bonding: Remove debug printk
[linux-2.6-block.git] / drivers / net / sfc / efx.c
CommitLineData
8ceee660
BH
1/****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2008 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/module.h>
12#include <linux/pci.h>
13#include <linux/netdevice.h>
14#include <linux/etherdevice.h>
15#include <linux/delay.h>
16#include <linux/notifier.h>
17#include <linux/ip.h>
18#include <linux/tcp.h>
19#include <linux/in.h>
20#include <linux/crc32.h>
21#include <linux/ethtool.h>
aa6ef27e 22#include <linux/topology.h>
8ceee660 23#include "net_driver.h"
8ceee660
BH
24#include "ethtool.h"
25#include "tx.h"
26#include "rx.h"
27#include "efx.h"
28#include "mdio_10g.h"
29#include "falcon.h"
8ceee660
BH
30
31#define EFX_MAX_MTU (9 * 1024)
32
33/* RX slow fill workqueue. If memory allocation fails in the fast path,
34 * a work item is pushed onto this work queue to retry the allocation later,
35 * to avoid the NIC being starved of RX buffers. Since this is a per cpu
36 * workqueue, there is nothing to be gained in making it per NIC
37 */
38static struct workqueue_struct *refill_workqueue;
39
1ab00629
SH
40/* Reset workqueue. If any NIC has a hardware failure then a reset will be
41 * queued onto this work queue. This is not a per-nic work queue, because
42 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
43 */
44static struct workqueue_struct *reset_workqueue;
45
8ceee660
BH
46/**************************************************************************
47 *
48 * Configurable values
49 *
50 *************************************************************************/
51
52/*
53 * Enable large receive offload (LRO) aka soft segment reassembly (SSR)
54 *
55 * This sets the default for new devices. It can be controlled later
56 * using ethtool.
57 */
dc8cfa55 58static int lro = true;
8ceee660
BH
59module_param(lro, int, 0644);
60MODULE_PARM_DESC(lro, "Large receive offload acceleration");
61
62/*
63 * Use separate channels for TX and RX events
64 *
28b581ab
NT
65 * Set this to 1 to use separate channels for TX and RX. It allows us
66 * to control interrupt affinity separately for TX and RX.
8ceee660 67 *
28b581ab 68 * This is only used in MSI-X interrupt mode
8ceee660 69 */
28b581ab
NT
70static unsigned int separate_tx_channels;
71module_param(separate_tx_channels, uint, 0644);
72MODULE_PARM_DESC(separate_tx_channels,
73 "Use separate channels for TX and RX");
8ceee660
BH
74
75/* This is the weight assigned to each of the (per-channel) virtual
76 * NAPI devices.
77 */
78static int napi_weight = 64;
79
80/* This is the time (in jiffies) between invocations of the hardware
81 * monitor, which checks for known hardware bugs and resets the
82 * hardware and driver as necessary.
83 */
84unsigned int efx_monitor_interval = 1 * HZ;
85
8ceee660
BH
86/* This controls whether or not the driver will initialise devices
87 * with invalid MAC addresses stored in the EEPROM or flash. If true,
88 * such devices will be initialised with a random locally-generated
89 * MAC address. This allows for loading the sfc_mtd driver to
90 * reprogram the flash, even if the flash contents (including the MAC
91 * address) have previously been erased.
92 */
93static unsigned int allow_bad_hwaddr;
94
95/* Initial interrupt moderation settings. They can be modified after
96 * module load with ethtool.
97 *
98 * The default for RX should strike a balance between increasing the
99 * round-trip latency and reducing overhead.
100 */
101static unsigned int rx_irq_mod_usec = 60;
102
103/* Initial interrupt moderation settings. They can be modified after
104 * module load with ethtool.
105 *
106 * This default is chosen to ensure that a 10G link does not go idle
107 * while a TX queue is stopped after it has become full. A queue is
108 * restarted when it drops below half full. The time this takes (assuming
109 * worst case 3 descriptors per packet and 1024 descriptors) is
110 * 512 / 3 * 1.2 = 205 usec.
111 */
112static unsigned int tx_irq_mod_usec = 150;
113
114/* This is the first interrupt mode to try out of:
115 * 0 => MSI-X
116 * 1 => MSI
117 * 2 => legacy
118 */
119static unsigned int interrupt_mode;
120
121/* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
122 * i.e. the number of CPUs among which we may distribute simultaneous
123 * interrupt handling.
124 *
125 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
126 * The default (0) means to assign an interrupt to each package (level II cache)
127 */
128static unsigned int rss_cpus;
129module_param(rss_cpus, uint, 0444);
130MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling");
131
84ae48fe
BH
132static int phy_flash_cfg;
133module_param(phy_flash_cfg, int, 0644);
134MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially");
135
6fb70fd1
BH
136static unsigned irq_adapt_low_thresh = 10000;
137module_param(irq_adapt_low_thresh, uint, 0644);
138MODULE_PARM_DESC(irq_adapt_low_thresh,
139 "Threshold score for reducing IRQ moderation");
140
141static unsigned irq_adapt_high_thresh = 20000;
142module_param(irq_adapt_high_thresh, uint, 0644);
143MODULE_PARM_DESC(irq_adapt_high_thresh,
144 "Threshold score for increasing IRQ moderation");
145
8ceee660
BH
146/**************************************************************************
147 *
148 * Utility functions and prototypes
149 *
150 *************************************************************************/
151static void efx_remove_channel(struct efx_channel *channel);
152static void efx_remove_port(struct efx_nic *efx);
153static void efx_fini_napi(struct efx_nic *efx);
154static void efx_fini_channels(struct efx_nic *efx);
155
156#define EFX_ASSERT_RESET_SERIALISED(efx) \
157 do { \
3c78708f 158 if (efx->state == STATE_RUNNING) \
8ceee660
BH
159 ASSERT_RTNL(); \
160 } while (0)
161
162/**************************************************************************
163 *
164 * Event queue processing
165 *
166 *************************************************************************/
167
168/* Process channel's event queue
169 *
170 * This function is responsible for processing the event queue of a
171 * single channel. The caller must guarantee that this function will
172 * never be concurrently called more than once on the same channel,
173 * though different channels may be being processed concurrently.
174 */
4d566063 175static int efx_process_channel(struct efx_channel *channel, int rx_quota)
8ceee660 176{
42cbe2d7
BH
177 struct efx_nic *efx = channel->efx;
178 int rx_packets;
8ceee660 179
42cbe2d7 180 if (unlikely(efx->reset_pending != RESET_TYPE_NONE ||
8ceee660 181 !channel->enabled))
42cbe2d7 182 return 0;
8ceee660 183
42cbe2d7
BH
184 rx_packets = falcon_process_eventq(channel, rx_quota);
185 if (rx_packets == 0)
186 return 0;
8ceee660
BH
187
188 /* Deliver last RX packet. */
189 if (channel->rx_pkt) {
190 __efx_rx_packet(channel, channel->rx_pkt,
191 channel->rx_pkt_csummed);
192 channel->rx_pkt = NULL;
193 }
194
8ceee660
BH
195 efx_rx_strategy(channel);
196
42cbe2d7 197 efx_fast_push_rx_descriptors(&efx->rx_queue[channel->channel]);
8ceee660 198
42cbe2d7 199 return rx_packets;
8ceee660
BH
200}
201
202/* Mark channel as finished processing
203 *
204 * Note that since we will not receive further interrupts for this
205 * channel before we finish processing and call the eventq_read_ack()
206 * method, there is no need to use the interrupt hold-off timers.
207 */
208static inline void efx_channel_processed(struct efx_channel *channel)
209{
5b9e207c
BH
210 /* The interrupt handler for this channel may set work_pending
211 * as soon as we acknowledge the events we've seen. Make sure
212 * it's cleared before then. */
dc8cfa55 213 channel->work_pending = false;
5b9e207c
BH
214 smp_wmb();
215
8ceee660
BH
216 falcon_eventq_read_ack(channel);
217}
218
219/* NAPI poll handler
220 *
221 * NAPI guarantees serialisation of polls of the same device, which
222 * provides the guarantee required by efx_process_channel().
223 */
224static int efx_poll(struct napi_struct *napi, int budget)
225{
226 struct efx_channel *channel =
227 container_of(napi, struct efx_channel, napi_str);
8ceee660
BH
228 int rx_packets;
229
230 EFX_TRACE(channel->efx, "channel %d NAPI poll executing on CPU %d\n",
231 channel->channel, raw_smp_processor_id());
232
42cbe2d7 233 rx_packets = efx_process_channel(channel, budget);
8ceee660
BH
234
235 if (rx_packets < budget) {
6fb70fd1
BH
236 struct efx_nic *efx = channel->efx;
237
238 if (channel->used_flags & EFX_USED_BY_RX &&
239 efx->irq_rx_adaptive &&
240 unlikely(++channel->irq_count == 1000)) {
241 unsigned old_irq_moderation = channel->irq_moderation;
242
243 if (unlikely(channel->irq_mod_score <
244 irq_adapt_low_thresh)) {
245 channel->irq_moderation =
246 max_t(int,
247 channel->irq_moderation -
248 FALCON_IRQ_MOD_RESOLUTION,
249 FALCON_IRQ_MOD_RESOLUTION);
250 } else if (unlikely(channel->irq_mod_score >
251 irq_adapt_high_thresh)) {
252 channel->irq_moderation =
253 min(channel->irq_moderation +
254 FALCON_IRQ_MOD_RESOLUTION,
255 efx->irq_rx_moderation);
256 }
257
258 if (channel->irq_moderation != old_irq_moderation)
259 falcon_set_int_moderation(channel);
260
261 channel->irq_count = 0;
262 channel->irq_mod_score = 0;
263 }
264
8ceee660 265 /* There is no race here; although napi_disable() will
288379f0 266 * only wait for napi_complete(), this isn't a problem
8ceee660
BH
267 * since efx_channel_processed() will have no effect if
268 * interrupts have already been disabled.
269 */
288379f0 270 napi_complete(napi);
8ceee660
BH
271 efx_channel_processed(channel);
272 }
273
274 return rx_packets;
275}
276
277/* Process the eventq of the specified channel immediately on this CPU
278 *
279 * Disable hardware generated interrupts, wait for any existing
280 * processing to finish, then directly poll (and ack ) the eventq.
281 * Finally reenable NAPI and interrupts.
282 *
283 * Since we are touching interrupts the caller should hold the suspend lock
284 */
285void efx_process_channel_now(struct efx_channel *channel)
286{
287 struct efx_nic *efx = channel->efx;
288
289 BUG_ON(!channel->used_flags);
290 BUG_ON(!channel->enabled);
291
292 /* Disable interrupts and wait for ISRs to complete */
293 falcon_disable_interrupts(efx);
294 if (efx->legacy_irq)
295 synchronize_irq(efx->legacy_irq);
64ee3120 296 if (channel->irq)
8ceee660
BH
297 synchronize_irq(channel->irq);
298
299 /* Wait for any NAPI processing to complete */
300 napi_disable(&channel->napi_str);
301
302 /* Poll the channel */
91ad757c 303 efx_process_channel(channel, efx->type->evq_size);
8ceee660
BH
304
305 /* Ack the eventq. This may cause an interrupt to be generated
306 * when they are reenabled */
307 efx_channel_processed(channel);
308
309 napi_enable(&channel->napi_str);
310 falcon_enable_interrupts(efx);
311}
312
313/* Create event queue
314 * Event queue memory allocations are done only once. If the channel
315 * is reset, the memory buffer will be reused; this guards against
316 * errors during channel reset and also simplifies interrupt handling.
