, efx->type->mem_bar, "sfc");
774 if (rc) {
775 EFX_ERR(efx, "request for memory BAR failed\n");
776 rc = -EIO;
777 goto fail3;
778 }
779 efx->membase = ioremap_nocache(efx->membase_phys,
780 efx->type->mem_map_size);
781 if (!efx->membase) {
086ea356
BH
782 EFX_ERR(efx, "could not map memory BAR %d at %llx+%x\n",
783 efx->type->mem_bar,
784 (unsigned long long)efx->membase_phys,
8ceee660
BH
785 efx->type->mem_map_size);
786 rc = -ENOMEM;
787 goto fail4;
788 }
086ea356
BH
789 EFX_LOG(efx, "memory BAR %u at %llx+%x (virtual %p)\n",
790 efx->type->mem_bar, (unsigned long long)efx->membase_phys,
791 efx->type->mem_map_size, efx->membase);
8ceee660
BH
792
793 return 0;
794
795 fail4:
796 release_mem_region(efx->membase_phys, efx->type->mem_map_size);
797 fail3:
2c118e0f 798 efx->membase_phys = 0;
8ceee660
BH
799 fail2:
800 pci_disable_device(efx->pci_dev);
801 fail1:
802 return rc;
803}
804
805static void efx_fini_io(struct efx_nic *efx)
806{
807 EFX_LOG(efx, "shutting down I/O\n");
808
809 if (efx->membase) {
810 iounmap(efx->membase);
811 efx->membase = NULL;
812 }
813
814 if (efx->membase_phys) {
815 pci_release_region(efx->pci_dev, efx->type->mem_bar);
2c118e0f 816 efx->membase_phys = 0;
8ceee660
BH
817 }
818
819 pci_disable_device(efx->pci_dev);
820}
821
46123d04
BH
822/* Get number of RX queues wanted. Return number of online CPU
823 * packages in the expectation that an IRQ balancer will spread
824 * interrupts across them. */
825static int efx_wanted_rx_queues(void)
826{
827 cpumask_t core_mask;
828 int count;
829 int cpu;
830
831 cpus_clear(core_mask);
832 count = 0;
833 for_each_online_cpu(cpu) {
834 if (!cpu_isset(cpu, core_mask)) {
835 ++count;
836 cpus_or(core_mask, core_mask,
837 topology_core_siblings(cpu));
838 }
839 }
840
841 return count;
842}
843
844/* Probe the number and type of interrupts we are able to obtain, and
845 * the resulting numbers of channels and RX queues.
846 */
8ceee660
BH
847static void efx_probe_interrupts(struct efx_nic *efx)
848{
46123d04
BH
849 int max_channels =
850 min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
8ceee660
BH
851 int rc, i;
852
853 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
46123d04
BH
854 struct msix_entry xentries[EFX_MAX_CHANNELS];
855 int wanted_ints;
aa6ef27e 856
46123d04
BH
857 /* We want one RX queue and interrupt per CPU package
858 * (or as specified by the rss_cpus module parameter).
859 * We will need one channel per interrupt.
860 */
861 wanted_ints = rss_cpus ? rss_cpus : efx_wanted_rx_queues();
8831da7b 862 efx->n_rx_queues = min(wanted_ints, max_channels);
8ceee660 863
8831da7b 864 for (i = 0; i < efx->n_rx_queues; i++)
8ceee660 865 xentries[i].entry = i;
8831da7b 866 rc = pci_enable_msix(efx->pci_dev, xentries, efx->n_rx_queues);
8ceee660 867 if (rc > 0) {
8831da7b
BH
868 EFX_BUG_ON_PARANOID(rc >= efx->n_rx_queues);
869 efx->n_rx_queues = rc;
8ceee660 870 rc = pci_enable_msix(efx->pci_dev, xentries,
8831da7b 871 efx->n_rx_queues);
8ceee660
BH
872 }
873
874 if (rc == 0) {
8831da7b 875 for (i = 0; i < efx->n_rx_queues; i++)
8ceee660 876 efx->channel[i].irq = xentries[i].vector;
8ceee660
BH
877 } else {
878 /* Fall back to single channel MSI */
879 efx->interrupt_mode = EFX_INT_MODE_MSI;
880 EFX_ERR(efx, "could not enable MSI-X\n");
881 }
882 }
883
884 /* Try single interrupt MSI */
885 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
8831da7b 886 efx->n_rx_queues = 1;
8ceee660
BH
887 rc = pci_enable_msi(efx->pci_dev);
888 if (rc == 0) {
889 efx->channel[0].irq = efx->pci_dev->irq;
8ceee660
BH
890 } else {
891 EFX_ERR(efx, "could not enable MSI\n");
892 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
893 }
894 }
895
896 /* Assume legacy interrupts */
897 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
8831da7b 898 efx->n_rx_queues = 1;
8ceee660
BH
899 efx->legacy_irq = efx->pci_dev->irq;
900 }
901}
902
903static void efx_remove_interrupts(struct efx_nic *efx)
904{
905 struct efx_channel *channel;
906
907 /* Remove MSI/MSI-X interrupts */
64ee3120 908 efx_for_each_channel(channel, efx)
8ceee660
BH
909 channel->irq = 0;
910 pci_disable_msi(efx->pci_dev);
911 pci_disable_msix(efx->pci_dev);
912
913 /* Remove legacy interrupt */
914 efx->legacy_irq = 0;
915}
916
8831da7b 917static void efx_set_channels(struct efx_nic *efx)
8ceee660
BH
918{
919 struct efx_tx_queue *tx_queue;
920 struct efx_rx_queue *rx_queue;
8ceee660 921
60ac1065
BH
922 efx_for_each_tx_queue(tx_queue, efx) {
923 if (!EFX_INT_MODE_USE_MSI(efx) && separate_tx_and_rx_channels)
924 tx_queue->channel = &efx->channel[1];
925 else
926 tx_queue->channel = &efx->channel[0];
927 tx_queue->channel->used_flags |= EFX_USED_BY_TX;
928 }
8ceee660 929
8831da7b
BH
930 efx_for_each_rx_queue(rx_queue, efx) {
931 rx_queue->channel = &efx->channel[rx_queue->queue];
932 rx_queue->channel->used_flags |= EFX_USED_BY_RX;
8ceee660
BH
933 }
934}
935
936static int efx_probe_nic(struct efx_nic *efx)
937{
938 int rc;
939
940 EFX_LOG(efx, "creating NIC\n");
941
942 /* Carry out hardware-type specific initialisation */
943 rc = falcon_probe_nic(efx);
944 if (rc)
945 return rc;
946
947 /* Determine the number of channels and RX queues by trying to hook
948 * in MSI-X interrupts. */
949 efx_probe_interrupts(efx);
950
8831da7b 951 efx_set_channels(efx);
8ceee660
BH
952
953 /* Initialise the interrupt moderation settings */
954 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec);
955
956 return 0;
957}
958
959static void efx_remove_nic(struct efx_nic *efx)
960{
961 EFX_LOG(efx, "destroying NIC\n");
962
963 efx_remove_interrupts(efx);
964 falcon_remove_nic(efx);
965}
966
