fm10k: re-enable VF after a full reset on detection of a Malicious event
[linux-2.6-block.git] / drivers / net / ethernet / intel / fm10k / fm10k_pf.c
CommitLineData
b6fec18f
AD
1/* Intel Ethernet Switch Host Interface Driver
2 * Copyright(c) 2013 - 2014 Intel Corporation.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * The full GNU General Public License is included in this distribution in
14 * the file called "COPYING".
15 *
16 * Contact Information:
17 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
18 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
19 */
20
21#include "fm10k_pf.h"
c2653865 22#include "fm10k_vf.h"
b6fec18f
AD
23
24/**
25 * fm10k_reset_hw_pf - PF hardware reset
26 * @hw: pointer to hardware structure
27 *
28 * This function should return the hardware to a state similar to the
29 * one it is in after being powered on.
30 **/
31static s32 fm10k_reset_hw_pf(struct fm10k_hw *hw)
32{
33 s32 err;
34 u32 reg;
35 u16 i;
36
37 /* Disable interrupts */
38 fm10k_write_reg(hw, FM10K_EIMR, FM10K_EIMR_DISABLE(ALL));
39
40 /* Lock ITR2 reg 0 into itself and disable interrupt moderation */
41 fm10k_write_reg(hw, FM10K_ITR2(0), 0);
42 fm10k_write_reg(hw, FM10K_INT_CTRL, 0);
43
44 /* We assume here Tx and Rx queue 0 are owned by the PF */
45
46 /* Shut off VF access to their queues forcing them to queue 0 */
47 for (i = 0; i < FM10K_TQMAP_TABLE_SIZE; i++) {
48 fm10k_write_reg(hw, FM10K_TQMAP(i), 0);
49 fm10k_write_reg(hw, FM10K_RQMAP(i), 0);
50 }
51
52 /* shut down all rings */
53 err = fm10k_disable_queues_generic(hw, FM10K_MAX_QUEUES);
54 if (err)
55 return err;
56
57 /* Verify that DMA is no longer active */
58 reg = fm10k_read_reg(hw, FM10K_DMA_CTRL);
59 if (reg & (FM10K_DMA_CTRL_TX_ACTIVE | FM10K_DMA_CTRL_RX_ACTIVE))
60 return FM10K_ERR_DMA_PENDING;
61
62 /* Inititate data path reset */
63 reg |= FM10K_DMA_CTRL_DATAPATH_RESET;
64 fm10k_write_reg(hw, FM10K_DMA_CTRL, reg);
65
66 /* Flush write and allow 100us for reset to complete */
67 fm10k_write_flush(hw);
68 udelay(FM10K_RESET_TIMEOUT);
69
70 /* Verify we made it out of reset */
71 reg = fm10k_read_reg(hw, FM10K_IP);
72 if (!(reg & FM10K_IP_NOTINRESET))
73 err = FM10K_ERR_RESET_FAILED;
74
75 return err;
76}
77
c2653865
AD
78/**
79 * fm10k_is_ari_hierarchy_pf - Indicate ARI hierarchy support
80 * @hw: pointer to hardware structure
81 *
82 * Looks at the ARI hierarchy bit to determine whether ARI is supported or not.
83 **/
84static bool fm10k_is_ari_hierarchy_pf(struct fm10k_hw *hw)
85{
86 u16 sriov_ctrl = fm10k_read_pci_cfg_word(hw, FM10K_PCIE_SRIOV_CTRL);
87
88 return !!(sriov_ctrl & FM10K_PCIE_SRIOV_CTRL_VFARI);
89}
90
b6fec18f
AD
91/**
92 * fm10k_init_hw_pf - PF hardware initialization
93 * @hw: pointer to hardware structure
94 *
95 **/
96static s32 fm10k_init_hw_pf(struct fm10k_hw *hw)
97{
98 u32 dma_ctrl, txqctl;
99 u16 i;
100
101 /* Establish default VSI as valid */
102 fm10k_write_reg(hw, FM10K_DGLORTDEC(fm10k_dglort_default), 0);
103 fm10k_write_reg(hw, FM10K_DGLORTMAP(fm10k_dglort_default),
104 FM10K_DGLORTMAP_ANY);
105
106 /* Invalidate all other GLORT entries */
107 for (i = 1; i < FM10K_DGLORT_COUNT; i++)
108 fm10k_write_reg(hw, FM10K_DGLORTMAP(i), FM10K_DGLORTMAP_NONE);
109
110 /* reset ITR2(0) to point to itself */
111 fm10k_write_reg(hw, FM10K_ITR2(0), 0);
112
113 /* reset VF ITR2(0) to point to 0 avoid PF registers */
114 fm10k_write_reg(hw, FM10K_ITR2(FM10K_ITR_REG_COUNT_PF), 0);
115
116 /* loop through all PF ITR2 registers pointing them to the previous */
117 for (i = 1; i < FM10K_ITR_REG_COUNT_PF; i++)
118 fm10k_write_reg(hw, FM10K_ITR2(i), i - 1);
119
120 /* Enable interrupt moderator if not already enabled */
121 fm10k_write_reg(hw, FM10K_INT_CTRL, FM10K_INT_CTRL_ENABLEMODERATOR);
122
123 /* compute the default txqctl configuration */
124 txqctl = FM10K_TXQCTL_PF | FM10K_TXQCTL_UNLIMITED_BW |
125 (hw->mac.default_vid << FM10K_TXQCTL_VID_SHIFT);
126
127 for (i = 0; i < FM10K_MAX_QUEUES; i++) {
128 /* configure rings for 256 Queue / 32 Descriptor cache mode */
129 fm10k_write_reg(hw, FM10K_TQDLOC(i),
130 (i * FM10K_TQDLOC_BASE_32_DESC) |
131 FM10K_TQDLOC_SIZE_32_DESC);
132 fm10k_write_reg(hw, FM10K_TXQCTL(i), txqctl);
133
134 /* configure rings to provide TPH processing hints */
135 fm10k_write_reg(hw, FM10K_TPH_TXCTRL(i),
136 FM10K_TPH_TXCTRL_DESC_TPHEN |
137 FM10K_TPH_TXCTRL_DESC_RROEN |
138 FM10K_TPH_TXCTRL_DESC_WROEN |
139 FM10K_TPH_TXCTRL_DATA_RROEN);
140 fm10k_write_reg(hw, FM10K_TPH_RXCTRL(i),
141 FM10K_TPH_RXCTRL_DESC_TPHEN |
142 FM10K_TPH_RXCTRL_DESC_RROEN |
143 FM10K_TPH_RXCTRL_DATA_WROEN |
144 FM10K_TPH_RXCTRL_HDR_WROEN);
145 }
146
147 /* set max hold interval to align with 1.024 usec in all modes */
148 switch (hw->bus.speed) {
149 case fm10k_bus_speed_2500:
150 dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN1;
151 break;
152 case fm10k_bus_speed_5000:
153 dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN2;
154 break;
155 case fm10k_bus_speed_8000:
156 dma_ctrl = FM10K_DMA_CTRL_MAX_HOLD_1US_GEN3;
157 break;
158 default:
159 dma_ctrl = 0;
160 break;
161 }
162
163 /* Configure TSO flags */
164 fm10k_write_reg(hw, FM10K_DTXTCPFLGL, FM10K_TSO_FLAGS_LOW);
165 fm10k_write_reg(hw, FM10K_DTXTCPFLGH, FM10K_TSO_FLAGS_HI);
166
167 /* Enable DMA engine
168 * Set Rx Descriptor size to 32
169 * Set Minimum MSS to 64
170 * Set Maximum number of Rx queues to 256 / 32 Descriptor
171 */
172 dma_ctrl |= FM10K_DMA_CTRL_TX_ENABLE | FM10K_DMA_CTRL_RX_ENABLE |
173 FM10K_DMA_CTRL_RX_DESC_SIZE | FM10K_DMA_CTRL_MINMSS_64 |
174 FM10K_DMA_CTRL_32_DESC;
175
176 fm10k_write_reg(hw, FM10K_DMA_CTRL, dma_ctrl);
177
178 /* record maximum queue count, we limit ourselves to 128 */
179 hw->mac.max_queues = FM10K_MAX_QUEUES_PF;
180
c2653865
AD
181 /* We support either 64 VFs or 7 VFs depending on if we have ARI */
182 hw->iov.total_vfs = fm10k_is_ari_hierarchy_pf(hw) ? 64 : 7;
183
b6fec18f
AD
184 return 0;
185}
186
401b5383
AD
187/**
188 * fm10k_update_vlan_pf - Update status of VLAN ID in VLAN filter table
189 * @hw: pointer to hardware structure
190 * @vid: VLAN ID to add to table
191 * @vsi: Index indicating VF ID or PF ID in table
192 * @set: Indicates if this is a set or clear operation
193 *
194 * This function adds or removes the corresponding VLAN ID from the VLAN
195 * filter table for the corresponding function. In addition to the
196 * standard set/clear that supports one bit a multi-bit write is
197 * supported to set 64 bits at a time.
198 **/
199static s32 fm10k_update_vlan_pf(struct fm10k_hw *hw, u32 vid, u8 vsi, bool set)
200{
201 u32 vlan_table, reg, mask, bit, len;
202
203 /* verify the VSI index is valid */
204 if (vsi > FM10K_VLAN_TABLE_VSI_MAX)
205 return FM10K_ERR_PARAM;
206
207 /* VLAN multi-bit write:
208 * The multi-bit write has several parts to it.
209 * 3 2 1 0
210 * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
211 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
212 * | RSVD0 | Length |C|RSVD0| VLAN ID |
213 * +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
214 *
215 * VLAN ID: Vlan Starting value
216 * RSVD0: Reserved section, must be 0
217 * C: Flag field, 0 is set, 1 is clear (Used in VF VLAN message)
218 * Length: Number of times to repeat the bit being set
219 */
220 len = vid >> 16;
221 vid = (vid << 17) >> 17;
222
223 /* verify the reserved 0 fields are 0 */
eca32047 224 if (len >= FM10K_VLAN_TABLE_VID_MAX || vid >= FM10K_VLAN_TABLE_VID_MAX)
401b5383
AD
225 return FM10K_ERR_PARAM;
226
227 /* Loop through the table updating all required VLANs */
228 for (reg = FM10K_VLAN_TABLE(vsi, vid / 32), bit = vid % 32;
229 len < FM10K_VLAN_TABLE_VID_MAX;
230 len -= 32 - bit, reg++, bit = 0) {
231 /* record the initial state of the register */
232 vlan_table = fm10k_read_reg(hw, reg);
233
234 /* truncate mask if we are at the start or end of the run */
235 mask = (~(u32)0 >> ((len < 31) ? 31 - len : 0)) << bit;
236
237 /* make necessary modifications to the register */
238 mask &= set ? ~vlan_table : vlan_table;
239 if (mask)
240 fm10k_write_reg(hw, reg, vlan_table ^ mask);
241 }
242
243 return 0;
244}
245
b6fec18f
AD
246/**
247 * fm10k_read_mac_addr_pf - Read device MAC address
248 * @hw: pointer to the HW structure
249 *
250 * Reads the device MAC address from the SM_AREA and stores the value.