317 */
318static int efx_probe_eventq(struct efx_channel *channel)
319{
320 EFX_LOG(channel->efx, "chan %d create event queue\n", channel->channel);
321
322 return falcon_probe_eventq(channel);
323}
324
325/* Prepare channel's event queue */
bc3c90a2 326static void efx_init_eventq(struct efx_channel *channel)
8ceee660
BH
327{
328 EFX_LOG(channel->efx, "chan %d init event queue\n", channel->channel);
329
330 channel->eventq_read_ptr = 0;
331
bc3c90a2 332 falcon_init_eventq(channel);
8ceee660
BH
333}
334
335static void efx_fini_eventq(struct efx_channel *channel)
336{
337 EFX_LOG(channel->efx, "chan %d fini event queue\n", channel->channel);
338
339 falcon_fini_eventq(channel);
340}
341
342static void efx_remove_eventq(struct efx_channel *channel)
343{
344 EFX_LOG(channel->efx, "chan %d remove event queue\n", channel->channel);
345
346 falcon_remove_eventq(channel);
347}
348
349/**************************************************************************
350 *
351 * Channel handling
352 *
353 *************************************************************************/
354
8ceee660
BH
355static int efx_probe_channel(struct efx_channel *channel)
356{
357 struct efx_tx_queue *tx_queue;
358 struct efx_rx_queue *rx_queue;
359 int rc;
360
361 EFX_LOG(channel->efx, "creating channel %d\n", channel->channel);
362
363 rc = efx_probe_eventq(channel);
364 if (rc)
365 goto fail1;
366
367 efx_for_each_channel_tx_queue(tx_queue, channel) {
368 rc = efx_probe_tx_queue(tx_queue);
369 if (rc)
370 goto fail2;
371 }
372
373 efx_for_each_channel_rx_queue(rx_queue, channel) {
374 rc = efx_probe_rx_queue(rx_queue);
375 if (rc)
376 goto fail3;
377 }
378
379 channel->n_rx_frm_trunc = 0;
380
381 return 0;
382
383 fail3:
384 efx_for_each_channel_rx_queue(rx_queue, channel)
385 efx_remove_rx_queue(rx_queue);
386 fail2:
387 efx_for_each_channel_tx_queue(tx_queue, channel)
388 efx_remove_tx_queue(tx_queue);
389 fail1:
390 return rc;
391}
392
393
56536e9c
BH
394static void efx_set_channel_names(struct efx_nic *efx)
395{
396 struct efx_channel *channel;
397 const char *type = "";
398 int number;
399
400 efx_for_each_channel(channel, efx) {
401 number = channel->channel;
402 if (efx->n_channels > efx->n_rx_queues) {
403 if (channel->channel < efx->n_rx_queues) {
404 type = "-rx";
405 } else {
406 type = "-tx";
407 number -= efx->n_rx_queues;
408 }
409 }
410 snprintf(channel->name, sizeof(channel->name),
411 "%s%s-%d", efx->name, type, number);
412 }
413}
414
8ceee660
BH
415/* Channels are shutdown and reinitialised whilst the NIC is running
416 * to propagate configuration changes (mtu, checksum offload), or
417 * to clear hardware error conditions
418 */
bc3c90a2 419static void efx_init_channels(struct efx_nic *efx)
8ceee660
BH
420{
421 struct efx_tx_queue *tx_queue;
422 struct efx_rx_queue *rx_queue;
423 struct efx_channel *channel;
8ceee660 424
f7f13b0b
BH
425 /* Calculate the rx buffer allocation parameters required to
426 * support the current MTU, including padding for header
427 * alignment and overruns.
428 */
429 efx->rx_buffer_len = (max(EFX_PAGE_IP_ALIGN, NET_IP_ALIGN) +
430 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) +
431 efx->type->rx_buffer_padding);
432 efx->rx_buffer_order = get_order(efx->rx_buffer_len);
8ceee660
BH
433
434 /* Initialise the channels */
435 efx_for_each_channel(channel, efx) {
436 EFX_LOG(channel->efx, "init chan %d\n", channel->channel);
437
bc3c90a2 438 efx_init_eventq(channel);
8ceee660 439
bc3c90a2
BH
440 efx_for_each_channel_tx_queue(tx_queue, channel)
441 efx_init_tx_queue(tx_queue);
8ceee660
BH
442
443 /* The rx buffer allocation strategy is MTU dependent */
444 efx_rx_strategy(channel);
445
bc3c90a2
BH
446 efx_for_each_channel_rx_queue(rx_queue, channel)
447 efx_init_rx_queue(rx_queue);
8ceee660
BH
448
449 WARN_ON(channel->rx_pkt != NULL);
450 efx_rx_strategy(channel);
7e765cb4
BH
451
452 netif_napi_add(channel->napi_dev, &channel->napi_str,
453 efx_poll, napi_weight);
8ceee660 454 }
8ceee660
BH
455}
456
457/* This enables event queue processing and packet transmission.
458 *
459 * Note that this function is not allowed to fail, since that would
460 * introduce too much complexity into the suspend/resume path.
461 */
462static void efx_start_channel(struct efx_channel *channel)
463{
464 struct efx_rx_queue *rx_queue;
465
466 EFX_LOG(channel->efx, "starting chan %d\n", channel->channel);
467
5b9e207c
BH
468 /* The interrupt handler for this channel may set work_pending
469 * as soon as we enable it. Make sure it's cleared before
470 * then. Similarly, make sure it sees the enabled flag set. */
dc8cfa55
BH
471 channel->work_pending = false;
472 channel->enabled = true;
5b9e207c 473 smp_wmb();
8ceee660
BH
474
475 napi_enable(&channel->napi_str);
476
477 /* Load up RX descriptors */
478 efx_for_each_channel_rx_queue(rx_queue, channel)
479 efx_fast_push_rx_descriptors(rx_queue);
480}
481
482/* This disables event queue processing and packet transmission.
483 * This function does not guarantee that all queue processing
484 * (e.g. RX refill) is complete.
485 */
486static void efx_stop_channel(struct efx_channel *channel)
487{
488 struct efx_rx_queue *rx_queue;
489
490 if (!channel->enabled)
491 return;
492
493 EFX_LOG(channel->efx, "stop chan %d\n", channel->channel);
494
dc8cfa55 495 channel->enabled = false;
8ceee660
BH
496 napi_disable(&channel->napi_str);
497
498 /* Ensure that any worker threads have exited or will be no-ops */
499 efx_for_each_channel_rx_queue(rx_queue, channel) {
500 spin_lock_bh(&rx_queue->add_lock);
501 spin_unlock_bh(&rx_queue->add_lock);
502 }
503}
504
505static void efx_fini_channels(struct efx_nic *efx)
506{
507 struct efx_channel *channel;
508 struct efx_tx_queue *tx_queue;
509 struct efx_rx_queue *rx_queue;
6bc5d3a9 510 int rc;
8ceee660
BH
511
512 EFX_ASSERT_RESET_SERIALISED(efx);
513 BUG_ON(efx->port_enabled);
514
6bc5d3a9
BH
515 rc = falcon_flush_queues(efx);
516 if (rc)
517 EFX_ERR(efx, "failed to flush queues\n");
518 else
519 EFX_LOG(efx, "successfully flushed all queues\n");
520
8ceee660
BH
521 efx_for_each_channel(channel, efx) {
522 EFX_LOG(channel->efx, "shut down chan %d\n", channel->channel);
523
524 efx_for_each_channel_rx_queue(rx_queue, channel)
525 efx_fini_rx_queue(rx_queue);
526 efx_for_each_channel_tx_queue(tx_queue, channel)
527 efx_fini_tx_queue(tx_queue);
8ceee660
BH
528 efx_fini_eventq(channel);
529 }
530}
531
532static void efx_remove_channel(struct efx_channel *channel)
533{
534 struct efx_tx_queue *tx_queue;
535 struct efx_rx_queue *rx_queue;
536
537 EFX_LOG(channel->efx, "destroy chan %d\n", channel->channel);
538
539 efx_for_each_channel_rx_queue(rx_queue, channel)
540 efx_remove_rx_queue(rx_queue);
541 efx_for_each_channel_tx_queue(tx_queue, channel)
542 efx_remove_tx_queue(tx_queue);
543 efx_remove_eventq(channel);
544
545 channel->used_flags = 0;
546}
547
548void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue, int delay)
549{
550 queue_delayed_work(refill_workqueue, &rx_queue->work, delay);
551}
552
553/**************************************************************************
554 *
555 * Port handling
556 *
557 **************************************************************************/
558
559/* This ensures that the kernel is kept informed (via
560 * netif_carrier_on/off) of the link status, and also maintains the
561 * link status's stop on the port's TX queue.