967/**************************************************************************
968 *
969 * NIC startup/shutdown
970 *
971 *************************************************************************/
972
973static int efx_probe_all(struct efx_nic *efx)
974{
975 struct efx_channel *channel;
976 int rc;
977
978 /* Create NIC */
979 rc = efx_probe_nic(efx);
980 if (rc) {
981 EFX_ERR(efx, "failed to create NIC\n");
982 goto fail1;
983 }
984
985 /* Create port */
986 rc = efx_probe_port(efx);
987 if (rc) {
988 EFX_ERR(efx, "failed to create port\n");
989 goto fail2;
990 }
991
992 /* Create channels */
993 efx_for_each_channel(channel, efx) {
994 rc = efx_probe_channel(channel);
995 if (rc) {
996 EFX_ERR(efx, "failed to create channel %d\n",
997 channel->channel);
998 goto fail3;
999 }
1000 }
1001
1002 return 0;
1003
1004 fail3:
1005 efx_for_each_channel(channel, efx)
1006 efx_remove_channel(channel);
1007 efx_remove_port(efx);
1008 fail2:
1009 efx_remove_nic(efx);
1010 fail1:
1011 return rc;
1012}
1013
1014/* Called after previous invocation(s) of efx_stop_all, restarts the
1015 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1016 * and ensures that the port is scheduled to be reconfigured.
1017 * This function is safe to call multiple times when the NIC is in any
1018 * state. */
1019static void efx_start_all(struct efx_nic *efx)
1020{
1021 struct efx_channel *channel;
1022
1023 EFX_ASSERT_RESET_SERIALISED(efx);
1024
1025 /* Check that it is appropriate to restart the interface. All
1026 * of these flags are safe to read under just the rtnl lock */
1027 if (efx->port_enabled)
1028 return;
1029 if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1030 return;
55668611 1031 if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
8ceee660
BH
1032 return;
1033
1034 /* Mark the port as enabled so port reconfigurations can start, then
1035 * restart the transmit interface early so the watchdog timer stops */
1036 efx_start_port(efx);
1037 efx_wake_queue(efx);
1038
1039 efx_for_each_channel(channel, efx)
1040 efx_start_channel(channel);
1041
1042 falcon_enable_interrupts(efx);
1043
1044 /* Start hardware monitor if we're in RUNNING */
1045 if (efx->state == STATE_RUNNING)
1046 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1047 efx_monitor_interval);
1048}
1049
1050/* Flush all delayed work. Should only be called when no more delayed work
1051 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1052 * since we're holding the rtnl_lock at this point. */
1053static void efx_flush_all(struct efx_nic *efx)
1054{
1055 struct efx_rx_queue *rx_queue;
1056
1057 /* Make sure the hardware monitor is stopped */
1058 cancel_delayed_work_sync(&efx->monitor_work);
1059
1060 /* Ensure that all RX slow refills are complete. */
b3475645 1061 efx_for_each_rx_queue(rx_queue, efx)
8ceee660 1062 cancel_delayed_work_sync(&rx_queue->work);
8ceee660
BH
1063
1064 /* Stop scheduled port reconfigurations */
1065 cancel_work_sync(&efx->reconfigure_work);
1066
1067}
1068
1069/* Quiesce hardware and software without bringing the link down.
1070 * Safe to call multiple times, when the nic and interface is in any
1071 * state. The caller is guaranteed to subsequently be in a position
1072 * to modify any hardware and software state they see fit without
1073 * taking locks. */
1074static void efx_stop_all(struct efx_nic *efx)
1075{
1076 struct efx_channel *channel;
1077
1078 EFX_ASSERT_RESET_SERIALISED(efx);
1079
1080 /* port_enabled can be read safely under the rtnl lock */
1081 if (!efx->port_enabled)
1082 return;
1083
1084 /* Disable interrupts and wait for ISR to complete */
1085 falcon_disable_interrupts(efx);
1086 if (efx->legacy_irq)
1087 synchronize_irq(efx->legacy_irq);
64ee3120 1088 efx_for_each_channel(channel, efx) {
8ceee660
BH
1089 if (channel->irq)
1090 synchronize_irq(channel->irq);
b3475645 1091 }
8ceee660
BH
1092
1093 /* Stop all NAPI processing and synchronous rx refills */
1094 efx_for_each_channel(channel, efx)
1095 efx_stop_channel(channel);
1096
1097 /* Stop all asynchronous port reconfigurations. Since all
1098 * event processing has already been stopped, there is no
1099 * window to loose phy events */
1100 efx_stop_port(efx);
1101
1102 /* Flush reconfigure_work, refill_workqueue, monitor_work */
1103 efx_flush_all(efx);
1104
1105 /* Isolate the MAC from the TX and RX engines, so that queue
1106 * flushes will complete in a timely fashion. */
1107 falcon_deconfigure_mac_wrapper(efx);
1108 falcon_drain_tx_fifo(efx);
1109
1110 /* Stop the kernel transmit interface late, so the watchdog
1111 * timer isn't ticking over the flush */
1112 efx_stop_queue(efx);
55668611 1113 if (efx_dev_registered(efx)) {
8ceee660
BH
1114 netif_tx_lock_bh(efx->net_dev);
1115 netif_tx_unlock_bh(efx->net_dev);
1116 }
1117}
1118
1119static void efx_remove_all(struct efx_nic *efx)
1120{
1121 struct efx_channel *channel;
1122
1123 efx_for_each_channel(channel, efx)
1124 efx_remove_channel(channel);
1125 efx_remove_port(efx);
1126 efx_remove_nic(efx);
1127}
1128
1129/* A convinience function to safely flush all the queues */
1130int efx_flush_queues(struct efx_nic *efx)
1131{
1132 int rc;
1133
1134 EFX_ASSERT_RESET_SERIALISED(efx);
1135
1136 efx_stop_all(efx);
1137
1138 efx_fini_channels(efx);
1139 rc = efx_init_channels(efx);
1140 if (rc) {
1141 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1142 return rc;
1143 }
1144
1145 efx_start_all(efx);
1146
1147 return 0;
1148}
1149
1150/**************************************************************************
1151 *
1152 * Interrupt moderation
1153 *
1154 **************************************************************************/
1155
