Merge branch 'writeback' of git://git.kernel.dk/linux-2.6-block
[linux-block.git] / drivers / net / igb / e1000_mac.c
CommitLineData
9d5c8243
AK
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
86d5d38f 4 Copyright(c) 2007-2009 Intel Corporation.
9d5c8243
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
28#include <linux/if_ether.h>
29#include <linux/delay.h>
30#include <linux/pci.h>
31#include <linux/netdevice.h>
32
33#include "e1000_mac.h"
34
35#include "igb.h"
36
37static s32 igb_set_default_fc(struct e1000_hw *hw);
38static s32 igb_set_fc_watermarks(struct e1000_hw *hw);
9d5c8243 39
9d5c8243 40/**
733596be 41 * igb_get_bus_info_pcie - Get PCIe bus information
9d5c8243
AK
42 * @hw: pointer to the HW structure
43 *
44 * Determines and stores the system bus information for a particular
45 * network interface. The following bus information is determined and stored:
46 * bus speed, bus width, type (PCIe), and PCIe function.
47 **/
48s32 igb_get_bus_info_pcie(struct e1000_hw *hw)
49{
50 struct e1000_bus_info *bus = &hw->bus;
51 s32 ret_val;
5e8427e5
AD
52 u32 reg;
53 u16 pcie_link_status;
9d5c8243
AK
54
55 bus->type = e1000_bus_type_pci_express;
56 bus->speed = e1000_bus_speed_2500;
57
58 ret_val = igb_read_pcie_cap_reg(hw,
59 PCIE_LINK_STATUS,
60 &pcie_link_status);
61 if (ret_val)
62 bus->width = e1000_bus_width_unknown;
63 else
64 bus->width = (enum e1000_bus_width)((pcie_link_status &
65 PCIE_LINK_WIDTH_MASK) >>
66 PCIE_LINK_WIDTH_SHIFT);
67
5e8427e5
AD
68 reg = rd32(E1000_STATUS);
69 bus->func = (reg & E1000_STATUS_FUNC_MASK) >> E1000_STATUS_FUNC_SHIFT;
9d5c8243
AK
70
71 return 0;
72}
73
74/**
733596be 75 * igb_clear_vfta - Clear VLAN filter table
9d5c8243
AK
76 * @hw: pointer to the HW structure
77 *
78 * Clears the register array which contains the VLAN filter table by
79 * setting all the values to 0.
80 **/
81void igb_clear_vfta(struct e1000_hw *hw)
82{
83 u32 offset;
84
85 for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
86 array_wr32(E1000_VFTA, offset, 0);
87 wrfl();
88 }
89}
90
91/**
733596be 92 * igb_write_vfta - Write value to VLAN filter table
9d5c8243
AK
93 * @hw: pointer to the HW structure
94 * @offset: register offset in VLAN filter table
95 * @value: register value written to VLAN filter table
96 *
97 * Writes value at the given offset in the register array which stores
98 * the VLAN filter table.
99 **/
ff6f63dd 100static void igb_write_vfta(struct e1000_hw *hw, u32 offset, u32 value)
9d5c8243
AK
101{
102 array_wr32(E1000_VFTA, offset, value);
103 wrfl();
104}
105
5ac16659
AD
106/**
107 * igb_init_rx_addrs - Initialize receive address's
108 * @hw: pointer to the HW structure
109 * @rar_count: receive address registers
110 *
111 * Setups the receive address registers by setting the base receive address
112 * register to the devices MAC address and clearing all the other receive
113 * address registers to 0.
114 **/
115void igb_init_rx_addrs(struct e1000_hw *hw, u16 rar_count)
116{
117 u32 i;
118 u8 mac_addr[ETH_ALEN] = {0};
119
120 /* Setup the receive address */
121 hw_dbg("Programming MAC Address into RAR[0]\n");
122
123 hw->mac.ops.rar_set(hw, hw->mac.addr, 0);
124
125 /* Zero out the other (rar_entry_count - 1) receive addresses */
126 hw_dbg("Clearing RAR[1-%u]\n", rar_count-1);
127 for (i = 1; i < rar_count; i++)
128 hw->mac.ops.rar_set(hw, mac_addr, i);
129}
130
4ae196df
AD
131/**
132 * igb_vfta_set - enable or disable vlan in VLAN filter table
133 * @hw: pointer to the HW structure
134 * @vid: VLAN id to add or remove
135 * @add: if true add filter, if false remove
136 *
137 * Sets or clears a bit in the VLAN filter table array based on VLAN id
138 * and if we are adding or removing the filter
139 **/
cad6d05f 140s32 igb_vfta_set(struct e1000_hw *hw, u32 vid, bool add)
4ae196df
AD
141{
142 u32 index = (vid >> E1000_VFTA_ENTRY_SHIFT) & E1000_VFTA_ENTRY_MASK;
75f4f382 143 u32 mask = 1 << (vid & E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
cad6d05f
AD
144 u32 vfta = array_rd32(E1000_VFTA, index);
145 s32 ret_val = 0;
4ae196df 146
cad6d05f
AD
147 /* bit was set/cleared before we started */
148 if ((!!(vfta & mask)) == add) {
149 ret_val = -E1000_ERR_CONFIG;
150 } else {
151 if (add)
152 vfta |= mask;
153 else
154 vfta &= ~mask;
155 }
4ae196df
AD
156
157 igb_write_vfta(hw, index, vfta);
cad6d05f
AD
158
159 return ret_val;
4ae196df
AD
160}
161
9d5c8243 162/**
733596be 163 * igb_check_alt_mac_addr - Check for alternate MAC addr
9d5c8243
AK
164 * @hw: pointer to the HW structure
165 *
166 * Checks the nvm for an alternate MAC address. An alternate MAC address
167 * can be setup by pre-boot software and must be treated like a permanent
168 * address and must override the actual permanent MAC address. If an
169 * alternate MAC address is fopund it is saved in the hw struct and
170 * prgrammed into RAR0 and the cuntion returns success, otherwise the
171 * fucntion returns an error.
