[PATCH] mv643xx_eth: Select CONFIG_MII on CONFIG_MV643XX_ETH
[linux-2.6-block.git] / drivers / net / mv643xx_eth.c
CommitLineData
1da177e4
LT
1/*
2 * drivers/net/mv643xx_eth.c - Driver for MV643XX ethernet ports
3 * Copyright (C) 2002 Matthew Dharm <mdharm@momenco.com>
4 *
5 * Based on the 64360 driver from:
6 * Copyright (C) 2002 rabeeh@galileo.co.il
7 *
8 * Copyright (C) 2003 PMC-Sierra, Inc.,
3bb8a18a 9 * written by Manish Lachwani
1da177e4
LT
10 *
11 * Copyright (C) 2003 Ralf Baechle <ralf@linux-mips.org>
12 *
13 * Copyright (C) 2004-2005 MontaVista Software, Inc.
14 * Dale Farnsworth <dale@farnsworth.org>
15 *
16 * Copyright (C) 2004 Steven J. Hill <sjhill1@rockwellcollins.com>
17 * <sjhill@realitydiluted.com>
18 *
19 * This program is free software; you can redistribute it and/or
20 * modify it under the terms of the GNU General Public License
21 * as published by the Free Software Foundation; either version 2
22 * of the License, or (at your option) any later version.
23 *
24 * This program is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27 * GNU General Public License for more details.
28 *
29 * You should have received a copy of the GNU General Public License
30 * along with this program; if not, write to the Free Software
31 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
32 */
33#include <linux/init.h>
34#include <linux/dma-mapping.h>
b6298c22
AV
35#include <linux/in.h>
36#include <linux/ip.h>
1da177e4
LT
37#include <linux/tcp.h>
38#include <linux/udp.h>
39#include <linux/etherdevice.h>
40
41#include <linux/bitops.h>
42#include <linux/delay.h>
43#include <linux/ethtool.h>
d052d1be
RK
44#include <linux/platform_device.h>
45
1da177e4
LT
46#include <asm/io.h>
47#include <asm/types.h>
48#include <asm/pgtable.h>
49#include <asm/system.h>
50#include <asm/delay.h>
51#include "mv643xx_eth.h"
52
53/*
54 * The first part is the high level driver of the gigE ethernet ports.
55 */
56
57/* Constants */
58#define VLAN_HLEN 4
59#define FCS_LEN 4
b44cd572
DF
60#define DMA_ALIGN 8 /* hw requires 8-byte alignment */
61#define HW_IP_ALIGN 2 /* hw aligns IP header */
62#define WRAP HW_IP_ALIGN + ETH_HLEN + VLAN_HLEN + FCS_LEN
1da177e4
LT
63#define RX_SKB_SIZE ((dev->mtu + WRAP + 7) & ~0x7)
64
c2e5b352
DF
65#define INT_UNMASK_ALL 0x0007ffff
66#define INT_UNMASK_ALL_EXT 0x0011ffff
67#define INT_MASK_ALL 0x00000000
68#define INT_MASK_ALL_EXT 0x00000000
1da177e4
LT
69#define INT_CAUSE_CHECK_BITS INT_CAUSE_UNMASK_ALL
70#define INT_CAUSE_CHECK_BITS_EXT INT_CAUSE_UNMASK_ALL_EXT
1da177e4
LT
71
72#ifdef MV643XX_CHECKSUM_OFFLOAD_TX
73#define MAX_DESCS_PER_SKB (MAX_SKB_FRAGS + 1)
74#else
75#define MAX_DESCS_PER_SKB 1
76#endif
77
78#define PHY_WAIT_ITERATIONS 1000 /* 1000 iterations * 10uS = 10mS max */
79#define PHY_WAIT_MICRO_SECONDS 10
80
81/* Static function declarations */
1da177e4
LT
82static void eth_port_uc_addr_get(struct net_device *dev,
83 unsigned char *MacAddr);
16e03018 84static void eth_port_set_multicast_list(struct net_device *);
9f8dd319 85static void mv643xx_eth_port_enable_tx(unsigned int port_num,
12a87c64 86 unsigned int queues);
9f8dd319 87static void mv643xx_eth_port_enable_rx(unsigned int port_num,
12a87c64 88 unsigned int queues);
9f8dd319
DF
89static unsigned int mv643xx_eth_port_disable_tx(unsigned int port_num);
90static unsigned int mv643xx_eth_port_disable_rx(unsigned int port_num);
ab4384a6
DF
91static int mv643xx_eth_open(struct net_device *);
92static int mv643xx_eth_stop(struct net_device *);
1da177e4
LT
93static int mv643xx_eth_change_mtu(struct net_device *, int);
94static struct net_device_stats *mv643xx_eth_get_stats(struct net_device *);
95static void eth_port_init_mac_tables(unsigned int eth_port_num);
96#ifdef MV643XX_NAPI
97static int mv643xx_poll(struct net_device *dev, int *budget);
98#endif
c28a4f89 99static int ethernet_phy_get(unsigned int eth_port_num);
1da177e4
LT
100static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr);
101static int ethernet_phy_detect(unsigned int eth_port_num);
c28a4f89
JC
102static int mv643xx_mdio_read(struct net_device *dev, int phy_id, int location);
103static void mv643xx_mdio_write(struct net_device *dev, int phy_id, int location, int val);
d0412d96 104static int mv643xx_eth_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd);
1da177e4
LT
105static struct ethtool_ops mv643xx_ethtool_ops;
106
107static char mv643xx_driver_name[] = "mv643xx_eth";
108static char mv643xx_driver_version[] = "1.0";
109
110static void __iomem *mv643xx_eth_shared_base;
111
112/* used to protect MV643XX_ETH_SMI_REG, which is shared across ports */
a9f6a0dd 113static DEFINE_SPINLOCK(mv643xx_eth_phy_lock);
1da177e4
LT
114
115static inline u32 mv_read(int offset)
116{
dc074a8a 117 void __iomem *reg_base;
1da177e4
LT
118
119 reg_base = mv643xx_eth_shared_base - MV643XX_ETH_SHARED_REGS;
120
121 return readl(reg_base + offset);
122}
123
124static inline void mv_write(int offset, u32 data)
125{
dc074a8a 126 void __iomem *reg_base;
1da177e4
LT
127
128 reg_base = mv643xx_eth_shared_base - MV643XX_ETH_SHARED_REGS;
129 writel(data, reg_base + offset);
130}
131
132/*
133 * Changes MTU (maximum transfer unit) of the gigabit ethenret port
134 *
135 * Input : pointer to ethernet interface network device structure
136 * new mtu size
137 * Output : 0 upon success, -EINVAL upon failure
138 */
139static int mv643xx_eth_change_mtu(struct net_device *dev, int new_mtu)
140{
8f518703 141 if ((new_mtu > 9500) || (new_mtu < 64))
1da177e4 142 return -EINVAL;
1da177e4
LT
143
144 dev->mtu = new_mtu;
145 /*
146 * Stop then re-open the interface. This will allocate RX skb's with
147 * the new MTU.
148 * There is a possible danger that the open will not successed, due
149 * to memory is full, which might fail the open function.
150 */
151 if (netif_running(dev)) {
ab4384a6
DF
152 mv643xx_eth_stop(dev);
153 if (mv643xx_eth_open(dev))
1da177e4
LT
154 printk(KERN_ERR
155 "%s: Fatal error on opening device\n",
156 dev->name);
157 }
158
1da177e4
LT
159 return 0;
160}
161
162/*
163 * mv643xx_eth_rx_task
164 *
165 * Fills / refills RX queue on a certain gigabit ethernet port
166 *
167 * Input : pointer to ethernet interface network device structure
168 * Output : N/A
169 */
170static void mv643xx_eth_rx_task(void *data)
171{
172 struct net_device *dev = (struct net_device *)data;
173 struct mv643xx_private *mp = netdev_priv(dev);
174 struct pkt_info pkt_info;
175 struct sk_buff *skb;
b44cd572 176 int unaligned;
1da177e4
LT
177
178 if (test_and_set_bit(0, &mp->rx_task_busy))
179 panic("%s: Error in test_set_bit / clear_bit", dev->name);
180
f98e36f1 181 while (mp->rx_desc_count < (mp->rx_ring_size - 5)) {
b44cd572 182 skb = dev_alloc_skb(RX_SKB_SIZE + DMA_ALIGN);
1da177e4
LT
183 if (!skb)
184 break;
f98e36f1 185 mp->rx_desc_count++;
b44cd572
DF
186 unaligned = (u32)skb->data & (DMA_ALIGN - 1);
187 if (unaligned)
188 skb_reserve(skb, DMA_ALIGN - unaligned);
1da177e4
LT
189 pkt_info.cmd_sts = ETH_RX_ENABLE_INTERRUPT;
190 pkt_info.byte_cnt = RX_SKB_SIZE;
191 pkt_info.buf_ptr = dma_map_single(NULL, skb->data, RX_SKB_SIZE,
192 DMA_FROM_DEVICE);
193 pkt_info.return_info = skb;
194 if (eth_rx_return_buff(mp, &pkt_info) != ETH_OK) {
195 printk(KERN_ERR
196 "%s: Error allocating RX Ring\n", dev->name);
197 break;
198 }
b44cd572 199 skb_reserve(skb, HW_IP_ALIGN);
1da177e4
LT
200 }
201 clear_bit(0, &mp->rx_task_busy);
202 /*
203 * If RX ring is empty of SKB, set a timer to try allocating
204 * again in a later time .
205 */
f98e36f1 206 if ((mp->rx_desc_count == 0) && (mp->rx_timer_flag == 0)) {
1da177e4
LT
207 printk(KERN_INFO "%s: Rx ring is empty\n", dev->name);
208 /* After 100mSec */
209 mp->timeout.expires = jiffies + (HZ / 10);
210 add_timer(&mp->timeout);
211 mp->rx_timer_flag = 1;
212 }
213#ifdef MV643XX_RX_QUEUE_FILL_ON_TASK
214 else {
215 /* Return interrupts */
216 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(mp->port_num),
c2e5b352 217 INT_UNMASK_ALL);
1da177e4
LT
218 }
219#endif
220}
221
222/*
223 * mv643xx_eth_rx_task_timer_wrapper
224 *
225 * Timer routine to wake up RX queue filling task. This function is
226 * used only in case the RX queue is empty, and all alloc_skb has
227 * failed (due to out of memory event).
228 *
229 * Input : pointer to ethernet interface network device structure
230 * Output : N/A
231 */
232static void mv643xx_eth_rx_task_timer_wrapper(unsigned long data)
233{
234 struct net_device *dev = (struct net_device *)data;
235 struct mv643xx_private *mp = netdev_priv(dev);
236
237 mp->rx_timer_flag = 0;
238 mv643xx_eth_rx_task((void *)data);
239}
240
241/*
242 * mv643xx_eth_update_mac_address
243 *
244 * Update the MAC address of the port in the address table
245 *
246 * Input : pointer to ethernet interface network device structure
247 * Output : N/A
248 */
249static void mv643xx_eth_update_mac_address(struct net_device *dev)
250{
251 struct mv643xx_private *mp = netdev_priv(dev);
252 unsigned int port_num = mp->port_num;
253
254 eth_port_init_mac_tables(port_num);
ed9b5d45 255 eth_port_uc_addr_set(port_num, dev->dev_addr);
1da177e4
LT
256}
257
258/*
259 * mv643xx_eth_set_rx_mode
260 *
261 * Change from promiscuos to regular rx mode
262 *
263 * Input : pointer to ethernet interface network device structure
264 * Output : N/A
265 */
266static void mv643xx_eth_set_rx_mode(struct net_device *dev)
267{
268 struct mv643xx_private *mp = netdev_priv(dev);
01999873 269 u32 config_reg;
1da177e4 270
01999873 271 config_reg = mv_read(MV643XX_ETH_PORT_CONFIG_REG(mp->port_num));
1da177e4 272 if (dev->flags & IFF_PROMISC)
01999873 273 config_reg |= (u32) MV643XX_ETH_UNICAST_PROMISCUOUS_MODE;
1da177e4 274 else
01999873
DF
275 config_reg &= ~(u32) MV643XX_ETH_UNICAST_PROMISCUOUS_MODE;
276 mv_write(MV643XX_ETH_PORT_CONFIG_REG(mp->port_num), config_reg);
16e03018
DF
277
278 eth_port_set_multicast_list(dev);
1da177e4
LT
279}
280
281/*
282 * mv643xx_eth_set_mac_address
283 *
284 * Change the interface's mac address.
285 * No special hardware thing should be done because interface is always
286 * put in promiscuous mode.
287 *
288 * Input : pointer to ethernet interface network device structure and
289 * a pointer to the designated entry to be added to the cache.
290 * Output : zero upon success, negative upon failure
291 */
292static int mv643xx_eth_set_mac_address(struct net_device *dev, void *addr)
293{
294 int i;
295
296 for (i = 0; i < 6; i++)
297 /* +2 is for the offset of the HW addr type */
298 dev->dev_addr[i] = ((unsigned char *)addr)[i + 2];
299 mv643xx_eth_update_mac_address(dev);
300 return 0;
301}
302
303/*
304 * mv643xx_eth_tx_timeout
305 *
306 * Called upon a timeout on transmitting a packet
307 *
308 * Input : pointer to ethernet interface network device structure.
309 * Output : N/A
310 */
311static void mv643xx_eth_tx_timeout(struct net_device *dev)
312{
313 struct mv643xx_private *mp = netdev_priv(dev);
314
315 printk(KERN_INFO "%s: TX timeout ", dev->name);
316
317 /* Do the reset outside of interrupt context */
318 schedule_work(&mp->tx_timeout_task);
319}
320
321/*
322 * mv643xx_eth_tx_timeout_task
323 *
324 * Actual routine to reset the adapter when a timeout on Tx has occurred
325 */
326static void mv643xx_eth_tx_timeout_task(struct net_device *dev)
327{
328 struct mv643xx_private *mp = netdev_priv(dev);
329
330 netif_device_detach(dev);
331 eth_port_reset(mp->port_num);
ed9b5d45 332 eth_port_start(dev);
1da177e4
LT
333 netif_device_attach(dev);
334}
335
336/*
337 * mv643xx_eth_free_tx_queue
338 *
339 * Input : dev - a pointer to the required interface
340 *
341 * Output : 0 if was able to release skb , nonzero otherwise
342 */
343static int mv643xx_eth_free_tx_queue(struct net_device *dev,
344 unsigned int eth_int_cause_ext)
345{
346 struct mv643xx_private *mp = netdev_priv(dev);
347 struct net_device_stats *stats = &mp->stats;
348 struct pkt_info pkt_info;
349 int released = 1;
350
351 if (!(eth_int_cause_ext & (BIT0 | BIT8)))
352 return released;
353
1da177e4
LT
354 /* Check only queue 0 */
355 while (eth_tx_return_desc(mp, &pkt_info) == ETH_OK) {
356 if (pkt_info.cmd_sts & BIT0) {
357 printk("%s: Error in TX\n", dev->name);
358 stats->tx_errors++;
359 }
360
cb415d30
PG
361 if (pkt_info.cmd_sts & ETH_TX_FIRST_DESC)
362 dma_unmap_single(NULL, pkt_info.buf_ptr,
363 pkt_info.byte_cnt,
364 DMA_TO_DEVICE);
365 else
366 dma_unmap_page(NULL, pkt_info.buf_ptr,
367 pkt_info.byte_cnt,
368 DMA_TO_DEVICE);
1da177e4 369
cb415d30 370 if (pkt_info.return_info) {
1da177e4
LT
371 dev_kfree_skb_irq(pkt_info.return_info);
372 released = 0;
cb415d30 373 }
1da177e4
LT
374 }
375
1da177e4
LT
376 return released;
377}
378
379/*
380 * mv643xx_eth_receive
381 *
382 * This function is forward packets that are received from the port's
383 * queues toward kernel core or FastRoute them to another interface.
384 *
385 * Input : dev - a pointer to the required interface
386 * max - maximum number to receive (0 means unlimted)
387 *
388 * Output : number of served packets
389 */
390#ifdef MV643XX_NAPI
391static int mv643xx_eth_receive_queue(struct net_device *dev, int budget)
392#else
393static int mv643xx_eth_receive_queue(struct net_device *dev)
394#endif
395{
396 struct mv643xx_private *mp = netdev_priv(dev);
397 struct net_device_stats *stats = &mp->stats;
398 unsigned int received_packets = 0;
399 struct sk_buff *skb;
400 struct pkt_info pkt_info;
401
402#ifdef MV643XX_NAPI
b1dd9ca1 403 while (budget-- > 0 && eth_port_receive(mp, &pkt_info) == ETH_OK) {
1da177e4
LT
404#else
405 while (eth_port_receive(mp, &pkt_info) == ETH_OK) {
406#endif
f98e36f1 407 mp->rx_desc_count--;
1da177e4 408 received_packets++;
b1dd9ca1 409
1da177e4
LT
410 /* Update statistics. Note byte count includes 4 byte CRC count */
411 stats->rx_packets++;
412 stats->rx_bytes += pkt_info.byte_cnt;
413 skb = pkt_info.return_info;
414 /*
415 * In case received a packet without first / last bits on OR
416 * the error summary bit is on, the packets needs to be dropeed.
