i40e: Prevent overflow due to kzalloc
[linux-2.6-block.git] / drivers / net / ethernet / intel / i40evf / i40e_txrx.c
CommitLineData
7f12ad74
GR
1/*******************************************************************************
2 *
3 * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
af1a2a9c 4 * Copyright(c) 2013 - 2014 Intel Corporation.
7f12ad74
GR
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * The full GNU General Public License is included in this distribution in
16 * the file called "COPYING".
17 *
18 * Contact Information:
19 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
20 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
21 *
22 ******************************************************************************/
23
7ed3f5f0
PG
24#include <linux/prefetch.h>
25
7f12ad74
GR
26#include "i40evf.h"
27
28static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
29 u32 td_tag)
30{
31 return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
32 ((u64)td_cmd << I40E_TXD_QW1_CMD_SHIFT) |
33 ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
34 ((u64)size << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
35 ((u64)td_tag << I40E_TXD_QW1_L2TAG1_SHIFT));
36}
37
38#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
39
40/**
41 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
42 * @ring: the ring that owns the buffer
43 * @tx_buffer: the buffer to free
44 **/
45static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
46 struct i40e_tx_buffer *tx_buffer)
47{
48 if (tx_buffer->skb) {
49 dev_kfree_skb_any(tx_buffer->skb);
50 if (dma_unmap_len(tx_buffer, len))
51 dma_unmap_single(ring->dev,
52 dma_unmap_addr(tx_buffer, dma),
53 dma_unmap_len(tx_buffer, len),
54 DMA_TO_DEVICE);
55 } else if (dma_unmap_len(tx_buffer, len)) {
56 dma_unmap_page(ring->dev,
57 dma_unmap_addr(tx_buffer, dma),
58 dma_unmap_len(tx_buffer, len),
59 DMA_TO_DEVICE);
60 }
61 tx_buffer->next_to_watch = NULL;
62 tx_buffer->skb = NULL;
63 dma_unmap_len_set(tx_buffer, len, 0);
64 /* tx_buffer must be completely set up in the transmit path */
65}
66
67/**
68 * i40evf_clean_tx_ring - Free any empty Tx buffers
69 * @tx_ring: ring to be cleaned
70 **/
71void i40evf_clean_tx_ring(struct i40e_ring *tx_ring)
72{
73 unsigned long bi_size;
74 u16 i;
75
76 /* ring already cleared, nothing to do */
77 if (!tx_ring->tx_bi)
78 return;
79
80 /* Free all the Tx ring sk_buffs */
81 for (i = 0; i < tx_ring->count; i++)
82 i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
83
84 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
85 memset(tx_ring->tx_bi, 0, bi_size);
86
87 /* Zero out the descriptor ring */
88 memset(tx_ring->desc, 0, tx_ring->size);
89
90 tx_ring->next_to_use = 0;
91 tx_ring->next_to_clean = 0;
92
93 if (!tx_ring->netdev)
94 return;
95
96 /* cleanup Tx queue statistics */
97 netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
98 tx_ring->queue_index));
99}
100
101/**
102 * i40evf_free_tx_resources - Free Tx resources per queue
103 * @tx_ring: Tx descriptor ring for a specific queue
104 *
105 * Free all transmit software resources
106 **/
107void i40evf_free_tx_resources(struct i40e_ring *tx_ring)
108{
109 i40evf_clean_tx_ring(tx_ring);
110 kfree(tx_ring->tx_bi);
111 tx_ring->tx_bi = NULL;
112
113 if (tx_ring->desc) {
114 dma_free_coherent(tx_ring->dev, tx_ring->size,
115 tx_ring->desc, tx_ring->dma);
116 tx_ring->desc = NULL;
117 }
118}
119
120/**
121 * i40e_get_tx_pending - how many tx descriptors not processed
122 * @tx_ring: the ring of descriptors
123 *
124 * Since there is no access to the ring head register
125 * in XL710, we need to use our local copies
126 **/
127static u32 i40e_get_tx_pending(struct i40e_ring *ring)
128{
129 u32 ntu = ((ring->next_to_clean <= ring->next_to_use)
130 ? ring->next_to_use
131 : ring->next_to_use + ring->count);
132 return ntu - ring->next_to_clean;
133}
134
135/**
136 * i40e_check_tx_hang - Is there a hang in the Tx queue
137 * @tx_ring: the ring of descriptors
138 **/
139static bool i40e_check_tx_hang(struct i40e_ring *tx_ring)
140{
141 u32 tx_pending = i40e_get_tx_pending(tx_ring);
142 bool ret = false;
143
144 clear_check_for_tx_hang(tx_ring);
145
146 /* Check for a hung queue, but be thorough. This verifies
147 * that a transmit has been completed since the previous
148 * check AND there is at least one packet pending. The
149 * ARMED bit is set to indicate a potential hang. The
150 * bit is cleared if a pause frame is received to remove
151 * false hang detection due to PFC or 802.3x frames. By
152 * requiring this to fail twice we avoid races with
153 * PFC clearing the ARMED bit and conditions where we
154 * run the check_tx_hang logic with a transmit completion
155 * pending but without time to complete it yet.