172 **/
173s32 igb_check_alt_mac_addr(struct e1000_hw *hw)
174{
175 u32 i;
176 s32 ret_val = 0;
177 u16 offset, nvm_alt_mac_addr_offset, nvm_data;
178 u8 alt_mac_addr[ETH_ALEN];
179
312c75ae 180 ret_val = hw->nvm.ops.read(hw, NVM_ALT_MAC_ADDR_PTR, 1,
9d5c8243
AK
181 &nvm_alt_mac_addr_offset);
182 if (ret_val) {
652fff32 183 hw_dbg("NVM Read Error\n");
9d5c8243
AK
184 goto out;
185 }
186
187 if (nvm_alt_mac_addr_offset == 0xFFFF) {
188 ret_val = -(E1000_NOT_IMPLEMENTED);
189 goto out;
190 }
191
192 if (hw->bus.func == E1000_FUNC_1)
193 nvm_alt_mac_addr_offset += ETH_ALEN/sizeof(u16);
194
195 for (i = 0; i < ETH_ALEN; i += 2) {
196 offset = nvm_alt_mac_addr_offset + (i >> 1);
312c75ae 197 ret_val = hw->nvm.ops.read(hw, offset, 1, &nvm_data);
9d5c8243 198 if (ret_val) {
652fff32 199 hw_dbg("NVM Read Error\n");
9d5c8243
AK
200 goto out;
201 }
202
203 alt_mac_addr[i] = (u8)(nvm_data & 0xFF);
204 alt_mac_addr[i + 1] = (u8)(nvm_data >> 8);
205 }
206
207 /* if multicast bit is set, the alternate address will not be used */
208 if (alt_mac_addr[0] & 0x01) {
209 ret_val = -(E1000_NOT_IMPLEMENTED);
210 goto out;
211 }
212
213 for (i = 0; i < ETH_ALEN; i++)
214 hw->mac.addr[i] = hw->mac.perm_addr[i] = alt_mac_addr[i];
215
216 hw->mac.ops.rar_set(hw, hw->mac.perm_addr, 0);
217
218out:
219 return ret_val;
220}
221
222/**
733596be 223 * igb_rar_set - Set receive address register
9d5c8243
AK
224 * @hw: pointer to the HW structure
225 * @addr: pointer to the receive address
226 * @index: receive address array register
227 *
228 * Sets the receive address array register at index to the address passed
229 * in by addr.
230 **/
231void igb_rar_set(struct e1000_hw *hw, u8 *addr, u32 index)
232{
233 u32 rar_low, rar_high;
234
235 /*
236 * HW expects these in little endian so we reverse the byte order
237 * from network order (big endian) to little endian
238 */
239 rar_low = ((u32) addr[0] |
240 ((u32) addr[1] << 8) |
241 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
242
243 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
244
8675737a
AD
245 /* If MAC address zero, no need to set the AV bit */
246 if (rar_low || rar_high)
9d5c8243
AK
247 rar_high |= E1000_RAH_AV;
248
5e8427e5
AD
249 wr32(E1000_RAL(index), rar_low);
250 wr32(E1000_RAH(index), rar_high);
9d5c8243
AK
251}
252
253/**
733596be 254 * igb_mta_set - Set multicast filter table address
9d5c8243
AK
255 * @hw: pointer to the HW structure
256 * @hash_value: determines the MTA register and bit to set
257 *
258 * The multicast table address is a register array of 32-bit registers.
259 * The hash_value is used to determine what register the bit is in, the
260 * current value is read, the new bit is OR'd in and the new value is
261 * written back into the register.
262 **/
549bdd84 263void igb_mta_set(struct e1000_hw *hw, u32 hash_value)
9d5c8243
AK
264{
265 u32 hash_bit, hash_reg, mta;
266
267 /*
268 * The MTA is a register array of 32-bit registers. It is
269 * treated like an array of (32*mta_reg_count) bits. We want to
270 * set bit BitArray[hash_value]. So we figure out what register
271 * the bit is in, read it, OR in the new bit, then write
272 * back the new value. The (hw->mac.mta_reg_count - 1) serves as a
273 * mask to bits 31:5 of the hash value which gives us the
274 * register we're modifying. The hash bit within that register
275 * is determined by the lower 5 bits of the hash value.
276 */
277 hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
278 hash_bit = hash_value & 0x1F;
279
280 mta = array_rd32(E1000_MTA, hash_reg);
281
282 mta |= (1 << hash_bit);
283
284 array_wr32(E1000_MTA, hash_reg, mta);
285 wrfl();
286}
287
9d5c8243 288/**
733596be 289 * igb_hash_mc_addr - Generate a multicast hash value
9d5c8243
AK
290 * @hw: pointer to the HW structure
291 * @mc_addr: pointer to a multicast address
292 *
293 * Generates a multicast address hash value which is used to determine
294 * the multicast filter table array address and new table value. See
295 * igb_mta_set()
296 **/
44c852ea 297static u32 igb_hash_mc_addr(struct e1000_hw *hw, u8 *mc_addr)
9d5c8243
AK
298{
299 u32 hash_value, hash_mask;
300 u8 bit_shift = 0;
301
302 /* Register count multiplied by bits per register */
303 hash_mask = (hw->mac.mta_reg_count * 32) - 1;
304
305 /*
306 * For a mc_filter_type of 0, bit_shift is the number of left-shifts
307 * where 0xFF would still fall within the hash mask.
308 */
309 while (hash_mask >> bit_shift != 0xFF)
310 bit_shift++;
311
312 /*
313 * The portion of the address that is used for the hash table
314 * is determined by the mc_filter_type setting.
315 * The algorithm is such that there is a total of 8 bits of shifting.
316 * The bit_shift for a mc_filter_type of 0 represents the number of
317 * left-shifts where the MSB of mc_addr[5] would still fall within
318 * the hash_mask. Case 0 does this exactly. Since there are a total
319 * of 8 bits of shifting, then mc_addr[4] will shift right the
320 * remaining number of bits. Thus 8 - bit_shift. The rest of the
321 * cases are a variation of this algorithm...essentially raising the
322 * number of bits to shift mc_addr[5] left, while still keeping the
323 * 8-bit shifting total.
324 *
325 * For example, given the following Destination MAC Address and an
326 * mta register count of 128 (thus a 4096-bit vector and 0xFFF mask),
327 * we can see that the bit_shift for case 0 is 4. These are the hash
328 * values resulting from each mc_filter_type...
329 * [0] [1] [2] [3] [4] [5]
330 * 01 AA 00 12 34 56
331 * LSB MSB
332 *
333 * case 0: hash_value = ((0x34 >> 4) | (0x56 << 4)) & 0xFFF = 0x563
334 * case 1: hash_value = ((0x34 >> 3) | (0x56 << 5)) & 0xFFF = 0xAC6
335 * case 2: hash_value = ((0x34 >> 2) | (0x56 << 6)) & 0xFFF = 0x163
336 * case 3: hash_value = ((0x34 >> 0) | (0x56 << 8)) & 0xFFF = 0x634
337 */
338 switch (hw->mac.mc_filter_type) {
339 default:
340 case 0:
341 break;
342 case 1:
343 bit_shift += 1;
344 break;
345 case 2:
346 bit_shift += 2;
347 break;
348 case 3:
349 bit_shift += 4;
350 break;
351 }
352
353 hash_value = hash_mask & (((mc_addr[4] >> (8 - bit_shift)) |
354 (((u16) mc_addr[5]) << bit_shift)));
355
356 return hash_value;
357}
358
44c852ea
AD
359/**
360 * igb_update_mc_addr_list - Update Multicast addresses
361 * @hw: pointer to the HW structure
362 * @mc_addr_list: array of multicast addresses to program
363 * @mc_addr_count: number of multicast addresses to program
364 *
365 * Updates entire Multicast Table Array.
366 * The caller must have a packed mc_addr_list of multicast addresses.
