Merge branch 'for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/j.anaszewski...
[linux-2.6-block.git] / drivers / net / ethernet / chelsio / cxgb4 / t4_hw.c
CommitLineData
56d36be4
DM
1/*
2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
3 *
ce100b8b 4 * Copyright (c) 2003-2014 Chelsio Communications, Inc. All rights reserved.
56d36be4
DM
5 *
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
11 *
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
14 * conditions are met:
15 *
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
18 * disclaimer.
19 *
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
24 *
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32 * SOFTWARE.
33 */
34
56d36be4
DM
35#include <linux/delay.h>
36#include "cxgb4.h"
37#include "t4_regs.h"
f612b815 38#include "t4_values.h"
56d36be4 39#include "t4fw_api.h"
a69265e9 40#include "t4fw_version.h"
56d36be4
DM
41
42/**
43 * t4_wait_op_done_val - wait until an operation is completed
44 * @adapter: the adapter performing the operation
45 * @reg: the register to check for completion
46 * @mask: a single-bit field within @reg that indicates completion
47 * @polarity: the value of the field when the operation is completed
48 * @attempts: number of check iterations
49 * @delay: delay in usecs between iterations
50 * @valp: where to store the value of the register at completion time
51 *
52 * Wait until an operation is completed by checking a bit in a register
53 * up to @attempts times. If @valp is not NULL the value of the register
54 * at the time it indicated completion is stored there. Returns 0 if the
55 * operation completes and -EAGAIN otherwise.
56 */
de498c89
RD
57static int t4_wait_op_done_val(struct adapter *adapter, int reg, u32 mask,
58 int polarity, int attempts, int delay, u32 *valp)
56d36be4
DM
59{
60 while (1) {
61 u32 val = t4_read_reg(adapter, reg);
62
63 if (!!(val & mask) == polarity) {
64 if (valp)
65 *valp = val;
66 return 0;
67 }
68 if (--attempts == 0)
69 return -EAGAIN;
70 if (delay)
71 udelay(delay);
72 }
73}
74
75static inline int t4_wait_op_done(struct adapter *adapter, int reg, u32 mask,
76 int polarity, int attempts, int delay)
77{
78 return t4_wait_op_done_val(adapter, reg, mask, polarity, attempts,
79 delay, NULL);
80}
81
82/**
83 * t4_set_reg_field - set a register field to a value
84 * @adapter: the adapter to program
85 * @addr: the register address
86 * @mask: specifies the portion of the register to modify
87 * @val: the new value for the register field
88 *
89 * Sets a register field specified by the supplied mask to the
90 * given value.
91 */
92void t4_set_reg_field(struct adapter *adapter, unsigned int addr, u32 mask,
93 u32 val)
94{
95 u32 v = t4_read_reg(adapter, addr) & ~mask;
96
97 t4_write_reg(adapter, addr, v | val);
98 (void) t4_read_reg(adapter, addr); /* flush */
99}
100
101/**
102 * t4_read_indirect - read indirectly addressed registers
103 * @adap: the adapter
104 * @addr_reg: register holding the indirect address
105 * @data_reg: register holding the value of the indirect register
106 * @vals: where the read register values are stored
107 * @nregs: how many indirect registers to read
108 * @start_idx: index of first indirect register to read
109 *
110 * Reads registers that are accessed indirectly through an address/data
111 * register pair.
112 */
f2b7e78d 113void t4_read_indirect(struct adapter *adap, unsigned int addr_reg,
de498c89
RD
114 unsigned int data_reg, u32 *vals,
115 unsigned int nregs, unsigned int start_idx)
56d36be4
DM
116{
117 while (nregs--) {
118 t4_write_reg(adap, addr_reg, start_idx);
119 *vals++ = t4_read_reg(adap, data_reg);
120 start_idx++;
121 }
122}
123
13ee15d3
VP
124/**
125 * t4_write_indirect - write indirectly addressed registers
126 * @adap: the adapter
127 * @addr_reg: register holding the indirect addresses
128 * @data_reg: register holding the value for the indirect registers
129 * @vals: values to write
130 * @nregs: how many indirect registers to write
131 * @start_idx: address of first indirect register to write
132 *
133 * Writes a sequential block of registers that are accessed indirectly
134 * through an address/data register pair.
135 */
136void t4_write_indirect(struct adapter *adap, unsigned int addr_reg,
137 unsigned int data_reg, const u32 *vals,
138 unsigned int nregs, unsigned int start_idx)
139{
140 while (nregs--) {
141 t4_write_reg(adap, addr_reg, start_idx++);
142 t4_write_reg(adap, data_reg, *vals++);
143 }
144}
145
0abfd152
HS
146/*
147 * Read a 32-bit PCI Configuration Space register via the PCI-E backdoor
148 * mechanism. This guarantees that we get the real value even if we're
149 * operating within a Virtual Machine and the Hypervisor is trapping our
150 * Configuration Space accesses.
151 */
152void t4_hw_pci_read_cfg4(struct adapter *adap, int reg, u32 *val)
153{
3ccc6cf7
HS
154 u32 req = FUNCTION_V(adap->pf) | REGISTER_V(reg);
155
156 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
157 req |= ENABLE_F;
158 else
159 req |= T6_ENABLE_F;
0abfd152
HS
160
161 if (is_t4(adap->params.chip))
f061de42 162 req |= LOCALCFG_F;
0abfd152 163
f061de42
HS
164 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, req);
165 *val = t4_read_reg(adap, PCIE_CFG_SPACE_DATA_A);
0abfd152
HS
166
167 /* Reset ENABLE to 0 so reads of PCIE_CFG_SPACE_DATA won't cause a
168 * Configuration Space read. (None of the other fields matter when
169 * ENABLE is 0 so a simple register write is easier than a
170 * read-modify-write via t4_set_reg_field().)
171 */
f061de42 172 t4_write_reg(adap, PCIE_CFG_SPACE_REQ_A, 0);
0abfd152
HS
173}
174
31d55c2d
HS
175/*
176 * t4_report_fw_error - report firmware error
177 * @adap: the adapter
178 *
179 * The adapter firmware can indicate error conditions to the host.
180 * If the firmware has indicated an error, print out the reason for
181 * the firmware error.
182 */
183static void t4_report_fw_error(struct adapter *adap)
184{
185 static const char *const reason[] = {
186 "Crash", /* PCIE_FW_EVAL_CRASH */
187 "During Device Preparation", /* PCIE_FW_EVAL_PREP */
188 "During Device Configuration", /* PCIE_FW_EVAL_CONF */
189 "During Device Initialization", /* PCIE_FW_EVAL_INIT */
190 "Unexpected Event", /* PCIE_FW_EVAL_UNEXPECTEDEVENT */
191 "Insufficient Airflow", /* PCIE_FW_EVAL_OVERHEAT */
192 "Device Shutdown", /* PCIE_FW_EVAL_DEVICESHUTDOWN */
193 "Reserved", /* reserved */
194 };
195 u32 pcie_fw;
196
f061de42
HS
197 pcie_fw = t4_read_reg(adap, PCIE_FW_A);
198 if (pcie_fw & PCIE_FW_ERR_F)
31d55c2d 199 dev_err(adap->pdev_dev, "Firmware reports adapter error: %s\n",
b2e1a3f0 200 reason[PCIE_FW_EVAL_G(pcie_fw)]);
31d55c2d
HS
201}
202
56d36be4
DM
203/*
204 * Get the reply to a mailbox command and store it in @rpl in big-endian order.
205 */
206static void get_mbox_rpl(struct adapter *adap, __be64 *rpl, int nflit,
207 u32 mbox_addr)
208{
209 for ( ; nflit; nflit--, mbox_addr += 8)
210 *rpl++ = cpu_to_be64(t4_read_reg64(adap, mbox_addr));
211}
212
213/*
214 * Handle a FW assertion reported in a mailbox.
215 */
216static void fw_asrt(struct adapter *adap, u32 mbox_addr)
217{
218 struct fw_debug_cmd asrt;
219
220 get_mbox_rpl(adap, (__be64 *)&asrt, sizeof(asrt) / 8, mbox_addr);
221 dev_alert(adap->pdev_dev,
222 "FW assertion at %.16s:%u, val0 %#x, val1 %#x\n",
f404f80c
HS
223 asrt.u.assert.filename_0_7, be32_to_cpu(asrt.u.assert.line),
224 be32_to_cpu(asrt.u.assert.x), be32_to_cpu(asrt.u.assert.y));
56d36be4
DM
225}
226
227static void dump_mbox(struct adapter *adap, int mbox, u32 data_reg)
228{
229 dev_err(adap->pdev_dev,
230 "mbox %d: %llx %llx %llx %llx %llx %llx %llx %llx\n", mbox,
231 (unsigned long long)t4_read_reg64(adap, data_reg),
232 (unsigned long long)t4_read_reg64(adap, data_reg + 8),
233 (unsigned long long)t4_read_reg64(adap, data_reg + 16),
234 (unsigned long long)t4_read_reg64(adap, data_reg + 24),
235 (unsigned long long)t4_read_reg64(adap, data_reg + 32),
236 (unsigned long long)t4_read_reg64(adap, data_reg + 40),
237 (unsigned long long)t4_read_reg64(adap, data_reg + 48),
238 (unsigned long long)t4_read_reg64(adap, data_reg + 56));
239}
240
241/**
01b69614 242 * t4_wr_mbox_meat_timeout - send a command to FW through the given mailbox
56d36be4
DM
243 * @adap: the adapter
244 * @mbox: index of the mailbox to use
245 * @cmd: the command to write
246 * @size: command length in bytes
247 * @rpl: where to optionally store the reply
248 * @sleep_ok: if true we may sleep while awaiting command completion
01b69614 249 * @timeout: time to wait for command to finish before timing out
56d36be4
DM
250 *
251 * Sends the given command to FW through the selected mailbox and waits
252 * for the FW to execute the command. If @rpl is not %NULL it is used to
253 * store the FW's reply to the command. The command and its optional
254 * reply are of the same length. FW can take up to %FW_CMD_MAX_TIMEOUT ms
255 * to respond. @sleep_ok determines whether we may sleep while awaiting
256 * the response. If sleeping is allowed we use progressive backoff
257 * otherwise we spin.
258 *
259 * The return value is 0 on success or a negative errno on failure. A
260 * failure can happen either because we are not able to execute the
261 * command or FW executes it but signals an error. In the latter case
262 * the return value is the error code indicated by FW (negated).
