[PATCH] mv643xx_eth: Rename mp->tx_ring_skbs to mp->tx_desc_count
[linux-2.6-block.git] / drivers / net / mv643xx_eth.c
CommitLineData
1da177e4
LT
1/*
2 * drivers/net/mv643xx_eth.c - Driver for MV643XX ethernet ports
3 * Copyright (C) 2002 Matthew Dharm <mdharm@momenco.com>
4 *
5 * Based on the 64360 driver from:
6 * Copyright (C) 2002 rabeeh@galileo.co.il
7 *
8 * Copyright (C) 2003 PMC-Sierra, Inc.,
3bb8a18a 9 * written by Manish Lachwani
1da177e4
LT
10 *
11 * Copyright (C) 2003 Ralf Baechle <ralf@linux-mips.org>
12 *
13 * Copyright (C) 2004-2005 MontaVista Software, Inc.
14 * Dale Farnsworth <dale@farnsworth.org>
15 *
16 * Copyright (C) 2004 Steven J. Hill <sjhill1@rockwellcollins.com>
17 * <sjhill@realitydiluted.com>
18 *
19 * This program is free software; you can redistribute it and/or
20 * modify it under the terms of the GNU General Public License
21 * as published by the Free Software Foundation; either version 2
22 * of the License, or (at your option) any later version.
23 *
24 * This program is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27 * GNU General Public License for more details.
28 *
29 * You should have received a copy of the GNU General Public License
30 * along with this program; if not, write to the Free Software
31 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
32 */
33#include <linux/init.h>
34#include <linux/dma-mapping.h>
35#include <linux/tcp.h>
36#include <linux/udp.h>
37#include <linux/etherdevice.h>
78a5e534
OH
38#include <linux/in.h>
39#include <linux/ip.h>
1da177e4
LT
40
41#include <linux/bitops.h>
42#include <linux/delay.h>
43#include <linux/ethtool.h>
d052d1be
RK
44#include <linux/platform_device.h>
45
1da177e4
LT
46#include <asm/io.h>
47#include <asm/types.h>
48#include <asm/pgtable.h>
49#include <asm/system.h>
50#include <asm/delay.h>
51#include "mv643xx_eth.h"
52
53/*
54 * The first part is the high level driver of the gigE ethernet ports.
55 */
56
57/* Constants */
58#define VLAN_HLEN 4
59#define FCS_LEN 4
b44cd572
DF
60#define DMA_ALIGN 8 /* hw requires 8-byte alignment */
61#define HW_IP_ALIGN 2 /* hw aligns IP header */
62#define WRAP HW_IP_ALIGN + ETH_HLEN + VLAN_HLEN + FCS_LEN
1da177e4
LT
63#define RX_SKB_SIZE ((dev->mtu + WRAP + 7) & ~0x7)
64
c2e5b352
DF
65#define INT_UNMASK_ALL 0x0007ffff
66#define INT_UNMASK_ALL_EXT 0x0011ffff
67#define INT_MASK_ALL 0x00000000
68#define INT_MASK_ALL_EXT 0x00000000
1da177e4
LT
69#define INT_CAUSE_CHECK_BITS INT_CAUSE_UNMASK_ALL
70#define INT_CAUSE_CHECK_BITS_EXT INT_CAUSE_UNMASK_ALL_EXT
1da177e4
LT
71
72#ifdef MV643XX_CHECKSUM_OFFLOAD_TX
73#define MAX_DESCS_PER_SKB (MAX_SKB_FRAGS + 1)
74#else
75#define MAX_DESCS_PER_SKB 1
76#endif
77
78#define PHY_WAIT_ITERATIONS 1000 /* 1000 iterations * 10uS = 10mS max */
79#define PHY_WAIT_MICRO_SECONDS 10
80
81/* Static function declarations */
82static int eth_port_link_is_up(unsigned int eth_port_num);
83static void eth_port_uc_addr_get(struct net_device *dev,
84 unsigned char *MacAddr);
16e03018 85static void eth_port_set_multicast_list(struct net_device *);
ab4384a6
DF
86static int mv643xx_eth_open(struct net_device *);
87static int mv643xx_eth_stop(struct net_device *);
1da177e4
LT
88static int mv643xx_eth_change_mtu(struct net_device *, int);
89static struct net_device_stats *mv643xx_eth_get_stats(struct net_device *);
90static void eth_port_init_mac_tables(unsigned int eth_port_num);
91#ifdef MV643XX_NAPI
92static int mv643xx_poll(struct net_device *dev, int *budget);
93#endif
94static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr);
95static int ethernet_phy_detect(unsigned int eth_port_num);
96static struct ethtool_ops mv643xx_ethtool_ops;
97
98static char mv643xx_driver_name[] = "mv643xx_eth";
99static char mv643xx_driver_version[] = "1.0";
100
101static void __iomem *mv643xx_eth_shared_base;
102
103/* used to protect MV643XX_ETH_SMI_REG, which is shared across ports */
a9f6a0dd 104static DEFINE_SPINLOCK(mv643xx_eth_phy_lock);
1da177e4
LT
105
106static inline u32 mv_read(int offset)
107{
dc074a8a 108 void __iomem *reg_base;
1da177e4
LT
109
110 reg_base = mv643xx_eth_shared_base - MV643XX_ETH_SHARED_REGS;
111
112 return readl(reg_base + offset);
113}
114
115static inline void mv_write(int offset, u32 data)
116{
dc074a8a 117 void __iomem *reg_base;
1da177e4
LT
118
119 reg_base = mv643xx_eth_shared_base - MV643XX_ETH_SHARED_REGS;
120 writel(data, reg_base + offset);
121}
122
123/*
124 * Changes MTU (maximum transfer unit) of the gigabit ethenret port
125 *
126 * Input : pointer to ethernet interface network device structure
127 * new mtu size
128 * Output : 0 upon success, -EINVAL upon failure
129 */
130static int mv643xx_eth_change_mtu(struct net_device *dev, int new_mtu)
131{
8f518703 132 if ((new_mtu > 9500) || (new_mtu < 64))
1da177e4 133 return -EINVAL;
1da177e4
LT
134
135 dev->mtu = new_mtu;
136 /*
137 * Stop then re-open the interface. This will allocate RX skb's with
138 * the new MTU.
139 * There is a possible danger that the open will not successed, due
140 * to memory is full, which might fail the open function.
141 */
142 if (netif_running(dev)) {
ab4384a6
DF
143 mv643xx_eth_stop(dev);
144 if (mv643xx_eth_open(dev))
1da177e4
LT
145 printk(KERN_ERR
146 "%s: Fatal error on opening device\n",
147 dev->name);
148 }
149
1da177e4
LT
150 return 0;
151}
152
153/*
154 * mv643xx_eth_rx_task
155 *
156 * Fills / refills RX queue on a certain gigabit ethernet port
157 *
158 * Input : pointer to ethernet interface network device structure
159 * Output : N/A
160 */
161static void mv643xx_eth_rx_task(void *data)
162{
163 struct net_device *dev = (struct net_device *)data;
164 struct mv643xx_private *mp = netdev_priv(dev);
165 struct pkt_info pkt_info;
166 struct sk_buff *skb;
b44cd572 167 int unaligned;
1da177e4
LT
168
169 if (test_and_set_bit(0, &mp->rx_task_busy))
170 panic("%s: Error in test_set_bit / clear_bit", dev->name);
171
f98e36f1 172 while (mp->rx_desc_count < (mp->rx_ring_size - 5)) {
b44cd572 173 skb = dev_alloc_skb(RX_SKB_SIZE + DMA_ALIGN);
1da177e4
LT
174 if (!skb)
175 break;
f98e36f1 176 mp->rx_desc_count++;
b44cd572
DF
177 unaligned = (u32)skb->data & (DMA_ALIGN - 1);
178 if (unaligned)
179 skb_reserve(skb, DMA_ALIGN - unaligned);
1da177e4
LT
180 pkt_info.cmd_sts = ETH_RX_ENABLE_INTERRUPT;
181 pkt_info.byte_cnt = RX_SKB_SIZE;
182 pkt_info.buf_ptr = dma_map_single(NULL, skb->data, RX_SKB_SIZE,
183 DMA_FROM_DEVICE);
184 pkt_info.return_info = skb;
185 if (eth_rx_return_buff(mp, &pkt_info) != ETH_OK) {
186 printk(KERN_ERR
187 "%s: Error allocating RX Ring\n", dev->name);
188 break;
189 }
b44cd572 190 skb_reserve(skb, HW_IP_ALIGN);
1da177e4
LT
191 }
192 clear_bit(0, &mp->rx_task_busy);
193 /*
194 * If RX ring is empty of SKB, set a timer to try allocating
195 * again in a later time .
196 */
f98e36f1 197 if ((mp->rx_desc_count == 0) && (mp->rx_timer_flag == 0)) {
1da177e4
LT
198 printk(KERN_INFO "%s: Rx ring is empty\n", dev->name);
199 /* After 100mSec */
200 mp->timeout.expires = jiffies + (HZ / 10);
201 add_timer(&mp->timeout);
202 mp->rx_timer_flag = 1;
203 }
204#ifdef MV643XX_RX_QUEUE_FILL_ON_TASK
205 else {
206 /* Return interrupts */
207 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(mp->port_num),
c2e5b352 208 INT_UNMASK_ALL);
1da177e4
LT
209 }
210#endif
211}
212
213/*
214 * mv643xx_eth_rx_task_timer_wrapper
215 *
216 * Timer routine to wake up RX queue filling task. This function is
217 * used only in case the RX queue is empty, and all alloc_skb has
218 * failed (due to out of memory event).
219 *
220 * Input : pointer to ethernet interface network device structure
221 * Output : N/A
222 */
223static void mv643xx_eth_rx_task_timer_wrapper(unsigned long data)
224{
225 struct net_device *dev = (struct net_device *)data;
226 struct mv643xx_private *mp = netdev_priv(dev);
227
228 mp->rx_timer_flag = 0;
229 mv643xx_eth_rx_task((void *)data);
230}
231
232/*
233 * mv643xx_eth_update_mac_address
234 *
235 * Update the MAC address of the port in the address table
236 *
237 * Input : pointer to ethernet interface network device structure
238 * Output : N/A
239 */
240static void mv643xx_eth_update_mac_address(struct net_device *dev)
241{
242 struct mv643xx_private *mp = netdev_priv(dev);
243 unsigned int port_num = mp->port_num;
244
245 eth_port_init_mac_tables(port_num);
ed9b5d45 246 eth_port_uc_addr_set(port_num, dev->dev_addr);
1da177e4
LT
247}
248
249/*
250 * mv643xx_eth_set_rx_mode
251 *
252 * Change from promiscuos to regular rx mode
253 *
254 * Input : pointer to ethernet interface network device structure
255 * Output : N/A
256 */
257static void mv643xx_eth_set_rx_mode(struct net_device *dev)
258{
259 struct mv643xx_private *mp = netdev_priv(dev);
1da177e4 260
1da177e4 261 if (dev->flags & IFF_PROMISC)
7342cd81 262 mp->port_config |= (u32) MV643XX_ETH_UNICAST_PROMISCUOUS_MODE;
1da177e4 263 else
7342cd81
DF
264 mp->port_config &= ~(u32) MV643XX_ETH_UNICAST_PROMISCUOUS_MODE;
265
266 mv_write(MV643XX_ETH_PORT_CONFIG_REG(mp->port_num), mp->port_config);
16e03018
DF
267
268 eth_port_set_multicast_list(dev);
1da177e4
LT
269}
270
271/*
272 * mv643xx_eth_set_mac_address
273 *
274 * Change the interface's mac address.
275 * No special hardware thing should be done because interface is always
276 * put in promiscuous mode.
277 *
278 * Input : pointer to ethernet interface network device structure and
279 * a pointer to the designated entry to be added to the cache.
280 * Output : zero upon success, negative upon failure
281 */
282static int mv643xx_eth_set_mac_address(struct net_device *dev, void *addr)
283{
284 int i;
285
286 for (i = 0; i < 6; i++)
287 /* +2 is for the offset of the HW addr type */
288 dev->dev_addr[i] = ((unsigned char *)addr)[i + 2];
289 mv643xx_eth_update_mac_address(dev);
290 return 0;
291}
292
293/*
294 * mv643xx_eth_tx_timeout
295 *
296 * Called upon a timeout on transmitting a packet
297 *
298 * Input : pointer to ethernet interface network device structure.
299 * Output : N/A
300 */
301static void mv643xx_eth_tx_timeout(struct net_device *dev)
302{
303 struct mv643xx_private *mp = netdev_priv(dev);
304
305 printk(KERN_INFO "%s: TX timeout ", dev->name);
306
307 /* Do the reset outside of interrupt context */
308 schedule_work(&mp->tx_timeout_task);
309}
310
311/*
312 * mv643xx_eth_tx_timeout_task
313 *
314 * Actual routine to reset the adapter when a timeout on Tx has occurred
315 */
316static void mv643xx_eth_tx_timeout_task(struct net_device *dev)
317{
318 struct mv643xx_private *mp = netdev_priv(dev);
319
320 netif_device_detach(dev);
321 eth_port_reset(mp->port_num);
ed9b5d45 322 eth_port_start(dev);
1da177e4
LT
323 netif_device_attach(dev);
324}
325
326/*
327 * mv643xx_eth_free_tx_queue
328 *
329 * Input : dev - a pointer to the required interface
330 *
331 * Output : 0 if was able to release skb , nonzero otherwise
332 */
333static int mv643xx_eth_free_tx_queue(struct net_device *dev,
334 unsigned int eth_int_cause_ext)
335{
336 struct mv643xx_private *mp = netdev_priv(dev);
337 struct net_device_stats *stats = &mp->stats;
338 struct pkt_info pkt_info;
339 int released = 1;
340
341 if (!(eth_int_cause_ext & (BIT0 | BIT8)))
342 return released;
343
1da177e4
LT
344 /* Check only queue 0 */
345 while (eth_tx_return_desc(mp, &pkt_info) == ETH_OK) {
346 if (pkt_info.cmd_sts & BIT0) {
347 printk("%s: Error in TX\n", dev->name);
348 stats->tx_errors++;
349 }
350
cb415d30
PG
351 if (pkt_info.cmd_sts & ETH_TX_FIRST_DESC)
352 dma_unmap_single(NULL, pkt_info.buf_ptr,
353 pkt_info.byte_cnt,
354 DMA_TO_DEVICE);
355 else
356 dma_unmap_page(NULL, pkt_info.buf_ptr,
357 pkt_info.byte_cnt,
358 DMA_TO_DEVICE);
1da177e4 359
cb415d30 360 if (pkt_info.return_info) {
1da177e4
LT
361 dev_kfree_skb_irq(pkt_info.return_info);
362 released = 0;
cb415d30 363 }
1da177e4
LT
364 }
365
1da177e4
LT
366 return released;
367}
368
369/*
370 * mv643xx_eth_receive
371 *
372 * This function is forward packets that are received from the port's
373 * queues toward kernel core or FastRoute them to another interface.
374 *
375 * Input : dev - a pointer to the required interface
376 * max - maximum number to receive (0 means unlimted)
377 *
378 * Output : number of served packets
379 */
380#ifdef MV643XX_NAPI
381static int mv643xx_eth_receive_queue(struct net_device *dev, int budget)
382#else
383static int mv643xx_eth_receive_queue(struct net_device *dev)
384#endif
385{
386 struct mv643xx_private *mp = netdev_priv(dev);
387 struct net_device_stats *stats = &mp->stats;
388 unsigned int received_packets = 0;
389 struct sk_buff *skb;
390 struct pkt_info pkt_info;
391
392#ifdef MV643XX_NAPI
b1dd9ca1 393 while (budget-- > 0 && eth_port_receive(mp, &pkt_info) == ETH_OK) {
1da177e4
LT
394#else
395 while (eth_port_receive(mp, &pkt_info) == ETH_OK) {
396#endif
f98e36f1 397 mp->rx_desc_count--;
1da177e4 398 received_packets++;
b1dd9ca1 399
1da177e4
LT
400 /* Update statistics. Note byte count includes 4 byte CRC count */
401 stats->rx_packets++;
402 stats->rx_bytes += pkt_info.byte_cnt;
403 skb = pkt_info.return_info;
404 /*
405 * In case received a packet without first / last bits on OR
406 * the error summary bit is on, the packets needs to be dropeed.
