e1000e: cleanup (add/remove) blank lines where appropriate
[linux-2.6-block.git] / drivers / net / ethernet / intel / e1000e / e1000.h
CommitLineData
bc7f75fa
AK
1/*******************************************************************************
2
3 Intel PRO/1000 Linux driver
bf67044b 4 Copyright(c) 1999 - 2013 Intel Corporation.
bc7f75fa
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29/* Linux PRO/1000 Ethernet Driver main header file */
30
31#ifndef _E1000_H_
32#define _E1000_H_
33
86d70e53 34#include <linux/bitops.h>
bc7f75fa
AK
35#include <linux/types.h>
36#include <linux/timer.h>
37#include <linux/workqueue.h>
38#include <linux/io.h>
39#include <linux/netdevice.h>
d8014dbc 40#include <linux/pci.h>
6f461f6c 41#include <linux/pci-aspm.h>
fe46f58f 42#include <linux/crc32.h>
86d70e53 43#include <linux/if_vlan.h>
b67e1913
BA
44#include <linux/clocksource.h>
45#include <linux/net_tstamp.h>
d89777bf
BA
46#include <linux/ptp_clock_kernel.h>
47#include <linux/ptp_classify.h>
c2ade1a4 48#include <linux/mii.h>
bc7f75fa
AK
49#include "hw.h"
50
51struct e1000_info;
52
44defeb3 53#define e_dbg(format, arg...) \
8544b9f7 54 netdev_dbg(hw->adapter->netdev, format, ## arg)
44defeb3 55#define e_err(format, arg...) \
8544b9f7 56 netdev_err(adapter->netdev, format, ## arg)
44defeb3 57#define e_info(format, arg...) \
8544b9f7 58 netdev_info(adapter->netdev, format, ## arg)
44defeb3 59#define e_warn(format, arg...) \
8544b9f7 60 netdev_warn(adapter->netdev, format, ## arg)
44defeb3 61#define e_notice(format, arg...) \
8544b9f7 62 netdev_notice(adapter->netdev, format, ## arg)
bc7f75fa 63
98a1708d 64/* Interrupt modes, as used by the IntMode parameter */
4662e82b
BA
65#define E1000E_INT_MODE_LEGACY 0
66#define E1000E_INT_MODE_MSI 1
67#define E1000E_INT_MODE_MSIX 2
68
ad68076e 69/* Tx/Rx descriptor defines */
bc7f75fa
AK
70#define E1000_DEFAULT_TXD 256
71#define E1000_MAX_TXD 4096
7b1be198 72#define E1000_MIN_TXD 64
bc7f75fa
AK
73
74#define E1000_DEFAULT_RXD 256
75#define E1000_MAX_RXD 4096
7b1be198 76#define E1000_MIN_RXD 64
bc7f75fa 77
de5b3077
AK
78#define E1000_MIN_ITR_USECS 10 /* 100000 irq/sec */
79#define E1000_MAX_ITR_USECS 10000 /* 100 irq/sec */
80
bc7f75fa
AK
81#define E1000_FC_PAUSE_TIME 0x0680 /* 858 usec */
82
83/* How many Tx Descriptors do we need to call netif_wake_queue ? */
84/* How many Rx Buffers do we bundle into one write to the hardware ? */
85#define E1000_RX_BUFFER_WRITE 16 /* Must be power of 2 */
86
87#define AUTO_ALL_MODES 0
88#define E1000_EEPROM_APME 0x0400
89
90#define E1000_MNG_VLAN_NONE (-1)
91
92/* Number of packet split data buffers (not including the header buffer) */
93#define PS_PAGE_BUFFERS (MAX_PS_BUFFERS - 1)
94
2adc55c9
BA
95#define DEFAULT_JUMBO 9234
96
23606cf5
RW
97/* Time to wait before putting the device into D3 if there's no link (in ms). */
98#define LINK_TIMEOUT 100
99
e921eb1a 100/* Count for polling __E1000_RESET condition every 10-20msec.
bb9e44d0
BA
101 * Experimentation has shown the reset can take approximately 210msec.