562 */
563static void efx_link_status_changed(struct efx_nic *efx)
564{
8ceee660
BH
565 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
566 * that no events are triggered between unregister_netdev() and the
567 * driver unloading. A more general condition is that NETDEV_CHANGE
568 * can only be generated between NETDEV_UP and NETDEV_DOWN */
569 if (!netif_running(efx->net_dev))
570 return;
571
8c8661e4
BH
572 if (efx->port_inhibited) {
573 netif_carrier_off(efx->net_dev);
574 return;
575 }
576
dc8cfa55 577 if (efx->link_up != netif_carrier_ok(efx->net_dev)) {
8ceee660
BH
578 efx->n_link_state_changes++;
579
580 if (efx->link_up)
581 netif_carrier_on(efx->net_dev);
582 else
583 netif_carrier_off(efx->net_dev);
584 }
585
586 /* Status message for kernel log */
587 if (efx->link_up) {
f31a45d2
BH
588 EFX_INFO(efx, "link up at %uMbps %s-duplex (MTU %d)%s\n",
589 efx->link_speed, efx->link_fd ? "full" : "half",
8ceee660
BH
590 efx->net_dev->mtu,
591 (efx->promiscuous ? " [PROMISC]" : ""));
592 } else {
593 EFX_INFO(efx, "link down\n");
594 }
595
596}
597
115122af
BH
598static void efx_fini_port(struct efx_nic *efx);
599
8ceee660
BH
600/* This call reinitialises the MAC to pick up new PHY settings. The
601 * caller must hold the mac_lock */
8c8661e4 602void __efx_reconfigure_port(struct efx_nic *efx)
8ceee660
BH
603{
604 WARN_ON(!mutex_is_locked(&efx->mac_lock));
605
606 EFX_LOG(efx, "reconfiguring MAC from PHY settings on CPU %d\n",
607 raw_smp_processor_id());
608
a816f75a
BH
609 /* Serialise the promiscuous flag with efx_set_multicast_list. */
610 if (efx_dev_registered(efx)) {
611 netif_addr_lock_bh(efx->net_dev);
612 netif_addr_unlock_bh(efx->net_dev);
613 }
614
177dfcd8
BH
615 falcon_deconfigure_mac_wrapper(efx);
616
617 /* Reconfigure the PHY, disabling transmit in mac level loopback. */
618 if (LOOPBACK_INTERNAL(efx))
619 efx->phy_mode |= PHY_MODE_TX_DISABLED;
620 else
621 efx->phy_mode &= ~PHY_MODE_TX_DISABLED;
622 efx->phy_op->reconfigure(efx);
623
624 if (falcon_switch_mac(efx))
625 goto fail;
626
627 efx->mac_op->reconfigure(efx);
8ceee660
BH
628
629 /* Inform kernel of loss/gain of carrier */
630 efx_link_status_changed(efx);
177dfcd8
BH
631 return;
632
633fail:
634 EFX_ERR(efx, "failed to reconfigure MAC\n");
115122af
BH
635 efx->port_enabled = false;
636 efx_fini_port(efx);
8ceee660
BH
637}
638
639/* Reinitialise the MAC to pick up new PHY settings, even if the port is
640 * disabled. */
641void efx_reconfigure_port(struct efx_nic *efx)
642{
643 EFX_ASSERT_RESET_SERIALISED(efx);
644
645 mutex_lock(&efx->mac_lock);
646 __efx_reconfigure_port(efx);
647 mutex_unlock(&efx->mac_lock);
648}
649
650/* Asynchronous efx_reconfigure_port work item. To speed up efx_flush_all()
651 * we don't efx_reconfigure_port() if the port is disabled. Care is taken
652 * in efx_stop_all() and efx_start_port() to prevent PHY events being lost */
766ca0fa 653static void efx_phy_work(struct work_struct *data)
8ceee660 654{
766ca0fa 655 struct efx_nic *efx = container_of(data, struct efx_nic, phy_work);
8ceee660
BH
656
657 mutex_lock(&efx->mac_lock);
658 if (efx->port_enabled)
659 __efx_reconfigure_port(efx);
660 mutex_unlock(&efx->mac_lock);
661}
662
766ca0fa
BH
663static void efx_mac_work(struct work_struct *data)
664{
665 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work);
666
667 mutex_lock(&efx->mac_lock);
668 if (efx->port_enabled)
669 efx->mac_op->irq(efx);
670 mutex_unlock(&efx->mac_lock);
671}
672
8ceee660
BH
673static int efx_probe_port(struct efx_nic *efx)
674{
675 int rc;
676
677 EFX_LOG(efx, "create port\n");
678
679 /* Connect up MAC/PHY operations table and read MAC address */
680 rc = falcon_probe_port(efx);
681 if (rc)
682 goto err;
683
84ae48fe
BH
684 if (phy_flash_cfg)
685 efx->phy_mode = PHY_MODE_SPECIAL;
686
8ceee660
BH
687 /* Sanity check MAC address */
688 if (is_valid_ether_addr(efx->mac_address)) {
689 memcpy(efx->net_dev->dev_addr, efx->mac_address, ETH_ALEN);
690 } else {
e174961c
JB
691 EFX_ERR(efx, "invalid MAC address %pM\n",
692 efx->mac_address);
8ceee660
BH
693 if (!allow_bad_hwaddr) {
694 rc = -EINVAL;
695 goto err;
696 }
697 random_ether_addr(efx->net_dev->dev_addr);
e174961c
JB
698 EFX_INFO(efx, "using locally-generated MAC %pM\n",
699 efx->net_dev->dev_addr);
8ceee660
BH
700 }
701
702 return 0;
703
704 err:
705 efx_remove_port(efx);
706 return rc;
707}
708
709static int efx_init_port(struct efx_nic *efx)
710{
711 int rc;
712
713 EFX_LOG(efx, "init port\n");
714
177dfcd8 715 rc = efx->phy_op->init(efx);
8ceee660
BH
716 if (rc)
717 return rc;
177dfcd8 718 mutex_lock(&efx->mac_lock);
4b988280 719 efx->phy_op->reconfigure(efx);
177dfcd8
BH
720 rc = falcon_switch_mac(efx);
721 mutex_unlock(&efx->mac_lock);
722 if (rc)
723 goto fail;
724 efx->mac_op->reconfigure(efx);
8ceee660 725
dc8cfa55 726 efx->port_initialized = true;
1974cc20 727 efx_stats_enable(efx);
8ceee660 728 return 0;
177dfcd8
BH
729
730fail:
731 efx->phy_op->fini(efx);
732 return rc;
8ceee660
BH
733}
734
735/* Allow efx_reconfigure_port() to be scheduled, and close the window
736 * between efx_stop_port and efx_flush_all whereby a previously scheduled
766ca0fa 737 * efx_phy_work()/efx_mac_work() may have been cancelled */
8ceee660
BH
738static void efx_start_port(struct efx_nic *efx)
739{
740 EFX_LOG(efx, "start port\n");
741 BUG_ON(efx->port_enabled);
742
743 mutex_lock(&efx->mac_lock);
dc8cfa55 744 efx->port_enabled = true;
8ceee660 745 __efx_reconfigure_port(efx);
766ca0fa 746 efx->mac_op->irq(efx);
8ceee660
BH
747 mutex_unlock(&efx->mac_lock);
748}
749
766ca0fa
BH
750/* Prevent efx_phy_work, efx_mac_work, and efx_monitor() from executing,
751 * and efx_set_multicast_list() from scheduling efx_phy_work. efx_phy_work
752 * and efx_mac_work may still be scheduled via NAPI processing until
753 * efx_flush_all() is called */
8ceee660
BH
754static void efx_stop_port(struct efx_nic *efx)
755{
756 EFX_LOG(efx, "stop port\n");
757
758 mutex_lock(&efx->mac_lock);
dc8cfa55 759 efx->port_enabled = false;
8ceee660
BH
760 mutex_unlock(&efx->mac_lock);
761
762 /* Serialise against efx_set_multicast_list() */
55668611 763 if (efx_dev_registered(efx)) {
b9e40857
DM
764 netif_addr_lock_bh(efx->net_dev);
765 netif_addr_unlock_bh(efx->net_dev);
8ceee660
BH
766 }
767}
768
769static void efx_fini_port(struct efx_nic *efx)
770{
771 EFX_LOG(efx, "shut down port\n");
772
773 if (!efx->port_initialized)
774 return;
775
1974cc20 776 efx_stats_disable(efx);
177dfcd8 777 efx->phy_op->fini(efx);
dc8cfa55 778 efx->port_initialized = false;
8ceee660 779
dc8cfa55 780 efx->link_up = false;
8ceee660
BH
781 efx_link_status_changed(efx);
782}
783
784static void efx_remove_port(struct efx_nic *efx)
785{
786 EFX_LOG(efx, "destroying port\n");
787
788 falcon_remove_port(efx);
789}
790
791/**************************************************************************
792 *
793 * NIC handling
794 *
795 **************************************************************************/
796
797/* This configures the PCI device to enable I/O and DMA. */
798static int efx_init_io(struct efx_nic *efx)
799{
800 struct pci_dev *pci_dev = efx->pci_dev;
801 dma_addr_t dma_mask = efx->type->max_dma_mask;
802 int rc;
803
804 EFX_LOG(efx, "initialising I/O\n");
805
806 rc = pci_enable_device(pci_dev);
807 if (rc) {
808 EFX_ERR(efx, "failed to enable PCI device\n");
809 goto fail1;
810 }
811
812 pci_set_master(pci_dev);
813
814 /* Set the PCI DMA mask. Try all possibilities from our
815 * genuine mask down to 32 bits, because some architectures
816 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
817 * masks event though they reject 46 bit masks.
818 */
819 while (dma_mask > 0x7fffffffUL) {
820 if (pci_dma_supported(pci_dev, dma_mask) &&
821 ((rc = pci_set_dma_mask(pci_dev, dma_mask)) == 0))
822 break;
823 dma_mask >>= 1;
824 }
825 if (rc) {
826 EFX_ERR(efx, "could not find a suitable DMA mask\n");
827 goto fail2;
828 }
829 EFX_LOG(efx, "using DMA mask %llx\n", (unsigned long long) dma_mask);
830 rc = pci_set_consistent_dma_mask(pci_dev, dma_mask);
831 if (rc) {
832 /* pci_set_consistent_dma_mask() is not *allowed* to
833 * fail with a mask that pci_set_dma_mask() accepted,
834 * but just in case...
835 */
836 EFX_ERR(efx, "failed to set consistent DMA mask\n");
837 goto fail2;
838 }
839
840 efx->membase_phys = pci_resource_start(efx->pci_dev,
841 efx->type->mem_bar);
842 rc = pci_request_region(pci_dev, efx->type->mem_bar, "sfc");
843 if (rc) {
844 EFX_ERR(efx, "request for memory BAR failed\n");
845 rc = -EIO;
846 goto fail3;
847 }
848 efx->membase = ioremap_nocache(efx->membase_phys,
849 efx->type->mem_map_size);
850 if (!efx->membase) {
086ea356
BH
851 EFX_ERR(efx, "could not map memory BAR %d at %llx+%x\n",
852 efx->type->mem_bar,
853 (unsigned long long)efx->membase_phys,
8ceee660
BH
854 efx->type->mem_map_size);
855 rc = -ENOMEM;
856 goto fail4;
857 }
086ea356
BH
858 EFX_LOG(efx, "memory BAR %u at %llx+%x (virtual %p)\n",
859 efx->type->mem_bar, (unsigned long long)efx->membase_phys,
860 efx->type->mem_map_size, efx->membase);
8ceee660
BH
861
862 return 0;
863
864 fail4:
e1074a0d 865 pci_release_region(efx->pci_dev, efx->type->mem_bar);
8ceee660 866 fail3:
2c118e0f 867 efx->membase_phys = 0;
8ceee660
BH
868 fail2:
869 pci_disable_device(efx->pci_dev);
870 fail1:
871 return rc;
872}
873
874static void efx_fini_io(struct efx_nic *efx)
875{
876 EFX_LOG(efx, "shutting down I/O\n");
877
878 if (efx->membase) {
879 iounmap(efx->membase);
880 efx->membase = NULL;
881 }
882
883 if (efx->membase_phys) {
884 pci_release_region(efx->pci_dev, efx->type->mem_bar);
2c118e0f 885 efx->membase_phys = 0;
8ceee660
BH
886 }
887
888 pci_disable_device(efx->pci_dev);
889}
890
46123d04
BH
891/* Get number of RX queues wanted. Return number of online CPU
892 * packages in the expectation that an IRQ balancer will spread
893 * interrupts across them. */
894static int efx_wanted_rx_queues(void)
895{
2f8975fb 896 cpumask_var_t core_mask;
46123d04
BH
897 int count;
898 int cpu;
899
2f8975fb
RR
900 if (!alloc_cpumask_var(&core_mask, GFP_KERNEL)) {
901 printk(KERN_WARNING
902 "efx.c: allocation failure, irq balancing hobbled\n");
903 return 1;
904 }
905
906 cpumask_clear(core_mask);
46123d04
BH
907 count = 0;
908 for_each_online_cpu(cpu) {
2f8975fb 909 if (!cpumask_test_cpu(cpu, core_mask)) {
46123d04 910 ++count;
2f8975fb 911 cpumask_or(core_mask, core_mask,
fbd59a8d 912 topology_core_cpumask(cpu));
46123d04
BH
913 }
914 }
915
2f8975fb 916 free_cpumask_var(core_mask);
46123d04
BH
917 return count;
918}
919
920/* Probe the number and type of interrupts we are able to obtain, and
921 * the resulting numbers of channels and RX queues.
