net: sched: fix skb->protocol use in case of accelerated vlan path
[linux-2.6-block.git] / drivers / net / ethernet / intel / i40evf / i40e_txrx.c
CommitLineData
7f12ad74
GR
1/*******************************************************************************
2 *
3 * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
af1a2a9c 4 * Copyright(c) 2013 - 2014 Intel Corporation.
7f12ad74
GR
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
b831607d
JB
15 * You should have received a copy of the GNU General Public License along
16 * with this program. If not, see <http://www.gnu.org/licenses/>.
17 *
7f12ad74
GR
18 * The full GNU General Public License is included in this distribution in
19 * the file called "COPYING".
20 *
21 * Contact Information:
22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 *
25 ******************************************************************************/
26
7ed3f5f0
PG
27#include <linux/prefetch.h>
28
7f12ad74 29#include "i40evf.h"
206812b5 30#include "i40e_prototype.h"
7f12ad74
GR
31
32static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
33 u32 td_tag)
34{
35 return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
36 ((u64)td_cmd << I40E_TXD_QW1_CMD_SHIFT) |
37 ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
38 ((u64)size << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
39 ((u64)td_tag << I40E_TXD_QW1_L2TAG1_SHIFT));
40}
41
42#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
43
44/**
45 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
46 * @ring: the ring that owns the buffer
47 * @tx_buffer: the buffer to free
48 **/
49static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
50 struct i40e_tx_buffer *tx_buffer)
51{
52 if (tx_buffer->skb) {
49d7d933
ASJ
53 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
54 kfree(tx_buffer->raw_buf);
55 else
56 dev_kfree_skb_any(tx_buffer->skb);
57
7f12ad74
GR
58 if (dma_unmap_len(tx_buffer, len))
59 dma_unmap_single(ring->dev,
60 dma_unmap_addr(tx_buffer, dma),
61 dma_unmap_len(tx_buffer, len),
62 DMA_TO_DEVICE);
63 } else if (dma_unmap_len(tx_buffer, len)) {
64 dma_unmap_page(ring->dev,
65 dma_unmap_addr(tx_buffer, dma),
66 dma_unmap_len(tx_buffer, len),
67 DMA_TO_DEVICE);
68 }
69 tx_buffer->next_to_watch = NULL;
70 tx_buffer->skb = NULL;
71 dma_unmap_len_set(tx_buffer, len, 0);
72 /* tx_buffer must be completely set up in the transmit path */
73}
74
75/**
76 * i40evf_clean_tx_ring - Free any empty Tx buffers
77 * @tx_ring: ring to be cleaned
78 **/
79void i40evf_clean_tx_ring(struct i40e_ring *tx_ring)
80{
81 unsigned long bi_size;
82 u16 i;
83
84 /* ring already cleared, nothing to do */
85 if (!tx_ring->tx_bi)
86 return;
87
88 /* Free all the Tx ring sk_buffs */
89 for (i = 0; i < tx_ring->count; i++)
90 i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
91
92 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
93 memset(tx_ring->tx_bi, 0, bi_size);
94
95 /* Zero out the descriptor ring */
96 memset(tx_ring->desc, 0, tx_ring->size);
97
98 tx_ring->next_to_use = 0;
99 tx_ring->next_to_clean = 0;
100
101 if (!tx_ring->netdev)
102 return;
103
104 /* cleanup Tx queue statistics */
105 netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
106 tx_ring->queue_index));
107}
108
109/**
110 * i40evf_free_tx_resources - Free Tx resources per queue
111 * @tx_ring: Tx descriptor ring for a specific queue
112 *
113 * Free all transmit software resources
114 **/
115void i40evf_free_tx_resources(struct i40e_ring *tx_ring)
116{
117 i40evf_clean_tx_ring(tx_ring);
118 kfree(tx_ring->tx_bi);
119 tx_ring->tx_bi = NULL;
120
121 if (tx_ring->desc) {
122 dma_free_coherent(tx_ring->dev, tx_ring->size,
123 tx_ring->desc, tx_ring->dma);
124 tx_ring->desc = NULL;
125 }
126}
127
128/**
129 * i40e_get_tx_pending - how many tx descriptors not processed
130 * @tx_ring: the ring of descriptors
131 *
132 * Since there is no access to the ring head register
133 * in XL710, we need to use our local copies
134 **/
135static u32 i40e_get_tx_pending(struct i40e_ring *ring)
136{
137 u32 ntu = ((ring->next_to_clean <= ring->next_to_use)
138 ? ring->next_to_use
139 : ring->next_to_use + ring->count);
140 return ntu - ring->next_to_clean;
141}
142
143/**
144 * i40e_check_tx_hang - Is there a hang in the Tx queue
145 * @tx_ring: the ring of descriptors
146 **/
147static bool i40e_check_tx_hang(struct i40e_ring *tx_ring)
148{
149 u32 tx_pending = i40e_get_tx_pending(tx_ring);
150 bool ret = false;
151
152 clear_check_for_tx_hang(tx_ring);
153
154 /* Check for a hung queue, but be thorough. This verifies
155 * that a transmit has been completed since the previous
156 * check AND there is at least one packet pending. The
157 * ARMED bit is set to indicate a potential hang. The
158 * bit is cleared if a pause frame is received to remove
159 * false hang detection due to PFC or 802.3x frames. By
160 * requiring this to fail twice we avoid races with
161 * PFC clearing the ARMED bit and conditions where we
162 * run the check_tx_hang logic with a transmit completion
163 * pending but without time to complete it yet.
