i40e: rename debugfs clear_stats option
[linux-2.6-block.git] / drivers / net / ethernet / intel / i40evf / i40e_txrx.c
CommitLineData
7f12ad74
GR
1/*******************************************************************************
2 *
3 * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
af1a2a9c 4 * Copyright(c) 2013 - 2014 Intel Corporation.
7f12ad74
GR
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
b831607d
JB
15 * You should have received a copy of the GNU General Public License along
16 * with this program. If not, see <http://www.gnu.org/licenses/>.
17 *
7f12ad74
GR
18 * The full GNU General Public License is included in this distribution in
19 * the file called "COPYING".
20 *
21 * Contact Information:
22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 *
25 ******************************************************************************/
26
7ed3f5f0
PG
27#include <linux/prefetch.h>
28
7f12ad74 29#include "i40evf.h"
206812b5 30#include "i40e_prototype.h"
7f12ad74
GR
31
32static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
33 u32 td_tag)
34{
35 return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
36 ((u64)td_cmd << I40E_TXD_QW1_CMD_SHIFT) |
37 ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
38 ((u64)size << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
39 ((u64)td_tag << I40E_TXD_QW1_L2TAG1_SHIFT));
40}
41
42#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
43
44/**
45 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
46 * @ring: the ring that owns the buffer
47 * @tx_buffer: the buffer to free
48 **/
49static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
50 struct i40e_tx_buffer *tx_buffer)
51{
52 if (tx_buffer->skb) {
49d7d933
ASJ
53 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
54 kfree(tx_buffer->raw_buf);
55 else
56 dev_kfree_skb_any(tx_buffer->skb);
57
7f12ad74
GR
58 if (dma_unmap_len(tx_buffer, len))
59 dma_unmap_single(ring->dev,
60 dma_unmap_addr(tx_buffer, dma),
61 dma_unmap_len(tx_buffer, len),
62 DMA_TO_DEVICE);
63 } else if (dma_unmap_len(tx_buffer, len)) {
64 dma_unmap_page(ring->dev,
65 dma_unmap_addr(tx_buffer, dma),
66 dma_unmap_len(tx_buffer, len),
67 DMA_TO_DEVICE);
68 }
69 tx_buffer->next_to_watch = NULL;
70 tx_buffer->skb = NULL;
71 dma_unmap_len_set(tx_buffer, len, 0);
72 /* tx_buffer must be completely set up in the transmit path */
73}
74
75/**
76 * i40evf_clean_tx_ring - Free any empty Tx buffers
77 * @tx_ring: ring to be cleaned
78 **/
79void i40evf_clean_tx_ring(struct i40e_ring *tx_ring)
80{
81 unsigned long bi_size;
82 u16 i;
83
84 /* ring already cleared, nothing to do */
85 if (!tx_ring->tx_bi)
86 return;
87
88 /* Free all the Tx ring sk_buffs */
89 for (i = 0; i < tx_ring->count; i++)
90 i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
91
92 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
93 memset(tx_ring->tx_bi, 0, bi_size);
94
95 /* Zero out the descriptor ring */
96 memset(tx_ring->desc, 0, tx_ring->size);
97
98 tx_ring->next_to_use = 0;
99 tx_ring->next_to_clean = 0;
100
101 if (!tx_ring->netdev)
102 return;
103
104 /* cleanup Tx queue statistics */
105 netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
106 tx_ring->queue_index));
107}
108
109/**
110 * i40evf_free_tx_resources - Free Tx resources per queue
111 * @tx_ring: Tx descriptor ring for a specific queue
112 *
113 * Free all transmit software resources
114 **/
115void i40evf_free_tx_resources(struct i40e_ring *tx_ring)
116{
117 i40evf_clean_tx_ring(tx_ring);
118 kfree(tx_ring->tx_bi);
119 tx_ring->tx_bi = NULL;
120
121 if (tx_ring->desc) {
122 dma_free_coherent(tx_ring->dev, tx_ring->size,
123 tx_ring->desc, tx_ring->dma);
124 tx_ring->desc = NULL;
125 }
126}
127
128/**
129 * i40e_get_tx_pending - how many tx descriptors not processed
130 * @tx_ring: the ring of descriptors
131 *
132 * Since there is no access to the ring head register
133 * in XL710, we need to use our local copies
134 **/
135static u32 i40e_get_tx_pending(struct i40e_ring *ring)
136{
137 u32 ntu = ((ring->next_to_clean <= ring->next_to_use)
138 ? ring->next_to_use
139 : ring->next_to_use + ring->count);
140 return ntu - ring->next_to_clean;
141}
142
143/**
144 * i40e_check_tx_hang - Is there a hang in the Tx queue
145 * @tx_ring: the ring of descriptors
146 **/
147static bool i40e_check_tx_hang(struct i40e_ring *tx_ring)
148{
149 u32 tx_pending = i40e_get_tx_pending(tx_ring);
150 bool ret = false;
151
152 clear_check_for_tx_hang(tx_ring);
153
154 /* Check for a hung queue, but be thorough. This verifies
155 * that a transmit has been completed since the previous
156 * check AND there is at least one packet pending. The
157 * ARMED bit is set to indicate a potential hang. The
158 * bit is cleared if a pause frame is received to remove
159 * false hang detection due to PFC or 802.3x frames. By
160 * requiring this to fail twice we avoid races with
161 * PFC clearing the ARMED bit and conditions where we
162 * run the check_tx_hang logic with a transmit completion
163 * pending but without time to complete it yet.