156 */
157 if ((tx_ring->tx_stats.tx_done_old == tx_ring->stats.packets) &&
158 tx_pending) {
159 /* make sure it is true for two checks in a row */
160 ret = test_and_set_bit(__I40E_HANG_CHECK_ARMED,
161 &tx_ring->state);
162 } else {
163 /* update completed stats and disarm the hang check */
164 tx_ring->tx_stats.tx_done_old = tx_ring->stats.packets;
165 clear_bit(__I40E_HANG_CHECK_ARMED, &tx_ring->state);
166 }
167
168 return ret;
169}
170
171/**
172 * i40e_clean_tx_irq - Reclaim resources after transmit completes
173 * @tx_ring: tx ring to clean
174 * @budget: how many cleans we're allowed
175 *
176 * Returns true if there's any budget left (e.g. the clean is finished)
177 **/
178static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget)
179{
180 u16 i = tx_ring->next_to_clean;
181 struct i40e_tx_buffer *tx_buf;
182 struct i40e_tx_desc *tx_desc;
183 unsigned int total_packets = 0;
184 unsigned int total_bytes = 0;
185
186 tx_buf = &tx_ring->tx_bi[i];
187 tx_desc = I40E_TX_DESC(tx_ring, i);
188 i -= tx_ring->count;
189
190 do {
191 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
192
193 /* if next_to_watch is not set then there is no work pending */
194 if (!eop_desc)
195 break;
196
197 /* prevent any other reads prior to eop_desc */
198 read_barrier_depends();
199
200 /* if the descriptor isn't done, no work yet to do */
201 if (!(eop_desc->cmd_type_offset_bsz &
202 cpu_to_le64(I40E_TX_DESC_DTYPE_DESC_DONE)))
203 break;
204
205 /* clear next_to_watch to prevent false hangs */
206 tx_buf->next_to_watch = NULL;
207
208 /* update the statistics for this packet */
209 total_bytes += tx_buf->bytecount;
210 total_packets += tx_buf->gso_segs;
211
212 /* free the skb */
213 dev_kfree_skb_any(tx_buf->skb);
214
215 /* unmap skb header data */
216 dma_unmap_single(tx_ring->dev,
217 dma_unmap_addr(tx_buf, dma),
218 dma_unmap_len(tx_buf, len),
219 DMA_TO_DEVICE);
220
221 /* clear tx_buffer data */
222 tx_buf->skb = NULL;
223 dma_unmap_len_set(tx_buf, len, 0);
224
225 /* unmap remaining buffers */
226 while (tx_desc != eop_desc) {
227
228 tx_buf++;
229 tx_desc++;
230 i++;
231 if (unlikely(!i)) {
232 i -= tx_ring->count;
233 tx_buf = tx_ring->tx_bi;
234 tx_desc = I40E_TX_DESC(tx_ring, 0);
235 }
236
237 /* unmap any remaining paged data */
238 if (dma_unmap_len(tx_buf, len)) {
239 dma_unmap_page(tx_ring->dev,
240 dma_unmap_addr(tx_buf, dma),
241 dma_unmap_len(tx_buf, len),
242 DMA_TO_DEVICE);
243 dma_unmap_len_set(tx_buf, len, 0);
244 }
245 }
246
247 /* move us one more past the eop_desc for start of next pkt */
248 tx_buf++;
249 tx_desc++;
250 i++;
251 if (unlikely(!i)) {
252 i -= tx_ring->count;
253 tx_buf = tx_ring->tx_bi;
254 tx_desc = I40E_TX_DESC(tx_ring, 0);
255 }
256
257 /* update budget accounting */
258 budget--;
259 } while (likely(budget));
260
261 i += tx_ring->count;
262 tx_ring->next_to_clean = i;
263 u64_stats_update_begin(&tx_ring->syncp);
264 tx_ring->stats.bytes += total_bytes;
265 tx_ring->stats.packets += total_packets;
266 u64_stats_update_end(&tx_ring->syncp);
267 tx_ring->q_vector->tx.total_bytes += total_bytes;
268 tx_ring->q_vector->tx.total_packets += total_packets;
269
270 if (check_for_tx_hang(tx_ring) && i40e_check_tx_hang(tx_ring)) {
271 /* schedule immediate reset if we believe we hung */
272 dev_info(tx_ring->dev, "Detected Tx Unit Hang\n"
273 " VSI <%d>\n"
274 " Tx Queue <%d>\n"
275 " next_to_use <%x>\n"
276 " next_to_clean <%x>\n",
277 tx_ring->vsi->seid,
278 tx_ring->queue_index,
279 tx_ring->next_to_use, i);
280 dev_info(tx_ring->dev, "tx_bi[next_to_clean]\n"
281 " time_stamp <%lx>\n"
282 " jiffies <%lx>\n",
283 tx_ring->tx_bi[i].time_stamp, jiffies);
284
285 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
286
287 dev_info(tx_ring->dev,
288 "tx hang detected on queue %d, resetting adapter\n",
289 tx_ring->queue_index);
290
291 tx_ring->netdev->netdev_ops->ndo_tx_timeout(tx_ring->netdev);
292
293 /* the adapter is about to reset, no point in enabling stuff */
294 return true;
295 }
296
297 netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
298 tx_ring->queue_index),
299 total_packets, total_bytes);
300
301#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
302 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
303 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
304 /* Make sure that anybody stopping the queue after this
305 * sees the new next_to_clean.
306 */
307 smp_mb();
308 if (__netif_subqueue_stopped(tx_ring->netdev,
309 tx_ring->queue_index) &&
310 !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) {
311 netif_wake_subqueue(tx_ring->netdev,
312 tx_ring->queue_index);
313 ++tx_ring->tx_stats.restart_queue;
314 }
315 }
316
317 return budget > 0;
318}
319
320/**
321 * i40e_set_new_dynamic_itr - Find new ITR level
322 * @rc: structure containing ring performance data
323 *
324 * Stores a new ITR value based on packets and byte counts during
325 * the last interrupt. The advantage of per interrupt computation
326 * is faster updates and more accurate ITR for the current traffic
327 * pattern. Constants in this function were computed based on
328 * theoretical maximum wire speed and thresholds were set based on
329 * testing data as well as attempting to minimize response time
330 * while increasing bulk throughput.
331 **/
332static void i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
333{
334 enum i40e_latency_range new_latency_range = rc->latency_range;
335 u32 new_itr = rc->itr;
336 int bytes_per_int;
337
338 if (rc->total_packets == 0 || !rc->itr)
339 return;
340
341 /* simple throttlerate management
342 * 0-10MB/s lowest (100000 ints/s)
343 * 10-20MB/s low (20000 ints/s)
344 * 20-1249MB/s bulk (8000 ints/s)
345 */
346 bytes_per_int = rc->total_bytes / rc->itr;
347 switch (rc->itr) {
348 case I40E_LOWEST_LATENCY:
349 if (bytes_per_int > 10)
350 new_latency_range = I40E_LOW_LATENCY;
351 break;