164 */
165 if ((tx_ring->tx_stats.tx_done_old == tx_ring->stats.packets) &&
810b3ae4 166 (tx_pending >= I40E_MIN_DESC_PENDING)) {
7f12ad74
GR
167 /* make sure it is true for two checks in a row */
168 ret = test_and_set_bit(__I40E_HANG_CHECK_ARMED,
169 &tx_ring->state);
810b3ae4
ASJ
170 } else if (!(tx_ring->tx_stats.tx_done_old == tx_ring->stats.packets) ||
171 !(tx_pending < I40E_MIN_DESC_PENDING) ||
172 !(tx_pending > 0)) {
7f12ad74
GR
173 /* update completed stats and disarm the hang check */
174 tx_ring->tx_stats.tx_done_old = tx_ring->stats.packets;
175 clear_bit(__I40E_HANG_CHECK_ARMED, &tx_ring->state);
176 }
177
178 return ret;
179}
180
1943d8ba
JB
181/**
182 * i40e_get_head - Retrieve head from head writeback
183 * @tx_ring: tx ring to fetch head of
184 *
185 * Returns value of Tx ring head based on value stored
186 * in head write-back location
187 **/
188static inline u32 i40e_get_head(struct i40e_ring *tx_ring)
189{
190 void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count;
191
192 return le32_to_cpu(*(volatile __le32 *)head);
193}
194
7f12ad74
GR
195/**
196 * i40e_clean_tx_irq - Reclaim resources after transmit completes
197 * @tx_ring: tx ring to clean
198 * @budget: how many cleans we're allowed
199 *
200 * Returns true if there's any budget left (e.g. the clean is finished)
201 **/
202static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget)
203{
204 u16 i = tx_ring->next_to_clean;
205 struct i40e_tx_buffer *tx_buf;
1943d8ba 206 struct i40e_tx_desc *tx_head;
7f12ad74
GR
207 struct i40e_tx_desc *tx_desc;
208 unsigned int total_packets = 0;
209 unsigned int total_bytes = 0;
210
211 tx_buf = &tx_ring->tx_bi[i];
212 tx_desc = I40E_TX_DESC(tx_ring, i);
213 i -= tx_ring->count;
214
1943d8ba
JB
215 tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
216
7f12ad74
GR
217 do {
218 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
219
220 /* if next_to_watch is not set then there is no work pending */
221 if (!eop_desc)
222 break;
223
224 /* prevent any other reads prior to eop_desc */
225 read_barrier_depends();
226
1943d8ba
JB
227 /* we have caught up to head, no work left to do */
228 if (tx_head == tx_desc)
7f12ad74
GR
229 break;
230
231 /* clear next_to_watch to prevent false hangs */
232 tx_buf->next_to_watch = NULL;
233
234 /* update the statistics for this packet */
235 total_bytes += tx_buf->bytecount;
236 total_packets += tx_buf->gso_segs;
237
238 /* free the skb */
239 dev_kfree_skb_any(tx_buf->skb);
240
241 /* unmap skb header data */
242 dma_unmap_single(tx_ring->dev,
243 dma_unmap_addr(tx_buf, dma),
244 dma_unmap_len(tx_buf, len),
245 DMA_TO_DEVICE);
246
247 /* clear tx_buffer data */
248 tx_buf->skb = NULL;
249 dma_unmap_len_set(tx_buf, len, 0);
250
251 /* unmap remaining buffers */
252 while (tx_desc != eop_desc) {
253
254 tx_buf++;
255 tx_desc++;
256 i++;
257 if (unlikely(!i)) {
258 i -= tx_ring->count;
259 tx_buf = tx_ring->tx_bi;
260 tx_desc = I40E_TX_DESC(tx_ring, 0);
261 }
262
263 /* unmap any remaining paged data */
264 if (dma_unmap_len(tx_buf, len)) {
265 dma_unmap_page(tx_ring->dev,
266 dma_unmap_addr(tx_buf, dma),
267 dma_unmap_len(tx_buf, len),
268 DMA_TO_DEVICE);
269 dma_unmap_len_set(tx_buf, len, 0);
270 }
271 }
272
273 /* move us one more past the eop_desc for start of next pkt */
274 tx_buf++;
275 tx_desc++;
276 i++;
277 if (unlikely(!i)) {
278 i -= tx_ring->count;
279 tx_buf = tx_ring->tx_bi;
280 tx_desc = I40E_TX_DESC(tx_ring, 0);
281 }
282
283 /* update budget accounting */
284 budget--;
285 } while (likely(budget));
286
287 i += tx_ring->count;
288 tx_ring->next_to_clean = i;
289 u64_stats_update_begin(&tx_ring->syncp);
290 tx_ring->stats.bytes += total_bytes;
291 tx_ring->stats.packets += total_packets;
292 u64_stats_update_end(&tx_ring->syncp);
293 tx_ring->q_vector->tx.total_bytes += total_bytes;
294 tx_ring->q_vector->tx.total_packets += total_packets;
295
296 if (check_for_tx_hang(tx_ring) && i40e_check_tx_hang(tx_ring)) {
297 /* schedule immediate reset if we believe we hung */
298 dev_info(tx_ring->dev, "Detected Tx Unit Hang\n"
299 " VSI <%d>\n"
300 " Tx Queue <%d>\n"
301 " next_to_use <%x>\n"
302 " next_to_clean <%x>\n",
303 tx_ring->vsi->seid,
304 tx_ring->queue_index,
305 tx_ring->next_to_use, i);
306 dev_info(tx_ring->dev, "tx_bi[next_to_clean]\n"
307 " time_stamp <%lx>\n"
308 " jiffies <%lx>\n",
309 tx_ring->tx_bi[i].time_stamp, jiffies);
310
311 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
312
313 dev_info(tx_ring->dev,
314 "tx hang detected on queue %d, resetting adapter\n",
315 tx_ring->queue_index);
316
317 tx_ring->netdev->netdev_ops->ndo_tx_timeout(tx_ring->netdev);
318
319 /* the adapter is about to reset, no point in enabling stuff */
320 return true;
321 }
322
323 netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
324 tx_ring->queue_index),
325 total_packets, total_bytes);
326
327#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
328 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
329 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
330 /* Make sure that anybody stopping the queue after this
331 * sees the new next_to_clean.
332 */
333 smp_mb();
334 if (__netif_subqueue_stopped(tx_ring->netdev,
335 tx_ring->queue_index) &&
336 !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) {
337 netif_wake_subqueue(tx_ring->netdev,
338 tx_ring->queue_index);
339 ++tx_ring->tx_stats.restart_queue;
340 }
341 }
342
343 return budget > 0;
344}
345
346/**
347 * i40e_set_new_dynamic_itr - Find new ITR level
348 * @rc: structure containing ring performance data
349 *
350 * Stores a new ITR value based on packets and byte counts during
351 * the last interrupt. The advantage of per interrupt computation
352 * is faster updates and more accurate ITR for the current traffic
353 * pattern. Constants in this function were computed based on
354 * theoretical maximum wire speed and thresholds were set based on
355 * testing data as well as attempting to minimize response time
356 * while increasing bulk throughput.