263 */
01b69614
HS
264int t4_wr_mbox_meat_timeout(struct adapter *adap, int mbox, const void *cmd,
265 int size, void *rpl, bool sleep_ok, int timeout)
56d36be4 266{
005b5717 267 static const int delay[] = {
56d36be4
DM
268 1, 1, 3, 5, 10, 10, 20, 50, 100, 200
269 };
270
271 u32 v;
272 u64 res;
273 int i, ms, delay_idx;
274 const __be64 *p = cmd;
89c3a86c
HS
275 u32 data_reg = PF_REG(mbox, CIM_PF_MAILBOX_DATA_A);
276 u32 ctl_reg = PF_REG(mbox, CIM_PF_MAILBOX_CTRL_A);
56d36be4
DM
277
278 if ((size & 15) || size > MBOX_LEN)
279 return -EINVAL;
280
204dc3c0
DM
281 /*
282 * If the device is off-line, as in EEH, commands will time out.
283 * Fail them early so we don't waste time waiting.
284 */
285 if (adap->pdev->error_state != pci_channel_io_normal)
286 return -EIO;
287
89c3a86c 288 v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
56d36be4 289 for (i = 0; v == MBOX_OWNER_NONE && i < 3; i++)
89c3a86c 290 v = MBOWNER_G(t4_read_reg(adap, ctl_reg));
56d36be4
DM
291
292 if (v != MBOX_OWNER_DRV)
293 return v ? -EBUSY : -ETIMEDOUT;
294
295 for (i = 0; i < size; i += 8)
296 t4_write_reg64(adap, data_reg + i, be64_to_cpu(*p++));
297
89c3a86c 298 t4_write_reg(adap, ctl_reg, MBMSGVALID_F | MBOWNER_V(MBOX_OWNER_FW));
56d36be4
DM
299 t4_read_reg(adap, ctl_reg); /* flush write */
300
301 delay_idx = 0;
302 ms = delay[0];
303
01b69614 304 for (i = 0; i < timeout; i += ms) {
56d36be4
DM
305 if (sleep_ok) {
306 ms = delay[delay_idx]; /* last element may repeat */
307 if (delay_idx < ARRAY_SIZE(delay) - 1)
308 delay_idx++;
309 msleep(ms);
310 } else
311 mdelay(ms);
312
313 v = t4_read_reg(adap, ctl_reg);
89c3a86c
HS
314 if (MBOWNER_G(v) == MBOX_OWNER_DRV) {
315 if (!(v & MBMSGVALID_F)) {
56d36be4
DM
316 t4_write_reg(adap, ctl_reg, 0);
317 continue;
318 }
319
320 res = t4_read_reg64(adap, data_reg);
e2ac9628 321 if (FW_CMD_OP_G(res >> 32) == FW_DEBUG_CMD) {
56d36be4 322 fw_asrt(adap, data_reg);
e2ac9628
HS
323 res = FW_CMD_RETVAL_V(EIO);
324 } else if (rpl) {
56d36be4 325 get_mbox_rpl(adap, rpl, size / 8, data_reg);
e2ac9628 326 }
56d36be4 327
e2ac9628 328 if (FW_CMD_RETVAL_G((int)res))
56d36be4
DM
329 dump_mbox(adap, mbox, data_reg);
330 t4_write_reg(adap, ctl_reg, 0);
e2ac9628 331 return -FW_CMD_RETVAL_G((int)res);
56d36be4
DM
332 }
333 }
334
335 dump_mbox(adap, mbox, data_reg);
336 dev_err(adap->pdev_dev, "command %#x in mailbox %d timed out\n",
337 *(const u8 *)cmd, mbox);
31d55c2d 338 t4_report_fw_error(adap);
56d36be4
DM
339 return -ETIMEDOUT;
340}
341
01b69614
HS
342int t4_wr_mbox_meat(struct adapter *adap, int mbox, const void *cmd, int size,
343 void *rpl, bool sleep_ok)
56d36be4 344{
01b69614
HS
345 return t4_wr_mbox_meat_timeout(adap, mbox, cmd, size, rpl, sleep_ok,
346 FW_CMD_MAX_TIMEOUT);
56d36be4
DM
347}
348
bf8ebb67
HS
349static int t4_edc_err_read(struct adapter *adap, int idx)
350{
351 u32 edc_ecc_err_addr_reg;
352 u32 rdata_reg;
353
354 if (is_t4(adap->params.chip)) {
355 CH_WARN(adap, "%s: T4 NOT supported.\n", __func__);
356 return 0;
357 }
358 if (idx != 0 && idx != 1) {
359 CH_WARN(adap, "%s: idx %d NOT supported.\n", __func__, idx);
360 return 0;
361 }
362
363 edc_ecc_err_addr_reg = EDC_T5_REG(EDC_H_ECC_ERR_ADDR_A, idx);
364 rdata_reg = EDC_T5_REG(EDC_H_BIST_STATUS_RDATA_A, idx);
365
366 CH_WARN(adap,
367 "edc%d err addr 0x%x: 0x%x.\n",
368 idx, edc_ecc_err_addr_reg,
369 t4_read_reg(adap, edc_ecc_err_addr_reg));
370 CH_WARN(adap,
371 "bist: 0x%x, status %llx %llx %llx %llx %llx %llx %llx %llx %llx.\n",
372 rdata_reg,
373 (unsigned long long)t4_read_reg64(adap, rdata_reg),
374 (unsigned long long)t4_read_reg64(adap, rdata_reg + 8),
375 (unsigned long long)t4_read_reg64(adap, rdata_reg + 16),
376 (unsigned long long)t4_read_reg64(adap, rdata_reg + 24),
377 (unsigned long long)t4_read_reg64(adap, rdata_reg + 32),
378 (unsigned long long)t4_read_reg64(adap, rdata_reg + 40),
379 (unsigned long long)t4_read_reg64(adap, rdata_reg + 48),
380 (unsigned long long)t4_read_reg64(adap, rdata_reg + 56),
381 (unsigned long long)t4_read_reg64(adap, rdata_reg + 64));
382
383 return 0;
384}
385
5afc8b84
VP
386/**
387 * t4_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
388 * @adap: the adapter
fc5ab020 389 * @win: PCI-E Memory Window to use
5afc8b84
VP
390 * @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
391 * @addr: address within indicated memory type
392 * @len: amount of memory to transfer
f01aa633 393 * @hbuf: host memory buffer
fc5ab020 394 * @dir: direction of transfer T4_MEMORY_READ (1) or T4_MEMORY_WRITE (0)
5afc8b84
VP
395 *
396 * Reads/writes an [almost] arbitrary memory region in the firmware: the
fc5ab020
HS
397 * firmware memory address and host buffer must be aligned on 32-bit
398 * boudaries; the length may be arbitrary. The memory is transferred as
399 * a raw byte sequence from/to the firmware's memory. If this memory
400 * contains data structures which contain multi-byte integers, it's the
401 * caller's responsibility to perform appropriate byte order conversions.
5afc8b84 402 */
fc5ab020 403int t4_memory_rw(struct adapter *adap, int win, int mtype, u32 addr,
f01aa633 404 u32 len, void *hbuf, int dir)
5afc8b84 405{
fc5ab020
HS
406 u32 pos, offset, resid, memoffset;
407 u32 edc_size, mc_size, win_pf, mem_reg, mem_aperture, mem_base;
f01aa633 408 u32 *buf;
5afc8b84 409
fc5ab020 410 /* Argument sanity checks ...
5afc8b84 411 */
f01aa633 412 if (addr & 0x3 || (uintptr_t)hbuf & 0x3)
5afc8b84 413 return -EINVAL;
f01aa633 414 buf = (u32 *)hbuf;
5afc8b84 415
fc5ab020
HS
416 /* It's convenient to be able to handle lengths which aren't a
417 * multiple of 32-bits because we often end up transferring files to
418 * the firmware. So we'll handle that by normalizing the length here
419 * and then handling any residual transfer at the end.
420 */
421 resid = len & 0x3;
422 len -= resid;
8c357ebd 423
19dd37ba 424 /* Offset into the region of memory which is being accessed
5afc8b84
VP
425 * MEM_EDC0 = 0
426 * MEM_EDC1 = 1
3ccc6cf7
HS
427 * MEM_MC = 2 -- MEM_MC for chips with only 1 memory controller
428 * MEM_MC1 = 3 -- for chips with 2 memory controllers (e.g. T5)
5afc8b84 429 */
6559a7e8 430 edc_size = EDRAM0_SIZE_G(t4_read_reg(adap, MA_EDRAM0_BAR_A));
19dd37ba
SR
431 if (mtype != MEM_MC1)
432 memoffset = (mtype * (edc_size * 1024 * 1024));
433 else {
6559a7e8 434 mc_size = EXT_MEM0_SIZE_G(t4_read_reg(adap,
7f0b8a56 435 MA_EXT_MEMORY0_BAR_A));
19dd37ba
SR
436 memoffset = (MEM_MC0 * edc_size + mc_size) * 1024 * 1024;
437 }
5afc8b84
VP
438
439 /* Determine the PCIE_MEM_ACCESS_OFFSET */
440 addr = addr + memoffset;
441
fc5ab020
HS
442 /* Each PCI-E Memory Window is programmed with a window size -- or
443 * "aperture" -- which controls the granularity of its mapping onto
444 * adapter memory. We need to grab that aperture in order to know
445 * how to use the specified window. The window is also programmed
446 * with the base address of the Memory Window in BAR0's address
447 * space. For T4 this is an absolute PCI-E Bus Address. For T5
448 * the address is relative to BAR0.
5afc8b84 449 */
fc5ab020 450 mem_reg = t4_read_reg(adap,
f061de42 451 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A,
fc5ab020 452 win));
f061de42
HS
453 mem_aperture = 1 << (WINDOW_G(mem_reg) + WINDOW_SHIFT_X);
454 mem_base = PCIEOFST_G(mem_reg) << PCIEOFST_SHIFT_X;
fc5ab020
HS
455 if (is_t4(adap->params.chip))
456 mem_base -= adap->t4_bar0;
b2612722 457 win_pf = is_t4(adap->params.chip) ? 0 : PFNUM_V(adap->pf);
5afc8b84 458
fc5ab020
HS
459 /* Calculate our initial PCI-E Memory Window Position and Offset into
460 * that Window.
461 */
462 pos = addr & ~(mem_aperture-1);
463 offset = addr - pos;
5afc8b84 464
fc5ab020
HS
465 /* Set up initial PCI-E Memory Window to cover the start of our
466 * transfer. (Read it back to ensure that changes propagate before we
467 * attempt to use the new value.)
468 */
469 t4_write_reg(adap,
f061de42 470 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win),
fc5ab020
HS
471 pos | win_pf);
472 t4_read_reg(adap,
f061de42 473 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A, win));
fc5ab020
HS
474
475 /* Transfer data to/from the adapter as long as there's an integral
476 * number of 32-bit transfers to complete.
f01aa633
HS
477 *
478 * A note on Endianness issues:
479 *
480 * The "register" reads and writes below from/to the PCI-E Memory
481 * Window invoke the standard adapter Big-Endian to PCI-E Link
482 * Little-Endian "swizzel." As a result, if we have the following
483 * data in adapter memory:
484 *
485 * Memory: ... | b0 | b1 | b2 | b3 | ...