1156/* Set interrupt moderation parameters */
1157void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs)
1158{
1159 struct efx_tx_queue *tx_queue;
1160 struct efx_rx_queue *rx_queue;
1161
1162 EFX_ASSERT_RESET_SERIALISED(efx);
1163
1164 efx_for_each_tx_queue(tx_queue, efx)
1165 tx_queue->channel->irq_moderation = tx_usecs;
1166
1167 efx_for_each_rx_queue(rx_queue, efx)
1168 rx_queue->channel->irq_moderation = rx_usecs;
1169}
1170
1171/**************************************************************************
1172 *
1173 * Hardware monitor
1174 *
1175 **************************************************************************/
1176
1177/* Run periodically off the general workqueue. Serialised against
1178 * efx_reconfigure_port via the mac_lock */
1179static void efx_monitor(struct work_struct *data)
1180{
1181 struct efx_nic *efx = container_of(data, struct efx_nic,
1182 monitor_work.work);
1183 int rc = 0;
1184
1185 EFX_TRACE(efx, "hardware monitor executing on CPU %d\n",
1186 raw_smp_processor_id());
1187
1188
1189 /* If the mac_lock is already held then it is likely a port
1190 * reconfiguration is already in place, which will likely do
1191 * most of the work of check_hw() anyway. */
1192 if (!mutex_trylock(&efx->mac_lock)) {
1193 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1194 efx_monitor_interval);
1195 return;
1196 }
1197
1198 if (efx->port_enabled)
1199 rc = falcon_check_xmac(efx);
1200 mutex_unlock(&efx->mac_lock);
1201
1202 if (rc) {
1203 if (monitor_reset) {
1204 EFX_ERR(efx, "hardware monitor detected a fault: "
1205 "triggering reset\n");
1206 efx_schedule_reset(efx, RESET_TYPE_MONITOR);
1207 } else {
1208 EFX_ERR(efx, "hardware monitor detected a fault, "
1209 "skipping reset\n");
1210 }
1211 }
1212
1213 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1214 efx_monitor_interval);
1215}
1216
1217/**************************************************************************
1218 *
1219 * ioctls
1220 *
1221 *************************************************************************/
1222
1223/* Net device ioctl
1224 * Context: process, rtnl_lock() held.
1225 */
1226static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1227{
767e468c 1228 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1229
1230 EFX_ASSERT_RESET_SERIALISED(efx);
1231
1232 return generic_mii_ioctl(&efx->mii, if_mii(ifr), cmd, NULL);
1233}
1234
1235/**************************************************************************
1236 *
1237 * NAPI interface
1238 *
1239 **************************************************************************/
1240
1241static int efx_init_napi(struct efx_nic *efx)
1242{
1243 struct efx_channel *channel;
1244 int rc;
1245
1246 efx_for_each_channel(channel, efx) {
1247 channel->napi_dev = efx->net_dev;
1248 rc = efx_lro_init(&channel->lro_mgr, efx);
1249 if (rc)
1250 goto err;
1251 }
1252 return 0;
1253 err:
1254 efx_fini_napi(efx);
1255 return rc;
1256}
1257
1258static void efx_fini_napi(struct efx_nic *efx)
1259{
1260 struct efx_channel *channel;
1261
1262 efx_for_each_channel(channel, efx) {
1263 efx_lro_fini(&channel->lro_mgr);
1264 channel->napi_dev = NULL;
1265 }
1266}
1267
1268/**************************************************************************
1269 *
1270 * Kernel netpoll interface
1271 *
1272 *************************************************************************/
1273
1274#ifdef CONFIG_NET_POLL_CONTROLLER
1275
1276/* Although in the common case interrupts will be disabled, this is not
1277 * guaranteed. However, all our work happens inside the NAPI callback,
1278 * so no locking is required.
1279 */
1280static void efx_netpoll(struct net_device *net_dev)
1281{
767e468c 1282 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1283 struct efx_channel *channel;
1284
64ee3120 1285 efx_for_each_channel(channel, efx)
8ceee660
BH
1286 efx_schedule_channel(channel);
1287}
1288
1289#endif
1290
1291/**************************************************************************
1292 *
1293 * Kernel net device interface
1294 *
1295 *************************************************************************/
1296
1297/* Context: process, rtnl_lock() held. */
1298static int efx_net_open(struct net_device *net_dev)
1299{
767e468c 1300 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1301 EFX_ASSERT_RESET_SERIALISED(efx);
1302
1303 EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name,
1304 raw_smp_processor_id());
1305
1306 efx_start_all(efx);
1307 return 0;
1308}
1309
1310/* Context: process, rtnl_lock() held.
1311 * Note that the kernel will ignore our return code; this method
1312 * should really be a void.
1313 */
1314static int efx_net_stop(struct net_device *net_dev)
1315{
767e468c 1316 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1317 int rc;
1318
1319 EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name,
1320 raw_smp_processor_id());
1321
1322 /* Stop the device and flush all the channels */
1323 efx_stop_all(efx);
1324 efx_fini_channels(efx);
1325 rc = efx_init_channels(efx);
1326 if (rc)
1327 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1328
1329 return 0;
1330}
1331
5b9e207c 1332/* Context: process, dev_base_lock or RTNL held, non-blocking. */
8ceee660
BH
1333static struct net_device_stats *efx_net_stats(struct net_device *net_dev)
1334{
767e468c 1335 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1336 struct efx_mac_stats *mac_stats = &efx->mac_stats;
1337 struct net_device_stats *stats = &net_dev->stats;
1338
5b9e207c
BH
1339 /* Update stats if possible, but do not wait if another thread
1340 * is updating them (or resetting the NIC); slightly stale
1341 * stats are acceptable.