922 */
8ceee660
BH
923static void efx_probe_interrupts(struct efx_nic *efx)
924{
46123d04
BH
925 int max_channels =
926 min_t(int, efx->type->phys_addr_channels, EFX_MAX_CHANNELS);
8ceee660
BH
927 int rc, i;
928
929 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) {
46123d04
BH
930 struct msix_entry xentries[EFX_MAX_CHANNELS];
931 int wanted_ints;
28b581ab 932 int rx_queues;
aa6ef27e 933
46123d04
BH
934 /* We want one RX queue and interrupt per CPU package
935 * (or as specified by the rss_cpus module parameter).
936 * We will need one channel per interrupt.
937 */
28b581ab
NT
938 rx_queues = rss_cpus ? rss_cpus : efx_wanted_rx_queues();
939 wanted_ints = rx_queues + (separate_tx_channels ? 1 : 0);
940 wanted_ints = min(wanted_ints, max_channels);
8ceee660 941
28b581ab 942 for (i = 0; i < wanted_ints; i++)
8ceee660 943 xentries[i].entry = i;
28b581ab 944 rc = pci_enable_msix(efx->pci_dev, xentries, wanted_ints);
8ceee660 945 if (rc > 0) {
28b581ab
NT
946 EFX_ERR(efx, "WARNING: Insufficient MSI-X vectors"
947 " available (%d < %d).\n", rc, wanted_ints);
948 EFX_ERR(efx, "WARNING: Performance may be reduced.\n");
949 EFX_BUG_ON_PARANOID(rc >= wanted_ints);
950 wanted_ints = rc;
8ceee660 951 rc = pci_enable_msix(efx->pci_dev, xentries,
28b581ab 952 wanted_ints);
8ceee660
BH
953 }
954
955 if (rc == 0) {
28b581ab
NT
956 efx->n_rx_queues = min(rx_queues, wanted_ints);
957 efx->n_channels = wanted_ints;
958 for (i = 0; i < wanted_ints; i++)
8ceee660 959 efx->channel[i].irq = xentries[i].vector;
8ceee660
BH
960 } else {
961 /* Fall back to single channel MSI */
962 efx->interrupt_mode = EFX_INT_MODE_MSI;
963 EFX_ERR(efx, "could not enable MSI-X\n");
964 }
965 }
966
967 /* Try single interrupt MSI */
968 if (efx->interrupt_mode == EFX_INT_MODE_MSI) {
8831da7b 969 efx->n_rx_queues = 1;
28b581ab 970 efx->n_channels = 1;
8ceee660
BH
971 rc = pci_enable_msi(efx->pci_dev);
972 if (rc == 0) {
973 efx->channel[0].irq = efx->pci_dev->irq;
8ceee660
BH
974 } else {
975 EFX_ERR(efx, "could not enable MSI\n");
976 efx->interrupt_mode = EFX_INT_MODE_LEGACY;
977 }
978 }
979
980 /* Assume legacy interrupts */
981 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) {
8831da7b 982 efx->n_rx_queues = 1;
28b581ab 983 efx->n_channels = 1 + (separate_tx_channels ? 1 : 0);
8ceee660
BH
984 efx->legacy_irq = efx->pci_dev->irq;
985 }
986}
987
988static void efx_remove_interrupts(struct efx_nic *efx)
989{
990 struct efx_channel *channel;
991
992 /* Remove MSI/MSI-X interrupts */
64ee3120 993 efx_for_each_channel(channel, efx)
8ceee660
BH
994 channel->irq = 0;
995 pci_disable_msi(efx->pci_dev);
996 pci_disable_msix(efx->pci_dev);
997
998 /* Remove legacy interrupt */
999 efx->legacy_irq = 0;
1000}
1001
8831da7b 1002static void efx_set_channels(struct efx_nic *efx)
8ceee660
BH
1003{
1004 struct efx_tx_queue *tx_queue;
1005 struct efx_rx_queue *rx_queue;
8ceee660 1006
60ac1065 1007 efx_for_each_tx_queue(tx_queue, efx) {
28b581ab
NT
1008 if (separate_tx_channels)
1009 tx_queue->channel = &efx->channel[efx->n_channels-1];
60ac1065
BH
1010 else
1011 tx_queue->channel = &efx->channel[0];
1012 tx_queue->channel->used_flags |= EFX_USED_BY_TX;
1013 }
8ceee660 1014
8831da7b
BH
1015 efx_for_each_rx_queue(rx_queue, efx) {
1016 rx_queue->channel = &efx->channel[rx_queue->queue];
1017 rx_queue->channel->used_flags |= EFX_USED_BY_RX;
8ceee660
BH
1018 }
1019}
1020
1021static int efx_probe_nic(struct efx_nic *efx)
1022{
1023 int rc;
1024
1025 EFX_LOG(efx, "creating NIC\n");
1026
1027 /* Carry out hardware-type specific initialisation */
1028 rc = falcon_probe_nic(efx);
1029 if (rc)
1030 return rc;
1031
1032 /* Determine the number of channels and RX queues by trying to hook
1033 * in MSI-X interrupts. */
1034 efx_probe_interrupts(efx);
1035
8831da7b 1036 efx_set_channels(efx);
8ceee660
BH
1037
1038 /* Initialise the interrupt moderation settings */
6fb70fd1 1039 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true);
8ceee660
BH
1040
1041 return 0;
1042}
1043
1044static void efx_remove_nic(struct efx_nic *efx)
1045{
1046 EFX_LOG(efx, "destroying NIC\n");
1047
1048 efx_remove_interrupts(efx);
1049 falcon_remove_nic(efx);
1050}
1051
1052/**************************************************************************
1053 *
1054 * NIC startup/shutdown
1055 *
1056 *************************************************************************/
1057
1058static int efx_probe_all(struct efx_nic *efx)
1059{
1060 struct efx_channel *channel;
1061 int rc;
1062
1063 /* Create NIC */
1064 rc = efx_probe_nic(efx);
1065 if (rc) {
1066 EFX_ERR(efx, "failed to create NIC\n");
1067 goto fail1;
1068 }
1069
1070 /* Create port */
1071 rc = efx_probe_port(efx);
1072 if (rc) {
1073 EFX_ERR(efx, "failed to create port\n");
1074 goto fail2;
1075 }
1076
1077 /* Create channels */
1078 efx_for_each_channel(channel, efx) {
1079 rc = efx_probe_channel(channel);
1080 if (rc) {
1081 EFX_ERR(efx, "failed to create channel %d\n",
1082 channel->channel);
1083 goto fail3;
1084 }
1085 }
56536e9c 1086 efx_set_channel_names(efx);
8ceee660
BH
1087
1088 return 0;
1089
1090 fail3:
1091 efx_for_each_channel(channel, efx)
1092 efx_remove_channel(channel);
1093 efx_remove_port(efx);
1094 fail2:
1095 efx_remove_nic(efx);
1096 fail1:
1097 return rc;
1098}
1099
1100/* Called after previous invocation(s) of efx_stop_all, restarts the
1101 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1102 * and ensures that the port is scheduled to be reconfigured.
1103 * This function is safe to call multiple times when the NIC is in any
1104 * state. */
1105static void efx_start_all(struct efx_nic *efx)
1106{
1107 struct efx_channel *channel;
1108
1109 EFX_ASSERT_RESET_SERIALISED(efx);
1110
1111 /* Check that it is appropriate to restart the interface. All
1112 * of these flags are safe to read under just the rtnl lock */
1113 if (efx->port_enabled)
1114 return;
1115 if ((efx->state != STATE_RUNNING) && (efx->state != STATE_INIT))
1116 return;
55668611 1117 if (efx_dev_registered(efx) && !netif_running(efx->net_dev))
8ceee660
BH
1118 return;
1119
1120 /* Mark the port as enabled so port reconfigurations can start, then
1121 * restart the transmit interface early so the watchdog timer stops */
1122 efx_start_port(efx);
dacccc74
SH
1123 if (efx_dev_registered(efx))
1124 efx_wake_queue(efx);
8ceee660
BH
1125
1126 efx_for_each_channel(channel, efx)
1127 efx_start_channel(channel);
1128
1129 falcon_enable_interrupts(efx);
1130
1131 /* Start hardware monitor if we're in RUNNING */
1132 if (efx->state == STATE_RUNNING)
1133 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1134 efx_monitor_interval);
1135}
1136
1137/* Flush all delayed work. Should only be called when no more delayed work
1138 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1139 * since we're holding the rtnl_lock at this point. */
1140static void efx_flush_all(struct efx_nic *efx)
1141{
1142 struct efx_rx_queue *rx_queue;
1143
1144 /* Make sure the hardware monitor is stopped */
1145 cancel_delayed_work_sync(&efx->monitor_work);
1146
1147 /* Ensure that all RX slow refills are complete. */
b3475645 1148 efx_for_each_rx_queue(rx_queue, efx)
8ceee660 1149 cancel_delayed_work_sync(&rx_queue->work);
8ceee660
BH
1150
1151 /* Stop scheduled port reconfigurations */
766ca0fa
BH
1152 cancel_work_sync(&efx->mac_work);
1153 cancel_work_sync(&efx->phy_work);
8ceee660
BH
1154
1155}
1156
1157/* Quiesce hardware and software without bringing the link down.