367 **/
368void igb_update_mc_addr_list(struct e1000_hw *hw,
369 u8 *mc_addr_list, u32 mc_addr_count)
370{
371 u32 hash_value, hash_bit, hash_reg;
372 int i;
373
374 /* clear mta_shadow */
375 memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
376
377 /* update mta_shadow from mc_addr_list */
378 for (i = 0; (u32) i < mc_addr_count; i++) {
379 hash_value = igb_hash_mc_addr(hw, mc_addr_list);
380
381 hash_reg = (hash_value >> 5) & (hw->mac.mta_reg_count - 1);
382 hash_bit = hash_value & 0x1F;
383
384 hw->mac.mta_shadow[hash_reg] |= (1 << hash_bit);
385 mc_addr_list += (ETH_ALEN);
386 }
387
388 /* replace the entire MTA table */
389 for (i = hw->mac.mta_reg_count - 1; i >= 0; i--)
390 array_wr32(E1000_MTA, i, hw->mac.mta_shadow[i]);
391 wrfl();
392}
393
9d5c8243 394/**
733596be 395 * igb_clear_hw_cntrs_base - Clear base hardware counters
9d5c8243
AK
396 * @hw: pointer to the HW structure
397 *
398 * Clears the base hardware counters by reading the counter registers.
399 **/
400void igb_clear_hw_cntrs_base(struct e1000_hw *hw)
401{
402 u32 temp;
403
404 temp = rd32(E1000_CRCERRS);
405 temp = rd32(E1000_SYMERRS);
406 temp = rd32(E1000_MPC);
407 temp = rd32(E1000_SCC);
408 temp = rd32(E1000_ECOL);
409 temp = rd32(E1000_MCC);
410 temp = rd32(E1000_LATECOL);
411 temp = rd32(E1000_COLC);
412 temp = rd32(E1000_DC);
413 temp = rd32(E1000_SEC);
414 temp = rd32(E1000_RLEC);
415 temp = rd32(E1000_XONRXC);
416 temp = rd32(E1000_XONTXC);
417 temp = rd32(E1000_XOFFRXC);
418 temp = rd32(E1000_XOFFTXC);
419 temp = rd32(E1000_FCRUC);
420 temp = rd32(E1000_GPRC);
421 temp = rd32(E1000_BPRC);
422 temp = rd32(E1000_MPRC);
423 temp = rd32(E1000_GPTC);
424 temp = rd32(E1000_GORCL);
425 temp = rd32(E1000_GORCH);
426 temp = rd32(E1000_GOTCL);
427 temp = rd32(E1000_GOTCH);
428 temp = rd32(E1000_RNBC);
429 temp = rd32(E1000_RUC);
430 temp = rd32(E1000_RFC);
431 temp = rd32(E1000_ROC);
432 temp = rd32(E1000_RJC);
433 temp = rd32(E1000_TORL);
434 temp = rd32(E1000_TORH);
435 temp = rd32(E1000_TOTL);
436 temp = rd32(E1000_TOTH);
437 temp = rd32(E1000_TPR);
438 temp = rd32(E1000_TPT);
439 temp = rd32(E1000_MPTC);
440 temp = rd32(E1000_BPTC);
441}
442
443/**
733596be 444 * igb_check_for_copper_link - Check for link (Copper)
9d5c8243
AK
445 * @hw: pointer to the HW structure
446 *
447 * Checks to see of the link status of the hardware has changed. If a
448 * change in link status has been detected, then we read the PHY registers
449 * to get the current speed/duplex if link exists.
450 **/
451s32 igb_check_for_copper_link(struct e1000_hw *hw)
452{
453 struct e1000_mac_info *mac = &hw->mac;
454 s32 ret_val;
455 bool link;
456
457 /*
458 * We only want to go out to the PHY registers to see if Auto-Neg
459 * has completed and/or if our link status has changed. The
460 * get_link_status flag is set upon receiving a Link Status
461 * Change or Rx Sequence Error interrupt.
462 */
463 if (!mac->get_link_status) {
464 ret_val = 0;
465 goto out;
466 }
467
468 /*
469 * First we want to see if the MII Status Register reports
470 * link. If so, then we want to get the current speed/duplex
471 * of the PHY.
472 */
473 ret_val = igb_phy_has_link(hw, 1, 0, &link);
474 if (ret_val)
475 goto out;
476
477 if (!link)
478 goto out; /* No link detected */
479
480 mac->get_link_status = false;
481
482 /*
483 * Check if there was DownShift, must be checked
484 * immediately after link-up
485 */
486 igb_check_downshift(hw);
487
488 /*
489 * If we are forcing speed/duplex, then we simply return since
490 * we have already determined whether we have link or not.
491 */
492 if (!mac->autoneg) {
493 ret_val = -E1000_ERR_CONFIG;
494 goto out;
495 }
496
497 /*
498 * Auto-Neg is enabled. Auto Speed Detection takes care
499 * of MAC speed/duplex configuration. So we only need to
500 * configure Collision Distance in the MAC.
501 */
502 igb_config_collision_dist(hw);
503
504 /*
505 * Configure Flow Control now that Auto-Neg has completed.
506 * First, we need to restore the desired flow control
507 * settings because we may have had to re-autoneg with a
508 * different link partner.
509 */
510 ret_val = igb_config_fc_after_link_up(hw);
511 if (ret_val)
652fff32 512 hw_dbg("Error configuring flow control\n");
9d5c8243
AK
513
514out:
515 return ret_val;
516}
517
518/**
733596be 519 * igb_setup_link - Setup flow control and link settings
9d5c8243
AK
520 * @hw: pointer to the HW structure
521 *
522 * Determines which flow control settings to use, then configures flow
523 * control. Calls the appropriate media-specific link configuration
524 * function. Assuming the adapter has a valid link partner, a valid link
525 * should be established. Assumes the hardware has previously been reset
526 * and the transmitter and receiver are not enabled.
527 **/
528s32 igb_setup_link(struct e1000_hw *hw)
529{
530 s32 ret_val = 0;
531
532 /*
533 * In the case of the phy reset being blocked, we already have a link.
534 * We do not need to set it up again.
535 */
536 if (igb_check_reset_block(hw))
537 goto out;
538
0cce119a
AD
539 /*
540 * If requested flow control is set to default, set flow control
541 * based on the EEPROM flow control settings.
542 */
543 if (hw->fc.requested_mode == e1000_fc_default) {
544 ret_val = igb_set_default_fc(hw);
545 if (ret_val)
546 goto out;
547 }
9d5c8243
AK
548
549 /*
550 * We want to save off the original Flow Control configuration just
551 * in case we get disconnected and then reconnected into a different
552 * hub or switch with different Flow Control capabilities.
553 */
0cce119a 554 hw->fc.current_mode = hw->fc.requested_mode;
9d5c8243 555
0cce119a 556 hw_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
9d5c8243
AK
557
558 /* Call the necessary media_type subroutine to configure the link. */
559 ret_val = hw->mac.ops.setup_physical_interface(hw);
560 if (ret_val)
561 goto out;
562
563 /*
564 * Initialize the flow control address, type, and PAUSE timer
565 * registers to their default values. This is done even if flow
566 * control is disabled, because it does not hurt anything to
567 * initialize these registers.