1342 */
8ceee660
BH
1343 if (!spin_trylock(&efx->stats_lock))
1344 return stats;
1345 if (efx->state == STATE_RUNNING) {
1346 falcon_update_stats_xmac(efx);
1347 falcon_update_nic_stats(efx);
1348 }
1349 spin_unlock(&efx->stats_lock);
1350
1351 stats->rx_packets = mac_stats->rx_packets;
1352 stats->tx_packets = mac_stats->tx_packets;
1353 stats->rx_bytes = mac_stats->rx_bytes;
1354 stats->tx_bytes = mac_stats->tx_bytes;
1355 stats->multicast = mac_stats->rx_multicast;
1356 stats->collisions = mac_stats->tx_collision;
1357 stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1358 mac_stats->rx_length_error);
1359 stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
1360 stats->rx_crc_errors = mac_stats->rx_bad;
1361 stats->rx_frame_errors = mac_stats->rx_align_error;
1362 stats->rx_fifo_errors = mac_stats->rx_overflow;
1363 stats->rx_missed_errors = mac_stats->rx_missed;
1364 stats->tx_window_errors = mac_stats->tx_late_collision;
1365
1366 stats->rx_errors = (stats->rx_length_errors +
1367 stats->rx_over_errors +
1368 stats->rx_crc_errors +
1369 stats->rx_frame_errors +
1370 stats->rx_fifo_errors +
1371 stats->rx_missed_errors +
1372 mac_stats->rx_symbol_error);
1373 stats->tx_errors = (stats->tx_window_errors +
1374 mac_stats->tx_bad);
1375
1376 return stats;
1377}
1378
1379/* Context: netif_tx_lock held, BHs disabled. */
1380static void efx_watchdog(struct net_device *net_dev)
1381{
767e468c 1382 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1383
1384 EFX_ERR(efx, "TX stuck with stop_count=%d port_enabled=%d: %s\n",
1385 atomic_read(&efx->netif_stop_count), efx->port_enabled,
1386 monitor_reset ? "resetting channels" : "skipping reset");
1387
1388 if (monitor_reset)
1389 efx_schedule_reset(efx, RESET_TYPE_MONITOR);
1390}
1391
1392
1393/* Context: process, rtnl_lock() held. */
1394static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1395{
767e468c 1396 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1397 int rc = 0;
1398
1399 EFX_ASSERT_RESET_SERIALISED(efx);
1400
1401 if (new_mtu > EFX_MAX_MTU)
1402 return -EINVAL;
1403
1404 efx_stop_all(efx);
1405
1406 EFX_LOG(efx, "changing MTU to %d\n", new_mtu);
1407
1408 efx_fini_channels(efx);
1409 net_dev->mtu = new_mtu;
1410 rc = efx_init_channels(efx);
1411 if (rc)
1412 goto fail;
1413
1414 efx_start_all(efx);
1415 return rc;
1416
1417 fail:
1418 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1419 return rc;
1420}
1421
1422static int efx_set_mac_address(struct net_device *net_dev, void *data)
1423{
767e468c 1424 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1425 struct sockaddr *addr = data;
1426 char *new_addr = addr->sa_data;
1427
1428 EFX_ASSERT_RESET_SERIALISED(efx);
1429
1430 if (!is_valid_ether_addr(new_addr)) {
1431 DECLARE_MAC_BUF(mac);
1432 EFX_ERR(efx, "invalid ethernet MAC address requested: %s\n",
1433 print_mac(mac, new_addr));
1434 return -EINVAL;
1435 }
1436
1437 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1438
1439 /* Reconfigure the MAC */
1440 efx_reconfigure_port(efx);
1441
1442 return 0;
1443}
1444
1445/* Context: netif_tx_lock held, BHs disabled. */
1446static void efx_set_multicast_list(struct net_device *net_dev)
1447{
767e468c 1448 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1449 struct dev_mc_list *mc_list = net_dev->mc_list;
1450 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
dc8cfa55 1451 bool promiscuous;
8ceee660
BH
1452 u32 crc;
1453 int bit;
1454 int i;
1455
1456 /* Set per-MAC promiscuity flag and reconfigure MAC if necessary */
dc8cfa55 1457 promiscuous = !!(net_dev->flags & IFF_PROMISC);
8ceee660
BH
1458 if (efx->promiscuous != promiscuous) {
1459 efx->promiscuous = promiscuous;
1460 /* Close the window between efx_stop_port() and efx_flush_all()
1461 * by only queuing work when the port is enabled. */
1462 if (efx->port_enabled)
1463 queue_work(efx->workqueue, &efx->reconfigure_work);
1464 }
1465
1466 /* Build multicast hash table */
1467 if (promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1468 memset(mc_hash, 0xff, sizeof(*mc_hash));
1469 } else {
1470 memset(mc_hash, 0x00, sizeof(*mc_hash));
1471 for (i = 0; i < net_dev->mc_count; i++) {
1472 crc = ether_crc_le(ETH_ALEN, mc_list->dmi_addr);
1473 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1474 set_bit_le(bit, mc_hash->byte);
1475 mc_list = mc_list->next;
1476 }
1477 }
1478
1479 /* Create and activate new global multicast hash table */
1480 falcon_set_multicast_hash(efx);
1481}
1482
1483static int efx_netdev_event(struct notifier_block *this,
1484 unsigned long event, void *ptr)
1485{
d3208b5e 1486 struct net_device *net_dev = ptr;
8ceee660
BH
1487
1488 if (net_dev->open == efx_net_open && event == NETDEV_CHANGENAME) {
767e468c 1489 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1490
1491 strcpy(efx->name, net_dev->name);
1492 }
1493
1494 return NOTIFY_DONE;
1495}
1496
1497static struct notifier_block efx_netdev_notifier = {
1498 .notifier_call = efx_netdev_event,
1499};
1500
1501static int efx_register_netdev(struct efx_nic *efx)
1502{
1503 struct net_device *net_dev = efx->net_dev;
1504 int rc;
1505
1506 net_dev->watchdog_timeo = 5 * HZ;
1507 net_dev->irq = efx->pci_dev->irq;
1508 net_dev->open = efx_net_open;
1509 net_dev->stop = efx_net_stop;
1510 net_dev->get_stats = efx_net_stats;
1511 net_dev->tx_timeout = &efx_watchdog;
1512 net_dev->hard_start_xmit = efx_hard_start_xmit;
1513 net_dev->do_ioctl = efx_ioctl;
1514 net_dev->change_mtu = efx_change_mtu;
1515 net_dev->set_mac_address = efx_set_mac_address;
1516 net_dev->set_multicast_list = efx_set_multicast_list;