407 */
408 if (((pkt_info.cmd_sts
409 & (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC)) !=
410 (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC))
411 || (pkt_info.cmd_sts & ETH_ERROR_SUMMARY)) {
412 stats->rx_dropped++;
413 if ((pkt_info.cmd_sts & (ETH_RX_FIRST_DESC |
414 ETH_RX_LAST_DESC)) !=
415 (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC)) {
416 if (net_ratelimit())
417 printk(KERN_ERR
418 "%s: Received packet spread "
419 "on multiple descriptors\n",
420 dev->name);
421 }
422 if (pkt_info.cmd_sts & ETH_ERROR_SUMMARY)
423 stats->rx_errors++;
424
425 dev_kfree_skb_irq(skb);
426 } else {
427 /*
428 * The -4 is for the CRC in the trailer of the
429 * received packet
430 */
431 skb_put(skb, pkt_info.byte_cnt - 4);
432 skb->dev = dev;
433
434 if (pkt_info.cmd_sts & ETH_LAYER_4_CHECKSUM_OK) {
435 skb->ip_summed = CHECKSUM_UNNECESSARY;
436 skb->csum = htons(
437 (pkt_info.cmd_sts & 0x0007fff8) >> 3);
438 }
439 skb->protocol = eth_type_trans(skb, dev);
440#ifdef MV643XX_NAPI
441 netif_receive_skb(skb);
442#else
443 netif_rx(skb);
444#endif
445 }
12ad74f8 446 dev->last_rx = jiffies;
1da177e4
LT
447 }
448
449 return received_packets;
450}
451
452/*
453 * mv643xx_eth_int_handler
454 *
455 * Main interrupt handler for the gigbit ethernet ports
456 *
457 * Input : irq - irq number (not used)
458 * dev_id - a pointer to the required interface's data structure
459 * regs - not used
460 * Output : N/A
461 */
462
463static irqreturn_t mv643xx_eth_int_handler(int irq, void *dev_id,
b4de9051 464 struct pt_regs *regs)
1da177e4
LT
465{
466 struct net_device *dev = (struct net_device *)dev_id;
467 struct mv643xx_private *mp = netdev_priv(dev);
468 u32 eth_int_cause, eth_int_cause_ext = 0;
469 unsigned int port_num = mp->port_num;
470
471 /* Read interrupt cause registers */
472 eth_int_cause = mv_read(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num)) &
c2e5b352 473 INT_UNMASK_ALL;
1da177e4
LT
474
475 if (eth_int_cause & BIT1)
476 eth_int_cause_ext = mv_read(
477 MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num)) &
c2e5b352 478 INT_UNMASK_ALL_EXT;
1da177e4
LT
479
480#ifdef MV643XX_NAPI
481 if (!(eth_int_cause & 0x0007fffd)) {
482 /* Dont ack the Rx interrupt */
483#endif
484 /*
485 * Clear specific ethernet port intrerrupt registers by
486 * acknowleding relevant bits.
487 */
488 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num),
489 ~eth_int_cause);
490 if (eth_int_cause_ext != 0x0)
491 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG
492 (port_num), ~eth_int_cause_ext);
493
494 /* UDP change : We may need this */
495 if ((eth_int_cause_ext & 0x0000ffff) &&
496 (mv643xx_eth_free_tx_queue(dev, eth_int_cause_ext) == 0) &&
f98e36f1 497 (mp->tx_ring_size > mp->tx_desc_count + MAX_DESCS_PER_SKB))
1da177e4
LT
498 netif_wake_queue(dev);
499#ifdef MV643XX_NAPI
500 } else {
501 if (netif_rx_schedule_prep(dev)) {
502 /* Mask all the interrupts */
c2e5b352
DF
503 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num),
504 INT_MASK_ALL);
505 /* wait for previous write to complete */
506 mv_read(MV643XX_ETH_INTERRUPT_MASK_REG(port_num));
1da177e4
LT
507 __netif_rx_schedule(dev);
508 }
509#else
510 if (eth_int_cause & (BIT2 | BIT11))
511 mv643xx_eth_receive_queue(dev, 0);
512
513 /*
514 * After forwarded received packets to upper layer, add a task
515 * in an interrupts enabled context that refills the RX ring
516 * with skb's.
517 */
518#ifdef MV643XX_RX_QUEUE_FILL_ON_TASK
c2e5b352 519 /* Mask all interrupts on ethernet port */
1da177e4 520 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num),
c2e5b352 521 INT_MASK_ALL);
8f518703
DF
522 /* wait for previous write to take effect */
523 mv_read(MV643XX_ETH_INTERRUPT_MASK_REG(port_num));
524
1da177e4
LT
525 queue_task(&mp->rx_task, &tq_immediate);
526 mark_bh(IMMEDIATE_BH);
527#else
528 mp->rx_task.func(dev);
529#endif
530#endif
531 }
532 /* PHY status changed */
533 if (eth_int_cause_ext & (BIT16 | BIT20)) {
534 if (eth_port_link_is_up(port_num)) {
535 netif_carrier_on(dev);
536 netif_wake_queue(dev);
537 /* Start TX queue */
538 mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG
539 (port_num), 1);
540 } else {
541 netif_carrier_off(dev);
542 netif_stop_queue(dev);
543 }
544 }
545
546 /*
547 * If no real interrupt occured, exit.
548 * This can happen when using gigE interrupt coalescing mechanism.
549 */
550 if ((eth_int_cause == 0x0) && (eth_int_cause_ext == 0x0))
551 return IRQ_NONE;
552
553 return IRQ_HANDLED;
554}
555
556#ifdef MV643XX_COAL
557
558/*
559 * eth_port_set_rx_coal - Sets coalescing interrupt mechanism on RX path
560 *
561 * DESCRIPTION:
562 * This routine sets the RX coalescing interrupt mechanism parameter.
563 * This parameter is a timeout counter, that counts in 64 t_clk
564 * chunks ; that when timeout event occurs a maskable interrupt
565 * occurs.
566 * The parameter is calculated using the tClk of the MV-643xx chip
567 * , and the required delay of the interrupt in usec.
568 *
569 * INPUT:
570 * unsigned int eth_port_num Ethernet port number
571 * unsigned int t_clk t_clk of the MV-643xx chip in HZ units
572 * unsigned int delay Delay in usec
573 *
574 * OUTPUT:
575 * Interrupt coalescing mechanism value is set in MV-643xx chip.
576 *
577 * RETURN:
578 * The interrupt coalescing value set in the gigE port.
579 *
580 */
581static unsigned int eth_port_set_rx_coal(unsigned int eth_port_num,
582 unsigned int t_clk, unsigned int delay)
583{
584 unsigned int coal = ((t_clk / 1000000) * delay) / 64;
585
586 /* Set RX Coalescing mechanism */
587 mv_write(MV643XX_ETH_SDMA_CONFIG_REG(eth_port_num),
588 ((coal & 0x3fff) << 8) |
589 (mv_read(MV643XX_ETH_SDMA_CONFIG_REG(eth_port_num))
590 & 0xffc000ff));
591
592 return coal;
593}
594#endif
595
596/*
597 * eth_port_set_tx_coal - Sets coalescing interrupt mechanism on TX path
598 *
599 * DESCRIPTION:
600 * This routine sets the TX coalescing interrupt mechanism parameter.
601 * This parameter is a timeout counter, that counts in 64 t_clk
602 * chunks ; that when timeout event occurs a maskable interrupt
603 * occurs.
604 * The parameter is calculated using the t_cLK frequency of the
605 * MV-643xx chip and the required delay in the interrupt in uSec
606 *
607 * INPUT:
608 * unsigned int eth_port_num Ethernet port number
609 * unsigned int t_clk t_clk of the MV-643xx chip in HZ units
610 * unsigned int delay Delay in uSeconds
611 *
612 * OUTPUT:
613 * Interrupt coalescing mechanism value is set in MV-643xx chip.
614 *
615 * RETURN:
616 * The interrupt coalescing value set in the gigE port.
617 *
618 */
619static unsigned int eth_port_set_tx_coal(unsigned int eth_port_num,
620 unsigned int t_clk, unsigned int delay)
621{
622 unsigned int coal;
623 coal = ((t_clk / 1000000) * delay) / 64;
624 /* Set TX Coalescing mechanism */
625 mv_write(MV643XX_ETH_TX_FIFO_URGENT_THRESHOLD_REG(eth_port_num),
626 coal << 4);
627 return coal;
628}
629
1da177e4
LT
630/*
631 * ether_init_rx_desc_ring - Curve a Rx chain desc list and buffer in memory.
632 *
633 * DESCRIPTION:
634 * This function prepares a Rx chained list of descriptors and packet
635 * buffers in a form of a ring. The routine must be called after port
636 * initialization routine and before port start routine.
637 * The Ethernet SDMA engine uses CPU bus addresses to access the various
638 * devices in the system (i.e. DRAM). This function uses the ethernet
639 * struct 'virtual to physical' routine (set by the user) to set the ring
640 * with physical addresses.
641 *
642 * INPUT:
643 * struct mv643xx_private *mp Ethernet Port Control srtuct.
644 *
645 * OUTPUT:
646 * The routine updates the Ethernet port control struct with information
647 * regarding the Rx descriptors and buffers.
648 *
649 * RETURN:
650 * None.
651 */
652static void ether_init_rx_desc_ring(struct mv643xx_private *mp)
653{
654 volatile struct eth_rx_desc *p_rx_desc;
655 int rx_desc_num = mp->rx_ring_size;
656 int i;
657
658 /* initialize the next_desc_ptr links in the Rx descriptors ring */
659 p_rx_desc = (struct eth_rx_desc *)mp->p_rx_desc_area;
660 for (i = 0; i < rx_desc_num; i++) {
661 p_rx_desc[i].next_desc_ptr = mp->rx_desc_dma +
662 ((i + 1) % rx_desc_num) * sizeof(struct eth_rx_desc);
663 }
664
665 /* Save Rx desc pointer to driver struct. */
666 mp->rx_curr_desc_q = 0;
667 mp->rx_used_desc_q = 0;
668
669 mp->rx_desc_area_size = rx_desc_num * sizeof(struct eth_rx_desc);
670
671 /* Add the queue to the list of RX queues of this port */
672 mp->port_rx_queue_command |= 1;
673}
674
675/*
676 * ether_init_tx_desc_ring - Curve a Tx chain desc list and buffer in memory.
677 *
678 * DESCRIPTION:
679 * This function prepares a Tx chained list of descriptors and packet
680 * buffers in a form of a ring. The routine must be called after port
681 * initialization routine and before port start routine.
682 * The Ethernet SDMA engine uses CPU bus addresses to access the various
683 * devices in the system (i.e. DRAM). This function uses the ethernet
684 * struct 'virtual to physical' routine (set by the user) to set the ring
685 * with physical addresses.
686 *
687 * INPUT:
688 * struct mv643xx_private *mp Ethernet Port Control srtuct.
689 *
690 * OUTPUT:
691 * The routine updates the Ethernet port control struct with information
692 * regarding the Tx descriptors and buffers.
693 *
694 * RETURN:
695 * None.
696 */
697static void ether_init_tx_desc_ring(struct mv643xx_private *mp)
698{
699 int tx_desc_num = mp->tx_ring_size;
700 struct eth_tx_desc *p_tx_desc;
701 int i;
702
703 /* Initialize the next_desc_ptr links in the Tx descriptors ring */
704 p_tx_desc = (struct eth_tx_desc *)mp->p_tx_desc_area;
705 for (i = 0; i < tx_desc_num; i++) {
706 p_tx_desc[i].next_desc_ptr = mp->tx_desc_dma +
707 ((i + 1) % tx_desc_num) * sizeof(struct eth_tx_desc);
708 }
709
710 mp->tx_curr_desc_q = 0;
711 mp->tx_used_desc_q = 0;
712#ifdef MV643XX_CHECKSUM_OFFLOAD_TX
713 mp->tx_first_desc_q = 0;
714#endif
715
716 mp->tx_desc_area_size = tx_desc_num * sizeof(struct eth_tx_desc);
717
718 /* Add the queue to the list of Tx queues of this port */
719 mp->port_tx_queue_command |= 1;
720}
721
ab4384a6
DF
722/*
723 * mv643xx_eth_open
724 *
725 * This function is called when openning the network device. The function
726 * should initialize all the hardware, initialize cyclic Rx/Tx
727 * descriptors chain and buffers and allocate an IRQ to the network
728 * device.
729 *
730 * Input : a pointer to the network device structure
731 *
732 * Output : zero of success , nonzero if fails.