164 */
165 if ((tx_ring->tx_stats.tx_done_old == tx_ring->stats.packets) &&
810b3ae4 166 (tx_pending >= I40E_MIN_DESC_PENDING)) {
7f12ad74
GR
167 /* make sure it is true for two checks in a row */
168 ret = test_and_set_bit(__I40E_HANG_CHECK_ARMED,
169 &tx_ring->state);
810b3ae4
ASJ
170 } else if (!(tx_ring->tx_stats.tx_done_old == tx_ring->stats.packets) ||
171 !(tx_pending < I40E_MIN_DESC_PENDING) ||
172 !(tx_pending > 0)) {
7f12ad74
GR
173 /* update completed stats and disarm the hang check */
174 tx_ring->tx_stats.tx_done_old = tx_ring->stats.packets;
175 clear_bit(__I40E_HANG_CHECK_ARMED, &tx_ring->state);
176 }
177
178 return ret;
179}
180
1943d8ba
JB
181/**
182 * i40e_get_head - Retrieve head from head writeback
183 * @tx_ring: tx ring to fetch head of
184 *
185 * Returns value of Tx ring head based on value stored
186 * in head write-back location
187 **/
188static inline u32 i40e_get_head(struct i40e_ring *tx_ring)
189{
190 void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count;
191
192 return le32_to_cpu(*(volatile __le32 *)head);
193}
194
c29af37f
ASJ
195#define WB_STRIDE 0x3
196
7f12ad74
GR
197/**
198 * i40e_clean_tx_irq - Reclaim resources after transmit completes
199 * @tx_ring: tx ring to clean
200 * @budget: how many cleans we're allowed
201 *
202 * Returns true if there's any budget left (e.g. the clean is finished)
203 **/
204static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget)
205{
206 u16 i = tx_ring->next_to_clean;
207 struct i40e_tx_buffer *tx_buf;
1943d8ba 208 struct i40e_tx_desc *tx_head;
7f12ad74
GR
209 struct i40e_tx_desc *tx_desc;
210 unsigned int total_packets = 0;
211 unsigned int total_bytes = 0;
212
213 tx_buf = &tx_ring->tx_bi[i];
214 tx_desc = I40E_TX_DESC(tx_ring, i);
215 i -= tx_ring->count;
216
1943d8ba
JB
217 tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
218
7f12ad74
GR
219 do {
220 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
221
222 /* if next_to_watch is not set then there is no work pending */
223 if (!eop_desc)
224 break;
225
226 /* prevent any other reads prior to eop_desc */
227 read_barrier_depends();
228
1943d8ba
JB
229 /* we have caught up to head, no work left to do */
230 if (tx_head == tx_desc)
7f12ad74
GR
231 break;
232
233 /* clear next_to_watch to prevent false hangs */
234 tx_buf->next_to_watch = NULL;
235
236 /* update the statistics for this packet */
237 total_bytes += tx_buf->bytecount;
238 total_packets += tx_buf->gso_segs;
239
240 /* free the skb */
241 dev_kfree_skb_any(tx_buf->skb);
242
243 /* unmap skb header data */
244 dma_unmap_single(tx_ring->dev,
245 dma_unmap_addr(tx_buf, dma),
246 dma_unmap_len(tx_buf, len),
247 DMA_TO_DEVICE);
248
249 /* clear tx_buffer data */
250 tx_buf->skb = NULL;
251 dma_unmap_len_set(tx_buf, len, 0);
252
253 /* unmap remaining buffers */
254 while (tx_desc != eop_desc) {
255
256 tx_buf++;
257 tx_desc++;
258 i++;
259 if (unlikely(!i)) {
260 i -= tx_ring->count;
261 tx_buf = tx_ring->tx_bi;
262 tx_desc = I40E_TX_DESC(tx_ring, 0);
263 }
264
265 /* unmap any remaining paged data */
266 if (dma_unmap_len(tx_buf, len)) {
267 dma_unmap_page(tx_ring->dev,
268 dma_unmap_addr(tx_buf, dma),
269 dma_unmap_len(tx_buf, len),
270 DMA_TO_DEVICE);
271 dma_unmap_len_set(tx_buf, len, 0);
272 }
273 }
274
275 /* move us one more past the eop_desc for start of next pkt */
276 tx_buf++;
277 tx_desc++;
278 i++;
279 if (unlikely(!i)) {
280 i -= tx_ring->count;
281 tx_buf = tx_ring->tx_bi;
282 tx_desc = I40E_TX_DESC(tx_ring, 0);
283 }
284
285 /* update budget accounting */
286 budget--;
287 } while (likely(budget));
288
289 i += tx_ring->count;
290 tx_ring->next_to_clean = i;
291 u64_stats_update_begin(&tx_ring->syncp);
292 tx_ring->stats.bytes += total_bytes;
293 tx_ring->stats.packets += total_packets;
294 u64_stats_update_end(&tx_ring->syncp);
295 tx_ring->q_vector->tx.total_bytes += total_bytes;
296 tx_ring->q_vector->tx.total_packets += total_packets;
297
c29af37f
ASJ
298 if (budget &&
299 !((i & WB_STRIDE) == WB_STRIDE) &&
300 !test_bit(__I40E_DOWN, &tx_ring->vsi->state) &&
301 (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
302 tx_ring->arm_wb = true;
303 else
304 tx_ring->arm_wb = false;
305
7f12ad74
GR
306 if (check_for_tx_hang(tx_ring) && i40e_check_tx_hang(tx_ring)) {
307 /* schedule immediate reset if we believe we hung */
308 dev_info(tx_ring->dev, "Detected Tx Unit Hang\n"
309 " VSI <%d>\n"
310 " Tx Queue <%d>\n"
311 " next_to_use <%x>\n"
312 " next_to_clean <%x>\n",
313 tx_ring->vsi->seid,
314 tx_ring->queue_index,
315 tx_ring->next_to_use, i);
316 dev_info(tx_ring->dev, "tx_bi[next_to_clean]\n"
317 " time_stamp <%lx>\n"
318 " jiffies <%lx>\n",
319 tx_ring->tx_bi[i].time_stamp, jiffies);
320
321 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
322
323 dev_info(tx_ring->dev,
324 "tx hang detected on queue %d, resetting adapter\n",
325 tx_ring->queue_index);
326
327 tx_ring->netdev->netdev_ops->ndo_tx_timeout(tx_ring->netdev);
328
329 /* the adapter is about to reset, no point in enabling stuff */
330 return true;
331 }
332
333 netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
334 tx_ring->queue_index),
335 total_packets, total_bytes);
336
337#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
338 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
339 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
340 /* Make sure that anybody stopping the queue after this
341 * sees the new next_to_clean.
342 */
343 smp_mb();
344 if (__netif_subqueue_stopped(tx_ring->netdev,
345 tx_ring->queue_index) &&
346 !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) {
347 netif_wake_subqueue(tx_ring->netdev,
348 tx_ring->queue_index);
349 ++tx_ring->tx_stats.restart_queue;
350 }
351 }
352
353 return budget > 0;
354}
355
c29af37f
ASJ
356/**
357 * i40e_force_wb -Arm hardware to do a wb on noncache aligned descriptors
358 * @vsi: the VSI we care about
359 * @q_vector: the vector on which to force writeback
360 *
361 **/
362static void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
363{
364 u32 val = I40E_VFINT_DYN_CTLN_INTENA_MASK |
365 I40E_VFINT_DYN_CTLN_SWINT_TRIG_MASK |
366 I40E_VFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
367 /* allow 00 to be written to the index */
368
369 wr32(&vsi->back->hw,
370 I40E_VFINT_DYN_CTLN1(q_vector->v_idx + vsi->base_vector - 1),
371 val);
372}
373
7f12ad74
GR
374/**
375 * i40e_set_new_dynamic_itr - Find new ITR level
376 * @rc: structure containing ring performance data
377 *
378 * Stores a new ITR value based on packets and byte counts during
379 * the last interrupt. The advantage of per interrupt computation
380 * is faster updates and more accurate ITR for the current traffic
381 * pattern. Constants in this function were computed based on
382 * theoretical maximum wire speed and thresholds were set based on
383 * testing data as well as attempting to minimize response time
384 * while increasing bulk throughput.