1517#ifdef CONFIG_NET_POLL_CONTROLLER
1518 net_dev->poll_controller = efx_netpoll;
1519#endif
1520 SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev);
1521 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1522
1523 /* Always start with carrier off; PHY events will detect the link */
1524 netif_carrier_off(efx->net_dev);
1525
1526 /* Clear MAC statistics */
1527 falcon_update_stats_xmac(efx);
1528 memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
1529
1530 rc = register_netdev(net_dev);
1531 if (rc) {
1532 EFX_ERR(efx, "could not register net dev\n");
1533 return rc;
1534 }
1535 strcpy(efx->name, net_dev->name);
1536
1537 return 0;
1538}
1539
1540static void efx_unregister_netdev(struct efx_nic *efx)
1541{
1542 struct efx_tx_queue *tx_queue;
1543
1544 if (!efx->net_dev)
1545 return;
1546
767e468c 1547 BUG_ON(netdev_priv(efx->net_dev) != efx);
8ceee660
BH
1548
1549 /* Free up any skbs still remaining. This has to happen before
1550 * we try to unregister the netdev as running their destructors
1551 * may be needed to get the device ref. count to 0. */
1552 efx_for_each_tx_queue(tx_queue, efx)
1553 efx_release_tx_buffers(tx_queue);
1554
55668611 1555 if (efx_dev_registered(efx)) {
8ceee660
BH
1556 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
1557 unregister_netdev(efx->net_dev);
1558 }
1559}
1560
1561/**************************************************************************
1562 *
1563 * Device reset and suspend
1564 *
1565 **************************************************************************/
1566
1567/* The final hardware and software finalisation before reset. */
1568static int efx_reset_down(struct efx_nic *efx, struct ethtool_cmd *ecmd)
1569{
1570 int rc;
1571
1572 EFX_ASSERT_RESET_SERIALISED(efx);
1573
1574 rc = falcon_xmac_get_settings(efx, ecmd);
1575 if (rc) {
1576 EFX_ERR(efx, "could not back up PHY settings\n");
1577 goto fail;
1578 }
1579
1580 efx_fini_channels(efx);
1581 return 0;
1582
1583 fail:
1584 return rc;
1585}
1586
1587/* The first part of software initialisation after a hardware reset
1588 * This function does not handle serialisation with the kernel, it
1589 * assumes the caller has done this */
1590static int efx_reset_up(struct efx_nic *efx, struct ethtool_cmd *ecmd)
1591{
1592 int rc;
1593
1594 rc = efx_init_channels(efx);
1595 if (rc)
1596 goto fail1;
1597
1598 /* Restore MAC and PHY settings. */
1599 rc = falcon_xmac_set_settings(efx, ecmd);
1600 if (rc) {
1601 EFX_ERR(efx, "could not restore PHY settings\n");
1602 goto fail2;
1603 }
1604
1605 return 0;
1606
1607 fail2:
1608 efx_fini_channels(efx);
1609 fail1:
1610 return rc;
1611}
1612
1613/* Reset the NIC as transparently as possible. Do not reset the PHY
1614 * Note that the reset may fail, in which case the card will be left
1615 * in a most-probably-unusable state.
1616 *
1617 * This function will sleep. You cannot reset from within an atomic
1618 * state; use efx_schedule_reset() instead.
1619 *
1620 * Grabs the rtnl_lock.
1621 */
1622static int efx_reset(struct efx_nic *efx)
1623{
1624 struct ethtool_cmd ecmd;
1625 enum reset_type method = efx->reset_pending;
1626 int rc;
1627
1628 /* Serialise with kernel interfaces */
1629 rtnl_lock();
1630
1631 /* If we're not RUNNING then don't reset. Leave the reset_pending
1632 * flag set so that efx_pci_probe_main will be retried */
1633 if (efx->state != STATE_RUNNING) {
1634 EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n");
1635 goto unlock_rtnl;
1636 }
1637
1638 efx->state = STATE_RESETTING;
1639 EFX_INFO(efx, "resetting (%d)\n", method);
1640
1641 /* The net_dev->get_stats handler is quite slow, and will fail
1642 * if a fetch is pending over reset. Serialise against it. */
1643 spin_lock(&efx->stats_lock);
1644 spin_unlock(&efx->stats_lock);
1645
1646 efx_stop_all(efx);
1647 mutex_lock(&efx->mac_lock);
1648
1649 rc = efx_reset_down(efx, &ecmd);
1650 if (rc)
1651 goto fail1;
1652
1653 rc = falcon_reset_hw(efx, method);
1654 if (rc) {
1655 EFX_ERR(efx, "failed to reset hardware\n");
1656 goto fail2;
1657 }
1658
1659 /* Allow resets to be rescheduled. */
1660 efx->reset_pending = RESET_TYPE_NONE;
1661
1662 /* Reinitialise bus-mastering, which may have been turned off before
1663 * the reset was scheduled. This is still appropriate, even in the
1664 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
1665 * can respond to requests. */
1666 pci_set_master(efx->pci_dev);
1667
1668 /* Reinitialise device. This is appropriate in the RESET_TYPE_DISABLE
1669 * case so the driver can talk to external SRAM */
1670 rc = falcon_init_nic(efx);
1671 if (rc) {
1672 EFX_ERR(efx, "failed to initialise NIC\n");
1673 goto fail3;
1674 }
1675
1676 /* Leave device stopped if necessary */
1677 if (method == RESET_TYPE_DISABLE) {
1678 /* Reinitialise the device anyway so the driver unload sequence
1679 * can talk to the external SRAM */
91ad757c 1680 falcon_init_nic(efx);
8ceee660
BH
1681 rc = -EIO;
1682 goto fail4;
1683 }
1684
1685 rc = efx_reset_up(efx, &ecmd);
1686 if (rc)
1687 goto fail5;
1688
1689 mutex_unlock(&efx->mac_lock);
1690 EFX_LOG(efx, "reset complete\n");
1691
1692 efx->state = STATE_RUNNING;
1693 efx_start_all(efx);
1694
1695 unlock_rtnl:
1696 rtnl_unlock();
1697 return 0;
1698
1699 fail5:
1700 fail4:
1701 fail3:
1702 fail2:
1703 fail1:
1704 EFX_ERR(efx, "has been disabled\n");
1705 efx->state = STATE_DISABLED;
1706
1707 mutex_unlock(&efx->mac_lock);
1708 rtnl_unlock();
1709 efx_unregister_netdev(efx);
1710 efx_fini_port(efx);
1711 return rc;
1712}
1713
1714/* The worker thread exists so that code that cannot sleep can
1715 * schedule a reset for later.