1158 * Safe to call multiple times, when the nic and interface is in any
1159 * state. The caller is guaranteed to subsequently be in a position
1160 * to modify any hardware and software state they see fit without
1161 * taking locks. */
1162static void efx_stop_all(struct efx_nic *efx)
1163{
1164 struct efx_channel *channel;
1165
1166 EFX_ASSERT_RESET_SERIALISED(efx);
1167
1168 /* port_enabled can be read safely under the rtnl lock */
1169 if (!efx->port_enabled)
1170 return;
1171
1172 /* Disable interrupts and wait for ISR to complete */
1173 falcon_disable_interrupts(efx);
1174 if (efx->legacy_irq)
1175 synchronize_irq(efx->legacy_irq);
64ee3120 1176 efx_for_each_channel(channel, efx) {
8ceee660
BH
1177 if (channel->irq)
1178 synchronize_irq(channel->irq);
b3475645 1179 }
8ceee660
BH
1180
1181 /* Stop all NAPI processing and synchronous rx refills */
1182 efx_for_each_channel(channel, efx)
1183 efx_stop_channel(channel);
1184
1185 /* Stop all asynchronous port reconfigurations. Since all
1186 * event processing has already been stopped, there is no
1187 * window to loose phy events */
1188 efx_stop_port(efx);
1189
766ca0fa 1190 /* Flush efx_phy_work, efx_mac_work, refill_workqueue, monitor_work */
8ceee660
BH
1191 efx_flush_all(efx);
1192
1193 /* Isolate the MAC from the TX and RX engines, so that queue
1194 * flushes will complete in a timely fashion. */
8ceee660
BH
1195 falcon_drain_tx_fifo(efx);
1196
1197 /* Stop the kernel transmit interface late, so the watchdog
1198 * timer isn't ticking over the flush */
55668611 1199 if (efx_dev_registered(efx)) {
dacccc74 1200 efx_stop_queue(efx);
8ceee660
BH
1201 netif_tx_lock_bh(efx->net_dev);
1202 netif_tx_unlock_bh(efx->net_dev);
1203 }
1204}
1205
1206static void efx_remove_all(struct efx_nic *efx)
1207{
1208 struct efx_channel *channel;
1209
1210 efx_for_each_channel(channel, efx)
1211 efx_remove_channel(channel);
1212 efx_remove_port(efx);
1213 efx_remove_nic(efx);
1214}
1215
1216/* A convinience function to safely flush all the queues */
bc3c90a2 1217void efx_flush_queues(struct efx_nic *efx)
8ceee660 1218{
8ceee660
BH
1219 EFX_ASSERT_RESET_SERIALISED(efx);
1220
1221 efx_stop_all(efx);
1222
1223 efx_fini_channels(efx);
bc3c90a2 1224 efx_init_channels(efx);
8ceee660
BH
1225
1226 efx_start_all(efx);
8ceee660
BH
1227}
1228
1229/**************************************************************************
1230 *
1231 * Interrupt moderation
1232 *
1233 **************************************************************************/
1234
1235/* Set interrupt moderation parameters */
6fb70fd1
BH
1236void efx_init_irq_moderation(struct efx_nic *efx, int tx_usecs, int rx_usecs,
1237 bool rx_adaptive)
8ceee660
BH
1238{
1239 struct efx_tx_queue *tx_queue;
1240 struct efx_rx_queue *rx_queue;
1241
1242 EFX_ASSERT_RESET_SERIALISED(efx);
1243
1244 efx_for_each_tx_queue(tx_queue, efx)
1245 tx_queue->channel->irq_moderation = tx_usecs;
1246
6fb70fd1
BH
1247 efx->irq_rx_adaptive = rx_adaptive;
1248 efx->irq_rx_moderation = rx_usecs;
8ceee660
BH
1249 efx_for_each_rx_queue(rx_queue, efx)
1250 rx_queue->channel->irq_moderation = rx_usecs;
1251}
1252
1253/**************************************************************************
1254 *
1255 * Hardware monitor
1256 *
1257 **************************************************************************/
1258
1259/* Run periodically off the general workqueue. Serialised against
1260 * efx_reconfigure_port via the mac_lock */
1261static void efx_monitor(struct work_struct *data)
1262{
1263 struct efx_nic *efx = container_of(data, struct efx_nic,
1264 monitor_work.work);
766ca0fa 1265 int rc;
8ceee660
BH
1266
1267 EFX_TRACE(efx, "hardware monitor executing on CPU %d\n",
1268 raw_smp_processor_id());
1269
8ceee660
BH
1270 /* If the mac_lock is already held then it is likely a port
1271 * reconfiguration is already in place, which will likely do
1272 * most of the work of check_hw() anyway. */
766ca0fa
BH
1273 if (!mutex_trylock(&efx->mac_lock))
1274 goto out_requeue;
1275 if (!efx->port_enabled)
1276 goto out_unlock;
1277 rc = efx->board_info.monitor(efx);
1278 if (rc) {
1279 EFX_ERR(efx, "Board sensor %s; shutting down PHY\n",
1280 (rc == -ERANGE) ? "reported fault" : "failed");
1281 efx->phy_mode |= PHY_MODE_LOW_POWER;
1282 falcon_sim_phy_event(efx);
8ceee660 1283 }
766ca0fa
BH
1284 efx->phy_op->poll(efx);
1285 efx->mac_op->poll(efx);
8ceee660 1286
766ca0fa 1287out_unlock:
8ceee660 1288 mutex_unlock(&efx->mac_lock);
766ca0fa 1289out_requeue:
8ceee660
BH
1290 queue_delayed_work(efx->workqueue, &efx->monitor_work,
1291 efx_monitor_interval);
1292}
1293
1294/**************************************************************************
1295 *
1296 * ioctls
1297 *
1298 *************************************************************************/
1299
1300/* Net device ioctl
1301 * Context: process, rtnl_lock() held.
1302 */
1303static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd)
1304{
767e468c 1305 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1306
1307 EFX_ASSERT_RESET_SERIALISED(efx);
1308
1309 return generic_mii_ioctl(&efx->mii, if_mii(ifr), cmd, NULL);
1310}
1311
1312/**************************************************************************
1313 *
1314 * NAPI interface
1315 *
1316 **************************************************************************/
1317
1318static int efx_init_napi(struct efx_nic *efx)
1319{
1320 struct efx_channel *channel;
8ceee660
BH
1321
1322 efx_for_each_channel(channel, efx) {
1323 channel->napi_dev = efx->net_dev;
8ceee660
BH
1324 }
1325 return 0;
8ceee660
BH
1326}
1327
1328static void efx_fini_napi(struct efx_nic *efx)
1329{
1330 struct efx_channel *channel;
1331
1332 efx_for_each_channel(channel, efx) {
8ceee660
BH
1333 channel->napi_dev = NULL;
1334 }
1335}
1336
1337/**************************************************************************
1338 *
1339 * Kernel netpoll interface
1340 *
1341 *************************************************************************/
1342
1343#ifdef CONFIG_NET_POLL_CONTROLLER
1344
1345/* Although in the common case interrupts will be disabled, this is not
1346 * guaranteed. However, all our work happens inside the NAPI callback,
1347 * so no locking is required.
1348 */
1349static void efx_netpoll(struct net_device *net_dev)
1350{
767e468c 1351 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1352 struct efx_channel *channel;
1353
64ee3120 1354 efx_for_each_channel(channel, efx)
8ceee660
BH
1355 efx_schedule_channel(channel);
1356}
1357
1358#endif
1359
1360/**************************************************************************
1361 *
1362 * Kernel net device interface
1363 *
1364 *************************************************************************/
1365
1366/* Context: process, rtnl_lock() held. */
1367static int efx_net_open(struct net_device *net_dev)
1368{
767e468c 1369 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1370 EFX_ASSERT_RESET_SERIALISED(efx);
1371
1372 EFX_LOG(efx, "opening device %s on CPU %d\n", net_dev->name,
1373 raw_smp_processor_id());
1374
f4bd954e
BH
1375 if (efx->state == STATE_DISABLED)
1376 return -EIO;
f8b87c17
BH
1377 if (efx->phy_mode & PHY_MODE_SPECIAL)
1378 return -EBUSY;
1379
8ceee660
BH
1380 efx_start_all(efx);
1381 return 0;
1382}
1383
1384/* Context: process, rtnl_lock() held.
1385 * Note that the kernel will ignore our return code; this method
1386 * should really be a void.
1387 */
1388static int efx_net_stop(struct net_device *net_dev)
1389{
767e468c 1390 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1391
1392 EFX_LOG(efx, "closing %s on CPU %d\n", net_dev->name,
1393 raw_smp_processor_id());
1394
f4bd954e
BH
1395 if (efx->state != STATE_DISABLED) {
1396 /* Stop the device and flush all the channels */
1397 efx_stop_all(efx);
1398 efx_fini_channels(efx);
1399 efx_init_channels(efx);
1400 }
8ceee660
BH
1401
1402 return 0;
1403}
1404
1974cc20
BH
1405void efx_stats_disable(struct efx_nic *efx)
1406{
1407 spin_lock(&efx->stats_lock);
1408 ++efx->stats_disable_count;
1409 spin_unlock(&efx->stats_lock);
1410}
1411
1412void efx_stats_enable(struct efx_nic *efx)
1413{
1414 spin_lock(&efx->stats_lock);
1415 --efx->stats_disable_count;
1416 spin_unlock(&efx->stats_lock);
1417}
1418
5b9e207c 1419/* Context: process, dev_base_lock or RTNL held, non-blocking. */
8ceee660
BH
1420static struct net_device_stats *efx_net_stats(struct net_device *net_dev)
1421{
767e468c 1422 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1423 struct efx_mac_stats *mac_stats = &efx->mac_stats;
1424 struct net_device_stats *stats = &net_dev->stats;
1425
5b9e207c 1426 /* Update stats if possible, but do not wait if another thread
1974cc20
BH
1427 * is updating them or if MAC stats fetches are temporarily
1428 * disabled; slightly stale stats are acceptable.