417 */
418 if (((pkt_info.cmd_sts
419 & (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC)) !=
420 (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC))
421 || (pkt_info.cmd_sts & ETH_ERROR_SUMMARY)) {
422 stats->rx_dropped++;
423 if ((pkt_info.cmd_sts & (ETH_RX_FIRST_DESC |
424 ETH_RX_LAST_DESC)) !=
425 (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC)) {
426 if (net_ratelimit())
427 printk(KERN_ERR
428 "%s: Received packet spread "
429 "on multiple descriptors\n",
430 dev->name);
431 }
432 if (pkt_info.cmd_sts & ETH_ERROR_SUMMARY)
433 stats->rx_errors++;
434
435 dev_kfree_skb_irq(skb);
436 } else {
437 /*
438 * The -4 is for the CRC in the trailer of the
439 * received packet
440 */
441 skb_put(skb, pkt_info.byte_cnt - 4);
442 skb->dev = dev;
443
444 if (pkt_info.cmd_sts & ETH_LAYER_4_CHECKSUM_OK) {
445 skb->ip_summed = CHECKSUM_UNNECESSARY;
446 skb->csum = htons(
447 (pkt_info.cmd_sts & 0x0007fff8) >> 3);
448 }
449 skb->protocol = eth_type_trans(skb, dev);
450#ifdef MV643XX_NAPI
451 netif_receive_skb(skb);
452#else
453 netif_rx(skb);
454#endif
455 }
12ad74f8 456 dev->last_rx = jiffies;
1da177e4
LT
457 }
458
459 return received_packets;
460}
461
d0412d96
JC
462/* Set the mv643xx port configuration register for the speed/duplex mode. */
463static void mv643xx_eth_update_pscr(struct net_device *dev,
464 struct ethtool_cmd *ecmd)
465{
466 struct mv643xx_private *mp = netdev_priv(dev);
467 int port_num = mp->port_num;
468 u32 o_pscr, n_pscr;
12a87c64 469 unsigned int queues;
d0412d96
JC
470
471 o_pscr = mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num));
472 n_pscr = o_pscr;
473
474 /* clear speed, duplex and rx buffer size fields */
475 n_pscr &= ~(MV643XX_ETH_SET_MII_SPEED_TO_100 |
476 MV643XX_ETH_SET_GMII_SPEED_TO_1000 |
477 MV643XX_ETH_SET_FULL_DUPLEX_MODE |
478 MV643XX_ETH_MAX_RX_PACKET_MASK);
479
480 if (ecmd->duplex == DUPLEX_FULL)
481 n_pscr |= MV643XX_ETH_SET_FULL_DUPLEX_MODE;
482
483 if (ecmd->speed == SPEED_1000)
484 n_pscr |= MV643XX_ETH_SET_GMII_SPEED_TO_1000 |
485 MV643XX_ETH_MAX_RX_PACKET_9700BYTE;
486 else {
487 if (ecmd->speed == SPEED_100)
488 n_pscr |= MV643XX_ETH_SET_MII_SPEED_TO_100;
489 n_pscr |= MV643XX_ETH_MAX_RX_PACKET_1522BYTE;
490 }
491
492 if (n_pscr != o_pscr) {
493 if ((o_pscr & MV643XX_ETH_SERIAL_PORT_ENABLE) == 0)
494 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
495 n_pscr);
496 else {
12a87c64 497 queues = mv643xx_eth_port_disable_tx(port_num);
d0412d96
JC
498
499 o_pscr &= ~MV643XX_ETH_SERIAL_PORT_ENABLE;
500 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
501 o_pscr);
502 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
503 n_pscr);
504 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
505 n_pscr);
12a87c64
DF
506 if (queues)
507 mv643xx_eth_port_enable_tx(port_num, queues);
d0412d96
JC
508 }
509 }
510}
511
1da177e4
LT
512/*
513 * mv643xx_eth_int_handler
514 *
515 * Main interrupt handler for the gigbit ethernet ports
516 *
517 * Input : irq - irq number (not used)
518 * dev_id - a pointer to the required interface's data structure
519 * regs - not used
520 * Output : N/A
521 */
522
523static irqreturn_t mv643xx_eth_int_handler(int irq, void *dev_id,
b4de9051 524 struct pt_regs *regs)
1da177e4
LT
525{
526 struct net_device *dev = (struct net_device *)dev_id;
527 struct mv643xx_private *mp = netdev_priv(dev);
528 u32 eth_int_cause, eth_int_cause_ext = 0;
529 unsigned int port_num = mp->port_num;
530
531 /* Read interrupt cause registers */
532 eth_int_cause = mv_read(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num)) &
c2e5b352 533 INT_UNMASK_ALL;
1da177e4
LT
534
535 if (eth_int_cause & BIT1)
536 eth_int_cause_ext = mv_read(
537 MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num)) &
c2e5b352 538 INT_UNMASK_ALL_EXT;
1da177e4
LT
539
540#ifdef MV643XX_NAPI
541 if (!(eth_int_cause & 0x0007fffd)) {
542 /* Dont ack the Rx interrupt */
543#endif
544 /*
545 * Clear specific ethernet port intrerrupt registers by
546 * acknowleding relevant bits.
547 */
548 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num),
549 ~eth_int_cause);
550 if (eth_int_cause_ext != 0x0)
551 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG
552 (port_num), ~eth_int_cause_ext);
553
554 /* UDP change : We may need this */
555 if ((eth_int_cause_ext & 0x0000ffff) &&
556 (mv643xx_eth_free_tx_queue(dev, eth_int_cause_ext) == 0) &&
f98e36f1 557 (mp->tx_ring_size > mp->tx_desc_count + MAX_DESCS_PER_SKB))
1da177e4
LT
558 netif_wake_queue(dev);
559#ifdef MV643XX_NAPI
560 } else {
561 if (netif_rx_schedule_prep(dev)) {
562 /* Mask all the interrupts */
c2e5b352
DF
563 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num),
564 INT_MASK_ALL);
565 /* wait for previous write to complete */
566 mv_read(MV643XX_ETH_INTERRUPT_MASK_REG(port_num));
1da177e4
LT
567 __netif_rx_schedule(dev);
568 }
569#else
570 if (eth_int_cause & (BIT2 | BIT11))
571 mv643xx_eth_receive_queue(dev, 0);
572
573 /*
574 * After forwarded received packets to upper layer, add a task
575 * in an interrupts enabled context that refills the RX ring
576 * with skb's.
577 */
578#ifdef MV643XX_RX_QUEUE_FILL_ON_TASK
c2e5b352 579 /* Mask all interrupts on ethernet port */
1da177e4 580 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num),
c2e5b352 581 INT_MASK_ALL);
8f518703
DF
582 /* wait for previous write to take effect */
583 mv_read(MV643XX_ETH_INTERRUPT_MASK_REG(port_num));
584
1da177e4
LT
585 queue_task(&mp->rx_task, &tq_immediate);
586 mark_bh(IMMEDIATE_BH);
587#else
588 mp->rx_task.func(dev);
589#endif
590#endif
591 }
592 /* PHY status changed */
593 if (eth_int_cause_ext & (BIT16 | BIT20)) {
d0412d96
JC
594 struct ethtool_cmd cmd;
595
c28a4f89 596 if (mii_link_ok(&mp->mii)) {
d0412d96
JC
597 mii_ethtool_gset(&mp->mii, &cmd);
598 mv643xx_eth_update_pscr(dev, &cmd);
c28a4f89
JC
599 if (!netif_carrier_ok(dev)) {
600 netif_carrier_on(dev);
d0412d96
JC
601 if (mp->tx_ring_size > mp->tx_desc_count +
602 MAX_DESCS_PER_SKB) {
603 netif_wake_queue(dev);
604 /* Start TX queue */
605 mv643xx_eth_port_enable_tx(port_num, mp->port_tx_queue_command);
606 }
c28a4f89
JC
607 }
608 } else if (netif_carrier_ok(dev)) {
1da177e4 609 netif_stop_queue(dev);
c28a4f89 610 netif_carrier_off(dev);
1da177e4
LT
611 }
612 }
613
614 /*
615 * If no real interrupt occured, exit.
616 * This can happen when using gigE interrupt coalescing mechanism.
617 */
618 if ((eth_int_cause == 0x0) && (eth_int_cause_ext == 0x0))
619 return IRQ_NONE;
620
621 return IRQ_HANDLED;
622}
623
624#ifdef MV643XX_COAL
625
626/*
627 * eth_port_set_rx_coal - Sets coalescing interrupt mechanism on RX path
628 *
629 * DESCRIPTION:
630 * This routine sets the RX coalescing interrupt mechanism parameter.
631 * This parameter is a timeout counter, that counts in 64 t_clk
632 * chunks ; that when timeout event occurs a maskable interrupt
633 * occurs.
634 * The parameter is calculated using the tClk of the MV-643xx chip
635 * , and the required delay of the interrupt in usec.
636 *
637 * INPUT:
638 * unsigned int eth_port_num Ethernet port number
639 * unsigned int t_clk t_clk of the MV-643xx chip in HZ units
640 * unsigned int delay Delay in usec
641 *
642 * OUTPUT:
643 * Interrupt coalescing mechanism value is set in MV-643xx chip.
644 *
645 * RETURN:
646 * The interrupt coalescing value set in the gigE port.
647 *
648 */
649static unsigned int eth_port_set_rx_coal(unsigned int eth_port_num,
650 unsigned int t_clk, unsigned int delay)
651{
652 unsigned int coal = ((t_clk / 1000000) * delay) / 64;
653
654 /* Set RX Coalescing mechanism */
655 mv_write(MV643XX_ETH_SDMA_CONFIG_REG(eth_port_num),
656 ((coal & 0x3fff) << 8) |
657 (mv_read(MV643XX_ETH_SDMA_CONFIG_REG(eth_port_num))
658 & 0xffc000ff));
659
660 return coal;
661}
662#endif
663
664/*
665 * eth_port_set_tx_coal - Sets coalescing interrupt mechanism on TX path
666 *
667 * DESCRIPTION:
668 * This routine sets the TX coalescing interrupt mechanism parameter.
669 * This parameter is a timeout counter, that counts in 64 t_clk
670 * chunks ; that when timeout event occurs a maskable interrupt
671 * occurs.
672 * The parameter is calculated using the t_cLK frequency of the
673 * MV-643xx chip and the required delay in the interrupt in uSec
674 *
675 * INPUT:
676 * unsigned int eth_port_num Ethernet port number
677 * unsigned int t_clk t_clk of the MV-643xx chip in HZ units
678 * unsigned int delay Delay in uSeconds
679 *
680 * OUTPUT:
681 * Interrupt coalescing mechanism value is set in MV-643xx chip.
682 *
683 * RETURN:
684 * The interrupt coalescing value set in the gigE port.
685 *
686 */
687static unsigned int eth_port_set_tx_coal(unsigned int eth_port_num,
688 unsigned int t_clk, unsigned int delay)
689{
690 unsigned int coal;
691 coal = ((t_clk / 1000000) * delay) / 64;
692 /* Set TX Coalescing mechanism */
693 mv_write(MV643XX_ETH_TX_FIFO_URGENT_THRESHOLD_REG(eth_port_num),
694 coal << 4);
695 return coal;
696}
697
1da177e4
LT
698/*
699 * ether_init_rx_desc_ring - Curve a Rx chain desc list and buffer in memory.
700 *
701 * DESCRIPTION:
702 * This function prepares a Rx chained list of descriptors and packet
703 * buffers in a form of a ring. The routine must be called after port
704 * initialization routine and before port start routine.
705 * The Ethernet SDMA engine uses CPU bus addresses to access the various
706 * devices in the system (i.e. DRAM). This function uses the ethernet
707 * struct 'virtual to physical' routine (set by the user) to set the ring
708 * with physical addresses.
709 *
710 * INPUT:
711 * struct mv643xx_private *mp Ethernet Port Control srtuct.
712 *
713 * OUTPUT:
714 * The routine updates the Ethernet port control struct with information
715 * regarding the Rx descriptors and buffers.
716 *
717 * RETURN:
718 * None.
719 */
720static void ether_init_rx_desc_ring(struct mv643xx_private *mp)
721{
722 volatile struct eth_rx_desc *p_rx_desc;
723 int rx_desc_num = mp->rx_ring_size;
724 int i;
725
726 /* initialize the next_desc_ptr links in the Rx descriptors ring */
727 p_rx_desc = (struct eth_rx_desc *)mp->p_rx_desc_area;
728 for (i = 0; i < rx_desc_num; i++) {
729 p_rx_desc[i].next_desc_ptr = mp->rx_desc_dma +
730 ((i + 1) % rx_desc_num) * sizeof(struct eth_rx_desc);
731 }
732
733 /* Save Rx desc pointer to driver struct. */
734 mp->rx_curr_desc_q = 0;
735 mp->rx_used_desc_q = 0;
736
737 mp->rx_desc_area_size = rx_desc_num * sizeof(struct eth_rx_desc);
738
9f8dd319
DF
739 /* Enable queue 0 for this port */
740 mp->port_rx_queue_command = 1;
1da177e4
LT
741}
742
743/*
744 * ether_init_tx_desc_ring - Curve a Tx chain desc list and buffer in memory.
745 *
746 * DESCRIPTION:
747 * This function prepares a Tx chained list of descriptors and packet
748 * buffers in a form of a ring. The routine must be called after port
749 * initialization routine and before port start routine.
750 * The Ethernet SDMA engine uses CPU bus addresses to access the various
751 * devices in the system (i.e. DRAM). This function uses the ethernet
752 * struct 'virtual to physical' routine (set by the user) to set the ring
753 * with physical addresses.
754 *
755 * INPUT:
756 * struct mv643xx_private *mp Ethernet Port Control srtuct.
757 *
758 * OUTPUT:
759 * The routine updates the Ethernet port control struct with information
760 * regarding the Tx descriptors and buffers.
761 *
762 * RETURN:
763 * None.
764 */
765static void ether_init_tx_desc_ring(struct mv643xx_private *mp)
766{
767 int tx_desc_num = mp->tx_ring_size;
768 struct eth_tx_desc *p_tx_desc;
769 int i;
770
771 /* Initialize the next_desc_ptr links in the Tx descriptors ring */
772 p_tx_desc = (struct eth_tx_desc *)mp->p_tx_desc_area;
773 for (i = 0; i < tx_desc_num; i++) {
774 p_tx_desc[i].next_desc_ptr = mp->tx_desc_dma +
775 ((i + 1) % tx_desc_num) * sizeof(struct eth_tx_desc);
776 }
777
778 mp->tx_curr_desc_q = 0;
779 mp->tx_used_desc_q = 0;
780#ifdef MV643XX_CHECKSUM_OFFLOAD_TX
781 mp->tx_first_desc_q = 0;
782#endif
783
784 mp->tx_desc_area_size = tx_desc_num * sizeof(struct eth_tx_desc);
785
9f8dd319
DF
786 /* Enable queue 0 for this port */
787 mp->port_tx_queue_command = 1;
1da177e4
LT
788}
789
d0412d96
JC
790static int mv643xx_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
791{
792 struct mv643xx_private *mp = netdev_priv(dev);
793 int err;
794
795 spin_lock_irq(&mp->lock);
796 err = mii_ethtool_sset(&mp->mii, cmd);
797 spin_unlock_irq(&mp->lock);
798
799 return err;
800}
801
802static int mv643xx_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
803{
804 struct mv643xx_private *mp = netdev_priv(dev);
805 int err;
806
807 spin_lock_irq(&mp->lock);
808 err = mii_ethtool_gset(&mp->mii, cmd);
809 spin_unlock_irq(&mp->lock);
810
811 /* The PHY may support 1000baseT_Half, but the mv643xx does not */
812 cmd->supported &= ~SUPPORTED_1000baseT_Half;
813 cmd->advertising &= ~ADVERTISED_1000baseT_Half;
814
815 return err;
816}
817
ab4384a6
DF
818/*
819 * mv643xx_eth_open
820 *
821 * This function is called when openning the network device. The function
822 * should initialize all the hardware, initialize cyclic Rx/Tx
823 * descriptors chain and buffers and allocate an IRQ to the network
824 * device.
825 *
826 * Input : a pointer to the network device structure
827 *
828 * Output : zero of success , nonzero if fails.