385 **/
386static void i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
387{
388 enum i40e_latency_range new_latency_range = rc->latency_range;
389 u32 new_itr = rc->itr;
390 int bytes_per_int;
391
392 if (rc->total_packets == 0 || !rc->itr)
393 return;
394
395 /* simple throttlerate management
396 * 0-10MB/s lowest (100000 ints/s)
397 * 10-20MB/s low (20000 ints/s)
398 * 20-1249MB/s bulk (8000 ints/s)
399 */
400 bytes_per_int = rc->total_bytes / rc->itr;
401 switch (rc->itr) {
402 case I40E_LOWEST_LATENCY:
403 if (bytes_per_int > 10)
404 new_latency_range = I40E_LOW_LATENCY;
405 break;
406 case I40E_LOW_LATENCY:
407 if (bytes_per_int > 20)
408 new_latency_range = I40E_BULK_LATENCY;
409 else if (bytes_per_int <= 10)
410 new_latency_range = I40E_LOWEST_LATENCY;
411 break;
412 case I40E_BULK_LATENCY:
413 if (bytes_per_int <= 20)
414 rc->latency_range = I40E_LOW_LATENCY;
415 break;
416 }
417
418 switch (new_latency_range) {
419 case I40E_LOWEST_LATENCY:
420 new_itr = I40E_ITR_100K;
421 break;
422 case I40E_LOW_LATENCY:
423 new_itr = I40E_ITR_20K;
424 break;
425 case I40E_BULK_LATENCY:
426 new_itr = I40E_ITR_8K;
427 break;
428 default:
429 break;
430 }
431
432 if (new_itr != rc->itr) {
433 /* do an exponential smoothing */
434 new_itr = (10 * new_itr * rc->itr) /
435 ((9 * new_itr) + rc->itr);
436 rc->itr = new_itr & I40E_MAX_ITR;
437 }
438
439 rc->total_bytes = 0;
440 rc->total_packets = 0;
441}
442
443/**
444 * i40e_update_dynamic_itr - Adjust ITR based on bytes per int
445 * @q_vector: the vector to adjust
446 **/
447static void i40e_update_dynamic_itr(struct i40e_q_vector *q_vector)
448{
449 u16 vector = q_vector->vsi->base_vector + q_vector->v_idx;
450 struct i40e_hw *hw = &q_vector->vsi->back->hw;
451 u32 reg_addr;
452 u16 old_itr;
453
454 reg_addr = I40E_VFINT_ITRN1(I40E_RX_ITR, vector - 1);
455 old_itr = q_vector->rx.itr;
456 i40e_set_new_dynamic_itr(&q_vector->rx);
457 if (old_itr != q_vector->rx.itr)
458 wr32(hw, reg_addr, q_vector->rx.itr);
459
460 reg_addr = I40E_VFINT_ITRN1(I40E_TX_ITR, vector - 1);
461 old_itr = q_vector->tx.itr;
462 i40e_set_new_dynamic_itr(&q_vector->tx);
463 if (old_itr != q_vector->tx.itr)
464 wr32(hw, reg_addr, q_vector->tx.itr);
465}
466
467/**
468 * i40evf_setup_tx_descriptors - Allocate the Tx descriptors
469 * @tx_ring: the tx ring to set up
470 *
471 * Return 0 on success, negative on error
472 **/
473int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring)
474{
475 struct device *dev = tx_ring->dev;
476 int bi_size;
477
478 if (!dev)
479 return -ENOMEM;
480
481 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
482 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
483 if (!tx_ring->tx_bi)
484 goto err;
485
486 /* round up to nearest 4K */
487 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1943d8ba
JB
488 /* add u32 for head writeback, align after this takes care of
489 * guaranteeing this is at least one cache line in size
490 */
491 tx_ring->size += sizeof(u32);
7f12ad74
GR
492 tx_ring->size = ALIGN(tx_ring->size, 4096);
493 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
494 &tx_ring->dma, GFP_KERNEL);
495 if (!tx_ring->desc) {
496 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
497 tx_ring->size);
498 goto err;
499 }
500
501 tx_ring->next_to_use = 0;
502 tx_ring->next_to_clean = 0;
503 return 0;
504
505err:
506 kfree(tx_ring->tx_bi);
507 tx_ring->tx_bi = NULL;
508 return -ENOMEM;
509}
510
511/**
512 * i40evf_clean_rx_ring - Free Rx buffers
513 * @rx_ring: ring to be cleaned
514 **/
515void i40evf_clean_rx_ring(struct i40e_ring *rx_ring)
516{
517 struct device *dev = rx_ring->dev;
518 struct i40e_rx_buffer *rx_bi;
519 unsigned long bi_size;
520 u16 i;
521
522 /* ring already cleared, nothing to do */
523 if (!rx_ring->rx_bi)
524 return;
525
526 /* Free all the Rx ring sk_buffs */
527 for (i = 0; i < rx_ring->count; i++) {
528 rx_bi = &rx_ring->rx_bi[i];
529 if (rx_bi->dma) {
530 dma_unmap_single(dev,
531 rx_bi->dma,
532 rx_ring->rx_buf_len,
533 DMA_FROM_DEVICE);
534 rx_bi->dma = 0;
535 }
536 if (rx_bi->skb) {
537 dev_kfree_skb(rx_bi->skb);
538 rx_bi->skb = NULL;
539 }
540 if (rx_bi->page) {
541 if (rx_bi->page_dma) {
542 dma_unmap_page(dev,
543 rx_bi->page_dma,
544 PAGE_SIZE / 2,
545 DMA_FROM_DEVICE);
546 rx_bi->page_dma = 0;
547 }
548 __free_page(rx_bi->page);
549 rx_bi->page = NULL;
550 rx_bi->page_offset = 0;
551 }
552 }
553
554 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
555 memset(rx_ring->rx_bi, 0, bi_size);
556
557 /* Zero out the descriptor ring */
558 memset(rx_ring->desc, 0, rx_ring->size);
559
560 rx_ring->next_to_clean = 0;
561 rx_ring->next_to_use = 0;
562}
563
564/**
565 * i40evf_free_rx_resources - Free Rx resources
566 * @rx_ring: ring to clean the resources from
567 *
568 * Free all receive software resources
569 **/
570void i40evf_free_rx_resources(struct i40e_ring *rx_ring)
571{
572 i40evf_clean_rx_ring(rx_ring);
573 kfree(rx_ring->rx_bi);
574 rx_ring->rx_bi = NULL;
575
576 if (rx_ring->desc) {
577 dma_free_coherent(rx_ring->dev, rx_ring->size,
578 rx_ring->desc, rx_ring->dma);
579 rx_ring->desc = NULL;
580 }
581}
582
583/**
584 * i40evf_setup_rx_descriptors - Allocate Rx descriptors
585 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
586 *
587 * Returns 0 on success, negative on failure
588 **/
589int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring)
590{
591 struct device *dev = rx_ring->dev;
592 int bi_size;
593
594 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
595 rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
596 if (!rx_ring->rx_bi)
597 goto err;
598
f217d6ca 599 u64_stats_init(&rx_ring->syncp);
638702bd 600
7f12ad74
GR
601 /* Round up to nearest 4K */
602 rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
603 ? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
604 : rx_ring->count * sizeof(union i40e_32byte_rx_desc);
605 rx_ring->size = ALIGN(rx_ring->size, 4096);
606 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
607 &rx_ring->dma, GFP_KERNEL);
608
609 if (!rx_ring->desc) {
610 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
611 rx_ring->size);
612 goto err;
613 }
614
615 rx_ring->next_to_clean = 0;
616 rx_ring->next_to_use = 0;
617
618 return 0;
619err:
620 kfree(rx_ring->rx_bi);
621 rx_ring->rx_bi = NULL;
622 return -ENOMEM;
623}
624
625/**
626 * i40e_release_rx_desc - Store the new tail and head values
627 * @rx_ring: ring to bump
628 * @val: new head index
629 **/
630static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
631{
632 rx_ring->next_to_use = val;
633 /* Force memory writes to complete before letting h/w
634 * know there are new descriptors to fetch. (Only
635 * applicable for weak-ordered memory model archs,
636 * such as IA-64).
