sfc: Remove remnants of multi-port abstraction for MAC registers
[linux-2.6-block.git] / drivers / net / sfc / efx.c
CommitLineData
8ceee660
BH
1/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2008 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/module.h>
12#include <linux/pci.h>
13#include <linux/netdevice.h>
14#include <linux/etherdevice.h>
15#include <linux/delay.h>
16#include <linux/notifier.h>
17#include <linux/ip.h>
18#include <linux/tcp.h>
19#include <linux/in.h>
20#include <linux/crc32.h>
21#include <linux/ethtool.h>
aa6ef27e 22#include <linux/topology.h>
8ceee660
BH
23#include "net_driver.h"
24#include "gmii.h"
25#include "ethtool.h"
26#include "tx.h"
27#include "rx.h"
28#include "efx.h"
29#include "mdio_10g.h"
30#include "falcon.h"
8ceee660
BH
31#include "mac.h"
32
33#define EFX_MAX_MTU (9 * 1024)
34
35/* RX slow fill workqueue. If memory allocation fails in the fast path,
36 * a work item is pushed onto this work queue to retry the allocation later,
37 * to avoid the NIC being starved of RX buffers. Since this is a per cpu
38 * workqueue, there is nothing to be gained in making it per NIC
39 */
40static struct workqueue_struct *refill_workqueue;
41
42/**************************************************************************
43 *
44 * Configurable values
45 *
46 *************************************************************************/
47
48/*
49 * Enable large receive offload (LRO) aka soft segment reassembly (SSR)
50 *
51 * This sets the default for new devices. It can be controlled later
52 * using ethtool.
53 */
dc8cfa55 54static int lro = true;
8ceee660
BH
55module_param(lro, int, 0644);
56MODULE_PARM_DESC(lro, "Large receive offload acceleration");
57
58/*
59 * Use separate channels for TX and RX events
60 *
61 * Set this to 1 to use separate channels for TX and RX. It allows us to
62 * apply a higher level of interrupt moderation to TX events.
63 *
64 * This is forced to 0 for MSI interrupt mode as the interrupt vector
65 * is not written
66 */
dc8cfa55 67static unsigned int separate_tx_and_rx_channels = true;
8ceee660
BH
68
69/* This is the weight assigned to each of the (per-channel) virtual
70 * NAPI devices.
71 */
72static int napi_weight = 64;
73
74/* This is the time (in jiffies) between invocations of the hardware
75 * monitor, which checks for known hardware bugs and resets the
76 * hardware and driver as necessary.
77 */
78unsigned int efx_monitor_interval = 1 * HZ;
79
80/* This controls whether or not the hardware monitor will trigger a
81 * reset when it detects an error condition.
82 */
dc8cfa55 83static unsigned int monitor_reset = true;
8ceee660
BH
84
85/* This controls whether or not the driver will initialise devices
86 * with invalid MAC addresses stored in the EEPROM or flash. If true,
87 * such devices will be initialised with a random locally-generated
88 * MAC address. This allows for loading the sfc_mtd driver to
89 * reprogram the flash, even if the flash contents (including the MAC
90 * address) have previously been erased.
91 */
92static unsigned int allow_bad_hwaddr;
93
94/* Initial interrupt moderation settings. They can be modified after
95 * module load with ethtool.
96 *
97 * The default for RX should strike a balance between increasing the
98 * round-trip latency and reducing overhead.
99 */
100static unsigned int rx_irq_mod_usec = 60;
101
102/* Initial interrupt moderation settings. They can be modified after
103 * module load with ethtool.
104 *
105 * This default is chosen to ensure that a 10G link does not go idle
106 * while a TX queue is stopped after it has become full. A queue is
107 * restarted when it drops below half full. The time this takes (assuming
108 * worst case 3 descriptors per packet and 1024 descriptors) is
109 * 512 / 3 * 1.2 = 205 usec.
110 */
111static unsigned int tx_irq_mod_usec = 150;
112
113/* This is the first interrupt mode to try out of:
114 * 0 => MSI-X
115 * 1 => MSI
116 * 2 => legacy
117 */
118static unsigned int interrupt_mode;
119
120/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
121 * i.e. the number of CPUs among which we may distribute simultaneous
122 * interrupt handling.
123 *
124 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
125 * The default (0) means to assign an interrupt to each package (level II cache)
126 */
127static unsigned int rss_cpus;
128module_param(rss_cpus, uint, 0444);
129MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
130
131/**************************************************************************
132 *
133 * Utility functions and prototypes
134 *
135 *************************************************************************/
136static void efx_remove_channel(struct efx_channel *channel);
137static void efx_remove_port(struct efx_nic *efx);
138static void efx_fini_napi(struct efx_nic *efx);
139static void efx_fini_channels(struct efx_nic *efx);
140
141#define EFX_ASSERT_RESET_SERIALISED(efx) \
142 do { \
143 if ((efx->state == STATE_RUNNING) || \
144 (efx->state == STATE_RESETTING)) \
145 ASSERT_RTNL(); \
146 } while (0)
147
148/**************************************************************************
149 *
150 * Event queue processing
151 *
152 *************************************************************************/
153
154/* Process channel's event queue
155 *
156 * This function is responsible for processing the event queue of a
157 * single channel. The caller must guarantee that this function will
158 * never be concurrently called more than once on the same channel,
159 * though different channels may be being processed concurrently.
160 */
4d566063 161static int efx_process_channel(struct efx_channel *channel, int rx_quota)
8ceee660 162{
42cbe2d7
BH
163 struct efx_nic *efx = channel->efx;
164 int rx_packets;
8ceee660 165
42cbe2d7 166 if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
8ceee660 167 !channel->enabled))
42cbe2d7 168 return 0;
8ceee660 169
42cbe2d7
BH
170 rx_packets = falcon_process_eventq(channel, rx_quota);
171 if (rx_packets == 0)
172 return 0;
8ceee660
BH
173
174 /* Deliver last RX packet. */
175 if (channel->rx_pkt) {
176 __efx_rx_packet(channel, channel->rx_pkt,
177 channel->rx_pkt_csummed);
178 channel->rx_pkt = NULL;
179 }
180
181 efx_flush_lro(channel);
182 efx_rx_strategy(channel);
183
42cbe2d7 184 efx_fast_push_rx_descriptors(&efx->rx_queue[channel->channel]);
8ceee660 185
42cbe2d7 186 return rx_packets;
8ceee660
BH
187}
188
189/* Mark channel as finished processing
190 *
191 * Note that since we will not receive further interrupts for this
192 * channel before we finish processing and call the eventq_read_ack()
193 * method, there is no need to use the interrupt hold-off timers.
194 */
195static inline void efx_channel_processed(struct efx_channel *channel)
196{
5b9e207c
BH
197 /* The interrupt handler for this channel may set work_pending
198 * as soon as we acknowledge the events we've seen. Make sure
199 * it's cleared before then. */
dc8cfa55 200 channel->work_pending = false;
5b9e207c
BH
201 smp_wmb();
202
8ceee660
BH
203 falcon_eventq_read_ack(channel);
204}
205
206/* NAPI poll handler
207 *
208 * NAPI guarantees serialisation of polls of the same device, which
209 * provides the guarantee required by efx_process_channel().
210 */
211static int efx_poll(struct napi_struct *napi, int budget)
212{
213 struct efx_channel *channel =
214 container_of(napi, struct efx_channel, napi_str);
215 struct net_device *napi_dev = channel->napi_dev;
8ceee660
BH
216 int rx_packets;
217
218 EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n",
219 channel->channel, raw_smp_processor_id());
220
42cbe2d7 221 rx_packets = efx_process_channel(channel, budget);
8ceee660
BH
222
223 if (rx_packets < budget) {
224 /* There is no race here; although napi_disable() will
225 * only wait for netif_rx_complete(), this isn't a problem
226 * since efx_channel_processed() will have no effect if
227 * interrupts have already been disabled.
228 */
229 netif_rx_complete(napi_dev, napi);
230 efx_channel_processed(channel);
231 }
232
233 return rx_packets;
234}
235
236/* Process the eventq of the specified channel immediately on this CPU
237 *
238 * Disable hardware generated interrupts, wait for any existing
239 * processing to finish, then directly poll (and ack ) the eventq.
240 * Finally reenable NAPI and interrupts.
241 *
242 * Since we are touching interrupts the caller should hold the suspend lock
243 */
244void efx_process_channel_now(struct efx_channel *channel)
245{
246 struct efx_nic *efx = channel->efx;
247
248 BUG_ON(!channel->used_flags);
249 BUG_ON(!channel->enabled);
250
251 /* Disable interrupts and wait for ISRs to complete */
252 falcon_disable_interrupts(efx);
253 if (efx->legacy_irq)
254 synchronize_irq(efx->legacy_irq);
64ee3120 255 if (channel->irq)
8ceee660
BH
256 synchronize_irq(channel->irq);
257
258 /* Wait for any NAPI processing to complete */
259 napi_disable(&channel->napi_str);
260
261 /* Poll the channel */
91ad757c 262 efx_process_channel(channel, efx->type->evq_size);
8ceee660
BH
263
264 /* Ack the eventq. This may cause an interrupt to be generated
265 * when they are reenabled */
266 efx_channel_processed(channel);
267
268 napi_enable(&channel->napi_str);
269 falcon_enable_interrupts(efx);
270}
271
272/* Create event queue
273 * Event queue memory allocations are done only once. If the channel
274 * is reset, the memory buffer will be reused; this guards against
275 * errors during channel reset and also simplifies interrupt handling.