829 */
830
831static int mv643xx_eth_open(struct net_device *dev)
1da177e4
LT
832{
833 struct mv643xx_private *mp = netdev_priv(dev);
834 unsigned int port_num = mp->port_num;
835 unsigned int size;
ab4384a6
DF
836 int err;
837
838 err = request_irq(dev->irq, mv643xx_eth_int_handler,
839 SA_SHIRQ | SA_SAMPLE_RANDOM, dev->name, dev);
840 if (err) {
841 printk(KERN_ERR "Can not assign IRQ number to MV643XX_eth%d\n",
842 port_num);
843 return -EAGAIN;
844 }
1da177e4 845
1da177e4
LT
846 eth_port_init(mp);
847
848 INIT_WORK(&mp->rx_task, (void (*)(void *))mv643xx_eth_rx_task, dev);
849
850 memset(&mp->timeout, 0, sizeof(struct timer_list));
851 mp->timeout.function = mv643xx_eth_rx_task_timer_wrapper;
852 mp->timeout.data = (unsigned long)dev;
853
854 mp->rx_task_busy = 0;
855 mp->rx_timer_flag = 0;
856
857 /* Allocate RX and TX skb rings */
858 mp->rx_skb = kmalloc(sizeof(*mp->rx_skb) * mp->rx_ring_size,
859 GFP_KERNEL);
860 if (!mp->rx_skb) {
861 printk(KERN_ERR "%s: Cannot allocate Rx skb ring\n", dev->name);
ab4384a6
DF
862 err = -ENOMEM;
863 goto out_free_irq;
1da177e4
LT
864 }
865 mp->tx_skb = kmalloc(sizeof(*mp->tx_skb) * mp->tx_ring_size,
866 GFP_KERNEL);
867 if (!mp->tx_skb) {
868 printk(KERN_ERR "%s: Cannot allocate Tx skb ring\n", dev->name);
ab4384a6
DF
869 err = -ENOMEM;
870 goto out_free_rx_skb;
1da177e4
LT
871 }
872
873 /* Allocate TX ring */
f98e36f1 874 mp->tx_desc_count = 0;
1da177e4
LT
875 size = mp->tx_ring_size * sizeof(struct eth_tx_desc);
876 mp->tx_desc_area_size = size;
877
878 if (mp->tx_sram_size) {
879 mp->p_tx_desc_area = ioremap(mp->tx_sram_addr,
880 mp->tx_sram_size);
881 mp->tx_desc_dma = mp->tx_sram_addr;
882 } else
883 mp->p_tx_desc_area = dma_alloc_coherent(NULL, size,
884 &mp->tx_desc_dma,
885 GFP_KERNEL);
886
887 if (!mp->p_tx_desc_area) {
888 printk(KERN_ERR "%s: Cannot allocate Tx Ring (size %d bytes)\n",
889 dev->name, size);
ab4384a6
DF
890 err = -ENOMEM;
891 goto out_free_tx_skb;
1da177e4
LT
892 }
893 BUG_ON((u32) mp->p_tx_desc_area & 0xf); /* check 16-byte alignment */
894 memset((void *)mp->p_tx_desc_area, 0, mp->tx_desc_area_size);
895
896 ether_init_tx_desc_ring(mp);
897
898 /* Allocate RX ring */
f98e36f1 899 mp->rx_desc_count = 0;
1da177e4
LT
900 size = mp->rx_ring_size * sizeof(struct eth_rx_desc);
901 mp->rx_desc_area_size = size;
902
903 if (mp->rx_sram_size) {
904 mp->p_rx_desc_area = ioremap(mp->rx_sram_addr,
905 mp->rx_sram_size);
906 mp->rx_desc_dma = mp->rx_sram_addr;
907 } else
908 mp->p_rx_desc_area = dma_alloc_coherent(NULL, size,
909 &mp->rx_desc_dma,
910 GFP_KERNEL);
911
912 if (!mp->p_rx_desc_area) {
913 printk(KERN_ERR "%s: Cannot allocate Rx ring (size %d bytes)\n",
914 dev->name, size);
915 printk(KERN_ERR "%s: Freeing previously allocated TX queues...",
916 dev->name);
917 if (mp->rx_sram_size)
dd09b1de 918 iounmap(mp->p_tx_desc_area);
1da177e4
LT
919 else
920 dma_free_coherent(NULL, mp->tx_desc_area_size,
921 mp->p_tx_desc_area, mp->tx_desc_dma);
ab4384a6
DF
922 err = -ENOMEM;
923 goto out_free_tx_skb;
1da177e4
LT
924 }
925 memset((void *)mp->p_rx_desc_area, 0, size);
926
927 ether_init_rx_desc_ring(mp);
928
929 mv643xx_eth_rx_task(dev); /* Fill RX ring with skb's */
930
d0412d96
JC
931 /* Clear any pending ethernet port interrupts */
932 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num), 0);
933 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num), 0);
934
ed9b5d45 935 eth_port_start(dev);
1da177e4
LT
936
937 /* Interrupt Coalescing */
938
939#ifdef MV643XX_COAL
940 mp->rx_int_coal =
941 eth_port_set_rx_coal(port_num, 133000000, MV643XX_RX_COAL);
942#endif
943
944 mp->tx_int_coal =
945 eth_port_set_tx_coal(port_num, 133000000, MV643XX_TX_COAL);
946
8f518703
DF
947 /* Unmask phy and link status changes interrupts */
948 mv_write(MV643XX_ETH_INTERRUPT_EXTEND_MASK_REG(port_num),
c2e5b352 949 INT_UNMASK_ALL_EXT);
1da177e4 950
8f518703 951 /* Unmask RX buffer and TX end interrupt */
c2e5b352 952 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), INT_UNMASK_ALL);
d0412d96 953
1da177e4 954 return 0;
ab4384a6
DF
955
956out_free_tx_skb:
957 kfree(mp->tx_skb);
958out_free_rx_skb:
959 kfree(mp->rx_skb);
960out_free_irq:
961 free_irq(dev->irq, dev);
962
963 return err;
1da177e4
LT
964}
965
966static void mv643xx_eth_free_tx_rings(struct net_device *dev)
967{
968 struct mv643xx_private *mp = netdev_priv(dev);
969 unsigned int port_num = mp->port_num;
970 unsigned int curr;
4476e0e4 971 struct sk_buff *skb;
1da177e4
LT
972
973 /* Stop Tx Queues */
9f8dd319 974 mv643xx_eth_port_disable_tx(port_num);
1da177e4
LT
975
976 /* Free outstanding skb's on TX rings */
f98e36f1 977 for (curr = 0; mp->tx_desc_count && curr < mp->tx_ring_size; curr++) {
4476e0e4
DF
978 skb = mp->tx_skb[curr];
979 if (skb) {
f98e36f1 980 mp->tx_desc_count -= skb_shinfo(skb)->nr_frags;
4476e0e4 981 dev_kfree_skb(skb);
f98e36f1 982 mp->tx_desc_count--;
1da177e4
LT
983 }
984 }
f98e36f1 985 if (mp->tx_desc_count)
1da177e4 986 printk("%s: Error on Tx descriptor free - could not free %d"
f98e36f1 987 " descriptors\n", dev->name, mp->tx_desc_count);
1da177e4
LT
988
989 /* Free TX ring */
990 if (mp->tx_sram_size)
991 iounmap(mp->p_tx_desc_area);
992 else
993 dma_free_coherent(NULL, mp->tx_desc_area_size,
994 mp->p_tx_desc_area, mp->tx_desc_dma);
995}
996
997static void mv643xx_eth_free_rx_rings(struct net_device *dev)
998{
999 struct mv643xx_private *mp = netdev_priv(dev);
1000 unsigned int port_num = mp->port_num;
1001 int curr;
1002
1003 /* Stop RX Queues */
9f8dd319 1004 mv643xx_eth_port_disable_rx(port_num);
1da177e4
LT
1005
1006 /* Free preallocated skb's on RX rings */
f98e36f1 1007 for (curr = 0; mp->rx_desc_count && curr < mp->rx_ring_size; curr++) {
1da177e4
LT
1008 if (mp->rx_skb[curr]) {
1009 dev_kfree_skb(mp->rx_skb[curr]);
f98e36f1 1010 mp->rx_desc_count--;
1da177e4
LT
1011 }
1012 }
1013
f98e36f1 1014 if (mp->rx_desc_count)
1da177e4
LT
1015 printk(KERN_ERR
1016 "%s: Error in freeing Rx Ring. %d skb's still"
1017 " stuck in RX Ring - ignoring them\n", dev->name,
f98e36f1 1018 mp->rx_desc_count);
1da177e4
LT
1019 /* Free RX ring */
1020 if (mp->rx_sram_size)
1021 iounmap(mp->p_rx_desc_area);
1022 else
1023 dma_free_coherent(NULL, mp->rx_desc_area_size,
1024 mp->p_rx_desc_area, mp->rx_desc_dma);
1025}
1026
1027/*
1028 * mv643xx_eth_stop
1029 *
1030 * This function is used when closing the network device.
1031 * It updates the hardware,
1032 * release all memory that holds buffers and descriptors and release the IRQ.
1033 * Input : a pointer to the device structure
1034 * Output : zero if success , nonzero if fails
1035 */
1036
ab4384a6 1037static int mv643xx_eth_stop(struct net_device *dev)
1da177e4
LT
1038{
1039 struct mv643xx_private *mp = netdev_priv(dev);
1040 unsigned int port_num = mp->port_num;
1041
c2e5b352
DF
1042 /* Mask all interrupts on ethernet port */
1043 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), INT_MASK_ALL);
1044 /* wait for previous write to complete */
8f518703
DF
1045 mv_read(MV643XX_ETH_INTERRUPT_MASK_REG(port_num));
1046
1047#ifdef MV643XX_NAPI
1048 netif_poll_disable(dev);
1049#endif
1da177e4
LT
1050 netif_carrier_off(dev);
1051 netif_stop_queue(dev);
1052
1da177e4
LT
1053 eth_port_reset(mp->port_num);
1054
8f518703
DF
1055 mv643xx_eth_free_tx_rings(dev);
1056 mv643xx_eth_free_rx_rings(dev);
1da177e4 1057
8f518703
DF
1058#ifdef MV643XX_NAPI
1059 netif_poll_enable(dev);
1060#endif
1da177e4 1061
1da177e4 1062 free_irq(dev->irq, dev);
1da177e4
LT
1063
1064 return 0;
1065}
1066
1067#ifdef MV643XX_NAPI
1068static void mv643xx_tx(struct net_device *dev)
1069{
1070 struct mv643xx_private *mp = netdev_priv(dev);
1071 struct pkt_info pkt_info;
1072
1073 while (eth_tx_return_desc(mp, &pkt_info) == ETH_OK) {
cb415d30
PG
1074 if (pkt_info.cmd_sts & ETH_TX_FIRST_DESC)
1075 dma_unmap_single(NULL, pkt_info.buf_ptr,
1076 pkt_info.byte_cnt,
1077 DMA_TO_DEVICE);
1078 else
1079 dma_unmap_page(NULL, pkt_info.buf_ptr,
1080 pkt_info.byte_cnt,
1081 DMA_TO_DEVICE);
1da177e4 1082
cb415d30 1083 if (pkt_info.return_info)
1da177e4 1084 dev_kfree_skb_irq(pkt_info.return_info);
1da177e4
LT
1085 }
1086
1087 if (netif_queue_stopped(dev) &&
f98e36f1
DF
1088 mp->tx_ring_size >
1089 mp->tx_desc_count + MAX_DESCS_PER_SKB)
1da177e4
LT
1090 netif_wake_queue(dev);
1091}
1092
1093/*
1094 * mv643xx_poll
1095 *
1096 * This function is used in case of NAPI
1097 */
1098static int mv643xx_poll(struct net_device *dev, int *budget)
1099{
1100 struct mv643xx_private *mp = netdev_priv(dev);
1101 int done = 1, orig_budget, work_done;
1102 unsigned int port_num = mp->port_num;
1da177e4
LT
1103
1104#ifdef MV643XX_TX_FAST_REFILL
1105 if (++mp->tx_clean_threshold > 5) {
1da177e4
LT
1106 mv643xx_tx(dev);
1107 mp->tx_clean_threshold = 0;
1da177e4
LT
1108 }
1109#endif
1110
1111 if ((mv_read(MV643XX_ETH_RX_CURRENT_QUEUE_DESC_PTR_0(port_num)))
1112 != (u32) mp->rx_used_desc_q) {
1113 orig_budget = *budget;
1114 if (orig_budget > dev->quota)
1115 orig_budget = dev->quota;
1116 work_done = mv643xx_eth_receive_queue(dev, orig_budget);
1117 mp->rx_task.func(dev);
1118 *budget -= work_done;
1119 dev->quota -= work_done;
1120 if (work_done >= orig_budget)
1121 done = 0;
1122 }
1123
1124 if (done) {
8f518703 1125 netif_rx_complete(dev);
1da177e4
LT
1126 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num), 0);
1127 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num), 0);
1128 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num),
c2e5b352 1129 INT_UNMASK_ALL);
1da177e4
LT
1130 }
1131
1132 return done ? 0 : 1;
1133}
1134#endif
1135
f7ea3337
PJ
1136/* Hardware can't handle unaligned fragments smaller than 9 bytes.
1137 * This helper function detects that case.
1138 */
1139
1140static inline unsigned int has_tiny_unaligned_frags(struct sk_buff *skb)
1141{
b4de9051
DF
1142 unsigned int frag;
1143 skb_frag_t *fragp;
f7ea3337 1144
b4de9051
DF
1145 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1146 fragp = &skb_shinfo(skb)->frags[frag];
1147 if (fragp->size <= 8 && fragp->page_offset & 0x7)
1148 return 1;
1149 }
1150 return 0;
f7ea3337
PJ
1151}
1152
1153
1da177e4
LT
1154/*
1155 * mv643xx_eth_start_xmit
1156 *
1157 * This function is queues a packet in the Tx descriptor for
1158 * required port.
