[PATCH] drive_info removal outside of arch/i386
[linux-2.6-block.git] / drivers / net / mv643xx_eth.c
CommitLineData
1da177e4
LT
1/*
2 * drivers/net/mv643xx_eth.c - Driver for MV643XX ethernet ports
3 * Copyright (C) 2002 Matthew Dharm <mdharm@momenco.com>
4 *
5 * Based on the 64360 driver from:
6 * Copyright (C) 2002 rabeeh@galileo.co.il
7 *
8 * Copyright (C) 2003 PMC-Sierra, Inc.,
3bb8a18a 9 * written by Manish Lachwani
1da177e4
LT
10 *
11 * Copyright (C) 2003 Ralf Baechle <ralf@linux-mips.org>
12 *
13 * Copyright (C) 2004-2005 MontaVista Software, Inc.
14 * Dale Farnsworth <dale@farnsworth.org>
15 *
16 * Copyright (C) 2004 Steven J. Hill <sjhill1@rockwellcollins.com>
17 * <sjhill@realitydiluted.com>
18 *
19 * This program is free software; you can redistribute it and/or
20 * modify it under the terms of the GNU General Public License
21 * as published by the Free Software Foundation; either version 2
22 * of the License, or (at your option) any later version.
23 *
24 * This program is distributed in the hope that it will be useful,
25 * but WITHOUT ANY WARRANTY; without even the implied warranty of
26 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
27 * GNU General Public License for more details.
28 *
29 * You should have received a copy of the GNU General Public License
30 * along with this program; if not, write to the Free Software
31 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
32 */
33#include <linux/init.h>
34#include <linux/dma-mapping.h>
35#include <linux/tcp.h>
36#include <linux/udp.h>
37#include <linux/etherdevice.h>
78a5e534
OH
38#include <linux/in.h>
39#include <linux/ip.h>
1da177e4
LT
40
41#include <linux/bitops.h>
42#include <linux/delay.h>
43#include <linux/ethtool.h>
d052d1be
RK
44#include <linux/platform_device.h>
45
1da177e4
LT
46#include <asm/io.h>
47#include <asm/types.h>
48#include <asm/pgtable.h>
49#include <asm/system.h>
50#include <asm/delay.h>
51#include "mv643xx_eth.h"
52
53/*
54 * The first part is the high level driver of the gigE ethernet ports.
55 */
56
57/* Constants */
58#define VLAN_HLEN 4
59#define FCS_LEN 4
b44cd572
DF
60#define DMA_ALIGN 8 /* hw requires 8-byte alignment */
61#define HW_IP_ALIGN 2 /* hw aligns IP header */
62#define WRAP HW_IP_ALIGN + ETH_HLEN + VLAN_HLEN + FCS_LEN
1da177e4
LT
63#define RX_SKB_SIZE ((dev->mtu + WRAP + 7) & ~0x7)
64
c2e5b352
DF
65#define INT_UNMASK_ALL 0x0007ffff
66#define INT_UNMASK_ALL_EXT 0x0011ffff
67#define INT_MASK_ALL 0x00000000
68#define INT_MASK_ALL_EXT 0x00000000
1da177e4
LT
69#define INT_CAUSE_CHECK_BITS INT_CAUSE_UNMASK_ALL
70#define INT_CAUSE_CHECK_BITS_EXT INT_CAUSE_UNMASK_ALL_EXT
1da177e4
LT
71
72#ifdef MV643XX_CHECKSUM_OFFLOAD_TX
73#define MAX_DESCS_PER_SKB (MAX_SKB_FRAGS + 1)
74#else
75#define MAX_DESCS_PER_SKB 1
76#endif
77
78#define PHY_WAIT_ITERATIONS 1000 /* 1000 iterations * 10uS = 10mS max */
79#define PHY_WAIT_MICRO_SECONDS 10
80
81/* Static function declarations */
82static int eth_port_link_is_up(unsigned int eth_port_num);
83static void eth_port_uc_addr_get(struct net_device *dev,
84 unsigned char *MacAddr);
16e03018 85static void eth_port_set_multicast_list(struct net_device *);
ab4384a6
DF
86static int mv643xx_eth_open(struct net_device *);
87static int mv643xx_eth_stop(struct net_device *);
1da177e4
LT
88static int mv643xx_eth_change_mtu(struct net_device *, int);
89static struct net_device_stats *mv643xx_eth_get_stats(struct net_device *);
90static void eth_port_init_mac_tables(unsigned int eth_port_num);
91#ifdef MV643XX_NAPI
92static int mv643xx_poll(struct net_device *dev, int *budget);
93#endif
94static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr);
95static int ethernet_phy_detect(unsigned int eth_port_num);
96static struct ethtool_ops mv643xx_ethtool_ops;
97
98static char mv643xx_driver_name[] = "mv643xx_eth";
99static char mv643xx_driver_version[] = "1.0";
100
101static void __iomem *mv643xx_eth_shared_base;
102
103/* used to protect MV643XX_ETH_SMI_REG, which is shared across ports */
a9f6a0dd 104static DEFINE_SPINLOCK(mv643xx_eth_phy_lock);
1da177e4
LT
105
106static inline u32 mv_read(int offset)
107{
dc074a8a 108 void __iomem *reg_base;
1da177e4
LT
109
110 reg_base = mv643xx_eth_shared_base - MV643XX_ETH_SHARED_REGS;
111
112 return readl(reg_base + offset);
113}
114
115static inline void mv_write(int offset, u32 data)
116{
dc074a8a 117 void __iomem *reg_base;
1da177e4
LT
118
119 reg_base = mv643xx_eth_shared_base - MV643XX_ETH_SHARED_REGS;
120 writel(data, reg_base + offset);
121}
122
123/*
124 * Changes MTU (maximum transfer unit) of the gigabit ethenret port
125 *
126 * Input : pointer to ethernet interface network device structure
127 * new mtu size
128 * Output : 0 upon success, -EINVAL upon failure
129 */
130static int mv643xx_eth_change_mtu(struct net_device *dev, int new_mtu)
131{
8f518703 132 if ((new_mtu > 9500) || (new_mtu < 64))
1da177e4 133 return -EINVAL;
1da177e4
LT
134
135 dev->mtu = new_mtu;
136 /*
137 * Stop then re-open the interface. This will allocate RX skb's with
138 * the new MTU.
139 * There is a possible danger that the open will not successed, due
140 * to memory is full, which might fail the open function.
141 */
142 if (netif_running(dev)) {
ab4384a6
DF
143 mv643xx_eth_stop(dev);
144 if (mv643xx_eth_open(dev))
1da177e4
LT
145 printk(KERN_ERR
146 "%s: Fatal error on opening device\n",
147 dev->name);
148 }
149
1da177e4
LT
150 return 0;
151}
152
153/*
154 * mv643xx_eth_rx_task
155 *
156 * Fills / refills RX queue on a certain gigabit ethernet port
157 *
158 * Input : pointer to ethernet interface network device structure
159 * Output : N/A
160 */
161static void mv643xx_eth_rx_task(void *data)
162{
163 struct net_device *dev = (struct net_device *)data;
164 struct mv643xx_private *mp = netdev_priv(dev);
165 struct pkt_info pkt_info;
166 struct sk_buff *skb;
b44cd572 167 int unaligned;
1da177e4
LT
168
169 if (test_and_set_bit(0, &mp->rx_task_busy))
170 panic("%s: Error in test_set_bit / clear_bit", dev->name);
171
172 while (mp->rx_ring_skbs < (mp->rx_ring_size - 5)) {
b44cd572 173 skb = dev_alloc_skb(RX_SKB_SIZE + DMA_ALIGN);
1da177e4
LT
174 if (!skb)
175 break;
176 mp->rx_ring_skbs++;
b44cd572
DF
177 unaligned = (u32)skb->data & (DMA_ALIGN - 1);
178 if (unaligned)
179 skb_reserve(skb, DMA_ALIGN - unaligned);
1da177e4
LT
180 pkt_info.cmd_sts = ETH_RX_ENABLE_INTERRUPT;
181 pkt_info.byte_cnt = RX_SKB_SIZE;
182 pkt_info.buf_ptr = dma_map_single(NULL, skb->data, RX_SKB_SIZE,
183 DMA_FROM_DEVICE);
184 pkt_info.return_info = skb;
185 if (eth_rx_return_buff(mp, &pkt_info) != ETH_OK) {
186 printk(KERN_ERR
187 "%s: Error allocating RX Ring\n", dev->name);
188 break;
189 }
b44cd572 190 skb_reserve(skb, HW_IP_ALIGN);
1da177e4
LT
191 }
192 clear_bit(0, &mp->rx_task_busy);
193 /*
194 * If RX ring is empty of SKB, set a timer to try allocating
195 * again in a later time .
196 */
197 if ((mp->rx_ring_skbs == 0) && (mp->rx_timer_flag == 0)) {
198 printk(KERN_INFO "%s: Rx ring is empty\n", dev->name);
199 /* After 100mSec */
200 mp->timeout.expires = jiffies + (HZ / 10);
201 add_timer(&mp->timeout);
202 mp->rx_timer_flag = 1;
203 }
204#ifdef MV643XX_RX_QUEUE_FILL_ON_TASK
205 else {
206 /* Return interrupts */
207 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(mp->port_num),
c2e5b352 208 INT_UNMASK_ALL);
1da177e4
LT
209 }
210#endif
211}
212
213/*
214 * mv643xx_eth_rx_task_timer_wrapper
215 *
216 * Timer routine to wake up RX queue filling task. This function is
217 * used only in case the RX queue is empty, and all alloc_skb has
218 * failed (due to out of memory event).
219 *
220 * Input : pointer to ethernet interface network device structure
221 * Output : N/A
222 */
223static void mv643xx_eth_rx_task_timer_wrapper(unsigned long data)
224{
225 struct net_device *dev = (struct net_device *)data;
226 struct mv643xx_private *mp = netdev_priv(dev);
227
228 mp->rx_timer_flag = 0;
229 mv643xx_eth_rx_task((void *)data);
230}
231
232/*
233 * mv643xx_eth_update_mac_address
234 *
235 * Update the MAC address of the port in the address table
236 *
237 * Input : pointer to ethernet interface network device structure
238 * Output : N/A
239 */
240static void mv643xx_eth_update_mac_address(struct net_device *dev)
241{
242 struct mv643xx_private *mp = netdev_priv(dev);
243 unsigned int port_num = mp->port_num;
244
245 eth_port_init_mac_tables(port_num);
246 memcpy(mp->port_mac_addr, dev->dev_addr, 6);
247 eth_port_uc_addr_set(port_num, mp->port_mac_addr);
248}
249
250/*
251 * mv643xx_eth_set_rx_mode
252 *
253 * Change from promiscuos to regular rx mode
254 *
255 * Input : pointer to ethernet interface network device structure
256 * Output : N/A
257 */
258static void mv643xx_eth_set_rx_mode(struct net_device *dev)
259{
260 struct mv643xx_private *mp = netdev_priv(dev);
1da177e4 261
1da177e4 262 if (dev->flags & IFF_PROMISC)
7342cd81 263 mp->port_config |= (u32) MV643XX_ETH_UNICAST_PROMISCUOUS_MODE;
1da177e4 264 else
7342cd81
DF
265 mp->port_config &= ~(u32) MV643XX_ETH_UNICAST_PROMISCUOUS_MODE;
266
267 mv_write(MV643XX_ETH_PORT_CONFIG_REG(mp->port_num), mp->port_config);
16e03018
DF
268
269 eth_port_set_multicast_list(dev);
1da177e4
LT
270}
271
272/*
273 * mv643xx_eth_set_mac_address
274 *
275 * Change the interface's mac address.
276 * No special hardware thing should be done because interface is always
277 * put in promiscuous mode.
278 *
279 * Input : pointer to ethernet interface network device structure and
280 * a pointer to the designated entry to be added to the cache.
281 * Output : zero upon success, negative upon failure
282 */
283static int mv643xx_eth_set_mac_address(struct net_device *dev, void *addr)
284{
285 int i;
286
287 for (i = 0; i < 6; i++)
288 /* +2 is for the offset of the HW addr type */
289 dev->dev_addr[i] = ((unsigned char *)addr)[i + 2];
290 mv643xx_eth_update_mac_address(dev);
291 return 0;
292}
293
294/*
295 * mv643xx_eth_tx_timeout
296 *
297 * Called upon a timeout on transmitting a packet
298 *
299 * Input : pointer to ethernet interface network device structure.
300 * Output : N/A
301 */
302static void mv643xx_eth_tx_timeout(struct net_device *dev)
303{
304 struct mv643xx_private *mp = netdev_priv(dev);
305
306 printk(KERN_INFO "%s: TX timeout ", dev->name);
307
308 /* Do the reset outside of interrupt context */
309 schedule_work(&mp->tx_timeout_task);
310}
311
312/*
313 * mv643xx_eth_tx_timeout_task
314 *
315 * Actual routine to reset the adapter when a timeout on Tx has occurred
316 */
317static void mv643xx_eth_tx_timeout_task(struct net_device *dev)
318{
319 struct mv643xx_private *mp = netdev_priv(dev);
320
321 netif_device_detach(dev);
322 eth_port_reset(mp->port_num);
323 eth_port_start(mp);
324 netif_device_attach(dev);
325}
326
327/*
328 * mv643xx_eth_free_tx_queue
329 *
330 * Input : dev - a pointer to the required interface
331 *
332 * Output : 0 if was able to release skb , nonzero otherwise
333 */
334static int mv643xx_eth_free_tx_queue(struct net_device *dev,
335 unsigned int eth_int_cause_ext)
336{
337 struct mv643xx_private *mp = netdev_priv(dev);
338 struct net_device_stats *stats = &mp->stats;
339 struct pkt_info pkt_info;
340 int released = 1;
341
342 if (!(eth_int_cause_ext & (BIT0 | BIT8)))
343 return released;
344
1da177e4
LT
345 /* Check only queue 0 */
346 while (eth_tx_return_desc(mp, &pkt_info) == ETH_OK) {
347 if (pkt_info.cmd_sts & BIT0) {
348 printk("%s: Error in TX\n", dev->name);
349 stats->tx_errors++;
350 }
351
cb415d30
PG
352 if (pkt_info.cmd_sts & ETH_TX_FIRST_DESC)
353 dma_unmap_single(NULL, pkt_info.buf_ptr,
354 pkt_info.byte_cnt,
355 DMA_TO_DEVICE);
356 else
357 dma_unmap_page(NULL, pkt_info.buf_ptr,
358 pkt_info.byte_cnt,
359 DMA_TO_DEVICE);
1da177e4 360
cb415d30 361 if (pkt_info.return_info) {
1da177e4
LT
362 dev_kfree_skb_irq(pkt_info.return_info);
363 released = 0;
cb415d30 364 }
1da177e4
LT
365 }
366
1da177e4
LT
367 return released;
368}
369
370/*
371 * mv643xx_eth_receive
372 *
373 * This function is forward packets that are received from the port's
374 * queues toward kernel core or FastRoute them to another interface.
375 *
376 * Input : dev - a pointer to the required interface
377 * max - maximum number to receive (0 means unlimted)
378 *
379 * Output : number of served packets
380 */
381#ifdef MV643XX_NAPI
382static int mv643xx_eth_receive_queue(struct net_device *dev, int budget)
383#else
384static int mv643xx_eth_receive_queue(struct net_device *dev)
385#endif
386{
387 struct mv643xx_private *mp = netdev_priv(dev);
388 struct net_device_stats *stats = &mp->stats;
389 unsigned int received_packets = 0;
390 struct sk_buff *skb;
391 struct pkt_info pkt_info;
392
393#ifdef MV643XX_NAPI
b1dd9ca1 394 while (budget-- > 0 && eth_port_receive(mp, &pkt_info) == ETH_OK) {
1da177e4
LT
395#else
396 while (eth_port_receive(mp, &pkt_info) == ETH_OK) {
397#endif
398 mp->rx_ring_skbs--;
399 received_packets++;
b1dd9ca1 400
1da177e4
LT
401 /* Update statistics. Note byte count includes 4 byte CRC count */
402 stats->rx_packets++;
403 stats->rx_bytes += pkt_info.byte_cnt;
404 skb = pkt_info.return_info;
405 /*
406 * In case received a packet without first / last bits on OR
407 * the error summary bit is on, the packets needs to be dropeed.
