e1000e: i219 - k1 workaround for LPT is not required for SPT
[linux-2.6-block.git] / drivers / net / ethernet / intel / i40evf / i40e_txrx.c
CommitLineData
7f12ad74
GR
1/*******************************************************************************
2 *
3 * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
af1a2a9c 4 * Copyright(c) 2013 - 2014 Intel Corporation.
7f12ad74
GR
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
b831607d
JB
15 * You should have received a copy of the GNU General Public License along
16 * with this program. If not, see <http://www.gnu.org/licenses/>.
17 *
7f12ad74
GR
18 * The full GNU General Public License is included in this distribution in
19 * the file called "COPYING".
20 *
21 * Contact Information:
22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 *
25 ******************************************************************************/
26
7ed3f5f0 27#include <linux/prefetch.h>
a132af24 28#include <net/busy_poll.h>
7ed3f5f0 29
7f12ad74 30#include "i40evf.h"
206812b5 31#include "i40e_prototype.h"
7f12ad74
GR
32
33static inline __le64 build_ctob(u32 td_cmd, u32 td_offset, unsigned int size,
34 u32 td_tag)
35{
36 return cpu_to_le64(I40E_TX_DESC_DTYPE_DATA |
37 ((u64)td_cmd << I40E_TXD_QW1_CMD_SHIFT) |
38 ((u64)td_offset << I40E_TXD_QW1_OFFSET_SHIFT) |
39 ((u64)size << I40E_TXD_QW1_TX_BUF_SZ_SHIFT) |
40 ((u64)td_tag << I40E_TXD_QW1_L2TAG1_SHIFT));
41}
42
43#define I40E_TXD_CMD (I40E_TX_DESC_CMD_EOP | I40E_TX_DESC_CMD_RS)
44
45/**
46 * i40e_unmap_and_free_tx_resource - Release a Tx buffer
47 * @ring: the ring that owns the buffer
48 * @tx_buffer: the buffer to free
49 **/
50static void i40e_unmap_and_free_tx_resource(struct i40e_ring *ring,
51 struct i40e_tx_buffer *tx_buffer)
52{
53 if (tx_buffer->skb) {
49d7d933
ASJ
54 if (tx_buffer->tx_flags & I40E_TX_FLAGS_FD_SB)
55 kfree(tx_buffer->raw_buf);
56 else
57 dev_kfree_skb_any(tx_buffer->skb);
58
7f12ad74
GR
59 if (dma_unmap_len(tx_buffer, len))
60 dma_unmap_single(ring->dev,
61 dma_unmap_addr(tx_buffer, dma),
62 dma_unmap_len(tx_buffer, len),
63 DMA_TO_DEVICE);
64 } else if (dma_unmap_len(tx_buffer, len)) {
65 dma_unmap_page(ring->dev,
66 dma_unmap_addr(tx_buffer, dma),
67 dma_unmap_len(tx_buffer, len),
68 DMA_TO_DEVICE);
69 }
70 tx_buffer->next_to_watch = NULL;
71 tx_buffer->skb = NULL;
72 dma_unmap_len_set(tx_buffer, len, 0);
73 /* tx_buffer must be completely set up in the transmit path */
74}
75
76/**
77 * i40evf_clean_tx_ring - Free any empty Tx buffers
78 * @tx_ring: ring to be cleaned
79 **/
80void i40evf_clean_tx_ring(struct i40e_ring *tx_ring)
81{
82 unsigned long bi_size;
83 u16 i;
84
85 /* ring already cleared, nothing to do */
86 if (!tx_ring->tx_bi)
87 return;
88
89 /* Free all the Tx ring sk_buffs */
90 for (i = 0; i < tx_ring->count; i++)
91 i40e_unmap_and_free_tx_resource(tx_ring, &tx_ring->tx_bi[i]);
92
93 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
94 memset(tx_ring->tx_bi, 0, bi_size);
95
96 /* Zero out the descriptor ring */
97 memset(tx_ring->desc, 0, tx_ring->size);
98
99 tx_ring->next_to_use = 0;
100 tx_ring->next_to_clean = 0;
101
102 if (!tx_ring->netdev)
103 return;
104
105 /* cleanup Tx queue statistics */
106 netdev_tx_reset_queue(netdev_get_tx_queue(tx_ring->netdev,
107 tx_ring->queue_index));
108}
109
110/**
111 * i40evf_free_tx_resources - Free Tx resources per queue
112 * @tx_ring: Tx descriptor ring for a specific queue
113 *
114 * Free all transmit software resources
115 **/
116void i40evf_free_tx_resources(struct i40e_ring *tx_ring)
117{
118 i40evf_clean_tx_ring(tx_ring);
119 kfree(tx_ring->tx_bi);
120 tx_ring->tx_bi = NULL;
121
122 if (tx_ring->desc) {
123 dma_free_coherent(tx_ring->dev, tx_ring->size,
124 tx_ring->desc, tx_ring->dma);
125 tx_ring->desc = NULL;
126 }
127}
128
a68de58d
JB
129/**
130 * i40e_get_head - Retrieve head from head writeback
131 * @tx_ring: tx ring to fetch head of
132 *
133 * Returns value of Tx ring head based on value stored
134 * in head write-back location
135 **/
136static inline u32 i40e_get_head(struct i40e_ring *tx_ring)
137{
138 void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count;
139
140 return le32_to_cpu(*(volatile __le32 *)head);
141}
142
7f12ad74
GR
143/**
144 * i40e_get_tx_pending - how many tx descriptors not processed
145 * @tx_ring: the ring of descriptors
146 *
147 * Since there is no access to the ring head register
148 * in XL710, we need to use our local copies
149 **/
150static u32 i40e_get_tx_pending(struct i40e_ring *ring)
151{
a68de58d
JB
152 u32 head, tail;
153
154 head = i40e_get_head(ring);
155 tail = readl(ring->tail);
156
157 if (head != tail)
158 return (head < tail) ?
159 tail - head : (tail + ring->count - head);
160
161 return 0;
7f12ad74
GR
162}
163
164/**
165 * i40e_check_tx_hang - Is there a hang in the Tx queue
166 * @tx_ring: the ring of descriptors
167 **/
168static bool i40e_check_tx_hang(struct i40e_ring *tx_ring)
169{
a68de58d
JB
170 u32 tx_done = tx_ring->stats.packets;
171 u32 tx_done_old = tx_ring->tx_stats.tx_done_old;
7f12ad74
GR
172 u32 tx_pending = i40e_get_tx_pending(tx_ring);
173 bool ret = false;
174
175 clear_check_for_tx_hang(tx_ring);
176
177 /* Check for a hung queue, but be thorough. This verifies
178 * that a transmit has been completed since the previous
179 * check AND there is at least one packet pending. The
180 * ARMED bit is set to indicate a potential hang. The
181 * bit is cleared if a pause frame is received to remove
182 * false hang detection due to PFC or 802.3x frames. By
183 * requiring this to fail twice we avoid races with
184 * PFC clearing the ARMED bit and conditions where we
185 * run the check_tx_hang logic with a transmit completion
186 * pending but without time to complete it yet.
187 */
a68de58d 188 if ((tx_done_old == tx_done) && tx_pending) {
7f12ad74
GR
189 /* make sure it is true for two checks in a row */
190 ret = test_and_set_bit(__I40E_HANG_CHECK_ARMED,
191 &tx_ring->state);
a68de58d
JB
192 } else if (tx_done_old == tx_done &&
193 (tx_pending < I40E_MIN_DESC_PENDING) && (tx_pending > 0)) {
7f12ad74 194 /* update completed stats and disarm the hang check */
a68de58d 195 tx_ring->tx_stats.tx_done_old = tx_done;
7f12ad74
GR
196 clear_bit(__I40E_HANG_CHECK_ARMED, &tx_ring->state);
197 }
198
199 return ret;
200}
201
c29af37f
ASJ
202#define WB_STRIDE 0x3
203
7f12ad74
GR
204/**
205 * i40e_clean_tx_irq - Reclaim resources after transmit completes
206 * @tx_ring: tx ring to clean
207 * @budget: how many cleans we're allowed
208 *
209 * Returns true if there's any budget left (e.g. the clean is finished)
210 **/
211static bool i40e_clean_tx_irq(struct i40e_ring *tx_ring, int budget)
212{
213 u16 i = tx_ring->next_to_clean;
214 struct i40e_tx_buffer *tx_buf;
1943d8ba 215 struct i40e_tx_desc *tx_head;
7f12ad74
GR
216 struct i40e_tx_desc *tx_desc;
217 unsigned int total_packets = 0;
218 unsigned int total_bytes = 0;
219
220 tx_buf = &tx_ring->tx_bi[i];
221 tx_desc = I40E_TX_DESC(tx_ring, i);
222 i -= tx_ring->count;
223
1943d8ba
JB
224 tx_head = I40E_TX_DESC(tx_ring, i40e_get_head(tx_ring));
225
7f12ad74
GR
226 do {
227 struct i40e_tx_desc *eop_desc = tx_buf->next_to_watch;
228
229 /* if next_to_watch is not set then there is no work pending */
230 if (!eop_desc)
231 break;
232
233 /* prevent any other reads prior to eop_desc */
234 read_barrier_depends();
235
1943d8ba
JB
236 /* we have caught up to head, no work left to do */
237 if (tx_head == tx_desc)
7f12ad74
GR
238 break;
239
240 /* clear next_to_watch to prevent false hangs */
241 tx_buf->next_to_watch = NULL;
242
243 /* update the statistics for this packet */
244 total_bytes += tx_buf->bytecount;
245 total_packets += tx_buf->gso_segs;
246
247 /* free the skb */
248 dev_kfree_skb_any(tx_buf->skb);
249
250 /* unmap skb header data */
251 dma_unmap_single(tx_ring->dev,
252 dma_unmap_addr(tx_buf, dma),
253 dma_unmap_len(tx_buf, len),
254 DMA_TO_DEVICE);
255
256 /* clear tx_buffer data */
257 tx_buf->skb = NULL;
258 dma_unmap_len_set(tx_buf, len, 0);
259
260 /* unmap remaining buffers */
261 while (tx_desc != eop_desc) {
262
263 tx_buf++;
264 tx_desc++;
265 i++;
266 if (unlikely(!i)) {
267 i -= tx_ring->count;
268 tx_buf = tx_ring->tx_bi;
269 tx_desc = I40E_TX_DESC(tx_ring, 0);
270 }
271
272 /* unmap any remaining paged data */
273 if (dma_unmap_len(tx_buf, len)) {
274 dma_unmap_page(tx_ring->dev,
275 dma_unmap_addr(tx_buf, dma),
276 dma_unmap_len(tx_buf, len),
277 DMA_TO_DEVICE);
278 dma_unmap_len_set(tx_buf, len, 0);
279 }
280 }
281
282 /* move us one more past the eop_desc for start of next pkt */
283 tx_buf++;
284 tx_desc++;
285 i++;
286 if (unlikely(!i)) {
287 i -= tx_ring->count;
288 tx_buf = tx_ring->tx_bi;
289 tx_desc = I40E_TX_DESC(tx_ring, 0);
290 }
291
016890b9
JB
292 prefetch(tx_desc);
293
7f12ad74
GR
294 /* update budget accounting */
295 budget--;
296 } while (likely(budget));
297
298 i += tx_ring->count;
299 tx_ring->next_to_clean = i;
300 u64_stats_update_begin(&tx_ring->syncp);
301 tx_ring->stats.bytes += total_bytes;
302 tx_ring->stats.packets += total_packets;
303 u64_stats_update_end(&tx_ring->syncp);
304 tx_ring->q_vector->tx.total_bytes += total_bytes;
305 tx_ring->q_vector->tx.total_packets += total_packets;
306
c29af37f
ASJ
307 if (budget &&
308 !((i & WB_STRIDE) == WB_STRIDE) &&
309 !test_bit(__I40E_DOWN, &tx_ring->vsi->state) &&
310 (I40E_DESC_UNUSED(tx_ring) != tx_ring->count))
311 tx_ring->arm_wb = true;
312 else
313 tx_ring->arm_wb = false;
314
7f12ad74
GR
315 if (check_for_tx_hang(tx_ring) && i40e_check_tx_hang(tx_ring)) {
316 /* schedule immediate reset if we believe we hung */
317 dev_info(tx_ring->dev, "Detected Tx Unit Hang\n"
318 " VSI <%d>\n"
319 " Tx Queue <%d>\n"
320 " next_to_use <%x>\n"
321 " next_to_clean <%x>\n",
322 tx_ring->vsi->seid,
323 tx_ring->queue_index,
324 tx_ring->next_to_use, i);
7f12ad74
GR
325
326 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
327
328 dev_info(tx_ring->dev,
329 "tx hang detected on queue %d, resetting adapter\n",
330 tx_ring->queue_index);
331
332 tx_ring->netdev->netdev_ops->ndo_tx_timeout(tx_ring->netdev);
333
334 /* the adapter is about to reset, no point in enabling stuff */
335 return true;
336 }
337
338 netdev_tx_completed_queue(netdev_get_tx_queue(tx_ring->netdev,
339 tx_ring->queue_index),
340 total_packets, total_bytes);
341
342#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
343 if (unlikely(total_packets && netif_carrier_ok(tx_ring->netdev) &&
344 (I40E_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
345 /* Make sure that anybody stopping the queue after this
346 * sees the new next_to_clean.