733 */
734
735static int mv643xx_eth_open(struct net_device *dev)
1da177e4
LT
736{
737 struct mv643xx_private *mp = netdev_priv(dev);
738 unsigned int port_num = mp->port_num;
739 unsigned int size;
ab4384a6
DF
740 int err;
741
742 err = request_irq(dev->irq, mv643xx_eth_int_handler,
743 SA_SHIRQ | SA_SAMPLE_RANDOM, dev->name, dev);
744 if (err) {
745 printk(KERN_ERR "Can not assign IRQ number to MV643XX_eth%d\n",
746 port_num);
747 return -EAGAIN;
748 }
1da177e4
LT
749
750 /* Stop RX Queues */
751 mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num), 0x0000ff00);
752
1da177e4
LT
753 eth_port_init(mp);
754
755 INIT_WORK(&mp->rx_task, (void (*)(void *))mv643xx_eth_rx_task, dev);
756
757 memset(&mp->timeout, 0, sizeof(struct timer_list));
758 mp->timeout.function = mv643xx_eth_rx_task_timer_wrapper;
759 mp->timeout.data = (unsigned long)dev;
760
761 mp->rx_task_busy = 0;
762 mp->rx_timer_flag = 0;
763
764 /* Allocate RX and TX skb rings */
765 mp->rx_skb = kmalloc(sizeof(*mp->rx_skb) * mp->rx_ring_size,
766 GFP_KERNEL);
767 if (!mp->rx_skb) {
768 printk(KERN_ERR "%s: Cannot allocate Rx skb ring\n", dev->name);
ab4384a6
DF
769 err = -ENOMEM;
770 goto out_free_irq;
1da177e4
LT
771 }
772 mp->tx_skb = kmalloc(sizeof(*mp->tx_skb) * mp->tx_ring_size,
773 GFP_KERNEL);
774 if (!mp->tx_skb) {
775 printk(KERN_ERR "%s: Cannot allocate Tx skb ring\n", dev->name);
ab4384a6
DF
776 err = -ENOMEM;
777 goto out_free_rx_skb;
1da177e4
LT
778 }
779
780 /* Allocate TX ring */
f98e36f1 781 mp->tx_desc_count = 0;
1da177e4
LT
782 size = mp->tx_ring_size * sizeof(struct eth_tx_desc);
783 mp->tx_desc_area_size = size;
784
785 if (mp->tx_sram_size) {
786 mp->p_tx_desc_area = ioremap(mp->tx_sram_addr,
787 mp->tx_sram_size);
788 mp->tx_desc_dma = mp->tx_sram_addr;
789 } else
790 mp->p_tx_desc_area = dma_alloc_coherent(NULL, size,
791 &mp->tx_desc_dma,
792 GFP_KERNEL);
793
794 if (!mp->p_tx_desc_area) {
795 printk(KERN_ERR "%s: Cannot allocate Tx Ring (size %d bytes)\n",
796 dev->name, size);
ab4384a6
DF
797 err = -ENOMEM;
798 goto out_free_tx_skb;
1da177e4
LT
799 }
800 BUG_ON((u32) mp->p_tx_desc_area & 0xf); /* check 16-byte alignment */
801 memset((void *)mp->p_tx_desc_area, 0, mp->tx_desc_area_size);
802
803 ether_init_tx_desc_ring(mp);
804
805 /* Allocate RX ring */
f98e36f1 806 mp->rx_desc_count = 0;
1da177e4
LT
807 size = mp->rx_ring_size * sizeof(struct eth_rx_desc);
808 mp->rx_desc_area_size = size;
809
810 if (mp->rx_sram_size) {
811 mp->p_rx_desc_area = ioremap(mp->rx_sram_addr,
812 mp->rx_sram_size);
813 mp->rx_desc_dma = mp->rx_sram_addr;
814 } else
815 mp->p_rx_desc_area = dma_alloc_coherent(NULL, size,
816 &mp->rx_desc_dma,
817 GFP_KERNEL);
818
819 if (!mp->p_rx_desc_area) {
820 printk(KERN_ERR "%s: Cannot allocate Rx ring (size %d bytes)\n",
821 dev->name, size);
822 printk(KERN_ERR "%s: Freeing previously allocated TX queues...",
823 dev->name);
824 if (mp->rx_sram_size)
dd09b1de 825 iounmap(mp->p_tx_desc_area);
1da177e4
LT
826 else
827 dma_free_coherent(NULL, mp->tx_desc_area_size,
828 mp->p_tx_desc_area, mp->tx_desc_dma);
ab4384a6
DF
829 err = -ENOMEM;
830 goto out_free_tx_skb;
1da177e4
LT
831 }
832 memset((void *)mp->p_rx_desc_area, 0, size);
833
834 ether_init_rx_desc_ring(mp);
835
836 mv643xx_eth_rx_task(dev); /* Fill RX ring with skb's */
837
ed9b5d45 838 eth_port_start(dev);
1da177e4
LT
839
840 /* Interrupt Coalescing */
841
842#ifdef MV643XX_COAL
843 mp->rx_int_coal =
844 eth_port_set_rx_coal(port_num, 133000000, MV643XX_RX_COAL);
845#endif
846
847 mp->tx_int_coal =
848 eth_port_set_tx_coal(port_num, 133000000, MV643XX_TX_COAL);
849
8f518703
DF
850 /* Clear any pending ethernet port interrupts */
851 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num), 0);
852 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num), 0);
853
854 /* Unmask phy and link status changes interrupts */
855 mv_write(MV643XX_ETH_INTERRUPT_EXTEND_MASK_REG(port_num),
c2e5b352 856 INT_UNMASK_ALL_EXT);
1da177e4 857
8f518703 858 /* Unmask RX buffer and TX end interrupt */
c2e5b352 859 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), INT_UNMASK_ALL);
1da177e4 860 return 0;
ab4384a6
DF
861
862out_free_tx_skb:
863 kfree(mp->tx_skb);
864out_free_rx_skb:
865 kfree(mp->rx_skb);
866out_free_irq:
867 free_irq(dev->irq, dev);
868
869 return err;
1da177e4
LT
870}
871
872static void mv643xx_eth_free_tx_rings(struct net_device *dev)
873{
874 struct mv643xx_private *mp = netdev_priv(dev);
875 unsigned int port_num = mp->port_num;
876 unsigned int curr;
4476e0e4 877 struct sk_buff *skb;
1da177e4
LT
878
879 /* Stop Tx Queues */
880 mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num), 0x0000ff00);
881
882 /* Free outstanding skb's on TX rings */
f98e36f1 883 for (curr = 0; mp->tx_desc_count && curr < mp->tx_ring_size; curr++) {
4476e0e4
DF
884 skb = mp->tx_skb[curr];
885 if (skb) {
f98e36f1 886 mp->tx_desc_count -= skb_shinfo(skb)->nr_frags;
4476e0e4 887 dev_kfree_skb(skb);
f98e36f1 888 mp->tx_desc_count--;
1da177e4
LT
889 }
890 }
f98e36f1 891 if (mp->tx_desc_count)
1da177e4 892 printk("%s: Error on Tx descriptor free - could not free %d"
f98e36f1 893 " descriptors\n", dev->name, mp->tx_desc_count);
1da177e4
LT
894
895 /* Free TX ring */
896 if (mp->tx_sram_size)
897 iounmap(mp->p_tx_desc_area);
898 else
899 dma_free_coherent(NULL, mp->tx_desc_area_size,
900 mp->p_tx_desc_area, mp->tx_desc_dma);
901}
902
903static void mv643xx_eth_free_rx_rings(struct net_device *dev)
904{
905 struct mv643xx_private *mp = netdev_priv(dev);
906 unsigned int port_num = mp->port_num;
907 int curr;
908
909 /* Stop RX Queues */
910 mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num), 0x0000ff00);
911
912 /* Free preallocated skb's on RX rings */
f98e36f1 913 for (curr = 0; mp->rx_desc_count && curr < mp->rx_ring_size; curr++) {
1da177e4
LT
914 if (mp->rx_skb[curr]) {
915 dev_kfree_skb(mp->rx_skb[curr]);
f98e36f1 916 mp->rx_desc_count--;
1da177e4
LT
917 }
918 }
919
f98e36f1 920 if (mp->rx_desc_count)
1da177e4
LT
921 printk(KERN_ERR
922 "%s: Error in freeing Rx Ring. %d skb's still"
923 " stuck in RX Ring - ignoring them\n", dev->name,
f98e36f1 924 mp->rx_desc_count);
1da177e4
LT
925 /* Free RX ring */
926 if (mp->rx_sram_size)
927 iounmap(mp->p_rx_desc_area);
928 else
929 dma_free_coherent(NULL, mp->rx_desc_area_size,
930 mp->p_rx_desc_area, mp->rx_desc_dma);
931}
932
933/*
934 * mv643xx_eth_stop
935 *
936 * This function is used when closing the network device.
937 * It updates the hardware,
938 * release all memory that holds buffers and descriptors and release the IRQ.
939 * Input : a pointer to the device structure
940 * Output : zero if success , nonzero if fails
941 */
942
ab4384a6 943static int mv643xx_eth_stop(struct net_device *dev)
1da177e4
LT
944{
945 struct mv643xx_private *mp = netdev_priv(dev);
946 unsigned int port_num = mp->port_num;
947
c2e5b352
DF
948 /* Mask all interrupts on ethernet port */
949 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), INT_MASK_ALL);
950 /* wait for previous write to complete */
8f518703
DF
951 mv_read(MV643XX_ETH_INTERRUPT_MASK_REG(port_num));
952
953#ifdef MV643XX_NAPI
954 netif_poll_disable(dev);
955#endif
1da177e4
LT
956 netif_carrier_off(dev);
957 netif_stop_queue(dev);
958
1da177e4
LT
959 eth_port_reset(mp->port_num);
960
8f518703
DF
961 mv643xx_eth_free_tx_rings(dev);
962 mv643xx_eth_free_rx_rings(dev);
1da177e4 963
8f518703
DF
964#ifdef MV643XX_NAPI
965 netif_poll_enable(dev);
966#endif
1da177e4 967
1da177e4 968 free_irq(dev->irq, dev);
1da177e4
LT
969
970 return 0;
971}
972
973#ifdef MV643XX_NAPI
974static void mv643xx_tx(struct net_device *dev)
975{
976 struct mv643xx_private *mp = netdev_priv(dev);
977 struct pkt_info pkt_info;
978
979 while (eth_tx_return_desc(mp, &pkt_info) == ETH_OK) {
cb415d30
PG
980 if (pkt_info.cmd_sts & ETH_TX_FIRST_DESC)
981 dma_unmap_single(NULL, pkt_info.buf_ptr,
982 pkt_info.byte_cnt,
983 DMA_TO_DEVICE);
984 else
985 dma_unmap_page(NULL, pkt_info.buf_ptr,
986 pkt_info.byte_cnt,
987 DMA_TO_DEVICE);
1da177e4 988
cb415d30 989 if (pkt_info.return_info)
1da177e4 990 dev_kfree_skb_irq(pkt_info.return_info);
1da177e4
LT
991 }
992
993 if (netif_queue_stopped(dev) &&
f98e36f1
DF
994 mp->tx_ring_size >
995 mp->tx_desc_count + MAX_DESCS_PER_SKB)
1da177e4
LT
996 netif_wake_queue(dev);
997}
998
999/*
1000 * mv643xx_poll
1001 *
1002 * This function is used in case of NAPI
1003 */
1004static int mv643xx_poll(struct net_device *dev, int *budget)
1005{
1006 struct mv643xx_private *mp = netdev_priv(dev);
1007 int done = 1, orig_budget, work_done;
1008 unsigned int port_num = mp->port_num;
1da177e4
LT
1009
1010#ifdef MV643XX_TX_FAST_REFILL
1011 if (++mp->tx_clean_threshold > 5) {
1da177e4
LT
1012 mv643xx_tx(dev);
1013 mp->tx_clean_threshold = 0;
1da177e4
LT
1014 }
1015#endif
1016
1017 if ((mv_read(MV643XX_ETH_RX_CURRENT_QUEUE_DESC_PTR_0(port_num)))
1018 != (u32) mp->rx_used_desc_q) {
1019 orig_budget = *budget;
1020 if (orig_budget > dev->quota)
1021 orig_budget = dev->quota;
1022 work_done = mv643xx_eth_receive_queue(dev, orig_budget);
1023 mp->rx_task.func(dev);
1024 *budget -= work_done;
1025 dev->quota -= work_done;
1026 if (work_done >= orig_budget)
1027 done = 0;
1028 }
1029
1030 if (done) {
8f518703 1031 netif_rx_complete(dev);
1da177e4
LT
1032 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num), 0);
1033 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num), 0);
1034 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num),
c2e5b352 1035 INT_UNMASK_ALL);
1da177e4
LT
1036 }
1037
1038 return done ? 0 : 1;
1039}
1040#endif
1041
f7ea3337
PJ
1042/* Hardware can't handle unaligned fragments smaller than 9 bytes.
1043 * This helper function detects that case.
1044 */
1045
1046static inline unsigned int has_tiny_unaligned_frags(struct sk_buff *skb)
1047{
b4de9051
DF
1048 unsigned int frag;
1049 skb_frag_t *fragp;
f7ea3337 1050
b4de9051
DF
1051 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1052 fragp = &skb_shinfo(skb)->frags[frag];
1053 if (fragp->size <= 8 && fragp->page_offset & 0x7)
1054 return 1;
1055 }
1056 return 0;
f7ea3337
PJ
1057}
1058
1059
1da177e4
LT
1060/*
1061 * mv643xx_eth_start_xmit
1062 *
1063 * This function is queues a packet in the Tx descriptor for
1064 * required port.
1065 *
1066 * Input : skb - a pointer to socket buffer
1067 * dev - a pointer to the required port
1068 *
1069 * Output : zero upon success
1070 */
1071static int mv643xx_eth_start_xmit(struct sk_buff *skb, struct net_device *dev)
1072{
1073 struct mv643xx_private *mp = netdev_priv(dev);
1074 struct net_device_stats *stats = &mp->stats;
1075 ETH_FUNC_RET_STATUS status;
1076 unsigned long flags;
1077 struct pkt_info pkt_info;
1078
1079 if (netif_queue_stopped(dev)) {
1080 printk(KERN_ERR
1081 "%s: Tried sending packet when interface is stopped\n",
1082 dev->name);
1083 return 1;
1084 }
1085
1086 /* This is a hard error, log it. */
f98e36f1 1087 if ((mp->tx_ring_size - mp->tx_desc_count) <=
1da177e4
LT
1088 (skb_shinfo(skb)->nr_frags + 1)) {
1089 netif_stop_queue(dev);
1090 printk(KERN_ERR
1091 "%s: Bug in mv643xx_eth - Trying to transmit when"
1092 " queue full !\n", dev->name);
1093 return 1;
1094 }
1095
1096 /* Paranoid check - this shouldn't happen */
1097 if (skb == NULL) {
1098 stats->tx_dropped++;
1099 printk(KERN_ERR "mv64320_eth paranoid check failed\n");
1100 return 1;
1101 }
1102
f7ea3337
PJ
1103#ifdef MV643XX_CHECKSUM_OFFLOAD_TX
1104 if (has_tiny_unaligned_frags(skb)) {
1105 if ((skb_linearize(skb, GFP_ATOMIC) != 0)) {
1106 stats->tx_dropped++;
1107 printk(KERN_DEBUG "%s: failed to linearize tiny "
1108 "unaligned fragment\n", dev->name);
1109 return 1;
1110 }
1111 }
1112
1da177e4
LT
1113 spin_lock_irqsave(&mp->lock, flags);
1114
1da177e4 1115 if (!skb_shinfo(skb)->nr_frags) {
1da177e4 1116 if (skb->ip_summed != CHECKSUM_HW) {
26006360 1117 /* Errata BTS #50, IHL must be 5 if no HW checksum */
1da177e4 1118 pkt_info.cmd_sts = ETH_TX_ENABLE_INTERRUPT |
26006360
DF
1119 ETH_TX_FIRST_DESC |
1120 ETH_TX_LAST_DESC |
1121 5 << ETH_TX_IHL_SHIFT;
1da177e4
LT
1122 pkt_info.l4i_chk = 0;
1123 } else {
1da177e4 1124 pkt_info.cmd_sts = ETH_TX_ENABLE_INTERRUPT |
26006360
DF
1125 ETH_TX_FIRST_DESC |
1126 ETH_TX_LAST_DESC |
1127 ETH_GEN_TCP_UDP_CHECKSUM |
1128 ETH_GEN_IP_V_4_CHECKSUM |
1129 skb->nh.iph->ihl << ETH_TX_IHL_SHIFT;
1da177e4 1130 /* CPU already calculated pseudo header checksum. */
63890576
WJ
1131 if ((skb->protocol == ETH_P_IP) &&
1132 (skb->nh.iph->protocol == IPPROTO_UDP) ) {
1da177e4
LT
1133 pkt_info.cmd_sts |= ETH_UDP_FRAME;
1134 pkt_info.l4i_chk = skb->h.uh->check;
63890576
WJ
1135 } else if ((skb->protocol == ETH_P_IP) &&
1136 (skb->nh.iph->protocol == IPPROTO_TCP))
1da177e4
LT
1137 pkt_info.l4i_chk = skb->h.th->check;
1138 else {
1139 printk(KERN_ERR
63890576 1140 "%s: chksum proto != IPv4 TCP or UDP\n",
1da177e4
LT
1141 dev->name);
1142 spin_unlock_irqrestore(&mp->lock, flags);
1143 return 1;
1144 }
1145 }
1146 pkt_info.byte_cnt = skb->len;
1147 pkt_info.buf_ptr = dma_map_single(NULL, skb->data, skb->len,
1148 DMA_TO_DEVICE);
1149 pkt_info.return_info = skb;
1da177e4
LT
1150 status = eth_port_send(mp, &pkt_info);
1151 if ((status == ETH_ERROR) || (status == ETH_QUEUE_FULL))
1152 printk(KERN_ERR "%s: Error on transmitting packet\n",
1153 dev->name);
1154 stats->tx_bytes += pkt_info.byte_cnt;
1155 } else {
1156 unsigned int frag;
1da177e4 1157
1da177e4
LT
1158 /* first frag which is skb header */
1159 pkt_info.byte_cnt = skb_headlen(skb);
1160 pkt_info.buf_ptr = dma_map_single(NULL, skb->data,
1161 skb_headlen(skb),
1162 DMA_TO_DEVICE);
1163 pkt_info.l4i_chk = 0;
1164 pkt_info.return_info = 0;
1da177e4 1165
26006360
DF
1166 if (skb->ip_summed != CHECKSUM_HW)
1167 /* Errata BTS #50, IHL must be 5 if no HW checksum */
1168 pkt_info.cmd_sts = ETH_TX_FIRST_DESC |
1169 5 << ETH_TX_IHL_SHIFT;
1170 else {
1171 pkt_info.cmd_sts = ETH_TX_FIRST_DESC |
1172 ETH_GEN_TCP_UDP_CHECKSUM |
1173 ETH_GEN_IP_V_4_CHECKSUM |
1174 skb->nh.iph->ihl << ETH_TX_IHL_SHIFT;
1da177e4 1175 /* CPU already calculated pseudo header checksum. */
63890576
WJ
1176 if ((skb->protocol == ETH_P_IP) &&
1177 (skb->nh.iph->protocol == IPPROTO_UDP)) {
1da177e4
LT
1178 pkt_info.cmd_sts |= ETH_UDP_FRAME;
1179 pkt_info.l4i_chk = skb->h.uh->check;
63890576
WJ
1180 } else if ((skb->protocol == ETH_P_IP) &&
1181 (skb->nh.iph->protocol == IPPROTO_TCP))
1da177e4
LT
1182 pkt_info.l4i_chk = skb->h.th->check;
1183 else {
1184 printk(KERN_ERR
63890576 1185 "%s: chksum proto != IPv4 TCP or UDP\n",
1da177e4
LT
1186 dev->name);
1187 spin_unlock_irqrestore(&mp->lock, flags);
1188 return 1;
1189 }
1190 }
1191
1192 status = eth_port_send(mp, &pkt_info);
1193 if (status != ETH_OK) {
1194 if ((status == ETH_ERROR))
1195 printk(KERN_ERR
1196 "%s: Error on transmitting packet\n",
1197 dev->name);
1198 if (status == ETH_QUEUE_FULL)
1199 printk("Error on Queue Full \n");
1200 if (status == ETH_QUEUE_LAST_RESOURCE)
1201 printk("Tx resource error \n");
1202 }
1203 stats->tx_bytes += pkt_info.byte_cnt;
1204
1205 /* Check for the remaining frags */
1206 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1207 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
1208 pkt_info.l4i_chk = 0x0000;
1209 pkt_info.cmd_sts = 0x00000000;
1210
1211 /* Last Frag enables interrupt and frees the skb */
1212 if (frag == (skb_shinfo(skb)->nr_frags - 1)) {
1213 pkt_info.cmd_sts |= ETH_TX_ENABLE_INTERRUPT |
1214 ETH_TX_LAST_DESC;
1215 pkt_info.return_info = skb;
1da177e4
LT
1216 } else {
1217 pkt_info.return_info = 0;
1218 }
1219 pkt_info.l4i_chk = 0;
1220 pkt_info.byte_cnt = this_frag->size;
1221
1222 pkt_info.buf_ptr = dma_map_page(NULL, this_frag->page,
1223 this_frag->page_offset,
1224 this_frag->size,
1225 DMA_TO_DEVICE);
1226
1227 status = eth_port_send(mp, &pkt_info);
1228
1229 if (status != ETH_OK) {
1230 if ((status == ETH_ERROR))
1231 printk(KERN_ERR "%s: Error on "
1232 "transmitting packet\n",
1233 dev->name);
1234
1235 if (status == ETH_QUEUE_LAST_RESOURCE)
1236 printk("Tx resource error \n");
1237
1238 if (status == ETH_QUEUE_FULL)
1239 printk("Queue is full \n");
1240 }
1241 stats->tx_bytes += pkt_info.byte_cnt;
1242 }
1243 }
1244#else
f7ea3337
PJ
1245 spin_lock_irqsave(&mp->lock, flags);
1246
1da177e4
LT
1247 pkt_info.cmd_sts = ETH_TX_ENABLE_INTERRUPT | ETH_TX_FIRST_DESC |
1248 ETH_TX_LAST_DESC;
1249 pkt_info.l4i_chk = 0;
1250 pkt_info.byte_cnt = skb->len;
1251 pkt_info.buf_ptr = dma_map_single(NULL, skb->data, skb->len,
1252 DMA_TO_DEVICE);
1253 pkt_info.return_info = skb;
1da177e4
LT
1254 status = eth_port_send(mp, &pkt_info);
1255 if ((status == ETH_ERROR) || (status == ETH_QUEUE_FULL))
1256 printk(KERN_ERR "%s: Error on transmitting packet\n",
1257 dev->name);
1258 stats->tx_bytes += pkt_info.byte_cnt;
1259#endif
1260
1261 /* Check if TX queue can handle another skb. If not, then
1262 * signal higher layers to stop requesting TX
1263 */
f98e36f1 1264 if (mp->tx_ring_size <= (mp->tx_desc_count + MAX_DESCS_PER_SKB))
1da177e4
LT
1265 /*
1266 * Stop getting skb's from upper layers.