276 */
277static int efx_probe_eventq(struct efx_channel *channel)
278{
279 EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel);
280
281 return falcon_probe_eventq(channel);
282}
283
284/* Prepare channel's event queue */
285static int efx_init_eventq(struct efx_channel *channel)
286{
287 EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel);
288
289 channel->eventq_read_ptr = 0;
290
291 return falcon_init_eventq(channel);
292}
293
294static void efx_fini_eventq(struct efx_channel *channel)
295{
296 EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel);
297
298 falcon_fini_eventq(channel);
299}
300
301static void efx_remove_eventq(struct efx_channel *channel)
302{
303 EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel);
304
305 falcon_remove_eventq(channel);
306}
307
308/**************************************************************************
309 *
310 * Channel handling
311 *
312 *************************************************************************/
313
8ceee660
BH
314static int efx_probe_channel(struct efx_channel *channel)
315{
316 struct efx_tx_queue *tx_queue;
317 struct efx_rx_queue *rx_queue;
318 int rc;
319
320 EFX_LOG(channel->efx, "creating channel %d\n", channel->channel);
321
322 rc = efx_probe_eventq(channel);
323 if (rc)
324 goto fail1;
325
326 efx_for_each_channel_tx_queue(tx_queue, channel) {
327 rc = efx_probe_tx_queue(tx_queue);
328 if (rc)
329 goto fail2;
330 }
331
332 efx_for_each_channel_rx_queue(rx_queue, channel) {
333 rc = efx_probe_rx_queue(rx_queue);
334 if (rc)
335 goto fail3;
336 }
337
338 channel->n_rx_frm_trunc = 0;
339
340 return 0;
341
342 fail3:
343 efx_for_each_channel_rx_queue(rx_queue, channel)
344 efx_remove_rx_queue(rx_queue);
345 fail2:
346 efx_for_each_channel_tx_queue(tx_queue, channel)
347 efx_remove_tx_queue(tx_queue);
348 fail1:
349 return rc;
350}
351
352
353/* Channels are shutdown and reinitialised whilst the NIC is running
354 * to propagate configuration changes (mtu, checksum offload), or
355 * to clear hardware error conditions
356 */
357static int efx_init_channels(struct efx_nic *efx)
358{
359 struct efx_tx_queue *tx_queue;
360 struct efx_rx_queue *rx_queue;
361 struct efx_channel *channel;
362 int rc = 0;
363
f7f13b0b
BH
364 /* Calculate the rx buffer allocation parameters required to
365 * support the current MTU, including padding for header
366 * alignment and overruns.
367 */
368 efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
369 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
370 efx->type->rx_buffer_padding);
371 efx->rx_buffer_order = get_order(efx->rx_buffer_len);
8ceee660
BH
372
373 /* Initialise the channels */
374 efx_for_each_channel(channel, efx) {
375 EFX_LOG(channel->efx, "init chan %d\n", channel->channel);
376
377 rc = efx_init_eventq(channel);
378 if (rc)
379 goto err;
380
381 efx_for_each_channel_tx_queue(tx_queue, channel) {
382 rc = efx_init_tx_queue(tx_queue);
383 if (rc)
384 goto err;
385 }
386
387 /* The rx buffer allocation strategy is MTU dependent */
388 efx_rx_strategy(channel);
389
390 efx_for_each_channel_rx_queue(rx_queue, channel) {
391 rc = efx_init_rx_queue(rx_queue);
392 if (rc)
393 goto err;
394 }
395
396 WARN_ON(channel->rx_pkt != NULL);
397 efx_rx_strategy(channel);
398 }
399
400 return 0;
401
402 err:
403 EFX_ERR(efx, "failed to initialise channel %d\n",
404 channel ? channel->channel : -1);
405 efx_fini_channels(efx);
406 return rc;
407}
408
409/* This enables event queue processing and packet transmission.
410 *
411 * Note that this function is not allowed to fail, since that would
412 * introduce too much complexity into the suspend/resume path.
413 */
414static void efx_start_channel(struct efx_channel *channel)
415{
416 struct efx_rx_queue *rx_queue;
417
418 EFX_LOG(channel->efx, "starting chan %d\n", channel->channel);
419
420 if (!(channel->efx->net_dev->flags & IFF_UP))
421 netif_napi_add(channel->napi_dev, &channel->napi_str,
422 efx_poll, napi_weight);
423
5b9e207c
BH
424 /* The interrupt handler for this channel may set work_pending
425 * as soon as we enable it. Make sure it's cleared before
426 * then. Similarly, make sure it sees the enabled flag set. */
dc8cfa55
BH
427 channel->work_pending = false;
428 channel->enabled = true;
5b9e207c 429 smp_wmb();
8ceee660
BH
430
431 napi_enable(&channel->napi_str);
432
433 /* Load up RX descriptors */
434 efx_for_each_channel_rx_queue(rx_queue, channel)
435 efx_fast_push_rx_descriptors(rx_queue);
436}
437
438/* This disables event queue processing and packet transmission.
439 * This function does not guarantee that all queue processing
440 * (e.g. RX refill) is complete.
441 */
442static void efx_stop_channel(struct efx_channel *channel)
443{
444 struct efx_rx_queue *rx_queue;
445
446 if (!channel->enabled)
447 return;
448
449 EFX_LOG(channel->efx, "stop chan %d\n", channel->channel);
450
dc8cfa55 451 channel->enabled = false;
8ceee660
BH
452 napi_disable(&channel->napi_str);
453
454 /* Ensure that any worker threads have exited or will be no-ops */
455 efx_for_each_channel_rx_queue(rx_queue, channel) {
456 spin_lock_bh(&rx_queue->add_lock);
457 spin_unlock_bh(&rx_queue->add_lock);
458 }
459}
460
461static void efx_fini_channels(struct efx_nic *efx)
462{
463 struct efx_channel *channel;
464 struct efx_tx_queue *tx_queue;
465 struct efx_rx_queue *rx_queue;
466
467 EFX_ASSERT_RESET_SERIALISED(efx);
468 BUG_ON(efx->port_enabled);
469
470 efx_for_each_channel(channel, efx) {
471 EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel);
472
473 efx_for_each_channel_rx_queue(rx_queue, channel)
474 efx_fini_rx_queue(rx_queue);
475 efx_for_each_channel_tx_queue(tx_queue, channel)
476 efx_fini_tx_queue(tx_queue);
477 }
478
479 /* Do the event queues last so that we can handle flush events
480 * for all DMA queues. */
481 efx_for_each_channel(channel, efx) {
482 EFX_LOG(channel->efx, "shut down evq %d\n", channel->channel);
483
484 efx_fini_eventq(channel);
485 }
486}
487
488static void efx_remove_channel(struct efx_channel *channel)
489{
490 struct efx_tx_queue *tx_queue;
491 struct efx_rx_queue *rx_queue;
492
493 EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel);
494
495 efx_for_each_channel_rx_queue(rx_queue, channel)
496 efx_remove_rx_queue(rx_queue);
497 efx_for_each_channel_tx_queue(tx_queue, channel)
498 efx_remove_tx_queue(tx_queue);
499 efx_remove_eventq(channel);
500
501 channel->used_flags = 0;
502}
503
504void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay)
505{
506 queue_delayed_work(refill_workqueue, &rx_queue->work, delay);
507}
508
509/**************************************************************************
510 *
511 * Port handling
512 *
513 **************************************************************************/
514
515/* This ensures that the kernel is kept informed (via
516 * netif_carrier_on/off) of the link status, and also maintains the
517 * link status's stop on the port's TX queue.
518 */
519static void efx_link_status_changed(struct efx_nic *efx)
520{
8ceee660
BH
521 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
522 * that no events are triggered between unregister_netdev() and the
523 * driver unloading. A more general condition is that NETDEV_CHANGE
524 * can only be generated between NETDEV_UP and NETDEV_DOWN */
525 if (!netif_running(efx->net_dev))
526 return;
527
dc8cfa55 528 if (efx->link_up != netif_carrier_ok(efx->net_dev)) {
8ceee660
BH
529 efx->n_link_state_changes++;
530
531 if (efx->link_up)
532 netif_carrier_on(efx->net_dev);
533 else
534 netif_carrier_off(efx->net_dev);
535 }
536
537 /* Status message for kernel log */
538 if (efx->link_up) {
539 struct mii_if_info *gmii = &efx->mii;
540 unsigned adv, lpa;
541 /* NONE here means direct XAUI from the controller, with no
542 * MDIO-attached device we can query. */
543 if (efx->phy_type != PHY_TYPE_NONE) {
544 adv = gmii_advertised(gmii);
545 lpa = gmii_lpa(gmii);
546 } else {
547 lpa = GM_LPA_10000 | LPA_DUPLEX;
548 adv = lpa;
549 }
550 EFX_INFO(efx, "link up at %dMbps %s-duplex "
551 "(adv %04x lpa %04x) (MTU %d)%s\n",
552 (efx->link_options & GM_LPA_10000 ? 10000 :
553 (efx->link_options & GM_LPA_1000 ? 1000 :
554 (efx->link_options & GM_LPA_100 ? 100 :
555 10))),
556 (efx->link_options & GM_LPA_DUPLEX ?