637 */
638 wmb();
639 writel(val, rx_ring->tail);
640}
641
642/**
643 * i40evf_alloc_rx_buffers - Replace used receive buffers; packet split
644 * @rx_ring: ring to place buffers on
645 * @cleaned_count: number of buffers to replace
646 **/
647void i40evf_alloc_rx_buffers(struct i40e_ring *rx_ring, u16 cleaned_count)
648{
649 u16 i = rx_ring->next_to_use;
650 union i40e_rx_desc *rx_desc;
651 struct i40e_rx_buffer *bi;
652 struct sk_buff *skb;
653
654 /* do nothing if no valid netdev defined */
655 if (!rx_ring->netdev || !cleaned_count)
656 return;
657
658 while (cleaned_count--) {
659 rx_desc = I40E_RX_DESC(rx_ring, i);
660 bi = &rx_ring->rx_bi[i];
661 skb = bi->skb;
662
663 if (!skb) {
664 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
665 rx_ring->rx_buf_len);
666 if (!skb) {
667 rx_ring->rx_stats.alloc_buff_failed++;
668 goto no_buffers;
669 }
670 /* initialize queue mapping */
671 skb_record_rx_queue(skb, rx_ring->queue_index);
672 bi->skb = skb;
673 }
674
675 if (!bi->dma) {
676 bi->dma = dma_map_single(rx_ring->dev,
677 skb->data,
678 rx_ring->rx_buf_len,
679 DMA_FROM_DEVICE);
680 if (dma_mapping_error(rx_ring->dev, bi->dma)) {
681 rx_ring->rx_stats.alloc_buff_failed++;
682 bi->dma = 0;
683 goto no_buffers;
684 }
685 }
686
687 if (ring_is_ps_enabled(rx_ring)) {
688 if (!bi->page) {
689 bi->page = alloc_page(GFP_ATOMIC);
690 if (!bi->page) {
691 rx_ring->rx_stats.alloc_page_failed++;
692 goto no_buffers;
693 }
694 }
695
696 if (!bi->page_dma) {
697 /* use a half page if we're re-using */
698 bi->page_offset ^= PAGE_SIZE / 2;
699 bi->page_dma = dma_map_page(rx_ring->dev,
700 bi->page,
701 bi->page_offset,
702 PAGE_SIZE / 2,
703 DMA_FROM_DEVICE);
704 if (dma_mapping_error(rx_ring->dev,
705 bi->page_dma)) {
706 rx_ring->rx_stats.alloc_page_failed++;
707 bi->page_dma = 0;
708 goto no_buffers;
709 }
710 }
711
712 /* Refresh the desc even if buffer_addrs didn't change
713 * because each write-back erases this info.
714 */
715 rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
716 rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
717 } else {
718 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
719 rx_desc->read.hdr_addr = 0;
720 }
721 i++;
722 if (i == rx_ring->count)
723 i = 0;
724 }
725
726no_buffers:
727 if (rx_ring->next_to_use != i)
728 i40e_release_rx_desc(rx_ring, i);
729}
730
731/**
732 * i40e_receive_skb - Send a completed packet up the stack
733 * @rx_ring: rx ring in play
734 * @skb: packet to send up
735 * @vlan_tag: vlan tag for packet
736 **/
737static void i40e_receive_skb(struct i40e_ring *rx_ring,
738 struct sk_buff *skb, u16 vlan_tag)
739{
740 struct i40e_q_vector *q_vector = rx_ring->q_vector;
741 struct i40e_vsi *vsi = rx_ring->vsi;
742 u64 flags = vsi->back->flags;
743
744 if (vlan_tag & VLAN_VID_MASK)
745 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
746
747 if (flags & I40E_FLAG_IN_NETPOLL)
748 netif_rx(skb);
749 else
750 napi_gro_receive(&q_vector->napi, skb);
751}
752
753/**
754 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
755 * @vsi: the VSI we care about
756 * @skb: skb currently being received and modified
757 * @rx_status: status value of last descriptor in packet
758 * @rx_error: error value of last descriptor in packet
759 * @rx_ptype: ptype value of last descriptor in packet
760 **/
761static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
762 struct sk_buff *skb,
763 u32 rx_status,
764 u32 rx_error,
765 u16 rx_ptype)
766{
8a3c91cc
JB
767 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(rx_ptype);
768 bool ipv4 = false, ipv6 = false;
7f12ad74
GR
769 bool ipv4_tunnel, ipv6_tunnel;
770 __wsum rx_udp_csum;
7f12ad74 771 struct iphdr *iph;
8a3c91cc 772 __sum16 csum;
7f12ad74
GR
773
774 ipv4_tunnel = (rx_ptype > I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
775 (rx_ptype < I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
776 ipv6_tunnel = (rx_ptype > I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
777 (rx_ptype < I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);
778
7f12ad74
GR
779 skb->ip_summed = CHECKSUM_NONE;
780
781 /* Rx csum enabled and ip headers found? */
8a3c91cc
JB
782 if (!(vsi->netdev->features & NETIF_F_RXCSUM))
783 return;
784
785 /* did the hardware decode the packet and checksum? */
786 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
787 return;
788
789 /* both known and outer_ip must be set for the below code to work */
790 if (!(decoded.known && decoded.outer_ip))
7f12ad74
GR
791 return;
792
8a3c91cc
JB
793 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
794 decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4)
795 ipv4 = true;
796 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
797 decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6)
798 ipv6 = true;
799
800 if (ipv4 &&
801 (rx_error & ((1 << I40E_RX_DESC_ERROR_IPE_SHIFT) |
802 (1 << I40E_RX_DESC_ERROR_EIPE_SHIFT))))
803 goto checksum_fail;
804
ddf1d0d7 805 /* likely incorrect csum if alternate IP extension headers found */
8a3c91cc 806 if (ipv6 &&
8a3c91cc
JB
807 rx_status & (1 << I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
808 /* don't increment checksum err here, non-fatal err */
7f12ad74
GR
809 return;
810
8a3c91cc
JB
811 /* there was some L4 error, count error and punt packet to the stack */
812 if (rx_error & (1 << I40E_RX_DESC_ERROR_L4E_SHIFT))
813 goto checksum_fail;
814
815 /* handle packets that were not able to be checksummed due
816 * to arrival speed, in this case the stack can compute
817 * the csum.
818 */
819 if (rx_error & (1 << I40E_RX_DESC_ERROR_PPRS_SHIFT))
7f12ad74 820 return;
7f12ad74 821
8a3c91cc
JB
822 /* If VXLAN traffic has an outer UDPv4 checksum we need to check
823 * it in the driver, hardware does not do it for us.