408 */
409 if (((pkt_info.cmd_sts
410 & (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC)) !=
411 (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC))
412 || (pkt_info.cmd_sts & ETH_ERROR_SUMMARY)) {
413 stats->rx_dropped++;
414 if ((pkt_info.cmd_sts & (ETH_RX_FIRST_DESC |
415 ETH_RX_LAST_DESC)) !=
416 (ETH_RX_FIRST_DESC | ETH_RX_LAST_DESC)) {
417 if (net_ratelimit())
418 printk(KERN_ERR
419 "%s: Received packet spread "
420 "on multiple descriptors\n",
421 dev->name);
422 }
423 if (pkt_info.cmd_sts & ETH_ERROR_SUMMARY)
424 stats->rx_errors++;
425
426 dev_kfree_skb_irq(skb);
427 } else {
428 /*
429 * The -4 is for the CRC in the trailer of the
430 * received packet
431 */
432 skb_put(skb, pkt_info.byte_cnt - 4);
433 skb->dev = dev;
434
435 if (pkt_info.cmd_sts & ETH_LAYER_4_CHECKSUM_OK) {
436 skb->ip_summed = CHECKSUM_UNNECESSARY;
437 skb->csum = htons(
438 (pkt_info.cmd_sts & 0x0007fff8) >> 3);
439 }
440 skb->protocol = eth_type_trans(skb, dev);
441#ifdef MV643XX_NAPI
442 netif_receive_skb(skb);
443#else
444 netif_rx(skb);
445#endif
446 }
12ad74f8 447 dev->last_rx = jiffies;
1da177e4
LT
448 }
449
450 return received_packets;
451}
452
453/*
454 * mv643xx_eth_int_handler
455 *
456 * Main interrupt handler for the gigbit ethernet ports
457 *
458 * Input : irq - irq number (not used)
459 * dev_id - a pointer to the required interface's data structure
460 * regs - not used
461 * Output : N/A
462 */
463
464static irqreturn_t mv643xx_eth_int_handler(int irq, void *dev_id,
b4de9051 465 struct pt_regs *regs)
1da177e4
LT
466{
467 struct net_device *dev = (struct net_device *)dev_id;
468 struct mv643xx_private *mp = netdev_priv(dev);
469 u32 eth_int_cause, eth_int_cause_ext = 0;
470 unsigned int port_num = mp->port_num;
471
472 /* Read interrupt cause registers */
473 eth_int_cause = mv_read(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num)) &
c2e5b352 474 INT_UNMASK_ALL;
1da177e4
LT
475
476 if (eth_int_cause & BIT1)
477 eth_int_cause_ext = mv_read(
478 MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num)) &
c2e5b352 479 INT_UNMASK_ALL_EXT;
1da177e4
LT
480
481#ifdef MV643XX_NAPI
482 if (!(eth_int_cause & 0x0007fffd)) {
483 /* Dont ack the Rx interrupt */
484#endif
485 /*
486 * Clear specific ethernet port intrerrupt registers by
487 * acknowleding relevant bits.
488 */
489 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num),
490 ~eth_int_cause);
491 if (eth_int_cause_ext != 0x0)
492 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG
493 (port_num), ~eth_int_cause_ext);
494
495 /* UDP change : We may need this */
496 if ((eth_int_cause_ext & 0x0000ffff) &&
497 (mv643xx_eth_free_tx_queue(dev, eth_int_cause_ext) == 0) &&
498 (mp->tx_ring_size > mp->tx_ring_skbs + MAX_DESCS_PER_SKB))
499 netif_wake_queue(dev);
500#ifdef MV643XX_NAPI
501 } else {
502 if (netif_rx_schedule_prep(dev)) {
503 /* Mask all the interrupts */
c2e5b352
DF
504 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num),
505 INT_MASK_ALL);
506 /* wait for previous write to complete */
507 mv_read(MV643XX_ETH_INTERRUPT_MASK_REG(port_num));
1da177e4
LT
508 __netif_rx_schedule(dev);
509 }
510#else
511 if (eth_int_cause & (BIT2 | BIT11))
512 mv643xx_eth_receive_queue(dev, 0);
513
514 /*
515 * After forwarded received packets to upper layer, add a task
516 * in an interrupts enabled context that refills the RX ring
517 * with skb's.
518 */
519#ifdef MV643XX_RX_QUEUE_FILL_ON_TASK
c2e5b352 520 /* Mask all interrupts on ethernet port */
1da177e4 521 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num),
c2e5b352 522 INT_MASK_ALL);
8f518703
DF
523 /* wait for previous write to take effect */
524 mv_read(MV643XX_ETH_INTERRUPT_MASK_REG(port_num));
525
1da177e4
LT
526 queue_task(&mp->rx_task, &tq_immediate);
527 mark_bh(IMMEDIATE_BH);
528#else
529 mp->rx_task.func(dev);
530#endif
531#endif
532 }
533 /* PHY status changed */
534 if (eth_int_cause_ext & (BIT16 | BIT20)) {
535 if (eth_port_link_is_up(port_num)) {
536 netif_carrier_on(dev);
537 netif_wake_queue(dev);
538 /* Start TX queue */
539 mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG
540 (port_num), 1);
541 } else {
542 netif_carrier_off(dev);
543 netif_stop_queue(dev);
544 }
545 }
546
547 /*
548 * If no real interrupt occured, exit.
549 * This can happen when using gigE interrupt coalescing mechanism.
550 */
551 if ((eth_int_cause == 0x0) && (eth_int_cause_ext == 0x0))
552 return IRQ_NONE;
553
554 return IRQ_HANDLED;
555}
556
557#ifdef MV643XX_COAL
558
559/*
560 * eth_port_set_rx_coal - Sets coalescing interrupt mechanism on RX path
561 *
562 * DESCRIPTION:
563 * This routine sets the RX coalescing interrupt mechanism parameter.
564 * This parameter is a timeout counter, that counts in 64 t_clk
565 * chunks ; that when timeout event occurs a maskable interrupt
566 * occurs.
567 * The parameter is calculated using the tClk of the MV-643xx chip
568 * , and the required delay of the interrupt in usec.
569 *
570 * INPUT:
571 * unsigned int eth_port_num Ethernet port number
572 * unsigned int t_clk t_clk of the MV-643xx chip in HZ units
573 * unsigned int delay Delay in usec
574 *
575 * OUTPUT:
576 * Interrupt coalescing mechanism value is set in MV-643xx chip.
577 *
578 * RETURN:
579 * The interrupt coalescing value set in the gigE port.
580 *
581 */
582static unsigned int eth_port_set_rx_coal(unsigned int eth_port_num,
583 unsigned int t_clk, unsigned int delay)
584{
585 unsigned int coal = ((t_clk / 1000000) * delay) / 64;
586
587 /* Set RX Coalescing mechanism */
588 mv_write(MV643XX_ETH_SDMA_CONFIG_REG(eth_port_num),
589 ((coal & 0x3fff) << 8) |
590 (mv_read(MV643XX_ETH_SDMA_CONFIG_REG(eth_port_num))
591 & 0xffc000ff));
592
593 return coal;
594}
595#endif
596
597/*
598 * eth_port_set_tx_coal - Sets coalescing interrupt mechanism on TX path
599 *
600 * DESCRIPTION:
601 * This routine sets the TX coalescing interrupt mechanism parameter.
602 * This parameter is a timeout counter, that counts in 64 t_clk
603 * chunks ; that when timeout event occurs a maskable interrupt
604 * occurs.
605 * The parameter is calculated using the t_cLK frequency of the
606 * MV-643xx chip and the required delay in the interrupt in uSec
607 *
608 * INPUT:
609 * unsigned int eth_port_num Ethernet port number
610 * unsigned int t_clk t_clk of the MV-643xx chip in HZ units
611 * unsigned int delay Delay in uSeconds
612 *
613 * OUTPUT:
614 * Interrupt coalescing mechanism value is set in MV-643xx chip.
615 *
616 * RETURN:
617 * The interrupt coalescing value set in the gigE port.
618 *
619 */
620static unsigned int eth_port_set_tx_coal(unsigned int eth_port_num,
621 unsigned int t_clk, unsigned int delay)
622{
623 unsigned int coal;
624 coal = ((t_clk / 1000000) * delay) / 64;
625 /* Set TX Coalescing mechanism */
626 mv_write(MV643XX_ETH_TX_FIFO_URGENT_THRESHOLD_REG(eth_port_num),
627 coal << 4);
628 return coal;
629}
630
1da177e4
LT
631/*
632 * ether_init_rx_desc_ring - Curve a Rx chain desc list and buffer in memory.
633 *
634 * DESCRIPTION:
635 * This function prepares a Rx chained list of descriptors and packet
636 * buffers in a form of a ring. The routine must be called after port
637 * initialization routine and before port start routine.
638 * The Ethernet SDMA engine uses CPU bus addresses to access the various
639 * devices in the system (i.e. DRAM). This function uses the ethernet
640 * struct 'virtual to physical' routine (set by the user) to set the ring
641 * with physical addresses.
642 *
643 * INPUT:
644 * struct mv643xx_private *mp Ethernet Port Control srtuct.
645 *
646 * OUTPUT:
647 * The routine updates the Ethernet port control struct with information
648 * regarding the Rx descriptors and buffers.
649 *
650 * RETURN:
651 * None.
652 */
653static void ether_init_rx_desc_ring(struct mv643xx_private *mp)
654{
655 volatile struct eth_rx_desc *p_rx_desc;
656 int rx_desc_num = mp->rx_ring_size;
657 int i;
658
659 /* initialize the next_desc_ptr links in the Rx descriptors ring */
660 p_rx_desc = (struct eth_rx_desc *)mp->p_rx_desc_area;
661 for (i = 0; i < rx_desc_num; i++) {
662 p_rx_desc[i].next_desc_ptr = mp->rx_desc_dma +
663 ((i + 1) % rx_desc_num) * sizeof(struct eth_rx_desc);
664 }
665
666 /* Save Rx desc pointer to driver struct. */
667 mp->rx_curr_desc_q = 0;
668 mp->rx_used_desc_q = 0;
669
670 mp->rx_desc_area_size = rx_desc_num * sizeof(struct eth_rx_desc);
671
672 /* Add the queue to the list of RX queues of this port */
673 mp->port_rx_queue_command |= 1;
674}
675
676/*
677 * ether_init_tx_desc_ring - Curve a Tx chain desc list and buffer in memory.
678 *
679 * DESCRIPTION:
680 * This function prepares a Tx chained list of descriptors and packet
681 * buffers in a form of a ring. The routine must be called after port
682 * initialization routine and before port start routine.
683 * The Ethernet SDMA engine uses CPU bus addresses to access the various
684 * devices in the system (i.e. DRAM). This function uses the ethernet
685 * struct 'virtual to physical' routine (set by the user) to set the ring
686 * with physical addresses.
687 *
688 * INPUT:
689 * struct mv643xx_private *mp Ethernet Port Control srtuct.
690 *
691 * OUTPUT:
692 * The routine updates the Ethernet port control struct with information
693 * regarding the Tx descriptors and buffers.
694 *
695 * RETURN:
696 * None.
697 */
698static void ether_init_tx_desc_ring(struct mv643xx_private *mp)
699{
700 int tx_desc_num = mp->tx_ring_size;
701 struct eth_tx_desc *p_tx_desc;
702 int i;
703
704 /* Initialize the next_desc_ptr links in the Tx descriptors ring */
705 p_tx_desc = (struct eth_tx_desc *)mp->p_tx_desc_area;
706 for (i = 0; i < tx_desc_num; i++) {
707 p_tx_desc[i].next_desc_ptr = mp->tx_desc_dma +
708 ((i + 1) % tx_desc_num) * sizeof(struct eth_tx_desc);
709 }
710
711 mp->tx_curr_desc_q = 0;
712 mp->tx_used_desc_q = 0;
713#ifdef MV643XX_CHECKSUM_OFFLOAD_TX
714 mp->tx_first_desc_q = 0;
715#endif
716
717 mp->tx_desc_area_size = tx_desc_num * sizeof(struct eth_tx_desc);
718
719 /* Add the queue to the list of Tx queues of this port */
720 mp->port_tx_queue_command |= 1;
721}
722
ab4384a6
DF
723/*
724 * mv643xx_eth_open
725 *
726 * This function is called when openning the network device. The function
727 * should initialize all the hardware, initialize cyclic Rx/Tx
728 * descriptors chain and buffers and allocate an IRQ to the network
729 * device.
730 *
731 * Input : a pointer to the network device structure
732 *
733 * Output : zero of success , nonzero if fails.
734 */
735
736static int mv643xx_eth_open(struct net_device *dev)
1da177e4
LT
737{
738 struct mv643xx_private *mp = netdev_priv(dev);
739 unsigned int port_num = mp->port_num;
740 unsigned int size;
ab4384a6
DF
741 int err;
742
743 err = request_irq(dev->irq, mv643xx_eth_int_handler,
744 SA_SHIRQ | SA_SAMPLE_RANDOM, dev->name, dev);
745 if (err) {
746 printk(KERN_ERR "Can not assign IRQ number to MV643XX_eth%d\n",
747 port_num);
748 return -EAGAIN;
749 }
1da177e4
LT
750
751 /* Stop RX Queues */
752 mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num), 0x0000ff00);
753
1da177e4
LT
754 /* Set the MAC Address */
755 memcpy(mp->port_mac_addr, dev->dev_addr, 6);
756
757 eth_port_init(mp);
758
759 INIT_WORK(&mp->rx_task, (void (*)(void *))mv643xx_eth_rx_task, dev);
760
761 memset(&mp->timeout, 0, sizeof(struct timer_list));
762 mp->timeout.function = mv643xx_eth_rx_task_timer_wrapper;
763 mp->timeout.data = (unsigned long)dev;
764
765 mp->rx_task_busy = 0;
766 mp->rx_timer_flag = 0;
767
768 /* Allocate RX and TX skb rings */
769 mp->rx_skb = kmalloc(sizeof(*mp->rx_skb) * mp->rx_ring_size,
770 GFP_KERNEL);
771 if (!mp->rx_skb) {
772 printk(KERN_ERR "%s: Cannot allocate Rx skb ring\n", dev->name);
ab4384a6
DF
773 err = -ENOMEM;
774 goto out_free_irq;
1da177e4
LT
775 }
776 mp->tx_skb = kmalloc(sizeof(*mp->tx_skb) * mp->tx_ring_size,
777 GFP_KERNEL);
778 if (!mp->tx_skb) {
779 printk(KERN_ERR "%s: Cannot allocate Tx skb ring\n", dev->name);
ab4384a6
DF
780 err = -ENOMEM;
781 goto out_free_rx_skb;
1da177e4
LT
782 }
783
784 /* Allocate TX ring */
785 mp->tx_ring_skbs = 0;
786 size = mp->tx_ring_size * sizeof(struct eth_tx_desc);
787 mp->tx_desc_area_size = size;
788
789 if (mp->tx_sram_size) {
790 mp->p_tx_desc_area = ioremap(mp->tx_sram_addr,
791 mp->tx_sram_size);
792 mp->tx_desc_dma = mp->tx_sram_addr;
793 } else
794 mp->p_tx_desc_area = dma_alloc_coherent(NULL, size,
795 &mp->tx_desc_dma,
796 GFP_KERNEL);
797
798 if (!mp->p_tx_desc_area) {
799 printk(KERN_ERR "%s: Cannot allocate Tx Ring (size %d bytes)\n",
800 dev->name, size);
ab4384a6
DF
801 err = -ENOMEM;
802 goto out_free_tx_skb;
1da177e4
LT
803 }
804 BUG_ON((u32) mp->p_tx_desc_area & 0xf); /* check 16-byte alignment */
805 memset((void *)mp->p_tx_desc_area, 0, mp->tx_desc_area_size);
806
807 ether_init_tx_desc_ring(mp);
808
809 /* Allocate RX ring */
810 mp->rx_ring_skbs = 0;
811 size = mp->rx_ring_size * sizeof(struct eth_rx_desc);
812 mp->rx_desc_area_size = size;
813
814 if (mp->rx_sram_size) {
815 mp->p_rx_desc_area = ioremap(mp->rx_sram_addr,
816 mp->rx_sram_size);
817 mp->rx_desc_dma = mp->rx_sram_addr;
818 } else
819 mp->p_rx_desc_area = dma_alloc_coherent(NULL, size,
820 &mp->rx_desc_dma,
821 GFP_KERNEL);
822
823 if (!mp->p_rx_desc_area) {
824 printk(KERN_ERR "%s: Cannot allocate Rx ring (size %d bytes)\n",
825 dev->name, size);
826 printk(KERN_ERR "%s: Freeing previously allocated TX queues...",
827 dev->name);
828 if (mp->rx_sram_size)
dd09b1de 829 iounmap(mp->p_tx_desc_area);
1da177e4
LT
830 else
831 dma_free_coherent(NULL, mp->tx_desc_area_size,
832 mp->p_tx_desc_area, mp->tx_desc_dma);
ab4384a6
DF
833 err = -ENOMEM;
834 goto out_free_tx_skb;
1da177e4
LT
835 }
836 memset((void *)mp->p_rx_desc_area, 0, size);
837
838 ether_init_rx_desc_ring(mp);
839
840 mv643xx_eth_rx_task(dev); /* Fill RX ring with skb's */
841
842 eth_port_start(mp);
843
844 /* Interrupt Coalescing */
845
846#ifdef MV643XX_COAL
847 mp->rx_int_coal =
848 eth_port_set_rx_coal(port_num, 133000000, MV643XX_RX_COAL);
849#endif
850
851 mp->tx_int_coal =
852 eth_port_set_tx_coal(port_num, 133000000, MV643XX_TX_COAL);
853
8f518703
DF
854 /* Clear any pending ethernet port interrupts */
855 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num), 0);
856 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num), 0);
857
858 /* Unmask phy and link status changes interrupts */
859 mv_write(MV643XX_ETH_INTERRUPT_EXTEND_MASK_REG(port_num),
c2e5b352 860 INT_UNMASK_ALL_EXT);
1da177e4 861
8f518703 862 /* Unmask RX buffer and TX end interrupt */
c2e5b352 863 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), INT_UNMASK_ALL);
1da177e4 864 return 0;
ab4384a6
DF
865
866out_free_tx_skb:
867 kfree(mp->tx_skb);
868out_free_rx_skb:
869 kfree(mp->rx_skb);
870out_free_irq:
871 free_irq(dev->irq, dev);
872
873 return err;
1da177e4
LT
874}
875
876static void mv643xx_eth_free_tx_rings(struct net_device *dev)
877{
878 struct mv643xx_private *mp = netdev_priv(dev);
879 unsigned int port_num = mp->port_num;
880 unsigned int curr;
4476e0e4 881 struct sk_buff *skb;
1da177e4
LT
882
883 /* Stop Tx Queues */
884 mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num), 0x0000ff00);
885
886 /* Free outstanding skb's on TX rings */
887 for (curr = 0; mp->tx_ring_skbs && curr < mp->tx_ring_size; curr++) {
4476e0e4
DF
888 skb = mp->tx_skb[curr];
889 if (skb) {
890 mp->tx_ring_skbs -= skb_shinfo(skb)->nr_frags;
891 dev_kfree_skb(skb);
1da177e4
LT
892 mp->tx_ring_skbs--;
893 }
894 }
895 if (mp->tx_ring_skbs)
896 printk("%s: Error on Tx descriptor free - could not free %d"
897 " descriptors\n", dev->name, mp->tx_ring_skbs);
898
899 /* Free TX ring */
900 if (mp->tx_sram_size)
901 iounmap(mp->p_tx_desc_area);
902 else
903 dma_free_coherent(NULL, mp->tx_desc_area_size,
904 mp->p_tx_desc_area, mp->tx_desc_dma);
905}
906
907static void mv643xx_eth_free_rx_rings(struct net_device *dev)
908{
909 struct mv643xx_private *mp = netdev_priv(dev);
910 unsigned int port_num = mp->port_num;
911 int curr;
912
913 /* Stop RX Queues */
914 mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num), 0x0000ff00);
915
916 /* Free preallocated skb's on RX rings */
917 for (curr = 0; mp->rx_ring_skbs && curr < mp->rx_ring_size; curr++) {
918 if (mp->rx_skb[curr]) {
919 dev_kfree_skb(mp->rx_skb[curr]);
920 mp->rx_ring_skbs--;
921 }
922 }
923
924 if (mp->rx_ring_skbs)
925 printk(KERN_ERR
926 "%s: Error in freeing Rx Ring. %d skb's still"
927 " stuck in RX Ring - ignoring them\n", dev->name,
928 mp->rx_ring_skbs);
929 /* Free RX ring */
930 if (mp->rx_sram_size)
931 iounmap(mp->p_rx_desc_area);
932 else
933 dma_free_coherent(NULL, mp->rx_desc_area_size,
934 mp->p_rx_desc_area, mp->rx_desc_dma);
935}
936
937/*
938 * mv643xx_eth_stop
939 *
940 * This function is used when closing the network device.