568 */
652fff32 569 hw_dbg("Initializing the Flow Control address, type and timer regs\n");
9d5c8243
AK
570 wr32(E1000_FCT, FLOW_CONTROL_TYPE);
571 wr32(E1000_FCAH, FLOW_CONTROL_ADDRESS_HIGH);
572 wr32(E1000_FCAL, FLOW_CONTROL_ADDRESS_LOW);
573
574 wr32(E1000_FCTTV, hw->fc.pause_time);
575
576 ret_val = igb_set_fc_watermarks(hw);
577
578out:
579 return ret_val;
580}
581
582/**
733596be 583 * igb_config_collision_dist - Configure collision distance
9d5c8243
AK
584 * @hw: pointer to the HW structure
585 *
586 * Configures the collision distance to the default value and is used
587 * during link setup. Currently no func pointer exists and all
588 * implementations are handled in the generic version of this function.
589 **/
590void igb_config_collision_dist(struct e1000_hw *hw)
591{
592 u32 tctl;
593
594 tctl = rd32(E1000_TCTL);
595
596 tctl &= ~E1000_TCTL_COLD;
597 tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT;
598
599 wr32(E1000_TCTL, tctl);
600 wrfl();
601}
602
603/**
733596be 604 * igb_set_fc_watermarks - Set flow control high/low watermarks
9d5c8243
AK
605 * @hw: pointer to the HW structure
606 *
607 * Sets the flow control high/low threshold (watermark) registers. If
608 * flow control XON frame transmission is enabled, then set XON frame
609 * tansmission as well.
610 **/
611static s32 igb_set_fc_watermarks(struct e1000_hw *hw)
612{
613 s32 ret_val = 0;
614 u32 fcrtl = 0, fcrth = 0;
615
616 /*
617 * Set the flow control receive threshold registers. Normally,
618 * these registers will be set to a default threshold that may be
619 * adjusted later by the driver's runtime code. However, if the
620 * ability to transmit pause frames is not enabled, then these
621 * registers will be set to 0.
622 */
0cce119a 623 if (hw->fc.current_mode & e1000_fc_tx_pause) {
9d5c8243
AK
624 /*
625 * We need to set up the Receive Threshold high and low water
626 * marks as well as (optionally) enabling the transmission of
627 * XON frames.
628 */
629 fcrtl = hw->fc.low_water;
630 if (hw->fc.send_xon)
631 fcrtl |= E1000_FCRTL_XONE;
632
633 fcrth = hw->fc.high_water;
634 }
635 wr32(E1000_FCRTL, fcrtl);
636 wr32(E1000_FCRTH, fcrth);
637
638 return ret_val;
639}
640
641/**
733596be 642 * igb_set_default_fc - Set flow control default values
9d5c8243
AK
643 * @hw: pointer to the HW structure
644 *
645 * Read the EEPROM for the default values for flow control and store the
646 * values.
647 **/
648static s32 igb_set_default_fc(struct e1000_hw *hw)
649{
650 s32 ret_val = 0;
651 u16 nvm_data;
652
653 /*
654 * Read and store word 0x0F of the EEPROM. This word contains bits
655 * that determine the hardware's default PAUSE (flow control) mode,
656 * a bit that determines whether the HW defaults to enabling or
657 * disabling auto-negotiation, and the direction of the
658 * SW defined pins. If there is no SW over-ride of the flow
659 * control setting, then the variable hw->fc will
660 * be initialized based on a value in the EEPROM.
661 */
312c75ae 662 ret_val = hw->nvm.ops.read(hw, NVM_INIT_CONTROL2_REG, 1, &nvm_data);
9d5c8243
AK
663
664 if (ret_val) {
652fff32 665 hw_dbg("NVM Read Error\n");
9d5c8243
AK
666 goto out;
667 }
668
669 if ((nvm_data & NVM_WORD0F_PAUSE_MASK) == 0)
0cce119a 670 hw->fc.requested_mode = e1000_fc_none;
9d5c8243
AK
671 else if ((nvm_data & NVM_WORD0F_PAUSE_MASK) ==
672 NVM_WORD0F_ASM_DIR)
0cce119a 673 hw->fc.requested_mode = e1000_fc_tx_pause;
9d5c8243 674 else
0cce119a 675 hw->fc.requested_mode = e1000_fc_full;
9d5c8243
AK
676
677out:
678 return ret_val;
679}
680
681/**
733596be 682 * igb_force_mac_fc - Force the MAC's flow control settings
9d5c8243
AK
683 * @hw: pointer to the HW structure
684 *
685 * Force the MAC's flow control settings. Sets the TFCE and RFCE bits in the
686 * device control register to reflect the adapter settings. TFCE and RFCE
687 * need to be explicitly set by software when a copper PHY is used because
688 * autonegotiation is managed by the PHY rather than the MAC. Software must
689 * also configure these bits when link is forced on a fiber connection.
690 **/
691s32 igb_force_mac_fc(struct e1000_hw *hw)
692{
693 u32 ctrl;
694 s32 ret_val = 0;
695
696 ctrl = rd32(E1000_CTRL);
697
698 /*
699 * Because we didn't get link via the internal auto-negotiation
700 * mechanism (we either forced link or we got link via PHY
701 * auto-neg), we have to manually enable/disable transmit an
702 * receive flow control.
703 *
704 * The "Case" statement below enables/disable flow control
0cce119a 705 * according to the "hw->fc.current_mode" parameter.
9d5c8243
AK
706 *
707 * The possible values of the "fc" parameter are:
708 * 0: Flow control is completely disabled
709 * 1: Rx flow control is enabled (we can receive pause
710 * frames but not send pause frames).
711 * 2: Tx flow control is enabled (we can send pause frames
712 * frames but we do not receive pause frames).
713 * 3: Both Rx and TX flow control (symmetric) is enabled.
714 * other: No other values should be possible at this point.
715 */
0cce119a 716 hw_dbg("hw->fc.current_mode = %u\n", hw->fc.current_mode);
9d5c8243 717
0cce119a 718 switch (hw->fc.current_mode) {
9d5c8243
AK
719 case e1000_fc_none:
720 ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE));
721 break;
722 case e1000_fc_rx_pause:
723 ctrl &= (~E1000_CTRL_TFCE);
724 ctrl |= E1000_CTRL_RFCE;
725 break;
726 case e1000_fc_tx_pause:
727 ctrl &= (~E1000_CTRL_RFCE);
728 ctrl |= E1000_CTRL_TFCE;
729 break;
730 case e1000_fc_full:
731 ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE);
732 break;
733 default:
652fff32 734 hw_dbg("Flow control param set incorrectly\n");
9d5c8243
AK
735 ret_val = -E1000_ERR_CONFIG;
736 goto out;
737 }
738
739 wr32(E1000_CTRL, ctrl);
740
741out:
742 return ret_val;
743}
744
745/**
733596be 746 * igb_config_fc_after_link_up - Configures flow control after link
9d5c8243
AK
747 * @hw: pointer to the HW structure
748 *
749 * Checks the status of auto-negotiation after link up to ensure that the
750 * speed and duplex were not forced. If the link needed to be forced, then
751 * flow control needs to be forced also. If auto-negotiation is enabled
752 * and did not fail, then we configure flow control based on our link
753 * partner.