5b9e207c 1429 */
8ceee660
BH
1430 if (!spin_trylock(&efx->stats_lock))
1431 return stats;
1974cc20 1432 if (!efx->stats_disable_count) {
177dfcd8 1433 efx->mac_op->update_stats(efx);
8ceee660
BH
1434 falcon_update_nic_stats(efx);
1435 }
1436 spin_unlock(&efx->stats_lock);
1437
1438 stats->rx_packets = mac_stats->rx_packets;
1439 stats->tx_packets = mac_stats->tx_packets;
1440 stats->rx_bytes = mac_stats->rx_bytes;
1441 stats->tx_bytes = mac_stats->tx_bytes;
1442 stats->multicast = mac_stats->rx_multicast;
1443 stats->collisions = mac_stats->tx_collision;
1444 stats->rx_length_errors = (mac_stats->rx_gtjumbo +
1445 mac_stats->rx_length_error);
1446 stats->rx_over_errors = efx->n_rx_nodesc_drop_cnt;
1447 stats->rx_crc_errors = mac_stats->rx_bad;
1448 stats->rx_frame_errors = mac_stats->rx_align_error;
1449 stats->rx_fifo_errors = mac_stats->rx_overflow;
1450 stats->rx_missed_errors = mac_stats->rx_missed;
1451 stats->tx_window_errors = mac_stats->tx_late_collision;
1452
1453 stats->rx_errors = (stats->rx_length_errors +
1454 stats->rx_over_errors +
1455 stats->rx_crc_errors +
1456 stats->rx_frame_errors +
1457 stats->rx_fifo_errors +
1458 stats->rx_missed_errors +
1459 mac_stats->rx_symbol_error);
1460 stats->tx_errors = (stats->tx_window_errors +
1461 mac_stats->tx_bad);
1462
1463 return stats;
1464}
1465
1466/* Context: netif_tx_lock held, BHs disabled. */
1467static void efx_watchdog(struct net_device *net_dev)
1468{
767e468c 1469 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660 1470
739bb23d
BH
1471 EFX_ERR(efx, "TX stuck with stop_count=%d port_enabled=%d:"
1472 " resetting channels\n",
1473 atomic_read(&efx->netif_stop_count), efx->port_enabled);
8ceee660 1474
739bb23d 1475 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG);
8ceee660
BH
1476}
1477
1478
1479/* Context: process, rtnl_lock() held. */
1480static int efx_change_mtu(struct net_device *net_dev, int new_mtu)
1481{
767e468c 1482 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1483 int rc = 0;
1484
1485 EFX_ASSERT_RESET_SERIALISED(efx);
1486
1487 if (new_mtu > EFX_MAX_MTU)
1488 return -EINVAL;
1489
1490 efx_stop_all(efx);
1491
1492 EFX_LOG(efx, "changing MTU to %d\n", new_mtu);
1493
1494 efx_fini_channels(efx);
1495 net_dev->mtu = new_mtu;
bc3c90a2 1496 efx_init_channels(efx);
8ceee660
BH
1497
1498 efx_start_all(efx);
1499 return rc;
8ceee660
BH
1500}
1501
1502static int efx_set_mac_address(struct net_device *net_dev, void *data)
1503{
767e468c 1504 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1505 struct sockaddr *addr = data;
1506 char *new_addr = addr->sa_data;
1507
1508 EFX_ASSERT_RESET_SERIALISED(efx);
1509
1510 if (!is_valid_ether_addr(new_addr)) {
e174961c
JB
1511 EFX_ERR(efx, "invalid ethernet MAC address requested: %pM\n",
1512 new_addr);
8ceee660
BH
1513 return -EINVAL;
1514 }
1515
1516 memcpy(net_dev->dev_addr, new_addr, net_dev->addr_len);
1517
1518 /* Reconfigure the MAC */
1519 efx_reconfigure_port(efx);
1520
1521 return 0;
1522}
1523
a816f75a 1524/* Context: netif_addr_lock held, BHs disabled. */
8ceee660
BH
1525static void efx_set_multicast_list(struct net_device *net_dev)
1526{
767e468c 1527 struct efx_nic *efx = netdev_priv(net_dev);
8ceee660
BH
1528 struct dev_mc_list *mc_list = net_dev->mc_list;
1529 union efx_multicast_hash *mc_hash = &efx->multicast_hash;
a816f75a
BH
1530 bool promiscuous = !!(net_dev->flags & IFF_PROMISC);
1531 bool changed = (efx->promiscuous != promiscuous);
8ceee660
BH
1532 u32 crc;
1533 int bit;
1534 int i;
1535
a816f75a 1536 efx->promiscuous = promiscuous;
8ceee660
BH
1537
1538 /* Build multicast hash table */
1539 if (promiscuous || (net_dev->flags & IFF_ALLMULTI)) {
1540 memset(mc_hash, 0xff, sizeof(*mc_hash));
1541 } else {
1542 memset(mc_hash, 0x00, sizeof(*mc_hash));
1543 for (i = 0; i < net_dev->mc_count; i++) {
1544 crc = ether_crc_le(ETH_ALEN, mc_list->dmi_addr);
1545 bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
1546 set_bit_le(bit, mc_hash->byte);
1547 mc_list = mc_list->next;
1548 }
1549 }
1550
a816f75a
BH
1551 if (!efx->port_enabled)
1552 /* Delay pushing settings until efx_start_port() */
1553 return;
1554
1555 if (changed)
766ca0fa 1556 queue_work(efx->workqueue, &efx->phy_work);
a816f75a 1557
8ceee660
BH
1558 /* Create and activate new global multicast hash table */
1559 falcon_set_multicast_hash(efx);
1560}
1561
c3ecb9f3
SH
1562static const struct net_device_ops efx_netdev_ops = {
1563 .ndo_open = efx_net_open,
1564 .ndo_stop = efx_net_stop,
1565 .ndo_get_stats = efx_net_stats,
1566 .ndo_tx_timeout = efx_watchdog,
1567 .ndo_start_xmit = efx_hard_start_xmit,
1568 .ndo_validate_addr = eth_validate_addr,
1569 .ndo_do_ioctl = efx_ioctl,
1570 .ndo_change_mtu = efx_change_mtu,
1571 .ndo_set_mac_address = efx_set_mac_address,
1572 .ndo_set_multicast_list = efx_set_multicast_list,
1573#ifdef CONFIG_NET_POLL_CONTROLLER
1574 .ndo_poll_controller = efx_netpoll,
1575#endif
1576};
1577
7dde596e
BH
1578static void efx_update_name(struct efx_nic *efx)
1579{
1580 strcpy(efx->name, efx->net_dev->name);
1581 efx_mtd_rename(efx);
1582 efx_set_channel_names(efx);
1583}
1584
8ceee660
BH
1585static int efx_netdev_event(struct notifier_block *this,
1586 unsigned long event, void *ptr)
1587{
d3208b5e 1588 struct net_device *net_dev = ptr;
8ceee660 1589
7dde596e
BH
1590 if (net_dev->netdev_ops == &efx_netdev_ops &&
1591 event == NETDEV_CHANGENAME)
1592 efx_update_name(netdev_priv(net_dev));
8ceee660
BH
1593
1594 return NOTIFY_DONE;
1595}
1596
1597static struct notifier_block efx_netdev_notifier = {
1598 .notifier_call = efx_netdev_event,
1599};
1600
06d5e193
BH
1601static ssize_t
1602show_phy_type(struct device *dev, struct device_attribute *attr, char *buf)
1603{
1604 struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
1605 return sprintf(buf, "%d\n", efx->phy_type);
1606}
1607static DEVICE_ATTR(phy_type, 0644, show_phy_type, NULL);
1608
8ceee660
BH
1609static int efx_register_netdev(struct efx_nic *efx)
1610{
1611 struct net_device *net_dev = efx->net_dev;
1612 int rc;
1613
1614 net_dev->watchdog_timeo = 5 * HZ;
1615 net_dev->irq = efx->pci_dev->irq;
c3ecb9f3 1616 net_dev->netdev_ops = &efx_netdev_ops;
8ceee660
BH
1617 SET_NETDEV_DEV(net_dev, &efx->pci_dev->dev);
1618 SET_ETHTOOL_OPS(net_dev, &efx_ethtool_ops);
1619
1620 /* Always start with carrier off; PHY events will detect the link */
1621 netif_carrier_off(efx->net_dev);
1622
1623 /* Clear MAC statistics */
177dfcd8 1624 efx->mac_op->update_stats(efx);
8ceee660
BH
1625 memset(&efx->mac_stats, 0, sizeof(efx->mac_stats));
1626
1627 rc = register_netdev(net_dev);
1628 if (rc) {
1629 EFX_ERR(efx, "could not register net dev\n");
1630 return rc;
1631 }
7dde596e
BH
1632
1633 rtnl_lock();
1634 efx_update_name(efx);
1635 rtnl_unlock();
8ceee660 1636
06d5e193
BH
1637 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type);
1638 if (rc) {
1639 EFX_ERR(efx, "failed to init net dev attributes\n");
1640 goto fail_registered;
1641 }
1642
8ceee660 1643 return 0;
06d5e193
BH
1644
1645fail_registered:
1646 unregister_netdev(net_dev);
1647 return rc;
8ceee660
BH
1648}
1649
1650static void efx_unregister_netdev(struct efx_nic *efx)
1651{
1652 struct efx_tx_queue *tx_queue;
1653
1654 if (!efx->net_dev)
1655 return;
1656
767e468c 1657 BUG_ON(netdev_priv(efx->net_dev) != efx);
8ceee660
BH
1658
1659 /* Free up any skbs still remaining. This has to happen before
1660 * we try to unregister the netdev as running their destructors
1661 * may be needed to get the device ref. count to 0. */
1662 efx_for_each_tx_queue(tx_queue, efx)
1663 efx_release_tx_buffers(tx_queue);
1664
55668611 1665 if (efx_dev_registered(efx)) {
8ceee660 1666 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name));
06d5e193 1667 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type);
8ceee660
BH
1668 unregister_netdev(efx->net_dev);
1669 }
1670}
1671
1672/**************************************************************************
1673 *
1674 * Device reset and suspend
1675 *
1676 **************************************************************************/
1677
2467ca46
BH
1678/* Tears down the entire software state and most of the hardware state
1679 * before reset. */
4b988280
SH
1680void efx_reset_down(struct efx_nic *efx, enum reset_type method,
1681 struct ethtool_cmd *ecmd)
8ceee660 1682{
8ceee660
BH
1683 EFX_ASSERT_RESET_SERIALISED(efx);
1684
1974cc20 1685 efx_stats_disable(efx);
2467ca46
BH
1686 efx_stop_all(efx);
1687 mutex_lock(&efx->mac_lock);
f4150724 1688 mutex_lock(&efx->spi_lock);
2467ca46 1689
177dfcd8 1690 efx->phy_op->get_settings(efx, ecmd);
8ceee660
BH
1691
1692 efx_fini_channels(efx);
4b988280
SH
1693 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE)
1694 efx->phy_op->fini(efx);
8ceee660
BH
1695}
1696
2467ca46
BH
1697/* This function will always ensure that the locks acquired in
1698 * efx_reset_down() are released. A failure return code indicates
1699 * that we were unable to reinitialise the hardware, and the
1700 * driver should be disabled. If ok is false, then the rx and tx
1701 * engines are not restarted, pending a RESET_DISABLE. */
4b988280
SH
1702int efx_reset_up(struct efx_nic *efx, enum reset_type method,
1703 struct ethtool_cmd *ecmd, bool ok)
8ceee660
BH
1704{
1705 int rc;
1706
2467ca46 1707 EFX_ASSERT_RESET_SERIALISED(efx);
8ceee660 1708
2467ca46 1709 rc = falcon_init_nic(efx);
8ceee660 1710 if (rc) {
2467ca46
BH
1711 EFX_ERR(efx, "failed to initialise NIC\n");
1712 ok = false;
8ceee660
BH
1713 }
1714
4b988280
SH
1715 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE) {
1716 if (ok) {
1717 rc = efx->phy_op->init(efx);
1718 if (rc)
1719 ok = false;
115122af
BH
1720 }
1721 if (!ok)
4b988280
SH
1722 efx->port_initialized = false;
1723 }
1724
2467ca46
BH
1725 if (ok) {
1726 efx_init_channels(efx);
8ceee660 1727
177dfcd8 1728 if (efx->phy_op->set_settings(efx, ecmd))
2467ca46
BH
1729 EFX_ERR(efx, "could not restore PHY settings\n");
1730 }
1731
f4150724 1732 mutex_unlock(&efx->spi_lock);
2467ca46
BH
1733 mutex_unlock(&efx->mac_lock);
1734
8c8661e4 1735 if (ok) {
2467ca46 1736 efx_start_all(efx);
1974cc20 1737 efx_stats_enable(efx);
8c8661e4 1738 }
8ceee660
BH
1739 return rc;
1740}
1741
1742/* Reset the NIC as transparently as possible. Do not reset the PHY
1743 * Note that the reset may fail, in which case the card will be left
1744 * in a most-probably-unusable state.
1745 *
1746 * This function will sleep. You cannot reset from within an atomic
1747 * state; use efx_schedule_reset() instead.
1748 *
1749 * Grabs the rtnl_lock.