941 * It updates the hardware,
942 * release all memory that holds buffers and descriptors and release the IRQ.
943 * Input : a pointer to the device structure
944 * Output : zero if success , nonzero if fails
945 */
946
ab4384a6 947static int mv643xx_eth_stop(struct net_device *dev)
1da177e4
LT
948{
949 struct mv643xx_private *mp = netdev_priv(dev);
950 unsigned int port_num = mp->port_num;
951
c2e5b352
DF
952 /* Mask all interrupts on ethernet port */
953 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), INT_MASK_ALL);
954 /* wait for previous write to complete */
8f518703
DF
955 mv_read(MV643XX_ETH_INTERRUPT_MASK_REG(port_num));
956
957#ifdef MV643XX_NAPI
958 netif_poll_disable(dev);
959#endif
1da177e4
LT
960 netif_carrier_off(dev);
961 netif_stop_queue(dev);
962
1da177e4
LT
963 eth_port_reset(mp->port_num);
964
8f518703
DF
965 mv643xx_eth_free_tx_rings(dev);
966 mv643xx_eth_free_rx_rings(dev);
1da177e4 967
8f518703
DF
968#ifdef MV643XX_NAPI
969 netif_poll_enable(dev);
970#endif
1da177e4 971
1da177e4 972 free_irq(dev->irq, dev);
1da177e4
LT
973
974 return 0;
975}
976
977#ifdef MV643XX_NAPI
978static void mv643xx_tx(struct net_device *dev)
979{
980 struct mv643xx_private *mp = netdev_priv(dev);
981 struct pkt_info pkt_info;
982
983 while (eth_tx_return_desc(mp, &pkt_info) == ETH_OK) {
cb415d30
PG
984 if (pkt_info.cmd_sts & ETH_TX_FIRST_DESC)
985 dma_unmap_single(NULL, pkt_info.buf_ptr,
986 pkt_info.byte_cnt,
987 DMA_TO_DEVICE);
988 else
989 dma_unmap_page(NULL, pkt_info.buf_ptr,
990 pkt_info.byte_cnt,
991 DMA_TO_DEVICE);
1da177e4 992
cb415d30 993 if (pkt_info.return_info)
1da177e4 994 dev_kfree_skb_irq(pkt_info.return_info);
1da177e4
LT
995 }
996
997 if (netif_queue_stopped(dev) &&
998 mp->tx_ring_size > mp->tx_ring_skbs + MAX_DESCS_PER_SKB)
999 netif_wake_queue(dev);
1000}
1001
1002/*
1003 * mv643xx_poll
1004 *
1005 * This function is used in case of NAPI
1006 */
1007static int mv643xx_poll(struct net_device *dev, int *budget)
1008{
1009 struct mv643xx_private *mp = netdev_priv(dev);
1010 int done = 1, orig_budget, work_done;
1011 unsigned int port_num = mp->port_num;
1da177e4
LT
1012
1013#ifdef MV643XX_TX_FAST_REFILL
1014 if (++mp->tx_clean_threshold > 5) {
1da177e4
LT
1015 mv643xx_tx(dev);
1016 mp->tx_clean_threshold = 0;
1da177e4
LT
1017 }
1018#endif
1019
1020 if ((mv_read(MV643XX_ETH_RX_CURRENT_QUEUE_DESC_PTR_0(port_num)))
1021 != (u32) mp->rx_used_desc_q) {
1022 orig_budget = *budget;
1023 if (orig_budget > dev->quota)
1024 orig_budget = dev->quota;
1025 work_done = mv643xx_eth_receive_queue(dev, orig_budget);
1026 mp->rx_task.func(dev);
1027 *budget -= work_done;
1028 dev->quota -= work_done;
1029 if (work_done >= orig_budget)
1030 done = 0;
1031 }
1032
1033 if (done) {
8f518703 1034 netif_rx_complete(dev);
1da177e4
LT
1035 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_REG(port_num), 0);
1036 mv_write(MV643XX_ETH_INTERRUPT_CAUSE_EXTEND_REG(port_num), 0);
1037 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num),
c2e5b352 1038 INT_UNMASK_ALL);
1da177e4
LT
1039 }
1040
1041 return done ? 0 : 1;
1042}
1043#endif
1044
f7ea3337
PJ
1045/* Hardware can't handle unaligned fragments smaller than 9 bytes.
1046 * This helper function detects that case.
1047 */
1048
1049static inline unsigned int has_tiny_unaligned_frags(struct sk_buff *skb)
1050{
b4de9051
DF
1051 unsigned int frag;
1052 skb_frag_t *fragp;
f7ea3337 1053
b4de9051
DF
1054 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1055 fragp = &skb_shinfo(skb)->frags[frag];
1056 if (fragp->size <= 8 && fragp->page_offset & 0x7)
1057 return 1;
1058 }
1059 return 0;
f7ea3337
PJ
1060}
1061
1062
1da177e4
LT
1063/*
1064 * mv643xx_eth_start_xmit
1065 *
1066 * This function is queues a packet in the Tx descriptor for
1067 * required port.
1068 *
1069 * Input : skb - a pointer to socket buffer
1070 * dev - a pointer to the required port
1071 *
1072 * Output : zero upon success
1073 */
1074static int mv643xx_eth_start_xmit(struct sk_buff *skb, struct net_device *dev)
1075{
1076 struct mv643xx_private *mp = netdev_priv(dev);
1077 struct net_device_stats *stats = &mp->stats;
1078 ETH_FUNC_RET_STATUS status;
1079 unsigned long flags;
1080 struct pkt_info pkt_info;
1081
1082 if (netif_queue_stopped(dev)) {
1083 printk(KERN_ERR
1084 "%s: Tried sending packet when interface is stopped\n",
1085 dev->name);
1086 return 1;
1087 }
1088
1089 /* This is a hard error, log it. */
1090 if ((mp->tx_ring_size - mp->tx_ring_skbs) <=
1091 (skb_shinfo(skb)->nr_frags + 1)) {
1092 netif_stop_queue(dev);
1093 printk(KERN_ERR
1094 "%s: Bug in mv643xx_eth - Trying to transmit when"
1095 " queue full !\n", dev->name);
1096 return 1;
1097 }
1098
1099 /* Paranoid check - this shouldn't happen */
1100 if (skb == NULL) {
1101 stats->tx_dropped++;
1102 printk(KERN_ERR "mv64320_eth paranoid check failed\n");
1103 return 1;
1104 }
1105
f7ea3337
PJ
1106#ifdef MV643XX_CHECKSUM_OFFLOAD_TX
1107 if (has_tiny_unaligned_frags(skb)) {
1108 if ((skb_linearize(skb, GFP_ATOMIC) != 0)) {
1109 stats->tx_dropped++;
1110 printk(KERN_DEBUG "%s: failed to linearize tiny "
1111 "unaligned fragment\n", dev->name);
1112 return 1;
1113 }
1114 }
1115
1da177e4
LT
1116 spin_lock_irqsave(&mp->lock, flags);
1117
1da177e4 1118 if (!skb_shinfo(skb)->nr_frags) {
1da177e4 1119 if (skb->ip_summed != CHECKSUM_HW) {
26006360 1120 /* Errata BTS #50, IHL must be 5 if no HW checksum */
1da177e4 1121 pkt_info.cmd_sts = ETH_TX_ENABLE_INTERRUPT |
26006360
DF
1122 ETH_TX_FIRST_DESC |
1123 ETH_TX_LAST_DESC |
1124 5 << ETH_TX_IHL_SHIFT;
1da177e4
LT
1125 pkt_info.l4i_chk = 0;
1126 } else {
1da177e4 1127 pkt_info.cmd_sts = ETH_TX_ENABLE_INTERRUPT |
26006360
DF
1128 ETH_TX_FIRST_DESC |
1129 ETH_TX_LAST_DESC |
1130 ETH_GEN_TCP_UDP_CHECKSUM |
1131 ETH_GEN_IP_V_4_CHECKSUM |
1132 skb->nh.iph->ihl << ETH_TX_IHL_SHIFT;
1da177e4 1133 /* CPU already calculated pseudo header checksum. */
63890576
WJ
1134 if ((skb->protocol == ETH_P_IP) &&
1135 (skb->nh.iph->protocol == IPPROTO_UDP) ) {
1da177e4
LT
1136 pkt_info.cmd_sts |= ETH_UDP_FRAME;
1137 pkt_info.l4i_chk = skb->h.uh->check;
63890576
WJ
1138 } else if ((skb->protocol == ETH_P_IP) &&
1139 (skb->nh.iph->protocol == IPPROTO_TCP))
1da177e4
LT
1140 pkt_info.l4i_chk = skb->h.th->check;
1141 else {
1142 printk(KERN_ERR
63890576 1143 "%s: chksum proto != IPv4 TCP or UDP\n",
1da177e4
LT
1144 dev->name);
1145 spin_unlock_irqrestore(&mp->lock, flags);
1146 return 1;
1147 }
1148 }
1149 pkt_info.byte_cnt = skb->len;
1150 pkt_info.buf_ptr = dma_map_single(NULL, skb->data, skb->len,
1151 DMA_TO_DEVICE);
1152 pkt_info.return_info = skb;
1da177e4
LT
1153 status = eth_port_send(mp, &pkt_info);
1154 if ((status == ETH_ERROR) || (status == ETH_QUEUE_FULL))
1155 printk(KERN_ERR "%s: Error on transmitting packet\n",
1156 dev->name);
1157 stats->tx_bytes += pkt_info.byte_cnt;
1158 } else {
1159 unsigned int frag;
1da177e4 1160
1da177e4
LT
1161 /* first frag which is skb header */
1162 pkt_info.byte_cnt = skb_headlen(skb);
1163 pkt_info.buf_ptr = dma_map_single(NULL, skb->data,
1164 skb_headlen(skb),
1165 DMA_TO_DEVICE);
1166 pkt_info.l4i_chk = 0;
1167 pkt_info.return_info = 0;
1da177e4 1168
26006360
DF
1169 if (skb->ip_summed != CHECKSUM_HW)
1170 /* Errata BTS #50, IHL must be 5 if no HW checksum */
1171 pkt_info.cmd_sts = ETH_TX_FIRST_DESC |
1172 5 << ETH_TX_IHL_SHIFT;
1173 else {
1174 pkt_info.cmd_sts = ETH_TX_FIRST_DESC |
1175 ETH_GEN_TCP_UDP_CHECKSUM |
1176 ETH_GEN_IP_V_4_CHECKSUM |
1177 skb->nh.iph->ihl << ETH_TX_IHL_SHIFT;
1da177e4 1178 /* CPU already calculated pseudo header checksum. */
63890576
WJ
1179 if ((skb->protocol == ETH_P_IP) &&
1180 (skb->nh.iph->protocol == IPPROTO_UDP)) {
1da177e4
LT
1181 pkt_info.cmd_sts |= ETH_UDP_FRAME;
1182 pkt_info.l4i_chk = skb->h.uh->check;
63890576
WJ
1183 } else if ((skb->protocol == ETH_P_IP) &&
1184 (skb->nh.iph->protocol == IPPROTO_TCP))
1da177e4
LT
1185 pkt_info.l4i_chk = skb->h.th->check;
1186 else {
1187 printk(KERN_ERR
63890576 1188 "%s: chksum proto != IPv4 TCP or UDP\n",
1da177e4
LT
1189 dev->name);
1190 spin_unlock_irqrestore(&mp->lock, flags);
1191 return 1;
1192 }
1193 }
1194
1195 status = eth_port_send(mp, &pkt_info);
1196 if (status != ETH_OK) {
1197 if ((status == ETH_ERROR))
1198 printk(KERN_ERR
1199 "%s: Error on transmitting packet\n",
1200 dev->name);
1201 if (status == ETH_QUEUE_FULL)
1202 printk("Error on Queue Full \n");
1203 if (status == ETH_QUEUE_LAST_RESOURCE)
1204 printk("Tx resource error \n");
1205 }
1206 stats->tx_bytes += pkt_info.byte_cnt;
1207
1208 /* Check for the remaining frags */
1209 for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
1210 skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
1211 pkt_info.l4i_chk = 0x0000;
1212 pkt_info.cmd_sts = 0x00000000;
1213
1214 /* Last Frag enables interrupt and frees the skb */
1215 if (frag == (skb_shinfo(skb)->nr_frags - 1)) {
1216 pkt_info.cmd_sts |= ETH_TX_ENABLE_INTERRUPT |
1217 ETH_TX_LAST_DESC;
1218 pkt_info.return_info = skb;
1da177e4
LT
1219 } else {
1220 pkt_info.return_info = 0;
1221 }
1222 pkt_info.l4i_chk = 0;
1223 pkt_info.byte_cnt = this_frag->size;
1224
1225 pkt_info.buf_ptr = dma_map_page(NULL, this_frag->page,
1226 this_frag->page_offset,
1227 this_frag->size,
1228 DMA_TO_DEVICE);
1229
1230 status = eth_port_send(mp, &pkt_info);
1231
1232 if (status != ETH_OK) {
1233 if ((status == ETH_ERROR))
1234 printk(KERN_ERR "%s: Error on "
1235 "transmitting packet\n",
1236 dev->name);
1237
1238 if (status == ETH_QUEUE_LAST_RESOURCE)
1239 printk("Tx resource error \n");
1240
1241 if (status == ETH_QUEUE_FULL)
1242 printk("Queue is full \n");
1243 }
1244 stats->tx_bytes += pkt_info.byte_cnt;
1245 }
1246 }
1247#else
f7ea3337
PJ
1248 spin_lock_irqsave(&mp->lock, flags);
1249
1da177e4
LT
1250 pkt_info.cmd_sts = ETH_TX_ENABLE_INTERRUPT | ETH_TX_FIRST_DESC |
1251 ETH_TX_LAST_DESC;
1252 pkt_info.l4i_chk = 0;
1253 pkt_info.byte_cnt = skb->len;
1254 pkt_info.buf_ptr = dma_map_single(NULL, skb->data, skb->len,
1255 DMA_TO_DEVICE);
1256 pkt_info.return_info = skb;
1da177e4
LT
1257 status = eth_port_send(mp, &pkt_info);
1258 if ((status == ETH_ERROR) || (status == ETH_QUEUE_FULL))
1259 printk(KERN_ERR "%s: Error on transmitting packet\n",
1260 dev->name);
1261 stats->tx_bytes += pkt_info.byte_cnt;
1262#endif
1263
1264 /* Check if TX queue can handle another skb. If not, then
1265 * signal higher layers to stop requesting TX
1266 */
1267 if (mp->tx_ring_size <= (mp->tx_ring_skbs + MAX_DESCS_PER_SKB))
1268 /*
1269 * Stop getting skb's from upper layers.