347 */
348 smp_mb();
349 if (__netif_subqueue_stopped(tx_ring->netdev,
350 tx_ring->queue_index) &&
351 !test_bit(__I40E_DOWN, &tx_ring->vsi->state)) {
352 netif_wake_subqueue(tx_ring->netdev,
353 tx_ring->queue_index);
354 ++tx_ring->tx_stats.restart_queue;
355 }
356 }
357
358 return budget > 0;
359}
360
c29af37f
ASJ
361/**
362 * i40e_force_wb -Arm hardware to do a wb on noncache aligned descriptors
363 * @vsi: the VSI we care about
364 * @q_vector: the vector on which to force writeback
365 *
366 **/
367static void i40e_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector)
368{
369 u32 val = I40E_VFINT_DYN_CTLN_INTENA_MASK |
97bf75f1 370 I40E_VFINT_DYN_CTLN1_ITR_INDX_MASK | /* set noitr */
c29af37f
ASJ
371 I40E_VFINT_DYN_CTLN_SWINT_TRIG_MASK |
372 I40E_VFINT_DYN_CTLN_SW_ITR_INDX_ENA_MASK;
373 /* allow 00 to be written to the index */
374
375 wr32(&vsi->back->hw,
376 I40E_VFINT_DYN_CTLN1(q_vector->v_idx + vsi->base_vector - 1),
377 val);
378}
379
7f12ad74
GR
380/**
381 * i40e_set_new_dynamic_itr - Find new ITR level
382 * @rc: structure containing ring performance data
383 *
384 * Stores a new ITR value based on packets and byte counts during
385 * the last interrupt. The advantage of per interrupt computation
386 * is faster updates and more accurate ITR for the current traffic
387 * pattern. Constants in this function were computed based on
388 * theoretical maximum wire speed and thresholds were set based on
389 * testing data as well as attempting to minimize response time
390 * while increasing bulk throughput.
391 **/
392static void i40e_set_new_dynamic_itr(struct i40e_ring_container *rc)
393{
394 enum i40e_latency_range new_latency_range = rc->latency_range;
395 u32 new_itr = rc->itr;
396 int bytes_per_int;
397
398 if (rc->total_packets == 0 || !rc->itr)
399 return;
400
401 /* simple throttlerate management
402 * 0-10MB/s lowest (100000 ints/s)
403 * 10-20MB/s low (20000 ints/s)
404 * 20-1249MB/s bulk (8000 ints/s)
405 */
406 bytes_per_int = rc->total_bytes / rc->itr;
407 switch (rc->itr) {
408 case I40E_LOWEST_LATENCY:
409 if (bytes_per_int > 10)
410 new_latency_range = I40E_LOW_LATENCY;
411 break;
412 case I40E_LOW_LATENCY:
413 if (bytes_per_int > 20)
414 new_latency_range = I40E_BULK_LATENCY;
415 else if (bytes_per_int <= 10)
416 new_latency_range = I40E_LOWEST_LATENCY;
417 break;
418 case I40E_BULK_LATENCY:
419 if (bytes_per_int <= 20)
420 rc->latency_range = I40E_LOW_LATENCY;
421 break;
422 }
423
424 switch (new_latency_range) {
425 case I40E_LOWEST_LATENCY:
426 new_itr = I40E_ITR_100K;
427 break;
428 case I40E_LOW_LATENCY:
429 new_itr = I40E_ITR_20K;
430 break;
431 case I40E_BULK_LATENCY:
432 new_itr = I40E_ITR_8K;
433 break;
434 default:
435 break;
436 }
437
438 if (new_itr != rc->itr) {
439 /* do an exponential smoothing */
440 new_itr = (10 * new_itr * rc->itr) /
441 ((9 * new_itr) + rc->itr);
442 rc->itr = new_itr & I40E_MAX_ITR;
443 }
444
445 rc->total_bytes = 0;
446 rc->total_packets = 0;
447}
448
449/**
450 * i40e_update_dynamic_itr - Adjust ITR based on bytes per int
451 * @q_vector: the vector to adjust
452 **/
453static void i40e_update_dynamic_itr(struct i40e_q_vector *q_vector)
454{
455 u16 vector = q_vector->vsi->base_vector + q_vector->v_idx;
456 struct i40e_hw *hw = &q_vector->vsi->back->hw;
457 u32 reg_addr;
458 u16 old_itr;
459
460 reg_addr = I40E_VFINT_ITRN1(I40E_RX_ITR, vector - 1);
461 old_itr = q_vector->rx.itr;
462 i40e_set_new_dynamic_itr(&q_vector->rx);
463 if (old_itr != q_vector->rx.itr)
464 wr32(hw, reg_addr, q_vector->rx.itr);
465
466 reg_addr = I40E_VFINT_ITRN1(I40E_TX_ITR, vector - 1);
467 old_itr = q_vector->tx.itr;
468 i40e_set_new_dynamic_itr(&q_vector->tx);
469 if (old_itr != q_vector->tx.itr)
470 wr32(hw, reg_addr, q_vector->tx.itr);
471}
472
473/**
474 * i40evf_setup_tx_descriptors - Allocate the Tx descriptors
475 * @tx_ring: the tx ring to set up
476 *
477 * Return 0 on success, negative on error
478 **/
479int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring)
480{
481 struct device *dev = tx_ring->dev;
482 int bi_size;
483
484 if (!dev)
485 return -ENOMEM;
486
487 bi_size = sizeof(struct i40e_tx_buffer) * tx_ring->count;
488 tx_ring->tx_bi = kzalloc(bi_size, GFP_KERNEL);
489 if (!tx_ring->tx_bi)
490 goto err;
491
492 /* round up to nearest 4K */
493 tx_ring->size = tx_ring->count * sizeof(struct i40e_tx_desc);
1943d8ba
JB
494 /* add u32 for head writeback, align after this takes care of
495 * guaranteeing this is at least one cache line in size
496 */
497 tx_ring->size += sizeof(u32);
7f12ad74
GR
498 tx_ring->size = ALIGN(tx_ring->size, 4096);
499 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
500 &tx_ring->dma, GFP_KERNEL);
501 if (!tx_ring->desc) {
502 dev_info(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
503 tx_ring->size);
504 goto err;
505 }
506
507 tx_ring->next_to_use = 0;
508 tx_ring->next_to_clean = 0;
509 return 0;
510
511err:
512 kfree(tx_ring->tx_bi);
513 tx_ring->tx_bi = NULL;
514 return -ENOMEM;
515}
516
517/**
518 * i40evf_clean_rx_ring - Free Rx buffers
519 * @rx_ring: ring to be cleaned
520 **/
521void i40evf_clean_rx_ring(struct i40e_ring *rx_ring)
522{
523 struct device *dev = rx_ring->dev;
524 struct i40e_rx_buffer *rx_bi;
525 unsigned long bi_size;
526 u16 i;
527
528 /* ring already cleared, nothing to do */
529 if (!rx_ring->rx_bi)
530 return;
531
a132af24
MW
532 if (ring_is_ps_enabled(rx_ring)) {
533 int bufsz = ALIGN(rx_ring->rx_hdr_len, 256) * rx_ring->count;
534
535 rx_bi = &rx_ring->rx_bi[0];
536 if (rx_bi->hdr_buf) {
537 dma_free_coherent(dev,
538 bufsz,
539 rx_bi->hdr_buf,
540 rx_bi->dma);
541 for (i = 0; i < rx_ring->count; i++) {
542 rx_bi = &rx_ring->rx_bi[i];
543 rx_bi->dma = 0;
37a2973a 544 rx_bi->hdr_buf = NULL;
a132af24
MW
545 }
546 }
547 }
7f12ad74
GR
548 /* Free all the Rx ring sk_buffs */
549 for (i = 0; i < rx_ring->count; i++) {
550 rx_bi = &rx_ring->rx_bi[i];
551 if (rx_bi->dma) {
552 dma_unmap_single(dev,
553 rx_bi->dma,
554 rx_ring->rx_buf_len,
555 DMA_FROM_DEVICE);
556 rx_bi->dma = 0;
557 }
558 if (rx_bi->skb) {
559 dev_kfree_skb(rx_bi->skb);
560 rx_bi->skb = NULL;
561 }
562 if (rx_bi->page) {
563 if (rx_bi->page_dma) {
564 dma_unmap_page(dev,
565 rx_bi->page_dma,
566 PAGE_SIZE / 2,
567 DMA_FROM_DEVICE);
568 rx_bi->page_dma = 0;
569 }
570 __free_page(rx_bi->page);
571 rx_bi->page = NULL;
572 rx_bi->page_offset = 0;
573 }
574 }
575
576 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
577 memset(rx_ring->rx_bi, 0, bi_size);
578
579 /* Zero out the descriptor ring */
580 memset(rx_ring->desc, 0, rx_ring->size);
581
582 rx_ring->next_to_clean = 0;
583 rx_ring->next_to_use = 0;
584}
585
586/**
587 * i40evf_free_rx_resources - Free Rx resources
588 * @rx_ring: ring to clean the resources from
589 *
590 * Free all receive software resources
591 **/
592void i40evf_free_rx_resources(struct i40e_ring *rx_ring)
593{
594 i40evf_clean_rx_ring(rx_ring);
595 kfree(rx_ring->rx_bi);
596 rx_ring->rx_bi = NULL;
597
598 if (rx_ring->desc) {
599 dma_free_coherent(rx_ring->dev, rx_ring->size,
600 rx_ring->desc, rx_ring->dma);
601 rx_ring->desc = NULL;
602 }
603}
604
a132af24
MW
605/**
606 * i40evf_alloc_rx_headers - allocate rx header buffers
607 * @rx_ring: ring to alloc buffers
608 *
609 * Allocate rx header buffers for the entire ring. As these are static,
610 * this is only called when setting up a new ring.