754 **/
755s32 igb_config_fc_after_link_up(struct e1000_hw *hw)
756{
757 struct e1000_mac_info *mac = &hw->mac;
758 s32 ret_val = 0;
759 u16 mii_status_reg, mii_nway_adv_reg, mii_nway_lp_ability_reg;
760 u16 speed, duplex;
761
762 /*
763 * Check for the case where we have fiber media and auto-neg failed
764 * so we had to force link. In this case, we need to force the
765 * configuration of the MAC to match the "fc" parameter.
766 */
767 if (mac->autoneg_failed) {
dcc3ae9a 768 if (hw->phy.media_type == e1000_media_type_internal_serdes)
9d5c8243
AK
769 ret_val = igb_force_mac_fc(hw);
770 } else {
771 if (hw->phy.media_type == e1000_media_type_copper)
772 ret_val = igb_force_mac_fc(hw);
773 }
774
775 if (ret_val) {
652fff32 776 hw_dbg("Error forcing flow control settings\n");
9d5c8243
AK
777 goto out;
778 }
779
780 /*
781 * Check for the case where we have copper media and auto-neg is
782 * enabled. In this case, we need to check and see if Auto-Neg
783 * has completed, and if so, how the PHY and link partner has
784 * flow control configured.
785 */
786 if ((hw->phy.media_type == e1000_media_type_copper) && mac->autoneg) {
787 /*
788 * Read the MII Status Register and check to see if AutoNeg
789 * has completed. We read this twice because this reg has
790 * some "sticky" (latched) bits.
791 */
a8d2a0c2 792 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
9d5c8243
AK
793 &mii_status_reg);
794 if (ret_val)
795 goto out;
a8d2a0c2 796 ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS,
9d5c8243
AK
797 &mii_status_reg);
798 if (ret_val)
799 goto out;
800
801 if (!(mii_status_reg & MII_SR_AUTONEG_COMPLETE)) {
652fff32 802 hw_dbg("Copper PHY and Auto Neg "
9d5c8243
AK
803 "has not completed.\n");
804 goto out;
805 }
806
807 /*
808 * The AutoNeg process has completed, so we now need to
809 * read both the Auto Negotiation Advertisement
810 * Register (Address 4) and the Auto_Negotiation Base
811 * Page Ability Register (Address 5) to determine how
812 * flow control was negotiated.
813 */
a8d2a0c2 814 ret_val = hw->phy.ops.read_reg(hw, PHY_AUTONEG_ADV,
9d5c8243
AK
815 &mii_nway_adv_reg);
816 if (ret_val)
817 goto out;
a8d2a0c2 818 ret_val = hw->phy.ops.read_reg(hw, PHY_LP_ABILITY,
9d5c8243
AK
819 &mii_nway_lp_ability_reg);
820 if (ret_val)
821 goto out;
822
823 /*
824 * Two bits in the Auto Negotiation Advertisement Register
825 * (Address 4) and two bits in the Auto Negotiation Base
826 * Page Ability Register (Address 5) determine flow control
827 * for both the PHY and the link partner. The following
828 * table, taken out of the IEEE 802.3ab/D6.0 dated March 25,
829 * 1999, describes these PAUSE resolution bits and how flow
830 * control is determined based upon these settings.
831 * NOTE: DC = Don't Care
832 *
833 * LOCAL DEVICE | LINK PARTNER
834 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution
835 *-------|---------|-------|---------|--------------------
836 * 0 | 0 | DC | DC | e1000_fc_none
837 * 0 | 1 | 0 | DC | e1000_fc_none
838 * 0 | 1 | 1 | 0 | e1000_fc_none
839 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
840 * 1 | 0 | 0 | DC | e1000_fc_none
841 * 1 | DC | 1 | DC | e1000_fc_full
842 * 1 | 1 | 0 | 0 | e1000_fc_none
843 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
844 *
845 * Are both PAUSE bits set to 1? If so, this implies
846 * Symmetric Flow Control is enabled at both ends. The
847 * ASM_DIR bits are irrelevant per the spec.
848 *
849 * For Symmetric Flow Control:
850 *
851 * LOCAL DEVICE | LINK PARTNER
852 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
853 *-------|---------|-------|---------|--------------------
854 * 1 | DC | 1 | DC | E1000_fc_full
855 *
856 */
857 if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
858 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) {
859 /*
860 * Now we need to check if the user selected RX ONLY
861 * of pause frames. In this case, we had to advertise
862 * FULL flow control because we could not advertise RX
863 * ONLY. Hence, we must now check to see if we need to
864 * turn OFF the TRANSMISSION of PAUSE frames.
865 */
0cce119a
AD
866 if (hw->fc.requested_mode == e1000_fc_full) {
867 hw->fc.current_mode = e1000_fc_full;
652fff32 868 hw_dbg("Flow Control = FULL.\r\n");
9d5c8243 869 } else {
0cce119a 870 hw->fc.current_mode = e1000_fc_rx_pause;
652fff32
AK
871 hw_dbg("Flow Control = "
872 "RX PAUSE frames only.\r\n");
9d5c8243
AK
873 }
874 }
875 /*
876 * For receiving PAUSE frames ONLY.
877 *
878 * LOCAL DEVICE | LINK PARTNER
879 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
880 *-------|---------|-------|---------|--------------------
881 * 0 | 1 | 1 | 1 | e1000_fc_tx_pause
882 */
883 else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) &&
884 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
885 (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
886 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
0cce119a 887 hw->fc.current_mode = e1000_fc_tx_pause;
652fff32 888 hw_dbg("Flow Control = TX PAUSE frames only.\r\n");
9d5c8243
AK
889 }
890 /*
891 * For transmitting PAUSE frames ONLY.
892 *
893 * LOCAL DEVICE | LINK PARTNER
894 * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result
895 *-------|---------|-------|---------|--------------------
896 * 1 | 1 | 0 | 1 | e1000_fc_rx_pause
897 */
898 else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) &&
899 (mii_nway_adv_reg & NWAY_AR_ASM_DIR) &&
900 !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) &&
901 (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) {
0cce119a 902 hw->fc.current_mode = e1000_fc_rx_pause;
652fff32 903 hw_dbg("Flow Control = RX PAUSE frames only.\r\n");
9d5c8243
AK
904 }
905 /*
906 * Per the IEEE spec, at this point flow control should be
907 * disabled. However, we want to consider that we could
908 * be connected to a legacy switch that doesn't advertise
909 * desired flow control, but can be forced on the link
910 * partner. So if we advertised no flow control, that is
911 * what we will resolve to. If we advertised some kind of
912 * receive capability (Rx Pause Only or Full Flow Control)
913 * and the link partner advertised none, we will configure
914 * ourselves to enable Rx Flow Control only. We can do
915 * this safely for two reasons: If the link partner really
916 * didn't want flow control enabled, and we enable Rx, no
917 * harm done since we won't be receiving any PAUSE frames
918 * anyway. If the intent on the link partner was to have
919 * flow control enabled, then by us enabling RX only, we
920 * can at least receive pause frames and process them.