1270 * Getting skb's from upper layers will be enabled again after
1271 * packets are released.
1272 */
1273 netif_stop_queue(dev);
1274
1275 /* Update statistics and start of transmittion time */
1276 stats->tx_packets++;
1277 dev->trans_start = jiffies;
1278
1279 spin_unlock_irqrestore(&mp->lock, flags);
1280
1281 return 0; /* success */
1282}
1283
1284/*
1285 * mv643xx_eth_get_stats
1286 *
1287 * Returns a pointer to the interface statistics.
1288 *
1289 * Input : dev - a pointer to the required interface
1290 *
1291 * Output : a pointer to the interface's statistics
1292 */
1293
1294static struct net_device_stats *mv643xx_eth_get_stats(struct net_device *dev)
1295{
1296 struct mv643xx_private *mp = netdev_priv(dev);
1297
1298 return &mp->stats;
1299}
1300
63c9e549 1301#ifdef CONFIG_NET_POLL_CONTROLLER
63c9e549
DF
1302static void mv643xx_netpoll(struct net_device *netdev)
1303{
1304 struct mv643xx_private *mp = netdev_priv(netdev);
c2e5b352
DF
1305 int port_num = mp->port_num;
1306
1307 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), INT_MASK_ALL);
1308 /* wait for previous write to complete */
1309 mv_read(MV643XX_ETH_INTERRUPT_MASK_REG(port_num));
63c9e549 1310
63c9e549 1311 mv643xx_eth_int_handler(netdev->irq, netdev, NULL);
c2e5b352
DF
1312
1313 mv_write(MV643XX_ETH_INTERRUPT_MASK_REG(port_num), INT_UNMASK_ALL);
63c9e549
DF
1314}
1315#endif
1316
1da177e4
LT
1317/*/
1318 * mv643xx_eth_probe
1319 *
1320 * First function called after registering the network device.
1321 * It's purpose is to initialize the device as an ethernet device,
1322 * fill the ethernet device structure with pointers * to functions,
1323 * and set the MAC address of the interface
1324 *
1325 * Input : struct device *
1326 * Output : -ENOMEM if failed , 0 if success
1327 */
3ae5eaec 1328static int mv643xx_eth_probe(struct platform_device *pdev)
1da177e4 1329{
1da177e4
LT
1330 struct mv643xx_eth_platform_data *pd;
1331 int port_num = pdev->id;
1332 struct mv643xx_private *mp;
1333 struct net_device *dev;
1334 u8 *p;
1335 struct resource *res;
1336 int err;
1337
1338 dev = alloc_etherdev(sizeof(struct mv643xx_private));
1339 if (!dev)
1340 return -ENOMEM;
1341
3ae5eaec 1342 platform_set_drvdata(pdev, dev);
1da177e4
LT
1343
1344 mp = netdev_priv(dev);
1345
1346 res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
1347 BUG_ON(!res);
1348 dev->irq = res->start;
1349
1350 mp->port_num = port_num;
1351
1352 dev->open = mv643xx_eth_open;
1353 dev->stop = mv643xx_eth_stop;
1354 dev->hard_start_xmit = mv643xx_eth_start_xmit;
1355 dev->get_stats = mv643xx_eth_get_stats;
1356 dev->set_mac_address = mv643xx_eth_set_mac_address;
1357 dev->set_multicast_list = mv643xx_eth_set_rx_mode;
1358
1359 /* No need to Tx Timeout */
1360 dev->tx_timeout = mv643xx_eth_tx_timeout;
1361#ifdef MV643XX_NAPI
1362 dev->poll = mv643xx_poll;
1363 dev->weight = 64;
1364#endif
1365
63c9e549
DF
1366#ifdef CONFIG_NET_POLL_CONTROLLER
1367 dev->poll_controller = mv643xx_netpoll;
1368#endif
1369
1da177e4
LT
1370 dev->watchdog_timeo = 2 * HZ;
1371 dev->tx_queue_len = mp->tx_ring_size;
1372 dev->base_addr = 0;
1373 dev->change_mtu = mv643xx_eth_change_mtu;
1374 SET_ETHTOOL_OPS(dev, &mv643xx_ethtool_ops);
1375
1376#ifdef MV643XX_CHECKSUM_OFFLOAD_TX
1377#ifdef MAX_SKB_FRAGS
1378 /*
1379 * Zero copy can only work if we use Discovery II memory. Else, we will
1380 * have to map the buffers to ISA memory which is only 16 MB
1381 */
63890576 1382 dev->features = NETIF_F_SG | NETIF_F_IP_CSUM;
1da177e4
LT
1383#endif
1384#endif
1385
1386 /* Configure the timeout task */
1387 INIT_WORK(&mp->tx_timeout_task,
1388 (void (*)(void *))mv643xx_eth_tx_timeout_task, dev);
1389
1390 spin_lock_init(&mp->lock);
1391
1392 /* set default config values */
1393 eth_port_uc_addr_get(dev, dev->dev_addr);
1394 mp->port_config = MV643XX_ETH_PORT_CONFIG_DEFAULT_VALUE;
1395 mp->port_config_extend = MV643XX_ETH_PORT_CONFIG_EXTEND_DEFAULT_VALUE;
1396 mp->port_sdma_config = MV643XX_ETH_PORT_SDMA_CONFIG_DEFAULT_VALUE;
1397 mp->port_serial_control = MV643XX_ETH_PORT_SERIAL_CONTROL_DEFAULT_VALUE;
1398 mp->rx_ring_size = MV643XX_ETH_PORT_DEFAULT_RECEIVE_QUEUE_SIZE;
1399 mp->tx_ring_size = MV643XX_ETH_PORT_DEFAULT_TRANSMIT_QUEUE_SIZE;
1400
1401 pd = pdev->dev.platform_data;
1402 if (pd) {
1403 if (pd->mac_addr != NULL)
1404 memcpy(dev->dev_addr, pd->mac_addr, 6);
1405
1406 if (pd->phy_addr || pd->force_phy_addr)
1407 ethernet_phy_set(port_num, pd->phy_addr);
1408
1409 if (pd->port_config || pd->force_port_config)
1410 mp->port_config = pd->port_config;
1411
1412 if (pd->port_config_extend || pd->force_port_config_extend)
1413 mp->port_config_extend = pd->port_config_extend;
1414
1415 if (pd->port_sdma_config || pd->force_port_sdma_config)
1416 mp->port_sdma_config = pd->port_sdma_config;
1417
1418 if (pd->port_serial_control || pd->force_port_serial_control)
1419 mp->port_serial_control = pd->port_serial_control;
1420
1421 if (pd->rx_queue_size)
1422 mp->rx_ring_size = pd->rx_queue_size;
1423
1424 if (pd->tx_queue_size)
1425 mp->tx_ring_size = pd->tx_queue_size;
1426
1427 if (pd->tx_sram_size) {
1428 mp->tx_sram_size = pd->tx_sram_size;
1429 mp->tx_sram_addr = pd->tx_sram_addr;
1430 }
1431
1432 if (pd->rx_sram_size) {
1433 mp->rx_sram_size = pd->rx_sram_size;
1434 mp->rx_sram_addr = pd->rx_sram_addr;
1435 }
1436 }
1437
1438 err = ethernet_phy_detect(port_num);
1439 if (err) {
1440 pr_debug("MV643xx ethernet port %d: "
1441 "No PHY detected at addr %d\n",
1442 port_num, ethernet_phy_get(port_num));
1443 return err;
1444 }
1445
1446 err = register_netdev(dev);
1447 if (err)
1448 goto out;
1449
1450 p = dev->dev_addr;
1451 printk(KERN_NOTICE
1452 "%s: port %d with MAC address %02x:%02x:%02x:%02x:%02x:%02x\n",
1453 dev->name, port_num, p[0], p[1], p[2], p[3], p[4], p[5]);
1454
1455 if (dev->features & NETIF_F_SG)
1456 printk(KERN_NOTICE "%s: Scatter Gather Enabled\n", dev->name);
1457
1458 if (dev->features & NETIF_F_IP_CSUM)
1459 printk(KERN_NOTICE "%s: TX TCP/IP Checksumming Supported\n",
1460 dev->name);
1461
1462#ifdef MV643XX_CHECKSUM_OFFLOAD_TX
1463 printk(KERN_NOTICE "%s: RX TCP/UDP Checksum Offload ON \n", dev->name);
1464#endif
1465
1466#ifdef MV643XX_COAL
1467 printk(KERN_NOTICE "%s: TX and RX Interrupt Coalescing ON \n",
1468 dev->name);
1469#endif
1470
1471#ifdef MV643XX_NAPI
1472 printk(KERN_NOTICE "%s: RX NAPI Enabled \n", dev->name);
1473#endif
1474
b1529871
ND
1475 if (mp->tx_sram_size > 0)
1476 printk(KERN_NOTICE "%s: Using SRAM\n", dev->name);
1477
1da177e4
LT
1478 return 0;
1479
1480out:
1481 free_netdev(dev);
1482
1483 return err;
1484}
1485
3ae5eaec 1486static int mv643xx_eth_remove(struct platform_device *pdev)
1da177e4 1487{
3ae5eaec 1488 struct net_device *dev = platform_get_drvdata(pdev);
1da177e4
LT
1489
1490 unregister_netdev(dev);
1491 flush_scheduled_work();
1492
1493 free_netdev(dev);
3ae5eaec 1494 platform_set_drvdata(pdev, NULL);
1da177e4
LT
1495 return 0;
1496}
1497
3ae5eaec 1498static int mv643xx_eth_shared_probe(struct platform_device *pdev)
1da177e4 1499{
1da177e4
LT
1500 struct resource *res;
1501
1502 printk(KERN_NOTICE "MV-643xx 10/100/1000 Ethernet Driver\n");
1503
1504 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1505 if (res == NULL)
1506 return -ENODEV;
1507
1508 mv643xx_eth_shared_base = ioremap(res->start,
1509 MV643XX_ETH_SHARED_REGS_SIZE);
1510 if (mv643xx_eth_shared_base == NULL)
1511 return -ENOMEM;
1512
1513 return 0;
1514
1515}
1516
3ae5eaec 1517static int mv643xx_eth_shared_remove(struct platform_device *pdev)
1da177e4
LT
1518{
1519 iounmap(mv643xx_eth_shared_base);
1520 mv643xx_eth_shared_base = NULL;
1521
1522 return 0;
1523}
1524
3ae5eaec 1525static struct platform_driver mv643xx_eth_driver = {
1da177e4
LT
1526 .probe = mv643xx_eth_probe,
1527 .remove = mv643xx_eth_remove,
3ae5eaec
RK
1528 .driver = {
1529 .name = MV643XX_ETH_NAME,
1530 },
1da177e4
LT
1531};
1532
3ae5eaec 1533static struct platform_driver mv643xx_eth_shared_driver = {
1da177e4
LT
1534 .probe = mv643xx_eth_shared_probe,
1535 .remove = mv643xx_eth_shared_remove,
3ae5eaec
RK
1536 .driver = {
1537 .name = MV643XX_ETH_SHARED_NAME,
1538 },
1da177e4
LT
1539};
1540
1541/*
1542 * mv643xx_init_module
1543 *
1544 * Registers the network drivers into the Linux kernel
1545 *
1546 * Input : N/A
1547 *
1548 * Output : N/A
1549 */
1550static int __init mv643xx_init_module(void)
1551{
1552 int rc;
1553
3ae5eaec 1554 rc = platform_driver_register(&mv643xx_eth_shared_driver);
1da177e4 1555 if (!rc) {
3ae5eaec 1556 rc = platform_driver_register(&mv643xx_eth_driver);
1da177e4 1557 if (rc)
3ae5eaec 1558 platform_driver_unregister(&mv643xx_eth_shared_driver);
1da177e4
LT
1559 }
1560 return rc;
1561}
1562
1563/*
1564 * mv643xx_cleanup_module
1565 *
1566 * Registers the network drivers into the Linux kernel
1567 *
1568 * Input : N/A
1569 *
1570 * Output : N/A
1571 */
1572static void __exit mv643xx_cleanup_module(void)
1573{
3ae5eaec
RK
1574 platform_driver_unregister(&mv643xx_eth_driver);
1575 platform_driver_unregister(&mv643xx_eth_shared_driver);
1da177e4
LT
1576}
1577
1578module_init(mv643xx_init_module);
1579module_exit(mv643xx_cleanup_module);
1580
1581MODULE_LICENSE("GPL");
1582MODULE_AUTHOR( "Rabeeh Khoury, Assaf Hoffman, Matthew Dharm, Manish Lachwani"
1583 " and Dale Farnsworth");
1584MODULE_DESCRIPTION("Ethernet driver for Marvell MV643XX");
1585
1586/*
1587 * The second part is the low level driver of the gigE ethernet ports.
1588 */
1589
1590/*
1591 * Marvell's Gigabit Ethernet controller low level driver
1592 *
1593 * DESCRIPTION:
1594 * This file introduce low level API to Marvell's Gigabit Ethernet
1595 * controller. This Gigabit Ethernet Controller driver API controls
1596 * 1) Operations (i.e. port init, start, reset etc').
1597 * 2) Data flow (i.e. port send, receive etc').
1598 * Each Gigabit Ethernet port is controlled via
1599 * struct mv643xx_private.
1600 * This struct includes user configuration information as well as
1601 * driver internal data needed for its operations.
1602 *
1603 * Supported Features:
1604 * - This low level driver is OS independent. Allocating memory for
1605 * the descriptor rings and buffers are not within the scope of
1606 * this driver.
1607 * - The user is free from Rx/Tx queue managing.
1608 * - This low level driver introduce functionality API that enable
1609 * the to operate Marvell's Gigabit Ethernet Controller in a
1610 * convenient way.
1611 * - Simple Gigabit Ethernet port operation API.
1612 * - Simple Gigabit Ethernet port data flow API.
1613 * - Data flow and operation API support per queue functionality.
1614 * - Support cached descriptors for better performance.
1615 * - Enable access to all four DRAM banks and internal SRAM memory
1616 * spaces.
1617 * - PHY access and control API.
1618 * - Port control register configuration API.
1619 * - Full control over Unicast and Multicast MAC configurations.
1620 *
1621 * Operation flow:
1622 *
1623 * Initialization phase
1624 * This phase complete the initialization of the the
1625 * mv643xx_private struct.
1626 * User information regarding port configuration has to be set
1627 * prior to calling the port initialization routine.
1628 *
1629 * In this phase any port Tx/Rx activity is halted, MIB counters
1630 * are cleared, PHY address is set according to user parameter and
1631 * access to DRAM and internal SRAM memory spaces.
1632 *
1633 * Driver ring initialization
1634 * Allocating memory for the descriptor rings and buffers is not
1635 * within the scope of this driver. Thus, the user is required to
1636 * allocate memory for the descriptors ring and buffers. Those
1637 * memory parameters are used by the Rx and Tx ring initialization
1638 * routines in order to curve the descriptor linked list in a form
1639 * of a ring.
1640 * Note: Pay special attention to alignment issues when using
1641 * cached descriptors/buffers. In this phase the driver store
1642 * information in the mv643xx_private struct regarding each queue
1643 * ring.
1644 *
1645 * Driver start
1646 * This phase prepares the Ethernet port for Rx and Tx activity.
1647 * It uses the information stored in the mv643xx_private struct to
1648 * initialize the various port registers.
1649 *
1650 * Data flow:
1651 * All packet references to/from the driver are done using
1652 * struct pkt_info.
1653 * This struct is a unified struct used with Rx and Tx operations.