352 case I40E_LOW_LATENCY:
353 if (bytes_per_int > 20)
354 new_latency_range = I40E_BULK_LATENCY;
355 else if (bytes_per_int <= 10)
356 new_latency_range = I40E_LOWEST_LATENCY;
357 break;
358 case I40E_BULK_LATENCY:
359 if (bytes_per_int <= 20)
360 rc->latency_range = I40E_LOW_LATENCY;
361 break;
362 }
363
364 switch (new_latency_range) {
365 case I40E_LOWEST_LATENCY:
366 new_itr = I40E_ITR_100K;
367 break;
368 case I40E_LOW_LATENCY:
369 new_itr = I40E_ITR_20K;
370 break;
371 case I40E_BULK_LATENCY:
372 new_itr = I40E_ITR_8K;
373 break;
374 default:
375 break;
376 }
377
378 if (new_itr != rc->itr) {
379 /* do an exponential smoothing */
380 new_itr = (10 * new_itr * rc->itr) /
381 ((9 * new_itr) + rc->itr);
382 rc->itr = new_itr & I40E_MAX_ITR;
383 }
384
385 rc->total_bytes = 0;
386 rc->total_packets = 0;
387}
388
389/**
390 * i40e_update_dynamic_itr - Adjust ITR based on bytes per int
391 * @q_vector: the vector to adjust
392 **/
393static void i40e_update_dynamic_itr(struct i40e_q_vector *q_vector)
394{
395 u16 vector = q_vector->vsi->base_vector + q_vector->v_idx;
396 struct i40e_hw *hw = &q_vector->vsi->back->hw;
397 u32 reg_addr;
398 u16 old_itr;
399
400 reg_addr = I40E_VFINT_ITRN1(I40E_RX_ITR, vector - 1);
401 old_itr = q_vector->rx.itr;
402 i40e_set_new_dynamic_itr(&q_vector->rx);
403 if (old_itr != q_vector->rx.itr)
404 wr32(hw, reg_addr, q_vector->rx.itr);
405
406 reg_addr = I40E_VFINT_ITRN1(I40E_TX_ITR, vector - 1);
407 old_itr = q_vector->tx.itr;
408 i40e_set_new_dynamic_itr(&q_vector->tx);
409 if (old_itr != q_vector->tx.itr)
410 wr32(hw, reg_addr, q_vector->tx.itr);
411}
412
413/**
414 * i40evf_setup_tx_descriptors - Allocate the Tx descriptors
415 * @tx_ring: the tx ring to set up
416 *
417 * Return 0 on success, negative on error
418 **/
419int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring)
420{
421 struct device *dev = tx_ring->dev;
422 int bi_size;
423
424 if (!dev)
425 return -ENOMEM;
426
427 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
428 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
429 if (!tx_ring->tx_bi)
430 goto err;
431
432 /* round up to nearest 4K */
433 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
434 tx_ring->size = ALIGN(tx_ring->size, 4096);
435 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
436 &tx_ring->dma, GFP_KERNEL);
437 if (!tx_ring->desc) {
438 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
439 tx_ring->size);
440 goto err;
441 }
442
443 tx_ring->next_to_use = 0;
444 tx_ring->next_to_clean = 0;
445 return 0;
446
447err:
448 kfree(tx_ring->tx_bi);
449 tx_ring->tx_bi = NULL;
450 return -ENOMEM;
451}
452
453/**
454 * i40evf_clean_rx_ring - Free Rx buffers
455 * @rx_ring: ring to be cleaned
456 **/
457void i40evf_clean_rx_ring(struct i40e_ring *rx_ring)
458{
459 struct device *dev = rx_ring->dev;
460 struct i40e_rx_buffer *rx_bi;
461 unsigned long bi_size;
462 u16 i;
463
464 /* ring already cleared, nothing to do */
465 if (!rx_ring->rx_bi)
466 return;
467
468 /* Free all the Rx ring sk_buffs */
469 for (i = 0; i < rx_ring->count; i++) {
470 rx_bi = &rx_ring->rx_bi[i];
471 if (rx_bi->dma) {
472 dma_unmap_single(dev,
473 rx_bi->dma,
474 rx_ring->rx_buf_len,
475 DMA_FROM_DEVICE);
476 rx_bi->dma = 0;
477 }
478 if (rx_bi->skb) {
479 dev_kfree_skb(rx_bi->skb);
480 rx_bi->skb = NULL;
481 }
482 if (rx_bi->page) {
483 if (rx_bi->page_dma) {
484 dma_unmap_page(dev,
485 rx_bi->page_dma,
486 PAGE_SIZE / 2,
487 DMA_FROM_DEVICE);
488 rx_bi->page_dma = 0;
489 }
490 __free_page(rx_bi->page);
491 rx_bi->page = NULL;
492 rx_bi->page_offset = 0;
493 }
494 }
495
496 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
497 memset(rx_ring->rx_bi, 0, bi_size);
498
499 /* Zero out the descriptor ring */
500 memset(rx_ring->desc, 0, rx_ring->size);
501
502 rx_ring->next_to_clean = 0;
503 rx_ring->next_to_use = 0;
504}
505
506/**
507 * i40evf_free_rx_resources - Free Rx resources
508 * @rx_ring: ring to clean the resources from
509 *
510 * Free all receive software resources
511 **/
512void i40evf_free_rx_resources(struct i40e_ring *rx_ring)
513{
514 i40evf_clean_rx_ring(rx_ring);
515 kfree(rx_ring->rx_bi);
516 rx_ring->rx_bi = NULL;
517
518 if (rx_ring->desc) {
519 dma_free_coherent(rx_ring->dev, rx_ring->size,
520 rx_ring->desc, rx_ring->dma);
521 rx_ring->desc = NULL;
522 }
523}
524
525/**
526 * i40evf_setup_rx_descriptors - Allocate Rx descriptors
527 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
528 *
529 * Returns 0 on success, negative on failure
530 **/
531int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring)
532{
533 struct device *dev = rx_ring->dev;
534 int bi_size;
535
536 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
537 rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
538 if (!rx_ring->rx_bi)
539 goto err;
540
541 /* Round up to nearest 4K */
542 rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
543 ? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
544 : rx_ring->count * sizeof(union i40e_32byte_rx_desc);
545 rx_ring->size = ALIGN(rx_ring->size, 4096);
546 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
547 &rx_ring->dma, GFP_KERNEL);
548
549 if (!rx_ring->desc) {
550 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
551 rx_ring->size);
552 goto err;
553 }
554
555 rx_ring->next_to_clean = 0;
556 rx_ring->next_to_use = 0;
557
558 return 0;
559err:
560 kfree(rx_ring->rx_bi);
561 rx_ring->rx_bi = NULL;
562 return -ENOMEM;
563}
564
565/**
566 * i40e_release_rx_desc - Store the new tail and head values
567 * @rx_ring: ring to bump
568 * @val: new head index
569 **/
570static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
571{
572 rx_ring->next_to_use = val;
573 /* Force memory writes to complete before letting h/w
574 * know there are new descriptors to fetch. (Only
575 * applicable for weak-ordered memory model archs,
576 * such as IA-64).