611 **/
612void i40evf_alloc_rx_headers(struct i40e_ring *rx_ring)
613{
614 struct device *dev = rx_ring->dev;
615 struct i40e_rx_buffer *rx_bi;
616 dma_addr_t dma;
617 void *buffer;
618 int buf_size;
619 int i;
620
621 if (rx_ring->rx_bi[0].hdr_buf)
622 return;
623 /* Make sure the buffers don't cross cache line boundaries. */
624 buf_size = ALIGN(rx_ring->rx_hdr_len, 256);
625 buffer = dma_alloc_coherent(dev, buf_size * rx_ring->count,
626 &dma, GFP_KERNEL);
627 if (!buffer)
628 return;
629 for (i = 0; i < rx_ring->count; i++) {
630 rx_bi = &rx_ring->rx_bi[i];
631 rx_bi->dma = dma + (i * buf_size);
632 rx_bi->hdr_buf = buffer + (i * buf_size);
633 }
634}
635
7f12ad74
GR
636/**
637 * i40evf_setup_rx_descriptors - Allocate Rx descriptors
638 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
639 *
640 * Returns 0 on success, negative on failure
641 **/
642int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring)
643{
644 struct device *dev = rx_ring->dev;
645 int bi_size;
646
647 bi_size = sizeof(struct i40e_rx_buffer) * rx_ring->count;
648 rx_ring->rx_bi = kzalloc(bi_size, GFP_KERNEL);
649 if (!rx_ring->rx_bi)
650 goto err;
651
f217d6ca 652 u64_stats_init(&rx_ring->syncp);
638702bd 653
7f12ad74
GR
654 /* Round up to nearest 4K */
655 rx_ring->size = ring_is_16byte_desc_enabled(rx_ring)
656 ? rx_ring->count * sizeof(union i40e_16byte_rx_desc)
657 : rx_ring->count * sizeof(union i40e_32byte_rx_desc);
658 rx_ring->size = ALIGN(rx_ring->size, 4096);
659 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
660 &rx_ring->dma, GFP_KERNEL);
661
662 if (!rx_ring->desc) {
663 dev_info(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
664 rx_ring->size);
665 goto err;
666 }
667
668 rx_ring->next_to_clean = 0;
669 rx_ring->next_to_use = 0;
670
671 return 0;
672err:
673 kfree(rx_ring->rx_bi);
674 rx_ring->rx_bi = NULL;
675 return -ENOMEM;
676}
677
678/**
679 * i40e_release_rx_desc - Store the new tail and head values
680 * @rx_ring: ring to bump
681 * @val: new head index
682 **/
683static inline void i40e_release_rx_desc(struct i40e_ring *rx_ring, u32 val)
684{
685 rx_ring->next_to_use = val;
686 /* Force memory writes to complete before letting h/w
687 * know there are new descriptors to fetch. (Only
688 * applicable for weak-ordered memory model archs,
689 * such as IA-64).
690 */
691 wmb();
692 writel(val, rx_ring->tail);
693}
694
695/**
a132af24
MW
696 * i40evf_alloc_rx_buffers_ps - Replace used receive buffers; packet split
697 * @rx_ring: ring to place buffers on
698 * @cleaned_count: number of buffers to replace
699 **/
700void i40evf_alloc_rx_buffers_ps(struct i40e_ring *rx_ring, u16 cleaned_count)
701{
702 u16 i = rx_ring->next_to_use;
703 union i40e_rx_desc *rx_desc;
704 struct i40e_rx_buffer *bi;
705
706 /* do nothing if no valid netdev defined */
707 if (!rx_ring->netdev || !cleaned_count)
708 return;
709
710 while (cleaned_count--) {
711 rx_desc = I40E_RX_DESC(rx_ring, i);
712 bi = &rx_ring->rx_bi[i];
713
714 if (bi->skb) /* desc is in use */
715 goto no_buffers;
716 if (!bi->page) {
717 bi->page = alloc_page(GFP_ATOMIC);
718 if (!bi->page) {
719 rx_ring->rx_stats.alloc_page_failed++;
720 goto no_buffers;
721 }
722 }
723
724 if (!bi->page_dma) {
725 /* use a half page if we're re-using */
726 bi->page_offset ^= PAGE_SIZE / 2;
727 bi->page_dma = dma_map_page(rx_ring->dev,
728 bi->page,
729 bi->page_offset,
730 PAGE_SIZE / 2,
731 DMA_FROM_DEVICE);
732 if (dma_mapping_error(rx_ring->dev,
733 bi->page_dma)) {
734 rx_ring->rx_stats.alloc_page_failed++;
735 bi->page_dma = 0;
736 goto no_buffers;
737 }
738 }
739
740 dma_sync_single_range_for_device(rx_ring->dev,
741 bi->dma,
742 0,
743 rx_ring->rx_hdr_len,
744 DMA_FROM_DEVICE);
745 /* Refresh the desc even if buffer_addrs didn't change
746 * because each write-back erases this info.
747 */
748 rx_desc->read.pkt_addr = cpu_to_le64(bi->page_dma);
749 rx_desc->read.hdr_addr = cpu_to_le64(bi->dma);
750 i++;
751 if (i == rx_ring->count)
752 i = 0;
753 }
754
755no_buffers:
756 if (rx_ring->next_to_use != i)
757 i40e_release_rx_desc(rx_ring, i);
758}
759
760/**
761 * i40evf_alloc_rx_buffers_1buf - Replace used receive buffers; single buffer
7f12ad74
GR
762 * @rx_ring: ring to place buffers on
763 * @cleaned_count: number of buffers to replace
764 **/
a132af24 765void i40evf_alloc_rx_buffers_1buf(struct i40e_ring *rx_ring, u16 cleaned_count)
7f12ad74
GR
766{
767 u16 i = rx_ring->next_to_use;
768 union i40e_rx_desc *rx_desc;
769 struct i40e_rx_buffer *bi;
770 struct sk_buff *skb;
771
772 /* do nothing if no valid netdev defined */
773 if (!rx_ring->netdev || !cleaned_count)
774 return;
775
776 while (cleaned_count--) {
777 rx_desc = I40E_RX_DESC(rx_ring, i);
778 bi = &rx_ring->rx_bi[i];
779 skb = bi->skb;
780
781 if (!skb) {
782 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
783 rx_ring->rx_buf_len);
784 if (!skb) {
785 rx_ring->rx_stats.alloc_buff_failed++;
786 goto no_buffers;
787 }
788 /* initialize queue mapping */
789 skb_record_rx_queue(skb, rx_ring->queue_index);
790 bi->skb = skb;
791 }
792
793 if (!bi->dma) {
794 bi->dma = dma_map_single(rx_ring->dev,
795 skb->data,
796 rx_ring->rx_buf_len,
797 DMA_FROM_DEVICE);
798 if (dma_mapping_error(rx_ring->dev, bi->dma)) {
799 rx_ring->rx_stats.alloc_buff_failed++;
800 bi->dma = 0;
801 goto no_buffers;
802 }
803 }
804
a132af24
MW
805 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma);
806 rx_desc->read.hdr_addr = 0;
7f12ad74
GR
807 i++;
808 if (i == rx_ring->count)
809 i = 0;
810 }
811
812no_buffers:
813 if (rx_ring->next_to_use != i)
814 i40e_release_rx_desc(rx_ring, i);
815}
816
817/**
818 * i40e_receive_skb - Send a completed packet up the stack
819 * @rx_ring: rx ring in play
820 * @skb: packet to send up
821 * @vlan_tag: vlan tag for packet
822 **/
823static void i40e_receive_skb(struct i40e_ring *rx_ring,
824 struct sk_buff *skb, u16 vlan_tag)
825{
826 struct i40e_q_vector *q_vector = rx_ring->q_vector;
827 struct i40e_vsi *vsi = rx_ring->vsi;
828 u64 flags = vsi->back->flags;
829
830 if (vlan_tag & VLAN_VID_MASK)
831 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag);
832
833 if (flags & I40E_FLAG_IN_NETPOLL)
834 netif_rx(skb);
835 else
836 napi_gro_receive(&q_vector->napi, skb);
837}
838
839/**
840 * i40e_rx_checksum - Indicate in skb if hw indicated a good cksum
841 * @vsi: the VSI we care about
842 * @skb: skb currently being received and modified
843 * @rx_status: status value of last descriptor in packet
844 * @rx_error: error value of last descriptor in packet
845 * @rx_ptype: ptype value of last descriptor in packet
846 **/
847static inline void i40e_rx_checksum(struct i40e_vsi *vsi,
848 struct sk_buff *skb,
849 u32 rx_status,
850 u32 rx_error,
851 u16 rx_ptype)
852{
8a3c91cc
JB
853 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(rx_ptype);
854 bool ipv4 = false, ipv6 = false;
7f12ad74
GR
855 bool ipv4_tunnel, ipv6_tunnel;
856 __wsum rx_udp_csum;
7f12ad74 857 struct iphdr *iph;
8a3c91cc 858 __sum16 csum;
7f12ad74 859
f8faaa40
ASJ
860 ipv4_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT4_MAC_PAY3) &&
861 (rx_ptype <= I40E_RX_PTYPE_GRENAT4_MACVLAN_IPV6_ICMP_PAY4);
862 ipv6_tunnel = (rx_ptype >= I40E_RX_PTYPE_GRENAT6_MAC_PAY3) &&
863 (rx_ptype <= I40E_RX_PTYPE_GRENAT6_MACVLAN_IPV6_ICMP_PAY4);
7f12ad74 864
7f12ad74
GR
865 skb->ip_summed = CHECKSUM_NONE;
866
867 /* Rx csum enabled and ip headers found? */
8a3c91cc
JB