357 **/
358static void i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
359{
360 enum i40e_latency_range new_latency_range = rc->latency_range;
361 u32 new_itr = rc->itr;
362 int bytes_per_int;
363
364 if (rc->total_packets == 0 || !rc->itr)
365 return;
366
367 /* simple throttlerate management
368 * 0-10MB/s lowest (100000 ints/s)
369 * 10-20MB/s low (20000 ints/s)
370 * 20-1249MB/s bulk (8000 ints/s)
371 */
372 bytes_per_int = rc->total_bytes / rc->itr;
373 switch (rc->itr) {
374 case I40E_LOWEST_LATENCY:
375 if (bytes_per_int > 10)
376 new_latency_range = I40E_LOW_LATENCY;
377 break;
378 case I40E_LOW_LATENCY:
379 if (bytes_per_int > 20)
380 new_latency_range = I40E_BULK_LATENCY;
381 else if (bytes_per_int <= 10)
382 new_latency_range = I40E_LOWEST_LATENCY;
383 break;
384 case I40E_BULK_LATENCY:
385 if (bytes_per_int <= 20)
386 rc->latency_range = I40E_LOW_LATENCY;
387 break;
388 }
389
390 switch (new_latency_range) {
391 case I40E_LOWEST_LATENCY:
392 new_itr = I40E_ITR_100K;
393 break;
394 case I40E_LOW_LATENCY:
395 new_itr = I40E_ITR_20K;
396 break;
397 case I40E_BULK_LATENCY:
398 new_itr = I40E_ITR_8K;
399 break;
400 default:
401 break;
402 }
403
404 if (new_itr != rc->itr) {
405 /* do an exponential smoothing */
406 new_itr = (10 * new_itr * rc->itr) /
407 ((9 * new_itr) + rc->itr);
408 rc->itr = new_itr & I40E_MAX_ITR;
409 }
410
411 rc->total_bytes = 0;
412 rc->total_packets = 0;
413}
414
415/**
416 * i40e_update_dynamic_itr - Adjust ITR based on bytes per int
417 * @q_vector: the vector to adjust
418 **/
419static void i40e_update_dynamic_itr(struct i40e_q_vector *q_vector)
420{
421 u16 vector = q_vector->vsi->base_vector + q_vector->v_idx;
422 struct i40e_hw *hw = &q_vector->vsi->back->hw;
423 u32 reg_addr;
424 u16 old_itr;
425
426 reg_addr = I40E_VFINT_ITRN1(I40E_RX_ITR, vector - 1);
427 old_itr = q_vector->rx.itr;
428 i40e_set_new_dynamic_itr(&q_vector->rx);
429 if (old_itr != q_vector->rx.itr)
430 wr32(hw, reg_addr, q_vector->rx.itr);
431
432 reg_addr = I40E_VFINT_ITRN1(I40E_TX_ITR, vector - 1);
433 old_itr = q_vector->tx.itr;
434 i40e_set_new_dynamic_itr(&q_vector->tx);
435 if (old_itr != q_vector->tx.itr)
436 wr32(hw, reg_addr, q_vector->tx.itr);
437}
438
439/**
440 * i40evf_setup_tx_descriptors - Allocate the Tx descriptors
441 * @tx_ring: the tx ring to set up
442 *
443 * Return 0 on success, negative on error
444 **/
445int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring)
446{
447 struct device *dev = tx_ring->dev;
448 int bi_size;
449
450 if (!dev)
451 return -ENOMEM;
452
453 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
454 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
455 if (!tx_ring->tx_bi)
456 goto err;
457
458 /* round up to nearest 4K */
459 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1943d8ba
JB
460 /* add u32 for head writeback, align after this takes care of
461 * guaranteeing this is at least one cache line in size
462 */
463 tx_ring->size += sizeof(u32);
7f12ad74
GR
464 tx_ring->size = ALIGN(tx_ring->size, 4096);
465 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
466 &tx_ring->dma, GFP_KERNEL);
467 if (!tx_ring->desc) {
468 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
469 tx_ring->size);
470 goto err;
471 }
472
473 tx_ring->next_to_use = 0;
474 tx_ring->next_to_clean = 0;
475 return 0;
476
477err:
478 kfree(tx_ring->tx_bi);
479 tx_ring->tx_bi = NULL;
480 return -ENOMEM;
481}
482
483/**
484 * i40evf_clean_rx_ring - Free Rx buffers
485 * @rx_ring: ring to be cleaned
486 **/
487void i40evf_clean_rx_ring(struct i40e_ring *rx_ring)
488{
489 struct device *dev = rx_ring->dev;
490 struct i40e_rx_buffer *rx_bi;
491 unsigned long bi_size;
492 u16 i;
493
494 /* ring already cleared, nothing to do */
495 if (!rx_ring->rx_bi)
496 return;
497
498 /* Free all the Rx ring sk_buffs */
499 for (i = 0; i < rx_ring->count; i++) {
500 rx_bi = &rx_ring->rx_bi[i];
501 if (rx_bi->dma) {
502 dma_unmap_single(dev,
503 rx_bi->dma,
504 rx_ring->rx_buf_len,
505 DMA_FROM_DEVICE);
506 rx_bi->dma = 0;
507 }
508 if (rx_bi->skb) {
509 dev_kfree_skb(rx_bi->skb);
510 rx_bi->skb = NULL;
511 }
512 if (rx_bi->page) {
513 if (rx_bi->page_dma) {
514 dma_unmap_page(dev,
515 rx_bi->page_dma,
516 PAGE_SIZE / 2,
517 DMA_FROM_DEVICE);
518 rx_bi->page_dma = 0;
519 }
520 __free_page(rx_bi->page);
521 rx_bi->page = NULL;
522 rx_bi->page_offset = 0;
523 }
524 }
525
526 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
527 memset(rx_ring->rx_bi, 0, bi_size);
528
529 /* Zero out the descriptor ring */
530 memset(rx_ring->desc, 0, rx_ring->size);
531
532 rx_ring->next_to_clean = 0;
533 rx_ring->next_to_use = 0;
534}
535
536/**
537 * i40evf_free_rx_resources - Free Rx resources
538 * @rx_ring: ring to clean the resources from
539 *
540 * Free all receive software resources
541 **/
542void i40evf_free_rx_resources(struct i40e_ring *rx_ring)
543{
544 i40evf_clean_rx_ring(rx_ring);
545 kfree(rx_ring->rx_bi);
546 rx_ring->rx_bi = NULL;
547
548 if (rx_ring->desc) {
549 dma_free_coherent(rx_ring->dev, rx_ring->size,
550 rx_ring->desc, rx_ring->dma);
551 rx_ring->desc = NULL;
552 }
553}
554
555/**
556 * i40evf_setup_rx_descriptors - Allocate Rx descriptors
557 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
558 *
559 * Returns 0 on success, negative on failure
560 **/
561int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring)
562{
563 struct device *dev = rx_ring->dev;
564 int bi_size;
565
566 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
567 rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
568 if (!rx_ring->rx_bi)
569 goto err;
570
571 /* Round up to nearest 4K */
572 rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
573 ? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
574 : rx_ring->count * sizeof(union i40e_32byte_rx_desc);
575 rx_ring->size = ALIGN(rx_ring->size, 4096);
576 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
577 &rx_ring->dma, GFP_KERNEL);
578
579 if (!rx_ring->desc) {
580 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
581 rx_ring->size);
582 goto err;
583 }
584
585 rx_ring->next_to_clean = 0;
586 rx_ring->next_to_use = 0;
587
588 return 0;
589err:
590 kfree(rx_ring->rx_bi);
591 rx_ring->rx_bi = NULL;
592 return -ENOMEM;
593}
594
595/**
596 * i40e_release_rx_desc - Store the new tail and head values
597 * @rx_ring: ring to bump
598 * @val: new head index
599 **/
600static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
601{
602 rx_ring->next_to_use = val;
603 /* Force memory writes to complete before letting h/w
604 * know there are new descriptors to fetch. (Only
605 * applicable for weak-ordered memory model archs,
606 * such as IA-64).