486 * Address: i+0 i+1 i+2 i+3
487 *
488 * Then a read of the adapter memory via the PCI-E Memory Window
489 * will yield:
490 *
491 * x = readl(i)
492 * 31 0
493 * [ b3 | b2 | b1 | b0 ]
494 *
495 * If this value is stored into local memory on a Little-Endian system
496 * it will show up correctly in local memory as:
497 *
498 * ( ..., b0, b1, b2, b3, ... )
499 *
500 * But on a Big-Endian system, the store will show up in memory
501 * incorrectly swizzled as:
502 *
503 * ( ..., b3, b2, b1, b0, ... )
504 *
505 * So we need to account for this in the reads and writes to the
506 * PCI-E Memory Window below by undoing the register read/write
507 * swizzels.
fc5ab020
HS
508 */
509 while (len > 0) {
510 if (dir == T4_MEMORY_READ)
f01aa633
HS
511 *buf++ = le32_to_cpu((__force __le32)t4_read_reg(adap,
512 mem_base + offset));
fc5ab020
HS
513 else
514 t4_write_reg(adap, mem_base + offset,
f01aa633 515 (__force u32)cpu_to_le32(*buf++));
fc5ab020
HS
516 offset += sizeof(__be32);
517 len -= sizeof(__be32);
518
519 /* If we've reached the end of our current window aperture,
520 * move the PCI-E Memory Window on to the next. Note that
521 * doing this here after "len" may be 0 allows us to set up
522 * the PCI-E Memory Window for a possible final residual
523 * transfer below ...
5afc8b84 524 */
fc5ab020
HS
525 if (offset == mem_aperture) {
526 pos += mem_aperture;
527 offset = 0;
528 t4_write_reg(adap,
f061de42
HS
529 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
530 win), pos | win_pf);
fc5ab020 531 t4_read_reg(adap,
f061de42
HS
532 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_OFFSET_A,
533 win));
5afc8b84 534 }
5afc8b84
VP
535 }
536
fc5ab020
HS
537 /* If the original transfer had a length which wasn't a multiple of
538 * 32-bits, now's where we need to finish off the transfer of the
539 * residual amount. The PCI-E Memory Window has already been moved
540 * above (if necessary) to cover this final transfer.
541 */
542 if (resid) {
543 union {
f01aa633 544 u32 word;
fc5ab020
HS
545 char byte[4];
546 } last;
547 unsigned char *bp;
548 int i;
549
c81576c2 550 if (dir == T4_MEMORY_READ) {
f01aa633
HS
551 last.word = le32_to_cpu(
552 (__force __le32)t4_read_reg(adap,
553 mem_base + offset));
fc5ab020
HS
554 for (bp = (unsigned char *)buf, i = resid; i < 4; i++)
555 bp[i] = last.byte[i];
556 } else {
557 last.word = *buf;
558 for (i = resid; i < 4; i++)
559 last.byte[i] = 0;
560 t4_write_reg(adap, mem_base + offset,
f01aa633 561 (__force u32)cpu_to_le32(last.word));
fc5ab020
HS
562 }
563 }
5afc8b84 564
fc5ab020 565 return 0;
5afc8b84
VP
566}
567
b562fc37
HS
568/* Return the specified PCI-E Configuration Space register from our Physical
569 * Function. We try first via a Firmware LDST Command since we prefer to let
570 * the firmware own all of these registers, but if that fails we go for it
571 * directly ourselves.
572 */
573u32 t4_read_pcie_cfg4(struct adapter *adap, int reg)
574{
575 u32 val, ldst_addrspace;
576
577 /* If fw_attach != 0, construct and send the Firmware LDST Command to
578 * retrieve the specified PCI-E Configuration Space register.
579 */
580 struct fw_ldst_cmd ldst_cmd;
581 int ret;
582
583 memset(&ldst_cmd, 0, sizeof(ldst_cmd));
584 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FUNC_PCIE);
585 ldst_cmd.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
586 FW_CMD_REQUEST_F |
587 FW_CMD_READ_F |
588 ldst_addrspace);
589 ldst_cmd.cycles_to_len16 = cpu_to_be32(FW_LEN16(ldst_cmd));
590 ldst_cmd.u.pcie.select_naccess = FW_LDST_CMD_NACCESS_V(1);
591 ldst_cmd.u.pcie.ctrl_to_fn =
b2612722 592 (FW_LDST_CMD_LC_F | FW_LDST_CMD_FN_V(adap->pf));
b562fc37
HS
593 ldst_cmd.u.pcie.r = reg;
594
595 /* If the LDST Command succeeds, return the result, otherwise
596 * fall through to reading it directly ourselves ...
597 */
598 ret = t4_wr_mbox(adap, adap->mbox, &ldst_cmd, sizeof(ldst_cmd),
599 &ldst_cmd);
600 if (ret == 0)
601 val = be32_to_cpu(ldst_cmd.u.pcie.data[0]);
602 else
603 /* Read the desired Configuration Space register via the PCI-E
604 * Backdoor mechanism.
605 */
606 t4_hw_pci_read_cfg4(adap, reg, &val);
607 return val;
608}
609
610/* Get the window based on base passed to it.
611 * Window aperture is currently unhandled, but there is no use case for it
612 * right now
613 */
614static u32 t4_get_window(struct adapter *adap, u32 pci_base, u64 pci_mask,
615 u32 memwin_base)
616{
617 u32 ret;
618
619 if (is_t4(adap->params.chip)) {
620 u32 bar0;
621
622 /* Truncation intentional: we only read the bottom 32-bits of
623 * the 64-bit BAR0/BAR1 ... We use the hardware backdoor
624 * mechanism to read BAR0 instead of using
625 * pci_resource_start() because we could be operating from
626 * within a Virtual Machine which is trapping our accesses to
627 * our Configuration Space and we need to set up the PCI-E
628 * Memory Window decoders with the actual addresses which will
629 * be coming across the PCI-E link.
630 */
631 bar0 = t4_read_pcie_cfg4(adap, pci_base);
632 bar0 &= pci_mask;
633 adap->t4_bar0 = bar0;
634
635 ret = bar0 + memwin_base;
636 } else {
637 /* For T5, only relative offset inside the PCIe BAR is passed */
638 ret = memwin_base;
639 }
640 return ret;
641}
642
643/* Get the default utility window (win0) used by everyone */
644u32 t4_get_util_window(struct adapter *adap)
645{
646 return t4_get_window(adap, PCI_BASE_ADDRESS_0,
647 PCI_BASE_ADDRESS_MEM_MASK, MEMWIN0_BASE);
648}
649
650/* Set up memory window for accessing adapter memory ranges. (Read
651 * back MA register to ensure that changes propagate before we attempt
652 * to use the new values.)
653 */
654void t4_setup_memwin(struct adapter *adap, u32 memwin_base, u32 window)
655{
656 t4_write_reg(adap,
657 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window),
658 memwin_base | BIR_V(0) |
659 WINDOW_V(ilog2(MEMWIN0_APERTURE) - WINDOW_SHIFT_X));
660 t4_read_reg(adap,
661 PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN_A, window));
662}
663
812034f1
HS
664/**
665 * t4_get_regs_len - return the size of the chips register set
666 * @adapter: the adapter
667 *
668 * Returns the size of the chip's BAR0 register space.
669 */
670unsigned int t4_get_regs_len(struct adapter *adapter)
671{
672 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
673
674 switch (chip_version) {
675 case CHELSIO_T4:
676 return T4_REGMAP_SIZE;
677
678 case CHELSIO_T5:
ab4b583b 679 case CHELSIO_T6:
812034f1
HS
680 return T5_REGMAP_SIZE;
681 }
682
683 dev_err(adapter->pdev_dev,
684 "Unsupported chip version %d\n", chip_version);
685 return 0;
686}
687
688/**
689 * t4_get_regs - read chip registers into provided buffer
690 * @adap: the adapter
691 * @buf: register buffer
692 * @buf_size: size (in bytes) of register buffer
693 *
694 * If the provided register buffer isn't large enough for the chip's
695 * full register range, the register dump will be truncated to the
696 * register buffer's size.