1654 * This way the user is not required to be familiar with neither
1655 * Tx nor Rx descriptors structures.
1656 * The driver's descriptors rings are management by indexes.
1657 * Those indexes controls the ring resources and used to indicate
1658 * a SW resource error:
1659 * 'current'
1660 * This index points to the current available resource for use. For
1661 * example in Rx process this index will point to the descriptor
1662 * that will be passed to the user upon calling the receive
1663 * routine. In Tx process, this index will point to the descriptor
1664 * that will be assigned with the user packet info and transmitted.
1665 * 'used'
1666 * This index points to the descriptor that need to restore its
1667 * resources. For example in Rx process, using the Rx buffer return
1668 * API will attach the buffer returned in packet info to the
1669 * descriptor pointed by 'used'. In Tx process, using the Tx
1670 * descriptor return will merely return the user packet info with
1671 * the command status of the transmitted buffer pointed by the
1672 * 'used' index. Nevertheless, it is essential to use this routine
1673 * to update the 'used' index.
1674 * 'first'
1675 * This index supports Tx Scatter-Gather. It points to the first
1676 * descriptor of a packet assembled of multiple buffers. For
1677 * example when in middle of Such packet we have a Tx resource
1678 * error the 'curr' index get the value of 'first' to indicate
1679 * that the ring returned to its state before trying to transmit
1680 * this packet.
1681 *
1682 * Receive operation:
1683 * The eth_port_receive API set the packet information struct,
1684 * passed by the caller, with received information from the
1685 * 'current' SDMA descriptor.
1686 * It is the user responsibility to return this resource back
1687 * to the Rx descriptor ring to enable the reuse of this source.
1688 * Return Rx resource is done using the eth_rx_return_buff API.
1689 *
1690 * Transmit operation:
1691 * The eth_port_send API supports Scatter-Gather which enables to
1692 * send a packet spanned over multiple buffers. This means that
1693 * for each packet info structure given by the user and put into
1694 * the Tx descriptors ring, will be transmitted only if the 'LAST'
1695 * bit will be set in the packet info command status field. This
1696 * API also consider restriction regarding buffer alignments and
1697 * sizes.
1698 * The user must return a Tx resource after ensuring the buffer
1699 * has been transmitted to enable the Tx ring indexes to update.
1700 *
1701 * BOARD LAYOUT
1702 * This device is on-board. No jumper diagram is necessary.
1703 *
1704 * EXTERNAL INTERFACE
1705 *
1706 * Prior to calling the initialization routine eth_port_init() the user
1707 * must set the following fields under mv643xx_private struct:
1708 * port_num User Ethernet port number.
1709 * port_mac_addr[6] User defined port MAC address.
1710 * port_config User port configuration value.
1711 * port_config_extend User port config extend value.
1712 * port_sdma_config User port SDMA config value.
1713 * port_serial_control User port serial control value.
1714 *
1715 * This driver data flow is done using the struct pkt_info which
1716 * is a unified struct for Rx and Tx operations:
1717 *
1718 * byte_cnt Tx/Rx descriptor buffer byte count.
1719 * l4i_chk CPU provided TCP Checksum. For Tx operation
1720 * only.
1721 * cmd_sts Tx/Rx descriptor command status.
1722 * buf_ptr Tx/Rx descriptor buffer pointer.
1723 * return_info Tx/Rx user resource return information.
1724 */
1725
1726/* defines */
1727/* SDMA command macros */
1728#define ETH_ENABLE_TX_QUEUE(eth_port) \
1729 mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(eth_port), 1)
1730
1731/* locals */
1732
1733/* PHY routines */
1734static int ethernet_phy_get(unsigned int eth_port_num);
1735static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr);
1736
1737/* Ethernet Port routines */
1738static int eth_port_uc_addr(unsigned int eth_port_num, unsigned char uc_nibble,
1739 int option);
1740
1741/*
1742 * eth_port_init - Initialize the Ethernet port driver
1743 *
1744 * DESCRIPTION:
1745 * This function prepares the ethernet port to start its activity:
1746 * 1) Completes the ethernet port driver struct initialization toward port
1747 * start routine.
1748 * 2) Resets the device to a quiescent state in case of warm reboot.
1749 * 3) Enable SDMA access to all four DRAM banks as well as internal SRAM.
1750 * 4) Clean MAC tables. The reset status of those tables is unknown.
1751 * 5) Set PHY address.
1752 * Note: Call this routine prior to eth_port_start routine and after
1753 * setting user values in the user fields of Ethernet port control
1754 * struct.
1755 *
1756 * INPUT:
1757 * struct mv643xx_private *mp Ethernet port control struct
1758 *
1759 * OUTPUT:
1760 * See description.
1761 *
1762 * RETURN:
1763 * None.
1764 */
1765static void eth_port_init(struct mv643xx_private *mp)
1766{
1767 mp->port_rx_queue_command = 0;
1768 mp->port_tx_queue_command = 0;
1769
1770 mp->rx_resource_err = 0;
1771 mp->tx_resource_err = 0;
1772
1773 eth_port_reset(mp->port_num);
1774
1775 eth_port_init_mac_tables(mp->port_num);
1776
1777 ethernet_phy_reset(mp->port_num);
1778}
1779
1780/*
1781 * eth_port_start - Start the Ethernet port activity.
1782 *
1783 * DESCRIPTION:
1784 * This routine prepares the Ethernet port for Rx and Tx activity:
1785 * 1. Initialize Tx and Rx Current Descriptor Pointer for each queue that
1786 * has been initialized a descriptor's ring (using
1787 * ether_init_tx_desc_ring for Tx and ether_init_rx_desc_ring for Rx)
1788 * 2. Initialize and enable the Ethernet configuration port by writing to
1789 * the port's configuration and command registers.
1790 * 3. Initialize and enable the SDMA by writing to the SDMA's
1791 * configuration and command registers. After completing these steps,
1792 * the ethernet port SDMA can starts to perform Rx and Tx activities.
1793 *
1794 * Note: Each Rx and Tx queue descriptor's list must be initialized prior
1795 * to calling this function (use ether_init_tx_desc_ring for Tx queues
1796 * and ether_init_rx_desc_ring for Rx queues).
1797 *
1798 * INPUT:
1799 * struct mv643xx_private *mp Ethernet port control struct
1800 *
1801 * OUTPUT:
1802 * Ethernet port is ready to receive and transmit.
1803 *
1804 * RETURN:
1805 * None.
1806 */
1807static void eth_port_start(struct mv643xx_private *mp)
1808{
1809 unsigned int port_num = mp->port_num;
1810 int tx_curr_desc, rx_curr_desc;
1811
1812 /* Assignment of Tx CTRP of given queue */
1813 tx_curr_desc = mp->tx_curr_desc_q;
1814 mv_write(MV643XX_ETH_TX_CURRENT_QUEUE_DESC_PTR_0(port_num),
1815 (u32)((struct eth_tx_desc *)mp->tx_desc_dma + tx_curr_desc));
1816
1817 /* Assignment of Rx CRDP of given queue */
1818 rx_curr_desc = mp->rx_curr_desc_q;
1819 mv_write(MV643XX_ETH_RX_CURRENT_QUEUE_DESC_PTR_0(port_num),
1820 (u32)((struct eth_rx_desc *)mp->rx_desc_dma + rx_curr_desc));
1821
1822 /* Add the assigned Ethernet address to the port's address table */
1823 eth_port_uc_addr_set(port_num, mp->port_mac_addr);
1824
1825 /* Assign port configuration and command. */
1826 mv_write(MV643XX_ETH_PORT_CONFIG_REG(port_num), mp->port_config);
1827
1828 mv_write(MV643XX_ETH_PORT_CONFIG_EXTEND_REG(port_num),
1829 mp->port_config_extend);
1830
1831
1832 /* Increase the Rx side buffer size if supporting GigE */
1833 if (mp->port_serial_control & MV643XX_ETH_SET_GMII_SPEED_TO_1000)
1834 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
1835 (mp->port_serial_control & 0xfff1ffff) | (0x5 << 17));
1836 else
1837 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
1838 mp->port_serial_control);
1839
1840 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num),
1841 mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num)) |
1842 MV643XX_ETH_SERIAL_PORT_ENABLE);
1843
1844 /* Assign port SDMA configuration */
1845 mv_write(MV643XX_ETH_SDMA_CONFIG_REG(port_num),
1846 mp->port_sdma_config);
1847
1848 /* Enable port Rx. */
1849 mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num),
1850 mp->port_rx_queue_command);
8f543718
DF
1851
1852 /* Disable port bandwidth limits by clearing MTU register */
1853 mv_write(MV643XX_ETH_MAXIMUM_TRANSMIT_UNIT(port_num), 0);
1da177e4
LT
1854}
1855
1856/*
1857 * eth_port_uc_addr_set - This function Set the port Unicast address.
1858 *
1859 * DESCRIPTION:
1860 * This function Set the port Ethernet MAC address.
1861 *
1862 * INPUT:
1863 * unsigned int eth_port_num Port number.
1864 * char * p_addr Address to be set
1865 *
1866 * OUTPUT:
1867 * Set MAC address low and high registers. also calls eth_port_uc_addr()
1868 * To set the unicast table with the proper information.
1869 *
1870 * RETURN:
1871 * N/A.
1872 *
1873 */
1874static void eth_port_uc_addr_set(unsigned int eth_port_num,
1875 unsigned char *p_addr)
1876{
1877 unsigned int mac_h;
1878 unsigned int mac_l;
1879
1880 mac_l = (p_addr[4] << 8) | (p_addr[5]);
1881 mac_h = (p_addr[0] << 24) | (p_addr[1] << 16) | (p_addr[2] << 8) |
1882 (p_addr[3] << 0);
1883
1884 mv_write(MV643XX_ETH_MAC_ADDR_LOW(eth_port_num), mac_l);
1885 mv_write(MV643XX_ETH_MAC_ADDR_HIGH(eth_port_num), mac_h);
1886
1887 /* Accept frames of this address */
1888 eth_port_uc_addr(eth_port_num, p_addr[5], ACCEPT_MAC_ADDR);
1889
1890 return;
1891}
1892
1893/*
1894 * eth_port_uc_addr_get - This function retrieves the port Unicast address
1895 * (MAC address) from the ethernet hw registers.
1896 *
1897 * DESCRIPTION:
1898 * This function retrieves the port Ethernet MAC address.
1899 *
1900 * INPUT:
1901 * unsigned int eth_port_num Port number.
1902 * char *MacAddr pointer where the MAC address is stored
1903 *
1904 * OUTPUT:
1905 * Copy the MAC address to the location pointed to by MacAddr
1906 *
1907 * RETURN:
1908 * N/A.
1909 *
1910 */
1911static void eth_port_uc_addr_get(struct net_device *dev, unsigned char *p_addr)
1912{
1913 struct mv643xx_private *mp = netdev_priv(dev);
1914 unsigned int mac_h;
1915 unsigned int mac_l;
1916
1917 mac_h = mv_read(MV643XX_ETH_MAC_ADDR_HIGH(mp->port_num));
1918 mac_l = mv_read(MV643XX_ETH_MAC_ADDR_LOW(mp->port_num));
1919
1920 p_addr[0] = (mac_h >> 24) & 0xff;
1921 p_addr[1] = (mac_h >> 16) & 0xff;
1922 p_addr[2] = (mac_h >> 8) & 0xff;
1923 p_addr[3] = mac_h & 0xff;
1924 p_addr[4] = (mac_l >> 8) & 0xff;
1925 p_addr[5] = mac_l & 0xff;
1926}
1927
1928/*
1929 * eth_port_uc_addr - This function Set the port unicast address table
1930 *
1931 * DESCRIPTION:
1932 * This function locates the proper entry in the Unicast table for the
1933 * specified MAC nibble and sets its properties according to function
1934 * parameters.
1935 *
1936 * INPUT:
1937 * unsigned int eth_port_num Port number.
1938 * unsigned char uc_nibble Unicast MAC Address last nibble.
1939 * int option 0 = Add, 1 = remove address.
1940 *
1941 * OUTPUT:
1942 * This function add/removes MAC addresses from the port unicast address
1943 * table.
1944 *
1945 * RETURN:
1946 * true is output succeeded.
1947 * false if option parameter is invalid.
1948 *
1949 */
1950static int eth_port_uc_addr(unsigned int eth_port_num, unsigned char uc_nibble,
1951 int option)
1952{
1953 unsigned int unicast_reg;
1954 unsigned int tbl_offset;
1955 unsigned int reg_offset;
1956
1957 /* Locate the Unicast table entry */
1958 uc_nibble = (0xf & uc_nibble);
1959 tbl_offset = (uc_nibble / 4) * 4; /* Register offset from unicast table base */
1960 reg_offset = uc_nibble % 4; /* Entry offset within the above register */
1961
1962 switch (option) {
1963 case REJECT_MAC_ADDR:
1964 /* Clear accepts frame bit at given unicast DA table entry */
1965 unicast_reg = mv_read((MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE
1966 (eth_port_num) + tbl_offset));
1967
1968 unicast_reg &= (0x0E << (8 * reg_offset));
1969
1970 mv_write((MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE
1971 (eth_port_num) + tbl_offset), unicast_reg);
1972 break;
1973
1974 case ACCEPT_MAC_ADDR:
1975 /* Set accepts frame bit at unicast DA filter table entry */
1976 unicast_reg =
1977 mv_read((MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE
1978 (eth_port_num) + tbl_offset));
1979
1980 unicast_reg |= (0x01 << (8 * reg_offset));
1981
1982 mv_write((MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE
1983 (eth_port_num) + tbl_offset), unicast_reg);
1984
1985 break;
1986
1987 default:
1988 return 0;
1989 }
1990
1991 return 1;
1992}
1993
16e03018
DF
1994/*
1995 * The entries in each table are indexed by a hash of a packet's MAC
1996 * address. One bit in each entry determines whether the packet is
1997 * accepted. There are 4 entries (each 8 bits wide) in each register
1998 * of the table. The bits in each entry are defined as follows:
1999 * 0 Accept=1, Drop=0
2000 * 3-1 Queue (ETH_Q0=0)
2001 * 7-4 Reserved = 0;
2002 */
2003static void eth_port_set_filter_table_entry(int table, unsigned char entry)
2004{
2005 unsigned int table_reg;
2006 unsigned int tbl_offset;
2007 unsigned int reg_offset;
2008
2009 tbl_offset = (entry / 4) * 4; /* Register offset of DA table entry */
2010 reg_offset = entry % 4; /* Entry offset within the register */
2011
2012 /* Set "accepts frame bit" at specified table entry */
2013 table_reg = mv_read(table + tbl_offset);
2014 table_reg |= 0x01 << (8 * reg_offset);
2015 mv_write(table + tbl_offset, table_reg);
2016}
2017
2018/*
2019 * eth_port_mc_addr - Multicast address settings.
2020 *
2021 * The MV device supports multicast using two tables:
2022 * 1) Special Multicast Table for MAC addresses of the form
2023 * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0x_FF).
2024 * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2025 * Table entries in the DA-Filter table.
2026 * 2) Other Multicast Table for multicast of another type. A CRC-8bit
2027 * is used as an index to the Other Multicast Table entries in the
2028 * DA-Filter table. This function calculates the CRC-8bit value.
2029 * In either case, eth_port_set_filter_table_entry() is then called
2030 * to set to set the actual table entry.