1716 */
1717static void efx_reset_work(struct work_struct *data)
1718{
1719 struct efx_nic *nic = container_of(data, struct efx_nic, reset_work);
1720
1721 efx_reset(nic);
1722}
1723
1724void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
1725{
1726 enum reset_type method;
1727
1728 if (efx->reset_pending != RESET_TYPE_NONE) {
1729 EFX_INFO(efx, "quenching already scheduled reset\n");
1730 return;
1731 }
1732
1733 switch (type) {
1734 case RESET_TYPE_INVISIBLE:
1735 case RESET_TYPE_ALL:
1736 case RESET_TYPE_WORLD:
1737 case RESET_TYPE_DISABLE:
1738 method = type;
1739 break;
1740 case RESET_TYPE_RX_RECOVERY:
1741 case RESET_TYPE_RX_DESC_FETCH:
1742 case RESET_TYPE_TX_DESC_FETCH:
1743 case RESET_TYPE_TX_SKIP:
1744 method = RESET_TYPE_INVISIBLE;
1745 break;
1746 default:
1747 method = RESET_TYPE_ALL;
1748 break;
1749 }
1750
1751 if (method != type)
1752 EFX_LOG(efx, "scheduling reset (%d:%d)\n", type, method);
1753 else
1754 EFX_LOG(efx, "scheduling reset (%d)\n", method);
1755
1756 efx->reset_pending = method;
1757
8d9853d9 1758 queue_work(efx->reset_workqueue, &efx->reset_work);
8ceee660
BH
1759}
1760
1761/**************************************************************************
1762 *
1763 * List of NICs we support
1764 *
1765 **************************************************************************/
1766
1767/* PCI device ID table */
1768static struct pci_device_id efx_pci_table[] __devinitdata = {
1769 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
1770 .driver_data = (unsigned long) &falcon_a_nic_type},
1771 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
1772 .driver_data = (unsigned long) &falcon_b_nic_type},
1773 {0} /* end of list */
1774};
1775
1776/**************************************************************************
1777 *
1778 * Dummy PHY/MAC/Board operations
1779 *
1780 * Can be used where the MAC does not implement this operation
1781 * Needed so all function pointers are valid and do not have to be tested
1782 * before use
1783 *
1784 **************************************************************************/
1785int efx_port_dummy_op_int(struct efx_nic *efx)
1786{
1787 return 0;
1788}
1789void efx_port_dummy_op_void(struct efx_nic *efx) {}
dc8cfa55 1790void efx_port_dummy_op_blink(struct efx_nic *efx, bool blink) {}
8ceee660
BH
1791
1792static struct efx_phy_operations efx_dummy_phy_operations = {
1793 .init = efx_port_dummy_op_int,
1794 .reconfigure = efx_port_dummy_op_void,
1795 .check_hw = efx_port_dummy_op_int,
1796 .fini = efx_port_dummy_op_void,
1797 .clear_interrupt = efx_port_dummy_op_void,
1798 .reset_xaui = efx_port_dummy_op_void,
1799};
1800
1801/* Dummy board operations */
1802static int efx_nic_dummy_op_int(struct efx_nic *nic)
1803{
1804 return 0;
1805}
1806
1807static struct efx_board efx_dummy_board_info = {
1808 .init = efx_nic_dummy_op_int,
1809 .init_leds = efx_port_dummy_op_int,
1810 .set_fault_led = efx_port_dummy_op_blink,
37b5a603 1811 .fini = efx_port_dummy_op_void,
8ceee660
BH
1812};
1813
1814/**************************************************************************
1815 *
1816 * Data housekeeping
1817 *
1818 **************************************************************************/
1819
1820/* This zeroes out and then fills in the invariants in a struct
1821 * efx_nic (including all sub-structures).