921 * This is a good idea because in most cases, since we are
922 * predominantly a server NIC, more times than not we will
923 * be asked to delay transmission of packets than asking
924 * our link partner to pause transmission of frames.
925 */
0cce119a
AD
926 else if ((hw->fc.requested_mode == e1000_fc_none ||
927 hw->fc.requested_mode == e1000_fc_tx_pause) ||
9d5c8243 928 hw->fc.strict_ieee) {
0cce119a 929 hw->fc.current_mode = e1000_fc_none;
652fff32 930 hw_dbg("Flow Control = NONE.\r\n");
9d5c8243 931 } else {
0cce119a 932 hw->fc.current_mode = e1000_fc_rx_pause;
652fff32 933 hw_dbg("Flow Control = RX PAUSE frames only.\r\n");
9d5c8243
AK
934 }
935
936 /*
937 * Now we need to do one last check... If we auto-
938 * negotiated to HALF DUPLEX, flow control should not be
939 * enabled per IEEE 802.3 spec.
940 */
941 ret_val = hw->mac.ops.get_speed_and_duplex(hw, &speed, &duplex);
942 if (ret_val) {
652fff32 943 hw_dbg("Error getting link speed and duplex\n");
9d5c8243
AK
944 goto out;
945 }
946
947 if (duplex == HALF_DUPLEX)
0cce119a 948 hw->fc.current_mode = e1000_fc_none;
9d5c8243
AK
949
950 /*
951 * Now we call a subroutine to actually force the MAC
952 * controller to use the correct flow control settings.
953 */
954 ret_val = igb_force_mac_fc(hw);
955 if (ret_val) {
652fff32 956 hw_dbg("Error forcing flow control settings\n");
9d5c8243
AK
957 goto out;
958 }
959 }
960
961out:
962 return ret_val;
963}
964
965/**
733596be 966 * igb_get_speed_and_duplex_copper - Retreive current speed/duplex
9d5c8243
AK
967 * @hw: pointer to the HW structure
968 * @speed: stores the current speed
969 * @duplex: stores the current duplex
970 *
971 * Read the status register for the current speed/duplex and store the current
972 * speed and duplex for copper connections.
973 **/
974s32 igb_get_speed_and_duplex_copper(struct e1000_hw *hw, u16 *speed,
975 u16 *duplex)
976{
977 u32 status;
978
979 status = rd32(E1000_STATUS);
980 if (status & E1000_STATUS_SPEED_1000) {
981 *speed = SPEED_1000;
652fff32 982 hw_dbg("1000 Mbs, ");
9d5c8243
AK
983 } else if (status & E1000_STATUS_SPEED_100) {
984 *speed = SPEED_100;
652fff32 985 hw_dbg("100 Mbs, ");
9d5c8243
AK
986 } else {
987 *speed = SPEED_10;
652fff32 988 hw_dbg("10 Mbs, ");
9d5c8243
AK
989 }
990
991 if (status & E1000_STATUS_FD) {
992 *duplex = FULL_DUPLEX;
652fff32 993 hw_dbg("Full Duplex\n");
9d5c8243
AK
994 } else {
995 *duplex = HALF_DUPLEX;
652fff32 996 hw_dbg("Half Duplex\n");
9d5c8243
AK
997 }
998
999 return 0;
1000}
1001
1002/**
733596be 1003 * igb_get_hw_semaphore - Acquire hardware semaphore
9d5c8243
AK
1004 * @hw: pointer to the HW structure
1005 *
1006 * Acquire the HW semaphore to access the PHY or NVM
1007 **/
1008s32 igb_get_hw_semaphore(struct e1000_hw *hw)
1009{
1010 u32 swsm;
1011 s32 ret_val = 0;
1012 s32 timeout = hw->nvm.word_size + 1;
1013 s32 i = 0;
1014
1015 /* Get the SW semaphore */
1016 while (i < timeout) {
1017 swsm = rd32(E1000_SWSM);
1018 if (!(swsm & E1000_SWSM_SMBI))
1019 break;
1020
1021 udelay(50);
1022 i++;
1023 }
1024
1025 if (i == timeout) {
652fff32 1026 hw_dbg("Driver can't access device - SMBI bit is set.\n");
9d5c8243
AK
1027 ret_val = -E1000_ERR_NVM;
1028 goto out;
1029 }
1030
1031 /* Get the FW semaphore. */
1032 for (i = 0; i < timeout; i++) {
1033 swsm = rd32(E1000_SWSM);
1034 wr32(E1000_SWSM, swsm | E1000_SWSM_SWESMBI);
1035
1036 /* Semaphore acquired if bit latched */
1037 if (rd32(E1000_SWSM) & E1000_SWSM_SWESMBI)
1038 break;
1039
1040 udelay(50);
1041 }
1042
1043 if (i == timeout) {
1044 /* Release semaphores */
1045 igb_put_hw_semaphore(hw);
652fff32 1046 hw_dbg("Driver can't access the NVM\n");
9d5c8243
AK
1047 ret_val = -E1000_ERR_NVM;
1048 goto out;
1049 }
1050
1051out:
1052 return ret_val;
1053}
1054
1055/**
733596be 1056 * igb_put_hw_semaphore - Release hardware semaphore
9d5c8243
AK
1057 * @hw: pointer to the HW structure
1058 *
1059 * Release hardware semaphore used to access the PHY or NVM
1060 **/
1061void igb_put_hw_semaphore(struct e1000_hw *hw)
1062{
1063 u32 swsm;
1064
1065 swsm = rd32(E1000_SWSM);
1066
1067 swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
1068
1069 wr32(E1000_SWSM, swsm);
1070}
1071
1072/**
733596be 1073 * igb_get_auto_rd_done - Check for auto read completion
9d5c8243
AK
1074 * @hw: pointer to the HW structure
1075 *
1076 * Check EEPROM for Auto Read done bit.
1077 **/
1078s32 igb_get_auto_rd_done(struct e1000_hw *hw)
1079{
1080 s32 i = 0;
1081 s32 ret_val = 0;
1082
1083
1084 while (i < AUTO_READ_DONE_TIMEOUT) {
1085 if (rd32(E1000_EECD) & E1000_EECD_AUTO_RD)
1086 break;
1087 msleep(1);
1088 i++;
1089 }
1090
1091 if (i == AUTO_READ_DONE_TIMEOUT) {
652fff32 1092 hw_dbg("Auto read by HW from NVM has not completed.\n");
9d5c8243
AK
1093 ret_val = -E1000_ERR_RESET;
1094 goto out;
1095 }
1096
1097out:
1098 return ret_val;
1099}
1100
1101/**
733596be 1102 * igb_valid_led_default - Verify a valid default LED config
9d5c8243
AK
1103 * @hw: pointer to the HW structure
1104 * @data: pointer to the NVM (EEPROM)
1105 *
1106 * Read the EEPROM for the current default LED configuration. If the
1107 * LED configuration is not valid, set to a valid LED configuration.