1267 * Getting skb's from upper layers will be enabled again after
1268 * packets are released.
1269 */
1270 netif_stop_queue(dev);
1271
1272 /* Update statistics and start of transmittion time */
1273 stats->tx_packets++;
1274 dev->trans_start = jiffies;
1275
1276 spin_unlock_irqrestore(&mp->lock, flags);
1277
1278 return 0; /* success */
1279}
1280
1281/*
1282 * mv643xx_eth_get_stats
1283 *
1284 * Returns a pointer to the interface statistics.
1285 *
1286 * Input : dev - a pointer to the required interface
1287 *
1288 * Output : a pointer to the interface's statistics
1289 */
1290
1291static struct net_device_stats *mv643xx_eth_get_stats(struct net_device *dev)
1292{
1293 struct mv643xx_private *mp = netdev_priv(dev);
1294
1295 return &mp->stats;
1296}
1297
63c9e549 1298#ifdef CONFIG_NET_POLL_CONTROLLER
63c9e549
DF
1299static void mv643xx_netpoll(struct net_device *netdev)
1300{
1301 struct mv643xx_private *mp = netdev_priv(netdev);
c2e5b352
DF
1302 int port_num = mp->port_num;
1303
1304 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), INT_MASK_ALL);
1305 /* wait for previous write to complete */
1306 mv_read(MV643XX_ETH_INTERRUPT_MASK_REG(port_num));
63c9e549 1307
63c9e549 1308 mv643xx_eth_int_handler(netdev->irq, netdev, NULL);
c2e5b352
DF
1309
1310 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), INT_UNMASK_ALL);
63c9e549
DF
1311}
1312#endif
1313
1da177e4
LT
1314/*/
1315 * mv643xx_eth_probe
1316 *
1317 * First function called after registering the network device.
1318 * It's purpose is to initialize the device as an ethernet device,
1319 * fill the ethernet device structure with pointers * to functions,
1320 * and set the MAC address of the interface
1321 *
1322 * Input : struct device *
1323 * Output : -ENOMEM if failed , 0 if success
1324 */
3ae5eaec 1325static int mv643xx_eth_probe(struct platform_device *pdev)
1da177e4 1326{
1da177e4
LT
1327 struct mv643xx_eth_platform_data *pd;
1328 int port_num = pdev->id;
1329 struct mv643xx_private *mp;
1330 struct net_device *dev;
1331 u8 *p;
1332 struct resource *res;
1333 int err;
1334
1335 dev = alloc_etherdev(sizeof(struct mv643xx_private));
1336 if (!dev)
1337 return -ENOMEM;
1338
3ae5eaec 1339 platform_set_drvdata(pdev, dev);
1da177e4
LT
1340
1341 mp = netdev_priv(dev);
1342
1343 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1344 BUG_ON(!res);
1345 dev->irq = res->start;
1346
1347 mp->port_num = port_num;
1348
1349 dev->open = mv643xx_eth_open;
1350 dev->stop = mv643xx_eth_stop;
1351 dev->hard_start_xmit = mv643xx_eth_start_xmit;
1352 dev->get_stats = mv643xx_eth_get_stats;
1353 dev->set_mac_address = mv643xx_eth_set_mac_address;
1354 dev->set_multicast_list = mv643xx_eth_set_rx_mode;
1355
1356 /* No need to Tx Timeout */
1357 dev->tx_timeout = mv643xx_eth_tx_timeout;
1358#ifdef MV643XX_NAPI
1359 dev->poll = mv643xx_poll;
1360 dev->weight = 64;
1361#endif
1362
63c9e549
DF
1363#ifdef CONFIG_NET_POLL_CONTROLLER
1364 dev->poll_controller = mv643xx_netpoll;
1365#endif
1366
1da177e4
LT
1367 dev->watchdog_timeo = 2 * HZ;
1368 dev->tx_queue_len = mp->tx_ring_size;
1369 dev->base_addr = 0;
1370 dev->change_mtu = mv643xx_eth_change_mtu;
1371 SET_ETHTOOL_OPS(dev, &mv643xx_ethtool_ops);
1372
1373#ifdef MV643XX_CHECKSUM_OFFLOAD_TX
1374#ifdef MAX_SKB_FRAGS
1375 /*
1376 * Zero copy can only work if we use Discovery II memory. Else, we will
1377 * have to map the buffers to ISA memory which is only 16 MB
1378 */
63890576 1379 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM;
1da177e4
LT
1380#endif
1381#endif
1382
1383 /* Configure the timeout task */
1384 INIT_WORK(&mp->tx_timeout_task,
1385 (void (*)(void *))mv643xx_eth_tx_timeout_task, dev);
1386
1387 spin_lock_init(&mp->lock);
1388
1389 /* set default config values */
1390 eth_port_uc_addr_get(dev, dev->dev_addr);
1391 mp->port_config = MV643XX_ETH_PORT_CONFIG_DEFAULT_VALUE;
1392 mp->port_config_extend = MV643XX_ETH_PORT_CONFIG_EXTEND_DEFAULT_VALUE;
1393 mp->port_sdma_config = MV643XX_ETH_PORT_SDMA_CONFIG_DEFAULT_VALUE;
1394 mp->port_serial_control = MV643XX_ETH_PORT_SERIAL_CONTROL_DEFAULT_VALUE;
1395 mp->rx_ring_size = MV643XX_ETH_PORT_DEFAULT_RECEIVE_QUEUE_SIZE;
1396 mp->tx_ring_size = MV643XX_ETH_PORT_DEFAULT_TRANSMIT_QUEUE_SIZE;
1397
1398 pd = pdev->dev.platform_data;
1399 if (pd) {
1400 if (pd->mac_addr != NULL)
1401 memcpy(dev->dev_addr, pd->mac_addr, 6);
1402
1403 if (pd->phy_addr || pd->force_phy_addr)
1404 ethernet_phy_set(port_num, pd->phy_addr);
1405
1406 if (pd->port_config || pd->force_port_config)
1407 mp->port_config = pd->port_config;
1408
1409 if (pd->port_config_extend || pd->force_port_config_extend)
1410 mp->port_config_extend = pd->port_config_extend;
1411
1412 if (pd->port_sdma_config || pd->force_port_sdma_config)
1413 mp->port_sdma_config = pd->port_sdma_config;
1414
1415 if (pd->port_serial_control || pd->force_port_serial_control)
1416 mp->port_serial_control = pd->port_serial_control;
1417
1418 if (pd->rx_queue_size)
1419 mp->rx_ring_size = pd->rx_queue_size;
1420
1421 if (pd->tx_queue_size)
1422 mp->tx_ring_size = pd->tx_queue_size;
1423
1424 if (pd->tx_sram_size) {
1425 mp->tx_sram_size = pd->tx_sram_size;
1426 mp->tx_sram_addr = pd->tx_sram_addr;
1427 }
1428
1429 if (pd->rx_sram_size) {
1430 mp->rx_sram_size = pd->rx_sram_size;
1431 mp->rx_sram_addr = pd->rx_sram_addr;
1432 }
1433 }
1434
1435 err = ethernet_phy_detect(port_num);
1436 if (err) {
1437 pr_debug("MV643xx ethernet port %d: "
1438 "No PHY detected at addr %d\n",
1439 port_num, ethernet_phy_get(port_num));
1440 return err;
1441 }
1442
1443 err = register_netdev(dev);
1444 if (err)
1445 goto out;
1446
1447 p = dev->dev_addr;
1448 printk(KERN_NOTICE
1449 "%s: port %d with MAC address %02x:%02x:%02x:%02x:%02x:%02x\n",
1450 dev->name, port_num, p[0], p[1], p[2], p[3], p[4], p[5]);
1451
1452 if (dev->features & NETIF_F_SG)
1453 printk(KERN_NOTICE "%s: Scatter Gather Enabled\n", dev->name);
1454
1455 if (dev->features & NETIF_F_IP_CSUM)
1456 printk(KERN_NOTICE "%s: TX TCP/IP Checksumming Supported\n",
1457 dev->name);
1458
1459#ifdef MV643XX_CHECKSUM_OFFLOAD_TX
1460 printk(KERN_NOTICE "%s: RX TCP/UDP Checksum Offload ON \n", dev->name);
1461#endif
1462
1463#ifdef MV643XX_COAL
1464 printk(KERN_NOTICE "%s: TX and RX Interrupt Coalescing ON \n",
1465 dev->name);
1466#endif
1467
1468#ifdef MV643XX_NAPI
1469 printk(KERN_NOTICE "%s: RX NAPI Enabled \n", dev->name);
1470#endif
1471
b1529871
ND
1472 if (mp->tx_sram_size > 0)
1473 printk(KERN_NOTICE "%s: Using SRAM\n", dev->name);
1474
1da177e4
LT
1475 return 0;
1476
1477out:
1478 free_netdev(dev);
1479
1480 return err;
1481}
1482
3ae5eaec 1483static int mv643xx_eth_remove(struct platform_device *pdev)
1da177e4 1484{
3ae5eaec 1485 struct net_device *dev = platform_get_drvdata(pdev);
1da177e4
LT
1486
1487 unregister_netdev(dev);
1488 flush_scheduled_work();
1489
1490 free_netdev(dev);
3ae5eaec 1491 platform_set_drvdata(pdev, NULL);
1da177e4
LT
1492 return 0;
1493}
1494
3ae5eaec 1495static int mv643xx_eth_shared_probe(struct platform_device *pdev)
1da177e4 1496{
1da177e4
LT
1497 struct resource *res;
1498
1499 printk(KERN_NOTICE "MV-643xx 10/100/1000 Ethernet Driver\n");
1500
1501 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1502 if (res == NULL)
1503 return -ENODEV;
1504
1505 mv643xx_eth_shared_base = ioremap(res->start,
1506 MV643XX_ETH_SHARED_REGS_SIZE);
1507 if (mv643xx_eth_shared_base == NULL)
1508 return -ENOMEM;
1509
1510 return 0;
1511
1512}
1513
3ae5eaec 1514static int mv643xx_eth_shared_remove(struct platform_device *pdev)
1da177e4
LT
1515{
1516 iounmap(mv643xx_eth_shared_base);
1517 mv643xx_eth_shared_base = NULL;
1518
1519 return 0;
1520}
1521
3ae5eaec 1522static struct platform_driver mv643xx_eth_driver = {
1da177e4
LT
1523 .probe = mv643xx_eth_probe,
1524 .remove = mv643xx_eth_remove,
3ae5eaec
RK
1525 .driver = {
1526 .name = MV643XX_ETH_NAME,
1527 },
1da177e4
LT
1528};
1529
3ae5eaec 1530static struct platform_driver mv643xx_eth_shared_driver = {
1da177e4
LT
1531 .probe = mv643xx_eth_shared_probe,
1532 .remove = mv643xx_eth_shared_remove,
3ae5eaec
RK
1533 .driver = {
1534 .name = MV643XX_ETH_SHARED_NAME,
1535 },
1da177e4
LT
1536};
1537
1538/*
1539 * mv643xx_init_module
1540 *
1541 * Registers the network drivers into the Linux kernel
1542 *
1543 * Input : N/A
1544 *
1545 * Output : N/A
1546 */
1547static int __init mv643xx_init_module(void)
1548{
1549 int rc;
1550
3ae5eaec 1551 rc = platform_driver_register(&mv643xx_eth_shared_driver);
1da177e4 1552 if (!rc) {
3ae5eaec 1553 rc = platform_driver_register(&mv643xx_eth_driver);
1da177e4 1554 if (rc)
3ae5eaec 1555 platform_driver_unregister(&mv643xx_eth_shared_driver);
1da177e4
LT
1556 }
1557 return rc;
1558}
1559
1560/*
1561 * mv643xx_cleanup_module
1562 *
1563 * Registers the network drivers into the Linux kernel
1564 *
1565 * Input : N/A
1566 *
1567 * Output : N/A
1568 */
1569static void __exit mv643xx_cleanup_module(void)
1570{
3ae5eaec
RK
1571 platform_driver_unregister(&mv643xx_eth_driver);
1572 platform_driver_unregister(&mv643xx_eth_shared_driver);
1da177e4
LT
1573}
1574
1575module_init(mv643xx_init_module);
1576module_exit(mv643xx_cleanup_module);
1577
1578MODULE_LICENSE("GPL");
1579MODULE_AUTHOR( "Rabeeh Khoury, Assaf Hoffman, Matthew Dharm, Manish Lachwani"
1580 " and Dale Farnsworth");
1581MODULE_DESCRIPTION("Ethernet driver for Marvell MV643XX");
1582
1583/*
1584 * The second part is the low level driver of the gigE ethernet ports.
1585 */
1586
1587/*
1588 * Marvell's Gigabit Ethernet controller low level driver
1589 *
1590 * DESCRIPTION:
1591 * This file introduce low level API to Marvell's Gigabit Ethernet
1592 * controller. This Gigabit Ethernet Controller driver API controls
1593 * 1) Operations (i.e. port init, start, reset etc').
1594 * 2) Data flow (i.e. port send, receive etc').
1595 * Each Gigabit Ethernet port is controlled via
1596 * struct mv643xx_private.
1597 * This struct includes user configuration information as well as
1598 * driver internal data needed for its operations.
1599 *
1600 * Supported Features:
1601 * - This low level driver is OS independent. Allocating memory for
1602 * the descriptor rings and buffers are not within the scope of
1603 * this driver.
1604 * - The user is free from Rx/Tx queue managing.
1605 * - This low level driver introduce functionality API that enable
1606 * the to operate Marvell's Gigabit Ethernet Controller in a
1607 * convenient way.
1608 * - Simple Gigabit Ethernet port operation API.
1609 * - Simple Gigabit Ethernet port data flow API.
1610 * - Data flow and operation API support per queue functionality.
1611 * - Support cached descriptors for better performance.
1612 * - Enable access to all four DRAM banks and internal SRAM memory
1613 * spaces.
1614 * - PHY access and control API.
1615 * - Port control register configuration API.
1616 * - Full control over Unicast and Multicast MAC configurations.