2031 */
2032static void eth_port_mc_addr(unsigned int eth_port_num, unsigned char *p_addr)
2033{
2034 unsigned int mac_h;
2035 unsigned int mac_l;
2036 unsigned char crc_result = 0;
2037 int table;
2038 int mac_array[48];
2039 int crc[8];
2040 int i;
2041
2042 if ((p_addr[0] == 0x01) && (p_addr[1] == 0x00) &&
2043 (p_addr[2] == 0x5E) && (p_addr[3] == 0x00) && (p_addr[4] == 0x00)) {
2044 table = MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE
2045 (eth_port_num);
2046 eth_port_set_filter_table_entry(table, p_addr[5]);
2047 return;
2048 }
2049
2050 /* Calculate CRC-8 out of the given address */
2051 mac_h = (p_addr[0] << 8) | (p_addr[1]);
2052 mac_l = (p_addr[2] << 24) | (p_addr[3] << 16) |
2053 (p_addr[4] << 8) | (p_addr[5] << 0);
2054
2055 for (i = 0; i < 32; i++)
2056 mac_array[i] = (mac_l >> i) & 0x1;
2057 for (i = 32; i < 48; i++)
2058 mac_array[i] = (mac_h >> (i - 32)) & 0x1;
2059
2060 crc[0] = mac_array[45] ^ mac_array[43] ^ mac_array[40] ^ mac_array[39] ^
2061 mac_array[35] ^ mac_array[34] ^ mac_array[31] ^ mac_array[30] ^
2062 mac_array[28] ^ mac_array[23] ^ mac_array[21] ^ mac_array[19] ^
2063 mac_array[18] ^ mac_array[16] ^ mac_array[14] ^ mac_array[12] ^
2064 mac_array[8] ^ mac_array[7] ^ mac_array[6] ^ mac_array[0];
2065
2066 crc[1] = mac_array[46] ^ mac_array[45] ^ mac_array[44] ^ mac_array[43] ^
2067 mac_array[41] ^ mac_array[39] ^ mac_array[36] ^ mac_array[34] ^
2068 mac_array[32] ^ mac_array[30] ^ mac_array[29] ^ mac_array[28] ^
2069 mac_array[24] ^ mac_array[23] ^ mac_array[22] ^ mac_array[21] ^
2070 mac_array[20] ^ mac_array[18] ^ mac_array[17] ^ mac_array[16] ^
2071 mac_array[15] ^ mac_array[14] ^ mac_array[13] ^ mac_array[12] ^
2072 mac_array[9] ^ mac_array[6] ^ mac_array[1] ^ mac_array[0];
2073
2074 crc[2] = mac_array[47] ^ mac_array[46] ^ mac_array[44] ^ mac_array[43] ^
2075 mac_array[42] ^ mac_array[39] ^ mac_array[37] ^ mac_array[34] ^
2076 mac_array[33] ^ mac_array[29] ^ mac_array[28] ^ mac_array[25] ^
2077 mac_array[24] ^ mac_array[22] ^ mac_array[17] ^ mac_array[15] ^
2078 mac_array[13] ^ mac_array[12] ^ mac_array[10] ^ mac_array[8] ^
2079 mac_array[6] ^ mac_array[2] ^ mac_array[1] ^ mac_array[0];
2080
2081 crc[3] = mac_array[47] ^ mac_array[45] ^ mac_array[44] ^ mac_array[43] ^
2082 mac_array[40] ^ mac_array[38] ^ mac_array[35] ^ mac_array[34] ^
2083 mac_array[30] ^ mac_array[29] ^ mac_array[26] ^ mac_array[25] ^
2084 mac_array[23] ^ mac_array[18] ^ mac_array[16] ^ mac_array[14] ^
2085 mac_array[13] ^ mac_array[11] ^ mac_array[9] ^ mac_array[7] ^
2086 mac_array[3] ^ mac_array[2] ^ mac_array[1];
2087
2088 crc[4] = mac_array[46] ^ mac_array[45] ^ mac_array[44] ^ mac_array[41] ^
2089 mac_array[39] ^ mac_array[36] ^ mac_array[35] ^ mac_array[31] ^
2090 mac_array[30] ^ mac_array[27] ^ mac_array[26] ^ mac_array[24] ^
2091 mac_array[19] ^ mac_array[17] ^ mac_array[15] ^ mac_array[14] ^
2092 mac_array[12] ^ mac_array[10] ^ mac_array[8] ^ mac_array[4] ^
2093 mac_array[3] ^ mac_array[2];
2094
2095 crc[5] = mac_array[47] ^ mac_array[46] ^ mac_array[45] ^ mac_array[42] ^
2096 mac_array[40] ^ mac_array[37] ^ mac_array[36] ^ mac_array[32] ^
2097 mac_array[31] ^ mac_array[28] ^ mac_array[27] ^ mac_array[25] ^
2098 mac_array[20] ^ mac_array[18] ^ mac_array[16] ^ mac_array[15] ^
2099 mac_array[13] ^ mac_array[11] ^ mac_array[9] ^ mac_array[5] ^
2100 mac_array[4] ^ mac_array[3];
2101
2102 crc[6] = mac_array[47] ^ mac_array[46] ^ mac_array[43] ^ mac_array[41] ^
2103 mac_array[38] ^ mac_array[37] ^ mac_array[33] ^ mac_array[32] ^
2104 mac_array[29] ^ mac_array[28] ^ mac_array[26] ^ mac_array[21] ^
2105 mac_array[19] ^ mac_array[17] ^ mac_array[16] ^ mac_array[14] ^
2106 mac_array[12] ^ mac_array[10] ^ mac_array[6] ^ mac_array[5] ^
2107 mac_array[4];
2108
2109 crc[7] = mac_array[47] ^ mac_array[44] ^ mac_array[42] ^ mac_array[39] ^
2110 mac_array[38] ^ mac_array[34] ^ mac_array[33] ^ mac_array[30] ^
2111 mac_array[29] ^ mac_array[27] ^ mac_array[22] ^ mac_array[20] ^
2112 mac_array[18] ^ mac_array[17] ^ mac_array[15] ^ mac_array[13] ^
2113 mac_array[11] ^ mac_array[7] ^ mac_array[6] ^ mac_array[5];
2114
2115 for (i = 0; i < 8; i++)
2116 crc_result = crc_result | (crc[i] << i);
2117
2118 table = MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE(eth_port_num);
2119 eth_port_set_filter_table_entry(table, crc_result);
2120}
2121
2122/*
2123 * Set the entire multicast list based on dev->mc_list.
2124 */
2125static void eth_port_set_multicast_list(struct net_device *dev)
2126{
2127
2128 struct dev_mc_list *mc_list;
2129 int i;
2130 int table_index;
2131 struct mv643xx_private *mp = netdev_priv(dev);
2132 unsigned int eth_port_num = mp->port_num;
2133
2134 /* If the device is in promiscuous mode or in all multicast mode,
2135 * we will fully populate both multicast tables with accept.
2136 * This is guaranteed to yield a match on all multicast addresses...
2137 */
2138 if ((dev->flags & IFF_PROMISC) || (dev->flags & IFF_ALLMULTI)) {
2139 for (table_index = 0; table_index <= 0xFC; table_index += 4) {
b4de9051
DF
2140 /* Set all entries in DA filter special multicast
2141 * table (Ex_dFSMT)
2142 * Set for ETH_Q0 for now
2143 * Bits
2144 * 0 Accept=1, Drop=0
2145 * 3-1 Queue ETH_Q0=0
2146 * 7-4 Reserved = 0;
2147 */
2148 mv_write(MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE(eth_port_num) + table_index, 0x01010101);
2149
2150 /* Set all entries in DA filter other multicast
2151 * table (Ex_dFOMT)
2152 * Set for ETH_Q0 for now
2153 * Bits
2154 * 0 Accept=1, Drop=0
2155 * 3-1 Queue ETH_Q0=0
2156 * 7-4 Reserved = 0;
2157 */
2158 mv_write(MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE(eth_port_num) + table_index, 0x01010101);
2159 }
16e03018
DF
2160 return;
2161 }
2162
2163 /* We will clear out multicast tables every time we get the list.
2164 * Then add the entire new list...
2165 */
2166 for (table_index = 0; table_index <= 0xFC; table_index += 4) {
2167 /* Clear DA filter special multicast table (Ex_dFSMT) */
2168 mv_write(MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE
2169 (eth_port_num) + table_index, 0);
2170
2171 /* Clear DA filter other multicast table (Ex_dFOMT) */
2172 mv_write(MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE
2173 (eth_port_num) + table_index, 0);
2174 }
2175
2176 /* Get pointer to net_device multicast list and add each one... */
2177 for (i = 0, mc_list = dev->mc_list;
2178 (i < 256) && (mc_list != NULL) && (i < dev->mc_count);
2179 i++, mc_list = mc_list->next)
2180 if (mc_list->dmi_addrlen == 6)
2181 eth_port_mc_addr(eth_port_num, mc_list->dmi_addr);
2182}
2183
1da177e4
LT
2184/*
2185 * eth_port_init_mac_tables - Clear all entrance in the UC, SMC and OMC tables
2186 *
2187 * DESCRIPTION:
2188 * Go through all the DA filter tables (Unicast, Special Multicast &
2189 * Other Multicast) and set each entry to 0.
2190 *
2191 * INPUT:
2192 * unsigned int eth_port_num Ethernet Port number.
2193 *
2194 * OUTPUT:
2195 * Multicast and Unicast packets are rejected.
2196 *
2197 * RETURN:
2198 * None.
2199 */
2200static void eth_port_init_mac_tables(unsigned int eth_port_num)
2201{
2202 int table_index;
2203
2204 /* Clear DA filter unicast table (Ex_dFUT) */
2205 for (table_index = 0; table_index <= 0xC; table_index += 4)
2206 mv_write((MV643XX_ETH_DA_FILTER_UNICAST_TABLE_BASE
2207 (eth_port_num) + table_index), 0);
2208
2209 for (table_index = 0; table_index <= 0xFC; table_index += 4) {
2210 /* Clear DA filter special multicast table (Ex_dFSMT) */
16e03018
DF
2211 mv_write(MV643XX_ETH_DA_FILTER_SPECIAL_MULTICAST_TABLE_BASE
2212 (eth_port_num) + table_index, 0);
1da177e4 2213 /* Clear DA filter other multicast table (Ex_dFOMT) */
16e03018
DF
2214 mv_write(MV643XX_ETH_DA_FILTER_OTHER_MULTICAST_TABLE_BASE
2215 (eth_port_num) + table_index, 0);
1da177e4
LT
2216 }
2217}
2218
2219/*
2220 * eth_clear_mib_counters - Clear all MIB counters
2221 *
2222 * DESCRIPTION:
2223 * This function clears all MIB counters of a specific ethernet port.
2224 * A read from the MIB counter will reset the counter.
2225 *
2226 * INPUT:
2227 * unsigned int eth_port_num Ethernet Port number.
2228 *
2229 * OUTPUT:
2230 * After reading all MIB counters, the counters resets.
2231 *
2232 * RETURN:
2233 * MIB counter value.
2234 *
2235 */
2236static void eth_clear_mib_counters(unsigned int eth_port_num)
2237{
2238 int i;
2239
2240 /* Perform dummy reads from MIB counters */
2241 for (i = ETH_MIB_GOOD_OCTETS_RECEIVED_LOW; i < ETH_MIB_LATE_COLLISION;
2242 i += 4)
2243 mv_read(MV643XX_ETH_MIB_COUNTERS_BASE(eth_port_num) + i);
2244}
2245
2246static inline u32 read_mib(struct mv643xx_private *mp, int offset)
2247{
2248 return mv_read(MV643XX_ETH_MIB_COUNTERS_BASE(mp->port_num) + offset);
2249}
2250
2251static void eth_update_mib_counters(struct mv643xx_private *mp)
2252{
2253 struct mv643xx_mib_counters *p = &mp->mib_counters;
2254 int offset;
2255
2256 p->good_octets_received +=
2257 read_mib(mp, ETH_MIB_GOOD_OCTETS_RECEIVED_LOW);
2258 p->good_octets_received +=
2259 (u64)read_mib(mp, ETH_MIB_GOOD_OCTETS_RECEIVED_HIGH) << 32;
2260
2261 for (offset = ETH_MIB_BAD_OCTETS_RECEIVED;
2262 offset <= ETH_MIB_FRAMES_1024_TO_MAX_OCTETS;
2263 offset += 4)
2264 *(u32 *)((char *)p + offset) = read_mib(mp, offset);
2265
2266 p->good_octets_sent += read_mib(mp, ETH_MIB_GOOD_OCTETS_SENT_LOW);
2267 p->good_octets_sent +=
2268 (u64)read_mib(mp, ETH_MIB_GOOD_OCTETS_SENT_HIGH) << 32;
2269
2270 for (offset = ETH_MIB_GOOD_FRAMES_SENT;
2271 offset <= ETH_MIB_LATE_COLLISION;
2272 offset += 4)
2273 *(u32 *)((char *)p + offset) = read_mib(mp, offset);
2274}
2275
2276/*
2277 * ethernet_phy_detect - Detect whether a phy is present
2278 *
2279 * DESCRIPTION:
2280 * This function tests whether there is a PHY present on
2281 * the specified port.
2282 *
2283 * INPUT:
2284 * unsigned int eth_port_num Ethernet Port number.
2285 *
2286 * OUTPUT:
2287 * None
2288 *
2289 * RETURN:
2290 * 0 on success
2291 * -ENODEV on failure
2292 *
2293 */
2294static int ethernet_phy_detect(unsigned int port_num)
2295{
2296 unsigned int phy_reg_data0;
2297 int auto_neg;
2298
2299 eth_port_read_smi_reg(port_num, 0, &phy_reg_data0);
2300 auto_neg = phy_reg_data0 & 0x1000;
2301 phy_reg_data0 ^= 0x1000; /* invert auto_neg */
2302 eth_port_write_smi_reg(port_num, 0, phy_reg_data0);
2303
2304 eth_port_read_smi_reg(port_num, 0, &phy_reg_data0);
2305 if ((phy_reg_data0 & 0x1000) == auto_neg)
2306 return -ENODEV; /* change didn't take */
2307
2308 phy_reg_data0 ^= 0x1000;
2309 eth_port_write_smi_reg(port_num, 0, phy_reg_data0);
2310 return 0;
2311}
2312
2313/*
2314 * ethernet_phy_get - Get the ethernet port PHY address.
2315 *
2316 * DESCRIPTION:
2317 * This routine returns the given ethernet port PHY address.
2318 *
2319 * INPUT:
2320 * unsigned int eth_port_num Ethernet Port number.
2321 *
2322 * OUTPUT:
2323 * None.
2324 *
2325 * RETURN:
2326 * PHY address.
2327 *
2328 */
2329static int ethernet_phy_get(unsigned int eth_port_num)
2330{
2331 unsigned int reg_data;
2332
2333 reg_data = mv_read(MV643XX_ETH_PHY_ADDR_REG);
2334
2335 return ((reg_data >> (5 * eth_port_num)) & 0x1f);
2336}
2337
2338/*
2339 * ethernet_phy_set - Set the ethernet port PHY address.
2340 *
2341 * DESCRIPTION:
2342 * This routine sets the given ethernet port PHY address.
2343 *
2344 * INPUT:
2345 * unsigned int eth_port_num Ethernet Port number.
2346 * int phy_addr PHY address.
2347 *
2348 * OUTPUT:
2349 * None.
2350 *
2351 * RETURN:
2352 * None.
2353 *
2354 */
2355static void ethernet_phy_set(unsigned int eth_port_num, int phy_addr)
2356{
2357 u32 reg_data;
2358 int addr_shift = 5 * eth_port_num;
2359
2360 reg_data = mv_read(MV643XX_ETH_PHY_ADDR_REG);
2361 reg_data &= ~(0x1f << addr_shift);
2362 reg_data |= (phy_addr & 0x1f) << addr_shift;
2363 mv_write(MV643XX_ETH_PHY_ADDR_REG, reg_data);
2364}
2365
2366/*
2367 * ethernet_phy_reset - Reset Ethernet port PHY.
2368 *
2369 * DESCRIPTION:
2370 * This routine utilizes the SMI interface to reset the ethernet port PHY.
2371 *
2372 * INPUT:
2373 * unsigned int eth_port_num Ethernet Port number.
2374 *
2375 * OUTPUT:
2376 * The PHY is reset.
2377 *
2378 * RETURN:
2379 * None.
2380 *
2381 */
2382static void ethernet_phy_reset(unsigned int eth_port_num)
2383{
2384 unsigned int phy_reg_data;
2385
2386 /* Reset the PHY */
2387 eth_port_read_smi_reg(eth_port_num, 0, &phy_reg_data);
2388 phy_reg_data |= 0x8000; /* Set bit 15 to reset the PHY */
2389 eth_port_write_smi_reg(eth_port_num, 0, phy_reg_data);
2390}
2391
2392/*
2393 * eth_port_reset - Reset Ethernet port
2394 *
2395 * DESCRIPTION:
2396 * This routine resets the chip by aborting any SDMA engine activity and
2397 * clearing the MIB counters. The Receiver and the Transmit unit are in
2398 * idle state after this command is performed and the port is disabled.
2399 *
2400 * INPUT:
2401 * unsigned int eth_port_num Ethernet Port number.
2402 *
2403 * OUTPUT:
2404 * Channel activity is halted.
2405 *
2406 * RETURN:
2407 * None.