1108 **/
1109static s32 igb_valid_led_default(struct e1000_hw *hw, u16 *data)
1110{
1111 s32 ret_val;
1112
312c75ae 1113 ret_val = hw->nvm.ops.read(hw, NVM_ID_LED_SETTINGS, 1, data);
9d5c8243 1114 if (ret_val) {
652fff32 1115 hw_dbg("NVM Read Error\n");
9d5c8243
AK
1116 goto out;
1117 }
1118
099e1cb7
AD
1119 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF) {
1120 switch(hw->phy.media_type) {
1121 case e1000_media_type_internal_serdes:
1122 *data = ID_LED_DEFAULT_82575_SERDES;
1123 break;
1124 case e1000_media_type_copper:
1125 default:
1126 *data = ID_LED_DEFAULT;
1127 break;
1128 }
1129 }
9d5c8243
AK
1130out:
1131 return ret_val;
1132}
1133
1134/**
733596be 1135 * igb_id_led_init -
9d5c8243
AK
1136 * @hw: pointer to the HW structure
1137 *
1138 **/
1139s32 igb_id_led_init(struct e1000_hw *hw)
1140{
1141 struct e1000_mac_info *mac = &hw->mac;
1142 s32 ret_val;
1143 const u32 ledctl_mask = 0x000000FF;
1144 const u32 ledctl_on = E1000_LEDCTL_MODE_LED_ON;
1145 const u32 ledctl_off = E1000_LEDCTL_MODE_LED_OFF;
1146 u16 data, i, temp;
1147 const u16 led_mask = 0x0F;
1148
1149 ret_val = igb_valid_led_default(hw, &data);
1150 if (ret_val)
1151 goto out;
1152
1153 mac->ledctl_default = rd32(E1000_LEDCTL);
1154 mac->ledctl_mode1 = mac->ledctl_default;
1155 mac->ledctl_mode2 = mac->ledctl_default;
1156
1157 for (i = 0; i < 4; i++) {
1158 temp = (data >> (i << 2)) & led_mask;
1159 switch (temp) {
1160 case ID_LED_ON1_DEF2:
1161 case ID_LED_ON1_ON2:
1162 case ID_LED_ON1_OFF2:
1163 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1164 mac->ledctl_mode1 |= ledctl_on << (i << 3);
1165 break;
1166 case ID_LED_OFF1_DEF2:
1167 case ID_LED_OFF1_ON2:
1168 case ID_LED_OFF1_OFF2:
1169 mac->ledctl_mode1 &= ~(ledctl_mask << (i << 3));
1170 mac->ledctl_mode1 |= ledctl_off << (i << 3);
1171 break;
1172 default:
1173 /* Do nothing */
1174 break;
1175 }
1176 switch (temp) {
1177 case ID_LED_DEF1_ON2:
1178 case ID_LED_ON1_ON2:
1179 case ID_LED_OFF1_ON2:
1180 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1181 mac->ledctl_mode2 |= ledctl_on << (i << 3);
1182 break;
1183 case ID_LED_DEF1_OFF2:
1184 case ID_LED_ON1_OFF2:
1185 case ID_LED_OFF1_OFF2:
1186 mac->ledctl_mode2 &= ~(ledctl_mask << (i << 3));
1187 mac->ledctl_mode2 |= ledctl_off << (i << 3);
1188 break;
1189 default:
1190 /* Do nothing */
1191 break;
1192 }
1193 }
1194
1195out:
1196 return ret_val;
1197}
1198
1199/**
733596be 1200 * igb_cleanup_led - Set LED config to default operation
9d5c8243
AK
1201 * @hw: pointer to the HW structure
1202 *
1203 * Remove the current LED configuration and set the LED configuration
1204 * to the default value, saved from the EEPROM.
1205 **/
1206s32 igb_cleanup_led(struct e1000_hw *hw)
1207{
1208 wr32(E1000_LEDCTL, hw->mac.ledctl_default);
1209 return 0;
1210}
1211
1212/**
733596be 1213 * igb_blink_led - Blink LED
9d5c8243
AK
1214 * @hw: pointer to the HW structure
1215 *
1216 * Blink the led's which are set to be on.
1217 **/
1218s32 igb_blink_led(struct e1000_hw *hw)
1219{
1220 u32 ledctl_blink = 0;
1221 u32 i;
1222
dcc3ae9a
AD
1223 /*
1224 * set the blink bit for each LED that's "on" (0x0E)
1225 * in ledctl_mode2
1226 */
1227 ledctl_blink = hw->mac.ledctl_mode2;
1228 for (i = 0; i < 4; i++)
1229 if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1230 E1000_LEDCTL_MODE_LED_ON)
1231 ledctl_blink |= (E1000_LEDCTL_LED0_BLINK <<
1232 (i * 8));
9d5c8243
AK
1233
1234 wr32(E1000_LEDCTL, ledctl_blink);
1235
1236 return 0;
1237}
1238
1239/**
733596be 1240 * igb_led_off - Turn LED off
9d5c8243
AK
1241 * @hw: pointer to the HW structure
1242 *
1243 * Turn LED off.
1244 **/
1245s32 igb_led_off(struct e1000_hw *hw)
1246{
9d5c8243 1247 switch (hw->phy.media_type) {
9d5c8243
AK
1248 case e1000_media_type_copper:
1249 wr32(E1000_LEDCTL, hw->mac.ledctl_mode1);
1250 break;
1251 default:
1252 break;
1253 }
1254
1255 return 0;
1256}
1257
1258/**
733596be 1259 * igb_disable_pcie_master - Disables PCI-express master access
9d5c8243
AK
1260 * @hw: pointer to the HW structure
1261 *
1262 * Returns 0 (0) if successful, else returns -10
1263 * (-E1000_ERR_MASTER_REQUESTS_PENDING) if master disable bit has not casued
1264 * the master requests to be disabled.
1265 *
1266 * Disables PCI-Express master access and verifies there are no pending
1267 * requests.
1268 **/
1269s32 igb_disable_pcie_master(struct e1000_hw *hw)
1270{
1271 u32 ctrl;
1272 s32 timeout = MASTER_DISABLE_TIMEOUT;
1273 s32 ret_val = 0;
1274
1275 if (hw->bus.type != e1000_bus_type_pci_express)
1276 goto out;
1277
1278 ctrl = rd32(E1000_CTRL);
1279 ctrl |= E1000_CTRL_GIO_MASTER_DISABLE;
1280 wr32(E1000_CTRL, ctrl);
1281
1282 while (timeout) {
1283 if (!(rd32(E1000_STATUS) &
1284 E1000_STATUS_GIO_MASTER_ENABLE))
1285 break;
1286 udelay(100);
1287 timeout--;
1288 }
1289
1290 if (!timeout) {
652fff32 1291 hw_dbg("Master requests are pending.\n");
9d5c8243
AK
1292 ret_val = -E1000_ERR_MASTER_REQUESTS_PENDING;
1293 goto out;
1294 }
1295
1296out:
1297 return ret_val;
1298}
1299
1300/**
733596be 1301 * igb_reset_adaptive - Reset Adaptive Interframe Spacing
9d5c8243
AK
1302 * @hw: pointer to the HW structure
1303 *
1304 * Reset the Adaptive Interframe Spacing throttle to default values.