557 "full" : "half"),
558 adv, lpa,
559 efx->net_dev->mtu,
560 (efx->promiscuous ? " [PROMISC]" : ""));
561 } else {
562 EFX_INFO(efx, "link down\n");
563 }
564
565}
566
567/* This call reinitialises the MAC to pick up new PHY settings. The
568 * caller must hold the mac_lock */
569static void __efx_reconfigure_port(struct efx_nic *efx)
570{
571 WARN_ON(!mutex_is_locked(&efx->mac_lock));
572
573 EFX_LOG(efx, "reconfiguring MAC from PHY settings on CPU %d\n",
574 raw_smp_processor_id());
575
576 falcon_reconfigure_xmac(efx);
577
578 /* Inform kernel of loss/gain of carrier */
579 efx_link_status_changed(efx);
580}
581
582/* Reinitialise the MAC to pick up new PHY settings, even if the port is
583 * disabled. */
584void efx_reconfigure_port(struct efx_nic *efx)
585{
586 EFX_ASSERT_RESET_SERIALISED(efx);
587
588 mutex_lock(&efx->mac_lock);
589 __efx_reconfigure_port(efx);
590 mutex_unlock(&efx->mac_lock);
591}
592
593/* Asynchronous efx_reconfigure_port work item. To speed up efx_flush_all()
594 * we don't efx_reconfigure_port() if the port is disabled. Care is taken
595 * in efx_stop_all() and efx_start_port() to prevent PHY events being lost */
596static void efx_reconfigure_work(struct work_struct *data)
597{
598 struct efx_nic *efx = container_of(data, struct efx_nic,
599 reconfigure_work);
600
601 mutex_lock(&efx->mac_lock);
602 if (efx->port_enabled)
603 __efx_reconfigure_port(efx);
604 mutex_unlock(&efx->mac_lock);
605}
606
607static int efx_probe_port(struct efx_nic *efx)
608{
609 int rc;
610
611 EFX_LOG(efx, "create port\n");
612
613 /* Connect up MAC/PHY operations table and read MAC address */
614 rc = falcon_probe_port(efx);
615 if (rc)
616 goto err;
617
618 /* Sanity check MAC address */
619 if (is_valid_ether_addr(efx->mac_address)) {
620 memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
621 } else {
622 DECLARE_MAC_BUF(mac);
623
624 EFX_ERR(efx, "invalid MAC address %s\n",
625 print_mac(mac, efx->mac_address));
626 if (!allow_bad_hwaddr) {
627 rc = -EINVAL;
628 goto err;
629 }
630 random_ether_addr(efx->net_dev->dev_addr);
631 EFX_INFO(efx, "using locally-generated MAC %s\n",
632 print_mac(mac, efx->net_dev->dev_addr));
633 }
634
635 return 0;
636
637 err:
638 efx_remove_port(efx);
639 return rc;
640}
641
642static int efx_init_port(struct efx_nic *efx)
643{
644 int rc;
645
646 EFX_LOG(efx, "init port\n");
647
648 /* Initialise the MAC and PHY */
649 rc = falcon_init_xmac(efx);
650 if (rc)
651 return rc;
652
dc8cfa55 653 efx->port_initialized = true;
8ceee660
BH
654
655 /* Reconfigure port to program MAC registers */
656 falcon_reconfigure_xmac(efx);
657
658 return 0;
659}
660
661/* Allow efx_reconfigure_port() to be scheduled, and close the window
662 * between efx_stop_port and efx_flush_all whereby a previously scheduled
663 * efx_reconfigure_port() may have been cancelled */
664static void efx_start_port(struct efx_nic *efx)
665{
666 EFX_LOG(efx, "start port\n");
667 BUG_ON(efx->port_enabled);
668
669 mutex_lock(&efx->mac_lock);
dc8cfa55 670 efx->port_enabled = true;
8ceee660
BH
671 __efx_reconfigure_port(efx);
672 mutex_unlock(&efx->mac_lock);
673}
674
675/* Prevent efx_reconfigure_work and efx_monitor() from executing, and
676 * efx_set_multicast_list() from scheduling efx_reconfigure_work.
677 * efx_reconfigure_work can still be scheduled via NAPI processing
678 * until efx_flush_all() is called */
679static void efx_stop_port(struct efx_nic *efx)
680{
681 EFX_LOG(efx, "stop port\n");
682
683 mutex_lock(&efx->mac_lock);
dc8cfa55 684 efx->port_enabled = false;
8ceee660
BH
685 mutex_unlock(&efx->mac_lock);
686
687 /* Serialise against efx_set_multicast_list() */
55668611 688 if (efx_dev_registered(efx)) {
b9e40857
DM
689 netif_addr_lock_bh(efx->net_dev);
690 netif_addr_unlock_bh(efx->net_dev);
8ceee660
BH
691 }
692}
693
694static void efx_fini_port(struct efx_nic *efx)
695{
696 EFX_LOG(efx, "shut down port\n");
697
698 if (!efx->port_initialized)
699 return;
700
701 falcon_fini_xmac(efx);
dc8cfa55 702 efx->port_initialized = false;
8ceee660 703
dc8cfa55 704 efx->link_up = false;
8ceee660
BH
705 efx_link_status_changed(efx);
706}
707
708static void efx_remove_port(struct efx_nic *efx)
709{
710 EFX_LOG(efx, "destroying port\n");
711
712 falcon_remove_port(efx);
713}
714
715/**************************************************************************
716 *
717 * NIC handling
718 *
719 **************************************************************************/
720
721/* This configures the PCI device to enable I/O and DMA. */
722static int efx_init_io(struct efx_nic *efx)
723{
724 struct pci_dev *pci_dev = efx->pci_dev;
725 dma_addr_t dma_mask = efx->type->max_dma_mask;
726 int rc;
727
728 EFX_LOG(efx, "initialising I/O\n");
729
730 rc = pci_enable_device(pci_dev);
731 if (rc) {
732 EFX_ERR(efx, "failed to enable PCI device\n");
733 goto fail1;
734 }
735
736 pci_set_master(pci_dev);
737
738 /* Set the PCI DMA mask. Try all possibilities from our
739 * genuine mask down to 32 bits, because some architectures
740 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
741 * masks event though they reject 46 bit masks.
742 */
743 while (dma_mask > 0x7fffffffUL) {
744 if (pci_dma_supported(pci_dev, dma_mask) &&
745 ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
746 break;
747 dma_mask >>= 1;
748 }
749 if (rc) {
750 EFX_ERR(efx, "could not find a suitable DMA mask\n");
751 goto fail2;
752 }
753 EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask);
754 rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
755 if (rc) {
756 /* pci_set_consistent_dma_mask() is not *allowed* to
757 * fail with a mask that pci_set_dma_mask() accepted,
758 * but just in case...
759 */
760 EFX_ERR(efx, "failed to set consistent DMA mask\n");
761 goto fail2;
762 }
763
764 efx->membase_phys = pci_resource_start(efx->pci_dev,
765 efx->type->mem_bar);
766 rc = pci_request_region(pci_dev, efx->type->mem_bar, "sfc");
767 if (rc) {
768 EFX_ERR(efx, "request for memory BAR failed\n");
769 rc = -EIO;
770 goto fail3;
771 }
772 efx->membase = ioremap_nocache(efx->membase_phys,
773 efx->type->mem_map_size);
774 if (!efx->membase) {
086ea356
BH
775 EFX_ERR(efx, "could not map memory BAR %d at %llx+%x\n",
776 efx->type->mem_bar,
777 (unsigned long long)efx->membase_phys,
8ceee660
BH
778 efx->type->mem_map_size);
779 rc = -ENOMEM;
780 goto fail4;
781 }
086ea356
BH
782 EFX_LOG(efx, "memory BAR %u at %llx+%x (virtual %p)\n",
783 efx->type->mem_bar, (unsigned long long)efx->membase_phys,
784 efx->type->mem_map_size, efx->membase);
8ceee660
BH
785
786 return 0;
787
788 fail4:
789 release_mem_region(efx->membase_phys, efx->type->mem_map_size);
790 fail3:
2c118e0f 791 efx->membase_phys = 0;
8ceee660
BH
792 fail2:
793 pci_disable_device(efx->pci_dev);
794 fail1:
795 return rc;
796}
797
798static void efx_fini_io(struct efx_nic *efx)
799{
800 EFX_LOG(efx, "shutting down I/O\n");
801
802 if (efx->membase) {
803 iounmap(efx->membase);
804 efx->membase = NULL;
805 }
806
807 if (efx->membase_phys) {
808 pci_release_region(efx->pci_dev, efx->type->mem_bar);
2c118e0f 809 efx->membase_phys = 0;
8ceee660
BH
810 }
811
812 pci_disable_device(efx->pci_dev);
813}
814
46123d04
BH
815/* Get number of RX queues wanted. Return number of online CPU
816 * packages in the expectation that an IRQ balancer will spread
817 * interrupts across them. */
818static int efx_wanted_rx_queues(void)
819{
820 cpumask_t core_mask;
821 int count;
822 int cpu;
823
824 cpus_clear(core_mask);
825 count = 0;
826 for_each_online_cpu(cpu) {
827 if (!cpu_isset(cpu, core_mask)) {
828 ++count;
829 cpus_or(core_mask, core_mask,
830 topology_core_siblings(cpu));
831 }
832 }
833
834 return count;
835}
836
837/* Probe the number and type of interrupts we are able to obtain, and
838 * the resulting numbers of channels and RX queues.