607 */
608 wmb();
609 writel(val, rx_ring->tail);
610}
611
612/**
613 * i40evf_alloc_rx_buffers - Replace used receive buffers; packet split
614 * @rx_ring: ring to place buffers on
615 * @cleaned_count: number of buffers to replace
616 **/
617void i40evf_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
618{
619 u16 i = rx_ring->next_to_use;
620 union i40e_rx_desc *rx_desc;
621 struct i40e_rx_buffer *bi;
622 struct sk_buff *skb;
623
624 /* do nothing if no valid netdev defined */
625 if (!rx_ring->netdev || !cleaned_count)
626 return;
627
628 while (cleaned_count--) {
629 rx_desc = I40E_RX_DESC(rx_ring, i);
630 bi = &rx_ring->rx_bi[i];
631 skb = bi->skb;
632
633 if (!skb) {
634 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
635 rx_ring->rx_buf_len);
636 if (!skb) {
637 rx_ring->rx_stats.alloc_buff_failed++;
638 goto no_buffers;
639 }
640 /* initialize queue mapping */
641 skb_record_rx_queue(skb, rx_ring->queue_index);
642 bi->skb = skb;
643 }
644
645 if (!bi->dma) {
646 bi->dma = dma_map_single(rx_ring->dev,
647 skb->data,
648 rx_ring->rx_buf_len,
649 DMA_FROM_DEVICE);
650 if (dma_mapping_error(rx_ring->dev, bi->dma)) {
651 rx_ring->rx_stats.alloc_buff_failed++;
652 bi->dma = 0;
653 goto no_buffers;
654 }
655 }
656
657 if (ring_is_ps_enabled(rx_ring)) {
658 if (!bi->page) {
659 bi->page = alloc_page(GFP_ATOMIC);
660 if (!bi->page) {
661 rx_ring->rx_stats.alloc_page_failed++;
662 goto no_buffers;
663 }
664 }
665
666 if (!bi->page_dma) {
667 /* use a half page if we're re-using */
668 bi->page_offset ^= PAGE_SIZE / 2;
669 bi->page_dma = dma_map_page(rx_ring->dev,
670 bi->page,
671 bi->page_offset,
672 PAGE_SIZE / 2,
673 DMA_FROM_DEVICE);
674 if (dma_mapping_error(rx_ring->dev,
675 bi->page_dma)) {
676 rx_ring->rx_stats.alloc_page_failed++;
677 bi->page_dma = 0;
678 goto no_buffers;
679 }
680 }
681
682 /* Refresh the desc even if buffer_addrs didn't change
683 * because each write-back erases this info.
684 */
685 rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
686 rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
687 } else {
688 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
689 rx_desc->read.hdr_addr = 0;
690 }
691 i++;
692 if (i == rx_ring->count)
693 i = 0;
694 }
695
696no_buffers:
697 if (rx_ring->next_to_use != i)
698 i40e_release_rx_desc(rx_ring, i);
699}
700
701/**
702 * i40e_receive_skb - Send a completed packet up the stack
703 * @rx_ring: rx ring in play
704 * @skb: packet to send up
705 * @vlan_tag: vlan tag for packet
706 **/
707static void i40e_receive_skb(struct i40e_ring *rx_ring,
708 struct sk_buff *skb, u16 vlan_tag)
709{
710 struct i40e_q_vector *q_vector = rx_ring->q_vector;
711 struct i40e_vsi *vsi = rx_ring->vsi;
712 u64 flags = vsi->back->flags;
713
714 if (vlan_tag & VLAN_VID_MASK)
715 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
716
717 if (flags & I40E_FLAG_IN_NETPOLL)
718 netif_rx(skb);
719 else
720 napi_gro_receive(&q_vector->napi, skb);
721}
722
723/**
724 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
725 * @vsi: the VSI we care about
726 * @skb: skb currently being received and modified
727 * @rx_status: status value of last descriptor in packet
728 * @rx_error: error value of last descriptor in packet
729 * @rx_ptype: ptype value of last descriptor in packet
730 **/
731static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
732 struct sk_buff *skb,
733 u32 rx_status,
734 u32 rx_error,
735 u16 rx_ptype)
736{
8a3c91cc
JB
737 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(rx_ptype);
738 bool ipv4 = false, ipv6 = false;
7f12ad74
GR
739 bool ipv4_tunnel, ipv6_tunnel;
740 __wsum rx_udp_csum;
7f12ad74 741 struct iphdr *iph;
8a3c91cc 742 __sum16 csum;
7f12ad74
GR
743
744 ipv4_tunnel = (rx_ptype > I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
745 (rx_ptype < I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
746 ipv6_tunnel = (rx_ptype > I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
747 (rx_ptype < I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);
748
7f12ad74
GR
749 skb->ip_summed = CHECKSUM_NONE;
750
751 /* Rx csum enabled and ip headers found? */
8a3c91cc
JB
752 if (!(vsi->netdev->features & NETIF_F_RXCSUM))
753 return;
754
755 /* did the hardware decode the packet and checksum? */
756 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
757 return;
758
759 /* both known and outer_ip must be set for the below code to work */
760 if (!(decoded.known && decoded.outer_ip))
7f12ad74
GR
761 return;
762
8a3c91cc
JB
763 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
764 decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4)
765 ipv4 = true;
766 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
767 decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6)
768 ipv6 = true;
769
770 if (ipv4 &&
771 (rx_error & ((1 << I40E_RX_DESC_ERROR_IPE_SHIFT) |
772 (1 << I40E_RX_DESC_ERROR_EIPE_SHIFT))))
773 goto checksum_fail;
774
ddf1d0d7 775 /* likely incorrect csum if alternate IP extension headers found */
8a3c91cc 776 if (ipv6 &&
8a3c91cc
JB
777 rx_status & (1 << I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
778 /* don't increment checksum err here, non-fatal err */
7f12ad74
GR
779 return;
780
8a3c91cc
JB
781 /* there was some L4 error, count error and punt packet to the stack */
782 if (rx_error & (1 << I40E_RX_DESC_ERROR_L4E_SHIFT))
783 goto checksum_fail;
784
785 /* handle packets that were not able to be checksummed due
786 * to arrival speed, in this case the stack can compute
787 * the csum.
788 */
789 if (rx_error & (1 << I40E_RX_DESC_ERROR_PPRS_SHIFT))
7f12ad74 790 return;
7f12ad74 791
8a3c91cc
JB
792 /* If VXLAN traffic has an outer UDPv4 checksum we need to check
793 * it in the driver, hardware does not do it for us.