251 **/
252static s32 fm10k_read_mac_addr_pf(struct fm10k_hw *hw)
253{
254 u8 perm_addr[ETH_ALEN];
255 u32 serial_num;
256 int i;
257
258 serial_num = fm10k_read_reg(hw, FM10K_SM_AREA(1));
259
260 /* last byte should be all 1's */
261 if ((~serial_num) << 24)
262 return FM10K_ERR_INVALID_MAC_ADDR;
263
264 perm_addr[0] = (u8)(serial_num >> 24);
265 perm_addr[1] = (u8)(serial_num >> 16);
266 perm_addr[2] = (u8)(serial_num >> 8);
267
268 serial_num = fm10k_read_reg(hw, FM10K_SM_AREA(0));
269
270 /* first byte should be all 1's */
271 if ((~serial_num) >> 24)
272 return FM10K_ERR_INVALID_MAC_ADDR;
273
274 perm_addr[3] = (u8)(serial_num >> 16);
275 perm_addr[4] = (u8)(serial_num >> 8);
276 perm_addr[5] = (u8)(serial_num);
277
278 for (i = 0; i < ETH_ALEN; i++) {
279 hw->mac.perm_addr[i] = perm_addr[i];
280 hw->mac.addr[i] = perm_addr[i];
281 }
282
283 return 0;
284}
285
401b5383
AD
286/**
287 * fm10k_glort_valid_pf - Validate that the provided glort is valid
288 * @hw: pointer to the HW structure
289 * @glort: base glort to be validated
290 *
291 * This function will return an error if the provided glort is invalid
292 **/
293bool fm10k_glort_valid_pf(struct fm10k_hw *hw, u16 glort)
294{
295 glort &= hw->mac.dglort_map >> FM10K_DGLORTMAP_MASK_SHIFT;
296
297 return glort == (hw->mac.dglort_map & FM10K_DGLORTMAP_NONE);
298}
299
300/**
eca32047 301 * fm10k_update_xc_addr_pf - Update device addresses
401b5383
AD
302 * @hw: pointer to the HW structure
303 * @glort: base resource tag for this request
304 * @mac: MAC address to add/remove from table
305 * @vid: VLAN ID to add/remove from table
306 * @add: Indicates if this is an add or remove operation
307 * @flags: flags field to indicate add and secure
308 *
309 * This function generates a message to the Switch API requesting
310 * that the given logical port add/remove the given L2 MAC/VLAN address.
311 **/
312static s32 fm10k_update_xc_addr_pf(struct fm10k_hw *hw, u16 glort,
313 const u8 *mac, u16 vid, bool add, u8 flags)
314{
315 struct fm10k_mbx_info *mbx = &hw->mbx;
316 struct fm10k_mac_update mac_update;
317 u32 msg[5];
318
b32d15b9
JK
319 /* clear set bit from VLAN ID */
320 vid &= ~FM10K_VLAN_CLEAR;
321
33a44c28
MV
322 /* if glort or vlan are not valid return error */
323 if (!fm10k_glort_valid_pf(hw, glort) || vid >= FM10K_VLAN_TABLE_VID_MAX)
401b5383
AD
324 return FM10K_ERR_PARAM;
325
401b5383
AD
326 /* record fields */
327 mac_update.mac_lower = cpu_to_le32(((u32)mac[2] << 24) |
328 ((u32)mac[3] << 16) |
329 ((u32)mac[4] << 8) |
330 ((u32)mac[5]));
331 mac_update.mac_upper = cpu_to_le16(((u32)mac[0] << 8) |
332 ((u32)mac[1]));
333 mac_update.vlan = cpu_to_le16(vid);
334 mac_update.glort = cpu_to_le16(glort);
335 mac_update.action = add ? 0 : 1;
336 mac_update.flags = flags;
337
338 /* populate mac_update fields */
339 fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_UPDATE_MAC_FWD_RULE);
340 fm10k_tlv_attr_put_le_struct(msg, FM10K_PF_ATTR_ID_MAC_UPDATE,
341 &mac_update, sizeof(mac_update));
342
343 /* load onto outgoing mailbox */
344 return mbx->ops.enqueue_tx(hw, mbx, msg);
345}
346
347/**
eca32047 348 * fm10k_update_uc_addr_pf - Update device unicast addresses
401b5383
AD
349 * @hw: pointer to the HW structure
350 * @glort: base resource tag for this request
351 * @mac: MAC address to add/remove from table
352 * @vid: VLAN ID to add/remove from table
353 * @add: Indicates if this is an add or remove operation
354 * @flags: flags field to indicate add and secure
355 *
356 * This function is used to add or remove unicast addresses for
357 * the PF.
358 **/
359static s32 fm10k_update_uc_addr_pf(struct fm10k_hw *hw, u16 glort,
360 const u8 *mac, u16 vid, bool add, u8 flags)
361{
362 /* verify MAC address is valid */
363 if (!is_valid_ether_addr(mac))
364 return FM10K_ERR_PARAM;
365
366 return fm10k_update_xc_addr_pf(hw, glort, mac, vid, add, flags);
367}
368
369/**
370 * fm10k_update_mc_addr_pf - Update device multicast addresses
371 * @hw: pointer to the HW structure
372 * @glort: base resource tag for this request
373 * @mac: MAC address to add/remove from table
374 * @vid: VLAN ID to add/remove from table
375 * @add: Indicates if this is an add or remove operation
376 *
377 * This function is used to add or remove multicast MAC addresses for
378 * the PF.
379 **/
380static s32 fm10k_update_mc_addr_pf(struct fm10k_hw *hw, u16 glort,
381 const u8 *mac, u16 vid, bool add)
382{
383 /* verify multicast address is valid */
384 if (!is_multicast_ether_addr(mac))
385 return FM10K_ERR_PARAM;
386
387 return fm10k_update_xc_addr_pf(hw, glort, mac, vid, add, 0);
388}
389
390/**
391 * fm10k_update_xcast_mode_pf - Request update of multicast mode
392 * @hw: pointer to hardware structure
393 * @glort: base resource tag for this request
394 * @mode: integer value indicating mode being requested
395 *
396 * This function will attempt to request a higher mode for the port
397 * so that it can enable either multicast, multicast promiscuous, or
398 * promiscuous mode of operation.
399 **/
400static s32 fm10k_update_xcast_mode_pf(struct fm10k_hw *hw, u16 glort, u8 mode)
401{
402 struct fm10k_mbx_info *mbx = &hw->mbx;
403 u32 msg[3], xcast_mode;
404
405 if (mode > FM10K_XCAST_MODE_NONE)
406 return FM10K_ERR_PARAM;
407 /* if glort is not valid return error */
408 if (!fm10k_glort_valid_pf(hw, glort))
409 return FM10K_ERR_PARAM;
410
411 /* write xcast mode as a single u32 value,
412 * lower 16 bits: glort
413 * upper 16 bits: mode
414 */
415 xcast_mode = ((u32)mode << 16) | glort;
416
417 /* generate message requesting to change xcast mode */
418 fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_XCAST_MODES);
419 fm10k_tlv_attr_put_u32(msg, FM10K_PF_ATTR_ID_XCAST_MODE, xcast_mode);
420
421 /* load onto outgoing mailbox */
422 return mbx->ops.enqueue_tx(hw, mbx, msg);
423}
424
425/**
426 * fm10k_update_int_moderator_pf - Update interrupt moderator linked list
427 * @hw: pointer to hardware structure
428 *
429 * This function walks through the MSI-X vector table to determine the
430 * number of active interrupts and based on that information updates the
431 * interrupt moderator linked list.
432 **/
433static void fm10k_update_int_moderator_pf(struct fm10k_hw *hw)
434{
435 u32 i;
436
437 /* Disable interrupt moderator */
438 fm10k_write_reg(hw, FM10K_INT_CTRL, 0);
439
440 /* loop through PF from last to first looking enabled vectors */
441 for (i = FM10K_ITR_REG_COUNT_PF - 1; i; i--) {
442 if (!fm10k_read_reg(hw, FM10K_MSIX_VECTOR_MASK(i)))
443 break;
444 }
445
eca32047 446 /* always reset VFITR2[0] to point to last enabled PF vector */
401b5383
AD
447 fm10k_write_reg(hw, FM10K_ITR2(FM10K_ITR_REG_COUNT_PF), i);
448
449 /* reset ITR2[0] to point to last enabled PF vector */
c2653865
AD
450 if (!hw->iov.num_vfs)
451 fm10k_write_reg(hw, FM10K_ITR2(0), i);
401b5383
AD
452
453 /* Enable interrupt moderator */
454 fm10k_write_reg(hw, FM10K_INT_CTRL, FM10K_INT_CTRL_ENABLEMODERATOR);
455}
456
457/**
458 * fm10k_update_lport_state_pf - Notify the switch of a change in port state
459 * @hw: pointer to the HW structure
460 * @glort: base resource tag for this request
461 * @count: number of logical ports being updated
462 * @enable: boolean value indicating enable or disable
463 *
464 * This function is used to add/remove a logical port from the switch.
465 **/
466static s32 fm10k_update_lport_state_pf(struct fm10k_hw *hw, u16 glort,
467 u16 count, bool enable)
468{
469 struct fm10k_mbx_info *mbx = &hw->mbx;
470 u32 msg[3], lport_msg;
471
472 /* do nothing if we are being asked to create or destroy 0 ports */
473 if (!count)
474 return 0;
475
476 /* if glort is not valid return error */
477 if (!fm10k_glort_valid_pf(hw, glort))
478 return FM10K_ERR_PARAM;
479
480 /* construct the lport message from the 2 pieces of data we have */
481 lport_msg = ((u32)count << 16) | glort;
482
483 /* generate lport create/delete message */
484 fm10k_tlv_msg_init(msg, enable ? FM10K_PF_MSG_ID_LPORT_CREATE :
485 FM10K_PF_MSG_ID_LPORT_DELETE);
486 fm10k_tlv_attr_put_u32(msg, FM10K_PF_ATTR_ID_PORT, lport_msg);
487
488 /* load onto outgoing mailbox */
489 return mbx->ops.enqueue_tx(hw, mbx, msg);
490}
491
492/**
493 * fm10k_configure_dglort_map_pf - Configures GLORT entry and queues
494 * @hw: pointer to hardware structure
495 * @dglort: pointer to dglort configuration structure
496 *
497 * Reads the configuration structure contained in dglort_cfg and uses
498 * that information to then populate a DGLORTMAP/DEC entry and the queues
499 * to which it has been assigned.