577 */
578 wmb();
579 writel(val, rx_ring->tail);
580}
581
582/**
583 * i40evf_alloc_rx_buffers - Replace used receive buffers; packet split
584 * @rx_ring: ring to place buffers on
585 * @cleaned_count: number of buffers to replace
586 **/
587void i40evf_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
588{
589 u16 i = rx_ring->next_to_use;
590 union i40e_rx_desc *rx_desc;
591 struct i40e_rx_buffer *bi;
592 struct sk_buff *skb;
593
594 /* do nothing if no valid netdev defined */
595 if (!rx_ring->netdev || !cleaned_count)
596 return;
597
598 while (cleaned_count--) {
599 rx_desc = I40E_RX_DESC(rx_ring, i);
600 bi = &rx_ring->rx_bi[i];
601 skb = bi->skb;
602
603 if (!skb) {
604 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
605 rx_ring->rx_buf_len);
606 if (!skb) {
607 rx_ring->rx_stats.alloc_buff_failed++;
608 goto no_buffers;
609 }
610 /* initialize queue mapping */
611 skb_record_rx_queue(skb, rx_ring->queue_index);
612 bi->skb = skb;
613 }
614
615 if (!bi->dma) {
616 bi->dma = dma_map_single(rx_ring->dev,
617 skb->data,
618 rx_ring->rx_buf_len,
619 DMA_FROM_DEVICE);
620 if (dma_mapping_error(rx_ring->dev, bi->dma)) {
621 rx_ring->rx_stats.alloc_buff_failed++;
622 bi->dma = 0;
623 goto no_buffers;
624 }
625 }
626
627 if (ring_is_ps_enabled(rx_ring)) {
628 if (!bi->page) {
629 bi->page = alloc_page(GFP_ATOMIC);
630 if (!bi->page) {
631 rx_ring->rx_stats.alloc_page_failed++;
632 goto no_buffers;
633 }
634 }
635
636 if (!bi->page_dma) {
637 /* use a half page if we're re-using */
638 bi->page_offset ^= PAGE_SIZE / 2;
639 bi->page_dma = dma_map_page(rx_ring->dev,
640 bi->page,
641 bi->page_offset,
642 PAGE_SIZE / 2,
643 DMA_FROM_DEVICE);
644 if (dma_mapping_error(rx_ring->dev,
645 bi->page_dma)) {
646 rx_ring->rx_stats.alloc_page_failed++;
647 bi->page_dma = 0;
648 goto no_buffers;
649 }
650 }
651
652 /* Refresh the desc even if buffer_addrs didn't change
653 * because each write-back erases this info.
654 */
655 rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
656 rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
657 } else {
658 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
659 rx_desc->read.hdr_addr = 0;
660 }
661 i++;
662 if (i == rx_ring->count)
663 i = 0;
664 }
665
666no_buffers:
667 if (rx_ring->next_to_use != i)
668 i40e_release_rx_desc(rx_ring, i);
669}
670
671/**
672 * i40e_receive_skb - Send a completed packet up the stack
673 * @rx_ring: rx ring in play
674 * @skb: packet to send up
675 * @vlan_tag: vlan tag for packet
676 **/
677static void i40e_receive_skb(struct i40e_ring *rx_ring,
678 struct sk_buff *skb, u16 vlan_tag)
679{
680 struct i40e_q_vector *q_vector = rx_ring->q_vector;
681 struct i40e_vsi *vsi = rx_ring->vsi;
682 u64 flags = vsi->back->flags;
683
684 if (vlan_tag & VLAN_VID_MASK)
685 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
686
687 if (flags & I40E_FLAG_IN_NETPOLL)
688 netif_rx(skb);
689 else
690 napi_gro_receive(&q_vector->napi, skb);
691}
692
693/**
694 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
695 * @vsi: the VSI we care about
696 * @skb: skb currently being received and modified
697 * @rx_status: status value of last descriptor in packet
698 * @rx_error: error value of last descriptor in packet
699 * @rx_ptype: ptype value of last descriptor in packet
700 **/
701static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
702 struct sk_buff *skb,
703 u32 rx_status,
704 u32 rx_error,
705 u16 rx_ptype)
706{
707 bool ipv4_tunnel, ipv6_tunnel;
708 __wsum rx_udp_csum;
709 __sum16 csum;
710 struct iphdr *iph;
711
712 ipv4_tunnel = (rx_ptype > I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
713 (rx_ptype < I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
714 ipv6_tunnel = (rx_ptype > I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
715 (rx_ptype < I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);
716
717 skb->encapsulation = ipv4_tunnel || ipv6_tunnel;
718 skb->ip_summed = CHECKSUM_NONE;
719
720 /* Rx csum enabled and ip headers found? */
721 if (!(vsi->netdev->features & NETIF_F_RXCSUM &&
722 rx_status & (1 << I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
723 return;
724
ddf1d0d7 725 /* likely incorrect csum if alternate IP extension headers found */
7f12ad74
GR
726 if (rx_status & (1 << I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
727 return;
728
729 /* IP or L4 or outmost IP checksum error */
730 if (rx_error & ((1 << I40E_RX_DESC_ERROR_IPE_SHIFT) |
731 (1 << I40E_RX_DESC_ERROR_L4E_SHIFT) |
732 (1 << I40E_RX_DESC_ERROR_EIPE_SHIFT))) {
733 vsi->back->hw_csum_rx_error++;
734 return;
735 }
736
737 if (ipv4_tunnel &&
738 !(rx_status & (1 << I40E_RX_DESC_STATUS_UDP_0_SHIFT))) {
739 /* If VXLAN traffic has an outer UDPv4 checksum we need to check
740 * it in the driver, hardware does not do it for us.