794 * Since L3L4P bit was set we assume a valid IHL value (>=5)
795 * so the total length of IPv4 header is IHL*4 bytes
796 * The UDP_0 bit *may* bet set if the *inner* header is UDP
797 */
7f12ad74 798 if (ipv4_tunnel &&
8a3c91cc 799 (decoded.inner_prot != I40E_RX_PTYPE_INNER_PROT_UDP) &&
7f12ad74 800 !(rx_status & (1 << I40E_RX_DESC_STATUS_UDP_0_SHIFT))) {
7f12ad74
GR
801 skb->transport_header = skb->mac_header +
802 sizeof(struct ethhdr) +
803 (ip_hdr(skb)->ihl * 4);
804
805 /* Add 4 bytes for VLAN tagged packets */
806 skb->transport_header += (skb->protocol == htons(ETH_P_8021Q) ||
807 skb->protocol == htons(ETH_P_8021AD))
808 ? VLAN_HLEN : 0;
809
810 rx_udp_csum = udp_csum(skb);
811 iph = ip_hdr(skb);
812 csum = csum_tcpudp_magic(
813 iph->saddr, iph->daddr,
814 (skb->len - skb_transport_offset(skb)),
815 IPPROTO_UDP, rx_udp_csum);
816
8a3c91cc
JB
817 if (udp_hdr(skb)->check != csum)
818 goto checksum_fail;
7f12ad74
GR
819 }
820
821 skb->ip_summed = CHECKSUM_UNNECESSARY;
407fa085 822 skb->csum_level = ipv4_tunnel || ipv6_tunnel;
8a3c91cc
JB
823
824 return;
825
826checksum_fail:
827 vsi->back->hw_csum_rx_error++;
7f12ad74
GR
828}
829
830/**
831 * i40e_rx_hash - returns the hash value from the Rx descriptor
832 * @ring: descriptor ring
833 * @rx_desc: specific descriptor
834 **/
835static inline u32 i40e_rx_hash(struct i40e_ring *ring,
836 union i40e_rx_desc *rx_desc)
837{
838 const __le64 rss_mask =
839 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
840 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
841
842 if ((ring->netdev->features & NETIF_F_RXHASH) &&
843 (rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask)
844 return le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
845 else
846 return 0;
847}
848
206812b5
JB
849/**
850 * i40e_ptype_to_hash - get a hash type
851 * @ptype: the ptype value from the descriptor
852 *
853 * Returns a hash type to be used by skb_set_hash
854 **/
855static inline enum pkt_hash_types i40e_ptype_to_hash(u8 ptype)
856{
857 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
858
859 if (!decoded.known)
860 return PKT_HASH_TYPE_NONE;
861
862 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
863 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
864 return PKT_HASH_TYPE_L4;
865 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
866 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
867 return PKT_HASH_TYPE_L3;
868 else
869 return PKT_HASH_TYPE_L2;
870}
871
7f12ad74
GR
872/**
873 * i40e_clean_rx_irq - Reclaim resources after receive completes
874 * @rx_ring: rx ring to clean
875 * @budget: how many cleans we're allowed
876 *
877 * Returns true if there's any budget left (e.g. the clean is finished)
878 **/
879static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
880{
881 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
882 u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
883 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
884 const int current_node = numa_node_id();
885 struct i40e_vsi *vsi = rx_ring->vsi;
886 u16 i = rx_ring->next_to_clean;
887 union i40e_rx_desc *rx_desc;
888 u32 rx_error, rx_status;
206812b5 889 u8 rx_ptype;
7f12ad74 890 u64 qword;
7f12ad74
GR
891
892 rx_desc = I40E_RX_DESC(rx_ring, i);
893 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
af1a2a9c
JB
894 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
895 I40E_RXD_QW1_STATUS_SHIFT;
7f12ad74
GR
896
897 while (rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)) {
898 union i40e_rx_desc *next_rxd;
899 struct i40e_rx_buffer *rx_bi;
900 struct sk_buff *skb;
901 u16 vlan_tag;
902 rx_bi = &rx_ring->rx_bi[i];
903 skb = rx_bi->skb;
904 prefetch(skb->data);
905
906 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
907 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
908 rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
909 I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
910 rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
911 I40E_RXD_QW1_LENGTH_SPH_SHIFT;
912
913 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
914 I40E_RXD_QW1_ERROR_SHIFT;
915 rx_hbo = rx_error & (1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
916 rx_error &= ~(1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
917
918 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
919 I40E_RXD_QW1_PTYPE_SHIFT;
920 rx_bi->skb = NULL;
921
922 /* This memory barrier is needed to keep us from reading
923 * any other fields out of the rx_desc until we know the
924 * STATUS_DD bit is set
925 */
926 rmb();
927
928 /* Get the header and possibly the whole packet
929 * If this is an skb from previous receive dma will be 0
930 */
931 if (rx_bi->dma) {
932 u16 len;
933
934 if (rx_hbo)
935 len = I40E_RX_HDR_SIZE;
936 else if (rx_sph)
937 len = rx_header_len;
938 else if (rx_packet_len)
939 len = rx_packet_len; /* 1buf/no split found */
940 else
941 len = rx_header_len; /* split always mode */
942
943 skb_put(skb, len);
944 dma_unmap_single(rx_ring->dev,
945 rx_bi->dma,
946 rx_ring->rx_buf_len,
947 DMA_FROM_DEVICE);
948 rx_bi->dma = 0;
949 }
950
951 /* Get the rest of the data if this was a header split */
952 if (ring_is_ps_enabled(rx_ring) && rx_packet_len) {
953
954 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
955 rx_bi->page,
956 rx_bi->page_offset,
957 rx_packet_len);
958
959 skb->len += rx_packet_len;
960 skb->data_len += rx_packet_len;
961 skb->truesize += rx_packet_len;
962
963 if ((page_count(rx_bi->page) == 1) &&
964 (page_to_nid(rx_bi->page) == current_node))
965 get_page(rx_bi->page);
966 else
967 rx_bi->page = NULL;
968
969 dma_unmap_page(rx_ring->dev,
970 rx_bi->page_dma,
971 PAGE_SIZE / 2,
972 DMA_FROM_DEVICE);
973 rx_bi->page_dma = 0;
974 }
975 I40E_RX_NEXT_DESC_PREFETCH(rx_ring, i, next_rxd);
976
977 if (unlikely(
978 !(rx_status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
979 struct i40e_rx_buffer *next_buffer;
980
981 next_buffer = &rx_ring->rx_bi[i];
982
983 if (ring_is_ps_enabled(rx_ring)) {
984 rx_bi->skb = next_buffer->skb;
985 rx_bi->dma = next_buffer->dma;
986 next_buffer->skb = skb;
987 next_buffer->dma = 0;
988 }
989 rx_ring->rx_stats.non_eop_descs++;
990 goto next_desc;
991 }
992
993 /* ERR_MASK will only have valid bits if EOP set */
994 if (unlikely(rx_error & (1 << I40E_RX_DESC_ERROR_RXE_SHIFT))) {
995 dev_kfree_skb_any(skb);
8a3c91cc
JB
996 /* TODO: shouldn't we increment a counter indicating the
997 * drop?
998 */
7f12ad74
GR
999 goto next_desc;
1000 }
1001
206812b5
JB
1002 skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc),
1003 i40e_ptype_to_hash(rx_ptype));
7f12ad74
GR
1004 /* probably a little skewed due to removing CRC */
1005 total_rx_bytes += skb->len;
1006 total_rx_packets++;
1007
1008 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1009
1010 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1011
1012 vlan_tag = rx_status & (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1013 ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1014 : 0;
1015 i40e_receive_skb(rx_ring, skb, vlan_tag);
1016
1017 rx_ring->netdev->last_rx = jiffies;
1018 budget--;
1019next_desc:
1020 rx_desc->wb.qword1.status_error_len = 0;
1021 if (!budget)
1022 break;
1023
1024 cleaned_count++;
1025 /* return some buffers to hardware, one at a time is too slow */
1026 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1027 i40evf_alloc_rx_buffers(rx_ring, cleaned_count);
1028 cleaned_count = 0;
1029 }
1030
1031 /* use prefetched values */
1032 rx_desc = next_rxd;
1033 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1034 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1035 I40E_RXD_QW1_STATUS_SHIFT;
1036 }
1037
1038 rx_ring->next_to_clean = i;
1039 u64_stats_update_begin(&rx_ring->syncp);
1040 rx_ring->stats.packets += total_rx_packets;
1041 rx_ring->stats.bytes += total_rx_bytes;
1042 u64_stats_update_end(&rx_ring->syncp);
1043 rx_ring->q_vector->rx.total_packets += total_rx_packets;
1044 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1045
1046 if (cleaned_count)
1047 i40evf_alloc_rx_buffers(rx_ring, cleaned_count);
1048
1049 return budget > 0;
1050}
1051
1052/**
1053 * i40evf_napi_poll - NAPI polling Rx/Tx cleanup routine
1054 * @napi: napi struct with our devices info in it
1055 * @budget: amount of work driver is allowed to do this pass, in packets
1056 *
1057 * This function will clean all queues associated with a q_vector.