697 */
698void t4_get_regs(struct adapter *adap, void *buf, size_t buf_size)
699{
700 static const unsigned int t4_reg_ranges[] = {
701 0x1008, 0x1108,
8119c018
HS
702 0x1180, 0x1184,
703 0x1190, 0x1194,
704 0x11a0, 0x11a4,
705 0x11b0, 0x11b4,
812034f1
HS
706 0x11fc, 0x123c,
707 0x1300, 0x173c,
708 0x1800, 0x18fc,
8119c018
HS
709 0x3000, 0x30d8,
710 0x30e0, 0x30e4,
711 0x30ec, 0x5910,
712 0x5920, 0x5924,
713 0x5960, 0x5960,
714 0x5968, 0x5968,
715 0x5970, 0x5970,
716 0x5978, 0x5978,
717 0x5980, 0x5980,
718 0x5988, 0x5988,
719 0x5990, 0x5990,
720 0x5998, 0x5998,
721 0x59a0, 0x59d4,
722 0x5a00, 0x5ae0,
723 0x5ae8, 0x5ae8,
724 0x5af0, 0x5af0,
725 0x5af8, 0x5af8,
812034f1
HS
726 0x6000, 0x6098,
727 0x6100, 0x6150,
728 0x6200, 0x6208,
729 0x6240, 0x6248,
8119c018
HS
730 0x6280, 0x62b0,
731 0x62c0, 0x6338,
812034f1
HS
732 0x6370, 0x638c,
733 0x6400, 0x643c,
734 0x6500, 0x6524,
8119c018
HS
735 0x6a00, 0x6a04,
736 0x6a14, 0x6a38,
737 0x6a60, 0x6a70,
738 0x6a78, 0x6a78,
739 0x6b00, 0x6b0c,
740 0x6b1c, 0x6b84,
741 0x6bf0, 0x6bf8,
742 0x6c00, 0x6c0c,
743 0x6c1c, 0x6c84,
744 0x6cf0, 0x6cf8,
745 0x6d00, 0x6d0c,
746 0x6d1c, 0x6d84,
747 0x6df0, 0x6df8,
748 0x6e00, 0x6e0c,
749 0x6e1c, 0x6e84,
750 0x6ef0, 0x6ef8,
751 0x6f00, 0x6f0c,
752 0x6f1c, 0x6f84,
753 0x6ff0, 0x6ff8,
754 0x7000, 0x700c,
755 0x701c, 0x7084,
756 0x70f0, 0x70f8,
757 0x7100, 0x710c,
758 0x711c, 0x7184,
759 0x71f0, 0x71f8,
760 0x7200, 0x720c,
761 0x721c, 0x7284,
762 0x72f0, 0x72f8,
763 0x7300, 0x730c,
764 0x731c, 0x7384,
765 0x73f0, 0x73f8,
766 0x7400, 0x7450,
812034f1 767 0x7500, 0x7530,
8119c018
HS
768 0x7600, 0x760c,
769 0x7614, 0x761c,
812034f1
HS
770 0x7680, 0x76cc,
771 0x7700, 0x7798,
772 0x77c0, 0x77fc,
773 0x7900, 0x79fc,
8119c018
HS
774 0x7b00, 0x7b58,
775 0x7b60, 0x7b84,
776 0x7b8c, 0x7c38,
777 0x7d00, 0x7d38,
778 0x7d40, 0x7d80,
779 0x7d8c, 0x7ddc,
780 0x7de4, 0x7e04,
781 0x7e10, 0x7e1c,
782 0x7e24, 0x7e38,
783 0x7e40, 0x7e44,
784 0x7e4c, 0x7e78,
785 0x7e80, 0x7ea4,
786 0x7eac, 0x7edc,
787 0x7ee8, 0x7efc,
788 0x8dc0, 0x8e04,
789 0x8e10, 0x8e1c,
812034f1 790 0x8e30, 0x8e78,
8119c018
HS
791 0x8ea0, 0x8eb8,
792 0x8ec0, 0x8f6c,
793 0x8fc0, 0x9008,
794 0x9010, 0x9058,
795 0x9060, 0x9060,
796 0x9068, 0x9074,
812034f1 797 0x90fc, 0x90fc,
8119c018
HS
798 0x9400, 0x9408,
799 0x9410, 0x9458,
800 0x9600, 0x9600,
801 0x9608, 0x9638,
802 0x9640, 0x96bc,
812034f1
HS
803 0x9800, 0x9808,
804 0x9820, 0x983c,
805 0x9850, 0x9864,
806 0x9c00, 0x9c6c,
807 0x9c80, 0x9cec,
808 0x9d00, 0x9d6c,
809 0x9d80, 0x9dec,
810 0x9e00, 0x9e6c,
811 0x9e80, 0x9eec,
812 0x9f00, 0x9f6c,
813 0x9f80, 0x9fec,
8119c018
HS
814 0xd004, 0xd004,
815 0xd010, 0xd03c,
812034f1
HS
816 0xdfc0, 0xdfe0,
817 0xe000, 0xea7c,
8119c018 818 0xf000, 0x11190,
812034f1
HS
819 0x19040, 0x1906c,
820 0x19078, 0x19080,
8119c018
HS
821 0x1908c, 0x190e4,
822 0x190f0, 0x190f8,
823 0x19100, 0x19110,
824 0x19120, 0x19124,
825 0x19150, 0x19194,
826 0x1919c, 0x191b0,
812034f1
HS
827 0x191d0, 0x191e8,
828 0x19238, 0x1924c,
8119c018
HS
829 0x193f8, 0x1943c,
830 0x1944c, 0x19474,
831 0x19490, 0x194e0,
832 0x194f0, 0x194f8,
833 0x19800, 0x19c08,
834 0x19c10, 0x19c90,
835 0x19ca0, 0x19ce4,
836 0x19cf0, 0x19d40,
837 0x19d50, 0x19d94,
838 0x19da0, 0x19de8,
839 0x19df0, 0x19e40,
840 0x19e50, 0x19e90,
841 0x19ea0, 0x19f4c,
842 0x1a000, 0x1a004,
843 0x1a010, 0x1a06c,
844 0x1a0b0, 0x1a0e4,
845 0x1a0ec, 0x1a0f4,
846 0x1a100, 0x1a108,
847 0x1a114, 0x1a120,
848 0x1a128, 0x1a130,
849 0x1a138, 0x1a138,
812034f1
HS
850 0x1a190, 0x1a1c4,
851 0x1a1fc, 0x1a1fc,
852 0x1e040, 0x1e04c,
853 0x1e284, 0x1e28c,
854 0x1e2c0, 0x1e2c0,
855 0x1e2e0, 0x1e2e0,
856 0x1e300, 0x1e384,
857 0x1e3c0, 0x1e3c8,
858 0x1e440, 0x1e44c,
859 0x1e684, 0x1e68c,
860 0x1e6c0, 0x1e6c0,
861 0x1e6e0, 0x1e6e0,
862 0x1e700, 0x1e784,
863 0x1e7c0, 0x1e7c8,
864 0x1e840, 0x1e84c,
865 0x1ea84, 0x1ea8c,
866 0x1eac0, 0x1eac0,
867 0x1eae0, 0x1eae0,
868 0x1eb00, 0x1eb84,
869 0x1ebc0, 0x1ebc8,
870 0x1ec40, 0x1ec4c,
871 0x1ee84, 0x1ee8c,
872 0x1eec0, 0x1eec0,
873 0x1eee0, 0x1eee0,
874 0x1ef00, 0x1ef84,
875 0x1efc0, 0x1efc8,
876 0x1f040, 0x1f04c,
877 0x1f284, 0x1f28c,
878 0x1f2c0, 0x1f2c0,
879 0x1f2e0, 0x1f2e0,
880 0x1f300, 0x1f384,
881 0x1f3c0, 0x1f3c8,
882 0x1f440, 0x1f44c,
883 0x1f684, 0x1f68c,
884 0x1f6c0, 0x1f6c0,
885 0x1f6e0, 0x1f6e0,
886 0x1f700, 0x1f784,
887 0x1f7c0, 0x1f7c8,
888 0x1f840, 0x1f84c,
889 0x1fa84, 0x1fa8c,
890 0x1fac0, 0x1fac0,
891 0x1fae0, 0x1fae0,
892 0x1fb00, 0x1fb84,
893 0x1fbc0, 0x1fbc8,
894 0x1fc40, 0x1fc4c,
895 0x1fe84, 0x1fe8c,
896 0x1fec0, 0x1fec0,
897 0x1fee0, 0x1fee0,
898 0x1ff00, 0x1ff84,
899 0x1ffc0, 0x1ffc8,
900 0x20000, 0x2002c,
901 0x20100, 0x2013c,
8119c018
HS
902 0x20190, 0x201a0,
903 0x201a8, 0x201b8,
904 0x201c4, 0x201c8,
812034f1 905 0x20200, 0x20318,
8119c018
HS
906 0x20400, 0x204b4,
907 0x204c0, 0x20528,
812034f1
HS
908 0x20540, 0x20614,
909 0x21000, 0x21040,
910 0x2104c, 0x21060,
911 0x210c0, 0x210ec,
912 0x21200, 0x21268,
913 0x21270, 0x21284,
914 0x212fc, 0x21388,
915 0x21400, 0x21404,
8119c018
HS
916 0x21500, 0x21500,
917 0x21510, 0x21518,
918 0x2152c, 0x21530,
919 0x2153c, 0x2153c,
812034f1
HS
920 0x21550, 0x21554,
921 0x21600, 0x21600,
8119c018
HS
922 0x21608, 0x2161c,
923 0x21624, 0x21628,
924 0x21630, 0x21634,
925 0x2163c, 0x2163c,
812034f1
HS
926 0x21700, 0x2171c,
927 0x21780, 0x2178c,
8119c018
HS
928 0x21800, 0x21818,
929 0x21820, 0x21828,
930 0x21830, 0x21848,
931 0x21850, 0x21854,
932 0x21860, 0x21868,
933 0x21870, 0x21870,
934 0x21878, 0x21898,
935 0x218a0, 0x218a8,
936 0x218b0, 0x218c8,
937 0x218d0, 0x218d4,
938 0x218e0, 0x218e8,
939 0x218f0, 0x218f0,
940 0x218f8, 0x21a18,
941 0x21a20, 0x21a28,
942 0x21a30, 0x21a48,
943 0x21a50, 0x21a54,
944 0x21a60, 0x21a68,
945 0x21a70, 0x21a70,
946 0x21a78, 0x21a98,
947 0x21aa0, 0x21aa8,
948 0x21ab0, 0x21ac8,
949 0x21ad0, 0x21ad4,
950 0x21ae0, 0x21ae8,
951 0x21af0, 0x21af0,
952 0x21af8, 0x21c18,
953 0x21c20, 0x21c20,
954 0x21c28, 0x21c30,
955 0x21c38, 0x21c38,
956 0x21c80, 0x21c98,
957 0x21ca0, 0x21ca8,
958 0x21cb0, 0x21cc8,
959 0x21cd0, 0x21cd4,
960 0x21ce0, 0x21ce8,
961 0x21cf0, 0x21cf0,
962 0x21cf8, 0x21d7c,
812034f1
HS
963 0x21e00, 0x21e04,
964 0x22000, 0x2202c,
965 0x22100, 0x2213c,