741 * Since L3L4P bit was set we assume a valid IHL value (>=5)
742 * so the total length of IPv4 header is IHL*4 bytes
743 */
744 skb->transport_header = skb->mac_header +
745 sizeof(struct ethhdr) +
746 (ip_hdr(skb)->ihl * 4);
747
748 /* Add 4 bytes for VLAN tagged packets */
749 skb->transport_header += (skb->protocol == htons(ETH_P_8021Q) ||
750 skb->protocol == htons(ETH_P_8021AD))
751 ? VLAN_HLEN : 0;
752
753 rx_udp_csum = udp_csum(skb);
754 iph = ip_hdr(skb);
755 csum = csum_tcpudp_magic(
756 iph->saddr, iph->daddr,
757 (skb->len - skb_transport_offset(skb)),
758 IPPROTO_UDP, rx_udp_csum);
759
760 if (udp_hdr(skb)->check != csum) {
761 vsi->back->hw_csum_rx_error++;
762 return;
763 }
764 }
765
766 skb->ip_summed = CHECKSUM_UNNECESSARY;
767}
768
769/**
770 * i40e_rx_hash - returns the hash value from the Rx descriptor
771 * @ring: descriptor ring
772 * @rx_desc: specific descriptor
773 **/
774static inline u32 i40e_rx_hash(struct i40e_ring *ring,
775 union i40e_rx_desc *rx_desc)
776{
777 const __le64 rss_mask =
778 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
779 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
780
781 if ((ring->netdev->features & NETIF_F_RXHASH) &&
782 (rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask)
783 return le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
784 else
785 return 0;
786}
787
788/**
789 * i40e_clean_rx_irq - Reclaim resources after receive completes
790 * @rx_ring: rx ring to clean
791 * @budget: how many cleans we're allowed
792 *
793 * Returns true if there's any budget left (e.g. the clean is finished)
794 **/
795static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
796{
797 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
798 u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
799 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
800 const int current_node = numa_node_id();
801 struct i40e_vsi *vsi = rx_ring->vsi;
802 u16 i = rx_ring->next_to_clean;
803 union i40e_rx_desc *rx_desc;
804 u32 rx_error, rx_status;
805 u64 qword;
806 u16 rx_ptype;
807
808 rx_desc = I40E_RX_DESC(rx_ring, i);
809 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
af1a2a9c
JB
810 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
811 I40E_RXD_QW1_STATUS_SHIFT;
7f12ad74
GR
812
813 while (rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)) {
814 union i40e_rx_desc *next_rxd;
815 struct i40e_rx_buffer *rx_bi;
816 struct sk_buff *skb;
817 u16 vlan_tag;
818 rx_bi = &rx_ring->rx_bi[i];
819 skb = rx_bi->skb;
820 prefetch(skb->data);
821
822 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
823 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
824 rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
825 I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
826 rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
827 I40E_RXD_QW1_LENGTH_SPH_SHIFT;
828
829 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
830 I40E_RXD_QW1_ERROR_SHIFT;
831 rx_hbo = rx_error & (1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
832 rx_error &= ~(1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
833
834 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
835 I40E_RXD_QW1_PTYPE_SHIFT;
836 rx_bi->skb = NULL;
837
838 /* This memory barrier is needed to keep us from reading
839 * any other fields out of the rx_desc until we know the
840 * STATUS_DD bit is set
841 */
842 rmb();
843
844 /* Get the header and possibly the whole packet
845 * If this is an skb from previous receive dma will be 0
846 */
847 if (rx_bi->dma) {
848 u16 len;
849
850 if (rx_hbo)
851 len = I40E_RX_HDR_SIZE;
852 else if (rx_sph)
853 len = rx_header_len;
854 else if (rx_packet_len)
855 len = rx_packet_len; /* 1buf/no split found */
856 else
857 len = rx_header_len; /* split always mode */
858
859 skb_put(skb, len);
860 dma_unmap_single(rx_ring->dev,
861 rx_bi->dma,
862 rx_ring->rx_buf_len,
863 DMA_FROM_DEVICE);
864 rx_bi->dma = 0;
865 }
866
867 /* Get the rest of the data if this was a header split */
868 if (ring_is_ps_enabled(rx_ring) && rx_packet_len) {
869
870 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
871 rx_bi->page,
872 rx_bi->page_offset,
873 rx_packet_len);
874
875 skb->len += rx_packet_len;
876 skb->data_len += rx_packet_len;
877 skb->truesize += rx_packet_len;
878
879 if ((page_count(rx_bi->page) == 1) &&
880 (page_to_nid(rx_bi->page) == current_node))
881 get_page(rx_bi->page);
882 else
883 rx_bi->page = NULL;
884
885 dma_unmap_page(rx_ring->dev,
886 rx_bi->page_dma,
887 PAGE_SIZE / 2,
888 DMA_FROM_DEVICE);
889 rx_bi->page_dma = 0;
890 }
891 I40E_RX_NEXT_DESC_PREFETCH(rx_ring, i, next_rxd);
892
893 if (unlikely(
894 !(rx_status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
895 struct i40e_rx_buffer *next_buffer;
896
897 next_buffer = &rx_ring->rx_bi[i];
898
899 if (ring_is_ps_enabled(rx_ring)) {
900 rx_bi->skb = next_buffer->skb;
901 rx_bi->dma = next_buffer->dma;
902 next_buffer->skb = skb;
903 next_buffer->dma = 0;
904 }
905 rx_ring->rx_stats.non_eop_descs++;
906 goto next_desc;
907 }
908
909 /* ERR_MASK will only have valid bits if EOP set */
910 if (unlikely(rx_error & (1 << I40E_RX_DESC_ERROR_RXE_SHIFT))) {
911 dev_kfree_skb_any(skb);
912 goto next_desc;
913 }
914
915 skb->rxhash = i40e_rx_hash(rx_ring, rx_desc);
916 /* probably a little skewed due to removing CRC */
917 total_rx_bytes += skb->len;
918 total_rx_packets++;
919
920 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
921
922 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
923
924 vlan_tag = rx_status & (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
925 ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
926 : 0;
927 i40e_receive_skb(rx_ring, skb, vlan_tag);
928
929 rx_ring->netdev->last_rx = jiffies;
930 budget--;
931next_desc:
932 rx_desc->wb.qword1.status_error_len = 0;
933 if (!budget)
934 break;
935
936 cleaned_count++;
937 /* return some buffers to hardware, one at a time is too slow */
938 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
939 i40evf_alloc_rx_buffers(rx_ring, cleaned_count);
940 cleaned_count = 0;
941 }
942
943 /* use prefetched values */
944 rx_desc = next_rxd;
945 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
946 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
947 I40E_RXD_QW1_STATUS_SHIFT;
948 }
949
950 rx_ring->next_to_clean = i;
951 u64_stats_update_begin(&rx_ring->syncp);
952 rx_ring->stats.packets += total_rx_packets;
953 rx_ring->stats.bytes += total_rx_bytes;
954 u64_stats_update_end(&rx_ring->syncp);
955 rx_ring->q_vector->rx.total_packets += total_rx_packets;
956 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
957
958 if (cleaned_count)
959 i40evf_alloc_rx_buffers(rx_ring, cleaned_count);
960
961 return budget > 0;
962}
963
964/**
965 * i40evf_napi_poll - NAPI polling Rx/Tx cleanup routine
966 * @napi: napi struct with our devices info in it
967 * @budget: amount of work driver is allowed to do this pass, in packets
968 *
969 * This function will clean all queues associated with a q_vector.
970 *
971 * Returns the amount of work done
972 **/
973int i40evf_napi_poll(struct napi_struct *napi, int budget)
974{
975 struct i40e_q_vector *q_vector =
976 container_of(napi, struct i40e_q_vector, napi);
977 struct i40e_vsi *vsi = q_vector->vsi;
978 struct i40e_ring *ring;
979 bool clean_complete = true;
980 int budget_per_ring;
981
982 if (test_bit(__I40E_DOWN, &vsi->state)) {
983 napi_complete(napi);
984 return 0;
985 }
986
987 /* Since the actual Tx work is minimal, we can give the Tx a larger
988 * budget and be more aggressive about cleaning up the Tx descriptors.
989 */
990 i40e_for_each_ring(ring, q_vector->tx)
991 clean_complete &= i40e_clean_tx_irq(ring, vsi->work_limit);
992
993 /* We attempt to distribute budget to each Rx queue fairly, but don't
994 * allow the budget to go below 1 because that would exit polling early.