1159 *
1160 * Input : skb - a pointer to socket buffer
1161 * dev - a pointer to the required port
1162 *
1163 * Output : zero upon success
1164 */
1165static int mv643xx_eth_start_xmit(struct sk_buff *skb, struct net_device *dev)
1166{
1167 struct mv643xx_private *mp = netdev_priv(dev);
1168 struct net_device_stats *stats = &mp->stats;
1169 ETH_FUNC_RET_STATUS status;
1170 unsigned long flags;
1171 struct pkt_info pkt_info;
1172
1173 if (netif_queue_stopped(dev)) {
1174 printk(KERN_ERR
1175 "%s: Tried sending packet when interface is stopped\n",
1176 dev->name);
1177 return 1;
1178 }
1179
1180 /* This is a hard error, log it. */
f98e36f1 1181 if ((mp->tx_ring_size - mp->tx_desc_count) <=
1da177e4
LT
1182 (skb_shinfo(skb)->nr_frags + 1)) {
1183 netif_stop_queue(dev);
1184 printk(KERN_ERR
1185 "%s: Bug in mv643xx_eth - Trying to transmit when"
1186 " queue full !\n", dev->name);
1187 return 1;
1188 }
1189
1190 /* Paranoid check - this shouldn't happen */
1191 if (skb == NULL) {
1192 stats->tx_dropped++;
1193 printk(KERN_ERR "mv64320_eth paranoid check failed\n");
1194 return 1;
1195 }
1196
f7ea3337
PJ
1197#ifdef MV643XX_CHECKSUM_OFFLOAD_TX
1198 if (has_tiny_unaligned_frags(skb)) {
1199 if ((skb_linearize(skb, GFP_ATOMIC) != 0)) {
1200 stats->tx_dropped++;
1201 printk(KERN_DEBUG "%s: failed to linearize tiny "
1202 "unaligned fragment\n", dev->name);
1203 return 1;
1204 }
1205 }
1206
1da177e4
LT
1207 spin_lock_irqsave(&mp->lock, flags);
1208
1da177e4 1209 if (!skb_shinfo(skb)->nr_frags) {
1da177e4 1210 if (skb->ip_summed != CHECKSUM_HW) {
26006360 1211 /* Errata BTS #50, IHL must be 5 if no HW checksum */
1da177e4 1212 pkt_info.cmd_sts = ETH_TX_ENABLE_INTERRUPT |
26006360
DF
1213 ETH_TX_FIRST_DESC |
1214 ETH_TX_LAST_DESC |
1215 5 << ETH_TX_IHL_SHIFT;
1da177e4
LT
1216 pkt_info.l4i_chk = 0;
1217 } else {
1da177e4 1218 pkt_info.cmd_sts = ETH_TX_ENABLE_INTERRUPT |
26006360
DF
1219 ETH_TX_FIRST_DESC |
1220 ETH_TX_LAST_DESC |
1221 ETH_GEN_TCP_UDP_CHECKSUM |
1222 ETH_GEN_IP_V_4_CHECKSUM |
1223 skb->nh.iph->ihl << ETH_TX_IHL_SHIFT;
1da177e4 1224 /* CPU already calculated pseudo header checksum. */
63890576
WJ
1225 if ((skb->protocol == ETH_P_IP) &&
1226 (skb->nh.iph->protocol == IPPROTO_UDP) ) {
1da177e4
LT
1227 pkt_info.cmd_sts |= ETH_UDP_FRAME;
1228 pkt_info.l4i_chk = skb->h.uh->check;
63890576
WJ
1229 } else if ((skb->protocol == ETH_P_IP) &&
1230 (skb->nh.iph->protocol == IPPROTO_TCP))
1da177e4
LT
1231 pkt_info.l4i_chk = skb->h.th->check;
1232 else {
1233 printk(KERN_ERR
63890576 1234 "%s: chksum proto != IPv4 TCP or UDP\n",
1da177e4
LT
1235 dev->name);
1236 spin_unlock_irqrestore(&mp->lock, flags);
1237 return 1;
1238 }
1239 }
1240 pkt_info.byte_cnt = skb->len;
1241 pkt_info.buf_ptr = dma_map_single(NULL, skb->data, skb->len,
1242 DMA_TO_DEVICE);
1243 pkt_info.return_info = skb;
1da177e4
LT
1244 status = eth_port_send(mp, &pkt_info);
1245 if ((status == ETH_ERROR) || (status == ETH_QUEUE_FULL))
1246 printk(KERN_ERR "%s: Error on transmitting packet\n",
1247 dev->name);
1248 stats->tx_bytes += pkt_info.byte_cnt;
1249 } else {
1250 unsigned int frag;
1da177e4 1251
1da177e4
LT
1252 /* first frag which is skb header */
1253 pkt_info.byte_cnt = skb_headlen(skb);
1254 pkt_info.buf_ptr = dma_map_single(NULL, skb->data,
1255 skb_headlen(skb),
1256 DMA_TO_DEVICE);
1257 pkt_info.l4i_chk = 0;
1258 pkt_info.return_info = 0;
1da177e4 1259
26006360
DF
1260 if (skb->ip_summed != CHECKSUM_HW)
1261 /* Errata BTS #50, IHL must be 5 if no HW checksum */
1262 pkt_info.cmd_sts = ETH_TX_FIRST_DESC |
1263 5 << ETH_TX_IHL_SHIFT;
1264 else {
1265 pkt_info.cmd_sts = ETH_TX_FIRST_DESC |
1266 ETH_GEN_TCP_UDP_CHECKSUM |
1267 ETH_GEN_IP_V_4_CHECKSUM |
1268 skb->nh.iph->ihl << ETH_TX_IHL_SHIFT;
1da177e4 1269 /* CPU already calculated pseudo header checksum. */
63890576
WJ
1270 if ((skb->protocol == ETH_P_IP) &&
1271 (skb->nh.iph->protocol == IPPROTO_UDP)) {
1da177e4
LT
1272 pkt_info.cmd_sts |= ETH_UDP_FRAME;
1273 pkt_info.l4i_chk = skb->h.uh->check;
63890576
WJ
1274 } else if ((skb->protocol == ETH_P_IP) &&
1275 (skb->nh.iph->protocol == IPPROTO_TCP))
1da177e4
LT
1276 pkt_info.l4i_chk = skb->h.th->check;
1277 else {
1278 printk(KERN_ERR
63890576 1279 "%s: chksum proto != IPv4 TCP or UDP\n",
1da177e4
LT
1280 dev->name);
1281 spin_unlock_irqrestore(&mp->lock, flags);
1282 return 1;
1283 }
1284 }
1285
1286 status = eth_port_send(mp, &pkt_info);
1287 if (status != ETH_OK) {
1288 if ((status == ETH_ERROR))
1289 printk(KERN_ERR
1290 "%s: Error on transmitting packet\n",
1291 dev->name);
1292 if (status == ETH_QUEUE_FULL)
1293 printk("Error on Queue Full \n");
1294 if (status == ETH_QUEUE_LAST_RESOURCE)
1295 printk("Tx resource error \n");
1296 }
1297 stats->tx_bytes += pkt_info.byte_cnt;
1298
1299 /* Check for the remaining frags */
1300 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1301 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
1302 pkt_info.l4i_chk = 0x0000;
1303 pkt_info.cmd_sts = 0x00000000;
1304
1305 /* Last Frag enables interrupt and frees the skb */
1306 if (frag == (skb_shinfo(skb)->nr_frags - 1)) {
1307 pkt_info.cmd_sts |= ETH_TX_ENABLE_INTERRUPT |
1308 ETH_TX_LAST_DESC;
1309 pkt_info.return_info = skb;
1da177e4
LT
1310 } else {
1311 pkt_info.return_info = 0;
1312 }
1313 pkt_info.l4i_chk = 0;
1314 pkt_info.byte_cnt = this_frag->size;
1315
1316 pkt_info.buf_ptr = dma_map_page(NULL, this_frag->page,
1317 this_frag->page_offset,
1318 this_frag->size,
1319 DMA_TO_DEVICE);
1320
1321 status = eth_port_send(mp, &pkt_info);
1322
1323 if (status != ETH_OK) {
1324 if ((status == ETH_ERROR))
1325 printk(KERN_ERR "%s: Error on "
1326 "transmitting packet\n",
1327 dev->name);
1328
1329 if (status == ETH_QUEUE_LAST_RESOURCE)
1330 printk("Tx resource error \n");
1331
1332 if (status == ETH_QUEUE_FULL)
1333 printk("Queue is full \n");
1334 }
1335 stats->tx_bytes += pkt_info.byte_cnt;
1336 }
1337 }
1338#else
f7ea3337
PJ
1339 spin_lock_irqsave(&mp->lock, flags);
1340
1da177e4
LT
1341 pkt_info.cmd_sts = ETH_TX_ENABLE_INTERRUPT | ETH_TX_FIRST_DESC |
1342 ETH_TX_LAST_DESC;
1343 pkt_info.l4i_chk = 0;
1344 pkt_info.byte_cnt = skb->len;
1345 pkt_info.buf_ptr = dma_map_single(NULL, skb->data, skb->len,
1346 DMA_TO_DEVICE);
1347 pkt_info.return_info = skb;
1da177e4
LT
1348 status = eth_port_send(mp, &pkt_info);
1349 if ((status == ETH_ERROR) || (status == ETH_QUEUE_FULL))
1350 printk(KERN_ERR "%s: Error on transmitting packet\n",
1351 dev->name);
1352 stats->tx_bytes += pkt_info.byte_cnt;
1353#endif
1354
1355 /* Check if TX queue can handle another skb. If not, then
1356 * signal higher layers to stop requesting TX
1357 */
f98e36f1 1358 if (mp->tx_ring_size <= (mp->tx_desc_count + MAX_DESCS_PER_SKB))
1da177e4
LT
1359 /*
1360 * Stop getting skb's from upper layers.
1361 * Getting skb's from upper layers will be enabled again after
1362 * packets are released.
1363 */
1364 netif_stop_queue(dev);
1365
1366 /* Update statistics and start of transmittion time */
1367 stats->tx_packets++;
1368 dev->trans_start = jiffies;
1369
1370 spin_unlock_irqrestore(&mp->lock, flags);
1371
1372 return 0; /* success */
1373}
1374
1375/*
1376 * mv643xx_eth_get_stats
1377 *
1378 * Returns a pointer to the interface statistics.
1379 *
1380 * Input : dev - a pointer to the required interface
1381 *
1382 * Output : a pointer to the interface's statistics
1383 */
1384
1385static struct net_device_stats *mv643xx_eth_get_stats(struct net_device *dev)
1386{
1387 struct mv643xx_private *mp = netdev_priv(dev);
1388
1389 return &mp->stats;
1390}
1391
63c9e549 1392#ifdef CONFIG_NET_POLL_CONTROLLER
63c9e549
DF
1393static void mv643xx_netpoll(struct net_device *netdev)
1394{
1395 struct mv643xx_private *mp = netdev_priv(netdev);
c2e5b352
DF
1396 int port_num = mp->port_num;
1397
1398 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), INT_MASK_ALL);
1399 /* wait for previous write to complete */
1400 mv_read(MV643XX_ETH_INTERRUPT_MASK_REG(port_num));
63c9e549 1401
63c9e549 1402 mv643xx_eth_int_handler(netdev->irq, netdev, NULL);
c2e5b352
DF
1403
1404 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), INT_UNMASK_ALL);
63c9e549
DF
1405}
1406#endif
1407
d0412d96
JC
1408static void mv643xx_init_ethtool_cmd(struct net_device *dev, int phy_address,
1409 int speed, int duplex,
1410 struct ethtool_cmd *cmd)
1411{
1412 struct mv643xx_private *mp = netdev_priv(dev);
1413
1414 memset(cmd, 0, sizeof(*cmd));
1415
1416 cmd->port = PORT_MII;
1417 cmd->transceiver = XCVR_INTERNAL;
1418 cmd->phy_address = phy_address;
1419
1420 if (speed == 0) {
1421 cmd->autoneg = AUTONEG_ENABLE;
1422 /* mii lib checks, but doesn't use speed on AUTONEG_ENABLE */
1423 cmd->speed = SPEED_100;
1424 cmd->advertising = ADVERTISED_10baseT_Half |
1425 ADVERTISED_10baseT_Full |
1426 ADVERTISED_100baseT_Half |
1427 ADVERTISED_100baseT_Full;
1428 if (mp->mii.supports_gmii)
1429 cmd->advertising |= ADVERTISED_1000baseT_Full;
1430 } else {
1431 cmd->autoneg = AUTONEG_DISABLE;
1432 cmd->speed = speed;
1433 cmd->duplex = duplex;
1434 }
1435}
1436
1da177e4
LT
1437/*/
1438 * mv643xx_eth_probe
1439 *
1440 * First function called after registering the network device.
1441 * It's purpose is to initialize the device as an ethernet device,
1442 * fill the ethernet device structure with pointers * to functions,
1443 * and set the MAC address of the interface
1444 *
1445 * Input : struct device *
1446 * Output : -ENOMEM if failed , 0 if success
1447 */
3ae5eaec 1448static int mv643xx_eth_probe(struct platform_device *pdev)
1da177e4 1449{
1da177e4
LT
1450 struct mv643xx_eth_platform_data *pd;
1451 int port_num = pdev->id;
1452 struct mv643xx_private *mp;
1453 struct net_device *dev;
1454 u8 *p;
1455 struct resource *res;
1456 int err;
d0412d96 1457 struct ethtool_cmd cmd;
01999873
DF
1458 int duplex = DUPLEX_HALF;
1459 int speed = 0; /* default to auto-negotiation */
1da177e4
LT
1460
1461 dev = alloc_etherdev(sizeof(struct mv643xx_private));
1462 if (!dev)
1463 return -ENOMEM;
1464
3ae5eaec 1465 platform_set_drvdata(pdev, dev);
1da177e4
LT
1466
1467 mp = netdev_priv(dev);
1468
1469 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1470 BUG_ON(!res);
1471 dev->irq = res->start;
1472
1473 mp->port_num = port_num;
1474
1475 dev->open = mv643xx_eth_open;
1476 dev->stop = mv643xx_eth_stop;
1477 dev->hard_start_xmit = mv643xx_eth_start_xmit;
1478 dev->get_stats = mv643xx_eth_get_stats;
1479 dev->set_mac_address = mv643xx_eth_set_mac_address;
1480 dev->set_multicast_list = mv643xx_eth_set_rx_mode;
1481
1482 /* No need to Tx Timeout */
1483 dev->tx_timeout = mv643xx_eth_tx_timeout;
1484#ifdef MV643XX_NAPI
1485 dev->poll = mv643xx_poll;
1486 dev->weight = 64;
1487#endif
1488
63c9e549
DF
1489#ifdef CONFIG_NET_POLL_CONTROLLER
1490 dev->poll_controller = mv643xx_netpoll;
1491#endif
1492
1da177e4
LT
1493 dev->watchdog_timeo = 2 * HZ;
1494 dev->tx_queue_len = mp->tx_ring_size;
1495 dev->base_addr = 0;
1496 dev->change_mtu = mv643xx_eth_change_mtu;
d0412d96 1497 dev->do_ioctl = mv643xx_eth_do_ioctl;
1da177e4
LT
1498 SET_ETHTOOL_OPS(dev, &mv643xx_ethtool_ops);
1499
1500#ifdef MV643XX_CHECKSUM_OFFLOAD_TX
1501#ifdef MAX_SKB_FRAGS
1502 /*
1503 * Zero copy can only work if we use Discovery II memory. Else, we will
1504 * have to map the buffers to ISA memory which is only 16 MB
1505 */
63890576 1506 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM;
1da177e4
LT
1507#endif
1508#endif
1509
1510 /* Configure the timeout task */
1511 INIT_WORK(&mp->tx_timeout_task,
1512 (void (*)(void *))mv643xx_eth_tx_timeout_task, dev);
1513
1514 spin_lock_init(&mp->lock);
1515
1516 /* set default config values */
1517 eth_port_uc_addr_get(dev, dev->dev_addr);
1da177e4
LT
1518 mp->rx_ring_size = MV643XX_ETH_PORT_DEFAULT_RECEIVE_QUEUE_SIZE;
1519 mp->tx_ring_size = MV643XX_ETH_PORT_DEFAULT_TRANSMIT_QUEUE_SIZE;
1520
1521 pd = pdev->dev.platform_data;
1522 if (pd) {
01999873 1523 if (pd->mac_addr)
1da177e4
LT
1524 memcpy(dev->dev_addr, pd->mac_addr, 6);
1525
1526 if (pd->phy_addr || pd->force_phy_addr)
1527 ethernet_phy_set(port_num, pd->phy_addr);
1528
1da177e4
LT
1529 if (pd->rx_queue_size)
1530 mp->rx_ring_size = pd->rx_queue_size;
1531
1532 if (pd->tx_queue_size)
1533 mp->tx_ring_size = pd->tx_queue_size;
1534
1535 if (pd->tx_sram_size) {
1536 mp->tx_sram_size = pd->tx_sram_size;
1537 mp->tx_sram_addr = pd->tx_sram_addr;
1538 }
1539
1540 if (pd->rx_sram_size) {
1541 mp->rx_sram_size = pd->rx_sram_size;
1542 mp->rx_sram_addr = pd->rx_sram_addr;
1543 }
01999873
DF
1544
1545 duplex = pd->duplex;
1546 speed = pd->speed;
1da177e4
LT
1547 }
1548
c28a4f89
JC
1549 /* Hook up MII support for ethtool */
1550 mp->mii.dev = dev;
1551 mp->mii.mdio_read = mv643xx_mdio_read;
1552 mp->mii.mdio_write = mv643xx_mdio_write;
1553 mp->mii.phy_id = ethernet_phy_get(port_num);
1554 mp->mii.phy_id_mask = 0x3f;
1555 mp->mii.reg_num_mask = 0x1f;
1556
1da177e4
LT
1557 err = ethernet_phy_detect(port_num);
1558 if (err) {
1559 pr_debug("MV643xx ethernet port %d: "
1560 "No PHY detected at addr %d\n",
1561 port_num, ethernet_phy_get(port_num));
d0412d96 1562 goto out;
1da177e4
LT
1563 }
1564
01999873 1565 ethernet_phy_reset(port_num);
c28a4f89 1566 mp->mii.supports_gmii = mii_check_gmii_support(&mp->mii);
d0412d96
JC
1567 mv643xx_init_ethtool_cmd(dev, mp->mii.phy_id, speed, duplex, &cmd);
1568 mv643xx_eth_update_pscr(dev, &cmd);
1569 mv643xx_set_settings(dev, &cmd);
c28a4f89 1570
1da177e4
LT
1571 err = register_netdev(dev);
1572 if (err)
1573 goto out;
1574
1575 p = dev->dev_addr;
1576 printk(KERN_NOTICE
1577 "%s: port %d with MAC address %02x:%02x:%02x:%02x:%02x:%02x\n",
1578 dev->name, port_num, p[0], p[1], p[2], p[3], p[4], p[5]);
1579
1580 if (dev->features & NETIF_F_SG)
1581 printk(KERN_NOTICE "%s: Scatter Gather Enabled\n", dev->name);
1582
1583 if (dev->features & NETIF_F_IP_CSUM)
1584 printk(KERN_NOTICE "%s: TX TCP/IP Checksumming Supported\n",
1585 dev->name);
1586
1587#ifdef MV643XX_CHECKSUM_OFFLOAD_TX
1588 printk(KERN_NOTICE "%s: RX TCP/UDP Checksum Offload ON \n", dev->name);
1589#endif
1590
1591#ifdef MV643XX_COAL
1592 printk(KERN_NOTICE "%s: TX and RX Interrupt Coalescing ON \n",
1593 dev->name);
1594#endif
1595
1596#ifdef MV643XX_NAPI
1597 printk(KERN_NOTICE "%s: RX NAPI Enabled \n", dev->name);
1598#endif
1599
b1529871
ND
1600 if (mp->tx_sram_size > 0)
1601 printk(KERN_NOTICE "%s: Using SRAM\n", dev->name);
1602
1da177e4
LT
1603 return 0;
1604
1605out:
1606 free_netdev(dev);
1607
1608 return err;
1609}
1610
3ae5eaec 1611static int mv643xx_eth_remove(struct platform_device *pdev)
1da177e4 1612{
3ae5eaec 1613 struct net_device *dev = platform_get_drvdata(pdev);
1da177e4
LT
1614
1615 unregister_netdev(dev);
1616 flush_scheduled_work();
1617
1618 free_netdev(dev);
3ae5eaec 1619 platform_set_drvdata(pdev, NULL);
1da177e4
LT
1620 return 0;
1621}
1622
3ae5eaec 1623static int mv643xx_eth_shared_probe(struct platform_device *pdev)
1da177e4 1624{
1da177e4
LT
1625 struct resource *res;
1626
1627 printk(KERN_NOTICE "MV-643xx 10/100/1000 Ethernet Driver\n");
1628
1629 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1630 if (res == NULL)
1631 return -ENODEV;
1632
1633 mv643xx_eth_shared_base = ioremap(res->start,
1634 MV643XX_ETH_SHARED_REGS_SIZE);
1635 if (mv643xx_eth_shared_base == NULL)
1636 return -ENOMEM;
1637
1638 return 0;
1639
1640}
1641
3ae5eaec 1642static int mv643xx_eth_shared_remove(struct platform_device *pdev)
1da177e4
LT
1643{
1644 iounmap(mv643xx_eth_shared_base);
1645 mv643xx_eth_shared_base = NULL;
1646
1647 return 0;
1648}
1649
3ae5eaec 1650static struct platform_driver mv643xx_eth_driver = {
1da177e4
LT
1651 .probe = mv643xx_eth_probe,
1652 .remove = mv643xx_eth_remove,
3ae5eaec
RK
1653 .driver = {
1654 .name = MV643XX_ETH_NAME,
1655 },
1da177e4
LT
1656};
1657
3ae5eaec 1658static struct platform_driver mv643xx_eth_shared_driver = {
1da177e4
LT
1659 .probe = mv643xx_eth_shared_probe,
1660 .remove = mv643xx_eth_shared_remove,
3ae5eaec
RK
1661 .driver = {
1662 .name = MV643XX_ETH_SHARED_NAME,
1663 },
1da177e4
LT
1664};
1665
1666/*
1667 * mv643xx_init_module
1668 *
1669 * Registers the network drivers into the Linux kernel
1670 *
1671 * Input : N/A
1672 *
1673 * Output : N/A
1674 */
1675static int __init mv643xx_init_module(void)
1676{
1677 int rc;
1678
3ae5eaec 1679 rc = platform_driver_register(&mv643xx_eth_shared_driver);
1da177e4 1680 if (!rc) {
3ae5eaec 1681 rc = platform_driver_register(&mv643xx_eth_driver);
1da177e4 1682 if (rc)
3ae5eaec 1683 platform_driver_unregister(&mv643xx_eth_shared_driver);
1da177e4
LT
1684 }
1685 return rc;
1686}
1687
1688/*
1689 * mv643xx_cleanup_module
1690 *
1691 * Registers the network drivers into the Linux kernel
1692 *
1693 * Input : N/A
1694 *
1695 * Output : N/A
1696 */
1697static void __exit mv643xx_cleanup_module(void)
1698{
3ae5eaec
RK
1699 platform_driver_unregister(&mv643xx_eth_driver);
1700 platform_driver_unregister(&mv643xx_eth_shared_driver);
1da177e4
LT
1701}
1702
1703module_init(mv643xx_init_module);
1704module_exit(mv643xx_cleanup_module);
1705
1706MODULE_LICENSE("GPL");
1707MODULE_AUTHOR( "Rabeeh Khoury, Assaf Hoffman, Matthew Dharm, Manish Lachwani"
1708 " and Dale Farnsworth");
1709MODULE_DESCRIPTION("Ethernet driver for Marvell MV643XX");
1710
1711/*
1712 * The second part is the low level driver of the gigE ethernet ports.