839 */
8ceee660
BH
840static void efx_probe_interrupts(struct efx_nic *efx)
841{
46123d04
BH
842 int max_channels =
843 min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
8ceee660
BH
844 int rc, i;
845
846 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
46123d04
BH
847 struct msix_entry xentries[EFX_MAX_CHANNELS];
848 int wanted_ints;
aa6ef27e 849
46123d04
BH
850 /* We want one RX queue and interrupt per CPU package
851 * (or as specified by the rss_cpus module parameter).
852 * We will need one channel per interrupt.
853 */
854 wanted_ints = rss_cpus ? rss_cpus : efx_wanted_rx_queues();
8831da7b 855 efx->n_rx_queues = min(wanted_ints, max_channels);
8ceee660 856
8831da7b 857 for (i = 0; i < efx->n_rx_queues; i++)
8ceee660 858 xentries[i].entry = i;
8831da7b 859 rc = pci_enable_msix(efx->pci_dev, xentries, efx->n_rx_queues);
8ceee660 860 if (rc > 0) {
8831da7b
BH
861 EFX_BUG_ON_PARANOID(rc >= efx->n_rx_queues);
862 efx->n_rx_queues = rc;
8ceee660 863 rc = pci_enable_msix(efx->pci_dev, xentries,
8831da7b 864 efx->n_rx_queues);
8ceee660
BH
865 }
866
867 if (rc == 0) {
8831da7b 868 for (i = 0; i < efx->n_rx_queues; i++)
8ceee660 869 efx->channel[i].irq = xentries[i].vector;
8ceee660
BH
870 } else {
871 /* Fall back to single channel MSI */
872 efx->interrupt_mode = EFX_INT_MODE_MSI;
873 EFX_ERR(efx, "could not enable MSI-X\n");
874 }
875 }
876
877 /* Try single interrupt MSI */
878 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
8831da7b 879 efx->n_rx_queues = 1;
8ceee660
BH
880 rc = pci_enable_msi(efx->pci_dev);
881 if (rc == 0) {
882 efx->channel[0].irq = efx->pci_dev->irq;
8ceee660
BH
883 } else {
884 EFX_ERR(efx, "could not enable MSI\n");
885 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
886 }
887 }
888
889 /* Assume legacy interrupts */
890 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
8831da7b 891 efx->n_rx_queues = 1;
8ceee660
BH
892 efx->legacy_irq = efx->pci_dev->irq;
893 }
894}
895
896static void efx_remove_interrupts(struct efx_nic *efx)
897{
898 struct efx_channel *channel;
899
900 /* Remove MSI/MSI-X interrupts */
64ee3120 901 efx_for_each_channel(channel, efx)
8ceee660
BH
902 channel->irq = 0;
903 pci_disable_msi(efx->pci_dev);
904 pci_disable_msix(efx->pci_dev);
905
906 /* Remove legacy interrupt */
907 efx->legacy_irq = 0;
908}
909
8831da7b 910static void efx_set_channels(struct efx_nic *efx)
8ceee660
BH
911{
912 struct efx_tx_queue *tx_queue;
913 struct efx_rx_queue *rx_queue;
8ceee660 914
60ac1065
BH
915 efx_for_each_tx_queue(tx_queue, efx) {
916 if (!EFX_INT_MODE_USE_MSI(efx) && separate_tx_and_rx_channels)
917 tx_queue->channel = &efx->channel[1];
918 else
919 tx_queue->channel = &efx->channel[0];
920 tx_queue->channel->used_flags |= EFX_USED_BY_TX;
921 }
8ceee660 922
8831da7b
BH
923 efx_for_each_rx_queue(rx_queue, efx) {
924 rx_queue->channel = &efx->channel[rx_queue->queue];
925 rx_queue->channel->used_flags |= EFX_USED_BY_RX;
8ceee660
BH
926 }
927}
928
929static int efx_probe_nic(struct efx_nic *efx)
930{
931 int rc;
932
933 EFX_LOG(efx, "creating NIC\n");
934
935 /* Carry out hardware-type specific initialisation */
936 rc = falcon_probe_nic(efx);
937 if (rc)
938 return rc;
939
940 /* Determine the number of channels and RX queues by trying to hook
941 * in MSI-X interrupts. */
942 efx_probe_interrupts(efx);
943
8831da7b 944 efx_set_channels(efx);
8ceee660
BH
945
946 /* Initialise the interrupt moderation settings */
947 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec);
948
949 return 0;
950}
951
952static void efx_remove_nic(struct efx_nic *efx)
953{
954 EFX_LOG(efx, "destroying NIC\n");
955
956 efx_remove_interrupts(efx);
957 falcon_remove_nic(efx);
958}
959
960/**************************************************************************
961 *
962 * NIC startup/shutdown
963 *
964 *************************************************************************/
965
966static int efx_probe_all(struct efx_nic *efx)
967{
968 struct efx_channel *channel;
969 int rc;
970
971 /* Create NIC */
972 rc = efx_probe_nic(efx);
973 if (rc) {
974 EFX_ERR(efx, "failed to create NIC\n");
975 goto fail1;
976 }
977
978 /* Create port */
979 rc = efx_probe_port(efx);
980 if (rc) {
981 EFX_ERR(efx, "failed to create port\n");
982 goto fail2;
983 }
984
985 /* Create channels */
986 efx_for_each_channel(channel, efx) {
987 rc = efx_probe_channel(channel);
988 if (rc) {
989 EFX_ERR(efx, "failed to create channel %d\n",
990 channel->channel);
991 goto fail3;
992 }
993 }
994
995 return 0;
996
997 fail3:
998 efx_for_each_channel(channel, efx)
999 efx_remove_channel(channel);
1000 efx_remove_port(efx);
1001 fail2:
1002 efx_remove_nic(efx);
1003 fail1:
1004 return rc;
1005}
1006
1007/* Called after previous invocation(s) of efx_stop_all, restarts the
1008 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1009 * and ensures that the port is scheduled to be reconfigured.
1010 * This function is safe to call multiple times when the NIC is in any
1011 * state. */
1012static void efx_start_all(struct efx_nic *efx)
1013{
1014 struct efx_channel *channel;
1015
1016 EFX_ASSERT_RESET_SERIALISED(efx);
1017
1018 /* Check that it is appropriate to restart the interface. All
1019 * of these flags are safe to read under just the rtnl lock */
1020 if (efx->port_enabled)
1021 return;
1022 if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1023 return;
55668611 1024 if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
8ceee660
BH
1025 return;
1026
1027 /* Mark the port as enabled so port reconfigurations can start, then
1028 * restart the transmit interface early so the watchdog timer stops */
1029 efx_start_port(efx);
dacccc74
SH
1030 if (efx_dev_registered(efx))
1031 efx_wake_queue(efx);
8ceee660
BH
1032
1033 efx_for_each_channel(channel, efx)
1034 efx_start_channel(channel);
1035
1036 falcon_enable_interrupts(efx);
1037
1038 /* Start hardware monitor if we're in RUNNING */
1039 if (efx->state == STATE_RUNNING)
1040 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1041 efx_monitor_interval);
1042}
1043
1044/* Flush all delayed work. Should only be called when no more delayed work
1045 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1046 * since we're holding the rtnl_lock at this point. */
1047static void efx_flush_all(struct efx_nic *efx)
1048{
1049 struct efx_rx_queue *rx_queue;
1050
1051 /* Make sure the hardware monitor is stopped */
1052 cancel_delayed_work_sync(&efx->monitor_work);
1053
1054 /* Ensure that all RX slow refills are complete. */
b3475645 1055 efx_for_each_rx_queue(rx_queue, efx)
8ceee660 1056 cancel_delayed_work_sync(&rx_queue->work);
8ceee660
BH
1057
1058 /* Stop scheduled port reconfigurations */
1059 cancel_work_sync(&efx->reconfigure_work);
1060
1061}
1062
1063/* Quiesce hardware and software without bringing the link down.