1058 *
1059 * Returns the amount of work done
1060 **/
1061int i40evf_napi_poll(struct napi_struct *napi, int budget)
1062{
1063 struct i40e_q_vector *q_vector =
1064 container_of(napi, struct i40e_q_vector, napi);
1065 struct i40e_vsi *vsi = q_vector->vsi;
1066 struct i40e_ring *ring;
1067 bool clean_complete = true;
1068 int budget_per_ring;
1069
1070 if (test_bit(__I40E_DOWN, &vsi->state)) {
1071 napi_complete(napi);
1072 return 0;
1073 }
1074
1075 /* Since the actual Tx work is minimal, we can give the Tx a larger
1076 * budget and be more aggressive about cleaning up the Tx descriptors.
1077 */
1078 i40e_for_each_ring(ring, q_vector->tx)
1079 clean_complete &= i40e_clean_tx_irq(ring, vsi->work_limit);
1080
1081 /* We attempt to distribute budget to each Rx queue fairly, but don't
1082 * allow the budget to go below 1 because that would exit polling early.
1083 */
1084 budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1085
1086 i40e_for_each_ring(ring, q_vector->rx)
1087 clean_complete &= i40e_clean_rx_irq(ring, budget_per_ring);
1088
1089 /* If work not completed, return budget and polling will return */
1090 if (!clean_complete)
1091 return budget;
1092
1093 /* Work is done so exit the polling mode and re-enable the interrupt */
1094 napi_complete(napi);
1095 if (ITR_IS_DYNAMIC(vsi->rx_itr_setting) ||
1096 ITR_IS_DYNAMIC(vsi->tx_itr_setting))
1097 i40e_update_dynamic_itr(q_vector);
1098
1099 if (!test_bit(__I40E_DOWN, &vsi->state))
1100 i40evf_irq_enable_queues(vsi->back, 1 << q_vector->v_idx);
1101
1102 return 0;
1103}
1104
1105/**
1106 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1107 * @skb: send buffer
1108 * @tx_ring: ring to send buffer on
1109 * @flags: the tx flags to be set
1110 *
1111 * Checks the skb and set up correspondingly several generic transmit flags
1112 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1113 *
1114 * Returns error code indicate the frame should be dropped upon error and the
1115 * otherwise returns 0 to indicate the flags has been set properly.
1116 **/
1117static int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
1118 struct i40e_ring *tx_ring,
1119 u32 *flags)
1120{
1121 __be16 protocol = skb->protocol;
1122 u32 tx_flags = 0;
1123
1124 /* if we have a HW VLAN tag being added, default to the HW one */
1125 if (vlan_tx_tag_present(skb)) {
1126 tx_flags |= vlan_tx_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
1127 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
1128 /* else if it is a SW VLAN, check the next protocol and store the tag */
1129 } else if (protocol == htons(ETH_P_8021Q)) {
1130 struct vlan_hdr *vhdr, _vhdr;
1131 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
1132 if (!vhdr)
1133 return -EINVAL;
1134
1135 protocol = vhdr->h_vlan_encapsulated_proto;
1136 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
1137 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
1138 }
1139
1140 *flags = tx_flags;
1141 return 0;
1142}
1143
1144/**
1145 * i40e_tso - set up the tso context descriptor
1146 * @tx_ring: ptr to the ring to send
1147 * @skb: ptr to the skb we're sending
1148 * @tx_flags: the collected send information
1149 * @protocol: the send protocol
1150 * @hdr_len: ptr to the size of the packet header
1151 * @cd_tunneling: ptr to context descriptor bits
1152 *
1153 * Returns 0 if no TSO can happen, 1 if tso is going, or error
1154 **/
1155static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb,
1156 u32 tx_flags, __be16 protocol, u8 *hdr_len,
1157 u64 *cd_type_cmd_tso_mss, u32 *cd_tunneling)
1158{
1159 u32 cd_cmd, cd_tso_len, cd_mss;
fe6d4aa4 1160 struct ipv6hdr *ipv6h;
7f12ad74
GR
1161 struct tcphdr *tcph;
1162 struct iphdr *iph;
1163 u32 l4len;
1164 int err;
7f12ad74
GR
1165
1166 if (!skb_is_gso(skb))
1167 return 0;
1168
fe6d4aa4
FR
1169 err = skb_cow_head(skb, 0);
1170 if (err < 0)
1171 return err;
7f12ad74
GR
1172
1173 if (protocol == htons(ETH_P_IP)) {
1174 iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
1175 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1176 iph->tot_len = 0;
1177 iph->check = 0;
1178 tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
1179 0, IPPROTO_TCP, 0);
1180 } else if (skb_is_gso_v6(skb)) {
1181
1182 ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb)
1183 : ipv6_hdr(skb);
1184 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1185 ipv6h->payload_len = 0;
1186 tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
1187 0, IPPROTO_TCP, 0);
1188 }
1189
1190 l4len = skb->encapsulation ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
1191 *hdr_len = (skb->encapsulation
1192 ? (skb_inner_transport_header(skb) - skb->data)
1193 : skb_transport_offset(skb)) + l4len;
1194
1195 /* find the field values */
1196 cd_cmd = I40E_TX_CTX_DESC_TSO;
1197 cd_tso_len = skb->len - *hdr_len;
1198 cd_mss = skb_shinfo(skb)->gso_size;
1199 *cd_type_cmd_tso_mss |= ((u64)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
1200 ((u64)cd_tso_len <<
1201 I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1202 ((u64)cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
1203 return 1;
1204}
1205
1206/**
1207 * i40e_tx_enable_csum - Enable Tx checksum offloads
1208 * @skb: send buffer
1209 * @tx_flags: Tx flags currently set
1210 * @td_cmd: Tx descriptor command bits to set
1211 * @td_offset: Tx descriptor header offsets to set
1212 * @cd_tunneling: ptr to context desc bits
1213 **/
1214static void i40e_tx_enable_csum(struct sk_buff *skb, u32 tx_flags,
1215 u32 *td_cmd, u32 *td_offset,
1216 struct i40e_ring *tx_ring,
1217 u32 *cd_tunneling)
1218{
1219 struct ipv6hdr *this_ipv6_hdr;
1220 unsigned int this_tcp_hdrlen;
1221 struct iphdr *this_ip_hdr;
1222 u32 network_hdr_len;
1223 u8 l4_hdr = 0;
1224
1225 if (skb->encapsulation) {
1226 network_hdr_len = skb_inner_network_header_len(skb);
1227 this_ip_hdr = inner_ip_hdr(skb);
1228 this_ipv6_hdr = inner_ipv6_hdr(skb);
1229 this_tcp_hdrlen = inner_tcp_hdrlen(skb);
1230
1231 if (tx_flags & I40E_TX_FLAGS_IPV4) {
1232
1233 if (tx_flags & I40E_TX_FLAGS_TSO) {
1234 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
1235 ip_hdr(skb)->check = 0;
1236 } else {
1237 *cd_tunneling |=
1238 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1239 }
1240 } else if (tx_flags & I40E_TX_FLAGS_IPV6) {
1241 if (tx_flags & I40E_TX_FLAGS_TSO) {
1242 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
1243 ip_hdr(skb)->check = 0;
1244 } else {
1245 *cd_tunneling |=
1246 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1247 }
1248 }
1249
1250 /* Now set the ctx descriptor fields */
1251 *cd_tunneling |= (skb_network_header_len(skb) >> 2) <<
1252 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT |
1253 I40E_TXD_CTX_UDP_TUNNELING |
1254 ((skb_inner_network_offset(skb) -
1255 skb_transport_offset(skb)) >> 1) <<
1256 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
1257
1258 } else {
1259 network_hdr_len = skb_network_header_len(skb);
1260 this_ip_hdr = ip_hdr(skb);
1261 this_ipv6_hdr = ipv6_hdr(skb);
1262 this_tcp_hdrlen = tcp_hdrlen(skb);
1263 }
1264
1265 /* Enable IP checksum offloads */
1266 if (tx_flags & I40E_TX_FLAGS_IPV4) {
1267 l4_hdr = this_ip_hdr->protocol;
1268 /* the stack computes the IP header already, the only time we
1269 * need the hardware to recompute it is in the case of TSO.