102 */
103#define E1000_CHECK_RESET_COUNT 25
104
3a3b7586
JB
105#define DEFAULT_RDTR 0
106#define DEFAULT_RADV 8
107#define BURST_RDTR 0x20
108#define BURST_RADV 0x20
109
e921eb1a 110/* in the case of WTHRESH, it appears at least the 82571/2 hardware
3a3b7586 111 * writes back 4 descriptors when WTHRESH=5, and 3 descriptors when
8edc0e62
HS
112 * WTHRESH=4, so a setting of 5 gives the most efficient bus
113 * utilization but to avoid possible Tx stalls, set it to 1
3a3b7586
JB
114 */
115#define E1000_TXDCTL_DMA_BURST_ENABLE \
116 (E1000_TXDCTL_GRAN | /* set descriptor granularity */ \
117 E1000_TXDCTL_COUNT_DESC | \
8edc0e62 118 (1 << 16) | /* wthresh must be +1 more than desired */\
3a3b7586
JB
119 (1 << 8) | /* hthresh */ \
120 0x1f) /* pthresh */
121
122#define E1000_RXDCTL_DMA_BURST_ENABLE \
123 (0x01000000 | /* set descriptor granularity */ \
124 (4 << 16) | /* set writeback threshold */ \
125 (4 << 8) | /* set prefetch threshold */ \
126 0x20) /* set hthresh */
127
128#define E1000_TIDV_FPD (1 << 31)
129#define E1000_RDTR_FPD (1 << 31)
130
bc7f75fa
AK
131enum e1000_boards {
132 board_82571,
133 board_82572,
134 board_82573,
4662e82b 135 board_82574,
8c81c9c3 136 board_82583,
bc7f75fa
AK
137 board_80003es2lan,
138 board_ich8lan,
139 board_ich9lan,
f4187b56 140 board_ich10lan,
a4f58f54 141 board_pchlan,
d3738bb8 142 board_pch2lan,
2fbe4526 143 board_pch_lpt,
bc7f75fa
AK
144};
145
bc7f75fa
AK
146struct e1000_ps_page {
147 struct page *page;
148 u64 dma; /* must be u64 - written to hw */
149};
150
e921eb1a 151/* wrappers around a pointer to a socket buffer,
bc7f75fa
AK
152 * so a DMA handle can be stored along with the buffer
153 */
154struct e1000_buffer {
155 dma_addr_t dma;
156 struct sk_buff *skb;
157 union {
ad68076e 158 /* Tx */
bc7f75fa
AK
159 struct {
160 unsigned long time_stamp;
161 u16 length;
162 u16 next_to_watch;
9ed318d5
TH
163 unsigned int segs;
164 unsigned int bytecount;
03b1320d 165 u16 mapped_as_page;
bc7f75fa 166 };
ad68076e 167 /* Rx */
03b1320d
AD
168 struct {
169 /* arrays of page information for packet split */
170 struct e1000_ps_page *ps_pages;
171 struct page *page;
172 };
bc7f75fa 173 };
bc7f75fa
AK
174};
175
176struct e1000_ring {
55aa6985 177 struct e1000_adapter *adapter; /* back pointer to adapter */
bc7f75fa
AK
178 void *desc; /* pointer to ring memory */
179 dma_addr_t dma; /* phys address of ring */
180 unsigned int size; /* length of ring in bytes */
181 unsigned int count; /* number of desc. in ring */
182
183 u16 next_to_use;
184 u16 next_to_clean;
185
c5083cf6
BA
186 void __iomem *head;
187 void __iomem *tail;
bc7f75fa
AK
188
189 /* array of buffer information structs */
190 struct e1000_buffer *buffer_info;
191
4662e82b
BA
192 char name[IFNAMSIZ + 5];
193 u32 ims_val;
194 u32 itr_val;
c5083cf6 195 void __iomem *itr_register;
4662e82b
BA
196 int set_itr;
197
bc7f75fa 198 struct sk_buff *rx_skb_top;
bc7f75fa
AK
199};
200
7c25769f
BA
201/* PHY register snapshot values */
202struct e1000_phy_regs {
203 u16 bmcr; /* basic mode control register */