1305 **/
1306void igb_reset_adaptive(struct e1000_hw *hw)
1307{
1308 struct e1000_mac_info *mac = &hw->mac;
1309
1310 if (!mac->adaptive_ifs) {
652fff32 1311 hw_dbg("Not in Adaptive IFS mode!\n");
9d5c8243
AK
1312 goto out;
1313 }
1314
1315 if (!mac->ifs_params_forced) {
1316 mac->current_ifs_val = 0;
1317 mac->ifs_min_val = IFS_MIN;
1318 mac->ifs_max_val = IFS_MAX;
1319 mac->ifs_step_size = IFS_STEP;
1320 mac->ifs_ratio = IFS_RATIO;
1321 }
1322
1323 mac->in_ifs_mode = false;
1324 wr32(E1000_AIT, 0);
1325out:
1326 return;
1327}
1328
1329/**
733596be 1330 * igb_update_adaptive - Update Adaptive Interframe Spacing
9d5c8243
AK
1331 * @hw: pointer to the HW structure
1332 *
1333 * Update the Adaptive Interframe Spacing Throttle value based on the
1334 * time between transmitted packets and time between collisions.
1335 **/
1336void igb_update_adaptive(struct e1000_hw *hw)
1337{
1338 struct e1000_mac_info *mac = &hw->mac;
1339
1340 if (!mac->adaptive_ifs) {
652fff32 1341 hw_dbg("Not in Adaptive IFS mode!\n");
9d5c8243
AK
1342 goto out;
1343 }
1344
1345 if ((mac->collision_delta * mac->ifs_ratio) > mac->tx_packet_delta) {
1346 if (mac->tx_packet_delta > MIN_NUM_XMITS) {
1347 mac->in_ifs_mode = true;
1348 if (mac->current_ifs_val < mac->ifs_max_val) {
1349 if (!mac->current_ifs_val)
1350 mac->current_ifs_val = mac->ifs_min_val;
1351 else
1352 mac->current_ifs_val +=
1353 mac->ifs_step_size;
1354 wr32(E1000_AIT,
1355 mac->current_ifs_val);
1356 }
1357 }
1358 } else {
1359 if (mac->in_ifs_mode &&
1360 (mac->tx_packet_delta <= MIN_NUM_XMITS)) {
1361 mac->current_ifs_val = 0;
1362 mac->in_ifs_mode = false;
1363 wr32(E1000_AIT, 0);
1364 }
1365 }
1366out:
1367 return;
1368}
1369
1370/**
733596be 1371 * igb_validate_mdi_setting - Verify MDI/MDIx settings
9d5c8243
AK
1372 * @hw: pointer to the HW structure
1373 *
1374 * Verify that when not using auto-negotitation that MDI/MDIx is correctly
1375 * set, which is forced to MDI mode only.
1376 **/
1377s32 igb_validate_mdi_setting(struct e1000_hw *hw)
1378{
1379 s32 ret_val = 0;
1380
1381 if (!hw->mac.autoneg && (hw->phy.mdix == 0 || hw->phy.mdix == 3)) {
652fff32 1382 hw_dbg("Invalid MDI setting detected\n");
9d5c8243
AK
1383 hw->phy.mdix = 1;
1384 ret_val = -E1000_ERR_CONFIG;
1385 goto out;
1386 }
1387
1388out:
1389 return ret_val;
1390}
1391
1392/**
733596be 1393 * igb_write_8bit_ctrl_reg - Write a 8bit CTRL register
9d5c8243
AK
1394 * @hw: pointer to the HW structure
1395 * @reg: 32bit register offset such as E1000_SCTL
1396 * @offset: register offset to write to
1397 * @data: data to write at register offset
1398 *
1399 * Writes an address/data control type register. There are several of these
1400 * and they all have the format address << 8 | data and bit 31 is polled for
1401 * completion.
1402 **/
1403s32 igb_write_8bit_ctrl_reg(struct e1000_hw *hw, u32 reg,
1404 u32 offset, u8 data)
1405{
1406 u32 i, regvalue = 0;
1407 s32 ret_val = 0;
1408
1409 /* Set up the address and data */
1410 regvalue = ((u32)data) | (offset << E1000_GEN_CTL_ADDRESS_SHIFT);
1411 wr32(reg, regvalue);
1412
1413 /* Poll the ready bit to see if the MDI read completed */
1414 for (i = 0; i < E1000_GEN_POLL_TIMEOUT; i++) {
1415 udelay(5);
1416 regvalue = rd32(reg);
1417 if (regvalue & E1000_GEN_CTL_READY)
1418 break;
1419 }
1420 if (!(regvalue & E1000_GEN_CTL_READY)) {
652fff32 1421 hw_dbg("Reg %08x did not indicate ready\n", reg);
9d5c8243
AK
1422 ret_val = -E1000_ERR_PHY;
1423 goto out;
1424 }
1425
1426out:
1427 return ret_val;
1428}
1429
1430/**
733596be 1431 * igb_enable_mng_pass_thru - Enable processing of ARP's
9d5c8243
AK
1432 * @hw: pointer to the HW structure
1433 *
1434 * Verifies the hardware needs to allow ARPs to be processed by the host.
1435 **/
1436bool igb_enable_mng_pass_thru(struct e1000_hw *hw)
1437{
1438 u32 manc;
1439 u32 fwsm, factps;
1440 bool ret_val = false;
1441
1442 if (!hw->mac.asf_firmware_present)
1443 goto out;
1444
1445 manc = rd32(E1000_MANC);
1446
1447 if (!(manc & E1000_MANC_RCV_TCO_EN) ||
1448 !(manc & E1000_MANC_EN_MAC_ADDR_FILTER))
1449 goto out;
1450
1451 if (hw->mac.arc_subsystem_valid) {
1452 fwsm = rd32(E1000_FWSM);
1453 factps = rd32(E1000_FACTPS);
1454
1455 if (!(factps & E1000_FACTPS_MNGCG) &&
1456 ((fwsm & E1000_FWSM_MODE_MASK) ==
1457 (e1000_mng_mode_pt << E1000_FWSM_MODE_SHIFT))) {
1458 ret_val = true;
1459 goto out;
1460 }
1461 } else {
1462 if ((manc & E1000_MANC_SMBUS_EN) &&
1463 !(manc & E1000_MANC_ASF_EN)) {
1464 ret_val = true;
1465 goto out;
1466 }
1467 }
1468
1469out:
1470 return ret_val;
1471}