1064 * Safe to call multiple times, when the nic and interface is in any
1065 * state. The caller is guaranteed to subsequently be in a position
1066 * to modify any hardware and software state they see fit without
1067 * taking locks. */
1068static void efx_stop_all(struct efx_nic *efx)
1069{
1070 struct efx_channel *channel;
1071
1072 EFX_ASSERT_RESET_SERIALISED(efx);
1073
1074 /* port_enabled can be read safely under the rtnl lock */
1075 if (!efx->port_enabled)
1076 return;
1077
1078 /* Disable interrupts and wait for ISR to complete */
1079 falcon_disable_interrupts(efx);
1080 if (efx->legacy_irq)
1081 synchronize_irq(efx->legacy_irq);
64ee3120 1082 efx_for_each_channel(channel, efx) {
8ceee660
BH
1083 if (channel->irq)
1084 synchronize_irq(channel->irq);
b3475645 1085 }
8ceee660
BH
1086
1087 /* Stop all NAPI processing and synchronous rx refills */
1088 efx_for_each_channel(channel, efx)
1089 efx_stop_channel(channel);
1090
1091 /* Stop all asynchronous port reconfigurations. Since all
1092 * event processing has already been stopped, there is no
1093 * window to loose phy events */
1094 efx_stop_port(efx);
1095
1096 /* Flush reconfigure_work, refill_workqueue, monitor_work */
1097 efx_flush_all(efx);
1098
1099 /* Isolate the MAC from the TX and RX engines, so that queue
1100 * flushes will complete in a timely fashion. */
1101 falcon_deconfigure_mac_wrapper(efx);
1102 falcon_drain_tx_fifo(efx);
1103
1104 /* Stop the kernel transmit interface late, so the watchdog
1105 * timer isn't ticking over the flush */
55668611 1106 if (efx_dev_registered(efx)) {
dacccc74 1107 efx_stop_queue(efx);
8ceee660
BH
1108 netif_tx_lock_bh(efx->net_dev);
1109 netif_tx_unlock_bh(efx->net_dev);
1110 }
1111}
1112
1113static void efx_remove_all(struct efx_nic *efx)
1114{
1115 struct efx_channel *channel;
1116
1117 efx_for_each_channel(channel, efx)
1118 efx_remove_channel(channel);
1119 efx_remove_port(efx);
1120 efx_remove_nic(efx);
1121}
1122
1123/* A convinience function to safely flush all the queues */
1124int efx_flush_queues(struct efx_nic *efx)
1125{
1126 int rc;
1127
1128 EFX_ASSERT_RESET_SERIALISED(efx);
1129
1130 efx_stop_all(efx);
1131
1132 efx_fini_channels(efx);
1133 rc = efx_init_channels(efx);
1134 if (rc) {
1135 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1136 return rc;
1137 }
1138
1139 efx_start_all(efx);
1140
1141 return 0;
1142}
1143
1144/**************************************************************************
1145 *
1146 * Interrupt moderation
1147 *
1148 **************************************************************************/
1149
1150/* Set interrupt moderation parameters */
1151void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs)
1152{
1153 struct efx_tx_queue *tx_queue;
1154 struct efx_rx_queue *rx_queue;
1155
1156 EFX_ASSERT_RESET_SERIALISED(efx);
1157
1158 efx_for_each_tx_queue(tx_queue, efx)
1159 tx_queue->channel->irq_moderation = tx_usecs;
1160
1161 efx_for_each_rx_queue(rx_queue, efx)
1162 rx_queue->channel->irq_moderation = rx_usecs;
1163}
1164
1165/**************************************************************************
1166 *
1167 * Hardware monitor
1168 *
1169 **************************************************************************/
1170
1171/* Run periodically off the general workqueue. Serialised against
1172 * efx_reconfigure_port via the mac_lock */
1173static void efx_monitor(struct work_struct *data)
1174{
1175 struct efx_nic *efx = container_of(data, struct efx_nic,
1176 monitor_work.work);
1177 int rc = 0;
1178
1179 EFX_TRACE(efx, "hardware monitor executing on CPU %d\n",
1180 raw_smp_processor_id());
1181
1182
1183 /* If the mac_lock is already held then it is likely a port
1184 * reconfiguration is already in place, which will likely do
1185 * most of the work of check_hw() anyway. */
1186 if (!mutex_trylock(&efx->mac_lock)) {
1187 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1188 efx_monitor_interval);
1189 return;
1190 }
1191
1192 if (efx->port_enabled)
1193 rc = falcon_check_xmac(efx);
1194 mutex_unlock(&efx->mac_lock);
1195
1196 if (rc) {
1197 if (monitor_reset) {
1198 EFX_ERR(efx, "hardware monitor detected a fault: "
1199 "triggering reset\n");
1200 efx_schedule_reset(efx, RESET_TYPE_MONITOR);
1201 } else {
1202 EFX_ERR(efx, "hardware monitor detected a fault, "
1203 "skipping reset\n");
1204 }
1205 }
1206
1207 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1208 efx_monitor_interval);
1209}
1210
1211/**************************************************************************
1212 *
1213 * ioctls
1214 *
1215 *************************************************************************/
1216
1217/* Net device ioctl
1218 * Context: process, rtnl_lock() held.
1219 */
1220static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1221{
767e468c 1222 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1223
1224 EFX_ASSERT_RESET_SERIALISED(efx);
1225
1226 return generic_mii_ioctl(&efx->mii, if_mii(ifr), cmd, NULL);
1227}
1228
1229/**************************************************************************
1230 *
1231 * NAPI interface
1232 *
1233 **************************************************************************/
1234
1235static int efx_init_napi(struct efx_nic *efx)
1236{
1237 struct efx_channel *channel;
1238 int rc;
1239
1240 efx_for_each_channel(channel, efx) {
1241 channel->napi_dev = efx->net_dev;
1242 rc = efx_lro_init(&channel->lro_mgr, efx);
1243 if (rc)
1244 goto err;
1245 }
1246 return 0;
1247 err:
1248 efx_fini_napi(efx);
1249 return rc;
1250}
1251
1252static void efx_fini_napi(struct efx_nic *efx)
1253{
1254 struct efx_channel *channel;
1255
1256 efx_for_each_channel(channel, efx) {
1257 efx_lro_fini(&channel->lro_mgr);
1258 channel->napi_dev = NULL;
1259 }
1260}
1261
1262/**************************************************************************
1263 *
1264 * Kernel netpoll interface
1265 *
1266 *************************************************************************/
1267
1268#ifdef CONFIG_NET_POLL_CONTROLLER
1269
1270/* Although in the common case interrupts will be disabled, this is not
1271 * guaranteed. However, all our work happens inside the NAPI callback,
1272 * so no locking is required.
1273 */
1274static void efx_netpoll(struct net_device *net_dev)
1275{
767e468c 1276 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1277 struct efx_channel *channel;
1278
64ee3120 1279 efx_for_each_channel(channel, efx)
8ceee660
BH
1280 efx_schedule_channel(channel);
1281}
1282
1283#endif
1284
1285/**************************************************************************
1286 *
1287 * Kernel net device interface
1288 *
1289 *************************************************************************/
1290
1291/* Context: process, rtnl_lock() held. */
1292static int efx_net_open(struct net_device *net_dev)
1293{
767e468c 1294 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1295 EFX_ASSERT_RESET_SERIALISED(efx);
1296
1297 EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name,
1298 raw_smp_processor_id());
1299
f8b87c17
BH
1300 if (efx->phy_mode & PHY_MODE_SPECIAL)
1301 return -EBUSY;
1302
8ceee660
BH
1303 efx_start_all(efx);
1304 return 0;
1305}
1306
1307/* Context: process, rtnl_lock() held.
1308 * Note that the kernel will ignore our return code; this method
1309 * should really be a void.
1310 */
1311static int efx_net_stop(struct net_device *net_dev)
1312{
767e468c 1313 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1314 int rc;
1315
1316 EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name,
1317 raw_smp_processor_id());
1318
1319 /* Stop the device and flush all the channels */
1320 efx_stop_all(efx);
1321 efx_fini_channels(efx);
1322 rc = efx_init_channels(efx);
1323 if (rc)
1324 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1325
1326 return 0;
1327}
1328
5b9e207c 1329/* Context: process, dev_base_lock or RTNL held, non-blocking. */
8ceee660
BH
1330static struct net_device_stats *efx_net_stats(struct net_device *net_dev)
1331{
767e468c 1332 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1333 struct efx_mac_stats *mac_stats = &efx->mac_stats;
1334 struct net_device_stats *stats = &net_dev->stats;
1335
5b9e207c
BH
1336 /* Update stats if possible, but do not wait if another thread
1337 * is updating them (or resetting the NIC); slightly stale
1338 * stats are acceptable.