204 u16 bmsr; /* basic mode status register */
205 u16 advertise; /* auto-negotiation advertisement */
206 u16 lpa; /* link partner ability register */
207 u16 expansion; /* auto-negotiation expansion reg */
208 u16 ctrl1000; /* 1000BASE-T control register */
209 u16 stat1000; /* 1000BASE-T status register */
210 u16 estatus; /* extended status register */
211};
212
bc7f75fa
AK
213/* board specific private data structure */
214struct e1000_adapter {
215 struct timer_list watchdog_timer;
216 struct timer_list phy_info_timer;
217 struct timer_list blink_timer;
218
219 struct work_struct reset_task;
220 struct work_struct watchdog_task;
221
222 const struct e1000_info *ei;
223
86d70e53 224 unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
bc7f75fa
AK
225 u32 bd_number;
226 u32 rx_buffer_len;
227 u16 mng_vlan_id;
228 u16 link_speed;
229 u16 link_duplex;
84527590 230 u16 eeprom_vers;
bc7f75fa 231
bc7f75fa
AK
232 /* track device up/down/testing state */
233 unsigned long state;
234
235 /* Interrupt Throttle Rate */
236 u32 itr;
237 u32 itr_setting;
238 u16 tx_itr;
239 u16 rx_itr;
240
e921eb1a 241 /* Tx */
bc7f75fa
AK
242 struct e1000_ring *tx_ring /* One per active queue */
243 ____cacheline_aligned_in_smp;
d821a4c4 244 u32 tx_fifo_limit;
bc7f75fa
AK
245
246 struct napi_struct napi;
247
94fb848b
BA
248 unsigned int uncorr_errors; /* uncorrectable ECC errors */
249 unsigned int corr_errors; /* correctable ECC errors */
bc7f75fa
AK
250 unsigned int restart_queue;
251 u32 txd_cmd;
252
253 bool detect_tx_hung;
09357b00 254 bool tx_hang_recheck;
bc7f75fa
AK
255 u8 tx_timeout_factor;
256
257 u32 tx_int_delay;
258 u32 tx_abs_int_delay;
259
260 unsigned int total_tx_bytes;
261 unsigned int total_tx_packets;
262 unsigned int total_rx_bytes;
263 unsigned int total_rx_packets;
264
ad68076e 265 /* Tx stats */
bc7f75fa
AK
266 u64 tpt_old;
267 u64 colc_old;
7c25769f
BA
268 u32 gotc;
269 u64 gotc_old;
bc7f75fa
AK
270 u32 tx_timeout_count;
271 u32 tx_fifo_head;
272 u32 tx_head_addr;
273 u32 tx_fifo_size;
274 u32 tx_dma_failed;
275
e921eb1a 276 /* Rx */
55aa6985
BA
277 bool (*clean_rx) (struct e1000_ring *ring, int *work_done,
278 int work_to_do) ____cacheline_aligned_in_smp;
279 void (*alloc_rx_buf) (struct e1000_ring *ring, int cleaned_count,
280 gfp_t gfp);
bc7f75fa
AK
281 struct e1000_ring *rx_ring;
282
283 u32 rx_int_delay;
284 u32 rx_abs_int_delay;
285
ad68076e 286 /* Rx stats */
bc7f75fa
AK
287 u64 hw_csum_err;
288 u64 hw_csum_good;
289 u64 rx_hdr_split;
7c25769f
BA
290 u32 gorc;
291 u64 gorc_old;
bc7f75fa
AK
292 u32 alloc_rx_buff_failed;
293 u32 rx_dma_failed;
b67e1913 294 u32 rx_hwtstamp_cleared;
bc7f75fa
AK
295
296 unsigned int rx_ps_pages;
297 u16 rx_ps_bsize0;
318a94d6
JK
298 u32 max_frame_size;
299 u32 min_frame_size;
bc7f75fa
AK
300
301 /* OS defined structs */
302 struct net_device *netdev;
303 struct pci_dev *pdev;
bc7f75fa
AK
304
305 /* structs defined in e1000_hw.h */
306 struct e1000_hw hw;
307
9d57088b 308 spinlock_t stats64_lock; /* protects statistics counters */
bc7f75fa
AK
309 struct e1000_hw_stats stats;