824 * Since L3L4P bit was set we assume a valid IHL value (>=5)
825 * so the total length of IPv4 header is IHL*4 bytes
826 * The UDP_0 bit *may* bet set if the *inner* header is UDP
827 */
7f12ad74 828 if (ipv4_tunnel &&
8a3c91cc 829 (decoded.inner_prot != I40E_RX_PTYPE_INNER_PROT_UDP) &&
7f12ad74 830 !(rx_status & (1 << I40E_RX_DESC_STATUS_UDP_0_SHIFT))) {
7f12ad74
GR
831 skb->transport_header = skb->mac_header +
832 sizeof(struct ethhdr) +
833 (ip_hdr(skb)->ihl * 4);
834
835 /* Add 4 bytes for VLAN tagged packets */
836 skb->transport_header += (skb->protocol == htons(ETH_P_8021Q) ||
837 skb->protocol == htons(ETH_P_8021AD))
838 ? VLAN_HLEN : 0;
839
840 rx_udp_csum = udp_csum(skb);
841 iph = ip_hdr(skb);
842 csum = csum_tcpudp_magic(
843 iph->saddr, iph->daddr,
844 (skb->len - skb_transport_offset(skb)),
845 IPPROTO_UDP, rx_udp_csum);
846
8a3c91cc
JB
847 if (udp_hdr(skb)->check != csum)
848 goto checksum_fail;
7f12ad74
GR
849 }
850
851 skb->ip_summed = CHECKSUM_UNNECESSARY;
407fa085 852 skb->csum_level = ipv4_tunnel || ipv6_tunnel;
8a3c91cc
JB
853
854 return;
855
856checksum_fail:
857 vsi->back->hw_csum_rx_error++;
7f12ad74
GR
858}
859
860/**
861 * i40e_rx_hash - returns the hash value from the Rx descriptor
862 * @ring: descriptor ring
863 * @rx_desc: specific descriptor
864 **/
865static inline u32 i40e_rx_hash(struct i40e_ring *ring,
866 union i40e_rx_desc *rx_desc)
867{
868 const __le64 rss_mask =
869 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
870 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
871
872 if ((ring->netdev->features & NETIF_F_RXHASH) &&
873 (rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask)
874 return le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
875 else
876 return 0;
877}
878
206812b5
JB
879/**
880 * i40e_ptype_to_hash - get a hash type
881 * @ptype: the ptype value from the descriptor
882 *
883 * Returns a hash type to be used by skb_set_hash
884 **/
885static inline enum pkt_hash_types i40e_ptype_to_hash(u8 ptype)
886{
887 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
888
889 if (!decoded.known)
890 return PKT_HASH_TYPE_NONE;
891
892 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
893 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
894 return PKT_HASH_TYPE_L4;
895 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
896 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
897 return PKT_HASH_TYPE_L3;
898 else
899 return PKT_HASH_TYPE_L2;
900}
901
7f12ad74
GR
902/**
903 * i40e_clean_rx_irq - Reclaim resources after receive completes
904 * @rx_ring: rx ring to clean
905 * @budget: how many cleans we're allowed
906 *
907 * Returns true if there's any budget left (e.g. the clean is finished)
908 **/
909static int i40e_clean_rx_irq(struct i40e_ring *rx_ring, int budget)
910{
911 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
912 u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
913 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
914 const int current_node = numa_node_id();
915 struct i40e_vsi *vsi = rx_ring->vsi;
916 u16 i = rx_ring->next_to_clean;
917 union i40e_rx_desc *rx_desc;
918 u32 rx_error, rx_status;
206812b5 919 u8 rx_ptype;
7f12ad74 920 u64 qword;
7f12ad74
GR
921
922 rx_desc = I40E_RX_DESC(rx_ring, i);
923 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
af1a2a9c
JB
924 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
925 I40E_RXD_QW1_STATUS_SHIFT;
7f12ad74
GR
926
927 while (rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)) {
928 union i40e_rx_desc *next_rxd;
929 struct i40e_rx_buffer *rx_bi;
930 struct sk_buff *skb;
931 u16 vlan_tag;
932 rx_bi = &rx_ring->rx_bi[i];
933 skb = rx_bi->skb;
934 prefetch(skb->data);
935
936 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
937 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
938 rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
939 I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
940 rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
941 I40E_RXD_QW1_LENGTH_SPH_SHIFT;
942
943 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
944 I40E_RXD_QW1_ERROR_SHIFT;
945 rx_hbo = rx_error & (1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
946 rx_error &= ~(1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
947
948 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
949 I40E_RXD_QW1_PTYPE_SHIFT;
950 rx_bi->skb = NULL;
951
952 /* This memory barrier is needed to keep us from reading
953 * any other fields out of the rx_desc until we know the
954 * STATUS_DD bit is set
955 */
956 rmb();
957
958 /* Get the header and possibly the whole packet
959 * If this is an skb from previous receive dma will be 0
960 */
961 if (rx_bi->dma) {
962 u16 len;
963
964 if (rx_hbo)
965 len = I40E_RX_HDR_SIZE;
966 else if (rx_sph)
967 len = rx_header_len;
968 else if (rx_packet_len)
969 len = rx_packet_len; /* 1buf/no split found */
970 else
971 len = rx_header_len; /* split always mode */
972
973 skb_put(skb, len);
974 dma_unmap_single(rx_ring->dev,
975 rx_bi->dma,
976 rx_ring->rx_buf_len,
977 DMA_FROM_DEVICE);
978 rx_bi->dma = 0;
979 }
980
981 /* Get the rest of the data if this was a header split */
982 if (ring_is_ps_enabled(rx_ring) && rx_packet_len) {
983
984 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
985 rx_bi->page,
986 rx_bi->page_offset,
987 rx_packet_len);
988
989 skb->len += rx_packet_len;
990 skb->data_len += rx_packet_len;
991 skb->truesize += rx_packet_len;
992
993 if ((page_count(rx_bi->page) == 1) &&
994 (page_to_nid(rx_bi->page) == current_node))
995 get_page(rx_bi->page);
996 else
997 rx_bi->page = NULL;
998
999 dma_unmap_page(rx_ring->dev,
1000 rx_bi->page_dma,
1001 PAGE_SIZE / 2,
1002 DMA_FROM_DEVICE);
1003 rx_bi->page_dma = 0;
1004 }
1005 I40E_RX_NEXT_DESC_PREFETCH(rx_ring, i, next_rxd);
1006
1007 if (unlikely(
1008 !(rx_status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1009 struct i40e_rx_buffer *next_buffer;
1010
1011 next_buffer = &rx_ring->rx_bi[i];
1012
1013 if (ring_is_ps_enabled(rx_ring)) {
1014 rx_bi->skb = next_buffer->skb;
1015 rx_bi->dma = next_buffer->dma;
1016 next_buffer->skb = skb;
1017 next_buffer->dma = 0;
1018 }
1019 rx_ring->rx_stats.non_eop_descs++;
1020 goto next_desc;
1021 }
1022
1023 /* ERR_MASK will only have valid bits if EOP set */
1024 if (unlikely(rx_error & (1 << I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1025 dev_kfree_skb_any(skb);
8a3c91cc
JB
1026 /* TODO: shouldn't we increment a counter indicating the
1027 * drop?
1028 */
7f12ad74
GR
1029 goto next_desc;
1030 }
1031
206812b5
JB
1032 skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc),
1033 i40e_ptype_to_hash(rx_ptype));
7f12ad74
GR
1034 /* probably a little skewed due to removing CRC */
1035 total_rx_bytes += skb->len;
1036 total_rx_packets++;
1037
1038 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1039
1040 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1041
1042 vlan_tag = rx_status & (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1043 ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1044 : 0;
1045 i40e_receive_skb(rx_ring, skb, vlan_tag);
1046
1047 rx_ring->netdev->last_rx = jiffies;
1048 budget--;
1049next_desc:
1050 rx_desc->wb.qword1.status_error_len = 0;
1051 if (!budget)
1052 break;
1053
1054 cleaned_count++;
1055 /* return some buffers to hardware, one at a time is too slow */
1056 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1057 i40evf_alloc_rx_buffers(rx_ring, cleaned_count);
1058 cleaned_count = 0;
1059 }
1060
1061 /* use prefetched values */
1062 rx_desc = next_rxd;
1063 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1064 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1065 I40E_RXD_QW1_STATUS_SHIFT;
1066 }
1067
1068 rx_ring->next_to_clean = i;
1069 u64_stats_update_begin(&rx_ring->syncp);
1070 rx_ring->stats.packets += total_rx_packets;
1071 rx_ring->stats.bytes += total_rx_bytes;
1072 u64_stats_update_end(&rx_ring->syncp);
1073 rx_ring->q_vector->rx.total_packets += total_rx_packets;
1074 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1075
1076 if (cleaned_count)
1077 i40evf_alloc_rx_buffers(rx_ring, cleaned_count);
1078
1079 return budget > 0;
1080}
1081
1082/**
1083 * i40evf_napi_poll - NAPI polling Rx/Tx cleanup routine
1084 * @napi: napi struct with our devices info in it
1085 * @budget: amount of work driver is allowed to do this pass, in packets
1086 *
1087 * This function will clean all queues associated with a q_vector.