868 if (!(vsi->netdev->features & NETIF_F_RXCSUM))
869 return;
870
871 /* did the hardware decode the packet and checksum? */
872 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_L3L4P_SHIFT)))
873 return;
874
875 /* both known and outer_ip must be set for the below code to work */
876 if (!(decoded.known && decoded.outer_ip))
7f12ad74
GR
877 return;
878
8a3c91cc
JB
879 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
880 decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV4)
881 ipv4 = true;
882 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
883 decoded.outer_ip_ver == I40E_RX_PTYPE_OUTER_IPV6)
884 ipv6 = true;
885
886 if (ipv4 &&
887 (rx_error & ((1 << I40E_RX_DESC_ERROR_IPE_SHIFT) |
888 (1 << I40E_RX_DESC_ERROR_EIPE_SHIFT))))
889 goto checksum_fail;
890
ddf1d0d7 891 /* likely incorrect csum if alternate IP extension headers found */
8a3c91cc 892 if (ipv6 &&
8a3c91cc
JB
893 rx_status & (1 << I40E_RX_DESC_STATUS_IPV6EXADD_SHIFT))
894 /* don't increment checksum err here, non-fatal err */
7f12ad74
GR
895 return;
896
8a3c91cc
JB
897 /* there was some L4 error, count error and punt packet to the stack */
898 if (rx_error & (1 << I40E_RX_DESC_ERROR_L4E_SHIFT))
899 goto checksum_fail;
900
901 /* handle packets that were not able to be checksummed due
902 * to arrival speed, in this case the stack can compute
903 * the csum.
904 */
905 if (rx_error & (1 << I40E_RX_DESC_ERROR_PPRS_SHIFT))
7f12ad74 906 return;
7f12ad74 907
8a3c91cc
JB
908 /* If VXLAN traffic has an outer UDPv4 checksum we need to check
909 * it in the driver, hardware does not do it for us.
910 * Since L3L4P bit was set we assume a valid IHL value (>=5)
911 * so the total length of IPv4 header is IHL*4 bytes
912 * The UDP_0 bit *may* bet set if the *inner* header is UDP
913 */
818f2e7b 914 if (ipv4_tunnel) {
7f12ad74
GR
915 skb->transport_header = skb->mac_header +
916 sizeof(struct ethhdr) +
917 (ip_hdr(skb)->ihl * 4);
918
919 /* Add 4 bytes for VLAN tagged packets */
920 skb->transport_header += (skb->protocol == htons(ETH_P_8021Q) ||
921 skb->protocol == htons(ETH_P_8021AD))
922 ? VLAN_HLEN : 0;
923
818f2e7b
ASJ
924 if ((ip_hdr(skb)->protocol == IPPROTO_UDP) &&
925 (udp_hdr(skb)->check != 0)) {
926 rx_udp_csum = udp_csum(skb);
927 iph = ip_hdr(skb);
928 csum = csum_tcpudp_magic(iph->saddr, iph->daddr,
929 (skb->len -
930 skb_transport_offset(skb)),
931 IPPROTO_UDP, rx_udp_csum);
7f12ad74 932
818f2e7b
ASJ
933 if (udp_hdr(skb)->check != csum)
934 goto checksum_fail;
935
936 } /* else its GRE and so no outer UDP header */
7f12ad74
GR
937 }
938
939 skb->ip_summed = CHECKSUM_UNNECESSARY;
407fa085 940 skb->csum_level = ipv4_tunnel || ipv6_tunnel;
8a3c91cc
JB
941
942 return;
943
944checksum_fail:
945 vsi->back->hw_csum_rx_error++;
7f12ad74
GR
946}
947
948/**
949 * i40e_rx_hash - returns the hash value from the Rx descriptor
950 * @ring: descriptor ring
951 * @rx_desc: specific descriptor
952 **/
953static inline u32 i40e_rx_hash(struct i40e_ring *ring,
954 union i40e_rx_desc *rx_desc)
955{
956 const __le64 rss_mask =
957 cpu_to_le64((u64)I40E_RX_DESC_FLTSTAT_RSS_HASH <<
958 I40E_RX_DESC_STATUS_FLTSTAT_SHIFT);
959
960 if ((ring->netdev->features & NETIF_F_RXHASH) &&
961 (rx_desc->wb.qword1.status_error_len & rss_mask) == rss_mask)
962 return le32_to_cpu(rx_desc->wb.qword0.hi_dword.rss);
963 else
964 return 0;
965}
966
206812b5
JB
967/**
968 * i40e_ptype_to_hash - get a hash type
969 * @ptype: the ptype value from the descriptor
970 *
971 * Returns a hash type to be used by skb_set_hash
972 **/
973static inline enum pkt_hash_types i40e_ptype_to_hash(u8 ptype)
974{
975 struct i40e_rx_ptype_decoded decoded = decode_rx_desc_ptype(ptype);
976
977 if (!decoded.known)
978 return PKT_HASH_TYPE_NONE;
979
980 if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
981 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY4)
982 return PKT_HASH_TYPE_L4;
983 else if (decoded.outer_ip == I40E_RX_PTYPE_OUTER_IP &&
984 decoded.payload_layer == I40E_RX_PTYPE_PAYLOAD_LAYER_PAY3)
985 return PKT_HASH_TYPE_L3;
986 else
987 return PKT_HASH_TYPE_L2;
988}
989
7f12ad74 990/**
a132af24 991 * i40e_clean_rx_irq_ps - Reclaim resources after receive; packet split
7f12ad74
GR
992 * @rx_ring: rx ring to clean
993 * @budget: how many cleans we're allowed
994 *
995 * Returns true if there's any budget left (e.g. the clean is finished)
996 **/
a132af24 997static int i40e_clean_rx_irq_ps(struct i40e_ring *rx_ring, int budget)
7f12ad74
GR
998{
999 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1000 u16 rx_packet_len, rx_header_len, rx_sph, rx_hbo;
1001 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1002 const int current_node = numa_node_id();
1003 struct i40e_vsi *vsi = rx_ring->vsi;
1004 u16 i = rx_ring->next_to_clean;
1005 union i40e_rx_desc *rx_desc;
1006 u32 rx_error, rx_status;
206812b5 1007 u8 rx_ptype;
7f12ad74 1008 u64 qword;
7f12ad74 1009
a132af24 1010 do {
7f12ad74
GR
1011 struct i40e_rx_buffer *rx_bi;
1012 struct sk_buff *skb;
1013 u16 vlan_tag;
a132af24
MW
1014 /* return some buffers to hardware, one at a time is too slow */
1015 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
1016 i40evf_alloc_rx_buffers_ps(rx_ring, cleaned_count);
1017 cleaned_count = 0;
1018 }
1019
1020 i = rx_ring->next_to_clean;
1021 rx_desc = I40E_RX_DESC(rx_ring, i);
1022 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1023 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
1024 I40E_RXD_QW1_STATUS_SHIFT;
1025
1026 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
1027 break;
1028
1029 /* This memory barrier is needed to keep us from reading
1030 * any other fields out of the rx_desc until we know the
1031 * DD bit is set.
1032 */
67317166 1033 dma_rmb();
7f12ad74
GR
1034 rx_bi = &rx_ring->rx_bi[i];
1035 skb = rx_bi->skb;
a132af24
MW
1036 if (likely(!skb)) {
1037 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
1038 rx_ring->rx_hdr_len);
8b6ed9c2 1039 if (!skb) {
a132af24 1040 rx_ring->rx_stats.alloc_buff_failed++;
8b6ed9c2
JB
1041 break;
1042 }
1043
a132af24
MW
1044 /* initialize queue mapping */
1045 skb_record_rx_queue(skb, rx_ring->queue_index);
1046 /* we are reusing so sync this buffer for CPU use */
1047 dma_sync_single_range_for_cpu(rx_ring->dev,
1048 rx_bi->dma,
1049 0,
1050 rx_ring->rx_hdr_len,
1051 DMA_FROM_DEVICE);
1052 }
7f12ad74
GR
1053 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1054 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1055 rx_header_len = (qword & I40E_RXD_QW1_LENGTH_HBUF_MASK) >>
1056 I40E_RXD_QW1_LENGTH_HBUF_SHIFT;
1057 rx_sph = (qword & I40E_RXD_QW1_LENGTH_SPH_MASK) >>
1058 I40E_RXD_QW1_LENGTH_SPH_SHIFT;
1059
1060 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1061 I40E_RXD_QW1_ERROR_SHIFT;
1062 rx_hbo = rx_error & (1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
1063 rx_error &= ~(1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
1064
1065 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1066 I40E_RXD_QW1_PTYPE_SHIFT;
a132af24 1067 prefetch(rx_bi->page);
7f12ad74 1068 rx_bi->skb = NULL;
a132af24
MW
1069 cleaned_count++;
1070 if (rx_hbo || rx_sph) {
1071 int len;
7f12ad74
GR
1072 if (rx_hbo)
1073 len = I40E_RX_HDR_SIZE;
7f12ad74 1074 else
a132af24
MW
1075 len = rx_header_len;
1076 memcpy(__skb_put(skb, len), rx_bi->hdr_buf, len);
1077 } else if (skb->len == 0) {
1078 int len;
1079
1080 len = (rx_packet_len > skb_headlen(skb) ?