310 struct e1000_phy_info phy_info;
311 struct e1000_phy_stats phy_stats;
312
7c25769f
BA
313 /* Snapshot of PHY registers */
314 struct e1000_phy_regs phy_regs;
315
bc7f75fa
AK
316 struct e1000_ring test_tx_ring;
317 struct e1000_ring test_rx_ring;
318 u32 test_icr;
319
320 u32 msg_enable;
8e86acd7 321 unsigned int num_vectors;
4662e82b
BA
322 struct msix_entry *msix_entries;
323 int int_mode;
324 u32 eiac_mask;
bc7f75fa
AK
325
326 u32 eeprom_wol;
327 u32 wol;
328 u32 pba;
2adc55c9 329 u32 max_hw_frame_size;
bc7f75fa 330
318a94d6 331 bool fc_autoneg;
bc7f75fa 332
bc7f75fa 333 unsigned int flags;
eb7c3adb 334 unsigned int flags2;
a8f88ff5
JB
335 struct work_struct downshift_task;
336 struct work_struct update_phy_task;
41cec6f1 337 struct work_struct print_hang_task;
23606cf5
RW
338
339 bool idle_check;
ff10e13c 340 int phy_hang_count;
55aa6985
BA
341
342 u16 tx_ring_count;
343 u16 rx_ring_count;
b67e1913
BA
344
345 struct hwtstamp_config hwtstamp_config;
346 struct delayed_work systim_overflow_work;
347 struct sk_buff *tx_hwtstamp_skb;
348 struct work_struct tx_hwtstamp_work;
349 spinlock_t systim_lock; /* protects SYSTIML/H regsters */
350 struct cyclecounter cc;
351 struct timecounter tc;
d89777bf
BA
352 struct ptp_clock *ptp_clock;
353 struct ptp_clock_info ptp_clock_info;
bc7f75fa
AK
354};
355
356struct e1000_info {
357 enum e1000_mac_type mac;
358 unsigned int flags;
6f461f6c 359 unsigned int flags2;
bc7f75fa 360 u32 pba;
2adc55c9 361 u32 max_hw_frame_size;
69e3fd8c 362 s32 (*get_variants)(struct e1000_adapter *);
8ce9d6c7
JK
363 const struct e1000_mac_operations *mac_ops;
364 const struct e1000_phy_operations *phy_ops;
365 const struct e1000_nvm_operations *nvm_ops;
bc7f75fa
AK
366};
367
d89777bf
BA
368s32 e1000e_get_base_timinca(struct e1000_adapter *adapter, u32 *timinca);
369
b67e1913
BA
370/* The system time is maintained by a 64-bit counter comprised of the 32-bit
371 * SYSTIMH and SYSTIML registers. How the counter increments (and therefore
372 * its resolution) is based on the contents of the TIMINCA register - it
373 * increments every incperiod (bits 31:24) clock ticks by incvalue (bits 23:0).
374 * For the best accuracy, the incperiod should be as small as possible. The
375 * incvalue is scaled by a factor as large as possible (while still fitting
376 * in bits 23:0) so that relatively small clock corrections can be made.
377 *
378 * As a result, a shift of INCVALUE_SHIFT_n is used to fit a value of
379 * INCVALUE_n into the TIMINCA register allowing 32+8+(24-INCVALUE_SHIFT_n)
380 * bits to count nanoseconds leaving the rest for fractional nonseconds.
381 */
382#define INCVALUE_96MHz 125
383#define INCVALUE_SHIFT_96MHz 17
384#define INCPERIOD_SHIFT_96MHz 2
385#define INCPERIOD_96MHz (12 >> INCPERIOD_SHIFT_96MHz)
386
387#define INCVALUE_25MHz 40
388#define INCVALUE_SHIFT_25MHz 18
389#define INCPERIOD_25MHz 1
390
391/* Another drawback of scaling the incvalue by a large factor is the
392 * 64-bit SYSTIM register overflows more quickly. This is dealt with
393 * by simply reading the clock before it overflows.