500 **/
501static s32 fm10k_configure_dglort_map_pf(struct fm10k_hw *hw,
502 struct fm10k_dglort_cfg *dglort)
503{
504 u16 glort, queue_count, vsi_count, pc_count;
505 u16 vsi, queue, pc, q_idx;
506 u32 txqctl, dglortdec, dglortmap;
507
508 /* verify the dglort pointer */
509 if (!dglort)
510 return FM10K_ERR_PARAM;
511
512 /* verify the dglort values */
513 if ((dglort->idx > 7) || (dglort->rss_l > 7) || (dglort->pc_l > 3) ||
514 (dglort->vsi_l > 6) || (dglort->vsi_b > 64) ||
515 (dglort->queue_l > 8) || (dglort->queue_b >= 256))
516 return FM10K_ERR_PARAM;
517
518 /* determine count of VSIs and queues */
519 queue_count = 1 << (dglort->rss_l + dglort->pc_l);
520 vsi_count = 1 << (dglort->vsi_l + dglort->queue_l);
521 glort = dglort->glort;
522 q_idx = dglort->queue_b;
523
524 /* configure SGLORT for queues */
525 for (vsi = 0; vsi < vsi_count; vsi++, glort++) {
526 for (queue = 0; queue < queue_count; queue++, q_idx++) {
527 if (q_idx >= FM10K_MAX_QUEUES)
528 break;
529
530 fm10k_write_reg(hw, FM10K_TX_SGLORT(q_idx), glort);
531 fm10k_write_reg(hw, FM10K_RX_SGLORT(q_idx), glort);
532 }
533 }
534
535 /* determine count of PCs and queues */
536 queue_count = 1 << (dglort->queue_l + dglort->rss_l + dglort->vsi_l);
537 pc_count = 1 << dglort->pc_l;
538
539 /* configure PC for Tx queues */
540 for (pc = 0; pc < pc_count; pc++) {
541 q_idx = pc + dglort->queue_b;
542 for (queue = 0; queue < queue_count; queue++) {
543 if (q_idx >= FM10K_MAX_QUEUES)
544 break;
545
546 txqctl = fm10k_read_reg(hw, FM10K_TXQCTL(q_idx));
547 txqctl &= ~FM10K_TXQCTL_PC_MASK;
548 txqctl |= pc << FM10K_TXQCTL_PC_SHIFT;
549 fm10k_write_reg(hw, FM10K_TXQCTL(q_idx), txqctl);
550
551 q_idx += pc_count;
552 }
553 }
554
555 /* configure DGLORTDEC */
556 dglortdec = ((u32)(dglort->rss_l) << FM10K_DGLORTDEC_RSSLENGTH_SHIFT) |
557 ((u32)(dglort->queue_b) << FM10K_DGLORTDEC_QBASE_SHIFT) |
558 ((u32)(dglort->pc_l) << FM10K_DGLORTDEC_PCLENGTH_SHIFT) |
559 ((u32)(dglort->vsi_b) << FM10K_DGLORTDEC_VSIBASE_SHIFT) |
560 ((u32)(dglort->vsi_l) << FM10K_DGLORTDEC_VSILENGTH_SHIFT) |
561 ((u32)(dglort->queue_l));
562 if (dglort->inner_rss)
563 dglortdec |= FM10K_DGLORTDEC_INNERRSS_ENABLE;
564
565 /* configure DGLORTMAP */
566 dglortmap = (dglort->idx == fm10k_dglort_default) ?
567 FM10K_DGLORTMAP_ANY : FM10K_DGLORTMAP_ZERO;
568 dglortmap <<= dglort->vsi_l + dglort->queue_l + dglort->shared_l;
569 dglortmap |= dglort->glort;
570
571 /* write values to hardware */
572 fm10k_write_reg(hw, FM10K_DGLORTDEC(dglort->idx), dglortdec);
573 fm10k_write_reg(hw, FM10K_DGLORTMAP(dglort->idx), dglortmap);
574
575 return 0;
576}
577
c2653865
AD
578u16 fm10k_queues_per_pool(struct fm10k_hw *hw)
579{
580 u16 num_pools = hw->iov.num_pools;
581
582 return (num_pools > 32) ? 2 : (num_pools > 16) ? 4 : (num_pools > 8) ?
583 8 : FM10K_MAX_QUEUES_POOL;
584}
585
586u16 fm10k_vf_queue_index(struct fm10k_hw *hw, u16 vf_idx)
587{
588 u16 num_vfs = hw->iov.num_vfs;
589 u16 vf_q_idx = FM10K_MAX_QUEUES;
590
591 vf_q_idx -= fm10k_queues_per_pool(hw) * (num_vfs - vf_idx);
592
593 return vf_q_idx;
594}
595
596static u16 fm10k_vectors_per_pool(struct fm10k_hw *hw)
597{
598 u16 num_pools = hw->iov.num_pools;
599
600 return (num_pools > 32) ? 8 : (num_pools > 16) ? 16 :
601 FM10K_MAX_VECTORS_POOL;
602}
603
604static u16 fm10k_vf_vector_index(struct fm10k_hw *hw, u16 vf_idx)
605{
606 u16 vf_v_idx = FM10K_MAX_VECTORS_PF;
607
608 vf_v_idx += fm10k_vectors_per_pool(hw) * vf_idx;
609
610 return vf_v_idx;
611}
612
613/**
614 * fm10k_iov_assign_resources_pf - Assign pool resources for virtualization
615 * @hw: pointer to the HW structure
616 * @num_vfs: number of VFs to be allocated
617 * @num_pools: number of virtualization pools to be allocated
618 *
619 * Allocates queues and traffic classes to virtualization entities to prepare
620 * the PF for SR-IOV and VMDq
621 **/
622static s32 fm10k_iov_assign_resources_pf(struct fm10k_hw *hw, u16 num_vfs,
623 u16 num_pools)
624{
625 u16 qmap_stride, qpp, vpp, vf_q_idx, vf_q_idx0, qmap_idx;
626 u32 vid = hw->mac.default_vid << FM10K_TXQCTL_VID_SHIFT;
627 int i, j;
628
629 /* hardware only supports up to 64 pools */
630 if (num_pools > 64)
631 return FM10K_ERR_PARAM;
632
633 /* the number of VFs cannot exceed the number of pools */
634 if ((num_vfs > num_pools) || (num_vfs > hw->iov.total_vfs))
635 return FM10K_ERR_PARAM;
636
637 /* record number of virtualization entities */
638 hw->iov.num_vfs = num_vfs;
639 hw->iov.num_pools = num_pools;
640
641 /* determine qmap offsets and counts */
642 qmap_stride = (num_vfs > 8) ? 32 : 256;
643 qpp = fm10k_queues_per_pool(hw);
644 vpp = fm10k_vectors_per_pool(hw);
645
646 /* calculate starting index for queues */
647 vf_q_idx = fm10k_vf_queue_index(hw, 0);
648 qmap_idx = 0;
649
650 /* establish TCs with -1 credits and no quanta to prevent transmit */
651 for (i = 0; i < num_vfs; i++) {
652 fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(i), 0);
653 fm10k_write_reg(hw, FM10K_TC_RATE(i), 0);
654 fm10k_write_reg(hw, FM10K_TC_CREDIT(i),
655 FM10K_TC_CREDIT_CREDIT_MASK);
656 }
657
658 /* zero out all mbmem registers */
659 for (i = FM10K_VFMBMEM_LEN * num_vfs; i--;)
660 fm10k_write_reg(hw, FM10K_MBMEM(i), 0);
661
662 /* clear event notification of VF FLR */
663 fm10k_write_reg(hw, FM10K_PFVFLREC(0), ~0);
664 fm10k_write_reg(hw, FM10K_PFVFLREC(1), ~0);
665
666 /* loop through unallocated rings assigning them back to PF */
667 for (i = FM10K_MAX_QUEUES_PF; i < vf_q_idx; i++) {
668 fm10k_write_reg(hw, FM10K_TXDCTL(i), 0);
ded8b20d
JK
669 fm10k_write_reg(hw, FM10K_TXQCTL(i), FM10K_TXQCTL_PF |
670 FM10K_TXQCTL_UNLIMITED_BW | vid);
c2653865
AD
671 fm10k_write_reg(hw, FM10K_RXQCTL(i), FM10K_RXQCTL_PF);
672 }
673
674 /* PF should have already updated VFITR2[0] */
675
676 /* update all ITR registers to flow to VFITR2[0] */
677 for (i = FM10K_ITR_REG_COUNT_PF + 1; i < FM10K_ITR_REG_COUNT; i++) {
678 if (!(i & (vpp - 1)))
679 fm10k_write_reg(hw, FM10K_ITR2(i), i - vpp);
680 else
681 fm10k_write_reg(hw, FM10K_ITR2(i), i - 1);
682 }
683
684 /* update PF ITR2[0] to reference the last vector */
685 fm10k_write_reg(hw, FM10K_ITR2(0),
686 fm10k_vf_vector_index(hw, num_vfs - 1));
687
688 /* loop through rings populating rings and TCs */
689 for (i = 0; i < num_vfs; i++) {
690 /* record index for VF queue 0 for use in end of loop */
691 vf_q_idx0 = vf_q_idx;
692
693 for (j = 0; j < qpp; j++, qmap_idx++, vf_q_idx++) {
694 /* assign VF and locked TC to queues */
695 fm10k_write_reg(hw, FM10K_TXDCTL(vf_q_idx), 0);
696 fm10k_write_reg(hw, FM10K_TXQCTL(vf_q_idx),
697 (i << FM10K_TXQCTL_TC_SHIFT) | i |
698 FM10K_TXQCTL_VF | vid);
699 fm10k_write_reg(hw, FM10K_RXDCTL(vf_q_idx),
700 FM10K_RXDCTL_WRITE_BACK_MIN_DELAY |
701 FM10K_RXDCTL_DROP_ON_EMPTY);
702 fm10k_write_reg(hw, FM10K_RXQCTL(vf_q_idx),
703 FM10K_RXQCTL_VF |
704 (i << FM10K_RXQCTL_VF_SHIFT));
705
706 /* map queue pair to VF */
707 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx);
708 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), vf_q_idx);
709 }
710
711 /* repeat the first ring for all of the remaining VF rings */
712 for (; j < qmap_stride; j++, qmap_idx++) {
713 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx0);
714 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), vf_q_idx0);
715 }
716 }
717
718 /* loop through remaining indexes assigning all to queue 0 */
719 while (qmap_idx < FM10K_TQMAP_TABLE_SIZE) {
720 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), 0);
721 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx), 0);
722 qmap_idx++;
723 }
724
725 return 0;
726}
727
728/**
729 * fm10k_iov_configure_tc_pf - Configure the shaping group for VF
730 * @hw: pointer to the HW structure
731 * @vf_idx: index of VF receiving GLORT
732 * @rate: Rate indicated in Mb/s
733 *
734 * Configured the TC for a given VF to allow only up to a given number
735 * of Mb/s of outgoing Tx throughput.