1081 skb_headlen(skb) : rx_packet_len);
1082 memcpy(__skb_put(skb, len),
1083 rx_bi->page + rx_bi->page_offset,
1084 len);
1085 rx_bi->page_offset += len;
1086 rx_packet_len -= len;
7f12ad74
GR
1087 }
1088
1089 /* Get the rest of the data if this was a header split */
a132af24 1090 if (rx_packet_len) {
7f12ad74
GR
1091 skb_fill_page_desc(skb, skb_shinfo(skb)->nr_frags,
1092 rx_bi->page,
1093 rx_bi->page_offset,
1094 rx_packet_len);
1095
1096 skb->len += rx_packet_len;
1097 skb->data_len += rx_packet_len;
1098 skb->truesize += rx_packet_len;
1099
1100 if ((page_count(rx_bi->page) == 1) &&
1101 (page_to_nid(rx_bi->page) == current_node))
1102 get_page(rx_bi->page);
1103 else
1104 rx_bi->page = NULL;
1105
1106 dma_unmap_page(rx_ring->dev,
1107 rx_bi->page_dma,
1108 PAGE_SIZE / 2,
1109 DMA_FROM_DEVICE);
1110 rx_bi->page_dma = 0;
1111 }
a132af24 1112 I40E_RX_INCREMENT(rx_ring, i);
7f12ad74
GR
1113
1114 if (unlikely(
1115 !(rx_status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1116 struct i40e_rx_buffer *next_buffer;
1117
1118 next_buffer = &rx_ring->rx_bi[i];
a132af24 1119 next_buffer->skb = skb;
7f12ad74 1120 rx_ring->rx_stats.non_eop_descs++;
a132af24 1121 continue;
7f12ad74
GR
1122 }
1123
1124 /* ERR_MASK will only have valid bits if EOP set */
1125 if (unlikely(rx_error & (1 << I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1126 dev_kfree_skb_any(skb);
a132af24 1127 continue;
7f12ad74
GR
1128 }
1129
206812b5
JB
1130 skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc),
1131 i40e_ptype_to_hash(rx_ptype));
7f12ad74
GR
1132 /* probably a little skewed due to removing CRC */
1133 total_rx_bytes += skb->len;
1134 total_rx_packets++;
1135
1136 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1137
1138 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1139
1140 vlan_tag = rx_status & (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1141 ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1142 : 0;
a132af24
MW
1143#ifdef I40E_FCOE
1144 if (!i40e_fcoe_handle_offload(rx_ring, rx_desc, skb)) {
1145 dev_kfree_skb_any(skb);
1146 continue;
1147 }
1148#endif
1149 skb_mark_napi_id(skb, &rx_ring->q_vector->napi);
7f12ad74
GR
1150 i40e_receive_skb(rx_ring, skb, vlan_tag);
1151
7f12ad74 1152 rx_desc->wb.qword1.status_error_len = 0;
7f12ad74 1153
a132af24
MW
1154 } while (likely(total_rx_packets < budget));
1155
1156 u64_stats_update_begin(&rx_ring->syncp);
1157 rx_ring->stats.packets += total_rx_packets;
1158 rx_ring->stats.bytes += total_rx_bytes;
1159 u64_stats_update_end(&rx_ring->syncp);
1160 rx_ring->q_vector->rx.total_packets += total_rx_packets;
1161 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1162
1163 return total_rx_packets;
1164}
1165
1166/**
1167 * i40e_clean_rx_irq_1buf - Reclaim resources after receive; single buffer
1168 * @rx_ring: rx ring to clean
1169 * @budget: how many cleans we're allowed
1170 *
1171 * Returns number of packets cleaned
1172 **/
1173static int i40e_clean_rx_irq_1buf(struct i40e_ring *rx_ring, int budget)
1174{
1175 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1176 u16 cleaned_count = I40E_DESC_UNUSED(rx_ring);
1177 struct i40e_vsi *vsi = rx_ring->vsi;
1178 union i40e_rx_desc *rx_desc;
1179 u32 rx_error, rx_status;
1180 u16 rx_packet_len;
1181 u8 rx_ptype;
1182 u64 qword;
1183 u16 i;
1184
1185 do {
1186 struct i40e_rx_buffer *rx_bi;
1187 struct sk_buff *skb;
1188 u16 vlan_tag;
7f12ad74
GR
1189 /* return some buffers to hardware, one at a time is too slow */
1190 if (cleaned_count >= I40E_RX_BUFFER_WRITE) {
a132af24 1191 i40evf_alloc_rx_buffers_1buf(rx_ring, cleaned_count);
7f12ad74
GR
1192 cleaned_count = 0;
1193 }
1194
a132af24
MW
1195 i = rx_ring->next_to_clean;
1196 rx_desc = I40E_RX_DESC(rx_ring, i);
7f12ad74
GR
1197 qword = le64_to_cpu(rx_desc->wb.qword1.status_error_len);
1198 rx_status = (qword & I40E_RXD_QW1_STATUS_MASK) >>
a132af24
MW
1199 I40E_RXD_QW1_STATUS_SHIFT;
1200
1201 if (!(rx_status & (1 << I40E_RX_DESC_STATUS_DD_SHIFT)))
1202 break;
1203
1204 /* This memory barrier is needed to keep us from reading
1205 * any other fields out of the rx_desc until we know the
1206 * DD bit is set.
1207 */
67317166 1208 dma_rmb();
a132af24
MW
1209
1210 rx_bi = &rx_ring->rx_bi[i];
1211 skb = rx_bi->skb;
1212 prefetch(skb->data);
1213
1214 rx_packet_len = (qword & I40E_RXD_QW1_LENGTH_PBUF_MASK) >>
1215 I40E_RXD_QW1_LENGTH_PBUF_SHIFT;
1216
1217 rx_error = (qword & I40E_RXD_QW1_ERROR_MASK) >>
1218 I40E_RXD_QW1_ERROR_SHIFT;
1219 rx_error &= ~(1 << I40E_RX_DESC_ERROR_HBO_SHIFT);
1220
1221 rx_ptype = (qword & I40E_RXD_QW1_PTYPE_MASK) >>
1222 I40E_RXD_QW1_PTYPE_SHIFT;
1223 rx_bi->skb = NULL;
1224 cleaned_count++;
1225
1226 /* Get the header and possibly the whole packet
1227 * If this is an skb from previous receive dma will be 0
1228 */
1229 skb_put(skb, rx_packet_len);
1230 dma_unmap_single(rx_ring->dev, rx_bi->dma, rx_ring->rx_buf_len,
1231 DMA_FROM_DEVICE);
1232 rx_bi->dma = 0;
1233
1234 I40E_RX_INCREMENT(rx_ring, i);
1235
1236 if (unlikely(
1237 !(rx_status & (1 << I40E_RX_DESC_STATUS_EOF_SHIFT)))) {
1238 rx_ring->rx_stats.non_eop_descs++;
1239 continue;
1240 }
1241
1242 /* ERR_MASK will only have valid bits if EOP set */
1243 if (unlikely(rx_error & (1 << I40E_RX_DESC_ERROR_RXE_SHIFT))) {
1244 dev_kfree_skb_any(skb);
1245 /* TODO: shouldn't we increment a counter indicating the
1246 * drop?
1247 */
1248 continue;
1249 }
1250
1251 skb_set_hash(skb, i40e_rx_hash(rx_ring, rx_desc),
1252 i40e_ptype_to_hash(rx_ptype));
1253 /* probably a little skewed due to removing CRC */
1254 total_rx_bytes += skb->len;
1255 total_rx_packets++;
1256
1257 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1258
1259 i40e_rx_checksum(vsi, skb, rx_status, rx_error, rx_ptype);
1260
1261 vlan_tag = rx_status & (1 << I40E_RX_DESC_STATUS_L2TAG1P_SHIFT)
1262 ? le16_to_cpu(rx_desc->wb.qword0.lo_dword.l2tag1)
1263 : 0;
1264 i40e_receive_skb(rx_ring, skb, vlan_tag);
1265
a132af24
MW
1266 rx_desc->wb.qword1.status_error_len = 0;
1267 } while (likely(total_rx_packets < budget));
7f12ad74 1268
7f12ad74
GR
1269 u64_stats_update_begin(&rx_ring->syncp);
1270 rx_ring->stats.packets += total_rx_packets;
1271 rx_ring->stats.bytes += total_rx_bytes;
1272 u64_stats_update_end(&rx_ring->syncp);
1273 rx_ring->q_vector->rx.total_packets += total_rx_packets;
1274 rx_ring->q_vector->rx.total_bytes += total_rx_bytes;
1275
a132af24 1276 return total_rx_packets;
7f12ad74
GR
1277}
1278
1279/**
1280 * i40evf_napi_poll - NAPI polling Rx/Tx cleanup routine
1281 * @napi: napi struct with our devices info in it
1282 * @budget: amount of work driver is allowed to do this pass, in packets
1283 *
1284 * This function will clean all queues associated with a q_vector.
1285 *
1286 * Returns the amount of work done
1287 **/
1288int i40evf_napi_poll(struct napi_struct *napi, int budget)
1289{
1290 struct i40e_q_vector *q_vector =
1291 container_of(napi, struct i40e_q_vector, napi);
1292 struct i40e_vsi *vsi = q_vector->vsi;
1293 struct i40e_ring *ring;
1294 bool clean_complete = true;
c29af37f 1295 bool arm_wb = false;
7f12ad74 1296 int budget_per_ring;
a132af24 1297 int cleaned;
7f12ad74
GR
1298
1299 if (test_bit(__I40E_DOWN, &vsi->state)) {
1300 napi_complete(napi);
1301 return 0;
1302 }
1303
1304 /* Since the actual Tx work is minimal, we can give the Tx a larger
1305 * budget and be more aggressive about cleaning up the Tx descriptors.
1306 */
c29af37f 1307 i40e_for_each_ring(ring, q_vector->tx) {
7f12ad74 1308 clean_complete &= i40e_clean_tx_irq(ring, vsi->work_limit);
c29af37f
ASJ
1309 arm_wb |= ring->arm_wb;
1310 }
7f12ad74
GR
1311
1312 /* We attempt to distribute budget to each Rx queue fairly, but don't
1313 * allow the budget to go below 1 because that would exit polling early.