1617 *
1618 * Operation flow:
1619 *
1620 * Initialization phase
1621 * This phase complete the initialization of the the
1622 * mv643xx_private struct.
1623 * User information regarding port configuration has to be set
1624 * prior to calling the port initialization routine.
1625 *
1626 * In this phase any port Tx/Rx activity is halted, MIB counters
1627 * are cleared, PHY address is set according to user parameter and
1628 * access to DRAM and internal SRAM memory spaces.
1629 *
1630 * Driver ring initialization
1631 * Allocating memory for the descriptor rings and buffers is not
1632 * within the scope of this driver. Thus, the user is required to
1633 * allocate memory for the descriptors ring and buffers. Those
1634 * memory parameters are used by the Rx and Tx ring initialization
1635 * routines in order to curve the descriptor linked list in a form
1636 * of a ring.
1637 * Note: Pay special attention to alignment issues when using
1638 * cached descriptors/buffers. In this phase the driver store
1639 * information in the mv643xx_private struct regarding each queue
1640 * ring.
1641 *
1642 * Driver start
1643 * This phase prepares the Ethernet port for Rx and Tx activity.
1644 * It uses the information stored in the mv643xx_private struct to
1645 * initialize the various port registers.
1646 *
1647 * Data flow:
1648 * All packet references to/from the driver are done using
1649 * struct pkt_info.
1650 * This struct is a unified struct used with Rx and Tx operations.
1651 * This way the user is not required to be familiar with neither
1652 * Tx nor Rx descriptors structures.
1653 * The driver's descriptors rings are management by indexes.
1654 * Those indexes controls the ring resources and used to indicate
1655 * a SW resource error:
1656 * 'current'
1657 * This index points to the current available resource for use. For
1658 * example in Rx process this index will point to the descriptor
1659 * that will be passed to the user upon calling the receive
1660 * routine. In Tx process, this index will point to the descriptor
1661 * that will be assigned with the user packet info and transmitted.
1662 * 'used'
1663 * This index points to the descriptor that need to restore its
1664 * resources. For example in Rx process, using the Rx buffer return
1665 * API will attach the buffer returned in packet info to the
1666 * descriptor pointed by 'used'. In Tx process, using the Tx
1667 * descriptor return will merely return the user packet info with
1668 * the command status of the transmitted buffer pointed by the
1669 * 'used' index. Nevertheless, it is essential to use this routine
1670 * to update the 'used' index.
1671 * 'first'
1672 * This index supports Tx Scatter-Gather. It points to the first
1673 * descriptor of a packet assembled of multiple buffers. For
1674 * example when in middle of Such packet we have a Tx resource
1675 * error the 'curr' index get the value of 'first' to indicate
1676 * that the ring returned to its state before trying to transmit
1677 * this packet.
1678 *
1679 * Receive operation:
1680 * The eth_port_receive API set the packet information struct,
1681 * passed by the caller, with received information from the
1682 * 'current' SDMA descriptor.
1683 * It is the user responsibility to return this resource back
1684 * to the Rx descriptor ring to enable the reuse of this source.
1685 * Return Rx resource is done using the eth_rx_return_buff API.
1686 *
1687 * Transmit operation:
1688 * The eth_port_send API supports Scatter-Gather which enables to
1689 * send a packet spanned over multiple buffers. This means that
1690 * for each packet info structure given by the user and put into
1691 * the Tx descriptors ring, will be transmitted only if the 'LAST'
1692 * bit will be set in the packet info command status field. This
1693 * API also consider restriction regarding buffer alignments and
1694 * sizes.
1695 * The user must return a Tx resource after ensuring the buffer
1696 * has been transmitted to enable the Tx ring indexes to update.
1697 *
1698 * BOARD LAYOUT
1699 * This device is on-board. No jumper diagram is necessary.
1700 *
1701 * EXTERNAL INTERFACE
1702 *
1703 * Prior to calling the initialization routine eth_port_init() the user
1704 * must set the following fields under mv643xx_private struct:
1705 * port_num User Ethernet port number.
1da177e4
LT
1706 * port_config User port configuration value.
1707 * port_config_extend User port config extend value.
1708 * port_sdma_config User port SDMA config value.
1709 * port_serial_control User port serial control value.
1710 *
1711 * This driver data flow is done using the struct pkt_info which
1712 * is a unified struct for Rx and Tx operations:
1713 *
1714 * byte_cnt Tx/Rx descriptor buffer byte count.
1715 * l4i_chk CPU provided TCP Checksum. For Tx operation
1716 * only.
1717 * cmd_sts Tx/Rx descriptor command status.
1718 * buf_ptr Tx/Rx descriptor buffer pointer.
1719 * return_info Tx/Rx user resource return information.
1720 */
1721
1722/* defines */
1723/* SDMA command macros */
1724#define ETH_ENABLE_TX_QUEUE(eth_port) \
1725 mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(eth_port), 1)
1726
1727/* locals */
1728
1729/* PHY routines */
1730static int ethernet_phy_get(unsigned int eth_port_num);
1731static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr);
1732
1733/* Ethernet Port routines */
cf4086c7 1734static void eth_port_set_filter_table_entry(int table, unsigned char entry);
1da177e4
LT
1735
1736/*
1737 * eth_port_init - Initialize the Ethernet port driver
1738 *
1739 * DESCRIPTION:
1740 * This function prepares the ethernet port to start its activity:
1741 * 1) Completes the ethernet port driver struct initialization toward port
1742 * start routine.
1743 * 2) Resets the device to a quiescent state in case of warm reboot.
1744 * 3) Enable SDMA access to all four DRAM banks as well as internal SRAM.
1745 * 4) Clean MAC tables. The reset status of those tables is unknown.
1746 * 5) Set PHY address.
1747 * Note: Call this routine prior to eth_port_start routine and after
1748 * setting user values in the user fields of Ethernet port control
1749 * struct.
1750 *
1751 * INPUT:
1752 * struct mv643xx_private *mp Ethernet port control struct
1753 *
1754 * OUTPUT:
1755 * See description.
1756 *
1757 * RETURN:
1758 * None.
1759 */
1760static void eth_port_init(struct mv643xx_private *mp)
1761{
1762 mp->port_rx_queue_command = 0;
1763 mp->port_tx_queue_command = 0;
1764
1765 mp->rx_resource_err = 0;
1766 mp->tx_resource_err = 0;
1767
1768 eth_port_reset(mp->port_num);
1769
1770 eth_port_init_mac_tables(mp->port_num);
1771
1772 ethernet_phy_reset(mp->port_num);
1773}
1774
1775/*
1776 * eth_port_start - Start the Ethernet port activity.
1777 *
1778 * DESCRIPTION:
1779 * This routine prepares the Ethernet port for Rx and Tx activity:
1780 * 1. Initialize Tx and Rx Current Descriptor Pointer for each queue that
1781 * has been initialized a descriptor's ring (using
1782 * ether_init_tx_desc_ring for Tx and ether_init_rx_desc_ring for Rx)
1783 * 2. Initialize and enable the Ethernet configuration port by writing to
1784 * the port's configuration and command registers.
1785 * 3. Initialize and enable the SDMA by writing to the SDMA's
1786 * configuration and command registers. After completing these steps,
1787 * the ethernet port SDMA can starts to perform Rx and Tx activities.
1788 *
1789 * Note: Each Rx and Tx queue descriptor's list must be initialized prior
1790 * to calling this function (use ether_init_tx_desc_ring for Tx queues
1791 * and ether_init_rx_desc_ring for Rx queues).
1792 *
1793 * INPUT:
ed9b5d45 1794 * dev - a pointer to the required interface
1da177e4
LT
1795 *
1796 * OUTPUT:
1797 * Ethernet port is ready to receive and transmit.
1798 *
1799 * RETURN:
1800 * None.
1801 */
ed9b5d45 1802static void eth_port_start(struct net_device *dev)
1da177e4 1803{
ed9b5d45 1804 struct mv643xx_private *mp = netdev_priv(dev);
1da177e4
LT
1805 unsigned int port_num = mp->port_num;
1806 int tx_curr_desc, rx_curr_desc;
1807
1808 /* Assignment of Tx CTRP of given queue */
1809 tx_curr_desc = mp->tx_curr_desc_q;
1810 mv_write(MV643XX_ETH_TX_CURRENT_QUEUE_DESC_PTR_0(port_num),
1811 (u32)((struct eth_tx_desc *)mp->tx_desc_dma + tx_curr_desc));
1812
1813 /* Assignment of Rx CRDP of given queue */
1814 rx_curr_desc = mp->rx_curr_desc_q;
1815 mv_write(MV643XX_ETH_RX_CURRENT_QUEUE_DESC_PTR_0(port_num),
1816 (u32)((struct eth_rx_desc *)mp->rx_desc_dma + rx_curr_desc));
1817
1818 /* Add the assigned Ethernet address to the port's address table */
ed9b5d45 1819 eth_port_uc_addr_set(port_num, dev->dev_addr);
1da177e4
LT
1820
1821 /* Assign port configuration and command. */
1822 mv_write(MV643XX_ETH_PORT_CONFIG_REG(port_num), mp->port_config);
1823
1824 mv_write(MV643XX_ETH_PORT_CONFIG_EXTEND_REG(port_num),
1825 mp->port_config_extend);
1826
1827
1828 /* Increase the Rx side buffer size if supporting GigE */
1829 if (mp->port_serial_control & MV643XX_ETH_SET_GMII_SPEED_TO_1000)
1830 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
1831 (mp->port_serial_control & 0xfff1ffff) | (0x5 << 17));
1832 else
1833 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
1834 mp->port_serial_control);
1835
1836 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
1837 mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num)) |
1838 MV643XX_ETH_SERIAL_PORT_ENABLE);
1839
1840 /* Assign port SDMA configuration */
1841 mv_write(MV643XX_ETH_SDMA_CONFIG_REG(port_num),
1842 mp->port_sdma_config);
1843
1844 /* Enable port Rx. */
1845 mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num),
1846 mp->port_rx_queue_command);
8f543718
DF
1847
1848 /* Disable port bandwidth limits by clearing MTU register */
1849 mv_write(MV643XX_ETH_MAXIMUM_TRANSMIT_UNIT(port_num), 0);
1da177e4
LT
1850}
1851
1852/*
1853 * eth_port_uc_addr_set - This function Set the port Unicast address.
1854 *
1855 * DESCRIPTION:
1856 * This function Set the port Ethernet MAC address.
1857 *
1858 * INPUT:
1859 * unsigned int eth_port_num Port number.
1860 * char * p_addr Address to be set
1861 *
1862 * OUTPUT:
cf4086c7
DF
1863 * Set MAC address low and high registers. also calls
1864 * eth_port_set_filter_table_entry() to set the unicast
1865 * table with the proper information.
1da177e4
LT
1866 *
1867 * RETURN:
1868 * N/A.
1869 *
1870 */
1871static void eth_port_uc_addr_set(unsigned int eth_port_num,
1872 unsigned char *p_addr)
1873{
1874 unsigned int mac_h;
1875 unsigned int mac_l;
cf4086c7 1876 int table;
1da177e4
LT
1877
1878 mac_l = (p_addr[4] << 8) | (p_addr[5]);
1879 mac_h = (p_addr[0] << 24) | (p_addr[1] << 16) | (p_addr[2] << 8) |
1880 (p_addr[3] << 0);
1881
1882 mv_write(MV643XX_ETH_MAC_ADDR_LOW(eth_port_num), mac_l);
1883 mv_write(MV643XX_ETH_MAC_ADDR_HIGH(eth_port_num), mac_h);
1884
1885 /* Accept frames of this address */
cf4086c7
DF
1886 table = MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE(eth_port_num);
1887 eth_port_set_filter_table_entry(table, p_addr[5] & 0x0f);
1da177e4
LT
1888}
1889
1890/*
1891 * eth_port_uc_addr_get - This function retrieves the port Unicast address
1892 * (MAC address) from the ethernet hw registers.
1893 *
1894 * DESCRIPTION:
1895 * This function retrieves the port Ethernet MAC address.
1896 *
1897 * INPUT:
1898 * unsigned int eth_port_num Port number.
1899 * char *MacAddr pointer where the MAC address is stored
1900 *
1901 * OUTPUT:
1902 * Copy the MAC address to the location pointed to by MacAddr
1903 *
1904 * RETURN:
1905 * N/A.
1906 *
1907 */
1908static void eth_port_uc_addr_get(struct net_device *dev, unsigned char *p_addr)
1909{
1910 struct mv643xx_private *mp = netdev_priv(dev);
1911 unsigned int mac_h;
1912 unsigned int mac_l;
1913
1914 mac_h = mv_read(MV643XX_ETH_MAC_ADDR_HIGH(mp->port_num));
1915 mac_l = mv_read(MV643XX_ETH_MAC_ADDR_LOW(mp->port_num));
1916
1917 p_addr[0] = (mac_h >> 24) & 0xff;
1918 p_addr[1] = (mac_h >> 16) & 0xff;
1919 p_addr[2] = (mac_h >> 8) & 0xff;
1920 p_addr[3] = mac_h & 0xff;
1921 p_addr[4] = (mac_l >> 8) & 0xff;
1922 p_addr[5] = mac_l & 0xff;
1923}
1924
16e03018
DF
1925/*
1926 * The entries in each table are indexed by a hash of a packet's MAC
1927 * address. One bit in each entry determines whether the packet is
1928 * accepted. There are 4 entries (each 8 bits wide) in each register
1929 * of the table. The bits in each entry are defined as follows:
1930 * 0 Accept=1, Drop=0
1931 * 3-1 Queue (ETH_Q0=0)
1932 * 7-4 Reserved = 0;
1933 */
1934static void eth_port_set_filter_table_entry(int table, unsigned char entry)
1935{
1936 unsigned int table_reg;
1937 unsigned int tbl_offset;
1938 unsigned int reg_offset;
1939
1940 tbl_offset = (entry / 4) * 4; /* Register offset of DA table entry */
1941 reg_offset = entry % 4; /* Entry offset within the register */
1942
1943 /* Set "accepts frame bit" at specified table entry */
1944 table_reg = mv_read(table + tbl_offset);
1945 table_reg |= 0x01 << (8 * reg_offset);
1946 mv_write(table + tbl_offset, table_reg);
1947}
1948
1949/*
1950 * eth_port_mc_addr - Multicast address settings.
1951 *
1952 * The MV device supports multicast using two tables:
1953 * 1) Special Multicast Table for MAC addresses of the form
1954 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0x_FF).
1955 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
1956 * Table entries in the DA-Filter table.
1957 * 2) Other Multicast Table for multicast of another type. A CRC-8bit
1958 * is used as an index to the Other Multicast Table entries in the
1959 * DA-Filter table. This function calculates the CRC-8bit value.
1960 * In either case, eth_port_set_filter_table_entry() is then called
1961 * to set to set the actual table entry.