394 *
395 * Clock ns bits Overflows after
396 * ~~~~~~ ~~~~~~~ ~~~~~~~~~~~~~~~
397 * 96MHz 47-bit 2^(47-INCPERIOD_SHIFT_96MHz) / 10^9 / 3600 = 9.77 hrs
398 * 25MHz 46-bit 2^46 / 10^9 / 3600 = 19.55 hours
399 */
400#define E1000_SYSTIM_OVERFLOW_PERIOD (HZ * 60 * 60 * 4)
401
bc7f75fa
AK
402/* hardware capability, feature, and workaround flags */
403#define FLAG_HAS_AMT (1 << 0)
404#define FLAG_HAS_FLASH (1 << 1)
405#define FLAG_HAS_HW_VLAN_FILTER (1 << 2)
406#define FLAG_HAS_WOL (1 << 3)
79d4e908 407/* reserved bit4 */
bc7f75fa
AK
408#define FLAG_HAS_CTRLEXT_ON_LOAD (1 << 5)
409#define FLAG_HAS_SWSM_ON_LOAD (1 << 6)
410#define FLAG_HAS_JUMBO_FRAMES (1 << 7)
4a770358 411#define FLAG_READ_ONLY_NVM (1 << 8)
97ac8cae 412#define FLAG_IS_ICH (1 << 9)
4662e82b 413#define FLAG_HAS_MSIX (1 << 10)
bc7f75fa
AK
414#define FLAG_HAS_SMART_POWER_DOWN (1 << 11)
415#define FLAG_IS_QUAD_PORT_A (1 << 12)
416#define FLAG_IS_QUAD_PORT (1 << 13)
b67e1913 417#define FLAG_HAS_HW_TIMESTAMP (1 << 14)
bc7f75fa
AK
418#define FLAG_APME_IN_WUC (1 << 15)
419#define FLAG_APME_IN_CTRL3 (1 << 16)
420#define FLAG_APME_CHECK_PORT_B (1 << 17)
421#define FLAG_DISABLE_FC_PAUSE_TIME (1 << 18)
422#define FLAG_NO_WAKE_UCAST (1 << 19)
423#define FLAG_MNG_PT_ENABLED (1 << 20)
424#define FLAG_RESET_OVERWRITES_LAA (1 << 21)
425#define FLAG_TARC_SPEED_MODE_BIT (1 << 22)
426#define FLAG_TARC_SET_BIT_ZERO (1 << 23)
427#define FLAG_RX_NEEDS_RESTART (1 << 24)
428#define FLAG_LSC_GIG_SPEED_DROP (1 << 25)
429#define FLAG_SMART_POWER_DOWN (1 << 26)
430#define FLAG_MSI_ENABLED (1 << 27)
dc221294 431/* reserved (1 << 28) */
bc7f75fa 432#define FLAG_TSO_FORCE (1 << 29)
12d43f7d 433#define FLAG_RESTART_NOW (1 << 30)
f8d59f78 434#define FLAG_MSI_TEST_FAILED (1 << 31)
bc7f75fa 435
eb7c3adb 436#define FLAG2_CRC_STRIPPING (1 << 0)
a4f58f54 437#define FLAG2_HAS_PHY_WAKEUP (1 << 1)
b94b5028 438#define FLAG2_IS_DISCARDING (1 << 2)
6f461f6c 439#define FLAG2_DISABLE_ASPM_L1 (1 << 3)
8c7bbb92 440#define FLAG2_HAS_PHY_STATS (1 << 4)
e52997f9 441#define FLAG2_HAS_EEE (1 << 5)
3a3b7586 442#define FLAG2_DMA_BURST (1 << 6)
78cd29d5 443#define FLAG2_DISABLE_ASPM_L0S (1 << 7)
828bac87 444#define FLAG2_DISABLE_AIM (1 << 8)
ff10e13c 445#define FLAG2_CHECK_PHY_HANG (1 << 9)
7f99ae63 446#define FLAG2_NO_DISABLE_RX (1 << 10)
c6e7f51e 447#define FLAG2_PCIM2PCI_ARBITER_WA (1 << 11)
0184039a 448#define FLAG2_DFLT_CRC_STRIPPING (1 << 12)
b67e1913 449#define FLAG2_CHECK_RX_HWTSTAMP (1 << 13)
eb7c3adb 450
bc7f75fa
AK
451#define E1000_RX_DESC_PS(R, i) \
452 (&(((union e1000_rx_desc_packet_split *)((R).desc))[i]))
5f450212
BA
453#define E1000_RX_DESC_EXT(R, i) \
454 (&(((union e1000_rx_desc_extended *)((R).desc))[i]))
bc7f75fa 455#define E1000_GET_DESC(R, i, type) (&(((struct type *)((R).desc))[i]))
bc7f75fa
AK
456#define E1000_TX_DESC(R, i) E1000_GET_DESC(R, i, e1000_tx_desc)
457#define E1000_CONTEXT_DESC(R, i) E1000_GET_DESC(R, i, e1000_context_desc)
458
459enum e1000_state_t {
460 __E1000_TESTING,
461 __E1000_RESETTING,
a90b412c 462 __E1000_ACCESS_SHARED_RESOURCE,