1088 *
1089 * Returns the amount of work done
1090 **/
1091int i40evf_napi_poll(struct napi_struct *napi, int budget)
1092{
1093 struct i40e_q_vector *q_vector =
1094 container_of(napi, struct i40e_q_vector, napi);
1095 struct i40e_vsi *vsi = q_vector->vsi;
1096 struct i40e_ring *ring;
1097 bool clean_complete = true;
c29af37f 1098 bool arm_wb = false;
7f12ad74
GR
1099 int budget_per_ring;
1100
1101 if (test_bit(__I40E_DOWN, &vsi->state)) {
1102 napi_complete(napi);
1103 return 0;
1104 }
1105
1106 /* Since the actual Tx work is minimal, we can give the Tx a larger
1107 * budget and be more aggressive about cleaning up the Tx descriptors.
1108 */
c29af37f 1109 i40e_for_each_ring(ring, q_vector->tx) {
7f12ad74 1110 clean_complete &= i40e_clean_tx_irq(ring, vsi->work_limit);
c29af37f
ASJ
1111 arm_wb |= ring->arm_wb;
1112 }
7f12ad74
GR
1113
1114 /* We attempt to distribute budget to each Rx queue fairly, but don't
1115 * allow the budget to go below 1 because that would exit polling early.
1116 */
1117 budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1118
1119 i40e_for_each_ring(ring, q_vector->rx)
1120 clean_complete &= i40e_clean_rx_irq(ring, budget_per_ring);
1121
1122 /* If work not completed, return budget and polling will return */
c29af37f
ASJ
1123 if (!clean_complete) {
1124 if (arm_wb)
1125 i40e_force_wb(vsi, q_vector);
7f12ad74 1126 return budget;
c29af37f 1127 }
7f12ad74
GR
1128
1129 /* Work is done so exit the polling mode and re-enable the interrupt */
1130 napi_complete(napi);
1131 if (ITR_IS_DYNAMIC(vsi->rx_itr_setting) ||
1132 ITR_IS_DYNAMIC(vsi->tx_itr_setting))
1133 i40e_update_dynamic_itr(q_vector);
1134
1135 if (!test_bit(__I40E_DOWN, &vsi->state))
1136 i40evf_irq_enable_queues(vsi->back, 1 << q_vector->v_idx);
1137
1138 return 0;
1139}
1140
1141/**
1142 * i40e_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
1143 * @skb: send buffer
1144 * @tx_ring: ring to send buffer on
1145 * @flags: the tx flags to be set
1146 *
1147 * Checks the skb and set up correspondingly several generic transmit flags
1148 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1149 *
1150 * Returns error code indicate the frame should be dropped upon error and the
1151 * otherwise returns 0 to indicate the flags has been set properly.
1152 **/
1153static int i40e_tx_prepare_vlan_flags(struct sk_buff *skb,
1154 struct i40e_ring *tx_ring,
1155 u32 *flags)
1156{
1157 __be16 protocol = skb->protocol;
1158 u32 tx_flags = 0;
1159
1160 /* if we have a HW VLAN tag being added, default to the HW one */
df8a39de
JP
1161 if (skb_vlan_tag_present(skb)) {
1162 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
7f12ad74
GR
1163 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
1164 /* else if it is a SW VLAN, check the next protocol and store the tag */
1165 } else if (protocol == htons(ETH_P_8021Q)) {
1166 struct vlan_hdr *vhdr, _vhdr;
1167 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
1168 if (!vhdr)
1169 return -EINVAL;
1170
1171 protocol = vhdr->h_vlan_encapsulated_proto;
1172 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
1173 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
1174 }
1175
1176 *flags = tx_flags;
1177 return 0;
1178}
1179
1180/**
1181 * i40e_tso - set up the tso context descriptor
1182 * @tx_ring: ptr to the ring to send
1183 * @skb: ptr to the skb we're sending
1184 * @tx_flags: the collected send information
1185 * @protocol: the send protocol
1186 * @hdr_len: ptr to the size of the packet header
1187 * @cd_tunneling: ptr to context descriptor bits
1188 *
1189 * Returns 0 if no TSO can happen, 1 if tso is going, or error
1190 **/
1191static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb,
1192 u32 tx_flags, __be16 protocol, u8 *hdr_len,
1193 u64 *cd_type_cmd_tso_mss, u32 *cd_tunneling)
1194{
1195 u32 cd_cmd, cd_tso_len, cd_mss;
fe6d4aa4 1196 struct ipv6hdr *ipv6h;
7f12ad74
GR
1197 struct tcphdr *tcph;
1198 struct iphdr *iph;
1199 u32 l4len;
1200 int err;
7f12ad74
GR
1201
1202 if (!skb_is_gso(skb))
1203 return 0;
1204
fe6d4aa4
FR
1205 err = skb_cow_head(skb, 0);
1206 if (err < 0)
1207 return err;
7f12ad74
GR
1208
1209 if (protocol == htons(ETH_P_IP)) {
1210 iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
1211 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1212 iph->tot_len = 0;
1213 iph->check = 0;
1214 tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
1215 0, IPPROTO_TCP, 0);
1216 } else if (skb_is_gso_v6(skb)) {
1217
1218 ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb)
1219 : ipv6_hdr(skb);
1220 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1221 ipv6h->payload_len = 0;
1222 tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
1223 0, IPPROTO_TCP, 0);
1224 }
1225
1226 l4len = skb->encapsulation ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
1227 *hdr_len = (skb->encapsulation
1228 ? (skb_inner_transport_header(skb) - skb->data)
1229 : skb_transport_offset(skb)) + l4len;
1230
1231 /* find the field values */
1232 cd_cmd = I40E_TX_CTX_DESC_TSO;
1233 cd_tso_len = skb->len - *hdr_len;
1234 cd_mss = skb_shinfo(skb)->gso_size;
1235 *cd_type_cmd_tso_mss |= ((u64)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
1236 ((u64)cd_tso_len <<
1237 I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1238 ((u64)cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
1239 return 1;
1240}
1241
1242/**
1243 * i40e_tx_enable_csum - Enable Tx checksum offloads
1244 * @skb: send buffer
1245 * @tx_flags: Tx flags currently set
1246 * @td_cmd: Tx descriptor command bits to set
1247 * @td_offset: Tx descriptor header offsets to set
1248 * @cd_tunneling: ptr to context desc bits
1249 **/
1250static void i40e_tx_enable_csum(struct sk_buff *skb, u32 tx_flags,
1251 u32 *td_cmd, u32 *td_offset,
1252 struct i40e_ring *tx_ring,
1253 u32 *cd_tunneling)
1254{
1255 struct ipv6hdr *this_ipv6_hdr;
1256 unsigned int this_tcp_hdrlen;
1257 struct iphdr *this_ip_hdr;
1258 u32 network_hdr_len;
1259 u8 l4_hdr = 0;
1260
1261 if (skb->encapsulation) {
1262 network_hdr_len = skb_inner_network_header_len(skb);
1263 this_ip_hdr = inner_ip_hdr(skb);
1264 this_ipv6_hdr = inner_ipv6_hdr(skb);
1265 this_tcp_hdrlen = inner_tcp_hdrlen(skb);
1266
1267 if (tx_flags & I40E_TX_FLAGS_IPV4) {
1268
1269 if (tx_flags & I40E_TX_FLAGS_TSO) {
1270 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
1271 ip_hdr(skb)->check = 0;
1272 } else {
1273 *cd_tunneling |=
1274 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1275 }
1276 } else if (tx_flags & I40E_TX_FLAGS_IPV6) {
1277 if (tx_flags & I40E_TX_FLAGS_TSO) {
1278 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
1279 ip_hdr(skb)->check = 0;
1280 } else {
1281 *cd_tunneling |=
1282 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1283 }
1284 }
1285
1286 /* Now set the ctx descriptor fields */
1287 *cd_tunneling |= (skb_network_header_len(skb) >> 2) <<
1288 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT |
1289 I40E_TXD_CTX_UDP_TUNNELING |
1290 ((skb_inner_network_offset(skb) -
1291 skb_transport_offset(skb)) >> 1) <<
1292 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
1293
1294 } else {
1295 network_hdr_len = skb_network_header_len(skb);
1296 this_ip_hdr = ip_hdr(skb);
1297 this_ipv6_hdr = ipv6_hdr(skb);
1298 this_tcp_hdrlen = tcp_hdrlen(skb);
1299 }
1300
1301 /* Enable IP checksum offloads */
1302 if (tx_flags & I40E_TX_FLAGS_IPV4) {
1303 l4_hdr = this_ip_hdr->protocol;
1304 /* the stack computes the IP header already, the only time we
1305 * need the hardware to recompute it is in the case of TSO.