736 **/
737static s32 fm10k_iov_configure_tc_pf(struct fm10k_hw *hw, u16 vf_idx, int rate)
738{
739 /* configure defaults */
740 u32 interval = FM10K_TC_RATE_INTERVAL_4US_GEN3;
741 u32 tc_rate = FM10K_TC_RATE_QUANTA_MASK;
742
743 /* verify vf is in range */
744 if (vf_idx >= hw->iov.num_vfs)
745 return FM10K_ERR_PARAM;
746
747 /* set interval to align with 4.096 usec in all modes */
748 switch (hw->bus.speed) {
749 case fm10k_bus_speed_2500:
750 interval = FM10K_TC_RATE_INTERVAL_4US_GEN1;
751 break;
752 case fm10k_bus_speed_5000:
753 interval = FM10K_TC_RATE_INTERVAL_4US_GEN2;
754 break;
755 default:
756 break;
757 }
758
759 if (rate) {
760 if (rate > FM10K_VF_TC_MAX || rate < FM10K_VF_TC_MIN)
761 return FM10K_ERR_PARAM;
762
763 /* The quanta is measured in Bytes per 4.096 or 8.192 usec
764 * The rate is provided in Mbits per second
765 * To tralslate from rate to quanta we need to multiply the
766 * rate by 8.192 usec and divide by 8 bits/byte. To avoid
767 * dealing with floating point we can round the values up
768 * to the nearest whole number ratio which gives us 128 / 125.
769 */
770 tc_rate = (rate * 128) / 125;
771
772 /* try to keep the rate limiting accurate by increasing
773 * the number of credits and interval for rates less than 4Gb/s
774 */
775 if (rate < 4000)
776 interval <<= 1;
777 else
778 tc_rate >>= 1;
779 }
780
781 /* update rate limiter with new values */
782 fm10k_write_reg(hw, FM10K_TC_RATE(vf_idx), tc_rate | interval);
783 fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(vf_idx), FM10K_TC_MAXCREDIT_64K);
784 fm10k_write_reg(hw, FM10K_TC_CREDIT(vf_idx), FM10K_TC_MAXCREDIT_64K);
785
786 return 0;
787}
788
789/**
790 * fm10k_iov_assign_int_moderator_pf - Add VF interrupts to moderator list
791 * @hw: pointer to the HW structure
792 * @vf_idx: index of VF receiving GLORT
793 *
794 * Update the interrupt moderator linked list to include any MSI-X
795 * interrupts which the VF has enabled in the MSI-X vector table.
796 **/
797static s32 fm10k_iov_assign_int_moderator_pf(struct fm10k_hw *hw, u16 vf_idx)
798{
799 u16 vf_v_idx, vf_v_limit, i;
800
801 /* verify vf is in range */
802 if (vf_idx >= hw->iov.num_vfs)
803 return FM10K_ERR_PARAM;
804
eca32047 805 /* determine vector offset and count */
c2653865
AD
806 vf_v_idx = fm10k_vf_vector_index(hw, vf_idx);
807 vf_v_limit = vf_v_idx + fm10k_vectors_per_pool(hw);
808
809 /* search for first vector that is not masked */
810 for (i = vf_v_limit - 1; i > vf_v_idx; i--) {
811 if (!fm10k_read_reg(hw, FM10K_MSIX_VECTOR_MASK(i)))
812 break;
813 }
814
815 /* reset linked list so it now includes our active vectors */
816 if (vf_idx == (hw->iov.num_vfs - 1))
817 fm10k_write_reg(hw, FM10K_ITR2(0), i);
818 else
819 fm10k_write_reg(hw, FM10K_ITR2(vf_v_limit), i);
820
821 return 0;
822}
823
824/**
825 * fm10k_iov_assign_default_mac_vlan_pf - Assign a MAC and VLAN to VF
826 * @hw: pointer to the HW structure
827 * @vf_info: pointer to VF information structure
828 *
829 * Assign a MAC address and default VLAN to a VF and notify it of the update
830 **/
831static s32 fm10k_iov_assign_default_mac_vlan_pf(struct fm10k_hw *hw,
832 struct fm10k_vf_info *vf_info)
833{
834 u16 qmap_stride, queues_per_pool, vf_q_idx, timeout, qmap_idx, i;
835 u32 msg[4], txdctl, txqctl, tdbal = 0, tdbah = 0;
836 s32 err = 0;
837 u16 vf_idx, vf_vid;
838
839 /* verify vf is in range */
840 if (!vf_info || vf_info->vf_idx >= hw->iov.num_vfs)
841 return FM10K_ERR_PARAM;
842
843 /* determine qmap offsets and counts */
844 qmap_stride = (hw->iov.num_vfs > 8) ? 32 : 256;
845 queues_per_pool = fm10k_queues_per_pool(hw);
846
847 /* calculate starting index for queues */
848 vf_idx = vf_info->vf_idx;
849 vf_q_idx = fm10k_vf_queue_index(hw, vf_idx);
850 qmap_idx = qmap_stride * vf_idx;
851
852 /* MAP Tx queue back to 0 temporarily, and disable it */
853 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), 0);
854 fm10k_write_reg(hw, FM10K_TXDCTL(vf_q_idx), 0);
855
856 /* determine correct default VLAN ID */
857 if (vf_info->pf_vid)
858 vf_vid = vf_info->pf_vid | FM10K_VLAN_CLEAR;
859 else
860 vf_vid = vf_info->sw_vid;
861
862 /* generate MAC_ADDR request */
863 fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_MAC_VLAN);
864 fm10k_tlv_attr_put_mac_vlan(msg, FM10K_MAC_VLAN_MSG_DEFAULT_MAC,
865 vf_info->mac, vf_vid);
866
867 /* load onto outgoing mailbox, ignore any errors on enqueue */
868 if (vf_info->mbx.ops.enqueue_tx)
869 vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg);
870
871 /* verify ring has disabled before modifying base address registers */
872 txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(vf_q_idx));
873 for (timeout = 0; txdctl & FM10K_TXDCTL_ENABLE; timeout++) {
874 /* limit ourselves to a 1ms timeout */
875 if (timeout == 10) {
876 err = FM10K_ERR_DMA_PENDING;
877 goto err_out;
878 }
879
880 usleep_range(100, 200);
881 txdctl = fm10k_read_reg(hw, FM10K_TXDCTL(vf_q_idx));
882 }
883
884 /* Update base address registers to contain MAC address */
885 if (is_valid_ether_addr(vf_info->mac)) {
886 tdbal = (((u32)vf_info->mac[3]) << 24) |
887 (((u32)vf_info->mac[4]) << 16) |
888 (((u32)vf_info->mac[5]) << 8);
889
890 tdbah = (((u32)0xFF) << 24) |
891 (((u32)vf_info->mac[0]) << 16) |
892 (((u32)vf_info->mac[1]) << 8) |
893 ((u32)vf_info->mac[2]);
894 }
895
896 /* Record the base address into queue 0 */
897 fm10k_write_reg(hw, FM10K_TDBAL(vf_q_idx), tdbal);
898 fm10k_write_reg(hw, FM10K_TDBAH(vf_q_idx), tdbah);
899
900err_out:
901 /* configure Queue control register */
902 txqctl = ((u32)vf_vid << FM10K_TXQCTL_VID_SHIFT) &
903 FM10K_TXQCTL_VID_MASK;
904 txqctl |= (vf_idx << FM10K_TXQCTL_TC_SHIFT) |
905 FM10K_TXQCTL_VF | vf_idx;
906
907 /* assign VID */
908 for (i = 0; i < queues_per_pool; i++)
909 fm10k_write_reg(hw, FM10K_TXQCTL(vf_q_idx + i), txqctl);
910
911 /* restore the queue back to VF ownership */
912 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx), vf_q_idx);
913 return err;
914}
915
916/**
917 * fm10k_iov_reset_resources_pf - Reassign queues and interrupts to a VF
918 * @hw: pointer to the HW structure
919 * @vf_info: pointer to VF information structure
920 *
921 * Reassign the interrupts and queues to a VF following an FLR
922 **/
923static s32 fm10k_iov_reset_resources_pf(struct fm10k_hw *hw,
924 struct fm10k_vf_info *vf_info)
925{
926 u16 qmap_stride, queues_per_pool, vf_q_idx, qmap_idx;
927 u32 tdbal = 0, tdbah = 0, txqctl, rxqctl;
928 u16 vf_v_idx, vf_v_limit, vf_vid;
929 u8 vf_idx = vf_info->vf_idx;
930 int i;
931
932 /* verify vf is in range */
933 if (vf_idx >= hw->iov.num_vfs)
934 return FM10K_ERR_PARAM;
935
936 /* clear event notification of VF FLR */
937 fm10k_write_reg(hw, FM10K_PFVFLREC(vf_idx / 32), 1 << (vf_idx % 32));
938
939 /* force timeout and then disconnect the mailbox */
940 vf_info->mbx.timeout = 0;
941 if (vf_info->mbx.ops.disconnect)
942 vf_info->mbx.ops.disconnect(hw, &vf_info->mbx);
943
eca32047 944 /* determine vector offset and count */
c2653865
AD
945 vf_v_idx = fm10k_vf_vector_index(hw, vf_idx);
946 vf_v_limit = vf_v_idx + fm10k_vectors_per_pool(hw);
947
948 /* determine qmap offsets and counts */
949 qmap_stride = (hw->iov.num_vfs > 8) ? 32 : 256;
950 queues_per_pool = fm10k_queues_per_pool(hw);
951 qmap_idx = qmap_stride * vf_idx;
952
953 /* make all the queues inaccessible to the VF */
954 for (i = qmap_idx; i < (qmap_idx + qmap_stride); i++) {
955 fm10k_write_reg(hw, FM10K_TQMAP(i), 0);
956 fm10k_write_reg(hw, FM10K_RQMAP(i), 0);
957 }
958
959 /* calculate starting index for queues */
960 vf_q_idx = fm10k_vf_queue_index(hw, vf_idx);