1962 */
1963static void eth_port_mc_addr(unsigned int eth_port_num, unsigned char *p_addr)
1964{
1965 unsigned int mac_h;
1966 unsigned int mac_l;
1967 unsigned char crc_result = 0;
1968 int table;
1969 int mac_array[48];
1970 int crc[8];
1971 int i;
1972
1973 if ((p_addr[0] == 0x01) && (p_addr[1] == 0x00) &&
1974 (p_addr[2] == 0x5E) && (p_addr[3] == 0x00) && (p_addr[4] == 0x00)) {
1975 table = MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE
1976 (eth_port_num);
1977 eth_port_set_filter_table_entry(table, p_addr[5]);
1978 return;
1979 }
1980
1981 /* Calculate CRC-8 out of the given address */
1982 mac_h = (p_addr[0] << 8) | (p_addr[1]);
1983 mac_l = (p_addr[2] << 24) | (p_addr[3] << 16) |
1984 (p_addr[4] << 8) | (p_addr[5] << 0);
1985
1986 for (i = 0; i < 32; i++)
1987 mac_array[i] = (mac_l >> i) & 0x1;
1988 for (i = 32; i < 48; i++)
1989 mac_array[i] = (mac_h >> (i - 32)) & 0x1;
1990
1991 crc[0] = mac_array[45] ^ mac_array[43] ^ mac_array[40] ^ mac_array[39] ^
1992 mac_array[35] ^ mac_array[34] ^ mac_array[31] ^ mac_array[30] ^
1993 mac_array[28] ^ mac_array[23] ^ mac_array[21] ^ mac_array[19] ^
1994 mac_array[18] ^ mac_array[16] ^ mac_array[14] ^ mac_array[12] ^
1995 mac_array[8] ^ mac_array[7] ^ mac_array[6] ^ mac_array[0];
1996
1997 crc[1] = mac_array[46] ^ mac_array[45] ^ mac_array[44] ^ mac_array[43] ^
1998 mac_array[41] ^ mac_array[39] ^ mac_array[36] ^ mac_array[34] ^
1999 mac_array[32] ^ mac_array[30] ^ mac_array[29] ^ mac_array[28] ^
2000 mac_array[24] ^ mac_array[23] ^ mac_array[22] ^ mac_array[21] ^
2001 mac_array[20] ^ mac_array[18] ^ mac_array[17] ^ mac_array[16] ^
2002 mac_array[15] ^ mac_array[14] ^ mac_array[13] ^ mac_array[12] ^
2003 mac_array[9] ^ mac_array[6] ^ mac_array[1] ^ mac_array[0];
2004
2005 crc[2] = mac_array[47] ^ mac_array[46] ^ mac_array[44] ^ mac_array[43] ^
2006 mac_array[42] ^ mac_array[39] ^ mac_array[37] ^ mac_array[34] ^
2007 mac_array[33] ^ mac_array[29] ^ mac_array[28] ^ mac_array[25] ^
2008 mac_array[24] ^ mac_array[22] ^ mac_array[17] ^ mac_array[15] ^
2009 mac_array[13] ^ mac_array[12] ^ mac_array[10] ^ mac_array[8] ^
2010 mac_array[6] ^ mac_array[2] ^ mac_array[1] ^ mac_array[0];
2011
2012 crc[3] = mac_array[47] ^ mac_array[45] ^ mac_array[44] ^ mac_array[43] ^
2013 mac_array[40] ^ mac_array[38] ^ mac_array[35] ^ mac_array[34] ^
2014 mac_array[30] ^ mac_array[29] ^ mac_array[26] ^ mac_array[25] ^
2015 mac_array[23] ^ mac_array[18] ^ mac_array[16] ^ mac_array[14] ^
2016 mac_array[13] ^ mac_array[11] ^ mac_array[9] ^ mac_array[7] ^
2017 mac_array[3] ^ mac_array[2] ^ mac_array[1];
2018
2019 crc[4] = mac_array[46] ^ mac_array[45] ^ mac_array[44] ^ mac_array[41] ^
2020 mac_array[39] ^ mac_array[36] ^ mac_array[35] ^ mac_array[31] ^
2021 mac_array[30] ^ mac_array[27] ^ mac_array[26] ^ mac_array[24] ^
2022 mac_array[19] ^ mac_array[17] ^ mac_array[15] ^ mac_array[14] ^
2023 mac_array[12] ^ mac_array[10] ^ mac_array[8] ^ mac_array[4] ^
2024 mac_array[3] ^ mac_array[2];
2025
2026 crc[5] = mac_array[47] ^ mac_array[46] ^ mac_array[45] ^ mac_array[42] ^
2027 mac_array[40] ^ mac_array[37] ^ mac_array[36] ^ mac_array[32] ^
2028 mac_array[31] ^ mac_array[28] ^ mac_array[27] ^ mac_array[25] ^
2029 mac_array[20] ^ mac_array[18] ^ mac_array[16] ^ mac_array[15] ^
2030 mac_array[13] ^ mac_array[11] ^ mac_array[9] ^ mac_array[5] ^
2031 mac_array[4] ^ mac_array[3];
2032
2033 crc[6] = mac_array[47] ^ mac_array[46] ^ mac_array[43] ^ mac_array[41] ^
2034 mac_array[38] ^ mac_array[37] ^ mac_array[33] ^ mac_array[32] ^
2035 mac_array[29] ^ mac_array[28] ^ mac_array[26] ^ mac_array[21] ^
2036 mac_array[19] ^ mac_array[17] ^ mac_array[16] ^ mac_array[14] ^
2037 mac_array[12] ^ mac_array[10] ^ mac_array[6] ^ mac_array[5] ^
2038 mac_array[4];
2039
2040 crc[7] = mac_array[47] ^ mac_array[44] ^ mac_array[42] ^ mac_array[39] ^
2041 mac_array[38] ^ mac_array[34] ^ mac_array[33] ^ mac_array[30] ^
2042 mac_array[29] ^ mac_array[27] ^ mac_array[22] ^ mac_array[20] ^
2043 mac_array[18] ^ mac_array[17] ^ mac_array[15] ^ mac_array[13] ^
2044 mac_array[11] ^ mac_array[7] ^ mac_array[6] ^ mac_array[5];
2045
2046 for (i = 0; i < 8; i++)
2047 crc_result = crc_result | (crc[i] << i);
2048
2049 table = MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE(eth_port_num);
2050 eth_port_set_filter_table_entry(table, crc_result);
2051}
2052
2053/*
2054 * Set the entire multicast list based on dev->mc_list.
2055 */
2056static void eth_port_set_multicast_list(struct net_device *dev)
2057{
2058
2059 struct dev_mc_list *mc_list;
2060 int i;
2061 int table_index;
2062 struct mv643xx_private *mp = netdev_priv(dev);
2063 unsigned int eth_port_num = mp->port_num;
2064
2065 /* If the device is in promiscuous mode or in all multicast mode,
2066 * we will fully populate both multicast tables with accept.
2067 * This is guaranteed to yield a match on all multicast addresses...
2068 */
2069 if ((dev->flags & IFF_PROMISC) || (dev->flags & IFF_ALLMULTI)) {
2070 for (table_index = 0; table_index <= 0xFC; table_index += 4) {
b4de9051
DF
2071 /* Set all entries in DA filter special multicast
2072 * table (Ex_dFSMT)
2073 * Set for ETH_Q0 for now
2074 * Bits
2075 * 0 Accept=1, Drop=0
2076 * 3-1 Queue ETH_Q0=0
2077 * 7-4 Reserved = 0;
2078 */
2079 mv_write(MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE(eth_port_num) + table_index, 0x01010101);
2080
2081 /* Set all entries in DA filter other multicast
2082 * table (Ex_dFOMT)
2083 * Set for ETH_Q0 for now
2084 * Bits
2085 * 0 Accept=1, Drop=0
2086 * 3-1 Queue ETH_Q0=0
2087 * 7-4 Reserved = 0;
2088 */
2089 mv_write(MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE(eth_port_num) + table_index, 0x01010101);
2090 }
16e03018
DF
2091 return;
2092 }
2093
2094 /* We will clear out multicast tables every time we get the list.
2095 * Then add the entire new list...
2096 */
2097 for (table_index = 0; table_index <= 0xFC; table_index += 4) {
2098 /* Clear DA filter special multicast table (Ex_dFSMT) */
2099 mv_write(MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE
2100 (eth_port_num) + table_index, 0);
2101
2102 /* Clear DA filter other multicast table (Ex_dFOMT) */
2103 mv_write(MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE
2104 (eth_port_num) + table_index, 0);
2105 }
2106
2107 /* Get pointer to net_device multicast list and add each one... */
2108 for (i = 0, mc_list = dev->mc_list;
2109 (i < 256) && (mc_list != NULL) && (i < dev->mc_count);
2110 i++, mc_list = mc_list->next)
2111 if (mc_list->dmi_addrlen == 6)
2112 eth_port_mc_addr(eth_port_num, mc_list->dmi_addr);
2113}
2114
1da177e4
LT
2115/*
2116 * eth_port_init_mac_tables - Clear all entrance in the UC, SMC and OMC tables
2117 *
2118 * DESCRIPTION:
2119 * Go through all the DA filter tables (Unicast, Special Multicast &
2120 * Other Multicast) and set each entry to 0.
2121 *
2122 * INPUT:
2123 * unsigned int eth_port_num Ethernet Port number.
2124 *
2125 * OUTPUT:
2126 * Multicast and Unicast packets are rejected.
2127 *
2128 * RETURN:
2129 * None.
2130 */
2131static void eth_port_init_mac_tables(unsigned int eth_port_num)
2132{
2133 int table_index;
2134
2135 /* Clear DA filter unicast table (Ex_dFUT) */
2136 for (table_index = 0; table_index <= 0xC; table_index += 4)
cf4086c7
DF
2137 mv_write(MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE
2138 (eth_port_num) + table_index, 0);
1da177e4
LT
2139
2140 for (table_index = 0; table_index <= 0xFC; table_index += 4) {
2141 /* Clear DA filter special multicast table (Ex_dFSMT) */
16e03018
DF
2142 mv_write(MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE
2143 (eth_port_num) + table_index, 0);
1da177e4 2144 /* Clear DA filter other multicast table (Ex_dFOMT) */
16e03018
DF
2145 mv_write(MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE
2146 (eth_port_num) + table_index, 0);
1da177e4
LT
2147 }
2148}
2149
2150/*
2151 * eth_clear_mib_counters - Clear all MIB counters
2152 *
2153 * DESCRIPTION:
2154 * This function clears all MIB counters of a specific ethernet port.
2155 * A read from the MIB counter will reset the counter.
2156 *
2157 * INPUT:
2158 * unsigned int eth_port_num Ethernet Port number.
2159 *
2160 * OUTPUT:
2161 * After reading all MIB counters, the counters resets.
2162 *
2163 * RETURN:
2164 * MIB counter value.
2165 *
2166 */
2167static void eth_clear_mib_counters(unsigned int eth_port_num)
2168{
2169 int i;
2170
2171 /* Perform dummy reads from MIB counters */
2172 for (i = ETH_MIB_GOOD_OCTETS_RECEIVED_LOW; i < ETH_MIB_LATE_COLLISION;
2173 i += 4)
2174 mv_read(MV643XX_ETH_MIB_COUNTERS_BASE(eth_port_num) + i);
2175}
2176
2177static inline u32 read_mib(struct mv643xx_private *mp, int offset)
2178{
2179 return mv_read(MV643XX_ETH_MIB_COUNTERS_BASE(mp->port_num) + offset);
2180}
2181
2182static void eth_update_mib_counters(struct mv643xx_private *mp)
2183{
2184 struct mv643xx_mib_counters *p = &mp->mib_counters;
2185 int offset;
2186
2187 p->good_octets_received +=
2188 read_mib(mp, ETH_MIB_GOOD_OCTETS_RECEIVED_LOW);
2189 p->good_octets_received +=
2190 (u64)read_mib(mp, ETH_MIB_GOOD_OCTETS_RECEIVED_HIGH) << 32;
2191
2192 for (offset = ETH_MIB_BAD_OCTETS_RECEIVED;
2193 offset <= ETH_MIB_FRAMES_1024_TO_MAX_OCTETS;
2194 offset += 4)
2195 *(u32 *)((char *)p + offset) = read_mib(mp, offset);
2196
2197 p->good_octets_sent += read_mib(mp, ETH_MIB_GOOD_OCTETS_SENT_LOW);
2198 p->good_octets_sent +=
2199 (u64)read_mib(mp, ETH_MIB_GOOD_OCTETS_SENT_HIGH) << 32;
2200
2201 for (offset = ETH_MIB_GOOD_FRAMES_SENT;
2202 offset <= ETH_MIB_LATE_COLLISION;
2203 offset += 4)
2204 *(u32 *)((char *)p + offset) = read_mib(mp, offset);
2205}
2206
2207/*
2208 * ethernet_phy_detect - Detect whether a phy is present
2209 *
2210 * DESCRIPTION:
2211 * This function tests whether there is a PHY present on
2212 * the specified port.
2213 *
2214 * INPUT:
2215 * unsigned int eth_port_num Ethernet Port number.
2216 *
2217 * OUTPUT:
2218 * None
2219 *
2220 * RETURN:
2221 * 0 on success
2222 * -ENODEV on failure
2223 *
2224 */
2225static int ethernet_phy_detect(unsigned int port_num)
2226{
2227 unsigned int phy_reg_data0;
2228 int auto_neg;
2229
2230 eth_port_read_smi_reg(port_num, 0, &phy_reg_data0);
2231 auto_neg = phy_reg_data0 & 0x1000;
2232 phy_reg_data0 ^= 0x1000; /* invert auto_neg */
2233 eth_port_write_smi_reg(port_num, 0, phy_reg_data0);
2234
2235 eth_port_read_smi_reg(port_num, 0, &phy_reg_data0);
2236 if ((phy_reg_data0 & 0x1000) == auto_neg)
2237 return -ENODEV; /* change didn't take */
2238
2239 phy_reg_data0 ^= 0x1000;
2240 eth_port_write_smi_reg(port_num, 0, phy_reg_data0);
2241 return 0;
2242}
2243
2244/*
2245 * ethernet_phy_get - Get the ethernet port PHY address.
2246 *
2247 * DESCRIPTION:
2248 * This routine returns the given ethernet port PHY address.
2249 *
2250 * INPUT:
2251 * unsigned int eth_port_num Ethernet Port number.
2252 *
2253 * OUTPUT:
2254 * None.
2255 *
2256 * RETURN:
2257 * PHY address.
2258 *
2259 */
2260static int ethernet_phy_get(unsigned int eth_port_num)
2261{
2262 unsigned int reg_data;
2263
2264 reg_data = mv_read(MV643XX_ETH_PHY_ADDR_REG);
2265
2266 return ((reg_data >> (5 * eth_port_num)) & 0x1f);
2267}
2268
2269/*
2270 * ethernet_phy_set - Set the ethernet port PHY address.
2271 *
2272 * DESCRIPTION:
2273 * This routine sets the given ethernet port PHY address.
2274 *
2275 * INPUT:
2276 * unsigned int eth_port_num Ethernet Port number.
2277 * int phy_addr PHY address.
2278 *
2279 * OUTPUT:
2280 * None.
2281 *
2282 * RETURN:
2283 * None.
2284 *
2285 */
2286static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr)
2287{
2288 u32 reg_data;
2289 int addr_shift = 5 * eth_port_num;
2290
2291 reg_data = mv_read(MV643XX_ETH_PHY_ADDR_REG);
2292 reg_data &= ~(0x1f << addr_shift);
2293 reg_data |= (phy_addr & 0x1f) << addr_shift;
2294 mv_write(MV643XX_ETH_PHY_ADDR_REG, reg_data);
2295}
2296
2297/*
2298 * ethernet_phy_reset - Reset Ethernet port PHY.
2299 *
2300 * DESCRIPTION:
2301 * This routine utilizes the SMI interface to reset the ethernet port PHY.
2302 *
2303 * INPUT:
2304 * unsigned int eth_port_num Ethernet Port number.
2305 *
2306 * OUTPUT:
2307 * The PHY is reset.
2308 *
2309 * RETURN:
2310 * None.
2311 *
2312 */
2313static void ethernet_phy_reset(unsigned int eth_port_num)
2314{
2315 unsigned int phy_reg_data;
2316
2317 /* Reset the PHY */
2318 eth_port_read_smi_reg(eth_port_num, 0, &phy_reg_data);
2319 phy_reg_data |= 0x8000; /* Set bit 15 to reset the PHY */
2320 eth_port_write_smi_reg(eth_port_num, 0, phy_reg_data);
2321}
2322
2323/*
2324 * eth_port_reset - Reset Ethernet port
2325 *
2326 * DESCRIPTION:
2327 * This routine resets the chip by aborting any SDMA engine activity and
2328 * clearing the MIB counters. The Receiver and the Transmit unit are in
2329 * idle state after this command is performed and the port is disabled.
2330 *
2331 * INPUT:
2332 * unsigned int eth_port_num Ethernet Port number.
2333 *
2334 * OUTPUT:
2335 * Channel activity is halted.
2336 *
2337 * RETURN:
2338 * None.