1822 */
1823static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
1824 struct pci_dev *pci_dev, struct net_device *net_dev)
1825{
1826 struct efx_channel *channel;
1827 struct efx_tx_queue *tx_queue;
1828 struct efx_rx_queue *rx_queue;
1829 int i, rc;
1830
1831 /* Initialise common structures */
1832 memset(efx, 0, sizeof(*efx));
1833 spin_lock_init(&efx->biu_lock);
1834 spin_lock_init(&efx->phy_lock);
1835 INIT_WORK(&efx->reset_work, efx_reset_work);
1836 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
1837 efx->pci_dev = pci_dev;
1838 efx->state = STATE_INIT;
1839 efx->reset_pending = RESET_TYPE_NONE;
1840 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
1841 efx->board_info = efx_dummy_board_info;
1842
1843 efx->net_dev = net_dev;
dc8cfa55 1844 efx->rx_checksum_enabled = true;
8ceee660
BH
1845 spin_lock_init(&efx->netif_stop_lock);
1846 spin_lock_init(&efx->stats_lock);
1847 mutex_init(&efx->mac_lock);
1848 efx->phy_op = &efx_dummy_phy_operations;
1849 efx->mii.dev = net_dev;
1850 INIT_WORK(&efx->reconfigure_work, efx_reconfigure_work);
1851 atomic_set(&efx->netif_stop_count, 1);
1852
1853 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
1854 channel = &efx->channel[i];
1855 channel->efx = efx;
1856 channel->channel = i;
dc8cfa55 1857 channel->work_pending = false;
8ceee660 1858 }
60ac1065 1859 for (i = 0; i < EFX_TX_QUEUE_COUNT; i++) {
8ceee660
BH
1860 tx_queue = &efx->tx_queue[i];
1861 tx_queue->efx = efx;
1862 tx_queue->queue = i;
1863 tx_queue->buffer = NULL;
1864 tx_queue->channel = &efx->channel[0]; /* for safety */
b9b39b62 1865 tx_queue->tso_headers_free = NULL;
8ceee660
BH
1866 }
1867 for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
1868 rx_queue = &efx->rx_queue[i];
1869 rx_queue->efx = efx;
1870 rx_queue->queue = i;
1871 rx_queue->channel = &efx->channel[0]; /* for safety */
1872 rx_queue->buffer = NULL;
1873 spin_lock_init(&rx_queue->add_lock);
1874 INIT_DELAYED_WORK(&rx_queue->work, efx_rx_work);
1875 }
1876
1877 efx->type = type;
1878
1879 /* Sanity-check NIC type */
1880 EFX_BUG_ON_PARANOID(efx->type->txd_ring_mask &
1881 (efx->type->txd_ring_mask + 1));
1882 EFX_BUG_ON_PARANOID(efx->type->rxd_ring_mask &
1883 (efx->type->rxd_ring_mask + 1));
1884 EFX_BUG_ON_PARANOID(efx->type->evq_size &
1885 (efx->type->evq_size - 1));
1886 /* As close as we can get to guaranteeing that we don't overflow */
1887 EFX_BUG_ON_PARANOID(efx->type->evq_size <
1888 (efx->type->txd_ring_mask + 1 +
1889 efx->type->rxd_ring_mask + 1));
1890 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
1891
1892 /* Higher numbered interrupt modes are less capable! */
1893 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
1894 interrupt_mode);
1895
1896 efx->workqueue = create_singlethread_workqueue("sfc_work");
1897 if (!efx->workqueue) {
1898 rc = -ENOMEM;
1899 goto fail1;
1900 }
1901
8d9853d9
BH
1902 efx->reset_workqueue = create_singlethread_workqueue("sfc_reset");
1903 if (!efx->reset_workqueue) {
1904 rc = -ENOMEM;
1905 goto fail2;
1906 }
1907
8ceee660
BH
1908 return 0;
1909
8d9853d9
BH
1910 fail2:
1911 destroy_workqueue(efx->workqueue);
1912 efx->workqueue = NULL;
1913
8ceee660
BH
1914 fail1:
1915 return rc;
1916}
1917
1918static void efx_fini_struct(struct efx_nic *efx)
1919{
8d9853d9
BH
1920 if (efx->reset_workqueue) {
1921 destroy_workqueue(efx->reset_workqueue);
1922 efx->reset_workqueue = NULL;
1923 }
8ceee660
BH
1924 if (efx->workqueue) {
1925 destroy_workqueue(efx->workqueue);
1926 efx->workqueue = NULL;
1927 }
1928}
1929
1930/**************************************************************************
1931 *
1932 * PCI interface
1933 *
1934 **************************************************************************/
1935
1936/* Main body of final NIC shutdown code
1937 * This is called only at module unload (or hotplug removal).
1938 */
1939static void efx_pci_remove_main(struct efx_nic *efx)
1940{
1941 EFX_ASSERT_RESET_SERIALISED(efx);
1942
1943 /* Skip everything if we never obtained a valid membase */
1944 if (!efx->membase)
1945 return;
1946
1947 efx_fini_channels(efx);
1948 efx_fini_port(efx);
1949
1950 /* Shutdown the board, then the NIC and board state */
37b5a603 1951 efx->board_info.fini(efx);
8ceee660
BH
1952 falcon_fini_interrupt(efx);
1953
1954 efx_fini_napi(efx);
1955 efx_remove_all(efx);
1956}
1957
1958/* Final NIC shutdown
1959 * This is called only at module unload (or hotplug removal).
1960 */
1961static void efx_pci_remove(struct pci_dev *pci_dev)
1962{
1963 struct efx_nic *efx;
1964
1965 efx = pci_get_drvdata(pci_dev);
1966 if (!efx)
1967 return;
1968
1969 /* Mark the NIC as fini, then stop the interface */
1970 rtnl_lock();
1971 efx->state = STATE_FINI;
1972 dev_close(efx->net_dev);
1973
1974 /* Allow any queued efx_resets() to complete */
1975 rtnl_unlock();
1976
1977 if (efx->membase == NULL)
1978 goto out;
1979
1980 efx_unregister_netdev(efx);
1981
1982 /* Wait for any scheduled resets to complete. No more will be
1983 * scheduled from this point because efx_stop_all() has been
1984 * called, we are no longer registered with driverlink, and
1985 * the net_device's have been removed. */
8d9853d9 1986 flush_workqueue(efx->reset_workqueue);
8ceee660
BH
1987
1988 efx_pci_remove_main(efx);
1989
1990out:
1991 efx_fini_io(efx);
1992 EFX_LOG(efx, "shutdown successful\n");
1993
1994 pci_set_drvdata(pci_dev, NULL);
1995 efx_fini_struct(efx);
1996 free_netdev(efx->net_dev);
1997};
1998
1999/* Main body of NIC initialisation
2000 * This is called at module load (or hotplug insertion, theoretically).