961
962 /* determine correct default VLAN ID */
963 if (vf_info->pf_vid)
964 vf_vid = vf_info->pf_vid;
965 else
966 vf_vid = vf_info->sw_vid;
967
968 /* configure Queue control register */
969 txqctl = ((u32)vf_vid << FM10K_TXQCTL_VID_SHIFT) |
970 (vf_idx << FM10K_TXQCTL_TC_SHIFT) |
971 FM10K_TXQCTL_VF | vf_idx;
972 rxqctl = FM10K_RXQCTL_VF | (vf_idx << FM10K_RXQCTL_VF_SHIFT);
973
974 /* stop further DMA and reset queue ownership back to VF */
975 for (i = vf_q_idx; i < (queues_per_pool + vf_q_idx); i++) {
976 fm10k_write_reg(hw, FM10K_TXDCTL(i), 0);
977 fm10k_write_reg(hw, FM10K_TXQCTL(i), txqctl);
978 fm10k_write_reg(hw, FM10K_RXDCTL(i),
979 FM10K_RXDCTL_WRITE_BACK_MIN_DELAY |
980 FM10K_RXDCTL_DROP_ON_EMPTY);
981 fm10k_write_reg(hw, FM10K_RXQCTL(i), rxqctl);
982 }
983
984 /* reset TC with -1 credits and no quanta to prevent transmit */
985 fm10k_write_reg(hw, FM10K_TC_MAXCREDIT(vf_idx), 0);
986 fm10k_write_reg(hw, FM10K_TC_RATE(vf_idx), 0);
987 fm10k_write_reg(hw, FM10K_TC_CREDIT(vf_idx),
988 FM10K_TC_CREDIT_CREDIT_MASK);
989
990 /* update our first entry in the table based on previous VF */
991 if (!vf_idx)
992 hw->mac.ops.update_int_moderator(hw);
993 else
994 hw->iov.ops.assign_int_moderator(hw, vf_idx - 1);
995
996 /* reset linked list so it now includes our active vectors */
997 if (vf_idx == (hw->iov.num_vfs - 1))
998 fm10k_write_reg(hw, FM10K_ITR2(0), vf_v_idx);
999 else
1000 fm10k_write_reg(hw, FM10K_ITR2(vf_v_limit), vf_v_idx);
1001
1002 /* link remaining vectors so that next points to previous */
1003 for (vf_v_idx++; vf_v_idx < vf_v_limit; vf_v_idx++)
1004 fm10k_write_reg(hw, FM10K_ITR2(vf_v_idx), vf_v_idx - 1);
1005
1006 /* zero out MBMEM, VLAN_TABLE, RETA, RSSRK, and MRQC registers */
1007 for (i = FM10K_VFMBMEM_LEN; i--;)
1008 fm10k_write_reg(hw, FM10K_MBMEM_VF(vf_idx, i), 0);
1009 for (i = FM10K_VLAN_TABLE_SIZE; i--;)
1010 fm10k_write_reg(hw, FM10K_VLAN_TABLE(vf_info->vsi, i), 0);
1011 for (i = FM10K_RETA_SIZE; i--;)
1012 fm10k_write_reg(hw, FM10K_RETA(vf_info->vsi, i), 0);
1013 for (i = FM10K_RSSRK_SIZE; i--;)
1014 fm10k_write_reg(hw, FM10K_RSSRK(vf_info->vsi, i), 0);
1015 fm10k_write_reg(hw, FM10K_MRQC(vf_info->vsi), 0);
1016
1017 /* Update base address registers to contain MAC address */
1018 if (is_valid_ether_addr(vf_info->mac)) {
1019 tdbal = (((u32)vf_info->mac[3]) << 24) |
1020 (((u32)vf_info->mac[4]) << 16) |
1021 (((u32)vf_info->mac[5]) << 8);
1022 tdbah = (((u32)0xFF) << 24) |
1023 (((u32)vf_info->mac[0]) << 16) |
1024 (((u32)vf_info->mac[1]) << 8) |
1025 ((u32)vf_info->mac[2]);
1026 }
1027
eca32047 1028 /* map queue pairs back to VF from last to first */
c2653865
AD
1029 for (i = queues_per_pool; i--;) {
1030 fm10k_write_reg(hw, FM10K_TDBAL(vf_q_idx + i), tdbal);
1031 fm10k_write_reg(hw, FM10K_TDBAH(vf_q_idx + i), tdbah);
1032 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx + i), vf_q_idx + i);
1033 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx + i), vf_q_idx + i);
1034 }
1035
fba341d5
JK
1036 /* repeat the first ring for all the remaining VF rings */
1037 for (i = queues_per_pool; i < qmap_stride; i++) {
1038 fm10k_write_reg(hw, FM10K_TQMAP(qmap_idx + i), vf_q_idx);
1039 fm10k_write_reg(hw, FM10K_RQMAP(qmap_idx + i), vf_q_idx);
1040 }
1041
c2653865
AD
1042 return 0;
1043}
1044
1045/**
1046 * fm10k_iov_set_lport_pf - Assign and enable a logical port for a given VF
1047 * @hw: pointer to hardware structure
1048 * @vf_info: pointer to VF information structure
1049 * @lport_idx: Logical port offset from the hardware glort
1050 * @flags: Set of capability flags to extend port beyond basic functionality
1051 *
1052 * This function allows enabling a VF port by assigning it a GLORT and
1053 * setting the flags so that it can enable an Rx mode.
1054 **/
1055static s32 fm10k_iov_set_lport_pf(struct fm10k_hw *hw,
1056 struct fm10k_vf_info *vf_info,
1057 u16 lport_idx, u8 flags)
1058{
1059 u16 glort = (hw->mac.dglort_map + lport_idx) & FM10K_DGLORTMAP_NONE;
1060
1061 /* if glort is not valid return error */
1062 if (!fm10k_glort_valid_pf(hw, glort))
1063 return FM10K_ERR_PARAM;
1064
1065 vf_info->vf_flags = flags | FM10K_VF_FLAG_NONE_CAPABLE;
1066 vf_info->glort = glort;
1067
1068 return 0;
1069}
1070
1071/**
1072 * fm10k_iov_reset_lport_pf - Disable a logical port for a given VF
1073 * @hw: pointer to hardware structure
1074 * @vf_info: pointer to VF information structure
1075 *
1076 * This function disables a VF port by stripping it of a GLORT and
1077 * setting the flags so that it cannot enable any Rx mode.
1078 **/
1079static void fm10k_iov_reset_lport_pf(struct fm10k_hw *hw,
1080 struct fm10k_vf_info *vf_info)
1081{
1082 u32 msg[1];
1083
1084 /* need to disable the port if it is already enabled */
1085 if (FM10K_VF_FLAG_ENABLED(vf_info)) {
1086 /* notify switch that this port has been disabled */
1087 fm10k_update_lport_state_pf(hw, vf_info->glort, 1, false);
1088
1089 /* generate port state response to notify VF it is not ready */
1090 fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_LPORT_STATE);
1091 vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg);
1092 }
1093
1094 /* clear flags and glort if it exists */
1095 vf_info->vf_flags = 0;
1096 vf_info->glort = 0;
1097}
1098
1099/**
1100 * fm10k_iov_update_stats_pf - Updates hardware related statistics for VFs
1101 * @hw: pointer to hardware structure
1102 * @q: stats for all queues of a VF
1103 * @vf_idx: index of VF
1104 *
1105 * This function collects queue stats for VFs.
1106 **/
1107static void fm10k_iov_update_stats_pf(struct fm10k_hw *hw,
1108 struct fm10k_hw_stats_q *q,
1109 u16 vf_idx)
1110{
1111 u32 idx, qpp;
1112
1113 /* get stats for all of the queues */
1114 qpp = fm10k_queues_per_pool(hw);
1115 idx = fm10k_vf_queue_index(hw, vf_idx);
1116 fm10k_update_hw_stats_q(hw, q, idx, qpp);
1117}
1118
5f226ddb
AD
1119static s32 fm10k_iov_report_timestamp_pf(struct fm10k_hw *hw,
1120 struct fm10k_vf_info *vf_info,
1121 u64 timestamp)
1122{
1123 u32 msg[4];
1124
1125 /* generate port state response to notify VF it is not ready */
1126 fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_1588);
1127 fm10k_tlv_attr_put_u64(msg, FM10K_1588_MSG_TIMESTAMP, timestamp);
1128
1129 return vf_info->mbx.ops.enqueue_tx(hw, &vf_info->mbx, msg);
1130}
1131
c2653865
AD
1132/**
1133 * fm10k_iov_msg_msix_pf - Message handler for MSI-X request from VF
1134 * @hw: Pointer to hardware structure
1135 * @results: Pointer array to message, results[0] is pointer to message
1136 * @mbx: Pointer to mailbox information structure
1137 *
1138 * This function is a default handler for MSI-X requests from the VF. The
1139 * assumption is that in this case it is acceptable to just directly
eca32047 1140 * hand off the message from the VF to the underlying shared code.
c2653865
AD
1141 **/
1142s32 fm10k_iov_msg_msix_pf(struct fm10k_hw *hw, u32 **results,
1143 struct fm10k_mbx_info *mbx)
1144{
1145 struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
1146 u8 vf_idx = vf_info->vf_idx;
1147
1148 return hw->iov.ops.assign_int_moderator(hw, vf_idx);
1149}
1150
1151/**
1152 * fm10k_iov_msg_mac_vlan_pf - Message handler for MAC/VLAN request from VF
1153 * @hw: Pointer to hardware structure
1154 * @results: Pointer array to message, results[0] is pointer to message
1155 * @mbx: Pointer to mailbox information structure
1156 *
1157 * This function is a default handler for MAC/VLAN requests from the VF.
1158 * The assumption is that in this case it is acceptable to just directly
eca32047 1159 * hand off the message from the VF to the underlying shared code.