2339 *
2340 */
2341static void eth_port_reset(unsigned int port_num)
2342{
2343 unsigned int reg_data;
2344
2345 /* Stop Tx port activity. Check port Tx activity. */
2346 reg_data = mv_read(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num));
2347
2348 if (reg_data & 0xFF) {
2349 /* Issue stop command for active channels only */
2350 mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num),
2351 (reg_data << 8));
2352
2353 /* Wait for all Tx activity to terminate. */
2354 /* Check port cause register that all Tx queues are stopped */
2355 while (mv_read(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num))
2356 & 0xFF)
2357 udelay(10);
2358 }
2359
2360 /* Stop Rx port activity. Check port Rx activity. */
2361 reg_data = mv_read(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num));
2362
2363 if (reg_data & 0xFF) {
2364 /* Issue stop command for active channels only */
2365 mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num),
2366 (reg_data << 8));
2367
2368 /* Wait for all Rx activity to terminate. */
2369 /* Check port cause register that all Rx queues are stopped */
2370 while (mv_read(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num))
2371 & 0xFF)
2372 udelay(10);
2373 }
2374
2375 /* Clear all MIB counters */
2376 eth_clear_mib_counters(port_num);
2377
2378 /* Reset the Enable bit in the Configuration Register */
2379 reg_data = mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num));
2380 reg_data &= ~MV643XX_ETH_SERIAL_PORT_ENABLE;
2381 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num), reg_data);
2382}
2383
1da177e4
LT
2384
2385static int eth_port_autoneg_supported(unsigned int eth_port_num)
2386{
2387 unsigned int phy_reg_data0;
2388
2389 eth_port_read_smi_reg(eth_port_num, 0, &phy_reg_data0);
2390
2391 return phy_reg_data0 & 0x1000;
2392}
2393
2394static int eth_port_link_is_up(unsigned int eth_port_num)
2395{
2396 unsigned int phy_reg_data1;
2397
2398 eth_port_read_smi_reg(eth_port_num, 1, &phy_reg_data1);
2399
2400 if (eth_port_autoneg_supported(eth_port_num)) {
2401 if (phy_reg_data1 & 0x20) /* auto-neg complete */
2402 return 1;
2403 } else if (phy_reg_data1 & 0x4) /* link up */
2404 return 1;
2405
2406 return 0;
2407}
2408
1da177e4
LT
2409/*
2410 * eth_port_read_smi_reg - Read PHY registers
2411 *
2412 * DESCRIPTION:
2413 * This routine utilize the SMI interface to interact with the PHY in
2414 * order to perform PHY register read.
2415 *
2416 * INPUT:
2417 * unsigned int port_num Ethernet Port number.
2418 * unsigned int phy_reg PHY register address offset.
2419 * unsigned int *value Register value buffer.
2420 *
2421 * OUTPUT:
2422 * Write the value of a specified PHY register into given buffer.
2423 *
2424 * RETURN:
2425 * false if the PHY is busy or read data is not in valid state.
2426 * true otherwise.
2427 *
2428 */
2429static void eth_port_read_smi_reg(unsigned int port_num,
2430 unsigned int phy_reg, unsigned int *value)
2431{
2432 int phy_addr = ethernet_phy_get(port_num);
2433 unsigned long flags;
2434 int i;
2435
2436 /* the SMI register is a shared resource */
2437 spin_lock_irqsave(&mv643xx_eth_phy_lock, flags);
2438
2439 /* wait for the SMI register to become available */
2440 for (i = 0; mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_BUSY; i++) {
2441 if (i == PHY_WAIT_ITERATIONS) {
2442 printk("mv643xx PHY busy timeout, port %d\n", port_num);
2443 goto out;
2444 }
2445 udelay(PHY_WAIT_MICRO_SECONDS);
2446 }
2447
2448 mv_write(MV643XX_ETH_SMI_REG,
2449 (phy_addr << 16) | (phy_reg << 21) | ETH_SMI_OPCODE_READ);
2450
2451 /* now wait for the data to be valid */
2452 for (i = 0; !(mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_READ_VALID); i++) {
2453 if (i == PHY_WAIT_ITERATIONS) {
2454 printk("mv643xx PHY read timeout, port %d\n", port_num);
2455 goto out;
2456 }
2457 udelay(PHY_WAIT_MICRO_SECONDS);
2458 }
2459
2460 *value = mv_read(MV643XX_ETH_SMI_REG) & 0xffff;
2461out:
2462 spin_unlock_irqrestore(&mv643xx_eth_phy_lock, flags);
2463}
2464
2465/*
2466 * eth_port_write_smi_reg - Write to PHY registers
2467 *
2468 * DESCRIPTION:
2469 * This routine utilize the SMI interface to interact with the PHY in
2470 * order to perform writes to PHY registers.
2471 *
2472 * INPUT:
2473 * unsigned int eth_port_num Ethernet Port number.
2474 * unsigned int phy_reg PHY register address offset.
2475 * unsigned int value Register value.
2476 *
2477 * OUTPUT:
2478 * Write the given value to the specified PHY register.
2479 *
2480 * RETURN:
2481 * false if the PHY is busy.
2482 * true otherwise.
2483 *
2484 */
2485static void eth_port_write_smi_reg(unsigned int eth_port_num,
2486 unsigned int phy_reg, unsigned int value)
2487{
2488 int phy_addr;
2489 int i;
2490 unsigned long flags;
2491
2492 phy_addr = ethernet_phy_get(eth_port_num);
2493
2494 /* the SMI register is a shared resource */
2495 spin_lock_irqsave(&mv643xx_eth_phy_lock, flags);
2496
2497 /* wait for the SMI register to become available */
2498 for (i = 0; mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_BUSY; i++) {
2499 if (i == PHY_WAIT_ITERATIONS) {
2500 printk("mv643xx PHY busy timeout, port %d\n",
2501 eth_port_num);
2502 goto out;
2503 }
2504 udelay(PHY_WAIT_MICRO_SECONDS);
2505 }
2506
2507 mv_write(MV643XX_ETH_SMI_REG, (phy_addr << 16) | (phy_reg << 21) |
2508 ETH_SMI_OPCODE_WRITE | (value & 0xffff));
2509out:
2510 spin_unlock_irqrestore(&mv643xx_eth_phy_lock, flags);
2511}
2512
2513/*
2514 * eth_port_send - Send an Ethernet packet
2515 *
2516 * DESCRIPTION:
2517 * This routine send a given packet described by p_pktinfo parameter. It
2518 * supports transmitting of a packet spaned over multiple buffers. The
2519 * routine updates 'curr' and 'first' indexes according to the packet
2520 * segment passed to the routine. In case the packet segment is first,
2521 * the 'first' index is update. In any case, the 'curr' index is updated.
2522 * If the routine get into Tx resource error it assigns 'curr' index as
2523 * 'first'. This way the function can abort Tx process of multiple
2524 * descriptors per packet.
2525 *
2526 * INPUT:
2527 * struct mv643xx_private *mp Ethernet Port Control srtuct.
2528 * struct pkt_info *p_pkt_info User packet buffer.
2529 *
2530 * OUTPUT:
2531 * Tx ring 'curr' and 'first' indexes are updated.
2532 *
2533 * RETURN:
2534 * ETH_QUEUE_FULL in case of Tx resource error.
2535 * ETH_ERROR in case the routine can not access Tx desc ring.
2536 * ETH_QUEUE_LAST_RESOURCE if the routine uses the last Tx resource.
2537 * ETH_OK otherwise.
2538 *
2539 */
2540#ifdef MV643XX_CHECKSUM_OFFLOAD_TX
2541/*
2542 * Modified to include the first descriptor pointer in case of SG
2543 */
2544static ETH_FUNC_RET_STATUS eth_port_send(struct mv643xx_private *mp,
2545 struct pkt_info *p_pkt_info)
2546{
2547 int tx_desc_curr, tx_desc_used, tx_first_desc, tx_next_desc;
2548 struct eth_tx_desc *current_descriptor;
2549 struct eth_tx_desc *first_descriptor;
2550 u32 command;
2551
2552 /* Do not process Tx ring in case of Tx ring resource error */
2553 if (mp->tx_resource_err)
2554 return ETH_QUEUE_FULL;
2555
2556 /*
2557 * The hardware requires that each buffer that is <= 8 bytes
2558 * in length must be aligned on an 8 byte boundary.
2559 */
2560 if (p_pkt_info->byte_cnt <= 8 && p_pkt_info->buf_ptr & 0x7) {
2561 printk(KERN_ERR
2562 "mv643xx_eth port %d: packet size <= 8 problem\n",
2563 mp->port_num);
2564 return ETH_ERROR;
2565 }
2566
f98e36f1
DF
2567 mp->tx_desc_count++;
2568 BUG_ON(mp->tx_desc_count > mp->tx_ring_size);
b111ceb6 2569
1da177e4
LT
2570 /* Get the Tx Desc ring indexes */
2571 tx_desc_curr = mp->tx_curr_desc_q;
2572 tx_desc_used = mp->tx_used_desc_q;
2573
2574 current_descriptor = &mp->p_tx_desc_area[tx_desc_curr];
2575
2576 tx_next_desc = (tx_desc_curr + 1) % mp->tx_ring_size;
2577
2578 current_descriptor->buf_ptr = p_pkt_info->buf_ptr;
2579 current_descriptor->byte_cnt = p_pkt_info->byte_cnt;
2580 current_descriptor->l4i_chk = p_pkt_info->l4i_chk;
2581 mp->tx_skb[tx_desc_curr] = p_pkt_info->return_info;
2582
2583 command = p_pkt_info->cmd_sts | ETH_ZERO_PADDING | ETH_GEN_CRC |
2584 ETH_BUFFER_OWNED_BY_DMA;
2585 if (command & ETH_TX_FIRST_DESC) {
2586 tx_first_desc = tx_desc_curr;
2587 mp->tx_first_desc_q = tx_first_desc;
2588 first_descriptor = current_descriptor;
2589 mp->tx_first_command = command;
2590 } else {
2591 tx_first_desc = mp->tx_first_desc_q;
2592 first_descriptor = &mp->p_tx_desc_area[tx_first_desc];
2593 BUG_ON(first_descriptor == NULL);
2594 current_descriptor->cmd_sts = command;
2595 }
2596
2597 if (command & ETH_TX_LAST_DESC) {
2598 wmb();
2599 first_descriptor->cmd_sts = mp->tx_first_command;
2600
2601 wmb();
2602 ETH_ENABLE_TX_QUEUE(mp->port_num);
2603
2604 /*
2605 * Finish Tx packet. Update first desc in case of Tx resource
2606 * error */
2607 tx_first_desc = tx_next_desc;
2608 mp->tx_first_desc_q = tx_first_desc;
2609 }
2610
2611 /* Check for ring index overlap in the Tx desc ring */
2612 if (tx_next_desc == tx_desc_used) {
2613 mp->tx_resource_err = 1;
2614 mp->tx_curr_desc_q = tx_first_desc;
2615
2616 return ETH_QUEUE_LAST_RESOURCE;
2617 }
2618
2619 mp->tx_curr_desc_q = tx_next_desc;
2620
2621 return ETH_OK;
2622}
2623#else
2624static ETH_FUNC_RET_STATUS eth_port_send(struct mv643xx_private *mp,
2625 struct pkt_info *p_pkt_info)
2626{
2627 int tx_desc_curr;
2628 int tx_desc_used;
2629 struct eth_tx_desc *current_descriptor;
2630 unsigned int command_status;
2631
2632 /* Do not process Tx ring in case of Tx ring resource error */
2633 if (mp->tx_resource_err)
2634 return ETH_QUEUE_FULL;
2635
f98e36f1
DF
2636 mp->tx_desc_count++;
2637 BUG_ON(mp->tx_desc_count > mp->tx_ring_size);
b111ceb6 2638
1da177e4
LT
2639 /* Get the Tx Desc ring indexes */
2640 tx_desc_curr = mp->tx_curr_desc_q;
2641 tx_desc_used = mp->tx_used_desc_q;
2642 current_descriptor = &mp->p_tx_desc_area[tx_desc_curr];
2643
2644 command_status = p_pkt_info->cmd_sts | ETH_ZERO_PADDING | ETH_GEN_CRC;
2645 current_descriptor->buf_ptr = p_pkt_info->buf_ptr;
2646 current_descriptor->byte_cnt = p_pkt_info->byte_cnt;
2647 mp->tx_skb[tx_desc_curr] = p_pkt_info->return_info;
2648
2649 /* Set last desc with DMA ownership and interrupt enable. */
2650 wmb();
2651 current_descriptor->cmd_sts = command_status |
2652 ETH_BUFFER_OWNED_BY_DMA | ETH_TX_ENABLE_INTERRUPT;
2653
2654 wmb();
2655 ETH_ENABLE_TX_QUEUE(mp->port_num);
2656
2657 /* Finish Tx packet. Update first desc in case of Tx resource error */
2658 tx_desc_curr = (tx_desc_curr + 1) % mp->tx_ring_size;
2659
2660 /* Update the current descriptor */
2661 mp->tx_curr_desc_q = tx_desc_curr;
2662
2663 /* Check for ring index overlap in the Tx desc ring */
2664 if (tx_desc_curr == tx_desc_used) {
2665 mp->tx_resource_err = 1;
2666 return ETH_QUEUE_LAST_RESOURCE;
2667 }
2668
2669 return ETH_OK;
2670}
2671#endif
2672
2673/*
2674 * eth_tx_return_desc - Free all used Tx descriptors
2675 *
2676 * DESCRIPTION:
2677 * This routine returns the transmitted packet information to the caller.
2678 * It uses the 'first' index to support Tx desc return in case a transmit
2679 * of a packet spanned over multiple buffer still in process.
2680 * In case the Tx queue was in "resource error" condition, where there are
2681 * no available Tx resources, the function resets the resource error flag.
2682 *
2683 * INPUT:
2684 * struct mv643xx_private *mp Ethernet Port Control srtuct.
2685 * struct pkt_info *p_pkt_info User packet buffer.
2686 *
2687 * OUTPUT:
2688 * Tx ring 'first' and 'used' indexes are updated.
2689 *
2690 * RETURN:
8f518703
DF
2691 * ETH_OK on success
2692 * ETH_ERROR otherwise.
1da177e4
LT
2693 *
2694 */
2695static ETH_FUNC_RET_STATUS eth_tx_return_desc(struct mv643xx_private *mp,
2696 struct pkt_info *p_pkt_info)
2697{
2698 int tx_desc_used;
8f518703
DF
2699 int tx_busy_desc;
2700 struct eth_tx_desc *p_tx_desc_used;
2701 unsigned int command_status;
2702 unsigned long flags;
2703 int err = ETH_OK;
2704
2705 spin_lock_irqsave(&mp->lock, flags);
2706
1da177e4 2707#ifdef MV643XX_CHECKSUM_OFFLOAD_TX
8f518703 2708 tx_busy_desc = mp->tx_first_desc_q;
1da177e4 2709#else
8f518703 2710 tx_busy_desc = mp->tx_curr_desc_q;
1da177e4 2711#endif
1da177e4
LT
2712
2713 /* Get the Tx Desc ring indexes */
2714 tx_desc_used = mp->tx_used_desc_q;
2715
2716 p_tx_desc_used = &mp->p_tx_desc_area[tx_desc_used];
2717
2718 /* Sanity check */
8f518703
DF
2719 if (p_tx_desc_used == NULL) {
2720 err = ETH_ERROR;
2721 goto out;
2722 }
1da177e4
LT
2723
2724 /* Stop release. About to overlap the current available Tx descriptor */
8f518703
DF
2725 if (tx_desc_used == tx_busy_desc && !mp->tx_resource_err) {
2726 err = ETH_ERROR;
2727 goto out;
2728 }
1da177e4
LT
2729
2730 command_status = p_tx_desc_used->cmd_sts;
2731
2732 /* Still transmitting... */
8f518703
DF
2733 if (command_status & (ETH_BUFFER_OWNED_BY_DMA)) {
2734 err = ETH_ERROR;
2735 goto out;
2736 }
1da177e4
LT
2737
2738 /* Pass the packet information to the caller */
2739 p_pkt_info->cmd_sts = command_status;
2740 p_pkt_info->return_info = mp->tx_skb[tx_desc_used];
4eaa3cb3
PG
2741 p_pkt_info->buf_ptr = p_tx_desc_used->buf_ptr;
2742 p_pkt_info->byte_cnt = p_tx_desc_used->byte_cnt;
1da177e4
LT
2743 mp->tx_skb[tx_desc_used] = NULL;
2744
2745 /* Update the next descriptor to release. */
2746 mp->tx_used_desc_q = (tx_desc_used + 1) % mp->tx_ring_size;
2747
2748 /* Any Tx return cancels the Tx resource error status */
2749 mp->tx_resource_err = 0;
2750
f98e36f1
DF
2751 BUG_ON(mp->tx_desc_count == 0);
2752 mp->tx_desc_count--;
b111ceb6 2753
8f518703
DF
2754out:
2755 spin_unlock_irqrestore(&mp->lock, flags);
2756
2757 return err;
1da177e4
LT
2758}
2759
2760/*
2761 * eth_port_receive - Get received information from Rx ring.
2762 *
2763 * DESCRIPTION:
2764 * This routine returns the received data to the caller. There is no
2765 * data copying during routine operation. All information is returned
2766 * using pointer to packet information struct passed from the caller.
2767 * If the routine exhausts Rx ring resources then the resource error flag
2768 * is set.
2769 *
2770 * INPUT:
2771 * struct mv643xx_private *mp Ethernet Port Control srtuct.
2772 * struct pkt_info *p_pkt_info User packet buffer.