1339 */
8ceee660
BH
1340 if (!spin_trylock(&efx->stats_lock))
1341 return stats;
1342 if (efx->state == STATE_RUNNING) {
1343 falcon_update_stats_xmac(efx);
1344 falcon_update_nic_stats(efx);
1345 }
1346 spin_unlock(&efx->stats_lock);
1347
1348 stats->rx_packets = mac_stats->rx_packets;
1349 stats->tx_packets = mac_stats->tx_packets;
1350 stats->rx_bytes = mac_stats->rx_bytes;
1351 stats->tx_bytes = mac_stats->tx_bytes;
1352 stats->multicast = mac_stats->rx_multicast;
1353 stats->collisions = mac_stats->tx_collision;
1354 stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1355 mac_stats->rx_length_error);
1356 stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
1357 stats->rx_crc_errors = mac_stats->rx_bad;
1358 stats->rx_frame_errors = mac_stats->rx_align_error;
1359 stats->rx_fifo_errors = mac_stats->rx_overflow;
1360 stats->rx_missed_errors = mac_stats->rx_missed;
1361 stats->tx_window_errors = mac_stats->tx_late_collision;
1362
1363 stats->rx_errors = (stats->rx_length_errors +
1364 stats->rx_over_errors +
1365 stats->rx_crc_errors +
1366 stats->rx_frame_errors +
1367 stats->rx_fifo_errors +
1368 stats->rx_missed_errors +
1369 mac_stats->rx_symbol_error);
1370 stats->tx_errors = (stats->tx_window_errors +
1371 mac_stats->tx_bad);
1372
1373 return stats;
1374}
1375
1376/* Context: netif_tx_lock held, BHs disabled. */
1377static void efx_watchdog(struct net_device *net_dev)
1378{
767e468c 1379 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1380
1381 EFX_ERR(efx, "TX stuck with stop_count=%d port_enabled=%d: %s\n",
1382 atomic_read(&efx->netif_stop_count), efx->port_enabled,
1383 monitor_reset ? "resetting channels" : "skipping reset");
1384
1385 if (monitor_reset)
1386 efx_schedule_reset(efx, RESET_TYPE_MONITOR);
1387}
1388
1389
1390/* Context: process, rtnl_lock() held. */
1391static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1392{
767e468c 1393 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1394 int rc = 0;
1395
1396 EFX_ASSERT_RESET_SERIALISED(efx);
1397
1398 if (new_mtu > EFX_MAX_MTU)
1399 return -EINVAL;
1400
1401 efx_stop_all(efx);
1402
1403 EFX_LOG(efx, "changing MTU to %d\n", new_mtu);
1404
1405 efx_fini_channels(efx);
1406 net_dev->mtu = new_mtu;
1407 rc = efx_init_channels(efx);
1408 if (rc)
1409 goto fail;
1410
1411 efx_start_all(efx);
1412 return rc;
1413
1414 fail:
1415 efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1416 return rc;
1417}
1418
1419static int efx_set_mac_address(struct net_device *net_dev, void *data)
1420{
767e468c 1421 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1422 struct sockaddr *addr = data;
1423 char *new_addr = addr->sa_data;
1424
1425 EFX_ASSERT_RESET_SERIALISED(efx);
1426
1427 if (!is_valid_ether_addr(new_addr)) {
1428 DECLARE_MAC_BUF(mac);
1429 EFX_ERR(efx, "invalid ethernet MAC address requested: %s\n",
1430 print_mac(mac, new_addr));
1431 return -EINVAL;
1432 }
1433
1434 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1435
1436 /* Reconfigure the MAC */
1437 efx_reconfigure_port(efx);
1438
1439 return 0;
1440}
1441
1442/* Context: netif_tx_lock held, BHs disabled. */
1443static void efx_set_multicast_list(struct net_device *net_dev)
1444{
767e468c 1445 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1446 struct dev_mc_list *mc_list = net_dev->mc_list;
1447 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
dc8cfa55 1448 bool promiscuous;
8ceee660
BH
1449 u32 crc;
1450 int bit;
1451 int i;
1452
1453 /* Set per-MAC promiscuity flag and reconfigure MAC if necessary */
dc8cfa55 1454 promiscuous = !!(net_dev->flags & IFF_PROMISC);
8ceee660
BH
1455 if (efx->promiscuous != promiscuous) {
1456 efx->promiscuous = promiscuous;
1457 /* Close the window between efx_stop_port() and efx_flush_all()
1458 * by only queuing work when the port is enabled. */
1459 if (efx->port_enabled)
1460 queue_work(efx->workqueue, &efx->reconfigure_work);
1461 }
1462
1463 /* Build multicast hash table */
1464 if (promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1465 memset(mc_hash, 0xff, sizeof(*mc_hash));
1466 } else {
1467 memset(mc_hash, 0x00, sizeof(*mc_hash));
1468 for (i = 0; i < net_dev->mc_count; i++) {
1469 crc = ether_crc_le(ETH_ALEN, mc_list->dmi_addr);
1470 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1471 set_bit_le(bit, mc_hash->byte);
1472 mc_list = mc_list->next;
1473 }
1474 }
1475
1476 /* Create and activate new global multicast hash table */
1477 falcon_set_multicast_hash(efx);
1478}
1479
1480static int efx_netdev_event(struct notifier_block *this,
1481 unsigned long event, void *ptr)
1482{
d3208b5e 1483 struct net_device *net_dev = ptr;
8ceee660
BH
1484
1485 if (net_dev->open == efx_net_open && event == NETDEV_CHANGENAME) {
767e468c 1486 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1487
1488 strcpy(efx->name, net_dev->name);
1489 }
1490
1491 return NOTIFY_DONE;
1492}
1493
1494static struct notifier_block efx_netdev_notifier = {
1495 .notifier_call = efx_netdev_event,
1496};
1497
1498static int efx_register_netdev(struct efx_nic *efx)
1499{
1500 struct net_device *net_dev = efx->net_dev;
1501 int rc;
1502
1503 net_dev->watchdog_timeo = 5 * HZ;
1504 net_dev->irq = efx->pci_dev->irq;
1505 net_dev->open = efx_net_open;
1506 net_dev->stop = efx_net_stop;
1507 net_dev->get_stats = efx_net_stats;
1508 net_dev->tx_timeout = &efx_watchdog;
1509 net_dev->hard_start_xmit = efx_hard_start_xmit;
1510 net_dev->do_ioctl = efx_ioctl;
1511 net_dev->change_mtu = efx_change_mtu;
1512 net_dev->set_mac_address = efx_set_mac_address;
1513 net_dev->set_multicast_list = efx_set_multicast_list;
1514#ifdef CONFIG_NET_POLL_CONTROLLER
1515 net_dev->poll_controller = efx_netpoll;
1516#endif
1517 SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev);
1518 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1519
1520 /* Always start with carrier off; PHY events will detect the link */
1521 netif_carrier_off(efx->net_dev);
1522
1523 /* Clear MAC statistics */
1524 falcon_update_stats_xmac(efx);
1525 memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
1526
1527 rc = register_netdev(net_dev);
1528 if (rc) {
1529 EFX_ERR(efx, "could not register net dev\n");
1530 return rc;
1531 }
1532 strcpy(efx->name, net_dev->name);
1533
1534 return 0;
1535}
1536
1537static void efx_unregister_netdev(struct efx_nic *efx)
1538{
1539 struct efx_tx_queue *tx_queue;
1540
1541 if (!efx->net_dev)
1542 return;
1543
767e468c 1544 BUG_ON(netdev_priv(efx->net_dev) != efx);
8ceee660
BH
1545
1546 /* Free up any skbs still remaining. This has to happen before
1547 * we try to unregister the netdev as running their destructors
1548 * may be needed to get the device ref. count to 0. */
1549 efx_for_each_tx_queue(tx_queue, efx)
1550 efx_release_tx_buffers(tx_queue);
1551
55668611 1552 if (efx_dev_registered(efx)) {
8ceee660
BH
1553 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
1554 unregister_netdev(efx->net_dev);
1555 }
1556}
1557
1558/**************************************************************************
1559 *
1560 * Device reset and suspend
1561 *
1562 **************************************************************************/
1563
1564/* The final hardware and software finalisation before reset. */
1565static int efx_reset_down(struct efx_nic *efx, struct ethtool_cmd *ecmd)
1566{
1567 int rc;
1568
1569 EFX_ASSERT_RESET_SERIALISED(efx);
1570
1571 rc = falcon_xmac_get_settings(efx, ecmd);
1572 if (rc) {
1573 EFX_ERR(efx, "could not back up PHY settings\n");
1574 goto fail;
1575 }
1576
1577 efx_fini_channels(efx);
1578 return 0;
1579
1580 fail:
1581 return rc;
1582}
1583
1584/* The first part of software initialisation after a hardware reset
1585 * This function does not handle serialisation with the kernel, it
1586 * assumes the caller has done this */
1587static int efx_reset_up(struct efx_nic *efx, struct ethtool_cmd *ecmd)
1588{
1589 int rc;
1590
1591 rc = efx_init_channels(efx);
1592 if (rc)
1593 goto fail1;
1594
1595 /* Restore MAC and PHY settings. */
1596 rc = falcon_xmac_set_settings(efx, ecmd);
1597 if (rc) {
1598 EFX_ERR(efx, "could not restore PHY settings\n");
1599 goto fail2;
1600 }
1601
1602 return 0;
1603
1604 fail2:
1605 efx_fini_channels(efx);
1606 fail1:
1607 return rc;
1608}
1609
1610/* Reset the NIC as transparently as possible. Do not reset the PHY
1611 * Note that the reset may fail, in which case the card will be left
1612 * in a most-probably-unusable state.
1613 *
1614 * This function will sleep. You cannot reset from within an atomic
1615 * state; use efx_schedule_reset() instead.
1616 *
1617 * Grabs the rtnl_lock.
1618 */
1619static int efx_reset(struct efx_nic *efx)
1620{
1621 struct ethtool_cmd ecmd;
1622 enum reset_type method = efx->reset_pending;
1623 int rc;
1624
1625 /* Serialise with kernel interfaces */
1626 rtnl_lock();
1627
1628 /* If we're not RUNNING then don't reset. Leave the reset_pending
1629 * flag set so that efx_pci_probe_main will be retried */
1630 if (efx->state != STATE_RUNNING) {
1631 EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n");
1632 goto unlock_rtnl;
1633 }
1634
1635 efx->state = STATE_RESETTING;
1636 EFX_INFO(efx, "resetting (%d)\n", method);
1637
1638 /* The net_dev->get_stats handler is quite slow, and will fail
1639 * if a fetch is pending over reset. Serialise against it. */
1640 spin_lock(&efx->stats_lock);
1641 spin_unlock(&efx->stats_lock);
1642
1643 efx_stop_all(efx);
1644 mutex_lock(&efx->mac_lock);
1645
1646 rc = efx_reset_down(efx, &ecmd);
1647 if (rc)
1648 goto fail1;
1649
1650 rc = falcon_reset_hw(efx, method);
1651 if (rc) {
1652 EFX_ERR(efx, "failed to reset hardware\n");
1653 goto fail2;
1654 }
1655
1656 /* Allow resets to be rescheduled. */
1657 efx->reset_pending = RESET_TYPE_NONE;
1658
1659 /* Reinitialise bus-mastering, which may have been turned off before
1660 * the reset was scheduled. This is still appropriate, even in the
1661 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
1662 * can respond to requests. */
1663 pci_set_master(efx->pci_dev);
1664
1665 /* Reinitialise device. This is appropriate in the RESET_TYPE_DISABLE
1666 * case so the driver can talk to external SRAM */
1667 rc = falcon_init_nic(efx);
1668 if (rc) {
1669 EFX_ERR(efx, "failed to initialise NIC\n");
1670 goto fail3;
1671 }
1672
1673 /* Leave device stopped if necessary */
1674 if (method == RESET_TYPE_DISABLE) {
1675 /* Reinitialise the device anyway so the driver unload sequence
1676 * can talk to the external SRAM */
91ad757c 1677 falcon_init_nic(efx);
8ceee660
BH
1678 rc = -EIO;
1679 goto fail4;
1680 }
1681
1682 rc = efx_reset_up(efx, &ecmd);
1683 if (rc)
1684 goto fail5;
1685
1686 mutex_unlock(&efx->mac_lock);
1687 EFX_LOG(efx, "reset complete\n");
1688
1689 efx->state = STATE_RUNNING;
1690 efx_start_all(efx);
1691
1692 unlock_rtnl:
1693 rtnl_unlock();
1694 return 0;
1695
1696 fail5:
1697 fail4:
1698 fail3:
1699 fail2:
1700 fail1:
1701 EFX_ERR(efx, "has been disabled\n");
1702 efx->state = STATE_DISABLED;
1703
1704 mutex_unlock(&efx->mac_lock);
1705 rtnl_unlock();
1706 efx_unregister_netdev(efx);
1707 efx_fini_port(efx);
1708 return rc;
1709}
1710
1711/* The worker thread exists so that code that cannot sleep can
1712 * schedule a reset for later.