c2653865
AD
1160 **/
1161s32 fm10k_iov_msg_mac_vlan_pf(struct fm10k_hw *hw, u32 **results,
1162 struct fm10k_mbx_info *mbx)
1163{
1164 struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
1165 int err = 0;
1166 u8 mac[ETH_ALEN];
1167 u32 *result;
1168 u16 vlan;
1169 u32 vid;
1170
1171 /* we shouldn't be updating rules on a disabled interface */
1172 if (!FM10K_VF_FLAG_ENABLED(vf_info))
1173 err = FM10K_ERR_PARAM;
1174
1175 if (!err && !!results[FM10K_MAC_VLAN_MSG_VLAN]) {
1176 result = results[FM10K_MAC_VLAN_MSG_VLAN];
1177
1178 /* record VLAN id requested */
1179 err = fm10k_tlv_attr_get_u32(result, &vid);
1180 if (err)
1181 return err;
1182
1183 /* if VLAN ID is 0, set the default VLAN ID instead of 0 */
1184 if (!vid || (vid == FM10K_VLAN_CLEAR)) {
1185 if (vf_info->pf_vid)
1186 vid |= vf_info->pf_vid;
1187 else
1188 vid |= vf_info->sw_vid;
1189 } else if (vid != vf_info->pf_vid) {
1190 return FM10K_ERR_PARAM;
1191 }
1192
1193 /* update VSI info for VF in regards to VLAN table */
1194 err = hw->mac.ops.update_vlan(hw, vid, vf_info->vsi,
1195 !(vid & FM10K_VLAN_CLEAR));
1196 }
1197
1198 if (!err && !!results[FM10K_MAC_VLAN_MSG_MAC]) {
1199 result = results[FM10K_MAC_VLAN_MSG_MAC];
1200
1201 /* record unicast MAC address requested */
1202 err = fm10k_tlv_attr_get_mac_vlan(result, mac, &vlan);
1203 if (err)
1204 return err;
1205
1206 /* block attempts to set MAC for a locked device */
1207 if (is_valid_ether_addr(vf_info->mac) &&
1208 memcmp(mac, vf_info->mac, ETH_ALEN))
1209 return FM10K_ERR_PARAM;
1210
1211 /* if VLAN ID is 0, set the default VLAN ID instead of 0 */
1212 if (!vlan || (vlan == FM10K_VLAN_CLEAR)) {
1213 if (vf_info->pf_vid)
1214 vlan |= vf_info->pf_vid;
1215 else
1216 vlan |= vf_info->sw_vid;
1217 } else if (vf_info->pf_vid) {
1218 return FM10K_ERR_PARAM;
1219 }
1220
1221 /* notify switch of request for new unicast address */
1222 err = hw->mac.ops.update_uc_addr(hw, vf_info->glort, mac, vlan,
1223 !(vlan & FM10K_VLAN_CLEAR), 0);
1224 }
1225
1226 if (!err && !!results[FM10K_MAC_VLAN_MSG_MULTICAST]) {
1227 result = results[FM10K_MAC_VLAN_MSG_MULTICAST];
1228
1229 /* record multicast MAC address requested */
1230 err = fm10k_tlv_attr_get_mac_vlan(result, mac, &vlan);
1231 if (err)
1232 return err;
1233
1234 /* verify that the VF is allowed to request multicast */
1235 if (!(vf_info->vf_flags & FM10K_VF_FLAG_MULTI_ENABLED))
1236 return FM10K_ERR_PARAM;
1237
1238 /* if VLAN ID is 0, set the default VLAN ID instead of 0 */
1239 if (!vlan || (vlan == FM10K_VLAN_CLEAR)) {
1240 if (vf_info->pf_vid)
1241 vlan |= vf_info->pf_vid;
1242 else
1243 vlan |= vf_info->sw_vid;
1244 } else if (vf_info->pf_vid) {
1245 return FM10K_ERR_PARAM;
1246 }
1247
1248 /* notify switch of request for new multicast address */
b32d15b9
JK
1249 err = hw->mac.ops.update_mc_addr(hw, vf_info->glort, mac, vlan,
1250 !(vlan & FM10K_VLAN_CLEAR));
c2653865
AD
1251 }
1252
1253 return err;
1254}
1255
1256/**
1257 * fm10k_iov_supported_xcast_mode_pf - Determine best match for xcast mode
1258 * @vf_info: VF info structure containing capability flags
1259 * @mode: Requested xcast mode
1260 *
1261 * This function outputs the mode that most closely matches the requested
1262 * mode. If not modes match it will request we disable the port
1263 **/
1264static u8 fm10k_iov_supported_xcast_mode_pf(struct fm10k_vf_info *vf_info,
1265 u8 mode)
1266{
1267 u8 vf_flags = vf_info->vf_flags;
1268
1269 /* match up mode to capabilities as best as possible */
1270 switch (mode) {
1271 case FM10K_XCAST_MODE_PROMISC:
1272 if (vf_flags & FM10K_VF_FLAG_PROMISC_CAPABLE)
1273 return FM10K_XCAST_MODE_PROMISC;
1274 /* fallthough */
1275 case FM10K_XCAST_MODE_ALLMULTI:
1276 if (vf_flags & FM10K_VF_FLAG_ALLMULTI_CAPABLE)
1277 return FM10K_XCAST_MODE_ALLMULTI;
1278 /* fallthough */
1279 case FM10K_XCAST_MODE_MULTI:
1280 if (vf_flags & FM10K_VF_FLAG_MULTI_CAPABLE)
1281 return FM10K_XCAST_MODE_MULTI;
1282 /* fallthough */
1283 case FM10K_XCAST_MODE_NONE:
1284 if (vf_flags & FM10K_VF_FLAG_NONE_CAPABLE)
1285 return FM10K_XCAST_MODE_NONE;
1286 /* fallthough */
1287 default:
1288 break;
1289 }
1290
1291 /* disable interface as it should not be able to request any */
1292 return FM10K_XCAST_MODE_DISABLE;
1293}
1294
1295/**
1296 * fm10k_iov_msg_lport_state_pf - Message handler for port state requests
1297 * @hw: Pointer to hardware structure
1298 * @results: Pointer array to message, results[0] is pointer to message
1299 * @mbx: Pointer to mailbox information structure
1300 *
1301 * This function is a default handler for port state requests. The port
1302 * state requests for now are basic and consist of enabling or disabling
1303 * the port.
1304 **/
1305s32 fm10k_iov_msg_lport_state_pf(struct fm10k_hw *hw, u32 **results,
1306 struct fm10k_mbx_info *mbx)
1307{
1308 struct fm10k_vf_info *vf_info = (struct fm10k_vf_info *)mbx;
1309 u32 *result;
1310 s32 err = 0;
1311 u32 msg[2];
1312 u8 mode = 0;
1313
1314 /* verify VF is allowed to enable even minimal mode */
1315 if (!(vf_info->vf_flags & FM10K_VF_FLAG_NONE_CAPABLE))
1316 return FM10K_ERR_PARAM;
1317
1318 if (!!results[FM10K_LPORT_STATE_MSG_XCAST_MODE]) {
1319 result = results[FM10K_LPORT_STATE_MSG_XCAST_MODE];
1320
1321 /* XCAST mode update requested */
1322 err = fm10k_tlv_attr_get_u8(result, &mode);
1323 if (err)
1324 return FM10K_ERR_PARAM;
1325
1326 /* prep for possible demotion depending on capabilities */
1327 mode = fm10k_iov_supported_xcast_mode_pf(vf_info, mode);
1328
1329 /* if mode is not currently enabled, enable it */
1330 if (!(FM10K_VF_FLAG_ENABLED(vf_info) & (1 << mode)))
1331 fm10k_update_xcast_mode_pf(hw, vf_info->glort, mode);
1332
1333 /* swap mode back to a bit flag */
1334 mode = FM10K_VF_FLAG_SET_MODE(mode);
1335 } else if (!results[FM10K_LPORT_STATE_MSG_DISABLE]) {
1336 /* need to disable the port if it is already enabled */
1337 if (FM10K_VF_FLAG_ENABLED(vf_info))
1338 err = fm10k_update_lport_state_pf(hw, vf_info->glort,
1339 1, false);
1340
ee4373e7
JK
1341 /* we need to clear VF_FLAG_ENABLED flags in order to ensure
1342 * that we actually re-enable the LPORT state below. Note that
1343 * this has no impact if the VF is already disabled, as the
1344 * flags are already cleared.
1345 */
1346 if (!err)
1347 vf_info->vf_flags = FM10K_VF_FLAG_CAPABLE(vf_info);
1348
c2653865
AD
1349 /* when enabling the port we should reset the rate limiters */
1350 hw->iov.ops.configure_tc(hw, vf_info->vf_idx, vf_info->rate);
1351
1352 /* set mode for minimal functionality */
1353 mode = FM10K_VF_FLAG_SET_MODE_NONE;
1354
1355 /* generate port state response to notify VF it is ready */
1356 fm10k_tlv_msg_init(msg, FM10K_VF_MSG_ID_LPORT_STATE);
1357 fm10k_tlv_attr_put_bool(msg, FM10K_LPORT_STATE_MSG_READY);
1358 mbx->ops.enqueue_tx(hw, mbx, msg);
1359 }
1360
1361 /* if enable state toggled note the update */
1362 if (!err && (!FM10K_VF_FLAG_ENABLED(vf_info) != !mode))
1363 err = fm10k_update_lport_state_pf(hw, vf_info->glort, 1,
1364 !!mode);
1365
1366 /* if state change succeeded, then update our stored state */
1367 mode |= FM10K_VF_FLAG_CAPABLE(vf_info);
1368 if (!err)
1369 vf_info->vf_flags = mode;
1370
1371 return err;
1372}
1373
1374const struct fm10k_msg_data fm10k_iov_msg_data_pf[] = {
1375 FM10K_TLV_MSG_TEST_HANDLER(fm10k_tlv_msg_test),
1376 FM10K_VF_MSG_MSIX_HANDLER(fm10k_iov_msg_msix_pf),
1377 FM10K_VF_MSG_MAC_VLAN_HANDLER(fm10k_iov_msg_mac_vlan_pf),
1378 FM10K_VF_MSG_LPORT_STATE_HANDLER(fm10k_iov_msg_lport_state_pf),
1379 FM10K_TLV_MSG_ERROR_HANDLER(fm10k_tlv_msg_error),
1380};
1381
b6fec18f
AD
1382/**
1383 * fm10k_update_stats_hw_pf - Updates hardware related statistics of PF
1384 * @hw: pointer to hardware structure
1385 * @stats: pointer to the stats structure to update
1386 *
1387 * This function collects and aggregates global and per queue hardware
1388 * statistics.
1389 **/
1390static void fm10k_update_hw_stats_pf(struct fm10k_hw *hw,
1391 struct fm10k_hw_stats *stats)
1392{
1393 u32 timeout, ur, ca, um, xec, vlan_drop, loopback_drop, nodesc_drop;
1394 u32 id, id_prev;
1395
1396 /* Use Tx queue 0 as a canary to detect a reset */
1397 id = fm10k_read_reg(hw, FM10K_TXQCTL(0));
1398
1399 /* Read Global Statistics */
1400 do {
1401 timeout = fm10k_read_hw_stats_32b(hw, FM10K_STATS_TIMEOUT,
1402 &stats->timeout);
1403 ur = fm10k_read_hw_stats_32b(hw, FM10K_STATS_UR, &stats->ur);
1404 ca = fm10k_read_hw_stats_32b(hw, FM10K_STATS_CA, &stats->ca);
1405 um = fm10k_read_hw_stats_32b(hw, FM10K_STATS_UM, &stats->um);
1406 xec = fm10k_read_hw_stats_32b(hw, FM10K_STATS_XEC, &stats->xec);
1407 vlan_drop = fm10k_read_hw_stats_32b(hw, FM10K_STATS_VLAN_DROP,
1408 &stats->vlan_drop);
1409 loopback_drop = fm10k_read_hw_stats_32b(hw,
1410 FM10K_STATS_LOOPBACK_DROP,
eca32047 1411 &stats->loopback_drop);
b6fec18f
AD
1412 nodesc_drop = fm10k_read_hw_stats_32b(hw,
1413 FM10K_STATS_NODESC_DROP,
1414 &stats->nodesc_drop);
1415
1416 /* if value has not changed then we have consistent data */
1417 id_prev = id;
1418 id = fm10k_read_reg(hw, FM10K_TXQCTL(0));
1419 } while ((id ^ id_prev) & FM10K_TXQCTL_ID_MASK);
1420
1421 /* drop non-ID bits and set VALID ID bit */
1422 id &= FM10K_TXQCTL_ID_MASK;
1423 id |= FM10K_STAT_VALID;
1424
1425 /* Update Global Statistics */
1426 if (stats->stats_idx == id) {
1427 stats->timeout.count += timeout;
1428 stats->ur.count += ur;
1429 stats->ca.count += ca;
1430 stats->um.count += um;
1431 stats->xec.count += xec;
1432 stats->vlan_drop.count += vlan_drop;
1433 stats->loopback_drop.count += loopback_drop;
1434 stats->nodesc_drop.count += nodesc_drop;
1435 }
1436
1437 /* Update bases and record current PF id */
1438 fm10k_update_hw_base_32b(&stats->timeout, timeout);
1439 fm10k_update_hw_base_32b(&stats->ur, ur);
1440 fm10k_update_hw_base_32b(&stats->ca, ca);
1441 fm10k_update_hw_base_32b(&stats->um, um);
1442 fm10k_update_hw_base_32b(&stats->xec, xec);
1443 fm10k_update_hw_base_32b(&stats->vlan_drop, vlan_drop);
1444 fm10k_update_hw_base_32b(&stats->loopback_drop, loopback_drop);
1445 fm10k_update_hw_base_32b(&stats->nodesc_drop, nodesc_drop);
1446 stats->stats_idx = id;
1447
1448 /* Update Queue Statistics */
1449 fm10k_update_hw_stats_q(hw, stats->q, 0, hw->mac.max_queues);
1450}
1451
1452/**
1453 * fm10k_rebind_hw_stats_pf - Resets base for hardware statistics of PF
1454 * @hw: pointer to hardware structure
1455 * @stats: pointer to the stats structure to update
1456 *
1457 * This function resets the base for global and per queue hardware
1458 * statistics.