1713 */
1714
1715/*
1716 * Marvell's Gigabit Ethernet controller low level driver
1717 *
1718 * DESCRIPTION:
1719 * This file introduce low level API to Marvell's Gigabit Ethernet
1720 * controller. This Gigabit Ethernet Controller driver API controls
1721 * 1) Operations (i.e. port init, start, reset etc').
1722 * 2) Data flow (i.e. port send, receive etc').
1723 * Each Gigabit Ethernet port is controlled via
1724 * struct mv643xx_private.
1725 * This struct includes user configuration information as well as
1726 * driver internal data needed for its operations.
1727 *
1728 * Supported Features:
1729 * - This low level driver is OS independent. Allocating memory for
1730 * the descriptor rings and buffers are not within the scope of
1731 * this driver.
1732 * - The user is free from Rx/Tx queue managing.
1733 * - This low level driver introduce functionality API that enable
1734 * the to operate Marvell's Gigabit Ethernet Controller in a
1735 * convenient way.
1736 * - Simple Gigabit Ethernet port operation API.
1737 * - Simple Gigabit Ethernet port data flow API.
1738 * - Data flow and operation API support per queue functionality.
1739 * - Support cached descriptors for better performance.
1740 * - Enable access to all four DRAM banks and internal SRAM memory
1741 * spaces.
1742 * - PHY access and control API.
1743 * - Port control register configuration API.
1744 * - Full control over Unicast and Multicast MAC configurations.
1745 *
1746 * Operation flow:
1747 *
1748 * Initialization phase
1749 * This phase complete the initialization of the the
1750 * mv643xx_private struct.
1751 * User information regarding port configuration has to be set
1752 * prior to calling the port initialization routine.
1753 *
1754 * In this phase any port Tx/Rx activity is halted, MIB counters
1755 * are cleared, PHY address is set according to user parameter and
1756 * access to DRAM and internal SRAM memory spaces.
1757 *
1758 * Driver ring initialization
1759 * Allocating memory for the descriptor rings and buffers is not
1760 * within the scope of this driver. Thus, the user is required to
1761 * allocate memory for the descriptors ring and buffers. Those
1762 * memory parameters are used by the Rx and Tx ring initialization
1763 * routines in order to curve the descriptor linked list in a form
1764 * of a ring.
1765 * Note: Pay special attention to alignment issues when using
1766 * cached descriptors/buffers. In this phase the driver store
1767 * information in the mv643xx_private struct regarding each queue
1768 * ring.
1769 *
1770 * Driver start
1771 * This phase prepares the Ethernet port for Rx and Tx activity.
1772 * It uses the information stored in the mv643xx_private struct to
1773 * initialize the various port registers.
1774 *
1775 * Data flow:
1776 * All packet references to/from the driver are done using
1777 * struct pkt_info.
1778 * This struct is a unified struct used with Rx and Tx operations.
1779 * This way the user is not required to be familiar with neither
1780 * Tx nor Rx descriptors structures.
1781 * The driver's descriptors rings are management by indexes.
1782 * Those indexes controls the ring resources and used to indicate
1783 * a SW resource error:
1784 * 'current'
1785 * This index points to the current available resource for use. For
1786 * example in Rx process this index will point to the descriptor
1787 * that will be passed to the user upon calling the receive
1788 * routine. In Tx process, this index will point to the descriptor
1789 * that will be assigned with the user packet info and transmitted.
1790 * 'used'
1791 * This index points to the descriptor that need to restore its
1792 * resources. For example in Rx process, using the Rx buffer return
1793 * API will attach the buffer returned in packet info to the
1794 * descriptor pointed by 'used'. In Tx process, using the Tx
1795 * descriptor return will merely return the user packet info with
1796 * the command status of the transmitted buffer pointed by the
1797 * 'used' index. Nevertheless, it is essential to use this routine
1798 * to update the 'used' index.
1799 * 'first'
1800 * This index supports Tx Scatter-Gather. It points to the first
1801 * descriptor of a packet assembled of multiple buffers. For
1802 * example when in middle of Such packet we have a Tx resource
1803 * error the 'curr' index get the value of 'first' to indicate
1804 * that the ring returned to its state before trying to transmit
1805 * this packet.
1806 *
1807 * Receive operation:
1808 * The eth_port_receive API set the packet information struct,
1809 * passed by the caller, with received information from the
1810 * 'current' SDMA descriptor.
1811 * It is the user responsibility to return this resource back
1812 * to the Rx descriptor ring to enable the reuse of this source.
1813 * Return Rx resource is done using the eth_rx_return_buff API.
1814 *
1815 * Transmit operation:
1816 * The eth_port_send API supports Scatter-Gather which enables to
1817 * send a packet spanned over multiple buffers. This means that
1818 * for each packet info structure given by the user and put into
1819 * the Tx descriptors ring, will be transmitted only if the 'LAST'
1820 * bit will be set in the packet info command status field. This
1821 * API also consider restriction regarding buffer alignments and
1822 * sizes.
1823 * The user must return a Tx resource after ensuring the buffer
1824 * has been transmitted to enable the Tx ring indexes to update.
1825 *
1826 * BOARD LAYOUT
1827 * This device is on-board. No jumper diagram is necessary.
1828 *
1829 * EXTERNAL INTERFACE
1830 *
1831 * Prior to calling the initialization routine eth_port_init() the user
1832 * must set the following fields under mv643xx_private struct:
1833 * port_num User Ethernet port number.
1da177e4
LT
1834 * port_config User port configuration value.
1835 * port_config_extend User port config extend value.
1836 * port_sdma_config User port SDMA config value.
1837 * port_serial_control User port serial control value.
1838 *
1839 * This driver data flow is done using the struct pkt_info which
1840 * is a unified struct for Rx and Tx operations:
1841 *
1842 * byte_cnt Tx/Rx descriptor buffer byte count.
1843 * l4i_chk CPU provided TCP Checksum. For Tx operation
1844 * only.
1845 * cmd_sts Tx/Rx descriptor command status.
1846 * buf_ptr Tx/Rx descriptor buffer pointer.
1847 * return_info Tx/Rx user resource return information.
1848 */
1849
1da177e4
LT
1850/* PHY routines */
1851static int ethernet_phy_get(unsigned int eth_port_num);
1852static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr);
1853
1854/* Ethernet Port routines */
cf4086c7 1855static void eth_port_set_filter_table_entry(int table, unsigned char entry);
1da177e4
LT
1856
1857/*
1858 * eth_port_init - Initialize the Ethernet port driver
1859 *
1860 * DESCRIPTION:
1861 * This function prepares the ethernet port to start its activity:
1862 * 1) Completes the ethernet port driver struct initialization toward port
1863 * start routine.
1864 * 2) Resets the device to a quiescent state in case of warm reboot.
1865 * 3) Enable SDMA access to all four DRAM banks as well as internal SRAM.
1866 * 4) Clean MAC tables. The reset status of those tables is unknown.
1867 * 5) Set PHY address.
1868 * Note: Call this routine prior to eth_port_start routine and after
1869 * setting user values in the user fields of Ethernet port control
1870 * struct.
1871 *
1872 * INPUT:
1873 * struct mv643xx_private *mp Ethernet port control struct
1874 *
1875 * OUTPUT:
1876 * See description.
1877 *
1878 * RETURN:
1879 * None.
1880 */
1881static void eth_port_init(struct mv643xx_private *mp)
1882{
1da177e4
LT
1883 mp->rx_resource_err = 0;
1884 mp->tx_resource_err = 0;
1885
1886 eth_port_reset(mp->port_num);
1887
1888 eth_port_init_mac_tables(mp->port_num);
1da177e4
LT
1889}
1890
1891/*
1892 * eth_port_start - Start the Ethernet port activity.
1893 *
1894 * DESCRIPTION:
1895 * This routine prepares the Ethernet port for Rx and Tx activity:
1896 * 1. Initialize Tx and Rx Current Descriptor Pointer for each queue that
1897 * has been initialized a descriptor's ring (using
1898 * ether_init_tx_desc_ring for Tx and ether_init_rx_desc_ring for Rx)
1899 * 2. Initialize and enable the Ethernet configuration port by writing to
1900 * the port's configuration and command registers.
1901 * 3. Initialize and enable the SDMA by writing to the SDMA's
1902 * configuration and command registers. After completing these steps,
1903 * the ethernet port SDMA can starts to perform Rx and Tx activities.
1904 *
1905 * Note: Each Rx and Tx queue descriptor's list must be initialized prior
1906 * to calling this function (use ether_init_tx_desc_ring for Tx queues
1907 * and ether_init_rx_desc_ring for Rx queues).
1908 *
1909 * INPUT:
ed9b5d45 1910 * dev - a pointer to the required interface
1da177e4
LT
1911 *
1912 * OUTPUT:
1913 * Ethernet port is ready to receive and transmit.
1914 *
1915 * RETURN:
1916 * None.
1917 */
ed9b5d45 1918static void eth_port_start(struct net_device *dev)
1da177e4 1919{
ed9b5d45 1920 struct mv643xx_private *mp = netdev_priv(dev);
1da177e4
LT
1921 unsigned int port_num = mp->port_num;
1922 int tx_curr_desc, rx_curr_desc;
d0412d96
JC
1923 u32 pscr;
1924 struct ethtool_cmd ethtool_cmd;
1da177e4
LT
1925
1926 /* Assignment of Tx CTRP of given queue */
1927 tx_curr_desc = mp->tx_curr_desc_q;
1928 mv_write(MV643XX_ETH_TX_CURRENT_QUEUE_DESC_PTR_0(port_num),
1929 (u32)((struct eth_tx_desc *)mp->tx_desc_dma + tx_curr_desc));
1930
1931 /* Assignment of Rx CRDP of given queue */
1932 rx_curr_desc = mp->rx_curr_desc_q;
1933 mv_write(MV643XX_ETH_RX_CURRENT_QUEUE_DESC_PTR_0(port_num),
1934 (u32)((struct eth_rx_desc *)mp->rx_desc_dma + rx_curr_desc));
1935
1936 /* Add the assigned Ethernet address to the port's address table */
ed9b5d45 1937 eth_port_uc_addr_set(port_num, dev->dev_addr);
1da177e4
LT
1938
1939 /* Assign port configuration and command. */
01999873
DF
1940 mv_write(MV643XX_ETH_PORT_CONFIG_REG(port_num),
1941 MV643XX_ETH_PORT_CONFIG_DEFAULT_VALUE);
1942
1943 mv_write(MV643XX_ETH_PORT_CONFIG_EXTEND_REG(port_num),
1944 MV643XX_ETH_PORT_CONFIG_EXTEND_DEFAULT_VALUE);
1da177e4 1945
d0412d96 1946 pscr = mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num));
01999873
DF
1947
1948 pscr &= ~(MV643XX_ETH_SERIAL_PORT_ENABLE | MV643XX_ETH_FORCE_LINK_PASS);
d0412d96 1949 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num), pscr);
1da177e4 1950
d0412d96
JC
1951 pscr |= MV643XX_ETH_DISABLE_AUTO_NEG_FOR_FLOW_CTRL |
1952 MV643XX_ETH_DISABLE_AUTO_NEG_SPEED_GMII |
1953 MV643XX_ETH_DISABLE_AUTO_NEG_FOR_DUPLX |
1954 MV643XX_ETH_DO_NOT_FORCE_LINK_FAIL |
1955 MV643XX_ETH_SERIAL_PORT_CONTROL_RESERVED;
1da177e4 1956
d0412d96 1957 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num), pscr);
1da177e4 1958
d0412d96
JC
1959 pscr |= MV643XX_ETH_SERIAL_PORT_ENABLE;
1960 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num), pscr);
1da177e4
LT
1961
1962 /* Assign port SDMA configuration */
01999873
DF
1963 mv_write(MV643XX_ETH_SDMA_CONFIG_REG(port_num),
1964 MV643XX_ETH_PORT_SDMA_CONFIG_DEFAULT_VALUE);
1da177e4
LT
1965
1966 /* Enable port Rx. */
9f8dd319 1967 mv643xx_eth_port_enable_rx(port_num, mp->port_rx_queue_command);
8f543718
DF
1968
1969 /* Disable port bandwidth limits by clearing MTU register */
1970 mv_write(MV643XX_ETH_MAXIMUM_TRANSMIT_UNIT(port_num), 0);
d0412d96
JC
1971
1972 /* save phy settings across reset */
1973 mv643xx_get_settings(dev, &ethtool_cmd);
1974 ethernet_phy_reset(mp->port_num);
1975 mv643xx_set_settings(dev, &ethtool_cmd);
1da177e4
LT
1976}
1977
1978/*
1979 * eth_port_uc_addr_set - This function Set the port Unicast address.
1980 *
1981 * DESCRIPTION:
1982 * This function Set the port Ethernet MAC address.
1983 *
1984 * INPUT:
1985 * unsigned int eth_port_num Port number.
1986 * char * p_addr Address to be set
1987 *
1988 * OUTPUT:
cf4086c7
DF
1989 * Set MAC address low and high registers. also calls
1990 * eth_port_set_filter_table_entry() to set the unicast
1991 * table with the proper information.
1da177e4
LT
1992 *
1993 * RETURN:
1994 * N/A.
1995 *
1996 */
1997static void eth_port_uc_addr_set(unsigned int eth_port_num,
1998 unsigned char *p_addr)
1999{
2000 unsigned int mac_h;
2001 unsigned int mac_l;
cf4086c7 2002 int table;
1da177e4
LT
2003
2004 mac_l = (p_addr[4] << 8) | (p_addr[5]);
2005 mac_h = (p_addr[0] << 24) | (p_addr[1] << 16) | (p_addr[2] << 8) |
2006 (p_addr[3] << 0);
2007
2008 mv_write(MV643XX_ETH_MAC_ADDR_LOW(eth_port_num), mac_l);
2009 mv_write(MV643XX_ETH_MAC_ADDR_HIGH(eth_port_num), mac_h);
2010
2011 /* Accept frames of this address */
cf4086c7
DF
2012 table = MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE(eth_port_num);
2013 eth_port_set_filter_table_entry(table, p_addr[5] & 0x0f);
1da177e4
LT
2014}
2015
2016/*
2017 * eth_port_uc_addr_get - This function retrieves the port Unicast address
2018 * (MAC address) from the ethernet hw registers.
2019 *
2020 * DESCRIPTION:
2021 * This function retrieves the port Ethernet MAC address.
2022 *
2023 * INPUT:
2024 * unsigned int eth_port_num Port number.
2025 * char *MacAddr pointer where the MAC address is stored
2026 *
2027 * OUTPUT:
2028 * Copy the MAC address to the location pointed to by MacAddr
2029 *
2030 * RETURN:
2031 * N/A.