1270 */
1271 if (tx_flags & I40E_TX_FLAGS_TSO) {
1272 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
1273 this_ip_hdr->check = 0;
1274 } else {
1275 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
1276 }
1277 /* Now set the td_offset for IP header length */
1278 *td_offset = (network_hdr_len >> 2) <<
1279 I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1280 } else if (tx_flags & I40E_TX_FLAGS_IPV6) {
1281 l4_hdr = this_ipv6_hdr->nexthdr;
1282 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
1283 /* Now set the td_offset for IP header length */
1284 *td_offset = (network_hdr_len >> 2) <<
1285 I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1286 }
1287 /* words in MACLEN + dwords in IPLEN + dwords in L4Len */
1288 *td_offset |= (skb_network_offset(skb) >> 1) <<
1289 I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
1290
1291 /* Enable L4 checksum offloads */
1292 switch (l4_hdr) {
1293 case IPPROTO_TCP:
1294 /* enable checksum offloads */
1295 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
1296 *td_offset |= (this_tcp_hdrlen >> 2) <<
1297 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1298 break;
1299 case IPPROTO_SCTP:
1300 /* enable SCTP checksum offload */
1301 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
1302 *td_offset |= (sizeof(struct sctphdr) >> 2) <<
1303 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1304 break;
1305 case IPPROTO_UDP:
1306 /* enable UDP checksum offload */
1307 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
1308 *td_offset |= (sizeof(struct udphdr) >> 2) <<
1309 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1310 break;
1311 default:
1312 break;
1313 }
1314}
1315
1316/**
1317 * i40e_create_tx_ctx Build the Tx context descriptor
1318 * @tx_ring: ring to create the descriptor on
1319 * @cd_type_cmd_tso_mss: Quad Word 1
1320 * @cd_tunneling: Quad Word 0 - bits 0-31
1321 * @cd_l2tag2: Quad Word 0 - bits 32-63
1322 **/
1323static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
1324 const u64 cd_type_cmd_tso_mss,
1325 const u32 cd_tunneling, const u32 cd_l2tag2)
1326{
1327 struct i40e_tx_context_desc *context_desc;
1328 int i = tx_ring->next_to_use;
1329
ff40dd5d
JB
1330 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
1331 !cd_tunneling && !cd_l2tag2)
7f12ad74
GR
1332 return;
1333
1334 /* grab the next descriptor */
1335 context_desc = I40E_TX_CTXTDESC(tx_ring, i);
1336
1337 i++;
1338 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1339
1340 /* cpu_to_le32 and assign to struct fields */
1341 context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
1342 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3efbbb20 1343 context_desc->rsvd = cpu_to_le16(0);
7f12ad74
GR
1344 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
1345}
1346
1347/**
1348 * i40e_tx_map - Build the Tx descriptor
1349 * @tx_ring: ring to send buffer on
1350 * @skb: send buffer
1351 * @first: first buffer info buffer to use
1352 * @tx_flags: collected send information
1353 * @hdr_len: size of the packet header
1354 * @td_cmd: the command field in the descriptor
1355 * @td_offset: offset for checksum or crc
1356 **/
1357static void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
1358 struct i40e_tx_buffer *first, u32 tx_flags,
1359 const u8 hdr_len, u32 td_cmd, u32 td_offset)
1360{
1361 unsigned int data_len = skb->data_len;
1362 unsigned int size = skb_headlen(skb);
1363 struct skb_frag_struct *frag;
1364 struct i40e_tx_buffer *tx_bi;
1365 struct i40e_tx_desc *tx_desc;
1366 u16 i = tx_ring->next_to_use;
1367 u32 td_tag = 0;
1368 dma_addr_t dma;
1369 u16 gso_segs;
1370
1371 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
1372 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
1373 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
1374 I40E_TX_FLAGS_VLAN_SHIFT;
1375 }
1376
1377 if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
1378 gso_segs = skb_shinfo(skb)->gso_segs;
1379 else
1380 gso_segs = 1;
1381
1382 /* multiply data chunks by size of headers */
1383 first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
1384 first->gso_segs = gso_segs;
1385 first->skb = skb;
1386 first->tx_flags = tx_flags;
1387
1388 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1389
1390 tx_desc = I40E_TX_DESC(tx_ring, i);
1391 tx_bi = first;
1392
1393 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1394 if (dma_mapping_error(tx_ring->dev, dma))
1395 goto dma_error;
1396
1397 /* record length, and DMA address */
1398 dma_unmap_len_set(tx_bi, len, size);
1399 dma_unmap_addr_set(tx_bi, dma, dma);
1400
1401 tx_desc->buffer_addr = cpu_to_le64(dma);
1402
1403 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
1404 tx_desc->cmd_type_offset_bsz =
1405 build_ctob(td_cmd, td_offset,
1406 I40E_MAX_DATA_PER_TXD, td_tag);
1407
1408 tx_desc++;
1409 i++;
1410 if (i == tx_ring->count) {
1411 tx_desc = I40E_TX_DESC(tx_ring, 0);
1412 i = 0;
1413 }
1414
1415 dma += I40E_MAX_DATA_PER_TXD;
1416 size -= I40E_MAX_DATA_PER_TXD;
1417
1418 tx_desc->buffer_addr = cpu_to_le64(dma);
1419 }
1420
1421 if (likely(!data_len))
1422 break;
1423
1424 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
1425 size, td_tag);
1426
1427 tx_desc++;
1428 i++;
1429 if (i == tx_ring->count) {
1430 tx_desc = I40E_TX_DESC(tx_ring, 0);
1431 i = 0;
1432 }
1433
1434 size = skb_frag_size(frag);
1435 data_len -= size;
1436
1437 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1438 DMA_TO_DEVICE);
1439
1440 tx_bi = &tx_ring->tx_bi[i];
1441 }
1442
1943d8ba
JB
1443 /* Place RS bit on last descriptor of any packet that spans across the
1444 * 4th descriptor (WB_STRIDE aka 0x3) in a 64B cacheline.