1459 **/
1460static void fm10k_rebind_hw_stats_pf(struct fm10k_hw *hw,
1461 struct fm10k_hw_stats *stats)
1462{
1463 /* Unbind Global Statistics */
1464 fm10k_unbind_hw_stats_32b(&stats->timeout);
1465 fm10k_unbind_hw_stats_32b(&stats->ur);
1466 fm10k_unbind_hw_stats_32b(&stats->ca);
1467 fm10k_unbind_hw_stats_32b(&stats->um);
1468 fm10k_unbind_hw_stats_32b(&stats->xec);
1469 fm10k_unbind_hw_stats_32b(&stats->vlan_drop);
1470 fm10k_unbind_hw_stats_32b(&stats->loopback_drop);
1471 fm10k_unbind_hw_stats_32b(&stats->nodesc_drop);
1472
1473 /* Unbind Queue Statistics */
1474 fm10k_unbind_hw_stats_q(stats->q, 0, hw->mac.max_queues);
1475
1476 /* Reinitialize bases for all stats */
1477 fm10k_update_hw_stats_pf(hw, stats);
1478}
1479
401b5383
AD
1480/**
1481 * fm10k_set_dma_mask_pf - Configures PhyAddrSpace to limit DMA to system
1482 * @hw: pointer to hardware structure
1483 * @dma_mask: 64 bit DMA mask required for platform
1484 *
1485 * This function sets the PHYADDR.PhyAddrSpace bits for the endpoint in order
1486 * to limit the access to memory beyond what is physically in the system.
1487 **/
1488static void fm10k_set_dma_mask_pf(struct fm10k_hw *hw, u64 dma_mask)
1489{
1490 /* we need to write the upper 32 bits of DMA mask to PhyAddrSpace */
1491 u32 phyaddr = (u32)(dma_mask >> 32);
1492
1493 fm10k_write_reg(hw, FM10K_PHYADDR, phyaddr);
1494}
1495
b6fec18f
AD
1496/**
1497 * fm10k_get_fault_pf - Record a fault in one of the interface units
1498 * @hw: pointer to hardware structure
1499 * @type: pointer to fault type register offset
1500 * @fault: pointer to memory location to record the fault
1501 *
1502 * Record the fault register contents to the fault data structure and
1503 * clear the entry from the register.
1504 *
1505 * Returns ERR_PARAM if invalid register is specified or no error is present.
1506 **/
1507static s32 fm10k_get_fault_pf(struct fm10k_hw *hw, int type,
1508 struct fm10k_fault *fault)
1509{
1510 u32 func;
1511
1512 /* verify the fault register is in range and is aligned */
1513 switch (type) {
1514 case FM10K_PCA_FAULT:
1515 case FM10K_THI_FAULT:
1516 case FM10K_FUM_FAULT:
1517 break;
1518 default:
1519 return FM10K_ERR_PARAM;
1520 }
1521
1522 /* only service faults that are valid */
1523 func = fm10k_read_reg(hw, type + FM10K_FAULT_FUNC);
1524 if (!(func & FM10K_FAULT_FUNC_VALID))
1525 return FM10K_ERR_PARAM;
1526
1527 /* read remaining fields */
1528 fault->address = fm10k_read_reg(hw, type + FM10K_FAULT_ADDR_HI);
1529 fault->address <<= 32;
1530 fault->address = fm10k_read_reg(hw, type + FM10K_FAULT_ADDR_LO);
1531 fault->specinfo = fm10k_read_reg(hw, type + FM10K_FAULT_SPECINFO);
1532
1533 /* clear valid bit to allow for next error */
1534 fm10k_write_reg(hw, type + FM10K_FAULT_FUNC, FM10K_FAULT_FUNC_VALID);
1535
1536 /* Record which function triggered the error */
1537 if (func & FM10K_FAULT_FUNC_PF)
1538 fault->func = 0;
1539 else
1540 fault->func = 1 + ((func & FM10K_FAULT_FUNC_VF_MASK) >>
1541 FM10K_FAULT_FUNC_VF_SHIFT);
1542
1543 /* record fault type */
1544 fault->type = func & FM10K_FAULT_FUNC_TYPE_MASK;
1545
1546 return 0;
1547}
1548
401b5383
AD
1549/**
1550 * fm10k_request_lport_map_pf - Request LPORT map from the switch API
1551 * @hw: pointer to hardware structure
1552 *
1553 **/
1554static s32 fm10k_request_lport_map_pf(struct fm10k_hw *hw)
1555{
1556 struct fm10k_mbx_info *mbx = &hw->mbx;
1557 u32 msg[1];
1558
1559 /* issue request asking for LPORT map */
1560 fm10k_tlv_msg_init(msg, FM10K_PF_MSG_ID_LPORT_MAP);
1561
1562 /* load onto outgoing mailbox */
1563 return mbx->ops.enqueue_tx(hw, mbx, msg);
1564}
1565
1566/**
1567 * fm10k_get_host_state_pf - Returns the state of the switch and mailbox
1568 * @hw: pointer to hardware structure
1569 * @switch_ready: pointer to boolean value that will record switch state
1570 *
1571 * This funciton will check the DMA_CTRL2 register and mailbox in order
1572 * to determine if the switch is ready for the PF to begin requesting
1573 * addresses and mapping traffic to the local interface.
1574 **/
1575static s32 fm10k_get_host_state_pf(struct fm10k_hw *hw, bool *switch_ready)
1576{
1577 s32 ret_val = 0;
1578 u32 dma_ctrl2;
1579
eca32047 1580 /* verify the switch is ready for interaction */
401b5383
AD
1581 dma_ctrl2 = fm10k_read_reg(hw, FM10K_DMA_CTRL2);
1582 if (!(dma_ctrl2 & FM10K_DMA_CTRL2_SWITCH_READY))
1583 goto out;
1584
1585 /* retrieve generic host state info */
1586 ret_val = fm10k_get_host_state_generic(hw, switch_ready);
1587 if (ret_val)
1588 goto out;
1589
1590 /* interface cannot receive traffic without logical ports */
1591 if (hw->mac.dglort_map == FM10K_DGLORTMAP_NONE)
1592 ret_val = fm10k_request_lport_map_pf(hw);
1593
1594out:
1595 return ret_val;
1596}
1597
1598/* This structure defines the attibutes to be parsed below */
1599const struct fm10k_tlv_attr fm10k_lport_map_msg_attr[] = {
1600 FM10K_TLV_ATTR_U32(FM10K_PF_ATTR_ID_LPORT_MAP),
1601 FM10K_TLV_ATTR_LAST
1602};
1603
1604/**
1605 * fm10k_msg_lport_map_pf - Message handler for lport_map message from SM
1606 * @hw: Pointer to hardware structure
1607 * @results: pointer array containing parsed data
1608 * @mbx: Pointer to mailbox information structure
1609 *
1610 * This handler configures the lport mapping based on the reply from the
1611 * switch API.
1612 **/
1613s32 fm10k_msg_lport_map_pf(struct fm10k_hw *hw, u32 **results,
1614 struct fm10k_mbx_info *mbx)
1615{
1616 u16 glort, mask;
1617 u32 dglort_map;
1618 s32 err;
1619
1620 err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_LPORT_MAP],
1621 &dglort_map);
1622 if (err)
1623 return err;
1624
1625 /* extract values out of the header */
1626 glort = FM10K_MSG_HDR_FIELD_GET(dglort_map, LPORT_MAP_GLORT);
1627 mask = FM10K_MSG_HDR_FIELD_GET(dglort_map, LPORT_MAP_MASK);
1628
1629 /* verify mask is set and none of the masked bits in glort are set */
1630 if (!mask || (glort & ~mask))
1631 return FM10K_ERR_PARAM;
1632
1633 /* verify the mask is contiguous, and that it is 1's followed by 0's */
1634 if (((~(mask - 1) & mask) + mask) & FM10K_DGLORTMAP_NONE)
1635 return FM10K_ERR_PARAM;
1636
1637 /* record the glort, mask, and port count */
1638 hw->mac.dglort_map = dglort_map;
1639
1640 return 0;
1641}
1642
1643const struct fm10k_tlv_attr fm10k_update_pvid_msg_attr[] = {
1644 FM10K_TLV_ATTR_U32(FM10K_PF_ATTR_ID_UPDATE_PVID),
1645 FM10K_TLV_ATTR_LAST
1646};
1647
1648/**
1649 * fm10k_msg_update_pvid_pf - Message handler for port VLAN message from SM
1650 * @hw: Pointer to hardware structure
1651 * @results: pointer array containing parsed data
1652 * @mbx: Pointer to mailbox information structure
1653 *
1654 * This handler configures the default VLAN for the PF
1655 **/
1656s32 fm10k_msg_update_pvid_pf(struct fm10k_hw *hw, u32 **results,
1657 struct fm10k_mbx_info *mbx)
1658{
1659 u16 glort, pvid;
1660 u32 pvid_update;
1661 s32 err;
1662
1663 err = fm10k_tlv_attr_get_u32(results[FM10K_PF_ATTR_ID_UPDATE_PVID],
1664 &pvid_update);
1665 if (err)
1666 return err;
1667
1668 /* extract values from the pvid update */
1669 glort = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_GLORT);
1670 pvid = FM10K_MSG_HDR_FIELD_GET(pvid_update, UPDATE_PVID_PVID);
1671
1672 /* if glort is not valid return error */
1673 if (!fm10k_glort_valid_pf(hw, glort))
1674 return FM10K_ERR_PARAM;
1675
1676 /* verify VID is valid */
1677 if (pvid >= FM10K_VLAN_TABLE_VID_MAX)
1678 return FM10K_ERR_PARAM;
1679
1680 /* record the port VLAN ID value */
1681 hw->mac.default_vid = pvid;
1682
1683 return 0;
1684}
1685
1686/**
1687 * fm10k_record_global_table_data - Move global table data to swapi table info
1688 * @from: pointer to source table data structure
1689 * @to: pointer to destination table info structure
1690 *
1691 * This function is will copy table_data to the table_info contained in
1692 * the hw struct.