bc7f75fa
AK
463 __E1000_DOWN
464};
465
466enum latency_range {
467 lowest_latency = 0,
468 low_latency = 1,
469 bulk_latency = 2,
470 latency_invalid = 255
471};
472
473extern char e1000e_driver_name[];
474extern const char e1000e_driver_version[];
475
476extern void e1000e_check_options(struct e1000_adapter *adapter);
477extern void e1000e_set_ethtool_ops(struct net_device *netdev);
478
479extern int e1000e_up(struct e1000_adapter *adapter);
480extern void e1000e_down(struct e1000_adapter *adapter);
481extern void e1000e_reinit_locked(struct e1000_adapter *adapter);
482extern void e1000e_reset(struct e1000_adapter *adapter);
483extern void e1000e_power_up_phy(struct e1000_adapter *adapter);
55aa6985
BA
484extern int e1000e_setup_rx_resources(struct e1000_ring *ring);
485extern int e1000e_setup_tx_resources(struct e1000_ring *ring);
486extern void e1000e_free_rx_resources(struct e1000_ring *ring);
487extern void e1000e_free_tx_resources(struct e1000_ring *ring);
67fd4fcb 488extern struct rtnl_link_stats64 *e1000e_get_stats64(struct net_device *netdev,
66501f56
BA
489 struct rtnl_link_stats64
490 *stats);
4662e82b
BA
491extern void e1000e_set_interrupt_capability(struct e1000_adapter *adapter);
492extern void e1000e_reset_interrupt_capability(struct e1000_adapter *adapter);
31dbe5b4
BA
493extern void e1000e_get_hw_control(struct e1000_adapter *adapter);
494extern void e1000e_release_hw_control(struct e1000_adapter *adapter);
22a4cca2 495extern void e1000e_write_itr(struct e1000_adapter *adapter, u32 itr);
bc7f75fa
AK
496
497extern unsigned int copybreak;
498
8ce9d6c7
JK
499extern const struct e1000_info e1000_82571_info;
500extern const struct e1000_info e1000_82572_info;
501extern const struct e1000_info e1000_82573_info;
502extern const struct e1000_info e1000_82574_info;
503extern const struct e1000_info e1000_82583_info;
504extern const struct e1000_info e1000_ich8_info;
505extern const struct e1000_info e1000_ich9_info;
506extern const struct e1000_info e1000_ich10_info;
507extern const struct e1000_info e1000_pch_info;
508extern const struct e1000_info e1000_pch2_info;
2fbe4526 509extern const struct e1000_info e1000_pch_lpt_info;
8ce9d6c7 510extern const struct e1000_info e1000_es2_info;
bc7f75fa 511
d89777bf
BA
512extern void e1000e_ptp_init(struct e1000_adapter *adapter);
513extern void e1000e_ptp_remove(struct e1000_adapter *adapter);
0be84010 514
bc7f75fa
AK
515static inline s32 e1000_phy_hw_reset(struct e1000_hw *hw)
516{
94d8186a 517 return hw->phy.ops.reset(hw);
bc7f75fa
AK
518}
519
bc7f75fa
AK
520static inline s32 e1e_rphy(struct e1000_hw *hw, u32 offset, u16 *data)
521{
94d8186a 522 return hw->phy.ops.read_reg(hw, offset, data);
bc7f75fa
AK
523}
524
f1430d69
BA
525static inline s32 e1e_rphy_locked(struct e1000_hw *hw, u32 offset, u16 *data)
526{
527 return hw->phy.ops.read_reg_locked(hw, offset, data);
528}
529
bc7f75fa
AK
530static inline s32 e1e_wphy(struct e1000_hw *hw, u32 offset, u16 data)
531{