2032 *
2033 */
2034static void eth_port_uc_addr_get(struct net_device *dev, unsigned char *p_addr)
2035{
2036 struct mv643xx_private *mp = netdev_priv(dev);
2037 unsigned int mac_h;
2038 unsigned int mac_l;
2039
2040 mac_h = mv_read(MV643XX_ETH_MAC_ADDR_HIGH(mp->port_num));
2041 mac_l = mv_read(MV643XX_ETH_MAC_ADDR_LOW(mp->port_num));
2042
2043 p_addr[0] = (mac_h >> 24) & 0xff;
2044 p_addr[1] = (mac_h >> 16) & 0xff;
2045 p_addr[2] = (mac_h >> 8) & 0xff;
2046 p_addr[3] = mac_h & 0xff;
2047 p_addr[4] = (mac_l >> 8) & 0xff;
2048 p_addr[5] = mac_l & 0xff;
2049}
2050
16e03018
DF
2051/*
2052 * The entries in each table are indexed by a hash of a packet's MAC
2053 * address. One bit in each entry determines whether the packet is
2054 * accepted. There are 4 entries (each 8 bits wide) in each register
2055 * of the table. The bits in each entry are defined as follows:
2056 * 0 Accept=1, Drop=0
2057 * 3-1 Queue (ETH_Q0=0)
2058 * 7-4 Reserved = 0;
2059 */
2060static void eth_port_set_filter_table_entry(int table, unsigned char entry)
2061{
2062 unsigned int table_reg;
2063 unsigned int tbl_offset;
2064 unsigned int reg_offset;
2065
2066 tbl_offset = (entry / 4) * 4; /* Register offset of DA table entry */
2067 reg_offset = entry % 4; /* Entry offset within the register */
2068
2069 /* Set "accepts frame bit" at specified table entry */
2070 table_reg = mv_read(table + tbl_offset);
2071 table_reg |= 0x01 << (8 * reg_offset);
2072 mv_write(table + tbl_offset, table_reg);
2073}
2074
2075/*
2076 * eth_port_mc_addr - Multicast address settings.
2077 *
2078 * The MV device supports multicast using two tables:
2079 * 1) Special Multicast Table for MAC addresses of the form
2080 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0x_FF).
2081 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2082 * Table entries in the DA-Filter table.
2083 * 2) Other Multicast Table for multicast of another type. A CRC-8bit
2084 * is used as an index to the Other Multicast Table entries in the
2085 * DA-Filter table. This function calculates the CRC-8bit value.
2086 * In either case, eth_port_set_filter_table_entry() is then called
2087 * to set to set the actual table entry.
2088 */
2089static void eth_port_mc_addr(unsigned int eth_port_num, unsigned char *p_addr)
2090{
2091 unsigned int mac_h;
2092 unsigned int mac_l;
2093 unsigned char crc_result = 0;
2094 int table;
2095 int mac_array[48];
2096 int crc[8];
2097 int i;
2098
2099 if ((p_addr[0] == 0x01) && (p_addr[1] == 0x00) &&
2100 (p_addr[2] == 0x5E) && (p_addr[3] == 0x00) && (p_addr[4] == 0x00)) {
2101 table = MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE
2102 (eth_port_num);
2103 eth_port_set_filter_table_entry(table, p_addr[5]);
2104 return;
2105 }
2106
2107 /* Calculate CRC-8 out of the given address */
2108 mac_h = (p_addr[0] << 8) | (p_addr[1]);
2109 mac_l = (p_addr[2] << 24) | (p_addr[3] << 16) |
2110 (p_addr[4] << 8) | (p_addr[5] << 0);
2111
2112 for (i = 0; i < 32; i++)
2113 mac_array[i] = (mac_l >> i) & 0x1;
2114 for (i = 32; i < 48; i++)
2115 mac_array[i] = (mac_h >> (i - 32)) & 0x1;
2116
2117 crc[0] = mac_array[45] ^ mac_array[43] ^ mac_array[40] ^ mac_array[39] ^
2118 mac_array[35] ^ mac_array[34] ^ mac_array[31] ^ mac_array[30] ^
2119 mac_array[28] ^ mac_array[23] ^ mac_array[21] ^ mac_array[19] ^
2120 mac_array[18] ^ mac_array[16] ^ mac_array[14] ^ mac_array[12] ^
2121 mac_array[8] ^ mac_array[7] ^ mac_array[6] ^ mac_array[0];
2122
2123 crc[1] = mac_array[46] ^ mac_array[45] ^ mac_array[44] ^ mac_array[43] ^
2124 mac_array[41] ^ mac_array[39] ^ mac_array[36] ^ mac_array[34] ^
2125 mac_array[32] ^ mac_array[30] ^ mac_array[29] ^ mac_array[28] ^
2126 mac_array[24] ^ mac_array[23] ^ mac_array[22] ^ mac_array[21] ^
2127 mac_array[20] ^ mac_array[18] ^ mac_array[17] ^ mac_array[16] ^
2128 mac_array[15] ^ mac_array[14] ^ mac_array[13] ^ mac_array[12] ^
2129 mac_array[9] ^ mac_array[6] ^ mac_array[1] ^ mac_array[0];
2130
2131 crc[2] = mac_array[47] ^ mac_array[46] ^ mac_array[44] ^ mac_array[43] ^
2132 mac_array[42] ^ mac_array[39] ^ mac_array[37] ^ mac_array[34] ^
2133 mac_array[33] ^ mac_array[29] ^ mac_array[28] ^ mac_array[25] ^
2134 mac_array[24] ^ mac_array[22] ^ mac_array[17] ^ mac_array[15] ^
2135 mac_array[13] ^ mac_array[12] ^ mac_array[10] ^ mac_array[8] ^
2136 mac_array[6] ^ mac_array[2] ^ mac_array[1] ^ mac_array[0];
2137
2138 crc[3] = mac_array[47] ^ mac_array[45] ^ mac_array[44] ^ mac_array[43] ^
2139 mac_array[40] ^ mac_array[38] ^ mac_array[35] ^ mac_array[34] ^
2140 mac_array[30] ^ mac_array[29] ^ mac_array[26] ^ mac_array[25] ^
2141 mac_array[23] ^ mac_array[18] ^ mac_array[16] ^ mac_array[14] ^
2142 mac_array[13] ^ mac_array[11] ^ mac_array[9] ^ mac_array[7] ^
2143 mac_array[3] ^ mac_array[2] ^ mac_array[1];
2144
2145 crc[4] = mac_array[46] ^ mac_array[45] ^ mac_array[44] ^ mac_array[41] ^
2146 mac_array[39] ^ mac_array[36] ^ mac_array[35] ^ mac_array[31] ^
2147 mac_array[30] ^ mac_array[27] ^ mac_array[26] ^ mac_array[24] ^
2148 mac_array[19] ^ mac_array[17] ^ mac_array[15] ^ mac_array[14] ^
2149 mac_array[12] ^ mac_array[10] ^ mac_array[8] ^ mac_array[4] ^
2150 mac_array[3] ^ mac_array[2];
2151
2152 crc[5] = mac_array[47] ^ mac_array[46] ^ mac_array[45] ^ mac_array[42] ^
2153 mac_array[40] ^ mac_array[37] ^ mac_array[36] ^ mac_array[32] ^
2154 mac_array[31] ^ mac_array[28] ^ mac_array[27] ^ mac_array[25] ^
2155 mac_array[20] ^ mac_array[18] ^ mac_array[16] ^ mac_array[15] ^
2156 mac_array[13] ^ mac_array[11] ^ mac_array[9] ^ mac_array[5] ^
2157 mac_array[4] ^ mac_array[3];
2158
2159 crc[6] = mac_array[47] ^ mac_array[46] ^ mac_array[43] ^ mac_array[41] ^
2160 mac_array[38] ^ mac_array[37] ^ mac_array[33] ^ mac_array[32] ^
2161 mac_array[29] ^ mac_array[28] ^ mac_array[26] ^ mac_array[21] ^
2162 mac_array[19] ^ mac_array[17] ^ mac_array[16] ^ mac_array[14] ^
2163 mac_array[12] ^ mac_array[10] ^ mac_array[6] ^ mac_array[5] ^
2164 mac_array[4];
2165
2166 crc[7] = mac_array[47] ^ mac_array[44] ^ mac_array[42] ^ mac_array[39] ^
2167 mac_array[38] ^ mac_array[34] ^ mac_array[33] ^ mac_array[30] ^
2168 mac_array[29] ^ mac_array[27] ^ mac_array[22] ^ mac_array[20] ^
2169 mac_array[18] ^ mac_array[17] ^ mac_array[15] ^ mac_array[13] ^
2170 mac_array[11] ^ mac_array[7] ^ mac_array[6] ^ mac_array[5];
2171
2172 for (i = 0; i < 8; i++)
2173 crc_result = crc_result | (crc[i] << i);
2174
2175 table = MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE(eth_port_num);
2176 eth_port_set_filter_table_entry(table, crc_result);
2177}
2178
2179/*
2180 * Set the entire multicast list based on dev->mc_list.
2181 */
2182static void eth_port_set_multicast_list(struct net_device *dev)
2183{
2184
2185 struct dev_mc_list *mc_list;
2186 int i;
2187 int table_index;
2188 struct mv643xx_private *mp = netdev_priv(dev);
2189 unsigned int eth_port_num = mp->port_num;
2190
2191 /* If the device is in promiscuous mode or in all multicast mode,
2192 * we will fully populate both multicast tables with accept.
2193 * This is guaranteed to yield a match on all multicast addresses...
2194 */
2195 if ((dev->flags & IFF_PROMISC) || (dev->flags & IFF_ALLMULTI)) {
2196 for (table_index = 0; table_index <= 0xFC; table_index += 4) {
b4de9051
DF
2197 /* Set all entries in DA filter special multicast
2198 * table (Ex_dFSMT)
2199 * Set for ETH_Q0 for now
2200 * Bits
2201 * 0 Accept=1, Drop=0
2202 * 3-1 Queue ETH_Q0=0
2203 * 7-4 Reserved = 0;
2204 */
2205 mv_write(MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE(eth_port_num) + table_index, 0x01010101);
2206
2207 /* Set all entries in DA filter other multicast
2208 * table (Ex_dFOMT)
2209 * Set for ETH_Q0 for now
2210 * Bits
2211 * 0 Accept=1, Drop=0
2212 * 3-1 Queue ETH_Q0=0
2213 * 7-4 Reserved = 0;
2214 */
2215 mv_write(MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE(eth_port_num) + table_index, 0x01010101);
2216 }
16e03018
DF
2217 return;
2218 }
2219
2220 /* We will clear out multicast tables every time we get the list.
2221 * Then add the entire new list...
2222 */
2223 for (table_index = 0; table_index <= 0xFC; table_index += 4) {
2224 /* Clear DA filter special multicast table (Ex_dFSMT) */
2225 mv_write(MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE
2226 (eth_port_num) + table_index, 0);
2227
2228 /* Clear DA filter other multicast table (Ex_dFOMT) */
2229 mv_write(MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE
2230 (eth_port_num) + table_index, 0);
2231 }
2232
2233 /* Get pointer to net_device multicast list and add each one... */
2234 for (i = 0, mc_list = dev->mc_list;
2235 (i < 256) && (mc_list != NULL) && (i < dev->mc_count);
2236 i++, mc_list = mc_list->next)
2237 if (mc_list->dmi_addrlen == 6)
2238 eth_port_mc_addr(eth_port_num, mc_list->dmi_addr);
2239}
2240
1da177e4
LT
2241/*
2242 * eth_port_init_mac_tables - Clear all entrance in the UC, SMC and OMC tables
2243 *
2244 * DESCRIPTION:
2245 * Go through all the DA filter tables (Unicast, Special Multicast &
2246 * Other Multicast) and set each entry to 0.
2247 *
2248 * INPUT:
2249 * unsigned int eth_port_num Ethernet Port number.
2250 *
2251 * OUTPUT:
2252 * Multicast and Unicast packets are rejected.
2253 *
2254 * RETURN:
2255 * None.
2256 */
2257static void eth_port_init_mac_tables(unsigned int eth_port_num)
2258{
2259 int table_index;
2260
2261 /* Clear DA filter unicast table (Ex_dFUT) */
2262 for (table_index = 0; table_index <= 0xC; table_index += 4)
cf4086c7
DF
2263 mv_write(MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE
2264 (eth_port_num) + table_index, 0);
1da177e4
LT
2265
2266 for (table_index = 0; table_index <= 0xFC; table_index += 4) {
2267 /* Clear DA filter special multicast table (Ex_dFSMT) */
16e03018
DF
2268 mv_write(MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE
2269 (eth_port_num) + table_index, 0);
1da177e4 2270 /* Clear DA filter other multicast table (Ex_dFOMT) */
16e03018
DF
2271 mv_write(MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE
2272 (eth_port_num) + table_index, 0);
1da177e4
LT
2273 }
2274}
2275
2276/*
2277 * eth_clear_mib_counters - Clear all MIB counters
2278 *
2279 * DESCRIPTION:
2280 * This function clears all MIB counters of a specific ethernet port.
2281 * A read from the MIB counter will reset the counter.
2282 *
2283 * INPUT:
2284 * unsigned int eth_port_num Ethernet Port number.
2285 *
2286 * OUTPUT:
2287 * After reading all MIB counters, the counters resets.
2288 *
2289 * RETURN:
2290 * MIB counter value.
2291 *
2292 */
2293static void eth_clear_mib_counters(unsigned int eth_port_num)
2294{
2295 int i;
2296
2297 /* Perform dummy reads from MIB counters */
2298 for (i = ETH_MIB_GOOD_OCTETS_RECEIVED_LOW; i < ETH_MIB_LATE_COLLISION;
2299 i += 4)
2300 mv_read(MV643XX_ETH_MIB_COUNTERS_BASE(eth_port_num) + i);
2301}
2302
2303static inline u32 read_mib(struct mv643xx_private *mp, int offset)
2304{
2305 return mv_read(MV643XX_ETH_MIB_COUNTERS_BASE(mp->port_num) + offset);
2306}
2307
2308static void eth_update_mib_counters(struct mv643xx_private *mp)
2309{
2310 struct mv643xx_mib_counters *p = &mp->mib_counters;
2311 int offset;
2312
2313 p->good_octets_received +=
2314 read_mib(mp, ETH_MIB_GOOD_OCTETS_RECEIVED_LOW);
2315 p->good_octets_received +=
2316 (u64)read_mib(mp, ETH_MIB_GOOD_OCTETS_RECEIVED_HIGH) << 32;
2317
2318 for (offset = ETH_MIB_BAD_OCTETS_RECEIVED;
2319 offset <= ETH_MIB_FRAMES_1024_TO_MAX_OCTETS;
2320 offset += 4)
2321 *(u32 *)((char *)p + offset) = read_mib(mp, offset);
2322
2323 p->good_octets_sent += read_mib(mp, ETH_MIB_GOOD_OCTETS_SENT_LOW);
2324 p->good_octets_sent +=
2325 (u64)read_mib(mp, ETH_MIB_GOOD_OCTETS_SENT_HIGH) << 32;
2326
2327 for (offset = ETH_MIB_GOOD_FRAMES_SENT;
2328 offset <= ETH_MIB_LATE_COLLISION;
2329 offset += 4)
2330 *(u32 *)((char *)p + offset) = read_mib(mp, offset);
2331}
2332
2333/*
2334 * ethernet_phy_detect - Detect whether a phy is present
2335 *
2336 * DESCRIPTION:
2337 * This function tests whether there is a PHY present on
2338 * the specified port.
2339 *
2340 * INPUT:
2341 * unsigned int eth_port_num Ethernet Port number.
2342 *
2343 * OUTPUT:
2344 * None
2345 *
2346 * RETURN:
2347 * 0 on success
2348 * -ENODEV on failure
2349 *
2350 */
2351static int ethernet_phy_detect(unsigned int port_num)
2352{
2353 unsigned int phy_reg_data0;
2354 int auto_neg;
2355
2356 eth_port_read_smi_reg(port_num, 0, &phy_reg_data0);
2357 auto_neg = phy_reg_data0 & 0x1000;
2358 phy_reg_data0 ^= 0x1000; /* invert auto_neg */
2359 eth_port_write_smi_reg(port_num, 0, phy_reg_data0);
2360
2361 eth_port_read_smi_reg(port_num, 0, &phy_reg_data0);
2362 if ((phy_reg_data0 & 0x1000) == auto_neg)
2363 return -ENODEV; /* change didn't take */
2364
2365 phy_reg_data0 ^= 0x1000;
2366 eth_port_write_smi_reg(port_num, 0, phy_reg_data0);
2367 return 0;
2368}
2369
2370/*
2371 * ethernet_phy_get - Get the ethernet port PHY address.
2372 *
2373 * DESCRIPTION:
2374 * This routine returns the given ethernet port PHY address.
2375 *
2376 * INPUT:
2377 * unsigned int eth_port_num Ethernet Port number.
2378 *
2379 * OUTPUT:
2380 * None.
2381 *
2382 * RETURN:
2383 * PHY address.
2384 *
2385 */
2386static int ethernet_phy_get(unsigned int eth_port_num)
2387{
2388 unsigned int reg_data;
2389
2390 reg_data = mv_read(MV643XX_ETH_PHY_ADDR_REG);
2391
2392 return ((reg_data >> (5 * eth_port_num)) & 0x1f);
2393}
2394
2395/*
2396 * ethernet_phy_set - Set the ethernet port PHY address.
2397 *
2398 * DESCRIPTION:
2399 * This routine sets the given ethernet port PHY address.
2400 *
2401 * INPUT:
2402 * unsigned int eth_port_num Ethernet Port number.
2403 * int phy_addr PHY address.
2404 *
2405 * OUTPUT:
2406 * None.
2407 *
2408 * RETURN:
2409 * None.
2410 *
2411 */
2412static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr)
2413{
2414 u32 reg_data;
2415 int addr_shift = 5 * eth_port_num;
2416
2417 reg_data = mv_read(MV643XX_ETH_PHY_ADDR_REG);
2418 reg_data &= ~(0x1f << addr_shift);
2419 reg_data |= (phy_addr & 0x1f) << addr_shift;
2420 mv_write(MV643XX_ETH_PHY_ADDR_REG, reg_data);
2421}
2422
2423/*
2424 * ethernet_phy_reset - Reset Ethernet port PHY.