1693 **/
1694static void fm10k_record_global_table_data(struct fm10k_global_table_data *from,
1695 struct fm10k_swapi_table_info *to)
1696{
1697 /* convert from le32 struct to CPU byte ordered values */
1698 to->used = le32_to_cpu(from->used);
1699 to->avail = le32_to_cpu(from->avail);
1700}
1701
1702const struct fm10k_tlv_attr fm10k_err_msg_attr[] = {
1703 FM10K_TLV_ATTR_LE_STRUCT(FM10K_PF_ATTR_ID_ERR,
1704 sizeof(struct fm10k_swapi_error)),
1705 FM10K_TLV_ATTR_LAST
1706};
1707
1708/**
1709 * fm10k_msg_err_pf - Message handler for error reply
1710 * @hw: Pointer to hardware structure
1711 * @results: pointer array containing parsed data
1712 * @mbx: Pointer to mailbox information structure
1713 *
1714 * This handler will capture the data for any error replies to previous
1715 * messages that the PF has sent.
1716 **/
1717s32 fm10k_msg_err_pf(struct fm10k_hw *hw, u32 **results,
1718 struct fm10k_mbx_info *mbx)
1719{
1720 struct fm10k_swapi_error err_msg;
1721 s32 err;
1722
1723 /* extract structure from message */
1724 err = fm10k_tlv_attr_get_le_struct(results[FM10K_PF_ATTR_ID_ERR],
1725 &err_msg, sizeof(err_msg));
1726 if (err)
1727 return err;
1728
1729 /* record table status */
1730 fm10k_record_global_table_data(&err_msg.mac, &hw->swapi.mac);
1731 fm10k_record_global_table_data(&err_msg.nexthop, &hw->swapi.nexthop);
1732 fm10k_record_global_table_data(&err_msg.ffu, &hw->swapi.ffu);
1733
1734 /* record SW API status value */
1735 hw->swapi.status = le32_to_cpu(err_msg.status);
1736
1737 return 0;
1738}
1739
5f226ddb
AD
1740const struct fm10k_tlv_attr fm10k_1588_timestamp_msg_attr[] = {
1741 FM10K_TLV_ATTR_LE_STRUCT(FM10K_PF_ATTR_ID_1588_TIMESTAMP,
1742 sizeof(struct fm10k_swapi_1588_timestamp)),
1743 FM10K_TLV_ATTR_LAST
1744};
1745
1746/* currently there is no shared 1588 timestamp handler */
1747
1748/**
1749 * fm10k_adjust_systime_pf - Adjust systime frequency
1750 * @hw: pointer to hardware structure
1751 * @ppb: adjustment rate in parts per billion
1752 *
1753 * This function will adjust the SYSTIME_CFG register contained in BAR 4
1754 * if this function is supported for BAR 4 access. The adjustment amount
1755 * is based on the parts per billion value provided and adjusted to a
1756 * value based on parts per 2^48 clock cycles.
1757 *
1758 * If adjustment is not supported or the requested value is too large
1759 * we will return an error.
1760 **/
1761static s32 fm10k_adjust_systime_pf(struct fm10k_hw *hw, s32 ppb)
1762{
1763 u64 systime_adjust;
1764
1765 /* if sw_addr is not set we don't have switch register access */
1766 if (!hw->sw_addr)
1767 return ppb ? FM10K_ERR_PARAM : 0;
1768
1769 /* we must convert the value from parts per billion to parts per
1770 * 2^48 cycles. In addition I have opted to only use the 30 most
1771 * significant bits of the adjustment value as the 8 least
1772 * significant bits are located in another register and represent
1773 * a value significantly less than a part per billion, the result
1774 * of dropping the 8 least significant bits is that the adjustment
1775 * value is effectively multiplied by 2^8 when we write it.
1776 *
1777 * As a result of all this the math for this breaks down as follows:
1778 * ppb / 10^9 == adjust * 2^8 / 2^48
1779 * If we solve this for adjust, and simplify it comes out as:
1780 * ppb * 2^31 / 5^9 == adjust
1781 */
1782 systime_adjust = (ppb < 0) ? -ppb : ppb;
1783 systime_adjust <<= 31;
1784 do_div(systime_adjust, 1953125);
1785
1786 /* verify the requested adjustment value is in range */
1787 if (systime_adjust > FM10K_SW_SYSTIME_ADJUST_MASK)
1788 return FM10K_ERR_PARAM;
1789
646725a7
JK
1790 if (ppb > 0)
1791 systime_adjust |= FM10K_SW_SYSTIME_ADJUST_DIR_POSITIVE;
5f226ddb
AD
1792
1793 fm10k_write_sw_reg(hw, FM10K_SW_SYSTIME_ADJUST, (u32)systime_adjust);
1794
1795 return 0;
1796}
1797
1798/**
1799 * fm10k_read_systime_pf - Reads value of systime registers
1800 * @hw: pointer to the hardware structure
1801 *
1802 * Function reads the content of 2 registers, combined to represent a 64 bit
1803 * value measured in nanosecods. In order to guarantee the value is accurate
1804 * we check the 32 most significant bits both before and after reading the
1805 * 32 least significant bits to verify they didn't change as we were reading
1806 * the registers.
1807 **/
1808static u64 fm10k_read_systime_pf(struct fm10k_hw *hw)
1809{
1810 u32 systime_l, systime_h, systime_tmp;
1811
1812 systime_h = fm10k_read_reg(hw, FM10K_SYSTIME + 1);
1813
1814 do {
1815 systime_tmp = systime_h;
1816 systime_l = fm10k_read_reg(hw, FM10K_SYSTIME);
1817 systime_h = fm10k_read_reg(hw, FM10K_SYSTIME + 1);
1818 } while (systime_tmp != systime_h);
1819
1820 return ((u64)systime_h << 32) | systime_l;
1821}
1822
401b5383
AD
1823static const struct fm10k_msg_data fm10k_msg_data_pf[] = {
1824 FM10K_PF_MSG_ERR_HANDLER(XCAST_MODES, fm10k_msg_err_pf),
1825 FM10K_PF_MSG_ERR_HANDLER(UPDATE_MAC_FWD_RULE, fm10k_msg_err_pf),
1826 FM10K_PF_MSG_LPORT_MAP_HANDLER(fm10k_msg_lport_map_pf),
1827 FM10K_PF_MSG_ERR_HANDLER(LPORT_CREATE, fm10k_msg_err_pf),
1828 FM10K_PF_MSG_ERR_HANDLER(LPORT_DELETE, fm10k_msg_err_pf),
1829 FM10K_PF_MSG_UPDATE_PVID_HANDLER(fm10k_msg_update_pvid_pf),
1830 FM10K_TLV_MSG_ERROR_HANDLER(fm10k_tlv_msg_error),
1831};
1832
b6fec18f
AD
1833static struct fm10k_mac_ops mac_ops_pf = {
1834 .get_bus_info = &fm10k_get_bus_info_generic,
1835 .reset_hw = &fm10k_reset_hw_pf,
1836 .init_hw = &fm10k_init_hw_pf,
1837 .start_hw = &fm10k_start_hw_generic,
1838 .stop_hw = &fm10k_stop_hw_generic,
401b5383 1839 .update_vlan = &fm10k_update_vlan_pf,
b6fec18f 1840 .read_mac_addr = &fm10k_read_mac_addr_pf,
401b5383
AD
1841 .update_uc_addr = &fm10k_update_uc_addr_pf,
1842 .update_mc_addr = &fm10k_update_mc_addr_pf,
1843 .update_xcast_mode = &fm10k_update_xcast_mode_pf,
1844 .update_int_moderator = &fm10k_update_int_moderator_pf,
1845 .update_lport_state = &fm10k_update_lport_state_pf,
b6fec18f
AD
1846 .update_hw_stats = &fm10k_update_hw_stats_pf,
1847 .rebind_hw_stats = &fm10k_rebind_hw_stats_pf,
401b5383
AD
1848 .configure_dglort_map = &fm10k_configure_dglort_map_pf,
1849 .set_dma_mask = &fm10k_set_dma_mask_pf,
b6fec18f 1850 .get_fault = &fm10k_get_fault_pf,
401b5383 1851 .get_host_state = &fm10k_get_host_state_pf,
5f226ddb
AD
1852 .adjust_systime = &fm10k_adjust_systime_pf,
1853 .read_systime = &fm10k_read_systime_pf,
b6fec18f
AD
1854};
1855
c2653865
AD
1856static struct fm10k_iov_ops iov_ops_pf = {
1857 .assign_resources = &fm10k_iov_assign_resources_pf,
1858 .configure_tc = &fm10k_iov_configure_tc_pf,
1859 .assign_int_moderator = &fm10k_iov_assign_int_moderator_pf,
1860 .assign_default_mac_vlan = fm10k_iov_assign_default_mac_vlan_pf,
1861 .reset_resources = &fm10k_iov_reset_resources_pf,
1862 .set_lport = &fm10k_iov_set_lport_pf,
1863 .reset_lport = &fm10k_iov_reset_lport_pf,
1864 .update_stats = &fm10k_iov_update_stats_pf,
5f226ddb 1865 .report_timestamp = &fm10k_iov_report_timestamp_pf,
c2653865
AD
1866};
1867
401b5383
AD
1868static s32 fm10k_get_invariants_pf(struct fm10k_hw *hw)
1869{
1870 fm10k_get_invariants_generic(hw);
1871
1872 return fm10k_sm_mbx_init(hw, &hw->mbx, fm10k_msg_data_pf);
1873}
1874
b6fec18f
AD
1875struct fm10k_info fm10k_pf_info = {
1876 .mac = fm10k_mac_pf,
401b5383 1877 .get_invariants = &fm10k_get_invariants_pf,
b6fec18f 1878 .mac_ops = &mac_ops_pf,
c2653865 1879 .iov_ops = &iov_ops_pf,
b6fec18f 1880};