2408 *
2409 */
2410static void eth_port_reset(unsigned int port_num)
2411{
2412 unsigned int reg_data;
2413
2414 /* Stop Tx port activity. Check port Tx activity. */
2415 reg_data = mv_read(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num));
2416
2417 if (reg_data & 0xFF) {
2418 /* Issue stop command for active channels only */
2419 mv_write(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num),
2420 (reg_data << 8));
2421
2422 /* Wait for all Tx activity to terminate. */
2423 /* Check port cause register that all Tx queues are stopped */
2424 while (mv_read(MV643XX_ETH_TRANSMIT_QUEUE_COMMAND_REG(port_num))
2425 & 0xFF)
2426 udelay(10);
2427 }
2428
2429 /* Stop Rx port activity. Check port Rx activity. */
2430 reg_data = mv_read(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num));
2431
2432 if (reg_data & 0xFF) {
2433 /* Issue stop command for active channels only */
2434 mv_write(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num),
2435 (reg_data << 8));
2436
2437 /* Wait for all Rx activity to terminate. */
2438 /* Check port cause register that all Rx queues are stopped */
2439 while (mv_read(MV643XX_ETH_RECEIVE_QUEUE_COMMAND_REG(port_num))
2440 & 0xFF)
2441 udelay(10);
2442 }
2443
2444 /* Clear all MIB counters */
2445 eth_clear_mib_counters(port_num);
2446
2447 /* Reset the Enable bit in the Configuration Register */
2448 reg_data = mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num));
2449 reg_data &= ~MV643XX_ETH_SERIAL_PORT_ENABLE;
2450 mv_write(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num), reg_data);
2451}
2452
1da177e4
LT
2453
2454static int eth_port_autoneg_supported(unsigned int eth_port_num)
2455{
2456 unsigned int phy_reg_data0;
2457
2458 eth_port_read_smi_reg(eth_port_num, 0, &phy_reg_data0);
2459
2460 return phy_reg_data0 & 0x1000;
2461}
2462
2463static int eth_port_link_is_up(unsigned int eth_port_num)
2464{
2465 unsigned int phy_reg_data1;
2466
2467 eth_port_read_smi_reg(eth_port_num, 1, &phy_reg_data1);
2468
2469 if (eth_port_autoneg_supported(eth_port_num)) {
2470 if (phy_reg_data1 & 0x20) /* auto-neg complete */
2471 return 1;
2472 } else if (phy_reg_data1 & 0x4) /* link up */
2473 return 1;
2474
2475 return 0;
2476}
2477
1da177e4
LT
2478/*
2479 * eth_port_read_smi_reg - Read PHY registers
2480 *
2481 * DESCRIPTION:
2482 * This routine utilize the SMI interface to interact with the PHY in
2483 * order to perform PHY register read.
2484 *
2485 * INPUT:
2486 * unsigned int port_num Ethernet Port number.
2487 * unsigned int phy_reg PHY register address offset.
2488 * unsigned int *value Register value buffer.
2489 *
2490 * OUTPUT:
2491 * Write the value of a specified PHY register into given buffer.
2492 *
2493 * RETURN:
2494 * false if the PHY is busy or read data is not in valid state.
2495 * true otherwise.
2496 *
2497 */
2498static void eth_port_read_smi_reg(unsigned int port_num,
2499 unsigned int phy_reg, unsigned int *value)
2500{
2501 int phy_addr = ethernet_phy_get(port_num);
2502 unsigned long flags;
2503 int i;
2504
2505 /* the SMI register is a shared resource */
2506 spin_lock_irqsave(&mv643xx_eth_phy_lock, flags);
2507
2508 /* wait for the SMI register to become available */
2509 for (i = 0; mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_BUSY; i++) {
2510 if (i == PHY_WAIT_ITERATIONS) {
2511 printk("mv643xx PHY busy timeout, port %d\n", port_num);
2512 goto out;
2513 }
2514 udelay(PHY_WAIT_MICRO_SECONDS);
2515 }
2516
2517 mv_write(MV643XX_ETH_SMI_REG,
2518 (phy_addr << 16) | (phy_reg << 21) | ETH_SMI_OPCODE_READ);
2519
2520 /* now wait for the data to be valid */
2521 for (i = 0; !(mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_READ_VALID); i++) {
2522 if (i == PHY_WAIT_ITERATIONS) {
2523 printk("mv643xx PHY read timeout, port %d\n", port_num);
2524 goto out;
2525 }
2526 udelay(PHY_WAIT_MICRO_SECONDS);
2527 }
2528
2529 *value = mv_read(MV643XX_ETH_SMI_REG) & 0xffff;
2530out:
2531 spin_unlock_irqrestore(&mv643xx_eth_phy_lock, flags);
2532}
2533
2534/*
2535 * eth_port_write_smi_reg - Write to PHY registers
2536 *
2537 * DESCRIPTION:
2538 * This routine utilize the SMI interface to interact with the PHY in
2539 * order to perform writes to PHY registers.
2540 *
2541 * INPUT:
2542 * unsigned int eth_port_num Ethernet Port number.
2543 * unsigned int phy_reg PHY register address offset.
2544 * unsigned int value Register value.
2545 *
2546 * OUTPUT:
2547 * Write the given value to the specified PHY register.
2548 *
2549 * RETURN:
2550 * false if the PHY is busy.
2551 * true otherwise.
2552 *
2553 */
2554static void eth_port_write_smi_reg(unsigned int eth_port_num,
2555 unsigned int phy_reg, unsigned int value)
2556{
2557 int phy_addr;
2558 int i;
2559 unsigned long flags;
2560
2561 phy_addr = ethernet_phy_get(eth_port_num);
2562
2563 /* the SMI register is a shared resource */
2564 spin_lock_irqsave(&mv643xx_eth_phy_lock, flags);
2565
2566 /* wait for the SMI register to become available */
2567 for (i = 0; mv_read(MV643XX_ETH_SMI_REG) & ETH_SMI_BUSY; i++) {
2568 if (i == PHY_WAIT_ITERATIONS) {
2569 printk("mv643xx PHY busy timeout, port %d\n",
2570 eth_port_num);
2571 goto out;
2572 }
2573 udelay(PHY_WAIT_MICRO_SECONDS);
2574 }
2575
2576 mv_write(MV643XX_ETH_SMI_REG, (phy_addr << 16) | (phy_reg << 21) |
2577 ETH_SMI_OPCODE_WRITE | (value & 0xffff));
2578out:
2579 spin_unlock_irqrestore(&mv643xx_eth_phy_lock, flags);
2580}
2581
2582/*
2583 * eth_port_send - Send an Ethernet packet
2584 *
2585 * DESCRIPTION:
2586 * This routine send a given packet described by p_pktinfo parameter. It
2587 * supports transmitting of a packet spaned over multiple buffers. The
2588 * routine updates 'curr' and 'first' indexes according to the packet
2589 * segment passed to the routine. In case the packet segment is first,
2590 * the 'first' index is update. In any case, the 'curr' index is updated.
2591 * If the routine get into Tx resource error it assigns 'curr' index as
2592 * 'first'. This way the function can abort Tx process of multiple
2593 * descriptors per packet.
2594 *
2595 * INPUT:
2596 * struct mv643xx_private *mp Ethernet Port Control srtuct.
2597 * struct pkt_info *p_pkt_info User packet buffer.
2598 *
2599 * OUTPUT:
2600 * Tx ring 'curr' and 'first' indexes are updated.
2601 *
2602 * RETURN:
2603 * ETH_QUEUE_FULL in case of Tx resource error.
2604 * ETH_ERROR in case the routine can not access Tx desc ring.
2605 * ETH_QUEUE_LAST_RESOURCE if the routine uses the last Tx resource.
2606 * ETH_OK otherwise.
2607 *
2608 */
2609#ifdef MV643XX_CHECKSUM_OFFLOAD_TX
2610/*
2611 * Modified to include the first descriptor pointer in case of SG
2612 */
2613static ETH_FUNC_RET_STATUS eth_port_send(struct mv643xx_private *mp,
2614 struct pkt_info *p_pkt_info)
2615{
2616 int tx_desc_curr, tx_desc_used, tx_first_desc, tx_next_desc;
2617 struct eth_tx_desc *current_descriptor;
2618 struct eth_tx_desc *first_descriptor;
2619 u32 command;
2620
2621 /* Do not process Tx ring in case of Tx ring resource error */
2622 if (mp->tx_resource_err)
2623 return ETH_QUEUE_FULL;
2624
2625 /*
2626 * The hardware requires that each buffer that is <= 8 bytes
2627 * in length must be aligned on an 8 byte boundary.
2628 */
2629 if (p_pkt_info->byte_cnt <= 8 && p_pkt_info->buf_ptr & 0x7) {
2630 printk(KERN_ERR
2631 "mv643xx_eth port %d: packet size <= 8 problem\n",
2632 mp->port_num);
2633 return ETH_ERROR;
2634 }
2635
b111ceb6
DF
2636 mp->tx_ring_skbs++;
2637 BUG_ON(mp->tx_ring_skbs > mp->tx_ring_size);
2638
1da177e4
LT
2639 /* Get the Tx Desc ring indexes */
2640 tx_desc_curr = mp->tx_curr_desc_q;
2641 tx_desc_used = mp->tx_used_desc_q;
2642
2643 current_descriptor = &mp->p_tx_desc_area[tx_desc_curr];
2644
2645 tx_next_desc = (tx_desc_curr + 1) % mp->tx_ring_size;
2646
2647 current_descriptor->buf_ptr = p_pkt_info->buf_ptr;
2648 current_descriptor->byte_cnt = p_pkt_info->byte_cnt;
2649 current_descriptor->l4i_chk = p_pkt_info->l4i_chk;
2650 mp->tx_skb[tx_desc_curr] = p_pkt_info->return_info;
2651
2652 command = p_pkt_info->cmd_sts | ETH_ZERO_PADDING | ETH_GEN_CRC |
2653 ETH_BUFFER_OWNED_BY_DMA;
2654 if (command & ETH_TX_FIRST_DESC) {
2655 tx_first_desc = tx_desc_curr;
2656 mp->tx_first_desc_q = tx_first_desc;
2657 first_descriptor = current_descriptor;
2658 mp->tx_first_command = command;
2659 } else {
2660 tx_first_desc = mp->tx_first_desc_q;
2661 first_descriptor = &mp->p_tx_desc_area[tx_first_desc];
2662 BUG_ON(first_descriptor == NULL);
2663 current_descriptor->cmd_sts = command;
2664 }
2665
2666 if (command & ETH_TX_LAST_DESC) {
2667 wmb();
2668 first_descriptor->cmd_sts = mp->tx_first_command;
2669
2670 wmb();
2671 ETH_ENABLE_TX_QUEUE(mp->port_num);
2672
2673 /*
2674 * Finish Tx packet. Update first desc in case of Tx resource
2675 * error */
2676 tx_first_desc = tx_next_desc;
2677 mp->tx_first_desc_q = tx_first_desc;
2678 }
2679
2680 /* Check for ring index overlap in the Tx desc ring */
2681 if (tx_next_desc == tx_desc_used) {
2682 mp->tx_resource_err = 1;
2683 mp->tx_curr_desc_q = tx_first_desc;
2684
2685 return ETH_QUEUE_LAST_RESOURCE;
2686 }
2687
2688 mp->tx_curr_desc_q = tx_next_desc;
2689
2690 return ETH_OK;
2691}
2692#else
2693static ETH_FUNC_RET_STATUS eth_port_send(struct mv643xx_private *mp,
2694 struct pkt_info *p_pkt_info)
2695{
2696 int tx_desc_curr;
2697 int tx_desc_used;
2698 struct eth_tx_desc *current_descriptor;
2699 unsigned int command_status;
2700
2701 /* Do not process Tx ring in case of Tx ring resource error */
2702 if (mp->tx_resource_err)
2703 return ETH_QUEUE_FULL;
2704
b111ceb6
DF
2705 mp->tx_ring_skbs++;
2706 BUG_ON(mp->tx_ring_skbs > mp->tx_ring_size);
2707
1da177e4
LT
2708 /* Get the Tx Desc ring indexes */
2709 tx_desc_curr = mp->tx_curr_desc_q;
2710 tx_desc_used = mp->tx_used_desc_q;
2711 current_descriptor = &mp->p_tx_desc_area[tx_desc_curr];
2712
2713 command_status = p_pkt_info->cmd_sts | ETH_ZERO_PADDING | ETH_GEN_CRC;
2714 current_descriptor->buf_ptr = p_pkt_info->buf_ptr;
2715 current_descriptor->byte_cnt = p_pkt_info->byte_cnt;
2716 mp->tx_skb[tx_desc_curr] = p_pkt_info->return_info;
2717
2718 /* Set last desc with DMA ownership and interrupt enable. */
2719 wmb();
2720 current_descriptor->cmd_sts = command_status |
2721 ETH_BUFFER_OWNED_BY_DMA | ETH_TX_ENABLE_INTERRUPT;
2722
2723 wmb();
2724 ETH_ENABLE_TX_QUEUE(mp->port_num);
2725
2726 /* Finish Tx packet. Update first desc in case of Tx resource error */
2727 tx_desc_curr = (tx_desc_curr + 1) % mp->tx_ring_size;
2728
2729 /* Update the current descriptor */
2730 mp->tx_curr_desc_q = tx_desc_curr;
2731
2732 /* Check for ring index overlap in the Tx desc ring */
2733 if (tx_desc_curr == tx_desc_used) {
2734 mp->tx_resource_err = 1;
2735 return ETH_QUEUE_LAST_RESOURCE;
2736 }
2737
2738 return ETH_OK;
2739}
2740#endif
2741
2742/*
2743 * eth_tx_return_desc - Free all used Tx descriptors
2744 *
2745 * DESCRIPTION:
2746 * This routine returns the transmitted packet information to the caller.
2747 * It uses the 'first' index to support Tx desc return in case a transmit
2748 * of a packet spanned over multiple buffer still in process.
2749 * In case the Tx queue was in "resource error" condition, where there are
2750 * no available Tx resources, the function resets the resource error flag.
2751 *
2752 * INPUT:
2753 * struct mv643xx_private *mp Ethernet Port Control srtuct.
2754 * struct pkt_info *p_pkt_info User packet buffer.
2755 *
2756 * OUTPUT:
2757 * Tx ring 'first' and 'used' indexes are updated.
2758 *
2759 * RETURN:
8f518703
DF
2760 * ETH_OK on success
2761 * ETH_ERROR otherwise.
1da177e4
LT
2762 *
2763 */
2764static ETH_FUNC_RET_STATUS eth_tx_return_desc(struct mv643xx_private *mp,
2765 struct pkt_info *p_pkt_info)
2766{
2767 int tx_desc_used;
8f518703
DF
2768 int tx_busy_desc;
2769 struct eth_tx_desc *p_tx_desc_used;
2770 unsigned int command_status;
2771 unsigned long flags;
2772 int err = ETH_OK;
2773
2774 spin_lock_irqsave(&mp->lock, flags);
2775
1da177e4 2776#ifdef MV643XX_CHECKSUM_OFFLOAD_TX
8f518703 2777 tx_busy_desc = mp->tx_first_desc_q;
1da177e4 2778#else
8f518703 2779 tx_busy_desc = mp->tx_curr_desc_q;
1da177e4 2780#endif
1da177e4
LT
2781
2782 /* Get the Tx Desc ring indexes */
2783 tx_desc_used = mp->tx_used_desc_q;
2784
2785 p_tx_desc_used = &mp->p_tx_desc_area[tx_desc_used];
2786
2787 /* Sanity check */
8f518703
DF
2788 if (p_tx_desc_used == NULL) {
2789 err = ETH_ERROR;
2790 goto out;
2791 }
1da177e4
LT
2792
2793 /* Stop release. About to overlap the current available Tx descriptor */
8f518703
DF
2794 if (tx_desc_used == tx_busy_desc && !mp->tx_resource_err) {
2795 err = ETH_ERROR;
2796 goto out;
2797 }
1da177e4
LT
2798
2799 command_status = p_tx_desc_used->cmd_sts;
2800
2801 /* Still transmitting... */
8f518703
DF
2802 if (command_status & (ETH_BUFFER_OWNED_BY_DMA)) {
2803 err = ETH_ERROR;
2804 goto out;
2805 }
1da177e4
LT
2806
2807 /* Pass the packet information to the caller */
2808 p_pkt_info->cmd_sts = command_status;
2809 p_pkt_info->return_info = mp->tx_skb[tx_desc_used];
4eaa3cb3
PG
2810 p_pkt_info->buf_ptr = p_tx_desc_used->buf_ptr;
2811 p_pkt_info->byte_cnt = p_tx_desc_used->byte_cnt;
1da177e4
LT
2812 mp->tx_skb[tx_desc_used] = NULL;
2813
2814 /* Update the next descriptor to release. */
2815 mp->tx_used_desc_q = (tx_desc_used + 1) % mp->tx_ring_size;
2816
2817 /* Any Tx return cancels the Tx resource error status */
2818 mp->tx_resource_err = 0;
2819
b111ceb6
DF
2820 BUG_ON(mp->tx_ring_skbs == 0);
2821 mp->tx_ring_skbs--;
2822
8f518703
DF
2823out:
2824 spin_unlock_irqrestore(&mp->lock, flags);
2825
2826 return err;
1da177e4
LT
2827}
2828
2829/*
2830 * eth_port_receive - Get received information from Rx ring.
2831 *
2832 * DESCRIPTION:
2833 * This routine returns the received data to the caller. There is no
2834 * data copying during routine operation. All information is returned
2835 * using pointer to packet information struct passed from the caller.
2836 * If the routine exhausts Rx ring resources then the resource error flag
2837 * is set.
2838 *
2839 * INPUT:
2840 * struct mv643xx_private *mp Ethernet Port Control srtuct.