1314 */
1315 budget_per_ring = max(budget/q_vector->num_ringpairs, 1);
1316
a132af24
MW
1317 i40e_for_each_ring(ring, q_vector->rx) {
1318 if (ring_is_ps_enabled(ring))
1319 cleaned = i40e_clean_rx_irq_ps(ring, budget_per_ring);
1320 else
1321 cleaned = i40e_clean_rx_irq_1buf(ring, budget_per_ring);
1322 /* if we didn't clean as many as budgeted, we must be done */
1323 clean_complete &= (budget_per_ring != cleaned);
1324 }
7f12ad74
GR
1325
1326 /* If work not completed, return budget and polling will return */
c29af37f
ASJ
1327 if (!clean_complete) {
1328 if (arm_wb)
1329 i40e_force_wb(vsi, q_vector);
7f12ad74 1330 return budget;
c29af37f 1331 }
7f12ad74
GR
1332
1333 /* Work is done so exit the polling mode and re-enable the interrupt */
1334 napi_complete(napi);
1335 if (ITR_IS_DYNAMIC(vsi->rx_itr_setting) ||
1336 ITR_IS_DYNAMIC(vsi->tx_itr_setting))
1337 i40e_update_dynamic_itr(q_vector);
1338
1339 if (!test_bit(__I40E_DOWN, &vsi->state))
1340 i40evf_irq_enable_queues(vsi->back, 1 << q_vector->v_idx);
1341
1342 return 0;
1343}
1344
1345/**
3e587cf3 1346 * i40evf_tx_prepare_vlan_flags - prepare generic TX VLAN tagging flags for HW
7f12ad74
GR
1347 * @skb: send buffer
1348 * @tx_ring: ring to send buffer on
1349 * @flags: the tx flags to be set
1350 *
1351 * Checks the skb and set up correspondingly several generic transmit flags
1352 * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1353 *
1354 * Returns error code indicate the frame should be dropped upon error and the
1355 * otherwise returns 0 to indicate the flags has been set properly.
1356 **/
3e587cf3
JB
1357static inline int i40evf_tx_prepare_vlan_flags(struct sk_buff *skb,
1358 struct i40e_ring *tx_ring,
1359 u32 *flags)
7f12ad74
GR
1360{
1361 __be16 protocol = skb->protocol;
1362 u32 tx_flags = 0;
1363
31eaaccf
GR
1364 if (protocol == htons(ETH_P_8021Q) &&
1365 !(tx_ring->netdev->features & NETIF_F_HW_VLAN_CTAG_TX)) {
1366 /* When HW VLAN acceleration is turned off by the user the
1367 * stack sets the protocol to 8021q so that the driver
1368 * can take any steps required to support the SW only
1369 * VLAN handling. In our case the driver doesn't need
1370 * to take any further steps so just set the protocol
1371 * to the encapsulated ethertype.
1372 */
1373 skb->protocol = vlan_get_protocol(skb);
1374 goto out;
1375 }
1376
7f12ad74 1377 /* if we have a HW VLAN tag being added, default to the HW one */
df8a39de
JP
1378 if (skb_vlan_tag_present(skb)) {
1379 tx_flags |= skb_vlan_tag_get(skb) << I40E_TX_FLAGS_VLAN_SHIFT;
7f12ad74
GR
1380 tx_flags |= I40E_TX_FLAGS_HW_VLAN;
1381 /* else if it is a SW VLAN, check the next protocol and store the tag */
1382 } else if (protocol == htons(ETH_P_8021Q)) {
1383 struct vlan_hdr *vhdr, _vhdr;
1384 vhdr = skb_header_pointer(skb, ETH_HLEN, sizeof(_vhdr), &_vhdr);
1385 if (!vhdr)
1386 return -EINVAL;
1387
1388 protocol = vhdr->h_vlan_encapsulated_proto;
1389 tx_flags |= ntohs(vhdr->h_vlan_TCI) << I40E_TX_FLAGS_VLAN_SHIFT;
1390 tx_flags |= I40E_TX_FLAGS_SW_VLAN;
1391 }
1392
31eaaccf 1393out:
7f12ad74
GR
1394 *flags = tx_flags;
1395 return 0;
1396}
1397
1398/**
1399 * i40e_tso - set up the tso context descriptor
1400 * @tx_ring: ptr to the ring to send
1401 * @skb: ptr to the skb we're sending
7f12ad74
GR
1402 * @hdr_len: ptr to the size of the packet header
1403 * @cd_tunneling: ptr to context descriptor bits
1404 *
1405 * Returns 0 if no TSO can happen, 1 if tso is going, or error
1406 **/
1407static int i40e_tso(struct i40e_ring *tx_ring, struct sk_buff *skb,
89232c3b
ASJ
1408 u8 *hdr_len, u64 *cd_type_cmd_tso_mss,
1409 u32 *cd_tunneling)
7f12ad74
GR
1410{
1411 u32 cd_cmd, cd_tso_len, cd_mss;
fe6d4aa4 1412 struct ipv6hdr *ipv6h;
7f12ad74
GR
1413 struct tcphdr *tcph;
1414 struct iphdr *iph;
1415 u32 l4len;
1416 int err;
7f12ad74
GR
1417
1418 if (!skb_is_gso(skb))
1419 return 0;
1420
fe6d4aa4
FR
1421 err = skb_cow_head(skb, 0);
1422 if (err < 0)
1423 return err;
7f12ad74 1424
85e76d03
AS
1425 iph = skb->encapsulation ? inner_ip_hdr(skb) : ip_hdr(skb);
1426 ipv6h = skb->encapsulation ? inner_ipv6_hdr(skb) : ipv6_hdr(skb);
1427
1428 if (iph->version == 4) {
7f12ad74
GR
1429 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1430 iph->tot_len = 0;
1431 iph->check = 0;
1432 tcph->check = ~csum_tcpudp_magic(iph->saddr, iph->daddr,
1433 0, IPPROTO_TCP, 0);
85e76d03 1434 } else if (ipv6h->version == 6) {
7f12ad74
GR
1435 tcph = skb->encapsulation ? inner_tcp_hdr(skb) : tcp_hdr(skb);
1436 ipv6h->payload_len = 0;
1437 tcph->check = ~csum_ipv6_magic(&ipv6h->saddr, &ipv6h->daddr,
1438 0, IPPROTO_TCP, 0);
1439 }
1440
1441 l4len = skb->encapsulation ? inner_tcp_hdrlen(skb) : tcp_hdrlen(skb);
1442 *hdr_len = (skb->encapsulation
1443 ? (skb_inner_transport_header(skb) - skb->data)
1444 : skb_transport_offset(skb)) + l4len;
1445
1446 /* find the field values */
1447 cd_cmd = I40E_TX_CTX_DESC_TSO;
1448 cd_tso_len = skb->len - *hdr_len;
1449 cd_mss = skb_shinfo(skb)->gso_size;
1450 *cd_type_cmd_tso_mss |= ((u64)cd_cmd << I40E_TXD_CTX_QW1_CMD_SHIFT) |
1451 ((u64)cd_tso_len <<
1452 I40E_TXD_CTX_QW1_TSO_LEN_SHIFT) |
1453 ((u64)cd_mss << I40E_TXD_CTX_QW1_MSS_SHIFT);
1454 return 1;
1455}
1456
1457/**
1458 * i40e_tx_enable_csum - Enable Tx checksum offloads
1459 * @skb: send buffer
89232c3b 1460 * @tx_flags: pointer to Tx flags currently set
7f12ad74
GR
1461 * @td_cmd: Tx descriptor command bits to set
1462 * @td_offset: Tx descriptor header offsets to set
1463 * @cd_tunneling: ptr to context desc bits
1464 **/
89232c3b 1465static void i40e_tx_enable_csum(struct sk_buff *skb, u32 *tx_flags,
7f12ad74
GR
1466 u32 *td_cmd, u32 *td_offset,
1467 struct i40e_ring *tx_ring,
1468 u32 *cd_tunneling)
1469{
1470 struct ipv6hdr *this_ipv6_hdr;
1471 unsigned int this_tcp_hdrlen;
1472 struct iphdr *this_ip_hdr;
1473 u32 network_hdr_len;
1474 u8 l4_hdr = 0;
45991204 1475 u32 l4_tunnel = 0;
7f12ad74
GR
1476
1477 if (skb->encapsulation) {
45991204
ASJ
1478 switch (ip_hdr(skb)->protocol) {
1479 case IPPROTO_UDP:
1480 l4_tunnel = I40E_TXD_CTX_UDP_TUNNELING;
89232c3b 1481 *tx_flags |= I40E_TX_FLAGS_VXLAN_TUNNEL;
45991204
ASJ
1482 break;
1483 default:
1484 return;
1485 }
7f12ad74
GR
1486 network_hdr_len = skb_inner_network_header_len(skb);
1487 this_ip_hdr = inner_ip_hdr(skb);
1488 this_ipv6_hdr = inner_ipv6_hdr(skb);
1489 this_tcp_hdrlen = inner_tcp_hdrlen(skb);
1490
89232c3b
ASJ
1491 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
1492 if (*tx_flags & I40E_TX_FLAGS_TSO) {
7f12ad74
GR
1493 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV4;
1494 ip_hdr(skb)->check = 0;
1495 } else {
1496 *cd_tunneling |=
1497 I40E_TX_CTX_EXT_IP_IPV4_NO_CSUM;
1498 }
89232c3b 1499 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
85e76d03 1500 *cd_tunneling |= I40E_TX_CTX_EXT_IP_IPV6;
89232c3b 1501 if (*tx_flags & I40E_TX_FLAGS_TSO)
7f12ad74 1502 ip_hdr(skb)->check = 0;
7f12ad74
GR
1503 }
1504
1505 /* Now set the ctx descriptor fields */
1506 *cd_tunneling |= (skb_network_header_len(skb) >> 2) <<
45991204
ASJ
1507 I40E_TXD_CTX_QW0_EXT_IPLEN_SHIFT |
1508 l4_tunnel |
7f12ad74
GR
1509 ((skb_inner_network_offset(skb) -
1510 skb_transport_offset(skb)) >> 1) <<
1511 I40E_TXD_CTX_QW0_NATLEN_SHIFT;
85e76d03 1512 if (this_ip_hdr->version == 6) {
89232c3b
ASJ
1513 *tx_flags &= ~I40E_TX_FLAGS_IPV4;
1514 *tx_flags |= I40E_TX_FLAGS_IPV6;
85e76d03
AS
1515 }
1516
7f12ad74
GR
1517
1518 } else {
1519 network_hdr_len = skb_network_header_len(skb);
1520 this_ip_hdr = ip_hdr(skb);
1521 this_ipv6_hdr = ipv6_hdr(skb);
1522 this_tcp_hdrlen = tcp_hdrlen(skb);
1523 }
1524
1525 /* Enable IP checksum offloads */
89232c3b 1526 if (*tx_flags & I40E_TX_FLAGS_IPV4) {
7f12ad74
GR
1527 l4_hdr = this_ip_hdr->protocol;
1528 /* the stack computes the IP header already, the only time we
1529 * need the hardware to recompute it is in the case of TSO.