8119c018
HS
966 0x22190, 0x221a0,
967 0x221a8, 0x221b8,
968 0x221c4, 0x221c8,
812034f1 969 0x22200, 0x22318,
8119c018
HS
970 0x22400, 0x224b4,
971 0x224c0, 0x22528,
812034f1
HS
972 0x22540, 0x22614,
973 0x23000, 0x23040,
974 0x2304c, 0x23060,
975 0x230c0, 0x230ec,
976 0x23200, 0x23268,
977 0x23270, 0x23284,
978 0x232fc, 0x23388,
979 0x23400, 0x23404,
8119c018
HS
980 0x23500, 0x23500,
981 0x23510, 0x23518,
982 0x2352c, 0x23530,
983 0x2353c, 0x2353c,
812034f1
HS
984 0x23550, 0x23554,
985 0x23600, 0x23600,
8119c018
HS
986 0x23608, 0x2361c,
987 0x23624, 0x23628,
988 0x23630, 0x23634,
989 0x2363c, 0x2363c,
812034f1
HS
990 0x23700, 0x2371c,
991 0x23780, 0x2378c,
8119c018
HS
992 0x23800, 0x23818,
993 0x23820, 0x23828,
994 0x23830, 0x23848,
995 0x23850, 0x23854,
996 0x23860, 0x23868,
997 0x23870, 0x23870,
998 0x23878, 0x23898,
999 0x238a0, 0x238a8,
1000 0x238b0, 0x238c8,
1001 0x238d0, 0x238d4,
1002 0x238e0, 0x238e8,
1003 0x238f0, 0x238f0,
1004 0x238f8, 0x23a18,
1005 0x23a20, 0x23a28,
1006 0x23a30, 0x23a48,
1007 0x23a50, 0x23a54,
1008 0x23a60, 0x23a68,
1009 0x23a70, 0x23a70,
1010 0x23a78, 0x23a98,
1011 0x23aa0, 0x23aa8,
1012 0x23ab0, 0x23ac8,
1013 0x23ad0, 0x23ad4,
1014 0x23ae0, 0x23ae8,
1015 0x23af0, 0x23af0,
1016 0x23af8, 0x23c18,
1017 0x23c20, 0x23c20,
1018 0x23c28, 0x23c30,
1019 0x23c38, 0x23c38,
1020 0x23c80, 0x23c98,
1021 0x23ca0, 0x23ca8,
1022 0x23cb0, 0x23cc8,
1023 0x23cd0, 0x23cd4,
1024 0x23ce0, 0x23ce8,
1025 0x23cf0, 0x23cf0,
1026 0x23cf8, 0x23d7c,
812034f1
HS
1027 0x23e00, 0x23e04,
1028 0x24000, 0x2402c,
1029 0x24100, 0x2413c,
8119c018
HS
1030 0x24190, 0x241a0,
1031 0x241a8, 0x241b8,
1032 0x241c4, 0x241c8,
812034f1 1033 0x24200, 0x24318,
8119c018
HS
1034 0x24400, 0x244b4,
1035 0x244c0, 0x24528,
812034f1
HS
1036 0x24540, 0x24614,
1037 0x25000, 0x25040,
1038 0x2504c, 0x25060,
1039 0x250c0, 0x250ec,
1040 0x25200, 0x25268,
1041 0x25270, 0x25284,
1042 0x252fc, 0x25388,
1043 0x25400, 0x25404,
8119c018
HS
1044 0x25500, 0x25500,
1045 0x25510, 0x25518,
1046 0x2552c, 0x25530,
1047 0x2553c, 0x2553c,
812034f1
HS
1048 0x25550, 0x25554,
1049 0x25600, 0x25600,
8119c018
HS
1050 0x25608, 0x2561c,
1051 0x25624, 0x25628,
1052 0x25630, 0x25634,
1053 0x2563c, 0x2563c,
812034f1
HS
1054 0x25700, 0x2571c,
1055 0x25780, 0x2578c,
8119c018
HS
1056 0x25800, 0x25818,
1057 0x25820, 0x25828,
1058 0x25830, 0x25848,
1059 0x25850, 0x25854,
1060 0x25860, 0x25868,
1061 0x25870, 0x25870,
1062 0x25878, 0x25898,
1063 0x258a0, 0x258a8,
1064 0x258b0, 0x258c8,
1065 0x258d0, 0x258d4,
1066 0x258e0, 0x258e8,
1067 0x258f0, 0x258f0,
1068 0x258f8, 0x25a18,
1069 0x25a20, 0x25a28,
1070 0x25a30, 0x25a48,
1071 0x25a50, 0x25a54,
1072 0x25a60, 0x25a68,
1073 0x25a70, 0x25a70,
1074 0x25a78, 0x25a98,
1075 0x25aa0, 0x25aa8,
1076 0x25ab0, 0x25ac8,
1077 0x25ad0, 0x25ad4,
1078 0x25ae0, 0x25ae8,
1079 0x25af0, 0x25af0,
1080 0x25af8, 0x25c18,
1081 0x25c20, 0x25c20,
1082 0x25c28, 0x25c30,
1083 0x25c38, 0x25c38,
1084 0x25c80, 0x25c98,
1085 0x25ca0, 0x25ca8,
1086 0x25cb0, 0x25cc8,
1087 0x25cd0, 0x25cd4,
1088 0x25ce0, 0x25ce8,
1089 0x25cf0, 0x25cf0,
1090 0x25cf8, 0x25d7c,
812034f1
HS
1091 0x25e00, 0x25e04,
1092 0x26000, 0x2602c,
1093 0x26100, 0x2613c,
8119c018
HS
1094 0x26190, 0x261a0,
1095 0x261a8, 0x261b8,
1096 0x261c4, 0x261c8,
812034f1 1097 0x26200, 0x26318,
8119c018
HS
1098 0x26400, 0x264b4,
1099 0x264c0, 0x26528,
812034f1
HS
1100 0x26540, 0x26614,
1101 0x27000, 0x27040,
1102 0x2704c, 0x27060,
1103 0x270c0, 0x270ec,
1104 0x27200, 0x27268,
1105 0x27270, 0x27284,
1106 0x272fc, 0x27388,
1107 0x27400, 0x27404,
8119c018
HS
1108 0x27500, 0x27500,
1109 0x27510, 0x27518,
1110 0x2752c, 0x27530,
1111 0x2753c, 0x2753c,
812034f1
HS
1112 0x27550, 0x27554,
1113 0x27600, 0x27600,
8119c018
HS
1114 0x27608, 0x2761c,
1115 0x27624, 0x27628,
1116 0x27630, 0x27634,
1117 0x2763c, 0x2763c,
812034f1
HS
1118 0x27700, 0x2771c,
1119 0x27780, 0x2778c,
8119c018
HS
1120 0x27800, 0x27818,
1121 0x27820, 0x27828,
1122 0x27830, 0x27848,
1123 0x27850, 0x27854,
1124 0x27860, 0x27868,
1125 0x27870, 0x27870,
1126 0x27878, 0x27898,
1127 0x278a0, 0x278a8,
1128 0x278b0, 0x278c8,
1129 0x278d0, 0x278d4,
1130 0x278e0, 0x278e8,
1131 0x278f0, 0x278f0,
1132 0x278f8, 0x27a18,
1133 0x27a20, 0x27a28,
1134 0x27a30, 0x27a48,
1135 0x27a50, 0x27a54,
1136 0x27a60, 0x27a68,
1137 0x27a70, 0x27a70,
1138 0x27a78, 0x27a98,
1139 0x27aa0, 0x27aa8,
1140 0x27ab0, 0x27ac8,
1141 0x27ad0, 0x27ad4,
1142 0x27ae0, 0x27ae8,
1143 0x27af0, 0x27af0,
1144 0x27af8, 0x27c18,
1145 0x27c20, 0x27c20,
1146 0x27c28, 0x27c30,
1147 0x27c38, 0x27c38,
1148 0x27c80, 0x27c98,
1149 0x27ca0, 0x27ca8,
1150 0x27cb0, 0x27cc8,
1151 0x27cd0, 0x27cd4,
1152 0x27ce0, 0x27ce8,
1153 0x27cf0, 0x27cf0,
1154 0x27cf8, 0x27d7c,
9f5ac48d 1155 0x27e00, 0x27e04,
812034f1
HS
1156 };
1157
1158 static const unsigned int t5_reg_ranges[] = {
8119c018
HS
1159 0x1008, 0x10c0,
1160 0x10cc, 0x10f8,
1161 0x1100, 0x1100,
1162 0x110c, 0x1148,
1163 0x1180, 0x1184,
1164 0x1190, 0x1194,
1165 0x11a0, 0x11a4,
1166 0x11b0, 0x11b4,
812034f1
HS
1167 0x11fc, 0x123c,
1168 0x1280, 0x173c,
1169 0x1800, 0x18fc,
1170 0x3000, 0x3028,
8119c018
HS
1171 0x3060, 0x30b0,
1172 0x30b8, 0x30d8,
812034f1
HS
1173 0x30e0, 0x30fc,
1174 0x3140, 0x357c,
1175 0x35a8, 0x35cc,
1176 0x35ec, 0x35ec,
1177 0x3600, 0x5624,
8119c018
HS
1178 0x56cc, 0x56ec,
1179 0x56f4, 0x5720,
1180 0x5728, 0x575c,
812034f1 1181 0x580c, 0x5814,
8119c018
HS
1182 0x5890, 0x589c,
1183 0x58a4, 0x58ac,
1184 0x58b8, 0x58bc,
1185 0x5940, 0x59c8,
1186 0x59d0, 0x59dc,
812034f1 1187 0x59fc, 0x5a18,
8119c018
HS
1188 0x5a60, 0x5a70,
1189 0x5a80, 0x5a9c,
9f5ac48d 1190 0x5b94, 0x5bfc,
8119c018
HS
1191 0x6000, 0x6020,
1192 0x6028, 0x6040,
1193 0x6058, 0x609c,
1194 0x60a8, 0x614c,
812034f1
HS
1195 0x7700, 0x7798,
1196 0x77c0, 0x78fc,
8119c018
HS
1197 0x7b00, 0x7b58,
1198 0x7b60, 0x7b84,
1199 0x7b8c, 0x7c54,
1200 0x7d00, 0x7d38,
1201 0x7d40, 0x7d80,
1202 0x7d8c, 0x7ddc,
1203 0x7de4, 0x7e04,
1204 0x7e10, 0x7e1c,
1205 0x7e24, 0x7e38,
1206 0x7e40, 0x7e44,
1207 0x7e4c, 0x7e78,
1208 0x7e80, 0x7edc,
1209 0x7ee8, 0x7efc,
812034f1 1210 0x8dc0, 0x8de0,
8119c018
HS
1211 0x8df8, 0x8e04,
1212 0x8e10, 0x8e84,
812034f1 1213 0x8ea0, 0x8f84,
8119c018
HS