94d8186a 532 return hw->phy.ops.write_reg(hw, offset, data);
bc7f75fa
AK
533}
534
f1430d69
BA
535static inline s32 e1e_wphy_locked(struct e1000_hw *hw, u32 offset, u16 data)
536{
537 return hw->phy.ops.write_reg_locked(hw, offset, data);
538}
539
e85e3639 540extern void e1000e_reload_nvm_generic(struct e1000_hw *hw);
608f8a0d
BA
541
542static inline s32 e1000e_read_mac_addr(struct e1000_hw *hw)
543{
544 if (hw->mac.ops.read_mac_addr)
545 return hw->mac.ops.read_mac_addr(hw);
546
547 return e1000_read_mac_addr_generic(hw);
548}
bc7f75fa
AK
549
550static inline s32 e1000_validate_nvm_checksum(struct e1000_hw *hw)
551{
94d8186a 552 return hw->nvm.ops.validate(hw);
bc7f75fa
AK
553}
554
555static inline s32 e1000e_update_nvm_checksum(struct e1000_hw *hw)
556{
94d8186a 557 return hw->nvm.ops.update(hw);
bc7f75fa
AK
558}
559
c29c3ba5
BA
560static inline s32 e1000_read_nvm(struct e1000_hw *hw, u16 offset, u16 words,
561 u16 *data)
bc7f75fa 562{
94d8186a 563 return hw->nvm.ops.read(hw, offset, words, data);
bc7f75fa
AK
564}
565
c29c3ba5
BA
566static inline s32 e1000_write_nvm(struct e1000_hw *hw, u16 offset, u16 words,
567 u16 *data)
bc7f75fa 568{
94d8186a 569 return hw->nvm.ops.write(hw, offset, words, data);
bc7f75fa
AK
570}
571
572static inline s32 e1000_get_phy_info(struct e1000_hw *hw)
573{
94d8186a 574 return hw->phy.ops.get_info(hw);
bc7f75fa
AK
575}
576
bc7f75fa
AK
577static inline u32 __er32(struct e1000_hw *hw, unsigned long reg)
578{
579 return readl(hw->hw_addr + reg);
580}
581
bdc125f7
BA
582#define er32(reg) __er32(hw, E1000_##reg)
583
584/**
585 * __ew32_prepare - prepare to write to MAC CSR register on certain parts
586 * @hw: pointer to the HW structure
587 *
588 * When updating the MAC CSR registers, the Manageability Engine (ME) could
589 * be accessing the registers at the same time. Normally, this is handled in
590 * h/w by an arbiter but on some parts there is a bug that acknowledges Host
591 * accesses later than it should which could result in the register to have
592 * an incorrect value. Workaround this by checking the FWSM register which
593 * has bit 24 set while ME is accessing MAC CSR registers, wait if it is set
594 * and try again a number of times.
595 **/
596static inline s32 __ew32_prepare(struct e1000_hw *hw)
597{
598 s32 i = E1000_ICH_FWSM_PCIM2PCI_COUNT;
599
600 while ((er32(FWSM) & E1000_ICH_FWSM_PCIM2PCI) && --i)
601 udelay(50);
602
603 return i;
604}
605
bc7f75fa
AK
606static inline void __ew32(struct e1000_hw *hw, unsigned long reg, u32 val)
607{
bdc125f7
BA
608 if (hw->adapter->flags2 & FLAG2_PCIM2PCI_ARBITER_WA)
609 __ew32_prepare(hw);
610
bc7f75fa
AK
611 writel(val, hw->hw_addr + reg);
612}
613
bdc125f7
BA
614#define ew32(reg, val) __ew32(hw, E1000_##reg, (val))
615
616#define e1e_flush() er32(STATUS)
617
618#define E1000_WRITE_REG_ARRAY(a, reg, offset, value) \
619 (__ew32((a), (reg + ((offset) << 2)), (value)))
620
621#define E1000_READ_REG_ARRAY(a, reg, offset) \
622 (readl((a)->hw_addr + reg + ((offset) << 2)))
623
bc7f75fa 624#endif /* _E1000_H_ */