1530 */
89232c3b 1531 if (*tx_flags & I40E_TX_FLAGS_TSO) {
7f12ad74
GR
1532 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4_CSUM;
1533 this_ip_hdr->check = 0;
1534 } else {
1535 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV4;
1536 }
1537 /* Now set the td_offset for IP header length */
1538 *td_offset = (network_hdr_len >> 2) <<
1539 I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
89232c3b 1540 } else if (*tx_flags & I40E_TX_FLAGS_IPV6) {
7f12ad74
GR
1541 l4_hdr = this_ipv6_hdr->nexthdr;
1542 *td_cmd |= I40E_TX_DESC_CMD_IIPT_IPV6;
1543 /* Now set the td_offset for IP header length */
1544 *td_offset = (network_hdr_len >> 2) <<
1545 I40E_TX_DESC_LENGTH_IPLEN_SHIFT;
1546 }
1547 /* words in MACLEN + dwords in IPLEN + dwords in L4Len */
1548 *td_offset |= (skb_network_offset(skb) >> 1) <<
1549 I40E_TX_DESC_LENGTH_MACLEN_SHIFT;
1550
1551 /* Enable L4 checksum offloads */
1552 switch (l4_hdr) {
1553 case IPPROTO_TCP:
1554 /* enable checksum offloads */
1555 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_TCP;
1556 *td_offset |= (this_tcp_hdrlen >> 2) <<
1557 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1558 break;
1559 case IPPROTO_SCTP:
1560 /* enable SCTP checksum offload */
1561 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_SCTP;
1562 *td_offset |= (sizeof(struct sctphdr) >> 2) <<
1563 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1564 break;
1565 case IPPROTO_UDP:
1566 /* enable UDP checksum offload */
1567 *td_cmd |= I40E_TX_DESC_CMD_L4T_EOFT_UDP;
1568 *td_offset |= (sizeof(struct udphdr) >> 2) <<
1569 I40E_TX_DESC_LENGTH_L4_FC_LEN_SHIFT;
1570 break;
1571 default:
1572 break;
1573 }
1574}
1575
1576/**
1577 * i40e_create_tx_ctx Build the Tx context descriptor
1578 * @tx_ring: ring to create the descriptor on
1579 * @cd_type_cmd_tso_mss: Quad Word 1
1580 * @cd_tunneling: Quad Word 0 - bits 0-31
1581 * @cd_l2tag2: Quad Word 0 - bits 32-63
1582 **/
1583static void i40e_create_tx_ctx(struct i40e_ring *tx_ring,
1584 const u64 cd_type_cmd_tso_mss,
1585 const u32 cd_tunneling, const u32 cd_l2tag2)
1586{
1587 struct i40e_tx_context_desc *context_desc;
1588 int i = tx_ring->next_to_use;
1589
ff40dd5d
JB
1590 if ((cd_type_cmd_tso_mss == I40E_TX_DESC_DTYPE_CONTEXT) &&
1591 !cd_tunneling && !cd_l2tag2)
7f12ad74
GR
1592 return;
1593
1594 /* grab the next descriptor */
1595 context_desc = I40E_TX_CTXTDESC(tx_ring, i);
1596
1597 i++;
1598 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1599
1600 /* cpu_to_le32 and assign to struct fields */
1601 context_desc->tunneling_params = cpu_to_le32(cd_tunneling);
1602 context_desc->l2tag2 = cpu_to_le16(cd_l2tag2);
3efbbb20 1603 context_desc->rsvd = cpu_to_le16(0);
7f12ad74
GR
1604 context_desc->type_cmd_tso_mss = cpu_to_le64(cd_type_cmd_tso_mss);
1605}
1606
71da6197
AS
1607 /**
1608 * i40e_chk_linearize - Check if there are more than 8 fragments per packet
1609 * @skb: send buffer
1610 * @tx_flags: collected send information
71da6197
AS
1611 *
1612 * Note: Our HW can't scatter-gather more than 8 fragments to build
1613 * a packet on the wire and so we need to figure out the cases where we
1614 * need to linearize the skb.
1615 **/
30520831 1616static bool i40e_chk_linearize(struct sk_buff *skb, u32 tx_flags)
71da6197
AS
1617{
1618 struct skb_frag_struct *frag;
1619 bool linearize = false;
1620 unsigned int size = 0;
1621 u16 num_frags;
1622 u16 gso_segs;
1623
1624 num_frags = skb_shinfo(skb)->nr_frags;
1625 gso_segs = skb_shinfo(skb)->gso_segs;
1626
1627 if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO)) {
30520831 1628 u16 j = 0;
71da6197
AS
1629
1630 if (num_frags < (I40E_MAX_BUFFER_TXD))
1631 goto linearize_chk_done;
1632 /* try the simple math, if we have too many frags per segment */
1633 if (DIV_ROUND_UP((num_frags + gso_segs), gso_segs) >
1634 I40E_MAX_BUFFER_TXD) {
1635 linearize = true;
1636 goto linearize_chk_done;
1637 }
1638 frag = &skb_shinfo(skb)->frags[0];
71da6197
AS
1639 /* we might still have more fragments per segment */
1640 do {
1641 size += skb_frag_size(frag);
1642 frag++; j++;
30520831
ASJ
1643 if ((size >= skb_shinfo(skb)->gso_size) &&
1644 (j < I40E_MAX_BUFFER_TXD)) {
1645 size = (size % skb_shinfo(skb)->gso_size);
1646 j = (size) ? 1 : 0;
1647 }
71da6197 1648 if (j == I40E_MAX_BUFFER_TXD) {
30520831
ASJ
1649 linearize = true;
1650 break;
71da6197
AS
1651 }
1652 num_frags--;
1653 } while (num_frags);
1654 } else {
1655 if (num_frags >= I40E_MAX_BUFFER_TXD)
1656 linearize = true;
1657 }
1658
1659linearize_chk_done:
1660 return linearize;
1661}
1662
8f6a2b05
JB
1663/**
1664 * __i40evf_maybe_stop_tx - 2nd level check for tx stop conditions
1665 * @tx_ring: the ring to be checked
1666 * @size: the size buffer we want to assure is available
1667 *
1668 * Returns -EBUSY if a stop is needed, else 0
1669 **/
1670static inline int __i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
1671{
1672 netif_stop_subqueue(tx_ring->netdev, tx_ring->queue_index);
1673 /* Memory barrier before checking head and tail */
1674 smp_mb();
1675
1676 /* Check again in a case another CPU has just made room available. */
1677 if (likely(I40E_DESC_UNUSED(tx_ring) < size))
1678 return -EBUSY;
1679
1680 /* A reprieve! - use start_queue because it doesn't call schedule */
1681 netif_start_subqueue(tx_ring->netdev, tx_ring->queue_index);
1682 ++tx_ring->tx_stats.restart_queue;
1683 return 0;
1684}
1685
1686/**
1687 * i40evf_maybe_stop_tx - 1st level check for tx stop conditions
1688 * @tx_ring: the ring to be checked
1689 * @size: the size buffer we want to assure is available
1690 *
1691 * Returns 0 if stop is not needed
1692 **/
3e587cf3 1693static inline int i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
8f6a2b05
JB
1694{
1695 if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
1696 return 0;
1697 return __i40evf_maybe_stop_tx(tx_ring, size);
1698}
1699
7f12ad74 1700/**
3e587cf3 1701 * i40evf_tx_map - Build the Tx descriptor
7f12ad74
GR
1702 * @tx_ring: ring to send buffer on
1703 * @skb: send buffer
1704 * @first: first buffer info buffer to use
1705 * @tx_flags: collected send information
1706 * @hdr_len: size of the packet header
1707 * @td_cmd: the command field in the descriptor
1708 * @td_offset: offset for checksum or crc
1709 **/
3e587cf3
JB
1710static inline void i40evf_tx_map(struct i40e_ring *tx_ring, struct sk_buff *skb,
1711 struct i40e_tx_buffer *first, u32 tx_flags,
1712 const u8 hdr_len, u32 td_cmd, u32 td_offset)
7f12ad74
GR
1713{
1714 unsigned int data_len = skb->data_len;
1715 unsigned int size = skb_headlen(skb);
1716 struct skb_frag_struct *frag;
1717 struct i40e_tx_buffer *tx_bi;
1718 struct i40e_tx_desc *tx_desc;
1719 u16 i = tx_ring->next_to_use;
1720 u32 td_tag = 0;
1721 dma_addr_t dma;
1722 u16 gso_segs;
1723
1724 if (tx_flags & I40E_TX_FLAGS_HW_VLAN) {
1725 td_cmd |= I40E_TX_DESC_CMD_IL2TAG1;
1726 td_tag = (tx_flags & I40E_TX_FLAGS_VLAN_MASK) >>
1727 I40E_TX_FLAGS_VLAN_SHIFT;
1728 }
1729
1730 if (tx_flags & (I40E_TX_FLAGS_TSO | I40E_TX_FLAGS_FSO))
1731 gso_segs = skb_shinfo(skb)->gso_segs;
1732 else
1733 gso_segs = 1;
1734
1735 /* multiply data chunks by size of headers */
1736 first->bytecount = skb->len - hdr_len + (gso_segs * hdr_len);
1737 first->gso_segs = gso_segs;
1738 first->skb = skb;
1739 first->tx_flags = tx_flags;
1740
1741 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1742
1743 tx_desc = I40E_TX_DESC(tx_ring, i);
1744 tx_bi = first;
1745
1746 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1747 if (dma_mapping_error(tx_ring->dev, dma))
1748 goto dma_error;
1749
1750 /* record length, and DMA address */
1751 dma_unmap_len_set(tx_bi, len, size);
1752 dma_unmap_addr_set(tx_bi, dma, dma);
1753
1754 tx_desc->buffer_addr = cpu_to_le64(dma);
1755
1756 while (unlikely(size > I40E_MAX_DATA_PER_TXD)) {
1757 tx_desc->cmd_type_offset_bsz =
1758 build_ctob(td_cmd, td_offset,
1759 I40E_MAX_DATA_PER_TXD, td_tag);
1760
1761 tx_desc++;
1762 i++;
1763 if (i == tx_ring->count) {
1764 tx_desc = I40E_TX_DESC(tx_ring, 0);
1765 i = 0;
1766 }
1767
1768 dma += I40E_MAX_DATA_PER_TXD;
1769 size -= I40E_MAX_DATA_PER_TXD;
1770
1771 tx_desc->buffer_addr = cpu_to_le64(dma);
1772 }
1773
1774 if (likely(!data_len))
1775 break;
1776
1777 tx_desc->cmd_type_offset_bsz = build_ctob(td_cmd, td_offset,
1778 size, td_tag);
1779
1780 tx_desc++;
1781 i++;
1782 if (i == tx_ring->count) {
1783 tx_desc = I40E_TX_DESC(tx_ring, 0);
1784 i = 0;
1785 }
1786
1787 size = skb_frag_size(frag);
1788 data_len -= size;
1789
1790 dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1791 DMA_TO_DEVICE);
1792
1793 tx_bi = &tx_ring->tx_bi[i];
1794 }
1795
1943d8ba
JB
1796 /* Place RS bit on last descriptor of any packet that spans across the
1797 * 4th descriptor (WB_STRIDE aka 0x3) in a 64B cacheline.