1214 0x8fc0, 0x9058,
1215 0x9060, 0x9060,
1216 0x9068, 0x90f8,
1217 0x9400, 0x9408,
1218 0x9410, 0x9470,
1219 0x9600, 0x9600,
1220 0x9608, 0x9638,
1221 0x9640, 0x96f4,
812034f1
HS
1222 0x9800, 0x9808,
1223 0x9820, 0x983c,
1224 0x9850, 0x9864,
1225 0x9c00, 0x9c6c,
1226 0x9c80, 0x9cec,
1227 0x9d00, 0x9d6c,
1228 0x9d80, 0x9dec,
1229 0x9e00, 0x9e6c,
1230 0x9e80, 0x9eec,
1231 0x9f00, 0x9f6c,
1232 0x9f80, 0xa020,
8119c018
HS
1233 0xd004, 0xd004,
1234 0xd010, 0xd03c,
812034f1 1235 0xdfc0, 0xdfe0,
8119c018
HS
1236 0xe000, 0x1106c,
1237 0x11074, 0x11088,
1238 0x1109c, 0x1117c,
812034f1
HS
1239 0x11190, 0x11204,
1240 0x19040, 0x1906c,
1241 0x19078, 0x19080,
8119c018
HS
1242 0x1908c, 0x190e8,
1243 0x190f0, 0x190f8,
1244 0x19100, 0x19110,
1245 0x19120, 0x19124,
1246 0x19150, 0x19194,
1247 0x1919c, 0x191b0,
812034f1
HS
1248 0x191d0, 0x191e8,
1249 0x19238, 0x19290,
8119c018
HS
1250 0x193f8, 0x19428,
1251 0x19430, 0x19444,
1252 0x1944c, 0x1946c,
1253 0x19474, 0x19474,
812034f1
HS
1254 0x19490, 0x194cc,
1255 0x194f0, 0x194f8,
8119c018
HS
1256 0x19c00, 0x19c08,
1257 0x19c10, 0x19c60,
1258 0x19c94, 0x19ce4,
1259 0x19cf0, 0x19d40,
1260 0x19d50, 0x19d94,
1261 0x19da0, 0x19de8,
1262 0x19df0, 0x19e10,
1263 0x19e50, 0x19e90,
1264 0x19ea0, 0x19f24,
1265 0x19f34, 0x19f34,
812034f1 1266 0x19f40, 0x19f50,
8119c018
HS
1267 0x19f90, 0x19fb4,
1268 0x19fc4, 0x19fe4,
1269 0x1a000, 0x1a004,
1270 0x1a010, 0x1a06c,
1271 0x1a0b0, 0x1a0e4,
1272 0x1a0ec, 0x1a0f8,
1273 0x1a100, 0x1a108,
1274 0x1a114, 0x1a120,
1275 0x1a128, 0x1a130,
1276 0x1a138, 0x1a138,
812034f1
HS
1277 0x1a190, 0x1a1c4,
1278 0x1a1fc, 0x1a1fc,
1279 0x1e008, 0x1e00c,
8119c018
HS
1280 0x1e040, 0x1e044,
1281 0x1e04c, 0x1e04c,
812034f1
HS
1282 0x1e284, 0x1e290,
1283 0x1e2c0, 0x1e2c0,
1284 0x1e2e0, 0x1e2e0,
1285 0x1e300, 0x1e384,
1286 0x1e3c0, 0x1e3c8,
1287 0x1e408, 0x1e40c,
8119c018
HS
1288 0x1e440, 0x1e444,
1289 0x1e44c, 0x1e44c,
812034f1
HS
1290 0x1e684, 0x1e690,
1291 0x1e6c0, 0x1e6c0,
1292 0x1e6e0, 0x1e6e0,
1293 0x1e700, 0x1e784,
1294 0x1e7c0, 0x1e7c8,
1295 0x1e808, 0x1e80c,
8119c018
HS
1296 0x1e840, 0x1e844,
1297 0x1e84c, 0x1e84c,
812034f1
HS
1298 0x1ea84, 0x1ea90,
1299 0x1eac0, 0x1eac0,
1300 0x1eae0, 0x1eae0,
1301 0x1eb00, 0x1eb84,
1302 0x1ebc0, 0x1ebc8,
1303 0x1ec08, 0x1ec0c,
8119c018
HS
1304 0x1ec40, 0x1ec44,
1305 0x1ec4c, 0x1ec4c,
812034f1
HS
1306 0x1ee84, 0x1ee90,
1307 0x1eec0, 0x1eec0,
1308 0x1eee0, 0x1eee0,
1309 0x1ef00, 0x1ef84,
1310 0x1efc0, 0x1efc8,
1311 0x1f008, 0x1f00c,
8119c018
HS
1312 0x1f040, 0x1f044,
1313 0x1f04c, 0x1f04c,
812034f1
HS
1314 0x1f284, 0x1f290,
1315 0x1f2c0, 0x1f2c0,
1316 0x1f2e0, 0x1f2e0,
1317 0x1f300, 0x1f384,
1318 0x1f3c0, 0x1f3c8,
1319 0x1f408, 0x1f40c,
8119c018
HS
1320 0x1f440, 0x1f444,
1321 0x1f44c, 0x1f44c,
812034f1
HS
1322 0x1f684, 0x1f690,
1323 0x1f6c0, 0x1f6c0,
1324 0x1f6e0, 0x1f6e0,
1325 0x1f700, 0x1f784,
1326 0x1f7c0, 0x1f7c8,
1327 0x1f808, 0x1f80c,
8119c018
HS
1328 0x1f840, 0x1f844,
1329 0x1f84c, 0x1f84c,
812034f1
HS
1330 0x1fa84, 0x1fa90,
1331 0x1fac0, 0x1fac0,
1332 0x1fae0, 0x1fae0,
1333 0x1fb00, 0x1fb84,
1334 0x1fbc0, 0x1fbc8,
1335 0x1fc08, 0x1fc0c,
8119c018
HS
1336 0x1fc40, 0x1fc44,
1337 0x1fc4c, 0x1fc4c,
812034f1
HS
1338 0x1fe84, 0x1fe90,
1339 0x1fec0, 0x1fec0,
1340 0x1fee0, 0x1fee0,
1341 0x1ff00, 0x1ff84,
1342 0x1ffc0, 0x1ffc8,
1343 0x30000, 0x30030,
8119c018
HS
1344 0x30038, 0x30038,
1345 0x30040, 0x30040,
812034f1 1346 0x30100, 0x30144,
8119c018
HS
1347 0x30190, 0x301a0,
1348 0x301a8, 0x301b8,
1349 0x301c4, 0x301c8,
1350 0x301d0, 0x301d0,
812034f1 1351 0x30200, 0x30318,
8119c018
HS
1352 0x30400, 0x304b4,
1353 0x304c0, 0x3052c,
812034f1 1354 0x30540, 0x3061c,
8119c018
HS
1355 0x30800, 0x30828,
1356 0x30834, 0x30834,
812034f1
HS
1357 0x308c0, 0x30908,
1358 0x30910, 0x309ac,
8119c018
HS
1359 0x30a00, 0x30a14,
1360 0x30a1c, 0x30a2c,
812034f1 1361 0x30a44, 0x30a50,
8119c018
HS
1362 0x30a74, 0x30a74,
1363 0x30a7c, 0x30afc,
1364 0x30b08, 0x30c24,
9f5ac48d 1365 0x30d00, 0x30d00,
812034f1
HS
1366 0x30d08, 0x30d14,
1367 0x30d1c, 0x30d20,
8119c018
HS
1368 0x30d3c, 0x30d3c,
1369 0x30d48, 0x30d50,
812034f1
HS
1370 0x31200, 0x3120c,
1371 0x31220, 0x31220,
1372 0x31240, 0x31240,
9f5ac48d 1373 0x31600, 0x3160c,
812034f1 1374 0x31a00, 0x31a1c,
9f5ac48d 1375 0x31e00, 0x31e20,
812034f1
HS
1376 0x31e38, 0x31e3c,
1377 0x31e80, 0x31e80,
1378 0x31e88, 0x31ea8,
1379 0x31eb0, 0x31eb4,
1380 0x31ec8, 0x31ed4,
1381 0x31fb8, 0x32004,
9f5ac48d
HS
1382 0x32200, 0x32200,
1383 0x32208, 0x32240,
1384 0x32248, 0x32280,
1385 0x32288, 0x322c0,
1386 0x322c8, 0x322fc,
812034f1
HS
1387 0x32600, 0x32630,
1388 0x32a00, 0x32abc,
8119c018
HS
1389 0x32b00, 0x32b10,
1390 0x32b20, 0x32b30,
1391 0x32b40, 0x32b50,
1392 0x32b60, 0x32b70,
1393 0x33000, 0x33028,
1394 0x33030, 0x33048,
1395 0x33060, 0x33068,
1396 0x33070, 0x3309c,
1397 0x330f0, 0x33128,
1398 0x33130, 0x33148,
1399 0x33160, 0x33168,
1400 0x33170, 0x3319c,
1401 0x331f0, 0x33238,
1402 0x33240, 0x33240,
1403 0x33248, 0x33250,
1404 0x3325c, 0x33264,
1405 0x33270, 0x332b8,
1406 0x332c0, 0x332e4,
1407 0x332f8, 0x33338,
1408 0x33340, 0x33340,
1409 0x33348, 0x33350,
1410 0x3335c, 0x33364,
1411 0x33370, 0x333b8,
1412 0x333c0, 0x333e4,
1413 0x333f8, 0x33428,
1414 0x33430, 0x33448,
1415 0x33460, 0x33468,
1416 0x33470, 0x3349c,
1417 0x334f0, 0x33528,
1418 0x33530, 0x33548,
1419 0x33560, 0x33568,
1420 0x33570, 0x3359c,
1421 0x335f0, 0x33638,
1422 0x33640, 0x33640,
1423 0x33648, 0x33650,
1424 0x3365c, 0x33664,
1425 0x33670, 0x336b8,
1426 0x336c0, 0x336e4,
1427 0x336f8, 0x33738,
1428 0x33740, 0x33740,
1429 0x33748, 0x33750,
1430 0x3375c, 0x33764,
1431 0x33770, 0x337b8,
1432 0x337c0, 0x337e4,
812034f1
HS
1433 0x337f8, 0x337fc,
1434 0x33814, 0x33814,
1435 0x3382c, 0x3382c,
1436 0x33880, 0x3388c,
1437 0x338e8, 0x338ec,
8119c018
HS
1438 0x33900, 0x33928,
1439 0x33930, 0x33948,
1440 0x33960, 0x33968,
1441 0x33970, 0x3399c,
1442 0x339f0, 0x33a38,
1443 0x33a40, 0x33a40,
1444 0x33a48, 0x33a50,
1445 0x33a5c, 0x33a64,
1446 0x33a70, 0x33ab8,
1447 0x33ac0, 0x33ae4,
812034f1
HS
1448 0x33af8, 0x33b10,
1449 0x33b28, 0x33b28,
1450 0x33b3c, 0x33b50,
1451 0x33bf0, 0x33c10,
1452 0x33c28, 0x33c28,
1453 0x33c3c, 0x33c50,
1454 0x33cf0, 0x33cfc,