1306 */
1307 if (tx_flags & I40E_TX_FLAGS_TSO) {
1308 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
1309 this_ip_hdr->check = 0;
1310 } else {
1311 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
1312 }
1313 /* Now set the td_offset for IP header length */
1314 *td_offset = (network_hdr_len >> 2) <<
1315 I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1316 } else if (tx_flags & I40E_TX_FLAGS_IPV6) {
1317 l4_hdr = this_ipv6_hdr->nexthdr;
1318 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
1319 /* Now set the td_offset for IP header length */
1320 *td_offset = (network_hdr_len >> 2) <<
1321 I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1322 }
1323 /* words in MACLEN + dwords in IPLEN + dwords in L4Len */
1324 *td_offset |= (skb_network_offset(skb) >> 1) <<
1325 I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
1326
1327 /* Enable L4 checksum offloads */
1328 switch (l4_hdr) {
1329 case IPPROTO_TCP:
1330 /* enable checksum offloads */
1331 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
1332 *td_offset |= (this_tcp_hdrlen >> 2) <<
1333 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1334 break;
1335 case IPPROTO_SCTP:
1336 /* enable SCTP checksum offload */
1337 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
1338 *td_offset |= (sizeof(struct sctphdr) >> 2) <<
1339 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1340 break;
1341 case IPPROTO_UDP:
1342 /* enable UDP checksum offload */
1343 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
1344 *td_offset |= (sizeof(struct udphdr) >> 2) <<
1345 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1346 break;
1347 default:
1348 break;
1349 }
1350}
1351
1352/**
1353 * i40e_create_tx_ctx Build the Tx context descriptor
1354 * @tx_ring: ring to create the descriptor on
1355 * @cd_type_cmd_tso_mss: Quad Word 1
1356 * @cd_tunneling: Quad Word 0 - bits 0-31
1357 * @cd_l2tag2: Quad Word 0 - bits 32-63
1358 **/
1359static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
1360 const u64 cd_type_cmd_tso_mss,
1361 const u32 cd_tunneling, const u32 cd_l2tag2)
1362{
1363 struct i40e_tx_context_desc *context_desc;
1364 int i = tx_ring->next_to_use;
1365
ff40dd5d
JB
1366 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
1367 !cd_tunneling && !cd_l2tag2)
7f12ad74
GR
1368 return;
1369
1370 /* grab the next descriptor */
1371 context_desc = I40E_TX_CTXTDESC(tx_ring, i);
1372
1373 i++;
1374 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1375
1376 /* cpu_to_le32 and assign to struct fields */
1377 context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
1378 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3efbbb20 1379 context_desc->rsvd = cpu_to_le16(0);
7f12ad74
GR
1380 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
1381}
1382
1383/**
1384 * i40e_tx_map - Build the Tx descriptor
1385 * @tx_ring: ring to send buffer on
1386 * @skb: send buffer
1387 * @first: first buffer info buffer to use
1388 * @tx_flags: collected send information
1389 * @hdr_len: size of the packet header
1390 * @td_cmd: the command field in the descriptor
1391 * @td_offset: offset for checksum or crc
1392 **/
1393static void i40e_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
1394 struct i40e_tx_buffer *first, u32 tx_flags,
1395 const u8 hdr_len, u32 td_cmd, u32 td_offset)
1396{
1397 unsigned int data_len = skb->data_len;
1398 unsigned int size = skb_headlen(skb);
1399 struct skb_frag_struct *frag;
1400 struct i40e_tx_buffer *tx_bi;
1401 struct i40e_tx_desc *tx_desc;
1402 u16 i = tx_ring->next_to_use;
1403 u32 td_tag = 0;
1404 dma_addr_t dma;
1405 u16 gso_segs;
1406
1407 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
1408 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
1409 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
1410 I40E_TX_FLAGS_VLAN_SHIFT;
1411 }
1412
1413 if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
1414 gso_segs = skb_shinfo(skb)->gso_segs;
1415 else
1416 gso_segs = 1;
1417
1418 /* multiply data chunks by size of headers */
1419 first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
1420 first->gso_segs = gso_segs;
1421 first->skb = skb;
1422 first->tx_flags = tx_flags;
1423
1424 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1425
1426 tx_desc = I40E_TX_DESC(tx_ring, i);
1427 tx_bi = first;
1428
1429 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1430 if (dma_mapping_error(tx_ring->dev, dma))
1431 goto dma_error;
1432
1433 /* record length, and DMA address */
1434 dma_unmap_len_set(tx_bi, len, size);
1435 dma_unmap_addr_set(tx_bi, dma, dma);
1436
1437 tx_desc->buffer_addr = cpu_to_le64(dma);
1438
1439 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
1440 tx_desc->cmd_type_offset_bsz =
1441 build_ctob(td_cmd, td_offset,
1442 I40E_MAX_DATA_PER_TXD, td_tag);
1443
1444 tx_desc++;
1445 i++;
1446 if (i == tx_ring->count) {
1447 tx_desc = I40E_TX_DESC(tx_ring, 0);
1448 i = 0;
1449 }
1450
1451 dma += I40E_MAX_DATA_PER_TXD;
1452 size -= I40E_MAX_DATA_PER_TXD;
1453
1454 tx_desc->buffer_addr = cpu_to_le64(dma);
1455 }
1456
1457 if (likely(!data_len))
1458 break;
1459
1460 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
1461 size, td_tag);
1462
1463 tx_desc++;
1464 i++;
1465 if (i == tx_ring->count) {
1466 tx_desc = I40E_TX_DESC(tx_ring, 0);
1467 i = 0;
1468 }
1469
1470 size = skb_frag_size(frag);
1471 data_len -= size;
1472
1473 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1474 DMA_TO_DEVICE);
1475
1476 tx_bi = &tx_ring->tx_bi[i];
1477 }
1478
1943d8ba
JB
1479 /* Place RS bit on last descriptor of any packet that spans across the
1480 * 4th descriptor (WB_STRIDE aka 0x3) in a 64B cacheline.