2773 *
2774 * OUTPUT:
2775 * Rx ring current and used indexes are updated.
2776 *
2777 * RETURN:
2778 * ETH_ERROR in case the routine can not access Rx desc ring.
2779 * ETH_QUEUE_FULL if Rx ring resources are exhausted.
2780 * ETH_END_OF_JOB if there is no received data.
2781 * ETH_OK otherwise.
2782 */
2783static ETH_FUNC_RET_STATUS eth_port_receive(struct mv643xx_private *mp,
2784 struct pkt_info *p_pkt_info)
2785{
2786 int rx_next_curr_desc, rx_curr_desc, rx_used_desc;
2787 volatile struct eth_rx_desc *p_rx_desc;
2788 unsigned int command_status;
8f518703 2789 unsigned long flags;
1da177e4
LT
2790
2791 /* Do not process Rx ring in case of Rx ring resource error */
2792 if (mp->rx_resource_err)
2793 return ETH_QUEUE_FULL;
2794
8f518703
DF
2795 spin_lock_irqsave(&mp->lock, flags);
2796
1da177e4
LT
2797 /* Get the Rx Desc ring 'curr and 'used' indexes */
2798 rx_curr_desc = mp->rx_curr_desc_q;
2799 rx_used_desc = mp->rx_used_desc_q;
2800
2801 p_rx_desc = &mp->p_rx_desc_area[rx_curr_desc];
2802
2803 /* The following parameters are used to save readings from memory */
2804 command_status = p_rx_desc->cmd_sts;
2805 rmb();
2806
2807 /* Nothing to receive... */
8f518703
DF
2808 if (command_status & (ETH_BUFFER_OWNED_BY_DMA)) {
2809 spin_unlock_irqrestore(&mp->lock, flags);
1da177e4 2810 return ETH_END_OF_JOB;
8f518703 2811 }
1da177e4
LT
2812
2813 p_pkt_info->byte_cnt = (p_rx_desc->byte_cnt) - RX_BUF_OFFSET;
2814 p_pkt_info->cmd_sts = command_status;
2815 p_pkt_info->buf_ptr = (p_rx_desc->buf_ptr) + RX_BUF_OFFSET;
2816 p_pkt_info->return_info = mp->rx_skb[rx_curr_desc];
2817 p_pkt_info->l4i_chk = p_rx_desc->buf_size;
2818
b4de9051
DF
2819 /*
2820 * Clean the return info field to indicate that the
2821 * packet has been moved to the upper layers
2822 */
1da177e4
LT
2823 mp->rx_skb[rx_curr_desc] = NULL;
2824
2825 /* Update current index in data structure */
2826 rx_next_curr_desc = (rx_curr_desc + 1) % mp->rx_ring_size;
2827 mp->rx_curr_desc_q = rx_next_curr_desc;
2828
2829 /* Rx descriptors exhausted. Set the Rx ring resource error flag */
2830 if (rx_next_curr_desc == rx_used_desc)
2831 mp->rx_resource_err = 1;
2832
8f518703
DF
2833 spin_unlock_irqrestore(&mp->lock, flags);
2834
1da177e4
LT
2835 return ETH_OK;
2836}
2837
2838/*
2839 * eth_rx_return_buff - Returns a Rx buffer back to the Rx ring.
2840 *
2841 * DESCRIPTION:
2842 * This routine returns a Rx buffer back to the Rx ring. It retrieves the
2843 * next 'used' descriptor and attached the returned buffer to it.
2844 * In case the Rx ring was in "resource error" condition, where there are
2845 * no available Rx resources, the function resets the resource error flag.
2846 *
2847 * INPUT:
2848 * struct mv643xx_private *mp Ethernet Port Control srtuct.
2849 * struct pkt_info *p_pkt_info Information on returned buffer.
2850 *
2851 * OUTPUT:
2852 * New available Rx resource in Rx descriptor ring.
2853 *
2854 * RETURN:
2855 * ETH_ERROR in case the routine can not access Rx desc ring.
2856 * ETH_OK otherwise.
2857 */
2858static ETH_FUNC_RET_STATUS eth_rx_return_buff(struct mv643xx_private *mp,
2859 struct pkt_info *p_pkt_info)
2860{
2861 int used_rx_desc; /* Where to return Rx resource */
2862 volatile struct eth_rx_desc *p_used_rx_desc;
8f518703
DF
2863 unsigned long flags;
2864
2865 spin_lock_irqsave(&mp->lock, flags);
1da177e4
LT
2866
2867 /* Get 'used' Rx descriptor */
2868 used_rx_desc = mp->rx_used_desc_q;
2869 p_used_rx_desc = &mp->p_rx_desc_area[used_rx_desc];
2870
2871 p_used_rx_desc->buf_ptr = p_pkt_info->buf_ptr;
2872 p_used_rx_desc->buf_size = p_pkt_info->byte_cnt;
2873 mp->rx_skb[used_rx_desc] = p_pkt_info->return_info;
2874
2875 /* Flush the write pipe */
2876
2877 /* Return the descriptor to DMA ownership */
2878 wmb();
2879 p_used_rx_desc->cmd_sts =
2880 ETH_BUFFER_OWNED_BY_DMA | ETH_RX_ENABLE_INTERRUPT;
2881 wmb();
2882
2883 /* Move the used descriptor pointer to the next descriptor */
2884 mp->rx_used_desc_q = (used_rx_desc + 1) % mp->rx_ring_size;
2885
2886 /* Any Rx return cancels the Rx resource error status */
2887 mp->rx_resource_err = 0;
2888
8f518703
DF
2889 spin_unlock_irqrestore(&mp->lock, flags);
2890
1da177e4
LT
2891 return ETH_OK;
2892}
2893
2894/************* Begin ethtool support *************************/
2895
2896struct mv643xx_stats {
2897 char stat_string[ETH_GSTRING_LEN];
2898 int sizeof_stat;
2899 int stat_offset;
2900};
2901
2902#define MV643XX_STAT(m) sizeof(((struct mv643xx_private *)0)->m), \
b4de9051 2903 offsetof(struct mv643xx_private, m)
1da177e4
LT
2904
2905static const struct mv643xx_stats mv643xx_gstrings_stats[] = {
2906 { "rx_packets", MV643XX_STAT(stats.rx_packets) },
2907 { "tx_packets", MV643XX_STAT(stats.tx_packets) },
2908 { "rx_bytes", MV643XX_STAT(stats.rx_bytes) },
2909 { "tx_bytes", MV643XX_STAT(stats.tx_bytes) },
2910 { "rx_errors", MV643XX_STAT(stats.rx_errors) },
2911 { "tx_errors", MV643XX_STAT(stats.tx_errors) },
2912 { "rx_dropped", MV643XX_STAT(stats.rx_dropped) },
2913 { "tx_dropped", MV643XX_STAT(stats.tx_dropped) },
2914 { "good_octets_received", MV643XX_STAT(mib_counters.good_octets_received) },
2915 { "bad_octets_received", MV643XX_STAT(mib_counters.bad_octets_received) },
2916 { "internal_mac_transmit_err", MV643XX_STAT(mib_counters.internal_mac_transmit_err) },
2917 { "good_frames_received", MV643XX_STAT(mib_counters.good_frames_received) },
2918 { "bad_frames_received", MV643XX_STAT(mib_counters.bad_frames_received) },
2919 { "broadcast_frames_received", MV643XX_STAT(mib_counters.broadcast_frames_received) },
2920 { "multicast_frames_received", MV643XX_STAT(mib_counters.multicast_frames_received) },
2921 { "frames_64_octets", MV643XX_STAT(mib_counters.frames_64_octets) },
2922 { "frames_65_to_127_octets", MV643XX_STAT(mib_counters.frames_65_to_127_octets) },
2923 { "frames_128_to_255_octets", MV643XX_STAT(mib_counters.frames_128_to_255_octets) },
2924 { "frames_256_to_511_octets", MV643XX_STAT(mib_counters.frames_256_to_511_octets) },
2925 { "frames_512_to_1023_octets", MV643XX_STAT(mib_counters.frames_512_to_1023_octets) },
2926 { "frames_1024_to_max_octets", MV643XX_STAT(mib_counters.frames_1024_to_max_octets) },
2927 { "good_octets_sent", MV643XX_STAT(mib_counters.good_octets_sent) },
2928 { "good_frames_sent", MV643XX_STAT(mib_counters.good_frames_sent) },
2929 { "excessive_collision", MV643XX_STAT(mib_counters.excessive_collision) },
2930 { "multicast_frames_sent", MV643XX_STAT(mib_counters.multicast_frames_sent) },
2931 { "broadcast_frames_sent", MV643XX_STAT(mib_counters.broadcast_frames_sent) },
2932 { "unrec_mac_control_received", MV643XX_STAT(mib_counters.unrec_mac_control_received) },
2933 { "fc_sent", MV643XX_STAT(mib_counters.fc_sent) },
2934 { "good_fc_received", MV643XX_STAT(mib_counters.good_fc_received) },
2935 { "bad_fc_received", MV643XX_STAT(mib_counters.bad_fc_received) },
2936 { "undersize_received", MV643XX_STAT(mib_counters.undersize_received) },
2937 { "fragments_received", MV643XX_STAT(mib_counters.fragments_received) },
2938 { "oversize_received", MV643XX_STAT(mib_counters.oversize_received) },
2939 { "jabber_received", MV643XX_STAT(mib_counters.jabber_received) },
2940 { "mac_receive_error", MV643XX_STAT(mib_counters.mac_receive_error) },
2941 { "bad_crc_event", MV643XX_STAT(mib_counters.bad_crc_event) },
2942 { "collision", MV643XX_STAT(mib_counters.collision) },
2943 { "late_collision", MV643XX_STAT(mib_counters.late_collision) },
2944};
2945
2946#define MV643XX_STATS_LEN \
2947 sizeof(mv643xx_gstrings_stats) / sizeof(struct mv643xx_stats)
2948
2949static int
2950mv643xx_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
2951{
2952 struct mv643xx_private *mp = netdev->priv;
2953 int port_num = mp->port_num;
2954 int autoneg = eth_port_autoneg_supported(port_num);
2955 int mode_10_bit;
2956 int auto_duplex;
2957 int half_duplex = 0;
2958 int full_duplex = 0;
2959 int auto_speed;
2960 int speed_10 = 0;
2961 int speed_100 = 0;
2962 int speed_1000 = 0;
2963
2964 u32 pcs = mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num));
2965 u32 psr = mv_read(MV643XX_ETH_PORT_STATUS_REG(port_num));
2966
2967 mode_10_bit = psr & MV643XX_ETH_PORT_STATUS_MODE_10_BIT;
2968
2969 if (mode_10_bit) {
2970 ecmd->supported = SUPPORTED_10baseT_Half;
2971 } else {
2972 ecmd->supported = (SUPPORTED_10baseT_Half |
2973 SUPPORTED_10baseT_Full |
2974 SUPPORTED_100baseT_Half |
2975 SUPPORTED_100baseT_Full |
2976 SUPPORTED_1000baseT_Full |
2977 (autoneg ? SUPPORTED_Autoneg : 0) |
2978 SUPPORTED_TP);
2979
2980 auto_duplex = !(pcs & MV643XX_ETH_DISABLE_AUTO_NEG_FOR_DUPLX);
2981 auto_speed = !(pcs & MV643XX_ETH_DISABLE_AUTO_NEG_SPEED_GMII);
2982
2983 ecmd->advertising = ADVERTISED_TP;
2984
2985 if (autoneg) {
2986 ecmd->advertising |= ADVERTISED_Autoneg;
2987
2988 if (auto_duplex) {
2989 half_duplex = 1;
2990 full_duplex = 1;
2991 } else {
2992 if (pcs & MV643XX_ETH_SET_FULL_DUPLEX_MODE)
2993 full_duplex = 1;
2994 else
2995 half_duplex = 1;
2996 }
2997
2998 if (auto_speed) {
2999 speed_10 = 1;
3000 speed_100 = 1;
3001 speed_1000 = 1;
3002 } else {
3003 if (pcs & MV643XX_ETH_SET_GMII_SPEED_TO_1000)
3004 speed_1000 = 1;
3005 else if (pcs & MV643XX_ETH_SET_MII_SPEED_TO_100)
3006 speed_100 = 1;
3007 else
3008 speed_10 = 1;
3009 }
3010
3011 if (speed_10 & half_duplex)
3012 ecmd->advertising |= ADVERTISED_10baseT_Half;
3013 if (speed_10 & full_duplex)
3014 ecmd->advertising |= ADVERTISED_10baseT_Full;
3015 if (speed_100 & half_duplex)
3016 ecmd->advertising |= ADVERTISED_100baseT_Half;
3017 if (speed_100 & full_duplex)
3018 ecmd->advertising |= ADVERTISED_100baseT_Full;
3019 if (speed_1000)
3020 ecmd->advertising |= ADVERTISED_1000baseT_Full;
3021 }
3022 }
3023
3024 ecmd->port = PORT_TP;
3025 ecmd->phy_address = ethernet_phy_get(port_num);
3026
3027 ecmd->transceiver = XCVR_EXTERNAL;
3028
3029 if (netif_carrier_ok(netdev)) {
3030 if (mode_10_bit)
3031 ecmd->speed = SPEED_10;
3032 else {
3033 if (psr & MV643XX_ETH_PORT_STATUS_GMII_1000)
3034 ecmd->speed = SPEED_1000;
3035 else if (psr & MV643XX_ETH_PORT_STATUS_MII_100)
3036 ecmd->speed = SPEED_100;
3037 else
3038 ecmd->speed = SPEED_10;
3039 }
3040
3041 if (psr & MV643XX_ETH_PORT_STATUS_FULL_DUPLEX)
3042 ecmd->duplex = DUPLEX_FULL;
3043 else
3044 ecmd->duplex = DUPLEX_HALF;
3045 } else {
3046 ecmd->speed = -1;
3047 ecmd->duplex = -1;
3048 }
3049
3050 ecmd->autoneg = autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE;
3051 return 0;
3052}
3053
b4de9051
DF
3054static void mv643xx_get_drvinfo(struct net_device *netdev,
3055 struct ethtool_drvinfo *drvinfo)
1da177e4
LT
3056{
3057 strncpy(drvinfo->driver, mv643xx_driver_name, 32);
3058 strncpy(drvinfo->version, mv643xx_driver_version, 32);
3059 strncpy(drvinfo->fw_version, "N/A", 32);
3060 strncpy(drvinfo->bus_info, "mv643xx", 32);
3061 drvinfo->n_stats = MV643XX_STATS_LEN;
3062}
3063
b4de9051 3064static int mv643xx_get_stats_count(struct net_device *netdev)
1da177e4
LT
3065{
3066 return MV643XX_STATS_LEN;
3067}
3068
b4de9051
DF
3069static void mv643xx_get_ethtool_stats(struct net_device *netdev,
3070 struct ethtool_stats *stats, uint64_t *data)
1da177e4
LT
3071{
3072 struct mv643xx_private *mp = netdev->priv;
3073 int i;
3074
3075 eth_update_mib_counters(mp);
3076
b4de9051 3077 for (i = 0; i < MV643XX_STATS_LEN; i++) {
1da177e4 3078 char *p = (char *)mp+mv643xx_gstrings_stats[i].stat_offset;
b4de9051 3079 data[i] = (mv643xx_gstrings_stats[i].sizeof_stat ==
1da177e4
LT
3080 sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
3081 }
3082}
3083
b4de9051
DF
3084static void mv643xx_get_strings(struct net_device *netdev, uint32_t stringset,
3085 uint8_t *data)
1da177e4
LT
3086{
3087 int i;
3088
3089 switch(stringset) {
3090 case ETH_SS_STATS:
3091 for (i=0; i < MV643XX_STATS_LEN; i++) {
b4de9051
DF
3092 memcpy(data + i * ETH_GSTRING_LEN,
3093 mv643xx_gstrings_stats[i].stat_string,
3094 ETH_GSTRING_LEN);
1da177e4
LT
3095 }
3096 break;
3097 }
3098}
3099
3100static struct ethtool_ops mv643xx_ethtool_ops = {
3101 .get_settings = mv643xx_get_settings,
3102 .get_drvinfo = mv643xx_get_drvinfo,
3103 .get_link = ethtool_op_get_link,
3104 .get_sg = ethtool_op_get_sg,
3105 .set_sg = ethtool_op_set_sg,
3106 .get_strings = mv643xx_get_strings,
3107 .get_stats_count = mv643xx_get_stats_count,
3108 .get_ethtool_stats = mv643xx_get_ethtool_stats,
3109};
3110
3111/************* End ethtool support *************************/