1455 0x34000, 0x34030,
8119c018
HS
1456 0x34038, 0x34038,
1457 0x34040, 0x34040,
812034f1 1458 0x34100, 0x34144,
8119c018
HS
1459 0x34190, 0x341a0,
1460 0x341a8, 0x341b8,
1461 0x341c4, 0x341c8,
1462 0x341d0, 0x341d0,
812034f1 1463 0x34200, 0x34318,
8119c018
HS
1464 0x34400, 0x344b4,
1465 0x344c0, 0x3452c,
812034f1 1466 0x34540, 0x3461c,
8119c018
HS
1467 0x34800, 0x34828,
1468 0x34834, 0x34834,
812034f1
HS
1469 0x348c0, 0x34908,
1470 0x34910, 0x349ac,
8119c018
HS
1471 0x34a00, 0x34a14,
1472 0x34a1c, 0x34a2c,
812034f1 1473 0x34a44, 0x34a50,
8119c018
HS
1474 0x34a74, 0x34a74,
1475 0x34a7c, 0x34afc,
1476 0x34b08, 0x34c24,
9f5ac48d 1477 0x34d00, 0x34d00,
812034f1
HS
1478 0x34d08, 0x34d14,
1479 0x34d1c, 0x34d20,
8119c018
HS
1480 0x34d3c, 0x34d3c,
1481 0x34d48, 0x34d50,
812034f1
HS
1482 0x35200, 0x3520c,
1483 0x35220, 0x35220,
1484 0x35240, 0x35240,
9f5ac48d 1485 0x35600, 0x3560c,
812034f1 1486 0x35a00, 0x35a1c,
9f5ac48d 1487 0x35e00, 0x35e20,
812034f1
HS
1488 0x35e38, 0x35e3c,
1489 0x35e80, 0x35e80,
1490 0x35e88, 0x35ea8,
1491 0x35eb0, 0x35eb4,
1492 0x35ec8, 0x35ed4,
1493 0x35fb8, 0x36004,
9f5ac48d
HS
1494 0x36200, 0x36200,
1495 0x36208, 0x36240,
1496 0x36248, 0x36280,
1497 0x36288, 0x362c0,
1498 0x362c8, 0x362fc,
812034f1
HS
1499 0x36600, 0x36630,
1500 0x36a00, 0x36abc,
8119c018
HS
1501 0x36b00, 0x36b10,
1502 0x36b20, 0x36b30,
1503 0x36b40, 0x36b50,
1504 0x36b60, 0x36b70,
1505 0x37000, 0x37028,
1506 0x37030, 0x37048,
1507 0x37060, 0x37068,
1508 0x37070, 0x3709c,
1509 0x370f0, 0x37128,
1510 0x37130, 0x37148,
1511 0x37160, 0x37168,
1512 0x37170, 0x3719c,
1513 0x371f0, 0x37238,
1514 0x37240, 0x37240,
1515 0x37248, 0x37250,
1516 0x3725c, 0x37264,
1517 0x37270, 0x372b8,
1518 0x372c0, 0x372e4,
1519 0x372f8, 0x37338,
1520 0x37340, 0x37340,
1521 0x37348, 0x37350,
1522 0x3735c, 0x37364,
1523 0x37370, 0x373b8,
1524 0x373c0, 0x373e4,
1525 0x373f8, 0x37428,
1526 0x37430, 0x37448,
1527 0x37460, 0x37468,
1528 0x37470, 0x3749c,
1529 0x374f0, 0x37528,
1530 0x37530, 0x37548,
1531 0x37560, 0x37568,
1532 0x37570, 0x3759c,
1533 0x375f0, 0x37638,
1534 0x37640, 0x37640,
1535 0x37648, 0x37650,
1536 0x3765c, 0x37664,
1537 0x37670, 0x376b8,
1538 0x376c0, 0x376e4,
1539 0x376f8, 0x37738,
1540 0x37740, 0x37740,
1541 0x37748, 0x37750,
1542 0x3775c, 0x37764,
1543 0x37770, 0x377b8,
1544 0x377c0, 0x377e4,
812034f1
HS
1545 0x377f8, 0x377fc,
1546 0x37814, 0x37814,
1547 0x3782c, 0x3782c,
1548 0x37880, 0x3788c,
1549 0x378e8, 0x378ec,
8119c018
HS
1550 0x37900, 0x37928,
1551 0x37930, 0x37948,
1552 0x37960, 0x37968,
1553 0x37970, 0x3799c,
1554 0x379f0, 0x37a38,
1555 0x37a40, 0x37a40,
1556 0x37a48, 0x37a50,
1557 0x37a5c, 0x37a64,
1558 0x37a70, 0x37ab8,
1559 0x37ac0, 0x37ae4,
812034f1
HS
1560 0x37af8, 0x37b10,
1561 0x37b28, 0x37b28,
1562 0x37b3c, 0x37b50,
1563 0x37bf0, 0x37c10,
1564 0x37c28, 0x37c28,
1565 0x37c3c, 0x37c50,
1566 0x37cf0, 0x37cfc,
1567 0x38000, 0x38030,
8119c018
HS
1568 0x38038, 0x38038,
1569 0x38040, 0x38040,
812034f1 1570 0x38100, 0x38144,
8119c018
HS
1571 0x38190, 0x381a0,
1572 0x381a8, 0x381b8,
1573 0x381c4, 0x381c8,
1574 0x381d0, 0x381d0,
812034f1 1575 0x38200, 0x38318,
8119c018
HS
1576 0x38400, 0x384b4,
1577 0x384c0, 0x3852c,
812034f1 1578 0x38540, 0x3861c,
8119c018
HS
1579 0x38800, 0x38828,
1580 0x38834, 0x38834,
812034f1
HS
1581 0x388c0, 0x38908,
1582 0x38910, 0x389ac,
8119c018
HS
1583 0x38a00, 0x38a14,
1584 0x38a1c, 0x38a2c,
812034f1 1585 0x38a44, 0x38a50,
8119c018
HS
1586 0x38a74, 0x38a74,
1587 0x38a7c, 0x38afc,
1588 0x38b08, 0x38c24,
9f5ac48d 1589 0x38d00, 0x38d00,
812034f1
HS
1590 0x38d08, 0x38d14,
1591 0x38d1c, 0x38d20,
8119c018
HS
1592 0x38d3c, 0x38d3c,
1593 0x38d48, 0x38d50,
812034f1
HS
1594 0x39200, 0x3920c,
1595 0x39220, 0x39220,
1596 0x39240, 0x39240,
9f5ac48d 1597 0x39600, 0x3960c,
812034f1 1598 0x39a00, 0x39a1c,
9f5ac48d 1599 0x39e00, 0x39e20,
812034f1
HS
1600 0x39e38, 0x39e3c,
1601 0x39e80, 0x39e80,
1602 0x39e88, 0x39ea8,
1603 0x39eb0, 0x39eb4,
1604 0x39ec8, 0x39ed4,
1605 0x39fb8, 0x3a004,
9f5ac48d
HS
1606 0x3a200, 0x3a200,
1607 0x3a208, 0x3a240,
1608 0x3a248, 0x3a280,
1609 0x3a288, 0x3a2c0,
1610 0x3a2c8, 0x3a2fc,
812034f1
HS
1611 0x3a600, 0x3a630,
1612 0x3aa00, 0x3aabc,
8119c018
HS
1613 0x3ab00, 0x3ab10,
1614 0x3ab20, 0x3ab30,
1615 0x3ab40, 0x3ab50,
1616 0x3ab60, 0x3ab70,
1617 0x3b000, 0x3b028,
1618 0x3b030, 0x3b048,
1619 0x3b060, 0x3b068,
1620 0x3b070, 0x3b09c,
1621 0x3b0f0, 0x3b128,
1622 0x3b130, 0x3b148,
1623 0x3b160, 0x3b168,
1624 0x3b170, 0x3b19c,
1625 0x3b1f0, 0x3b238,
1626 0x3b240, 0x3b240,
1627 0x3b248, 0x3b250,
1628 0x3b25c, 0x3b264,
1629 0x3b270, 0x3b2b8,
1630 0x3b2c0, 0x3b2e4,
1631 0x3b2f8, 0x3b338,
1632 0x3b340, 0x3b340,
1633 0x3b348, 0x3b350,
1634 0x3b35c, 0x3b364,
1635 0x3b370, 0x3b3b8,
1636 0x3b3c0, 0x3b3e4,
1637 0x3b3f8, 0x3b428,
1638 0x3b430, 0x3b448,
1639 0x3b460, 0x3b468,
1640 0x3b470, 0x3b49c,
1641 0x3b4f0, 0x3b528,
1642 0x3b530, 0x3b548,
1643 0x3b560, 0x3b568,
1644 0x3b570, 0x3b59c,
1645 0x3b5f0, 0x3b638,
1646 0x3b640, 0x3b640,
1647 0x3b648, 0x3b650,
1648 0x3b65c, 0x3b664,
1649 0x3b670, 0x3b6b8,
1650 0x3b6c0, 0x3b6e4,
1651 0x3b6f8, 0x3b738,
1652 0x3b740, 0x3b740,
1653 0x3b748, 0x3b750,
1654 0x3b75c, 0x3b764,
1655 0x3b770, 0x3b7b8,
1656 0x3b7c0, 0x3b7e4,
812034f1
HS
1657 0x3b7f8, 0x3b7fc,
1658 0x3b814, 0x3b814,
1659 0x3b82c, 0x3b82c,
1660 0x3b880, 0x3b88c,
1661 0x3b8e8, 0x3b8ec,
8119c018
HS
1662 0x3b900, 0x3b928,
1663 0x3b930, 0x3b948,
1664 0x3b960, 0x3b968,
1665 0x3b970, 0x3b99c,
1666 0x3b9f0, 0x3ba38,
1667 0x3ba40, 0x3ba40,
1668 0x3ba48, 0x3ba50,
1669 0x3ba5c, 0x3ba64,
1670 0x3ba70, 0x3bab8,
1671 0x3bac0, 0x3bae4,
812034f1
HS
1672 0x3baf8, 0x3bb10,
1673 0x3bb28, 0x3bb28,
1674 0x3bb3c, 0x3bb50,
1675 0x3bbf0, 0x3bc10,
1676 0x3bc28, 0x3bc28,
1677 0x3bc3c, 0x3bc50,
1678 0x3bcf0, 0x3bcfc,
1679 0x3c000, 0x3c030,
8119c018
HS
1680 0x3c038, 0x3c038,
1681 0x3c040, 0x3c040,
812034f1 1682 0x3c100, 0x3c144,
8119c018
HS
1683 0x3c190, 0x3c1a0,
1684 0x3c1a8, 0x3c1b8,
1685 0x3c1c4, 0x3c1c8,
1686 0x3c1d0, 0x3c1d0,
812034f1 1687 0x3c200, 0x3c318,
8119c018
HS
1688 0x3c400, 0x3c4b4,
1689 0x3c4c0, 0x3c52c,
812034f1 1690 0x3c540, 0x3c61c,
8119c018
HS
1691 0x3c800, 0x3c828,
1692 0x3c834, 0x3c834,
812034f1
HS