1798 */
1799#define WB_STRIDE 0x3
1800 if (((i & WB_STRIDE) != WB_STRIDE) &&
1801 (first <= &tx_ring->tx_bi[i]) &&
1802 (first >= &tx_ring->tx_bi[i & ~WB_STRIDE])) {
1803 tx_desc->cmd_type_offset_bsz =
1804 build_ctob(td_cmd, td_offset, size, td_tag) |
1805 cpu_to_le64((u64)I40E_TX_DESC_CMD_EOP <<
1806 I40E_TXD_QW1_CMD_SHIFT);
1807 } else {
1808 tx_desc->cmd_type_offset_bsz =
1809 build_ctob(td_cmd, td_offset, size, td_tag) |
1810 cpu_to_le64((u64)I40E_TXD_CMD <<
1811 I40E_TXD_QW1_CMD_SHIFT);
1812 }
7f12ad74
GR
1813
1814 netdev_tx_sent_queue(netdev_get_tx_queue(tx_ring->netdev,
1815 tx_ring->queue_index),
1816 first->bytecount);
1817
7f12ad74
GR
1818 /* Force memory writes to complete before letting h/w
1819 * know there are new descriptors to fetch. (Only
1820 * applicable for weak-ordered memory model archs,
1821 * such as IA-64).
1822 */
1823 wmb();
1824
1825 /* set next_to_watch value indicating a packet is present */
1826 first->next_to_watch = tx_desc;
1827
1828 i++;
1829 if (i == tx_ring->count)
1830 i = 0;
1831
1832 tx_ring->next_to_use = i;
1833
8f6a2b05 1834 i40evf_maybe_stop_tx(tx_ring, DESC_NEEDED);
7f12ad74 1835 /* notify HW of packet */
8f6a2b05
JB
1836 if (!skb->xmit_more ||
1837 netif_xmit_stopped(netdev_get_tx_queue(tx_ring->netdev,
1838 tx_ring->queue_index)))
1839 writel(i, tx_ring->tail);
7f12ad74
GR
1840
1841 return;
1842
1843dma_error:
1844 dev_info(tx_ring->dev, "TX DMA map failed\n");
1845
1846 /* clear dma mappings for failed tx_bi map */
1847 for (;;) {
1848 tx_bi = &tx_ring->tx_bi[i];
1849 i40e_unmap_and_free_tx_resource(tx_ring, tx_bi);
1850 if (tx_bi == first)
1851 break;
1852 if (i == 0)
1853 i = tx_ring->count;
1854 i--;
1855 }
1856
1857 tx_ring->next_to_use = i;
1858}
1859
7f12ad74 1860/**
3e587cf3 1861 * i40evf_xmit_descriptor_count - calculate number of tx descriptors needed
7f12ad74
GR
1862 * @skb: send buffer
1863 * @tx_ring: ring to send buffer on
1864 *
1865 * Returns number of data descriptors needed for this skb. Returns 0 to indicate
1866 * there is not enough descriptors available in this ring since we need at least
1867 * one descriptor.
1868 **/
3e587cf3
JB
1869static inline int i40evf_xmit_descriptor_count(struct sk_buff *skb,
1870 struct i40e_ring *tx_ring)
7f12ad74 1871{
7f12ad74 1872 unsigned int f;
7f12ad74
GR
1873 int count = 0;
1874
1875 /* need: 1 descriptor per page * PAGE_SIZE/I40E_MAX_DATA_PER_TXD,
1876 * + 1 desc for skb_head_len/I40E_MAX_DATA_PER_TXD,
be560521 1877 * + 4 desc gap to avoid the cache line where head is,
7f12ad74
GR
1878 * + 1 desc for context descriptor,
1879 * otherwise try next time
1880 */
7f12ad74
GR
1881 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1882 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
980093eb 1883
7f12ad74 1884 count += TXD_USE_COUNT(skb_headlen(skb));
8f6a2b05 1885 if (i40evf_maybe_stop_tx(tx_ring, count + 4 + 1)) {
7f12ad74
GR
1886 tx_ring->tx_stats.tx_busy++;
1887 return 0;
1888 }
1889 return count;
1890}
1891
1892/**
1893 * i40e_xmit_frame_ring - Sends buffer on Tx ring
1894 * @skb: send buffer
1895 * @tx_ring: ring to send buffer on
1896 *
1897 * Returns NETDEV_TX_OK if sent, else an error code
1898 **/
1899static netdev_tx_t i40e_xmit_frame_ring(struct sk_buff *skb,
1900 struct i40e_ring *tx_ring)
1901{
1902 u64 cd_type_cmd_tso_mss = I40E_TX_DESC_DTYPE_CONTEXT;
1903 u32 cd_tunneling = 0, cd_l2tag2 = 0;
1904 struct i40e_tx_buffer *first;
1905 u32 td_offset = 0;
1906 u32 tx_flags = 0;
1907 __be16 protocol;
1908 u32 td_cmd = 0;
1909 u8 hdr_len = 0;
1910 int tso;
3e587cf3 1911 if (0 == i40evf_xmit_descriptor_count(skb, tx_ring))
7f12ad74
GR
1912 return NETDEV_TX_BUSY;
1913
1914 /* prepare the xmit flags */
3e587cf3 1915 if (i40evf_tx_prepare_vlan_flags(skb, tx_ring, &tx_flags))
7f12ad74
GR
1916 goto out_drop;
1917
1918 /* obtain protocol of skb */
a12c4158 1919 protocol = vlan_get_protocol(skb);
7f12ad74
GR
1920
1921 /* record the location of the first descriptor for this packet */
1922 first = &tx_ring->tx_bi[tx_ring->next_to_use];
1923
1924 /* setup IPv4/IPv6 offloads */
1925 if (protocol == htons(ETH_P_IP))
1926 tx_flags |= I40E_TX_FLAGS_IPV4;
1927 else if (protocol == htons(ETH_P_IPV6))
1928 tx_flags |= I40E_TX_FLAGS_IPV6;
1929
89232c3b 1930 tso = i40e_tso(tx_ring, skb, &hdr_len,
7f12ad74
GR
1931 &cd_type_cmd_tso_mss, &cd_tunneling);
1932
1933 if (tso < 0)
1934 goto out_drop;
1935 else if (tso)
1936 tx_flags |= I40E_TX_FLAGS_TSO;
1937
30520831 1938 if (i40e_chk_linearize(skb, tx_flags))
71da6197
AS
1939 if (skb_linearize(skb))
1940 goto out_drop;
1941
7f12ad74
GR
1942 skb_tx_timestamp(skb);
1943
1944 /* always enable CRC insertion offload */
1945 td_cmd |= I40E_TX_DESC_CMD_ICRC;
1946
1947 /* Always offload the checksum, since it's in the data descriptor */
1948 if (skb->ip_summed == CHECKSUM_PARTIAL) {
1949 tx_flags |= I40E_TX_FLAGS_CSUM;
1950
89232c3b 1951 i40e_tx_enable_csum(skb, &tx_flags, &td_cmd, &td_offset,
7f12ad74
GR
1952 tx_ring, &cd_tunneling);
1953 }
1954
1955 i40e_create_tx_ctx(tx_ring, cd_type_cmd_tso_mss,
1956 cd_tunneling, cd_l2tag2);
1957
3e587cf3
JB
1958 i40evf_tx_map(tx_ring, skb, first, tx_flags, hdr_len,
1959 td_cmd, td_offset);
7f12ad74 1960
7f12ad74
GR
1961 return NETDEV_TX_OK;
1962
1963out_drop:
1964 dev_kfree_skb_any(skb);
1965 return NETDEV_TX_OK;
1966}
1967
1968/**
1969 * i40evf_xmit_frame - Selects the correct VSI and Tx queue to send buffer
1970 * @skb: send buffer
1971 * @netdev: network interface device structure
1972 *
1973 * Returns NETDEV_TX_OK if sent, else an error code
1974 **/
1975netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb, struct net_device *netdev)
1976{
1977 struct i40evf_adapter *adapter = netdev_priv(netdev);
1978 struct i40e_ring *tx_ring = adapter->tx_rings[skb->queue_mapping];
1979
1980 /* hardware can't handle really short frames, hardware padding works
1981 * beyond this point
1982 */
1983 if (unlikely(skb->len < I40E_MIN_TX_LEN)) {
1984 if (skb_pad(skb, I40E_MIN_TX_LEN - skb->len))
1985 return NETDEV_TX_OK;
1986 skb->len = I40E_MIN_TX_LEN;
1987 skb_set_tail_pointer(skb, I40E_MIN_TX_LEN);
1988 }
1989
1990 return i40e_xmit_frame_ring(skb, tx_ring);
1991}