1750 */
1751static int efx_reset(struct efx_nic *efx)
1752{
1753 struct ethtool_cmd ecmd;
1754 enum reset_type method = efx->reset_pending;
f4bd954e 1755 int rc = 0;
8ceee660
BH
1756
1757 /* Serialise with kernel interfaces */
1758 rtnl_lock();
1759
1760 /* If we're not RUNNING then don't reset. Leave the reset_pending
1761 * flag set so that efx_pci_probe_main will be retried */
1762 if (efx->state != STATE_RUNNING) {
1763 EFX_INFO(efx, "scheduled reset quenched. NIC not RUNNING\n");
f4bd954e 1764 goto out_unlock;
8ceee660
BH
1765 }
1766
8ceee660
BH
1767 EFX_INFO(efx, "resetting (%d)\n", method);
1768
4b988280 1769 efx_reset_down(efx, method, &ecmd);
8ceee660
BH
1770
1771 rc = falcon_reset_hw(efx, method);
1772 if (rc) {
1773 EFX_ERR(efx, "failed to reset hardware\n");
f4bd954e 1774 goto out_disable;
8ceee660
BH
1775 }
1776
1777 /* Allow resets to be rescheduled. */
1778 efx->reset_pending = RESET_TYPE_NONE;
1779
1780 /* Reinitialise bus-mastering, which may have been turned off before
1781 * the reset was scheduled. This is still appropriate, even in the
1782 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
1783 * can respond to requests. */
1784 pci_set_master(efx->pci_dev);
1785
8ceee660
BH
1786 /* Leave device stopped if necessary */
1787 if (method == RESET_TYPE_DISABLE) {
4b988280 1788 efx_reset_up(efx, method, &ecmd, false);
8ceee660 1789 rc = -EIO;
f4bd954e 1790 } else {
4b988280 1791 rc = efx_reset_up(efx, method, &ecmd, true);
8ceee660
BH
1792 }
1793
f4bd954e
BH
1794out_disable:
1795 if (rc) {
1796 EFX_ERR(efx, "has been disabled\n");
1797 efx->state = STATE_DISABLED;
1798 dev_close(efx->net_dev);
1799 } else {
1800 EFX_LOG(efx, "reset complete\n");
1801 }
8ceee660 1802
f4bd954e 1803out_unlock:
8ceee660 1804 rtnl_unlock();
8ceee660
BH
1805 return rc;
1806}
1807
1808/* The worker thread exists so that code that cannot sleep can
1809 * schedule a reset for later.
1810 */
1811static void efx_reset_work(struct work_struct *data)
1812{
1813 struct efx_nic *nic = container_of(data, struct efx_nic, reset_work);
1814
1815 efx_reset(nic);
1816}
1817
1818void efx_schedule_reset(struct efx_nic *efx, enum reset_type type)
1819{
1820 enum reset_type method;
1821
1822 if (efx->reset_pending != RESET_TYPE_NONE) {
1823 EFX_INFO(efx, "quenching already scheduled reset\n");
1824 return;
1825 }
1826
1827 switch (type) {
1828 case RESET_TYPE_INVISIBLE:
1829 case RESET_TYPE_ALL:
1830 case RESET_TYPE_WORLD:
1831 case RESET_TYPE_DISABLE:
1832 method = type;
1833 break;
1834 case RESET_TYPE_RX_RECOVERY:
1835 case RESET_TYPE_RX_DESC_FETCH:
1836 case RESET_TYPE_TX_DESC_FETCH:
1837 case RESET_TYPE_TX_SKIP:
1838 method = RESET_TYPE_INVISIBLE;
1839 break;
1840 default:
1841 method = RESET_TYPE_ALL;
1842 break;
1843 }
1844
1845 if (method != type)
1846 EFX_LOG(efx, "scheduling reset (%d:%d)\n", type, method);
1847 else
1848 EFX_LOG(efx, "scheduling reset (%d)\n", method);
1849
1850 efx->reset_pending = method;
1851
1ab00629 1852 queue_work(reset_workqueue, &efx->reset_work);
8ceee660
BH
1853}
1854
1855/**************************************************************************
1856 *
1857 * List of NICs we support
1858 *
1859 **************************************************************************/
1860
1861/* PCI device ID table */
1862static struct pci_device_id efx_pci_table[] __devinitdata = {
1863 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_A_P_DEVID),
1864 .driver_data = (unsigned long) &falcon_a_nic_type},
1865 {PCI_DEVICE(EFX_VENDID_SFC, FALCON_B_P_DEVID),
1866 .driver_data = (unsigned long) &falcon_b_nic_type},
1867 {0} /* end of list */
1868};
1869
1870/**************************************************************************
1871 *
1872 * Dummy PHY/MAC/Board operations
1873 *
01aad7b6 1874 * Can be used for some unimplemented operations
8ceee660
BH
1875 * Needed so all function pointers are valid and do not have to be tested
1876 * before use
1877 *
1878 **************************************************************************/
1879int efx_port_dummy_op_int(struct efx_nic *efx)
1880{
1881 return 0;
1882}
1883void efx_port_dummy_op_void(struct efx_nic *efx) {}
dc8cfa55 1884void efx_port_dummy_op_blink(struct efx_nic *efx, bool blink) {}
8ceee660 1885
177dfcd8
BH
1886static struct efx_mac_operations efx_dummy_mac_operations = {
1887 .reconfigure = efx_port_dummy_op_void,
766ca0fa
BH
1888 .poll = efx_port_dummy_op_void,
1889 .irq = efx_port_dummy_op_void,
177dfcd8
BH
1890};
1891
8ceee660
BH
1892static struct efx_phy_operations efx_dummy_phy_operations = {
1893 .init = efx_port_dummy_op_int,
1894 .reconfigure = efx_port_dummy_op_void,
766ca0fa 1895 .poll = efx_port_dummy_op_void,
8ceee660
BH
1896 .fini = efx_port_dummy_op_void,
1897 .clear_interrupt = efx_port_dummy_op_void,
8ceee660
BH
1898};
1899
8ceee660 1900static struct efx_board efx_dummy_board_info = {
01aad7b6 1901 .init = efx_port_dummy_op_int,
8129d217
BH
1902 .init_leds = efx_port_dummy_op_void,
1903 .set_id_led = efx_port_dummy_op_blink,
a17102b1 1904 .monitor = efx_port_dummy_op_int,
01aad7b6
BH
1905 .blink = efx_port_dummy_op_blink,
1906 .fini = efx_port_dummy_op_void,
8ceee660
BH
1907};
1908
1909/**************************************************************************
1910 *
1911 * Data housekeeping
1912 *
1913 **************************************************************************/
1914
1915/* This zeroes out and then fills in the invariants in a struct
1916 * efx_nic (including all sub-structures).
1917 */
1918static int efx_init_struct(struct efx_nic *efx, struct efx_nic_type *type,
1919 struct pci_dev *pci_dev, struct net_device *net_dev)
1920{
1921 struct efx_channel *channel;
1922 struct efx_tx_queue *tx_queue;
1923 struct efx_rx_queue *rx_queue;
1ab00629 1924 int i;
8ceee660
BH
1925
1926 /* Initialise common structures */
1927 memset(efx, 0, sizeof(*efx));
1928 spin_lock_init(&efx->biu_lock);
1929 spin_lock_init(&efx->phy_lock);
f4150724 1930 mutex_init(&efx->spi_lock);
8ceee660
BH
1931 INIT_WORK(&efx->reset_work, efx_reset_work);
1932 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor);
1933 efx->pci_dev = pci_dev;
1934 efx->state = STATE_INIT;
1935 efx->reset_pending = RESET_TYPE_NONE;
1936 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name));
1937 efx->board_info = efx_dummy_board_info;
1938
1939 efx->net_dev = net_dev;
dc8cfa55 1940 efx->rx_checksum_enabled = true;
8ceee660
BH
1941 spin_lock_init(&efx->netif_stop_lock);
1942 spin_lock_init(&efx->stats_lock);
1974cc20 1943 efx->stats_disable_count = 1;
8ceee660 1944 mutex_init(&efx->mac_lock);
177dfcd8 1945 efx->mac_op = &efx_dummy_mac_operations;
8ceee660
BH
1946 efx->phy_op = &efx_dummy_phy_operations;
1947 efx->mii.dev = net_dev;
766ca0fa
BH
1948 INIT_WORK(&efx->phy_work, efx_phy_work);
1949 INIT_WORK(&efx->mac_work, efx_mac_work);
8ceee660
BH
1950 atomic_set(&efx->netif_stop_count, 1);
1951
1952 for (i = 0; i < EFX_MAX_CHANNELS; i++) {
1953 channel = &efx->channel[i];
1954 channel->efx = efx;
1955 channel->channel = i;
dc8cfa55 1956 channel->work_pending = false;
8ceee660 1957 }
60ac1065 1958 for (i = 0; i < EFX_TX_QUEUE_COUNT; i++) {
8ceee660
BH
1959 tx_queue = &efx->tx_queue[i];
1960 tx_queue->efx = efx;
1961 tx_queue->queue = i;
1962 tx_queue->buffer = NULL;
1963 tx_queue->channel = &efx->channel[0]; /* for safety */
b9b39b62 1964 tx_queue->tso_headers_free = NULL;
8ceee660
BH
1965 }
1966 for (i = 0; i < EFX_MAX_RX_QUEUES; i++) {
1967 rx_queue = &efx->rx_queue[i];
1968 rx_queue->efx = efx;
1969 rx_queue->queue = i;
1970 rx_queue->channel = &efx->channel[0]; /* for safety */
1971 rx_queue->buffer = NULL;
1972 spin_lock_init(&rx_queue->add_lock);
1973 INIT_DELAYED_WORK(&rx_queue->work, efx_rx_work);
1974 }
1975
1976 efx->type = type;
1977
1978 /* Sanity-check NIC type */
1979 EFX_BUG_ON_PARANOID(efx->type->txd_ring_mask &
1980 (efx->type->txd_ring_mask + 1));
1981 EFX_BUG_ON_PARANOID(efx->type->rxd_ring_mask &
1982 (efx->type->rxd_ring_mask + 1));
1983 EFX_BUG_ON_PARANOID(efx->type->evq_size &
1984 (efx->type->evq_size - 1));
1985 /* As close as we can get to guaranteeing that we don't overflow */
1986 EFX_BUG_ON_PARANOID(efx->type->evq_size <
1987 (efx->type->txd_ring_mask + 1 +
1988 efx->type->rxd_ring_mask + 1));
1989 EFX_BUG_ON_PARANOID(efx->type->phys_addr_channels > EFX_MAX_CHANNELS);
1990
1991 /* Higher numbered interrupt modes are less capable! */
1992 efx->interrupt_mode = max(efx->type->max_interrupt_mode,
1993 interrupt_mode);
1994
6977dc63
BH
1995 /* Would be good to use the net_dev name, but we're too early */
1996 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s",
1997 pci_name(pci_dev));
1998 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name);
1ab00629
SH
1999 if (!efx->workqueue)
2000 return -ENOMEM;
8d9853d9 2001
8ceee660 2002 return 0;
8ceee660
BH
2003}
2004
2005static void efx_fini_struct(struct efx_nic *efx)
2006{
2007 if (efx->workqueue) {
2008 destroy_workqueue(efx->workqueue);
2009 efx->workqueue = NULL;
2010 }
2011}
2012
2013/**************************************************************************
2014 *
2015 * PCI interface
2016 *
2017 **************************************************************************/
2018
2019/* Main body of final NIC shutdown code
2020 * This is called only at module unload (or hotplug removal).