2001 */
2002static int efx_pci_probe_main(struct efx_nic *efx)
2003{
2004 int rc;
2005
2006 /* Do start-of-day initialisation */
2007 rc = efx_probe_all(efx);
2008 if (rc)
2009 goto fail1;
2010
2011 rc = efx_init_napi(efx);
2012 if (rc)
2013 goto fail2;
2014
2015 /* Initialise the board */
2016 rc = efx->board_info.init(efx);
2017 if (rc) {
2018 EFX_ERR(efx, "failed to initialise board\n");
2019 goto fail3;
2020 }
2021
2022 rc = falcon_init_nic(efx);
2023 if (rc) {
2024 EFX_ERR(efx, "failed to initialise NIC\n");
2025 goto fail4;
2026 }
2027
2028 rc = efx_init_port(efx);
2029 if (rc) {
2030 EFX_ERR(efx, "failed to initialise port\n");
2031 goto fail5;
2032 }
2033
2034 rc = efx_init_channels(efx);
2035 if (rc)
2036 goto fail6;
2037
2038 rc = falcon_init_interrupt(efx);
2039 if (rc)
2040 goto fail7;
2041
2042 return 0;
2043
2044 fail7:
2045 efx_fini_channels(efx);
2046 fail6:
2047 efx_fini_port(efx);
2048 fail5:
2049 fail4:
2050 fail3:
2051 efx_fini_napi(efx);
2052 fail2:
2053 efx_remove_all(efx);
2054 fail1:
2055 return rc;
2056}
2057
2058/* NIC initialisation
2059 *
2060 * This is called at module load (or hotplug insertion,
2061 * theoretically). It sets up PCI mappings, tests and resets the NIC,
2062 * sets up and registers the network devices with the kernel and hooks
2063 * the interrupt service routine. It does not prepare the device for
2064 * transmission; this is left to the first time one of the network
2065 * interfaces is brought up (i.e. efx_net_open).
2066 */
2067static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2068 const struct pci_device_id *entry)
2069{
2070 struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
2071 struct net_device *net_dev;
2072 struct efx_nic *efx;
2073 int i, rc;
2074
2075 /* Allocate and initialise a struct net_device and struct efx_nic */
2076 net_dev = alloc_etherdev(sizeof(*efx));
2077 if (!net_dev)
2078 return -ENOMEM;
b9b39b62
BH
2079 net_dev->features |= (NETIF_F_IP_CSUM | NETIF_F_SG |
2080 NETIF_F_HIGHDMA | NETIF_F_TSO);
8ceee660
BH
2081 if (lro)
2082 net_dev->features |= NETIF_F_LRO;
28506563
BH
2083 /* Mask for features that also apply to VLAN devices */
2084 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
2085 NETIF_F_HIGHDMA);
767e468c 2086 efx = netdev_priv(net_dev);
8ceee660
BH
2087 pci_set_drvdata(pci_dev, efx);
2088 rc = efx_init_struct(efx, type, pci_dev, net_dev);
2089 if (rc)
2090 goto fail1;
2091
2092 EFX_INFO(efx, "Solarflare Communications NIC detected\n");
2093
2094 /* Set up basic I/O (BAR mappings etc) */
2095 rc = efx_init_io(efx);
2096 if (rc)
2097 goto fail2;
2098
2099 /* No serialisation is required with the reset path because
2100 * we're in STATE_INIT. */
2101 for (i = 0; i < 5; i++) {
2102 rc = efx_pci_probe_main(efx);
2103 if (rc == 0)
2104 break;
2105
2106 /* Serialise against efx_reset(). No more resets will be
2107 * scheduled since efx_stop_all() has been called, and we
2108 * have not and never have been registered with either
2109 * the rtnetlink or driverlink layers. */
8d9853d9 2110 flush_workqueue(efx->reset_workqueue);
8ceee660
BH
2111
2112 /* Retry if a recoverably reset event has been scheduled */
2113 if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
2114 (efx->reset_pending != RESET_TYPE_ALL))
2115 goto fail3;
2116
2117 efx->reset_pending = RESET_TYPE_NONE;
2118 }
2119
2120 if (rc) {
2121 EFX_ERR(efx, "Could not reset NIC\n");
2122 goto fail4;
2123 }
2124
2125 /* Switch to the running state before we expose the device to
2126 * the OS. This is to ensure that the initial gathering of
2127 * MAC stats succeeds. */
2128 rtnl_lock();
2129 efx->state = STATE_RUNNING;
2130 rtnl_unlock();
2131
2132 rc = efx_register_netdev(efx);
2133 if (rc)
2134 goto fail5;
2135
2136 EFX_LOG(efx, "initialisation successful\n");
2137
2138 return 0;
2139
2140 fail5:
2141 efx_pci_remove_main(efx);
2142 fail4:
2143 fail3:
2144 efx_fini_io(efx);
2145 fail2:
2146 efx_fini_struct(efx);
2147 fail1:
2148 EFX_LOG(efx, "initialisation failed. rc=%d\n", rc);
2149 free_netdev(net_dev);
2150 return rc;
2151}
2152
2153static struct pci_driver efx_pci_driver = {
2154 .name = EFX_DRIVER_NAME,
2155 .id_table = efx_pci_table,
2156 .probe = efx_pci_probe,
2157 .remove = efx_pci_remove,
2158};
2159
2160/**************************************************************************
2161 *
2162 * Kernel module interface
2163 *
2164 *************************************************************************/
2165
2166module_param(interrupt_mode, uint, 0444);
2167MODULE_PARM_DESC(interrupt_mode,
2168 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2169
2170static int __init efx_init_module(void)
2171{
2172 int rc;
2173
2174 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2175
2176 rc = register_netdevice_notifier(&efx_netdev_notifier);
2177 if (rc)
2178 goto err_notifier;
2179
2180 refill_workqueue = create_workqueue("sfc_refill");
2181 if (!refill_workqueue) {
2182 rc = -ENOMEM;
2183 goto err_refill;
2184 }
2185
2186 rc = pci_register_driver(&efx_pci_driver);
2187 if (rc < 0)
2188 goto err_pci;
2189
2190 return 0;
2191
2192 err_pci:
2193 destroy_workqueue(refill_workqueue);
2194 err_refill:
2195 unregister_netdevice_notifier(&efx_netdev_notifier);
2196 err_notifier:
2197 return rc;
2198}
2199
2200static void __exit efx_exit_module(void)
2201{
2202 printk(KERN_INFO "Solarflare NET driver unloading\n");
2203
2204 pci_unregister_driver(&efx_pci_driver);
2205 destroy_workqueue(refill_workqueue);
2206 unregister_netdevice_notifier(&efx_netdev_notifier);
2207
2208}
2209
2210module_init(efx_init_module);
2211module_exit(efx_exit_module);
2212
2213MODULE_AUTHOR("Michael Brown <mbrown@fensystems.co.uk> and "
2214 "Solarflare Communications");
2215MODULE_DESCRIPTION("Solarflare Communications network driver");
2216MODULE_LICENSE("GPL");
2217MODULE_DEVICE_TABLE(pci, efx_pci_table);