1445 */
1446#define WB_STRIDE 0x3
1447 if (((i & WB_STRIDE) != WB_STRIDE) &&
1448 (first <= &tx_ring->tx_bi[i]) &&
1449 (first >= &tx_ring->tx_bi[i & ~WB_STRIDE])) {
1450 tx_desc->cmd_type_offset_bsz =
1451 build_ctob(td_cmd, td_offset, size, td_tag) |
1452 cpu_to_le64((u64)I40E_TX_DESC_CMD_EOP <<
1453 I40E_TXD_QW1_CMD_SHIFT);
1454 } else {
1455 tx_desc->cmd_type_offset_bsz =
1456 build_ctob(td_cmd, td_offset, size, td_tag) |
1457 cpu_to_le64((u64)I40E_TXD_CMD <<
1458 I40E_TXD_QW1_CMD_SHIFT);
1459 }
7f12ad74
GR
1460
1461 netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
1462 tx_ring->queue_index),
1463 first->bytecount);
1464
1465 /* set the timestamp */
1466 first->time_stamp = jiffies;
1467
1468 /* Force memory writes to complete before letting h/w
1469 * know there are new descriptors to fetch. (Only
1470 * applicable for weak-ordered memory model archs,
1471 * such as IA-64).
1472 */
1473 wmb();
1474
1475 /* set next_to_watch value indicating a packet is present */
1476 first->next_to_watch = tx_desc;
1477
1478 i++;
1479 if (i == tx_ring->count)
1480 i = 0;
1481
1482 tx_ring->next_to_use = i;
1483
1484 /* notify HW of packet */
1485 writel(i, tx_ring->tail);
1486
1487 return;
1488
1489dma_error:
1490 dev_info(tx_ring->dev, "TX DMA map failed\n");
1491
1492 /* clear dma mappings for failed tx_bi map */
1493 for (;;) {
1494 tx_bi = &tx_ring->tx_bi[i];
1495 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
1496 if (tx_bi == first)
1497 break;
1498 if (i == 0)
1499 i = tx_ring->count;
1500 i--;
1501 }
1502
1503 tx_ring->next_to_use = i;
1504}
1505
1506/**
1507 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
1508 * @tx_ring: the ring to be checked
1509 * @size: the size buffer we want to assure is available
1510 *
1511 * Returns -EBUSY if a stop is needed, else 0
1512 **/
1513static inline int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
1514{
1515 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
1516 /* Memory barrier before checking head and tail */
1517 smp_mb();
1518
1519 /* Check again in a case another CPU has just made room available. */
1520 if (likely(I40E_DESC_UNUSED(tx_ring) < size))
1521 return -EBUSY;
1522
1523 /* A reprieve! - use start_queue because it doesn't call schedule */
1524 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
1525 ++tx_ring->tx_stats.restart_queue;
1526 return 0;
1527}
1528
1529/**
1530 * i40e_maybe_stop_tx - 1st level check for tx stop conditions
1531 * @tx_ring: the ring to be checked
1532 * @size: the size buffer we want to assure is available
1533 *
1534 * Returns 0 if stop is not needed
1535 **/
1536static int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
1537{
1538 if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
1539 return 0;
1540 return __i40e_maybe_stop_tx(tx_ring, size);
1541}
1542
1543/**
1544 * i40e_xmit_descriptor_count - calculate number of tx descriptors needed
1545 * @skb: send buffer
1546 * @tx_ring: ring to send buffer on
1547 *
1548 * Returns number of data descriptors needed for this skb. Returns 0 to indicate
1549 * there is not enough descriptors available in this ring since we need at least
1550 * one descriptor.
1551 **/
1552static int i40e_xmit_descriptor_count(struct sk_buff *skb,
1553 struct i40e_ring *tx_ring)
1554{
7f12ad74 1555 unsigned int f;
7f12ad74
GR
1556 int count = 0;
1557
1558 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
1559 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
be560521 1560 * + 4 desc gap to avoid the cache line where head is,
7f12ad74
GR
1561 * + 1 desc for context descriptor,
1562 * otherwise try next time
1563 */
7f12ad74
GR
1564 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1565 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
980093eb 1566
7f12ad74 1567 count += TXD_USE_COUNT(skb_headlen(skb));
be560521 1568 if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
7f12ad74
GR
1569 tx_ring->tx_stats.tx_busy++;
1570 return 0;
1571 }
1572 return count;
1573}
1574
1575/**
1576 * i40e_xmit_frame_ring - Sends buffer on Tx ring
1577 * @skb: send buffer
1578 * @tx_ring: ring to send buffer on
1579 *
1580 * Returns NETDEV_TX_OK if sent, else an error code
1581 **/
1582static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
1583 struct i40e_ring *tx_ring)
1584{
1585 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
1586 u32 cd_tunneling = 0, cd_l2tag2 = 0;
1587 struct i40e_tx_buffer *first;
1588 u32 td_offset = 0;
1589 u32 tx_flags = 0;
1590 __be16 protocol;
1591 u32 td_cmd = 0;
1592 u8 hdr_len = 0;
1593 int tso;
1594 if (0 == i40e_xmit_descriptor_count(skb, tx_ring))
1595 return NETDEV_TX_BUSY;
1596
1597 /* prepare the xmit flags */
1598 if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
1599 goto out_drop;
1600
1601 /* obtain protocol of skb */
a12c4158 1602 protocol = vlan_get_protocol(skb);
7f12ad74
GR
1603
1604 /* record the location of the first descriptor for this packet */
1605 first = &tx_ring->tx_bi[tx_ring->next_to_use];
1606
1607 /* setup IPv4/IPv6 offloads */
1608 if (protocol == htons(ETH_P_IP))
1609 tx_flags |= I40E_TX_FLAGS_IPV4;
1610 else if (protocol == htons(ETH_P_IPV6))
1611 tx_flags |= I40E_TX_FLAGS_IPV6;
1612
1613 tso = i40e_tso(tx_ring, skb, tx_flags, protocol, &hdr_len,
1614 &cd_type_cmd_tso_mss, &cd_tunneling);
1615
1616 if (tso < 0)
1617 goto out_drop;
1618 else if (tso)
1619 tx_flags |= I40E_TX_FLAGS_TSO;
1620
1621 skb_tx_timestamp(skb);
1622
1623 /* always enable CRC insertion offload */
1624 td_cmd |= I40E_TX_DESC_CMD_ICRC;
1625
1626 /* Always offload the checksum, since it's in the data descriptor */
1627 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1628 tx_flags |= I40E_TX_FLAGS_CSUM;
1629
1630 i40e_tx_enable_csum(skb, tx_flags, &td_cmd, &td_offset,
1631 tx_ring, &cd_tunneling);
1632 }
1633
1634 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
1635 cd_tunneling, cd_l2tag2);
1636
1637 i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
1638 td_cmd, td_offset);
1639
1640 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
1641
1642 return NETDEV_TX_OK;
1643
1644out_drop:
1645 dev_kfree_skb_any(skb);
1646 return NETDEV_TX_OK;
1647}
1648
1649/**
1650 * i40evf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
1651 * @skb: send buffer
1652 * @netdev: network interface device structure
1653 *
1654 * Returns NETDEV_TX_OK if sent, else an error code
1655 **/
1656netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
1657{
1658 struct i40evf_adapter *adapter = netdev_priv(netdev);
1659 struct i40e_ring *tx_ring = adapter->tx_rings[skb->queue_mapping];
1660
1661 /* hardware can't handle really short frames, hardware padding works
1662 * beyond this point
1663 */
1664 if (unlikely(skb->len < I40E_MIN_TX_LEN)) {
1665 if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len))
1666 return NETDEV_TX_OK;
1667 skb->len = I40E_MIN_TX_LEN;
1668 skb_set_tail_pointer(skb, I40E_MIN_TX_LEN);
1669 }
1670
1671 return i40e_xmit_frame_ring(skb, tx_ring);
1672}