1713 */
1714static void efx_reset_work(struct work_struct *data)
1715{
1716 struct efx_nic *nic = container_of(data, struct efx_nic, reset_work);
1717
1718 efx_reset(nic);
1719}
1720
1721void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
1722{
1723 enum reset_type method;
1724
1725 if (efx->reset_pending != RESET_TYPE_NONE) {
1726 EFX_INFO(efx, "quenching already scheduled reset\n");
1727 return;
1728 }
1729
1730 switch (type) {
1731 case RESET_TYPE_INVISIBLE:
1732 case RESET_TYPE_ALL:
1733 case RESET_TYPE_WORLD:
1734 case RESET_TYPE_DISABLE:
1735 method = type;
1736 break;
1737 case RESET_TYPE_RX_RECOVERY:
1738 case RESET_TYPE_RX_DESC_FETCH:
1739 case RESET_TYPE_TX_DESC_FETCH:
1740 case RESET_TYPE_TX_SKIP:
1741 method = RESET_TYPE_INVISIBLE;
1742 break;
1743 default:
1744 method = RESET_TYPE_ALL;
1745 break;
1746 }
1747
1748 if (method != type)
1749 EFX_LOG(efx, "scheduling reset (%d:%d)\n", type, method);
1750 else
1751 EFX_LOG(efx, "scheduling reset (%d)\n", method);
1752
1753 efx->reset_pending = method;
1754
8d9853d9 1755 queue_work(efx->reset_workqueue, &efx->reset_work);
8ceee660
BH
1756}
1757
1758/**************************************************************************
1759 *
1760 * List of NICs we support
1761 *
1762 **************************************************************************/
1763
1764/* PCI device ID table */
1765static struct pci_device_id efx_pci_table[] __devinitdata = {
1766 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
1767 .driver_data = (unsigned long) &falcon_a_nic_type},
1768 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
1769 .driver_data = (unsigned long) &falcon_b_nic_type},
1770 {0} /* end of list */
1771};
1772
1773/**************************************************************************
1774 *
1775 * Dummy PHY/MAC/Board operations
1776 *
01aad7b6 1777 * Can be used for some unimplemented operations
8ceee660
BH
1778 * Needed so all function pointers are valid and do not have to be tested
1779 * before use
1780 *
1781 **************************************************************************/
1782int efx_port_dummy_op_int(struct efx_nic *efx)
1783{
1784 return 0;
1785}
1786void efx_port_dummy_op_void(struct efx_nic *efx) {}
dc8cfa55 1787void efx_port_dummy_op_blink(struct efx_nic *efx, bool blink) {}
8ceee660
BH
1788
1789static struct efx_phy_operations efx_dummy_phy_operations = {
1790 .init = efx_port_dummy_op_int,
1791 .reconfigure = efx_port_dummy_op_void,
1792 .check_hw = efx_port_dummy_op_int,
1793 .fini = efx_port_dummy_op_void,
1794 .clear_interrupt = efx_port_dummy_op_void,
1795 .reset_xaui = efx_port_dummy_op_void,
1796};
1797
8ceee660 1798static struct efx_board efx_dummy_board_info = {
01aad7b6
BH
1799 .init = efx_port_dummy_op_int,
1800 .init_leds = efx_port_dummy_op_int,
1801 .set_fault_led = efx_port_dummy_op_blink,
1802 .blink = efx_port_dummy_op_blink,
1803 .fini = efx_port_dummy_op_void,
8ceee660
BH
1804};
1805
1806/**************************************************************************
1807 *
1808 * Data housekeeping
1809 *
1810 **************************************************************************/
1811
1812/* This zeroes out and then fills in the invariants in a struct
1813 * efx_nic (including all sub-structures).
1814 */
1815static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
1816 struct pci_dev *pci_dev, struct net_device *net_dev)
1817{
1818 struct efx_channel *channel;
1819 struct efx_tx_queue *tx_queue;
1820 struct efx_rx_queue *rx_queue;
1821 int i, rc;
1822
1823 /* Initialise common structures */
1824 memset(efx, 0, sizeof(*efx));
1825 spin_lock_init(&efx->biu_lock);
1826 spin_lock_init(&efx->phy_lock);
1827 INIT_WORK(&efx->reset_work, efx_reset_work);
1828 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
1829 efx->pci_dev = pci_dev;
1830 efx->state = STATE_INIT;
1831 efx->reset_pending = RESET_TYPE_NONE;
1832 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
1833 efx->board_info = efx_dummy_board_info;
1834
1835 efx->net_dev = net_dev;
dc8cfa55 1836 efx->rx_checksum_enabled = true;
8ceee660
BH
1837 spin_lock_init(&efx->netif_stop_lock);
1838 spin_lock_init(&efx->stats_lock);
1839 mutex_init(&efx->mac_lock);
1840 efx->phy_op = &efx_dummy_phy_operations;
1841 efx->mii.dev = net_dev;
1842 INIT_WORK(&efx->reconfigure_work, efx_reconfigure_work);
1843 atomic_set(&efx->netif_stop_count, 1);
1844
1845 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
1846 channel = &efx->channel[i];
1847 channel->efx = efx;
1848 channel->channel = i;
dc8cfa55 1849 channel->work_pending = false;
8ceee660 1850 }
60ac1065 1851 for (i = 0; i < EFX_TX_QUEUE_COUNT; i++) {
8ceee660
BH
1852 tx_queue = &efx->tx_queue[i];
1853 tx_queue->efx = efx;
1854 tx_queue->queue = i;
1855 tx_queue->buffer = NULL;
1856 tx_queue->channel = &efx->channel[0]; /* for safety */
b9b39b62 1857 tx_queue->tso_headers_free = NULL;
8ceee660
BH
1858 }
1859 for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
1860 rx_queue = &efx->rx_queue[i];
1861 rx_queue->efx = efx;
1862 rx_queue->queue = i;
1863 rx_queue->channel = &efx->channel[0]; /* for safety */
1864 rx_queue->buffer = NULL;
1865 spin_lock_init(&rx_queue->add_lock);
1866 INIT_DELAYED_WORK(&rx_queue->work, efx_rx_work);
1867 }
1868
1869 efx->type = type;
1870
1871 /* Sanity-check NIC type */
1872 EFX_BUG_ON_PARANOID(efx->type->txd_ring_mask &
1873 (efx->type->txd_ring_mask + 1));
1874 EFX_BUG_ON_PARANOID(efx->type->rxd_ring_mask &
1875 (efx->type->rxd_ring_mask + 1));
1876 EFX_BUG_ON_PARANOID(efx->type->evq_size &
1877 (efx->type->evq_size - 1));
1878 /* As close as we can get to guaranteeing that we don't overflow */
1879 EFX_BUG_ON_PARANOID(efx->type->evq_size <
1880 (efx->type->txd_ring_mask + 1 +
1881 efx->type->rxd_ring_mask + 1));
1882 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
1883
1884 /* Higher numbered interrupt modes are less capable! */
1885 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
1886 interrupt_mode);
1887
1888 efx->workqueue = create_singlethread_workqueue("sfc_work");
1889 if (!efx->workqueue) {
1890 rc = -ENOMEM;
1891 goto fail1;
1892 }
1893
8d9853d9
BH
1894 efx->reset_workqueue = create_singlethread_workqueue("sfc_reset");
1895 if (!efx->reset_workqueue) {
1896 rc = -ENOMEM;
1897 goto fail2;
1898 }
1899
8ceee660
BH
1900 return 0;
1901
8d9853d9
BH
1902 fail2:
1903 destroy_workqueue(efx->workqueue);
1904 efx->workqueue = NULL;
1905
8ceee660
BH
1906 fail1:
1907 return rc;
1908}
1909
1910static void efx_fini_struct(struct efx_nic *efx)
1911{
8d9853d9
BH
1912 if (efx->reset_workqueue) {
1913 destroy_workqueue(efx->reset_workqueue);
1914 efx->reset_workqueue = NULL;
1915 }
8ceee660
BH
1916 if (efx->workqueue) {
1917 destroy_workqueue(efx->workqueue);
1918 efx->workqueue = NULL;
1919 }
1920}
1921
1922/**************************************************************************
1923 *
1924 * PCI interface
1925 *
1926 **************************************************************************/
1927
1928/* Main body of final NIC shutdown code
1929 * This is called only at module unload (or hotplug removal).