2841 * struct pkt_info *p_pkt_info User packet buffer.
2842 *
2843 * OUTPUT:
2844 * Rx ring current and used indexes are updated.
2845 *
2846 * RETURN:
2847 * ETH_ERROR in case the routine can not access Rx desc ring.
2848 * ETH_QUEUE_FULL if Rx ring resources are exhausted.
2849 * ETH_END_OF_JOB if there is no received data.
2850 * ETH_OK otherwise.
2851 */
2852static ETH_FUNC_RET_STATUS eth_port_receive(struct mv643xx_private *mp,
2853 struct pkt_info *p_pkt_info)
2854{
2855 int rx_next_curr_desc, rx_curr_desc, rx_used_desc;
2856 volatile struct eth_rx_desc *p_rx_desc;
2857 unsigned int command_status;
8f518703 2858 unsigned long flags;
1da177e4
LT
2859
2860 /* Do not process Rx ring in case of Rx ring resource error */
2861 if (mp->rx_resource_err)
2862 return ETH_QUEUE_FULL;
2863
8f518703
DF
2864 spin_lock_irqsave(&mp->lock, flags);
2865
1da177e4
LT
2866 /* Get the Rx Desc ring 'curr and 'used' indexes */
2867 rx_curr_desc = mp->rx_curr_desc_q;
2868 rx_used_desc = mp->rx_used_desc_q;
2869
2870 p_rx_desc = &mp->p_rx_desc_area[rx_curr_desc];
2871
2872 /* The following parameters are used to save readings from memory */
2873 command_status = p_rx_desc->cmd_sts;
2874 rmb();
2875
2876 /* Nothing to receive... */
8f518703
DF
2877 if (command_status & (ETH_BUFFER_OWNED_BY_DMA)) {
2878 spin_unlock_irqrestore(&mp->lock, flags);
1da177e4 2879 return ETH_END_OF_JOB;
8f518703 2880 }
1da177e4
LT
2881
2882 p_pkt_info->byte_cnt = (p_rx_desc->byte_cnt) - RX_BUF_OFFSET;
2883 p_pkt_info->cmd_sts = command_status;
2884 p_pkt_info->buf_ptr = (p_rx_desc->buf_ptr) + RX_BUF_OFFSET;
2885 p_pkt_info->return_info = mp->rx_skb[rx_curr_desc];
2886 p_pkt_info->l4i_chk = p_rx_desc->buf_size;
2887
b4de9051
DF
2888 /*
2889 * Clean the return info field to indicate that the
2890 * packet has been moved to the upper layers
2891 */
1da177e4
LT
2892 mp->rx_skb[rx_curr_desc] = NULL;
2893
2894 /* Update current index in data structure */
2895 rx_next_curr_desc = (rx_curr_desc + 1) % mp->rx_ring_size;
2896 mp->rx_curr_desc_q = rx_next_curr_desc;
2897
2898 /* Rx descriptors exhausted. Set the Rx ring resource error flag */
2899 if (rx_next_curr_desc == rx_used_desc)
2900 mp->rx_resource_err = 1;
2901
8f518703
DF
2902 spin_unlock_irqrestore(&mp->lock, flags);
2903
1da177e4
LT
2904 return ETH_OK;
2905}
2906
2907/*
2908 * eth_rx_return_buff - Returns a Rx buffer back to the Rx ring.
2909 *
2910 * DESCRIPTION:
2911 * This routine returns a Rx buffer back to the Rx ring. It retrieves the
2912 * next 'used' descriptor and attached the returned buffer to it.
2913 * In case the Rx ring was in "resource error" condition, where there are
2914 * no available Rx resources, the function resets the resource error flag.
2915 *
2916 * INPUT:
2917 * struct mv643xx_private *mp Ethernet Port Control srtuct.
2918 * struct pkt_info *p_pkt_info Information on returned buffer.
2919 *
2920 * OUTPUT:
2921 * New available Rx resource in Rx descriptor ring.
2922 *
2923 * RETURN:
2924 * ETH_ERROR in case the routine can not access Rx desc ring.
2925 * ETH_OK otherwise.
2926 */
2927static ETH_FUNC_RET_STATUS eth_rx_return_buff(struct mv643xx_private *mp,
2928 struct pkt_info *p_pkt_info)
2929{
2930 int used_rx_desc; /* Where to return Rx resource */
2931 volatile struct eth_rx_desc *p_used_rx_desc;
8f518703
DF
2932 unsigned long flags;
2933
2934 spin_lock_irqsave(&mp->lock, flags);
1da177e4
LT
2935
2936 /* Get 'used' Rx descriptor */
2937 used_rx_desc = mp->rx_used_desc_q;
2938 p_used_rx_desc = &mp->p_rx_desc_area[used_rx_desc];
2939
2940 p_used_rx_desc->buf_ptr = p_pkt_info->buf_ptr;
2941 p_used_rx_desc->buf_size = p_pkt_info->byte_cnt;
2942 mp->rx_skb[used_rx_desc] = p_pkt_info->return_info;
2943
2944 /* Flush the write pipe */
2945
2946 /* Return the descriptor to DMA ownership */
2947 wmb();
2948 p_used_rx_desc->cmd_sts =
2949 ETH_BUFFER_OWNED_BY_DMA | ETH_RX_ENABLE_INTERRUPT;
2950 wmb();
2951
2952 /* Move the used descriptor pointer to the next descriptor */
2953 mp->rx_used_desc_q = (used_rx_desc + 1) % mp->rx_ring_size;
2954
2955 /* Any Rx return cancels the Rx resource error status */
2956 mp->rx_resource_err = 0;
2957
8f518703
DF
2958 spin_unlock_irqrestore(&mp->lock, flags);
2959
1da177e4
LT
2960 return ETH_OK;
2961}
2962
2963/************* Begin ethtool support *************************/
2964
2965struct mv643xx_stats {
2966 char stat_string[ETH_GSTRING_LEN];
2967 int sizeof_stat;
2968 int stat_offset;
2969};
2970
2971#define MV643XX_STAT(m) sizeof(((struct mv643xx_private *)0)->m), \
b4de9051 2972 offsetof(struct mv643xx_private, m)
1da177e4
LT
2973
2974static const struct mv643xx_stats mv643xx_gstrings_stats[] = {
2975 { "rx_packets", MV643XX_STAT(stats.rx_packets) },
2976 { "tx_packets", MV643XX_STAT(stats.tx_packets) },
2977 { "rx_bytes", MV643XX_STAT(stats.rx_bytes) },
2978 { "tx_bytes", MV643XX_STAT(stats.tx_bytes) },
2979 { "rx_errors", MV643XX_STAT(stats.rx_errors) },
2980 { "tx_errors", MV643XX_STAT(stats.tx_errors) },
2981 { "rx_dropped", MV643XX_STAT(stats.rx_dropped) },
2982 { "tx_dropped", MV643XX_STAT(stats.tx_dropped) },
2983 { "good_octets_received", MV643XX_STAT(mib_counters.good_octets_received) },
2984 { "bad_octets_received", MV643XX_STAT(mib_counters.bad_octets_received) },
2985 { "internal_mac_transmit_err", MV643XX_STAT(mib_counters.internal_mac_transmit_err) },
2986 { "good_frames_received", MV643XX_STAT(mib_counters.good_frames_received) },
2987 { "bad_frames_received", MV643XX_STAT(mib_counters.bad_frames_received) },
2988 { "broadcast_frames_received", MV643XX_STAT(mib_counters.broadcast_frames_received) },
2989 { "multicast_frames_received", MV643XX_STAT(mib_counters.multicast_frames_received) },
2990 { "frames_64_octets", MV643XX_STAT(mib_counters.frames_64_octets) },
2991 { "frames_65_to_127_octets", MV643XX_STAT(mib_counters.frames_65_to_127_octets) },
2992 { "frames_128_to_255_octets", MV643XX_STAT(mib_counters.frames_128_to_255_octets) },
2993 { "frames_256_to_511_octets", MV643XX_STAT(mib_counters.frames_256_to_511_octets) },
2994 { "frames_512_to_1023_octets", MV643XX_STAT(mib_counters.frames_512_to_1023_octets) },
2995 { "frames_1024_to_max_octets", MV643XX_STAT(mib_counters.frames_1024_to_max_octets) },
2996 { "good_octets_sent", MV643XX_STAT(mib_counters.good_octets_sent) },
2997 { "good_frames_sent", MV643XX_STAT(mib_counters.good_frames_sent) },
2998 { "excessive_collision", MV643XX_STAT(mib_counters.excessive_collision) },
2999 { "multicast_frames_sent", MV643XX_STAT(mib_counters.multicast_frames_sent) },
3000 { "broadcast_frames_sent", MV643XX_STAT(mib_counters.broadcast_frames_sent) },
3001 { "unrec_mac_control_received", MV643XX_STAT(mib_counters.unrec_mac_control_received) },
3002 { "fc_sent", MV643XX_STAT(mib_counters.fc_sent) },
3003 { "good_fc_received", MV643XX_STAT(mib_counters.good_fc_received) },
3004 { "bad_fc_received", MV643XX_STAT(mib_counters.bad_fc_received) },
3005 { "undersize_received", MV643XX_STAT(mib_counters.undersize_received) },
3006 { "fragments_received", MV643XX_STAT(mib_counters.fragments_received) },
3007 { "oversize_received", MV643XX_STAT(mib_counters.oversize_received) },
3008 { "jabber_received", MV643XX_STAT(mib_counters.jabber_received) },
3009 { "mac_receive_error", MV643XX_STAT(mib_counters.mac_receive_error) },
3010 { "bad_crc_event", MV643XX_STAT(mib_counters.bad_crc_event) },
3011 { "collision", MV643XX_STAT(mib_counters.collision) },
3012 { "late_collision", MV643XX_STAT(mib_counters.late_collision) },
3013};
3014
3015#define MV643XX_STATS_LEN \
3016 sizeof(mv643xx_gstrings_stats) / sizeof(struct mv643xx_stats)
3017
3018static int
3019mv643xx_get_settings(struct net_device *netdev, struct ethtool_cmd *ecmd)
3020{
3021 struct mv643xx_private *mp = netdev->priv;
3022 int port_num = mp->port_num;
3023 int autoneg = eth_port_autoneg_supported(port_num);
3024 int mode_10_bit;
3025 int auto_duplex;
3026 int half_duplex = 0;
3027 int full_duplex = 0;
3028 int auto_speed;
3029 int speed_10 = 0;
3030 int speed_100 = 0;
3031 int speed_1000 = 0;
3032
3033 u32 pcs = mv_read(MV643XX_ETH_PORT_SERIAL_CONTROL_REG(port_num));
3034 u32 psr = mv_read(MV643XX_ETH_PORT_STATUS_REG(port_num));
3035
3036 mode_10_bit = psr & MV643XX_ETH_PORT_STATUS_MODE_10_BIT;
3037
3038 if (mode_10_bit) {
3039 ecmd->supported = SUPPORTED_10baseT_Half;
3040 } else {
3041 ecmd->supported = (SUPPORTED_10baseT_Half |
3042 SUPPORTED_10baseT_Full |
3043 SUPPORTED_100baseT_Half |
3044 SUPPORTED_100baseT_Full |
3045 SUPPORTED_1000baseT_Full |
3046 (autoneg ? SUPPORTED_Autoneg : 0) |
3047 SUPPORTED_TP);
3048
3049 auto_duplex = !(pcs & MV643XX_ETH_DISABLE_AUTO_NEG_FOR_DUPLX);
3050 auto_speed = !(pcs & MV643XX_ETH_DISABLE_AUTO_NEG_SPEED_GMII);
3051
3052 ecmd->advertising = ADVERTISED_TP;
3053
3054 if (autoneg) {
3055 ecmd->advertising |= ADVERTISED_Autoneg;
3056
3057 if (auto_duplex) {
3058 half_duplex = 1;
3059 full_duplex = 1;
3060 } else {
3061 if (pcs & MV643XX_ETH_SET_FULL_DUPLEX_MODE)
3062 full_duplex = 1;
3063 else
3064 half_duplex = 1;
3065 }
3066
3067 if (auto_speed) {
3068 speed_10 = 1;
3069 speed_100 = 1;
3070 speed_1000 = 1;
3071 } else {
3072 if (pcs & MV643XX_ETH_SET_GMII_SPEED_TO_1000)
3073 speed_1000 = 1;
3074 else if (pcs & MV643XX_ETH_SET_MII_SPEED_TO_100)
3075 speed_100 = 1;
3076 else
3077 speed_10 = 1;
3078 }
3079
3080 if (speed_10 & half_duplex)
3081 ecmd->advertising |= ADVERTISED_10baseT_Half;
3082 if (speed_10 & full_duplex)
3083 ecmd->advertising |= ADVERTISED_10baseT_Full;
3084 if (speed_100 & half_duplex)
3085 ecmd->advertising |= ADVERTISED_100baseT_Half;
3086 if (speed_100 & full_duplex)
3087 ecmd->advertising |= ADVERTISED_100baseT_Full;
3088 if (speed_1000)
3089 ecmd->advertising |= ADVERTISED_1000baseT_Full;
3090 }
3091 }
3092
3093 ecmd->port = PORT_TP;
3094 ecmd->phy_address = ethernet_phy_get(port_num);
3095
3096 ecmd->transceiver = XCVR_EXTERNAL;
3097
3098 if (netif_carrier_ok(netdev)) {
3099 if (mode_10_bit)
3100 ecmd->speed = SPEED_10;
3101 else {
3102 if (psr & MV643XX_ETH_PORT_STATUS_GMII_1000)
3103 ecmd->speed = SPEED_1000;
3104 else if (psr & MV643XX_ETH_PORT_STATUS_MII_100)
3105 ecmd->speed = SPEED_100;
3106 else
3107 ecmd->speed = SPEED_10;
3108 }
3109
3110 if (psr & MV643XX_ETH_PORT_STATUS_FULL_DUPLEX)
3111 ecmd->duplex = DUPLEX_FULL;
3112 else
3113 ecmd->duplex = DUPLEX_HALF;
3114 } else {
3115 ecmd->speed = -1;
3116 ecmd->duplex = -1;
3117 }
3118
3119 ecmd->autoneg = autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE;
3120 return 0;
3121}
3122
b4de9051
DF
3123static void mv643xx_get_drvinfo(struct net_device *netdev,
3124 struct ethtool_drvinfo *drvinfo)
1da177e4
LT
3125{
3126 strncpy(drvinfo->driver, mv643xx_driver_name, 32);
3127 strncpy(drvinfo->version, mv643xx_driver_version, 32);
3128 strncpy(drvinfo->fw_version, "N/A", 32);
3129 strncpy(drvinfo->bus_info, "mv643xx", 32);
3130 drvinfo->n_stats = MV643XX_STATS_LEN;
3131}
3132
b4de9051 3133static int mv643xx_get_stats_count(struct net_device *netdev)
1da177e4
LT
3134{
3135 return MV643XX_STATS_LEN;
3136}
3137
b4de9051
DF
3138static void mv643xx_get_ethtool_stats(struct net_device *netdev,
3139 struct ethtool_stats *stats, uint64_t *data)
1da177e4
LT
3140{
3141 struct mv643xx_private *mp = netdev->priv;
3142 int i;
3143
3144 eth_update_mib_counters(mp);
3145
b4de9051 3146 for (i = 0; i < MV643XX_STATS_LEN; i++) {
1da177e4 3147 char *p = (char *)mp+mv643xx_gstrings_stats[i].stat_offset;
b4de9051 3148 data[i] = (mv643xx_gstrings_stats[i].sizeof_stat ==
1da177e4
LT
3149 sizeof(uint64_t)) ? *(uint64_t *)p : *(uint32_t *)p;
3150 }
3151}
3152
b4de9051
DF
3153static void mv643xx_get_strings(struct net_device *netdev, uint32_t stringset,
3154 uint8_t *data)
1da177e4
LT
3155{
3156 int i;
3157
3158 switch(stringset) {
3159 case ETH_SS_STATS:
3160 for (i=0; i < MV643XX_STATS_LEN; i++) {
b4de9051
DF
3161 memcpy(data + i * ETH_GSTRING_LEN,
3162 mv643xx_gstrings_stats[i].stat_string,
3163 ETH_GSTRING_LEN);
1da177e4
LT
3164 }
3165 break;
3166 }
3167}
3168
3169static struct ethtool_ops mv643xx_ethtool_ops = {
3170 .get_settings = mv643xx_get_settings,
3171 .get_drvinfo = mv643xx_get_drvinfo,
3172 .get_link = ethtool_op_get_link,
3173 .get_sg = ethtool_op_get_sg,
3174 .set_sg = ethtool_op_set_sg,
3175 .get_strings = mv643xx_get_strings,
3176 .get_stats_count = mv643xx_get_stats_count,
3177 .get_ethtool_stats = mv643xx_get_ethtool_stats,
3178};
3179
3180/************* End ethtool support *************************/