2425 *
2426 * DESCRIPTION:
2427 * This routine utilizes the SMI interface to reset the ethernet port PHY.
2428 *
2429 * INPUT:
2430 * unsigned int eth_port_num Ethernet Port number.
2431 *
2432 * OUTPUT:
2433 * The PHY is reset.
2434 *
2435 * RETURN:
2436 * None.
2437 *
2438 */
2439static void ethernet_phy_reset(unsigned int eth_port_num)
2440{
2441 unsigned int phy_reg_data;
2442
2443 /* Reset the PHY */
2444 eth_port_read_smi_reg(eth_port_num, 0, &phy_reg_data);
2445 phy_reg_data |= 0x8000; /* Set bit 15 to reset the PHY */
2446 eth_port_write_smi_reg(eth_port_num, 0, phy_reg_data);
d0412d96
JC
2447
2448 /* wait for PHY to come out of reset */
2449 do {
2450 udelay(1);
2451 eth_port_read_smi_reg(eth_port_num, 0, &phy_reg_data);
2452 } while (phy_reg_data & 0x8000);
1da177e4
LT
2453}
2454
9f8dd319 2455static void mv643xx_eth_port_enable_tx(unsigned int port_num,
12a87c64 2456 unsigned int queues)
9f8dd319 2457{
12a87c64 2458 mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num), queues);
9f8dd319
DF
2459}
2460
2461static void mv643xx_eth_port_enable_rx(unsigned int port_num,
12a87c64 2462 unsigned int queues)
9f8dd319 2463{
12a87c64 2464 mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num), queues);
9f8dd319
DF
2465}
2466
2467static unsigned int mv643xx_eth_port_disable_tx(unsigned int port_num)
2468{
12a87c64 2469 u32 queues;
9f8dd319
DF
2470
2471 /* Stop Tx port activity. Check port Tx activity. */
12a87c64 2472 queues = mv_read(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num))
9f8dd319 2473 & 0xFF;
12a87c64
DF
2474 if (queues) {
2475 /* Issue stop command for active queues only */
9f8dd319 2476 mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num),
12a87c64 2477 (queues << 8));
9f8dd319
DF
2478
2479 /* Wait for all Tx activity to terminate. */
2480 /* Check port cause register that all Tx queues are stopped */
2481 while (mv_read(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num))
2482 & 0xFF)
2483 udelay(PHY_WAIT_MICRO_SECONDS);
2484
2485 /* Wait for Tx FIFO to empty */
2486 while (mv_read(MV643XX_ETH_PORT_STATUS_REG(port_num)) &
2487 ETH_PORT_TX_FIFO_EMPTY)
2488 udelay(PHY_WAIT_MICRO_SECONDS);
2489 }
2490
12a87c64 2491 return queues;
9f8dd319
DF
2492}
2493
2494static unsigned int mv643xx_eth_port_disable_rx(unsigned int port_num)
2495{
12a87c64 2496 u32 queues;
9f8dd319
DF
2497
2498 /* Stop Rx port activity. Check port Rx activity. */
12a87c64 2499 queues = mv_read(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num))
e38fd1a0 2500 & 0xFF;
12a87c64
DF
2501 if (queues) {
2502 /* Issue stop command for active queues only */
9f8dd319 2503 mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num),
12a87c64 2504 (queues << 8));
9f8dd319
DF
2505
2506 /* Wait for all Rx activity to terminate. */
2507 /* Check port cause register that all Rx queues are stopped */
2508 while (mv_read(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num))
2509 & 0xFF)
2510 udelay(PHY_WAIT_MICRO_SECONDS);
2511 }
2512
12a87c64 2513 return queues;
9f8dd319
DF
2514}
2515
1da177e4
LT
2516/*
2517 * eth_port_reset - Reset Ethernet port
2518 *
2519 * DESCRIPTION:
2520 * This routine resets the chip by aborting any SDMA engine activity and
2521 * clearing the MIB counters. The Receiver and the Transmit unit are in
2522 * idle state after this command is performed and the port is disabled.
2523 *
2524 * INPUT:
2525 * unsigned int eth_port_num Ethernet Port number.
2526 *
2527 * OUTPUT:
2528 * Channel activity is halted.
2529 *
2530 * RETURN:
2531 * None.
2532 *
2533 */
2534static void eth_port_reset(unsigned int port_num)
2535{
2536 unsigned int reg_data;
2537
9f8dd319
DF
2538 mv643xx_eth_port_disable_tx(port_num);
2539 mv643xx_eth_port_disable_rx(port_num);
1da177e4
LT
2540
2541 /* Clear all MIB counters */
2542 eth_clear_mib_counters(port_num);
2543
2544 /* Reset the Enable bit in the Configuration Register */
2545 reg_data = mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num));
d0412d96
JC
2546 reg_data &= ~(MV643XX_ETH_SERIAL_PORT_ENABLE |
2547 MV643XX_ETH_DO_NOT_FORCE_LINK_FAIL |
2548 MV643XX_ETH_FORCE_LINK_PASS);
1da177e4
LT
2549 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num), reg_data);
2550}
2551
1da177e4 2552
1da177e4
LT
2553/*
2554 * eth_port_read_smi_reg - Read PHY registers
2555 *
2556 * DESCRIPTION:
2557 * This routine utilize the SMI interface to interact with the PHY in
2558 * order to perform PHY register read.
2559 *
2560 * INPUT:
2561 * unsigned int port_num Ethernet Port number.
2562 * unsigned int phy_reg PHY register address offset.
2563 * unsigned int *value Register value buffer.
2564 *
2565 * OUTPUT:
2566 * Write the value of a specified PHY register into given buffer.
2567 *
2568 * RETURN:
2569 * false if the PHY is busy or read data is not in valid state.
2570 * true otherwise.
2571 *
2572 */
2573static void eth_port_read_smi_reg(unsigned int port_num,
2574 unsigned int phy_reg, unsigned int *value)
2575{
2576 int phy_addr = ethernet_phy_get(port_num);
2577 unsigned long flags;
2578 int i;
2579
2580 /* the SMI register is a shared resource */
2581 spin_lock_irqsave(&mv643xx_eth_phy_lock, flags);
2582
2583 /* wait for the SMI register to become available */
2584 for (i = 0; mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_BUSY; i++) {
2585 if (i == PHY_WAIT_ITERATIONS) {
2586 printk("mv643xx PHY busy timeout, port %d\n", port_num);
2587 goto out;
2588 }
2589 udelay(PHY_WAIT_MICRO_SECONDS);
2590 }
2591
2592 mv_write(MV643XX_ETH_SMI_REG,
2593 (phy_addr << 16) | (phy_reg << 21) | ETH_SMI_OPCODE_READ);
2594
2595 /* now wait for the data to be valid */
2596 for (i = 0; !(mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_READ_VALID); i++) {
2597 if (i == PHY_WAIT_ITERATIONS) {
2598 printk("mv643xx PHY read timeout, port %d\n", port_num);
2599 goto out;
2600 }
2601 udelay(PHY_WAIT_MICRO_SECONDS);
2602 }
2603
2604 *value = mv_read(MV643XX_ETH_SMI_REG) & 0xffff;
2605out:
2606 spin_unlock_irqrestore(&mv643xx_eth_phy_lock, flags);
2607}
2608
2609/*
2610 * eth_port_write_smi_reg - Write to PHY registers
2611 *
2612 * DESCRIPTION:
2613 * This routine utilize the SMI interface to interact with the PHY in
2614 * order to perform writes to PHY registers.
2615 *
2616 * INPUT:
2617 * unsigned int eth_port_num Ethernet Port number.
2618 * unsigned int phy_reg PHY register address offset.
2619 * unsigned int value Register value.
2620 *
2621 * OUTPUT:
2622 * Write the given value to the specified PHY register.
2623 *
2624 * RETURN:
2625 * false if the PHY is busy.
2626 * true otherwise.
2627 *
2628 */
2629static void eth_port_write_smi_reg(unsigned int eth_port_num,
2630 unsigned int phy_reg, unsigned int value)
2631{
2632 int phy_addr;
2633 int i;
2634 unsigned long flags;
2635
2636 phy_addr = ethernet_phy_get(eth_port_num);
2637
2638 /* the SMI register is a shared resource */
2639 spin_lock_irqsave(&mv643xx_eth_phy_lock, flags);
2640
2641 /* wait for the SMI register to become available */
2642 for (i = 0; mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_BUSY; i++) {
2643 if (i == PHY_WAIT_ITERATIONS) {
2644 printk("mv643xx PHY busy timeout, port %d\n",
2645 eth_port_num);
2646 goto out;
2647 }
2648 udelay(PHY_WAIT_MICRO_SECONDS);
2649 }
2650
2651 mv_write(MV643XX_ETH_SMI_REG, (phy_addr << 16) | (phy_reg << 21) |
2652 ETH_SMI_OPCODE_WRITE | (value & 0xffff));
2653out:
2654 spin_unlock_irqrestore(&mv643xx_eth_phy_lock, flags);
2655}
2656
c28a4f89
JC
2657/*
2658 * Wrappers for MII support library.
2659 */
2660static int mv643xx_mdio_read(struct net_device *dev, int phy_id, int location)
2661{
2662 int val;
2663 struct mv643xx_private *mp = netdev_priv(dev);
2664
2665 eth_port_read_smi_reg(mp->port_num, location, &val);
2666 return val;
2667}
2668
2669static void mv643xx_mdio_write(struct net_device *dev, int phy_id, int location, int val)
2670{
2671 struct mv643xx_private *mp = netdev_priv(dev);
2672 eth_port_write_smi_reg(mp->port_num, location, val);
2673}
2674
1da177e4
LT
2675/*
2676 * eth_port_send - Send an Ethernet packet
2677 *
2678 * DESCRIPTION:
2679 * This routine send a given packet described by p_pktinfo parameter. It
2680 * supports transmitting of a packet spaned over multiple buffers. The
2681 * routine updates 'curr' and 'first' indexes according to the packet
2682 * segment passed to the routine. In case the packet segment is first,
2683 * the 'first' index is update. In any case, the 'curr' index is updated.
2684 * If the routine get into Tx resource error it assigns 'curr' index as
2685 * 'first'. This way the function can abort Tx process of multiple
2686 * descriptors per packet.
2687 *
2688 * INPUT:
2689 * struct mv643xx_private *mp Ethernet Port Control srtuct.
2690 * struct pkt_info *p_pkt_info User packet buffer.
2691 *
2692 * OUTPUT:
2693 * Tx ring 'curr' and 'first' indexes are updated.
2694 *
2695 * RETURN:
2696 * ETH_QUEUE_FULL in case of Tx resource error.
2697 * ETH_ERROR in case the routine can not access Tx desc ring.
2698 * ETH_QUEUE_LAST_RESOURCE if the routine uses the last Tx resource.
2699 * ETH_OK otherwise.
2700 *
2701 */
2702#ifdef MV643XX_CHECKSUM_OFFLOAD_TX
2703/*
2704 * Modified to include the first descriptor pointer in case of SG
2705 */
2706static ETH_FUNC_RET_STATUS eth_port_send(struct mv643xx_private *mp,
2707 struct pkt_info *p_pkt_info)
2708{
2709 int tx_desc_curr, tx_desc_used, tx_first_desc, tx_next_desc;
2710 struct eth_tx_desc *current_descriptor;
2711 struct eth_tx_desc *first_descriptor;
2712 u32 command;
2713
2714 /* Do not process Tx ring in case of Tx ring resource error */
2715 if (mp->tx_resource_err)
2716 return ETH_QUEUE_FULL;
2717
2718 /*
2719 * The hardware requires that each buffer that is <= 8 bytes
2720 * in length must be aligned on an 8 byte boundary.
2721 */
2722 if (p_pkt_info->byte_cnt <= 8 && p_pkt_info->buf_ptr & 0x7) {
2723 printk(KERN_ERR
2724 "mv643xx_eth port %d: packet size <= 8 problem\n",
2725 mp->port_num);
2726 return ETH_ERROR;
2727 }
2728
f98e36f1
DF
2729 mp->tx_desc_count++;
2730 BUG_ON(mp->tx_desc_count > mp->tx_ring_size);
b111ceb6 2731
1da177e4
LT
2732 /* Get the Tx Desc ring indexes */
2733 tx_desc_curr = mp->tx_curr_desc_q;
2734 tx_desc_used = mp->tx_used_desc_q;
2735
2736 current_descriptor = &mp->p_tx_desc_area[tx_desc_curr];
2737
2738 tx_next_desc = (tx_desc_curr + 1) % mp->tx_ring_size;
2739
2740 current_descriptor->buf_ptr = p_pkt_info->buf_ptr;
2741 current_descriptor->byte_cnt = p_pkt_info->byte_cnt;
2742 current_descriptor->l4i_chk = p_pkt_info->l4i_chk;
2743 mp->tx_skb[tx_desc_curr] = p_pkt_info->return_info;
2744
2745 command = p_pkt_info->cmd_sts | ETH_ZERO_PADDING | ETH_GEN_CRC |
2746 ETH_BUFFER_OWNED_BY_DMA;
2747 if (command & ETH_TX_FIRST_DESC) {
2748 tx_first_desc = tx_desc_curr;
2749 mp->tx_first_desc_q = tx_first_desc;
2750 first_descriptor = current_descriptor;
2751 mp->tx_first_command = command;
2752 } else {
2753 tx_first_desc = mp->tx_first_desc_q;
2754 first_descriptor = &mp->p_tx_desc_area[tx_first_desc];
2755 BUG_ON(first_descriptor == NULL);
2756 current_descriptor->cmd_sts = command;
2757 }
2758
2759 if (command & ETH_TX_LAST_DESC) {
2760 wmb();
2761 first_descriptor->cmd_sts = mp->tx_first_command;
2762
2763 wmb();
9f8dd319 2764 mv643xx_eth_port_enable_tx(mp->port_num, mp->port_tx_queue_command);
1da177e4
LT
2765
2766 /*
2767 * Finish Tx packet. Update first desc in case of Tx resource
2768 * error */
2769 tx_first_desc = tx_next_desc;
2770 mp->tx_first_desc_q = tx_first_desc;
2771 }
2772
2773 /* Check for ring index overlap in the Tx desc ring */
2774 if (tx_next_desc == tx_desc_used) {
2775 mp->tx_resource_err = 1;
2776 mp->tx_curr_desc_q = tx_first_desc;
2777
2778 return ETH_QUEUE_LAST_RESOURCE;
2779 }
2780
2781 mp->tx_curr_desc_q = tx_next_desc;
2782
2783 return ETH_OK;
2784}
2785#else
2786static ETH_FUNC_RET_STATUS eth_port_send(struct mv643xx_private *mp,
2787 struct pkt_info *p_pkt_info)
2788{
2789 int tx_desc_curr;
2790 int tx_desc_used;
2791 struct eth_tx_desc *current_descriptor;
2792 unsigned int command_status;
2793
2794 /* Do not process Tx ring in case of Tx ring resource error */
2795 if (mp->tx_resource_err)
2796 return ETH_QUEUE_FULL;
2797
f98e36f1
DF
2798 mp->tx_desc_count++;
2799 BUG_ON(mp->tx_desc_count > mp->tx_ring_size);
b111ceb6 2800
1da177e4
LT
2801 /* Get the Tx Desc ring indexes */
2802 tx_desc_curr = mp->tx_curr_desc_q;
2803 tx_desc_used = mp->tx_used_desc_q;
2804 current_descriptor = &mp->p_tx_desc_area[tx_desc_curr];
2805
2806 command_status = p_pkt_info->cmd_sts | ETH_ZERO_PADDING | ETH_GEN_CRC;
2807 current_descriptor->buf_ptr = p_pkt_info->buf_ptr;
2808 current_descriptor->byte_cnt = p_pkt_info->byte_cnt;
2809 mp->tx_skb[tx_desc_curr] = p_pkt_info->return_info;
2810
2811 /* Set last desc with DMA ownership and interrupt enable. */
2812 wmb();
2813 current_descriptor->cmd_sts = command_status |
2814 ETH_BUFFER_OWNED_BY_DMA | ETH_TX_ENABLE_INTERRUPT;
2815
2816 wmb();
9f8dd319 2817 mv643xx_eth_port_enable_tx(mp->port_num, mp->port_tx_queue_command);
1da177e4
LT
2818
2819 /* Finish Tx packet. Update first desc in case of Tx resource error */
2820 tx_desc_curr = (tx_desc_curr + 1) % mp->tx_ring_size;
2821
2822 /* Update the current descriptor */
2823 mp->tx_curr_desc_q = tx_desc_curr;
2824
2825 /* Check for ring index overlap in the Tx desc ring */
2826 if (tx_desc_curr == tx_desc_used) {
2827 mp->tx_resource_err = 1;
2828 return ETH_QUEUE_LAST_RESOURCE;
2829 }
2830
2831 return ETH_OK;
2832}
2833#endif
2834
2835/*
2836 * eth_tx_return_desc - Free all used Tx descriptors
2837 *
2838 * DESCRIPTION:
2839 * This routine returns the transmitted packet information to the caller.
2840 * It uses the 'first' index to support Tx desc return in case a transmit
2841 * of a packet spanned over multiple buffer still in process.
2842 * In case the Tx queue was in "resource error" condition, where there are
2843 * no available Tx resources, the function resets the resource error flag.