1930 */
1931static void efx_pci_remove_main(struct efx_nic *efx)
1932{
1933 EFX_ASSERT_RESET_SERIALISED(efx);
1934
1935 /* Skip everything if we never obtained a valid membase */
1936 if (!efx->membase)
1937 return;
1938
1939 efx_fini_channels(efx);
1940 efx_fini_port(efx);
1941
1942 /* Shutdown the board, then the NIC and board state */
37b5a603 1943 efx->board_info.fini(efx);
8ceee660
BH
1944 falcon_fini_interrupt(efx);
1945
1946 efx_fini_napi(efx);
1947 efx_remove_all(efx);
1948}
1949
1950/* Final NIC shutdown
1951 * This is called only at module unload (or hotplug removal).
1952 */
1953static void efx_pci_remove(struct pci_dev *pci_dev)
1954{
1955 struct efx_nic *efx;
1956
1957 efx = pci_get_drvdata(pci_dev);
1958 if (!efx)
1959 return;
1960
1961 /* Mark the NIC as fini, then stop the interface */
1962 rtnl_lock();
1963 efx->state = STATE_FINI;
1964 dev_close(efx->net_dev);
1965
1966 /* Allow any queued efx_resets() to complete */
1967 rtnl_unlock();
1968
1969 if (efx->membase == NULL)
1970 goto out;
1971
1972 efx_unregister_netdev(efx);
1973
1974 /* Wait for any scheduled resets to complete. No more will be
1975 * scheduled from this point because efx_stop_all() has been
1976 * called, we are no longer registered with driverlink, and
1977 * the net_device's have been removed. */
8d9853d9 1978 flush_workqueue(efx->reset_workqueue);
8ceee660
BH
1979
1980 efx_pci_remove_main(efx);
1981
1982out:
1983 efx_fini_io(efx);
1984 EFX_LOG(efx, "shutdown successful\n");
1985
1986 pci_set_drvdata(pci_dev, NULL);
1987 efx_fini_struct(efx);
1988 free_netdev(efx->net_dev);
1989};
1990
1991/* Main body of NIC initialisation
1992 * This is called at module load (or hotplug insertion, theoretically).
1993 */
1994static int efx_pci_probe_main(struct efx_nic *efx)
1995{
1996 int rc;
1997
1998 /* Do start-of-day initialisation */
1999 rc = efx_probe_all(efx);
2000 if (rc)
2001 goto fail1;
2002
2003 rc = efx_init_napi(efx);
2004 if (rc)
2005 goto fail2;
2006
2007 /* Initialise the board */
2008 rc = efx->board_info.init(efx);
2009 if (rc) {
2010 EFX_ERR(efx, "failed to initialise board\n");
2011 goto fail3;
2012 }
2013
2014 rc = falcon_init_nic(efx);
2015 if (rc) {
2016 EFX_ERR(efx, "failed to initialise NIC\n");
2017 goto fail4;
2018 }
2019
2020 rc = efx_init_port(efx);
2021 if (rc) {
2022 EFX_ERR(efx, "failed to initialise port\n");
2023 goto fail5;
2024 }
2025
2026 rc = efx_init_channels(efx);
2027 if (rc)
2028 goto fail6;
2029
2030 rc = falcon_init_interrupt(efx);
2031 if (rc)
2032 goto fail7;
2033
2034 return 0;
2035
2036 fail7:
2037 efx_fini_channels(efx);
2038 fail6:
2039 efx_fini_port(efx);
2040 fail5:
2041 fail4:
2042 fail3:
2043 efx_fini_napi(efx);
2044 fail2:
2045 efx_remove_all(efx);
2046 fail1:
2047 return rc;
2048}
2049
2050/* NIC initialisation
2051 *
2052 * This is called at module load (or hotplug insertion,
2053 * theoretically). It sets up PCI mappings, tests and resets the NIC,
2054 * sets up and registers the network devices with the kernel and hooks
2055 * the interrupt service routine. It does not prepare the device for
2056 * transmission; this is left to the first time one of the network
2057 * interfaces is brought up (i.e. efx_net_open).
2058 */
2059static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2060 const struct pci_device_id *entry)
2061{
2062 struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
2063 struct net_device *net_dev;
2064 struct efx_nic *efx;
2065 int i, rc;
2066
2067 /* Allocate and initialise a struct net_device and struct efx_nic */
2068 net_dev = alloc_etherdev(sizeof(*efx));
2069 if (!net_dev)
2070 return -ENOMEM;
b9b39b62
BH
2071 net_dev->features |= (NETIF_F_IP_CSUM | NETIF_F_SG |
2072 NETIF_F_HIGHDMA | NETIF_F_TSO);
8ceee660
BH
2073 if (lro)
2074 net_dev->features |= NETIF_F_LRO;
28506563
BH
2075 /* Mask for features that also apply to VLAN devices */
2076 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
740847da 2077 NETIF_F_HIGHDMA | NETIF_F_TSO);
767e468c 2078 efx = netdev_priv(net_dev);
8ceee660
BH
2079 pci_set_drvdata(pci_dev, efx);
2080 rc = efx_init_struct(efx, type, pci_dev, net_dev);
2081 if (rc)
2082 goto fail1;
2083
2084 EFX_INFO(efx, "Solarflare Communications NIC detected\n");
2085
2086 /* Set up basic I/O (BAR mappings etc) */
2087 rc = efx_init_io(efx);
2088 if (rc)
2089 goto fail2;
2090
2091 /* No serialisation is required with the reset path because
2092 * we're in STATE_INIT. */
2093 for (i = 0; i < 5; i++) {
2094 rc = efx_pci_probe_main(efx);
2095 if (rc == 0)
2096 break;
2097
2098 /* Serialise against efx_reset(). No more resets will be
2099 * scheduled since efx_stop_all() has been called, and we
2100 * have not and never have been registered with either
2101 * the rtnetlink or driverlink layers. */
8d9853d9 2102 flush_workqueue(efx->reset_workqueue);
8ceee660
BH
2103
2104 /* Retry if a recoverably reset event has been scheduled */
2105 if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
2106 (efx->reset_pending != RESET_TYPE_ALL))
2107 goto fail3;
2108
2109 efx->reset_pending = RESET_TYPE_NONE;
2110 }
2111
2112 if (rc) {
2113 EFX_ERR(efx, "Could not reset NIC\n");
2114 goto fail4;
2115 }
2116
2117 /* Switch to the running state before we expose the device to
2118 * the OS. This is to ensure that the initial gathering of
2119 * MAC stats succeeds. */
2120 rtnl_lock();
2121 efx->state = STATE_RUNNING;
2122 rtnl_unlock();
2123
2124 rc = efx_register_netdev(efx);
2125 if (rc)
2126 goto fail5;
2127
2128 EFX_LOG(efx, "initialisation successful\n");
2129
2130 return 0;
2131
2132 fail5:
2133 efx_pci_remove_main(efx);
2134 fail4:
2135 fail3:
2136 efx_fini_io(efx);
2137 fail2:
2138 efx_fini_struct(efx);
2139 fail1:
2140 EFX_LOG(efx, "initialisation failed. rc=%d\n", rc);
2141 free_netdev(net_dev);
2142 return rc;
2143}
2144
2145static struct pci_driver efx_pci_driver = {
2146 .name = EFX_DRIVER_NAME,
2147 .id_table = efx_pci_table,
2148 .probe = efx_pci_probe,
2149 .remove = efx_pci_remove,
2150};
2151
2152/**************************************************************************
2153 *
2154 * Kernel module interface
2155 *
2156 *************************************************************************/
2157
2158module_param(interrupt_mode, uint, 0444);
2159MODULE_PARM_DESC(interrupt_mode,
2160 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2161
2162static int __init efx_init_module(void)
2163{
2164 int rc;
2165
2166 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2167
2168 rc = register_netdevice_notifier(&efx_netdev_notifier);
2169 if (rc)
2170 goto err_notifier;
2171
2172 refill_workqueue = create_workqueue("sfc_refill");
2173 if (!refill_workqueue) {
2174 rc = -ENOMEM;
2175 goto err_refill;
2176 }
2177
2178 rc = pci_register_driver(&efx_pci_driver);
2179 if (rc < 0)
2180 goto err_pci;
2181
2182 return 0;
2183
2184 err_pci:
2185 destroy_workqueue(refill_workqueue);
2186 err_refill:
2187 unregister_netdevice_notifier(&efx_netdev_notifier);
2188 err_notifier:
2189 return rc;
2190}
2191
2192static void __exit efx_exit_module(void)
2193{
2194 printk(KERN_INFO "Solarflare NET driver unloading\n");
2195
2196 pci_unregister_driver(&efx_pci_driver);
2197 destroy_workqueue(refill_workqueue);
2198 unregister_netdevice_notifier(&efx_netdev_notifier);
2199
2200}
2201
2202module_init(efx_init_module);
2203module_exit(efx_exit_module);
2204
2205MODULE_AUTHOR("Michael Brown <mbrown@fensystems.co.uk> and "
2206 "Solarflare Communications");
2207MODULE_DESCRIPTION("Solarflare Communications network driver");
2208MODULE_LICENSE("GPL");
2209MODULE_DEVICE_TABLE(pci, efx_pci_table);