2021 */
2022static void efx_pci_remove_main(struct efx_nic *efx)
2023{
2024 EFX_ASSERT_RESET_SERIALISED(efx);
2025
2026 /* Skip everything if we never obtained a valid membase */
2027 if (!efx->membase)
2028 return;
2029
2030 efx_fini_channels(efx);
2031 efx_fini_port(efx);
2032
2033 /* Shutdown the board, then the NIC and board state */
37b5a603 2034 efx->board_info.fini(efx);
8ceee660
BH
2035 falcon_fini_interrupt(efx);
2036
2037 efx_fini_napi(efx);
2038 efx_remove_all(efx);
2039}
2040
2041/* Final NIC shutdown
2042 * This is called only at module unload (or hotplug removal).
2043 */
2044static void efx_pci_remove(struct pci_dev *pci_dev)
2045{
2046 struct efx_nic *efx;
2047
2048 efx = pci_get_drvdata(pci_dev);
2049 if (!efx)
2050 return;
2051
2052 /* Mark the NIC as fini, then stop the interface */
2053 rtnl_lock();
2054 efx->state = STATE_FINI;
2055 dev_close(efx->net_dev);
2056
2057 /* Allow any queued efx_resets() to complete */
2058 rtnl_unlock();
2059
2060 if (efx->membase == NULL)
2061 goto out;
2062
2063 efx_unregister_netdev(efx);
2064
7dde596e
BH
2065 efx_mtd_remove(efx);
2066
8ceee660
BH
2067 /* Wait for any scheduled resets to complete. No more will be
2068 * scheduled from this point because efx_stop_all() has been
2069 * called, we are no longer registered with driverlink, and
2070 * the net_device's have been removed. */
1ab00629 2071 cancel_work_sync(&efx->reset_work);
8ceee660
BH
2072
2073 efx_pci_remove_main(efx);
2074
2075out:
2076 efx_fini_io(efx);
2077 EFX_LOG(efx, "shutdown successful\n");
2078
2079 pci_set_drvdata(pci_dev, NULL);
2080 efx_fini_struct(efx);
2081 free_netdev(efx->net_dev);
2082};
2083
2084/* Main body of NIC initialisation
2085 * This is called at module load (or hotplug insertion, theoretically).
2086 */
2087static int efx_pci_probe_main(struct efx_nic *efx)
2088{
2089 int rc;
2090
2091 /* Do start-of-day initialisation */
2092 rc = efx_probe_all(efx);
2093 if (rc)
2094 goto fail1;
2095
2096 rc = efx_init_napi(efx);
2097 if (rc)
2098 goto fail2;
2099
2100 /* Initialise the board */
2101 rc = efx->board_info.init(efx);
2102 if (rc) {
2103 EFX_ERR(efx, "failed to initialise board\n");
2104 goto fail3;
2105 }
2106
2107 rc = falcon_init_nic(efx);
2108 if (rc) {
2109 EFX_ERR(efx, "failed to initialise NIC\n");
2110 goto fail4;
2111 }
2112
2113 rc = efx_init_port(efx);
2114 if (rc) {
2115 EFX_ERR(efx, "failed to initialise port\n");
2116 goto fail5;
2117 }
2118
bc3c90a2 2119 efx_init_channels(efx);
8ceee660
BH
2120
2121 rc = falcon_init_interrupt(efx);
2122 if (rc)
bc3c90a2 2123 goto fail6;
8ceee660
BH
2124
2125 return 0;
2126
8ceee660 2127 fail6:
bc3c90a2 2128 efx_fini_channels(efx);
8ceee660
BH
2129 efx_fini_port(efx);
2130 fail5:
2131 fail4:
a17102b1 2132 efx->board_info.fini(efx);
8ceee660
BH
2133 fail3:
2134 efx_fini_napi(efx);
2135 fail2:
2136 efx_remove_all(efx);
2137 fail1:
2138 return rc;
2139}
2140
2141/* NIC initialisation
2142 *
2143 * This is called at module load (or hotplug insertion,
2144 * theoretically). It sets up PCI mappings, tests and resets the NIC,
2145 * sets up and registers the network devices with the kernel and hooks
2146 * the interrupt service routine. It does not prepare the device for
2147 * transmission; this is left to the first time one of the network
2148 * interfaces is brought up (i.e. efx_net_open).
2149 */
2150static int __devinit efx_pci_probe(struct pci_dev *pci_dev,
2151 const struct pci_device_id *entry)
2152{
2153 struct efx_nic_type *type = (struct efx_nic_type *) entry->driver_data;
2154 struct net_device *net_dev;
2155 struct efx_nic *efx;
2156 int i, rc;
2157
2158 /* Allocate and initialise a struct net_device and struct efx_nic */
2159 net_dev = alloc_etherdev(sizeof(*efx));
2160 if (!net_dev)
2161 return -ENOMEM;
b9b39b62
BH
2162 net_dev->features |= (NETIF_F_IP_CSUM | NETIF_F_SG |
2163 NETIF_F_HIGHDMA | NETIF_F_TSO);
8ceee660 2164 if (lro)
da3bc071 2165 net_dev->features |= NETIF_F_GRO;
28506563
BH
2166 /* Mask for features that also apply to VLAN devices */
2167 net_dev->vlan_features |= (NETIF_F_ALL_CSUM | NETIF_F_SG |
740847da 2168 NETIF_F_HIGHDMA | NETIF_F_TSO);
767e468c 2169 efx = netdev_priv(net_dev);
8ceee660
BH
2170 pci_set_drvdata(pci_dev, efx);
2171 rc = efx_init_struct(efx, type, pci_dev, net_dev);
2172 if (rc)
2173 goto fail1;
2174
2175 EFX_INFO(efx, "Solarflare Communications NIC detected\n");
2176
2177 /* Set up basic I/O (BAR mappings etc) */
2178 rc = efx_init_io(efx);
2179 if (rc)
2180 goto fail2;
2181
2182 /* No serialisation is required with the reset path because
2183 * we're in STATE_INIT. */
2184 for (i = 0; i < 5; i++) {
2185 rc = efx_pci_probe_main(efx);
8ceee660
BH
2186
2187 /* Serialise against efx_reset(). No more resets will be
2188 * scheduled since efx_stop_all() has been called, and we
2189 * have not and never have been registered with either
2190 * the rtnetlink or driverlink layers. */
1ab00629 2191 cancel_work_sync(&efx->reset_work);
8ceee660 2192
fa402b2e
SH
2193 if (rc == 0) {
2194 if (efx->reset_pending != RESET_TYPE_NONE) {
2195 /* If there was a scheduled reset during
2196 * probe, the NIC is probably hosed anyway */
2197 efx_pci_remove_main(efx);
2198 rc = -EIO;
2199 } else {
2200 break;
2201 }
2202 }
2203
8ceee660
BH
2204 /* Retry if a recoverably reset event has been scheduled */
2205 if ((efx->reset_pending != RESET_TYPE_INVISIBLE) &&
2206 (efx->reset_pending != RESET_TYPE_ALL))
2207 goto fail3;
2208
2209 efx->reset_pending = RESET_TYPE_NONE;
2210 }
2211
2212 if (rc) {
2213 EFX_ERR(efx, "Could not reset NIC\n");
2214 goto fail4;
2215 }
2216
2217 /* Switch to the running state before we expose the device to
2218 * the OS. This is to ensure that the initial gathering of
2219 * MAC stats succeeds. */
8ceee660 2220 efx->state = STATE_RUNNING;
7dde596e
BH
2221
2222 efx_mtd_probe(efx); /* allowed to fail */
8ceee660
BH
2223
2224 rc = efx_register_netdev(efx);
2225 if (rc)
2226 goto fail5;
2227
2228 EFX_LOG(efx, "initialisation successful\n");
8ceee660
BH
2229 return 0;
2230
2231 fail5:
2232 efx_pci_remove_main(efx);
2233 fail4:
2234 fail3:
2235 efx_fini_io(efx);
2236 fail2:
2237 efx_fini_struct(efx);
2238 fail1:
2239 EFX_LOG(efx, "initialisation failed. rc=%d\n", rc);
2240 free_netdev(net_dev);
2241 return rc;
2242}
2243
2244static struct pci_driver efx_pci_driver = {
2245 .name = EFX_DRIVER_NAME,
2246 .id_table = efx_pci_table,
2247 .probe = efx_pci_probe,
2248 .remove = efx_pci_remove,
2249};
2250
2251/**************************************************************************
2252 *
2253 * Kernel module interface
2254 *
2255 *************************************************************************/
2256
2257module_param(interrupt_mode, uint, 0444);
2258MODULE_PARM_DESC(interrupt_mode,
2259 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2260
2261static int __init efx_init_module(void)
2262{
2263 int rc;
2264
2265 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n");
2266
2267 rc = register_netdevice_notifier(&efx_netdev_notifier);
2268 if (rc)
2269 goto err_notifier;
2270
2271 refill_workqueue = create_workqueue("sfc_refill");
2272 if (!refill_workqueue) {
2273 rc = -ENOMEM;
2274 goto err_refill;
2275 }
1ab00629
SH
2276 reset_workqueue = create_singlethread_workqueue("sfc_reset");
2277 if (!reset_workqueue) {
2278 rc = -ENOMEM;
2279 goto err_reset;
2280 }
8ceee660
BH
2281
2282 rc = pci_register_driver(&efx_pci_driver);
2283 if (rc < 0)
2284 goto err_pci;
2285
2286 return 0;
2287
2288 err_pci:
1ab00629
SH
2289 destroy_workqueue(reset_workqueue);
2290 err_reset:
8ceee660
BH
2291 destroy_workqueue(refill_workqueue);
2292 err_refill:
2293 unregister_netdevice_notifier(&efx_netdev_notifier);
2294 err_notifier:
2295 return rc;
2296}
2297
2298static void __exit efx_exit_module(void)
2299{
2300 printk(KERN_INFO "Solarflare NET driver unloading\n");
2301
2302 pci_unregister_driver(&efx_pci_driver);
1ab00629 2303 destroy_workqueue(reset_workqueue);
8ceee660
BH
2304 destroy_workqueue(refill_workqueue);
2305 unregister_netdevice_notifier(&efx_netdev_notifier);
2306
2307}
2308
2309module_init(efx_init_module);
2310module_exit(efx_exit_module);
2311
2312MODULE_AUTHOR("Michael Brown <mbrown@fensystems.co.uk> and "
2313 "Solarflare Communications");
2314MODULE_DESCRIPTION("Solarflare Communications network driver");
2315MODULE_LICENSE("GPL");
2316MODULE_DEVICE_TABLE(pci, efx_pci_table);