1481 */
1482#define WB_STRIDE 0x3
1483 if (((i & WB_STRIDE) != WB_STRIDE) &&
1484 (first <= &tx_ring->tx_bi[i]) &&
1485 (first >= &tx_ring->tx_bi[i & ~WB_STRIDE])) {
1486 tx_desc->cmd_type_offset_bsz =
1487 build_ctob(td_cmd, td_offset, size, td_tag) |
1488 cpu_to_le64((u64)I40E_TX_DESC_CMD_EOP <<
1489 I40E_TXD_QW1_CMD_SHIFT);
1490 } else {
1491 tx_desc->cmd_type_offset_bsz =
1492 build_ctob(td_cmd, td_offset, size, td_tag) |
1493 cpu_to_le64((u64)I40E_TXD_CMD <<
1494 I40E_TXD_QW1_CMD_SHIFT);
1495 }
7f12ad74
GR
1496
1497 netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
1498 tx_ring->queue_index),
1499 first->bytecount);
1500
1501 /* set the timestamp */
1502 first->time_stamp = jiffies;
1503
1504 /* Force memory writes to complete before letting h/w
1505 * know there are new descriptors to fetch. (Only
1506 * applicable for weak-ordered memory model archs,
1507 * such as IA-64).
1508 */
1509 wmb();
1510
1511 /* set next_to_watch value indicating a packet is present */
1512 first->next_to_watch = tx_desc;
1513
1514 i++;
1515 if (i == tx_ring->count)
1516 i = 0;
1517
1518 tx_ring->next_to_use = i;
1519
1520 /* notify HW of packet */
1521 writel(i, tx_ring->tail);
1522
1523 return;
1524
1525dma_error:
1526 dev_info(tx_ring->dev, "TX DMA map failed\n");
1527
1528 /* clear dma mappings for failed tx_bi map */
1529 for (;;) {
1530 tx_bi = &tx_ring->tx_bi[i];
1531 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
1532 if (tx_bi == first)
1533 break;
1534 if (i == 0)
1535 i = tx_ring->count;
1536 i--;
1537 }
1538
1539 tx_ring->next_to_use = i;
1540}
1541
1542/**
1543 * __i40e_maybe_stop_tx - 2nd level check for tx stop conditions
1544 * @tx_ring: the ring to be checked
1545 * @size: the size buffer we want to assure is available
1546 *
1547 * Returns -EBUSY if a stop is needed, else 0
1548 **/
1549static inline int __i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
1550{
1551 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
1552 /* Memory barrier before checking head and tail */
1553 smp_mb();
1554
1555 /* Check again in a case another CPU has just made room available. */
1556 if (likely(I40E_DESC_UNUSED(tx_ring) < size))
1557 return -EBUSY;
1558
1559 /* A reprieve! - use start_queue because it doesn't call schedule */
1560 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
1561 ++tx_ring->tx_stats.restart_queue;
1562 return 0;
1563}
1564
1565/**
1566 * i40e_maybe_stop_tx - 1st level check for tx stop conditions
1567 * @tx_ring: the ring to be checked
1568 * @size: the size buffer we want to assure is available
1569 *
1570 * Returns 0 if stop is not needed
1571 **/
1572static int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
1573{
1574 if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
1575 return 0;
1576 return __i40e_maybe_stop_tx(tx_ring, size);
1577}
1578
1579/**
1580 * i40e_xmit_descriptor_count - calculate number of tx descriptors needed
1581 * @skb: send buffer
1582 * @tx_ring: ring to send buffer on
1583 *
1584 * Returns number of data descriptors needed for this skb. Returns 0 to indicate
1585 * there is not enough descriptors available in this ring since we need at least
1586 * one descriptor.
1587 **/
1588static int i40e_xmit_descriptor_count(struct sk_buff *skb,
1589 struct i40e_ring *tx_ring)
1590{
7f12ad74 1591 unsigned int f;
7f12ad74
GR
1592 int count = 0;
1593
1594 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
1595 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
be560521 1596 * + 4 desc gap to avoid the cache line where head is,
7f12ad74
GR
1597 * + 1 desc for context descriptor,
1598 * otherwise try next time
1599 */
7f12ad74
GR
1600 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1601 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
980093eb 1602
7f12ad74 1603 count += TXD_USE_COUNT(skb_headlen(skb));
be560521 1604 if (i40e_maybe_stop_tx(tx_ring, count + 4 + 1)) {
7f12ad74
GR
1605 tx_ring->tx_stats.tx_busy++;
1606 return 0;
1607 }
1608 return count;
1609}
1610
1611/**
1612 * i40e_xmit_frame_ring - Sends buffer on Tx ring
1613 * @skb: send buffer
1614 * @tx_ring: ring to send buffer on
1615 *
1616 * Returns NETDEV_TX_OK if sent, else an error code
1617 **/
1618static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
1619 struct i40e_ring *tx_ring)
1620{
1621 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
1622 u32 cd_tunneling = 0, cd_l2tag2 = 0;
1623 struct i40e_tx_buffer *first;
1624 u32 td_offset = 0;
1625 u32 tx_flags = 0;
1626 __be16 protocol;
1627 u32 td_cmd = 0;
1628 u8 hdr_len = 0;
1629 int tso;
1630 if (0 == i40e_xmit_descriptor_count(skb, tx_ring))
1631 return NETDEV_TX_BUSY;
1632
1633 /* prepare the xmit flags */
1634 if (i40e_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
1635 goto out_drop;
1636
1637 /* obtain protocol of skb */
a12c4158 1638 protocol = vlan_get_protocol(skb);
7f12ad74
GR
1639
1640 /* record the location of the first descriptor for this packet */
1641 first = &tx_ring->tx_bi[tx_ring->next_to_use];
1642
1643 /* setup IPv4/IPv6 offloads */
1644 if (protocol == htons(ETH_P_IP))
1645 tx_flags |= I40E_TX_FLAGS_IPV4;
1646 else if (protocol == htons(ETH_P_IPV6))
1647 tx_flags |= I40E_TX_FLAGS_IPV6;
1648
1649 tso = i40e_tso(tx_ring, skb, tx_flags, protocol, &hdr_len,
1650 &cd_type_cmd_tso_mss, &cd_tunneling);
1651
1652 if (tso < 0)
1653 goto out_drop;
1654 else if (tso)
1655 tx_flags |= I40E_TX_FLAGS_TSO;
1656
1657 skb_tx_timestamp(skb);
1658
1659 /* always enable CRC insertion offload */
1660 td_cmd |= I40E_TX_DESC_CMD_ICRC;
1661
1662 /* Always offload the checksum, since it's in the data descriptor */
1663 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1664 tx_flags |= I40E_TX_FLAGS_CSUM;
1665
1666 i40e_tx_enable_csum(skb, tx_flags, &td_cmd, &td_offset,
1667 tx_ring, &cd_tunneling);
1668 }
1669
1670 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
1671 cd_tunneling, cd_l2tag2);
1672
1673 i40e_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
1674 td_cmd, td_offset);
1675
1676 i40e_maybe_stop_tx(tx_ring, DESC_NEEDED);
1677
1678 return NETDEV_TX_OK;
1679
1680out_drop:
1681 dev_kfree_skb_any(skb);
1682 return NETDEV_TX_OK;
1683}
1684
1685/**
1686 * i40evf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
1687 * @skb: send buffer
1688 * @netdev: network interface device structure
1689 *
1690 * Returns NETDEV_TX_OK if sent, else an error code
1691 **/
1692netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
1693{
1694 struct i40evf_adapter *adapter = netdev_priv(netdev);
1695 struct i40e_ring *tx_ring = adapter->tx_rings[skb->queue_mapping];
1696
1697 /* hardware can't handle really short frames, hardware padding works
1698 * beyond this point
1699 */
1700 if (unlikely(skb->len < I40E_MIN_TX_LEN)) {
1701 if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len))
1702 return NETDEV_TX_OK;
1703 skb->len = I40E_MIN_TX_LEN;
1704 skb_set_tail_pointer(skb, I40E_MIN_TX_LEN);
1705 }
1706
1707 return i40e_xmit_frame_ring(skb, tx_ring);
1708}