2844 *
2845 * INPUT:
2846 * struct mv643xx_private *mp Ethernet Port Control srtuct.
2847 * struct pkt_info *p_pkt_info User packet buffer.
2848 *
2849 * OUTPUT:
2850 * Tx ring 'first' and 'used' indexes are updated.
2851 *
2852 * RETURN:
8f518703
DF
2853 * ETH_OK on success
2854 * ETH_ERROR otherwise.
1da177e4
LT
2855 *
2856 */
2857static ETH_FUNC_RET_STATUS eth_tx_return_desc(struct mv643xx_private *mp,
2858 struct pkt_info *p_pkt_info)
2859{
2860 int tx_desc_used;
8f518703
DF
2861 int tx_busy_desc;
2862 struct eth_tx_desc *p_tx_desc_used;
2863 unsigned int command_status;
2864 unsigned long flags;
2865 int err = ETH_OK;
2866
2867 spin_lock_irqsave(&mp->lock, flags);
2868
1da177e4 2869#ifdef MV643XX_CHECKSUM_OFFLOAD_TX
8f518703 2870 tx_busy_desc = mp->tx_first_desc_q;
1da177e4 2871#else
8f518703 2872 tx_busy_desc = mp->tx_curr_desc_q;
1da177e4 2873#endif
1da177e4
LT
2874
2875 /* Get the Tx Desc ring indexes */
2876 tx_desc_used = mp->tx_used_desc_q;
2877
2878 p_tx_desc_used = &mp->p_tx_desc_area[tx_desc_used];
2879
2880 /* Sanity check */
8f518703
DF
2881 if (p_tx_desc_used == NULL) {
2882 err = ETH_ERROR;
2883 goto out;
2884 }
1da177e4
LT
2885
2886 /* Stop release. About to overlap the current available Tx descriptor */
8f518703
DF
2887 if (tx_desc_used == tx_busy_desc && !mp->tx_resource_err) {
2888 err = ETH_ERROR;
2889 goto out;
2890 }
1da177e4
LT
2891
2892 command_status = p_tx_desc_used->cmd_sts;
2893
2894 /* Still transmitting... */
8f518703
DF
2895 if (command_status & (ETH_BUFFER_OWNED_BY_DMA)) {
2896 err = ETH_ERROR;
2897 goto out;
2898 }
1da177e4
LT
2899
2900 /* Pass the packet information to the caller */
2901 p_pkt_info->cmd_sts = command_status;
2902 p_pkt_info->return_info = mp->tx_skb[tx_desc_used];
4eaa3cb3
PG
2903 p_pkt_info->buf_ptr = p_tx_desc_used->buf_ptr;
2904 p_pkt_info->byte_cnt = p_tx_desc_used->byte_cnt;
1da177e4
LT
2905 mp->tx_skb[tx_desc_used] = NULL;
2906
2907 /* Update the next descriptor to release. */
2908 mp->tx_used_desc_q = (tx_desc_used + 1) % mp->tx_ring_size;
2909
2910 /* Any Tx return cancels the Tx resource error status */
2911 mp->tx_resource_err = 0;
2912
f98e36f1
DF
2913 BUG_ON(mp->tx_desc_count == 0);
2914 mp->tx_desc_count--;
b111ceb6 2915
8f518703
DF
2916out:
2917 spin_unlock_irqrestore(&mp->lock, flags);
2918
2919 return err;
1da177e4
LT
2920}
2921
2922/*
2923 * eth_port_receive - Get received information from Rx ring.
2924 *
2925 * DESCRIPTION:
2926 * This routine returns the received data to the caller. There is no
2927 * data copying during routine operation. All information is returned
2928 * using pointer to packet information struct passed from the caller.
2929 * If the routine exhausts Rx ring resources then the resource error flag
2930 * is set.
2931 *
2932 * INPUT:
2933 * struct mv643xx_private *mp Ethernet Port Control srtuct.
2934 * struct pkt_info *p_pkt_info User packet buffer.
2935 *
2936 * OUTPUT:
2937 * Rx ring current and used indexes are updated.
2938 *
2939 * RETURN:
2940 * ETH_ERROR in case the routine can not access Rx desc ring.
2941 * ETH_QUEUE_FULL if Rx ring resources are exhausted.
2942 * ETH_END_OF_JOB if there is no received data.
2943 * ETH_OK otherwise.
2944 */
2945static ETH_FUNC_RET_STATUS eth_port_receive(struct mv643xx_private *mp,
2946 struct pkt_info *p_pkt_info)
2947{
2948 int rx_next_curr_desc, rx_curr_desc, rx_used_desc;
2949 volatile struct eth_rx_desc *p_rx_desc;
2950 unsigned int command_status;
8f518703 2951 unsigned long flags;
1da177e4
LT
2952
2953 /* Do not process Rx ring in case of Rx ring resource error */
2954 if (mp->rx_resource_err)
2955 return ETH_QUEUE_FULL;
2956
8f518703
DF
2957 spin_lock_irqsave(&mp->lock, flags);
2958
1da177e4
LT
2959 /* Get the Rx Desc ring 'curr and 'used' indexes */
2960 rx_curr_desc = mp->rx_curr_desc_q;
2961 rx_used_desc = mp->rx_used_desc_q;
2962
2963 p_rx_desc = &mp->p_rx_desc_area[rx_curr_desc];
2964
2965 /* The following parameters are used to save readings from memory */
2966 command_status = p_rx_desc->cmd_sts;
2967 rmb();
2968
2969 /* Nothing to receive... */
8f518703
DF
2970 if (command_status & (ETH_BUFFER_OWNED_BY_DMA)) {
2971 spin_unlock_irqrestore(&mp->lock, flags);
1da177e4 2972 return ETH_END_OF_JOB;
8f518703 2973 }
1da177e4
LT
2974
2975 p_pkt_info->byte_cnt = (p_rx_desc->byte_cnt) - RX_BUF_OFFSET;
2976 p_pkt_info->cmd_sts = command_status;
2977 p_pkt_info->buf_ptr = (p_rx_desc->buf_ptr) + RX_BUF_OFFSET;
2978 p_pkt_info->return_info = mp->rx_skb[rx_curr_desc];
2979 p_pkt_info->l4i_chk = p_rx_desc->buf_size;
2980
b4de9051
DF
2981 /*
2982 * Clean the return info field to indicate that the
2983 * packet has been moved to the upper layers
2984 */
1da177e4
LT
2985 mp->rx_skb[rx_curr_desc] = NULL;
2986
2987 /* Update current index in data structure */
2988 rx_next_curr_desc = (rx_curr_desc + 1) % mp->rx_ring_size;
2989 mp->rx_curr_desc_q = rx_next_curr_desc;
2990
2991 /* Rx descriptors exhausted. Set the Rx ring resource error flag */
2992 if (rx_next_curr_desc == rx_used_desc)
2993 mp->rx_resource_err = 1;
2994
8f518703
DF
2995 spin_unlock_irqrestore(&mp->lock, flags);
2996
1da177e4
LT
2997 return ETH_OK;
2998}
2999
3000/*
3001 * eth_rx_return_buff - Returns a Rx buffer back to the Rx ring.
3002 *
3003 * DESCRIPTION:
3004 * This routine returns a Rx buffer back to the Rx ring. It retrieves the
3005 * next 'used' descriptor and attached the returned buffer to it.
3006 * In case the Rx ring was in "resource error" condition, where there are
3007 * no available Rx resources, the function resets the resource error flag.
3008 *
3009 * INPUT:
3010 * struct mv643xx_private *mp Ethernet Port Control srtuct.
3011 * struct pkt_info *p_pkt_info Information on returned buffer.
3012 *
3013 * OUTPUT:
3014 * New available Rx resource in Rx descriptor ring.
3015 *
3016 * RETURN:
3017 * ETH_ERROR in case the routine can not access Rx desc ring.
3018 * ETH_OK otherwise.
3019 */
3020static ETH_FUNC_RET_STATUS eth_rx_return_buff(struct mv643xx_private *mp,
3021 struct pkt_info *p_pkt_info)
3022{
3023 int used_rx_desc; /* Where to return Rx resource */
3024 volatile struct eth_rx_desc *p_used_rx_desc;
8f518703
DF
3025 unsigned long flags;
3026
3027 spin_lock_irqsave(&mp->lock, flags);
1da177e4
LT
3028
3029 /* Get 'used' Rx descriptor */
3030 used_rx_desc = mp->rx_used_desc_q;
3031 p_used_rx_desc = &mp->p_rx_desc_area[used_rx_desc];
3032
3033 p_used_rx_desc->buf_ptr = p_pkt_info->buf_ptr;
3034 p_used_rx_desc->buf_size = p_pkt_info->byte_cnt;
3035 mp->rx_skb[used_rx_desc] = p_pkt_info->return_info;
3036
3037 /* Flush the write pipe */
3038
3039 /* Return the descriptor to DMA ownership */
3040 wmb();
3041 p_used_rx_desc->cmd_sts =
3042 ETH_BUFFER_OWNED_BY_DMA | ETH_RX_ENABLE_INTERRUPT;
3043 wmb();
3044
3045 /* Move the used descriptor pointer to the next descriptor */
3046 mp->rx_used_desc_q = (used_rx_desc + 1) % mp->rx_ring_size;
3047
3048 /* Any Rx return cancels the Rx resource error status */
3049 mp->rx_resource_err = 0;
3050
8f518703
DF
3051 spin_unlock_irqrestore(&mp->lock, flags);
3052
1da177e4
LT
3053 return ETH_OK;
3054}
3055
3056/************* Begin ethtool support *************************/
3057
3058struct mv643xx_stats {
3059 char stat_string[ETH_GSTRING_LEN];
3060 int sizeof_stat;
3061 int stat_offset;
3062};
3063
3064#define MV643XX_STAT(m) sizeof(((struct mv643xx_private *)0)->m), \
b4de9051 3065 offsetof(struct mv643xx_private, m)
1da177e4
LT
3066
3067static const struct mv643xx_stats mv643xx_gstrings_stats[] = {
3068 { "rx_packets", MV643XX_STAT(stats.rx_packets) },
3069 { "tx_packets", MV643XX_STAT(stats.tx_packets) },
3070 { "rx_bytes", MV643XX_STAT(stats.rx_bytes) },
3071 { "tx_bytes", MV643XX_STAT(stats.tx_bytes) },
3072 { "rx_errors", MV643XX_STAT(stats.rx_errors) },
3073 { "tx_errors", MV643XX_STAT(stats.tx_errors) },
3074 { "rx_dropped", MV643XX_STAT(stats.rx_dropped) },
3075 { "tx_dropped", MV643XX_STAT(stats.tx_dropped) },
3076 { "good_octets_received", MV643XX_STAT(mib_counters.good_octets_received) },
3077 { "bad_octets_received", MV643XX_STAT(mib_counters.bad_octets_received) },
3078 { "internal_mac_transmit_err", MV643XX_STAT(mib_counters.internal_mac_transmit_err) },
3079 { "good_frames_received", MV643XX_STAT(mib_counters.good_frames_received) },
3080 { "bad_frames_received", MV643XX_STAT(mib_counters.bad_frames_received) },
3081 { "broadcast_frames_received", MV643XX_STAT(mib_counters.broadcast_frames_received) },
3082 { "multicast_frames_received", MV643XX_STAT(mib_counters.multicast_frames_received) },
3083 { "frames_64_octets", MV643XX_STAT(mib_counters.frames_64_octets) },
3084 { "frames_65_to_127_octets", MV643XX_STAT(mib_counters.frames_65_to_127_octets) },
3085 { "frames_128_to_255_octets", MV643XX_STAT(mib_counters.frames_128_to_255_octets) },
3086 { "frames_256_to_511_octets", MV643XX_STAT(mib_counters.frames_256_to_511_octets) },
3087 { "frames_512_to_1023_octets", MV643XX_STAT(mib_counters.frames_512_to_1023_octets) },
3088 { "frames_1024_to_max_octets", MV643XX_STAT(mib_counters.frames_1024_to_max_octets) },
3089 { "good_octets_sent", MV643XX_STAT(mib_counters.good_octets_sent) },
3090 { "good_frames_sent", MV643XX_STAT(mib_counters.good_frames_sent) },
3091 { "excessive_collision", MV643XX_STAT(mib_counters.excessive_collision) },
3092 { "multicast_frames_sent", MV643XX_STAT(mib_counters.multicast_frames_sent) },
3093 { "broadcast_frames_sent", MV643XX_STAT(mib_counters.broadcast_frames_sent) },
3094 { "unrec_mac_control_received", MV643XX_STAT(mib_counters.unrec_mac_control_received) },
3095 { "fc_sent", MV643XX_STAT(mib_counters.fc_sent) },
3096 { "good_fc_received", MV643XX_STAT(mib_counters.good_fc_received) },
3097 { "bad_fc_received", MV643XX_STAT(mib_counters.bad_fc_received) },
3098 { "undersize_received", MV643XX_STAT(mib_counters.undersize_received) },
3099 { "fragments_received", MV643XX_STAT(mib_counters.fragments_received) },
3100 { "oversize_received", MV643XX_STAT(mib_counters.oversize_received) },
3101 { "jabber_received", MV643XX_STAT(mib_counters.jabber_received) },
3102 { "mac_receive_error", MV643XX_STAT(mib_counters.mac_receive_error) },
3103 { "bad_crc_event", MV643XX_STAT(mib_counters.bad_crc_event) },
3104 { "collision", MV643XX_STAT(mib_counters.collision) },
3105 { "late_collision", MV643XX_STAT(mib_counters.late_collision) },
3106};
3107
3108#define MV643XX_STATS_LEN \
3109 sizeof(mv643xx_gstrings_stats) / sizeof(struct mv643xx_stats)
3110
b4de9051
DF
3111static void mv643xx_get_drvinfo(struct net_device *netdev,
3112 struct ethtool_drvinfo *drvinfo)
1da177e4
LT
3113{
3114 strncpy(drvinfo->driver, mv643xx_driver_name, 32);
3115 strncpy(drvinfo->version, mv643xx_driver_version, 32);
3116 strncpy(drvinfo->fw_version, "N/A", 32);
3117 strncpy(drvinfo->bus_info, "mv643xx", 32);
3118 drvinfo->n_stats = MV643XX_STATS_LEN;
3119}
3120
b4de9051 3121static int mv643xx_get_stats_count(struct net_device *netdev)
1da177e4
LT
3122{
3123 return MV643XX_STATS_LEN;
3124}
3125
b4de9051
DF
3126static void mv643xx_get_ethtool_stats(struct net_device *netdev,
3127 struct ethtool_stats *stats, uint64_t *data)
1da177e4
LT
3128{
3129 struct mv643xx_private *mp = netdev->priv;
3130 int i;
3131
3132 eth_update_mib_counters(mp);
3133
b4de9051 3134 for (i = 0; i < MV643XX_STATS_LEN; i++) {
1da177e4 3135 char *p = (char *)mp+mv643xx_gstrings_stats[i].stat_offset;
b4de9051 3136 data[i] = (mv643xx_gstrings_stats[i].sizeof_stat ==
1da177e4
LT
3137 sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
3138 }
3139}
3140
b4de9051
DF
3141static void mv643xx_get_strings(struct net_device *netdev, uint32_t stringset,
3142 uint8_t *data)
1da177e4
LT
3143{
3144 int i;
3145
3146 switch(stringset) {
3147 case ETH_SS_STATS:
3148 for (i=0; i < MV643XX_STATS_LEN; i++) {
b4de9051
DF
3149 memcpy(data + i * ETH_GSTRING_LEN,
3150 mv643xx_gstrings_stats[i].stat_string,
3151 ETH_GSTRING_LEN);
1da177e4
LT
3152 }
3153 break;
3154 }
3155}
3156
d0412d96
JC
3157static u32 mv643xx_eth_get_link(struct net_device *dev)
3158{
3159 struct mv643xx_private *mp = netdev_priv(dev);
3160
3161 return mii_link_ok(&mp->mii);
3162}
3163
3164static int mv643xx_eth_nway_restart(struct net_device *dev)
3165{
3166 struct mv643xx_private *mp = netdev_priv(dev);
3167
3168 return mii_nway_restart(&mp->mii);
3169}
3170
3171static int mv643xx_eth_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
3172{
3173 struct mv643xx_private *mp = netdev_priv(dev);
3174
3175 return generic_mii_ioctl(&mp->mii, if_mii(ifr), cmd, NULL);
3176}
3177
1da177e4
LT
3178static struct ethtool_ops mv643xx_ethtool_ops = {
3179 .get_settings = mv643xx_get_settings,
d0412d96 3180 .set_settings = mv643xx_set_settings,
1da177e4 3181 .get_drvinfo = mv643xx_get_drvinfo,
d0412d96 3182 .get_link = mv643xx_eth_get_link,
1da177e4
LT
3183 .get_sg = ethtool_op_get_sg,
3184 .set_sg = ethtool_op_set_sg,
3185 .get_strings = mv643xx_get_strings,
3186 .get_stats_count = mv643xx_get_stats_count,
3187 .get_ethtool_stats = mv643xx_get_ethtool_stats,
d0412d96
JC
3188 .get_strings = mv643xx_get_strings,
3189 .get_stats_count = mv643xx_get_stats_count,
3190 .get_ethtool_stats = mv643xx_get_ethtool_stats,
3191 .nway_reset = mv643xx_eth_nway_restart,
1da177e4
LT
3192};
3193
3194/************* End ethtool support *************************/