995 */
996 budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
997
998 i40e_for_each_ring(ring, q_vector->rx)
999 clean_complete &= i40e_clean_rx_irq(ring, budget_per_ring);
1000
1001 /* If work not completed, return budget and polling will return */
1002 if (!clean_complete)
1003 return budget;
1004
1005 /* Work is done so exit the polling mode and re-enable the interrupt */
1006 napi_complete(napi);
1007 if (ITR_IS_DYNAMIC(vsi->rx_itr_setting) ||
1008 ITR_IS_DYNAMIC(vsi->tx_itr_setting))
1009 i40e_update_dynamic_itr(q_vector);
1010
1011 if (!test_bit(__I40E_DOWN, &vsi->state))
1012 i40evf_irq_enable_queues(vsi->back, 1 << q_vector->v_idx);
1013
1014 return 0;
1015}
1016
1017/**
1018 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1019 * @skb: send buffer
1020 * @tx_ring: ring to send buffer on
1021 * @flags: the tx flags to be set
1022 *
1023 * Checks the skb and set up correspondingly several generic transmit flags
1024 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1025 *
1026 * Returns error code indicate the frame should be dropped upon error and the
1027 * otherwise returns 0 to indicate the flags has been set properly.
1028 **/
1029static int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
1030 struct i40e_ring *tx_ring,
1031 u32 *flags)
1032{
1033 __be16 protocol = skb->protocol;
1034 u32 tx_flags = 0;
1035
1036 /* if we have a HW VLAN tag being added, default to the HW one */
1037 if (vlan_tx_tag_present(skb)) {
1038 tx_flags |= vlan_tx_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
1039 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
1040 /* else if it is a SW VLAN, check the next protocol and store the tag */
1041 } else if (protocol == htons(ETH_P_8021Q)) {
1042 struct vlan_hdr *vhdr, _vhdr;
1043 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
1044 if (!vhdr)
1045 return -EINVAL;
1046
1047 protocol = vhdr->h_vlan_encapsulated_proto;
1048 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
1049 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
1050 }
1051
1052 *flags = tx_flags;
1053 return 0;
1054}
1055
1056/**
1057 * i40e_tso - set up the tso context descriptor
1058 * @tx_ring: ptr to the ring to send
1059 * @skb: ptr to the skb we're sending
1060 * @tx_flags: the collected send information
1061 * @protocol: the send protocol
1062 * @hdr_len: ptr to the size of the packet header
1063 * @cd_tunneling: ptr to context descriptor bits
1064 *
1065 * Returns 0 if no TSO can happen, 1 if tso is going, or error
1066 **/
1067static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb,
1068 u32 tx_flags, __be16 protocol, u8 *hdr_len,
1069 u64 *cd_type_cmd_tso_mss, u32 *cd_tunneling)
1070{
1071 u32 cd_cmd, cd_tso_len, cd_mss;
1072 struct tcphdr *tcph;
1073 struct iphdr *iph;
1074 u32 l4len;
1075 int err;
1076 struct ipv6hdr *ipv6h;
1077
1078 if (!skb_is_gso(skb))
1079 return 0;
1080
1081 if (skb_header_cloned(skb)) {
1082 err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
1083 if (err)
1084 return err;
1085 }
1086
1087 if (protocol == htons(ETH_P_IP)) {
1088 iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
1089 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1090 iph->tot_len = 0;
1091 iph->check = 0;
1092 tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
1093 0, IPPROTO_TCP, 0);
1094 } else if (skb_is_gso_v6(skb)) {
1095
1096 ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb)
1097 : ipv6_hdr(skb);
1098 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1099 ipv6h->payload_len = 0;
1100 tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
1101 0, IPPROTO_TCP, 0);
1102 }
1103
1104 l4len = skb->encapsulation ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
1105 *hdr_len = (skb->encapsulation
1106 ? (skb_inner_transport_header(skb) - skb->data)
1107 : skb_transport_offset(skb)) + l4len;
1108
1109 /* find the field values */
1110 cd_cmd = I40E_TX_CTX_DESC_TSO;
1111 cd_tso_len = skb->len - *hdr_len;
1112 cd_mss = skb_shinfo(skb)->gso_size;
1113 *cd_type_cmd_tso_mss |= ((u64)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
1114 ((u64)cd_tso_len <<
1115 I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1116 ((u64)cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
1117 return 1;
1118}
1119
1120/**
1121 * i40e_tx_enable_csum - Enable Tx checksum offloads
1122 * @skb: send buffer
1123 * @tx_flags: Tx flags currently set
1124 * @td_cmd: Tx descriptor command bits to set
1125 * @td_offset: Tx descriptor header offsets to set
1126 * @cd_tunneling: ptr to context desc bits
1127 **/
1128static void i40e_tx_enable_csum(struct sk_buff *skb, u32 tx_flags,
1129 u32 *td_cmd, u32 *td_offset,
1130 struct i40e_ring *tx_ring,
1131 u32 *cd_tunneling)
1132{
1133 struct ipv6hdr *this_ipv6_hdr;
1134 unsigned int this_tcp_hdrlen;
1135 struct iphdr *this_ip_hdr;
1136 u32 network_hdr_len;
1137 u8 l4_hdr = 0;
1138
1139 if (skb->encapsulation) {
1140 network_hdr_len = skb_inner_network_header_len(skb);
1141 this_ip_hdr = inner_ip_hdr(skb);
1142 this_ipv6_hdr = inner_ipv6_hdr(skb);
1143 this_tcp_hdrlen = inner_tcp_hdrlen(skb);
1144
1145 if (tx_flags & I40E_TX_FLAGS_IPV4) {
1146
1147 if (tx_flags & I40E_TX_FLAGS_TSO) {
1148 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
1149 ip_hdr(skb)->check = 0;
1150 } else {
1151 *cd_tunneling |=
1152 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1153 }
1154 } else if (tx_flags & I40E_TX_FLAGS_IPV6) {
1155 if (tx_flags & I40E_TX_FLAGS_TSO) {
1156 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
1157 ip_hdr(skb)->check = 0;
1158 } else {
1159 *cd_tunneling |=
1160 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1161 }
1162 }
1163
1164 /* Now set the ctx descriptor fields */
1165 *cd_tunneling |= (skb_network_header_len(skb) >> 2) <<
1166 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT |
1167 I40E_TXD_CTX_UDP_TUNNELING |
1168 ((skb_inner_network_offset(skb) -
1169 skb_transport_offset(skb)) >> 1) <<
1170 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
1171
1172 } else {
1173 network_hdr_len = skb_network_header_len(skb);
1174 this_ip_hdr = ip_hdr(skb);
1175 this_ipv6_hdr = ipv6_hdr(skb);
1176 this_tcp_hdrlen = tcp_hdrlen(skb);
1177 }
1178
1179 /* Enable IP checksum offloads */
1180 if (tx_flags & I40E_TX_FLAGS_IPV4) {
1181 l4_hdr = this_ip_hdr->protocol;
1182 /* the stack computes the IP header already, the only time we
1183 * need the hardware to recompute it is in the case of TSO.
1184 */
1185 if (tx_flags & I40E_TX_FLAGS_TSO) {
1186 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
1187 this_ip_hdr->check = 0;
1188 } else {
1189 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
1190 }
1191 /* Now set the td_offset for IP header length */
1192 *td_offset = (network_hdr_len >> 2) <<
1193 I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1194 } else if (tx_flags & I40E_TX_FLAGS_IPV6) {
1195 l4_hdr = this_ipv6_hdr->nexthdr;
1196 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
1197 /* Now set the td_offset for IP header length */
1198 *td_offset = (network_hdr_len >> 2) <<
1199 I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1200 }
1201 /* words in MACLEN + dwords in IPLEN + dwords in L4Len */
1202 *td_offset |= (skb_network_offset(skb) >> 1) <<
1203 I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
1204
1205 /* Enable L4 checksum offloads */
1206 switch (l4_hdr) {
1207 case IPPROTO_TCP:
1208 /* enable checksum offloads */
1209 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
1210 *td_offset |= (this_tcp_hdrlen >> 2) <<
1211 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1212 break;
1213 case IPPROTO_SCTP:
1214 /* enable SCTP checksum offload */
1215 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
1216 *td_offset |= (sizeof(struct sctphdr) >> 2) <<
1217 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1218 break;
1219 case IPPROTO_UDP:
1220 /* enable UDP checksum offload */
1221 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
1222 *td_offset |= (sizeof(struct udphdr) >> 2) <<
1223 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1224 break;
1225 default:
1226 break;
1227 }
1228}
1229
1230/**
1231 * i40e_create_tx_ctx Build the Tx context descriptor
1232 * @tx_ring: ring to create the descriptor on
1233 * @cd_type_cmd_tso_mss: Quad Word 1
1234 * @cd_tunneling: Quad Word 0 - bits 0-31
1235 * @cd_l2tag2: Quad Word 0 - bits 32-63
1236 **/
1237static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
1238 const u64 cd_type_cmd_tso_mss,
1239 const u32 cd_tunneling, const u32 cd_l2tag2)
1240{
1241 struct i40e_tx_context_desc *context_desc;
1242 int i = tx_ring->next_to_use;
1243
1244 if (!cd_type_cmd_tso_mss && !cd_tunneling && !cd_l2tag2)
1245 return;
1246
1247 /* grab the next descriptor */
1248 context_desc = I40E_TX_CTXTDESC(tx_ring, i);
1249
1250 i++;
1251 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1252
1253 /* cpu_to_le32 and assign to struct fields */
1254 context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
1255 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
1256 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
1257}
1258
1259/**
1260 * i40e_tx_map - Build the Tx descriptor
1261 * @tx_ring: ring to send buffer on
1262 * @skb: send buffer
1263 * @first: first buffer info buffer to use
1264 * @tx_flags: collected send information
1265 * @hdr_len: size of the packet header
1266 * @td_cmd: the command field in the descriptor
1267 * @td_offset: offset for checksum or crc
1268 **/
1269static void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
1270 struct i40e_tx_buffer *first, u32 tx_flags,
1271 const u8 hdr_len, u32 td_cmd, u32 td_offset)
1272{
1273 unsigned int data_len = skb->data_len;
1274 unsigned int size = skb_headlen(skb);
1275 struct skb_frag_struct *frag;
1276 struct i40e_tx_buffer *tx_bi;
1277 struct i40e_tx_desc *tx_desc;
1278 u16 i = tx_ring->next_to_use;
1279 u32 td_tag = 0;
1280 dma_addr_t dma;
1281 u16 gso_segs;
1282
1283 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
1284 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
1285 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
1286 I40E_TX_FLAGS_VLAN_SHIFT;
1287 }
1288
1289 if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
1290 gso_segs = skb_shinfo(skb)->gso_segs;
1291 else
1292 gso_segs = 1;
1293
1294 /* multiply data chunks by size of headers */
1295 first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
1296 first->gso_segs = gso_segs;
1297 first->skb = skb;
1298 first->tx_flags = tx_flags;
1299
1300 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1301
1302 tx_desc = I40E_TX_DESC(tx_ring, i);
1303 tx_bi = first;
1304
1305 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1306 if (dma_mapping_error(tx_ring->dev, dma))
1307 goto dma_error;
1308
1309 /* record length, and DMA address */
1310 dma_unmap_len_set(tx_bi, len, size);
1311 dma_unmap_addr_set(tx_bi, dma, dma);
1312
1313 tx_desc->buffer_addr = cpu_to_le64(dma);
1314
1315 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
1316 tx_desc->cmd_type_offset_bsz =
1317 build_ctob(td_cmd, td_offset,
1318 I40E_MAX_DATA_PER_TXD, td_tag);
1319
1320 tx_desc++;
1321 i++;
1322 if (i == tx_ring->count) {
1323 tx_desc = I40E_TX_DESC(tx_ring, 0);
1324 i = 0;
1325 }
1326
1327 dma += I40E_MAX_DATA_PER_TXD;
1328 size -= I40E_MAX_DATA_PER_TXD;
1329
1330 tx_desc->buffer_addr = cpu_to_le64(dma);
1331 }
1332
1333 if (likely(!data_len))
1334 break;
1335
1336 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
1337 size, td_tag);
1338
1339 tx_desc++;
1340 i++;
1341 if (i == tx_ring->count) {
1342 tx_desc = I40E_TX_DESC(tx_ring, 0);
1343 i = 0;
1344 }
1345
1346 size = skb_frag_size(frag);
1347 data_len -= size;
1348
1349 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1350 DMA_TO_DEVICE);
1351
1352 tx_bi = &tx_ring->tx_bi[i];
1353 }
1354
1355 tx_desc->cmd_type_offset_bsz =
1356 build_ctob(td_cmd, td_offset, size, td_tag) |
1357 cpu_to_le64((u64)I40E_TXD_CMD << I40E_TXD_QW1_CMD_SHIFT);
1358
1359 netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
1360 tx_ring->queue_index),
1361 first->bytecount);
1362
1363 /* set the timestamp */
1364 first->time_stamp = jiffies;
1365
1366 /* Force memory writes to complete before letting h/w
1367 * know there are new descriptors to fetch. (Only
1368 * applicable for weak-ordered memory model archs,
1369 * such as IA-64).
1370 */
1371 wmb();
1372
1373 /* set next_to_watch value indicating a packet is present */
1374 first->next_to_watch = tx_desc;
1375
1376 i++;
1377 if (i == tx_ring->count)
1378 i = 0;
1379
1380 tx_ring->next_to_use = i;
1381
1382 /* notify HW of packet */
1383 writel(i, tx_ring->tail);
1384
1385 return;
1386
1387dma_error:
1388 dev_info(tx_ring->dev, "TX DMA map failed\n");
1389
1390 /* clear dma mappings for failed tx_bi map */
1391 for (;;) {
1392 tx_bi = &tx_ring->tx_bi[i];
1393 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
1394 if (tx_bi == first)
1395 break;
1396 if (i == 0)
1397 i = tx_ring->count;
1398 i--;
1399 }
1400
1401 tx_ring->next_to_use = i;
1402}
1403
1404/**
1405 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
1406 * @tx_ring: the ring to be checked
1407 * @size: the size buffer we want to assure is available
1408 *
1409 * Returns -EBUSY if a stop is needed, else 0
1410 **/
1411static inline int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
1412{
1413 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
1414 /* Memory barrier before checking head and tail */
1415 smp_mb();
1416
1417 /* Check again in a case another CPU has just made room available. */
1418 if (likely(I40E_DESC_UNUSED(tx_ring) < size))
1419 return -EBUSY;
1420
1421 /* A reprieve! - use start_queue because it doesn't call schedule */
1422 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
1423 ++tx_ring->tx_stats.restart_queue;
1424 return 0;
1425}
1426
1427/**
1428 * i40e_maybe_stop_tx - 1st level check for tx stop conditions
1429 * @tx_ring: the ring to be checked
1430 * @size: the size buffer we want to assure is available
1431 *
1432 * Returns 0 if stop is not needed
1433 **/
1434static int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
1435{
1436 if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
1437 return 0;
1438 return __i40e_maybe_stop_tx(tx_ring, size);
1439}
1440
1441/**
1442 * i40e_xmit_descriptor_count - calculate number of tx descriptors needed
1443 * @skb: send buffer
1444 * @tx_ring: ring to send buffer on
1445 *
1446 * Returns number of data descriptors needed for this skb. Returns 0 to indicate
1447 * there is not enough descriptors available in this ring since we need at least
1448 * one descriptor.
1449 **/
1450static int i40e_xmit_descriptor_count(struct sk_buff *skb,
1451 struct i40e_ring *tx_ring)
1452{
1453#if PAGE_SIZE > I40E_MAX_DATA_PER_TXD
1454 unsigned int f;
1455#endif
1456 int count = 0;
1457
1458 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
1459 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
1460 * + 2 desc gap to keep tail from touching head,
1461 * + 1 desc for context descriptor,
1462 * otherwise try next time
1463 */
1464#if PAGE_SIZE > I40E_MAX_DATA_PER_TXD
1465 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1466 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
1467#else
1468 count += skb_shinfo(skb)->nr_frags;
1469#endif
1470 count += TXD_USE_COUNT(skb_headlen(skb));
1471 if (i40e_maybe_stop_tx(tx_ring, count + 3)) {
1472 tx_ring->tx_stats.tx_busy++;
1473 return 0;
1474 }
1475 return count;
1476}
1477
1478/**
1479 * i40e_xmit_frame_ring - Sends buffer on Tx ring
1480 * @skb: send buffer
1481 * @tx_ring: ring to send buffer on
1482 *
1483 * Returns NETDEV_TX_OK if sent, else an error code
1484 **/
1485static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
1486 struct i40e_ring *tx_ring)
1487{
1488 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
1489 u32 cd_tunneling = 0, cd_l2tag2 = 0;
1490 struct i40e_tx_buffer *first;
1491 u32 td_offset = 0;
1492 u32 tx_flags = 0;
1493 __be16 protocol;
1494 u32 td_cmd = 0;
1495 u8 hdr_len = 0;
1496 int tso;
1497 if (0 == i40e_xmit_descriptor_count(skb, tx_ring))
1498 return NETDEV_TX_BUSY;
1499
1500 /* prepare the xmit flags */
1501 if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
1502 goto out_drop;
1503
1504 /* obtain protocol of skb */
1505 protocol = skb->protocol;
1506
1507 /* record the location of the first descriptor for this packet */
1508 first = &tx_ring->tx_bi[tx_ring->next_to_use];
1509
1510 /* setup IPv4/IPv6 offloads */
1511 if (protocol == htons(ETH_P_IP))
1512 tx_flags |= I40E_TX_FLAGS_IPV4;
1513 else if (protocol == htons(ETH_P_IPV6))
1514 tx_flags |= I40E_TX_FLAGS_IPV6;
1515
1516 tso = i40e_tso(tx_ring, skb, tx_flags, protocol, &hdr_len,
1517 &cd_type_cmd_tso_mss, &cd_tunneling);
1518
1519 if (tso < 0)
1520 goto out_drop;
1521 else if (tso)
1522 tx_flags |= I40E_TX_FLAGS_TSO;
1523
1524 skb_tx_timestamp(skb);
1525
1526 /* always enable CRC insertion offload */
1527 td_cmd |= I40E_TX_DESC_CMD_ICRC;
1528
1529 /* Always offload the checksum, since it's in the data descriptor */
1530 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1531 tx_flags |= I40E_TX_FLAGS_CSUM;
1532
1533 i40e_tx_enable_csum(skb, tx_flags, &td_cmd, &td_offset,
1534 tx_ring, &cd_tunneling);
1535 }
1536
1537 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
1538 cd_tunneling, cd_l2tag2);
1539
1540 i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
1541 td_cmd, td_offset);
1542
1543 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
1544
1545 return NETDEV_TX_OK;
1546
1547out_drop:
1548 dev_kfree_skb_any(skb);
1549 return NETDEV_TX_OK;
1550}
1551
1552/**
1553 * i40evf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
1554 * @skb: send buffer
1555 * @netdev: network interface device structure
1556 *
1557 * Returns NETDEV_TX_OK if sent, else an error code
1558 **/
1559netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
1560{
1561 struct i40evf_adapter *adapter = netdev_priv(netdev);
1562 struct i40e_ring *tx_ring = adapter->tx_rings[skb->queue_mapping];
1563
1564 /* hardware can't handle really short frames, hardware padding works
1565 * beyond this point
1566 */
1567 if (unlikely(skb->len < I40E_MIN_TX_LEN)) {
1568 if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len))
1569 return NETDEV_TX_OK;
1570 skb->len = I40E_MIN_TX_LEN;
1571 skb_set_tail_pointer(skb, I40E_MIN_TX_LEN);
1572 }
1573
1574 return i40e_xmit_frame_ring(skb, tx_ring);
1575}