1693 0x3c8c0, 0x3c908,
1694 0x3c910, 0x3c9ac,
8119c018
HS
1695 0x3ca00, 0x3ca14,
1696 0x3ca1c, 0x3ca2c,
812034f1 1697 0x3ca44, 0x3ca50,
8119c018
HS
1698 0x3ca74, 0x3ca74,
1699 0x3ca7c, 0x3cafc,
1700 0x3cb08, 0x3cc24,
9f5ac48d 1701 0x3cd00, 0x3cd00,
812034f1
HS
1702 0x3cd08, 0x3cd14,
1703 0x3cd1c, 0x3cd20,
8119c018
HS
1704 0x3cd3c, 0x3cd3c,
1705 0x3cd48, 0x3cd50,
812034f1
HS
1706 0x3d200, 0x3d20c,
1707 0x3d220, 0x3d220,
1708 0x3d240, 0x3d240,
9f5ac48d 1709 0x3d600, 0x3d60c,
812034f1 1710 0x3da00, 0x3da1c,
9f5ac48d 1711 0x3de00, 0x3de20,
812034f1
HS
1712 0x3de38, 0x3de3c,
1713 0x3de80, 0x3de80,
1714 0x3de88, 0x3dea8,
1715 0x3deb0, 0x3deb4,
1716 0x3dec8, 0x3ded4,
1717 0x3dfb8, 0x3e004,
9f5ac48d
HS
1718 0x3e200, 0x3e200,
1719 0x3e208, 0x3e240,
1720 0x3e248, 0x3e280,
1721 0x3e288, 0x3e2c0,
1722 0x3e2c8, 0x3e2fc,
812034f1
HS
1723 0x3e600, 0x3e630,
1724 0x3ea00, 0x3eabc,
8119c018
HS
1725 0x3eb00, 0x3eb10,
1726 0x3eb20, 0x3eb30,
1727 0x3eb40, 0x3eb50,
1728 0x3eb60, 0x3eb70,
1729 0x3f000, 0x3f028,
1730 0x3f030, 0x3f048,
1731 0x3f060, 0x3f068,
1732 0x3f070, 0x3f09c,
1733 0x3f0f0, 0x3f128,
1734 0x3f130, 0x3f148,
1735 0x3f160, 0x3f168,
1736 0x3f170, 0x3f19c,
1737 0x3f1f0, 0x3f238,
1738 0x3f240, 0x3f240,
1739 0x3f248, 0x3f250,
1740 0x3f25c, 0x3f264,
1741 0x3f270, 0x3f2b8,
1742 0x3f2c0, 0x3f2e4,
1743 0x3f2f8, 0x3f338,
1744 0x3f340, 0x3f340,
1745 0x3f348, 0x3f350,
1746 0x3f35c, 0x3f364,
1747 0x3f370, 0x3f3b8,
1748 0x3f3c0, 0x3f3e4,
1749 0x3f3f8, 0x3f428,
1750 0x3f430, 0x3f448,
1751 0x3f460, 0x3f468,
1752 0x3f470, 0x3f49c,
1753 0x3f4f0, 0x3f528,
1754 0x3f530, 0x3f548,
1755 0x3f560, 0x3f568,
1756 0x3f570, 0x3f59c,
1757 0x3f5f0, 0x3f638,
1758 0x3f640, 0x3f640,
1759 0x3f648, 0x3f650,
1760 0x3f65c, 0x3f664,
1761 0x3f670, 0x3f6b8,
1762 0x3f6c0, 0x3f6e4,
1763 0x3f6f8, 0x3f738,
1764 0x3f740, 0x3f740,
1765 0x3f748, 0x3f750,
1766 0x3f75c, 0x3f764,
1767 0x3f770, 0x3f7b8,
1768 0x3f7c0, 0x3f7e4,
812034f1
HS
1769 0x3f7f8, 0x3f7fc,
1770 0x3f814, 0x3f814,
1771 0x3f82c, 0x3f82c,
1772 0x3f880, 0x3f88c,
1773 0x3f8e8, 0x3f8ec,
8119c018
HS
1774 0x3f900, 0x3f928,
1775 0x3f930, 0x3f948,
1776 0x3f960, 0x3f968,
1777 0x3f970, 0x3f99c,
1778 0x3f9f0, 0x3fa38,
1779 0x3fa40, 0x3fa40,
1780 0x3fa48, 0x3fa50,
1781 0x3fa5c, 0x3fa64,
1782 0x3fa70, 0x3fab8,
1783 0x3fac0, 0x3fae4,
812034f1
HS
1784 0x3faf8, 0x3fb10,
1785 0x3fb28, 0x3fb28,
1786 0x3fb3c, 0x3fb50,
1787 0x3fbf0, 0x3fc10,
1788 0x3fc28, 0x3fc28,
1789 0x3fc3c, 0x3fc50,
1790 0x3fcf0, 0x3fcfc,
1791 0x40000, 0x4000c,
8119c018
HS
1792 0x40040, 0x40050,
1793 0x40060, 0x40068,
1794 0x4007c, 0x4008c,
1795 0x40094, 0x400b0,
1796 0x400c0, 0x40144,
812034f1 1797 0x40180, 0x4018c,
8119c018
HS
1798 0x40200, 0x40254,
1799 0x40260, 0x40264,
1800 0x40270, 0x40288,
1801 0x40290, 0x40298,
1802 0x402ac, 0x402c8,
1803 0x402d0, 0x402e0,
1804 0x402f0, 0x402f0,
1805 0x40300, 0x4033c,
812034f1
HS
1806 0x403f8, 0x403fc,
1807 0x41304, 0x413c4,
8119c018
HS
1808 0x41400, 0x4140c,
1809 0x41414, 0x4141c,
812034f1 1810 0x41480, 0x414d0,
8119c018
HS
1811 0x44000, 0x44054,
1812 0x4405c, 0x44078,
1813 0x440c0, 0x44174,
1814 0x44180, 0x441ac,
1815 0x441b4, 0x441b8,
1816 0x441c0, 0x44254,
1817 0x4425c, 0x44278,
1818 0x442c0, 0x44374,
1819 0x44380, 0x443ac,
1820 0x443b4, 0x443b8,
1821 0x443c0, 0x44454,
1822 0x4445c, 0x44478,
1823 0x444c0, 0x44574,
1824 0x44580, 0x445ac,
1825 0x445b4, 0x445b8,
1826 0x445c0, 0x44654,
1827 0x4465c, 0x44678,
1828 0x446c0, 0x44774,
1829 0x44780, 0x447ac,
1830 0x447b4, 0x447b8,
1831 0x447c0, 0x44854,
1832 0x4485c, 0x44878,
1833 0x448c0, 0x44974,
1834 0x44980, 0x449ac,
1835 0x449b4, 0x449b8,
1836 0x449c0, 0x449fc,
1837 0x45000, 0x45004,
1838 0x45010, 0x45030,
1839 0x45040, 0x45060,
1840 0x45068, 0x45068,
812034f1
HS
1841 0x45080, 0x45084,
1842 0x450a0, 0x450b0,
8119c018
HS
1843 0x45200, 0x45204,
1844 0x45210, 0x45230,
1845 0x45240, 0x45260,
1846 0x45268, 0x45268,
812034f1
HS
1847 0x45280, 0x45284,
1848 0x452a0, 0x452b0,
1849 0x460c0, 0x460e4,
8119c018
HS
1850 0x47000, 0x4703c,
1851 0x47044, 0x4708c,
812034f1 1852 0x47200, 0x47250,
8119c018
HS
1853 0x47400, 0x47408,
1854 0x47414, 0x47420,
812034f1
HS
1855 0x47600, 0x47618,
1856 0x47800, 0x47814,
1857 0x48000, 0x4800c,
8119c018
HS
1858 0x48040, 0x48050,
1859 0x48060, 0x48068,
1860 0x4807c, 0x4808c,
1861 0x48094, 0x480b0,
1862 0x480c0, 0x48144,
812034f1 1863 0x48180, 0x4818c,
8119c018
HS
1864 0x48200, 0x48254,
1865 0x48260, 0x48264,
1866 0x48270, 0x48288,
1867 0x48290, 0x48298,
1868 0x482ac, 0x482c8,
1869 0x482d0, 0x482e0,
1870 0x482f0, 0x482f0,
1871 0x48300, 0x4833c,
812034f1
HS
1872 0x483f8, 0x483fc,
1873 0x49304, 0x493c4,
8119c018
HS
1874 0x49400, 0x4940c,
1875 0x49414, 0x4941c,
812034f1 1876 0x49480, 0x494d0,
8119c018
HS
1877 0x4c000, 0x4c054,
1878 0x4c05c, 0x4c078,
1879 0x4c0c0, 0x4c174,
1880 0x4c180, 0x4c1ac,
1881 0x4c1b4, 0x4c1b8,
1882 0x4c1c0, 0x4c254,
1883 0x4c25c, 0x4c278,
1884 0x4c2c0, 0x4c374,
1885 0x4c380, 0x4c3ac,
1886 0x4c3b4, 0x4c3b8,
1887 0x4c3c0, 0x4c454,
1888 0x4c45c, 0x4c478,
1889 0x4c4c0, 0x4c574,
1890 0x4c580, 0x4c5ac,
1891 0x4c5b4, 0x4c5b8,
1892 0x4c5c0, 0x4c654,
1893 0x4c65c, 0x4c678,
1894 0x4c6c0, 0x4c774,
1895 0x4c780, 0x4c7ac,
1896 0x4c7b4, 0x4c7b8,
1897 0x4c7c0, 0x4c854,
1898 0x4c85c, 0x4c878,
1899 0x4c8c0, 0x4c974,
1900 0x4c980, 0x4c9ac,
1901 0x4c9b4, 0x4c9b8,
1902 0x4c9c0, 0x4c9fc,
1903 0x4d000, 0x4d004,
1904 0x4d010, 0x4d030,
1905 0x4d040, 0x4d060,
1906 0x4d068, 0x4d068,
812034f1
HS
1907 0x4d080, 0x4d084,
1908 0x4d0a0, 0x4d0b0,
8119c018
HS
1909 0x4d200, 0x4d204,
1910 0x4d210, 0x4d230,
1911 0x4d240, 0x4d260,
1912 0x4d268, 0x4d268,
812034f1
HS
1913 0x4d280, 0x4d284,
1914 0x4d2a0, 0x4d2b0,
1915 0x4e0c0, 0x4e0e4,
8119c018
HS
1916 0x4f000, 0x4f03c,
1917 0x4f044, 0x4f08c,
812034f1 1918 0x4f200, 0x4f250,
8119c018
HS
1919 0x4f400, 0x4f408,
1920 0x4f414, 0x4f420,
812034f1
HS
1921 0x4f600, 0x4f618,
1922 0x4f800, 0x4f814,
8119c018
HS
1923 0x50000, 0x50084,
1924 0x50090, 0x500cc,
812034f1 1925 0x50400, 0x50400,
8119c018
HS
1926 0x50800, 0x50884,
1927 0x50890, 0x508cc,
812034f1
HS
1928 0x50c00, 0x50c00,
1929 0x51000, 0x5101c,
1930 0x51300, 0x51308,
1931 };
1932
ab4b583b 1933 static const unsigned int t6_reg_ranges[] = {
8119c018
HS
1934 0x1008, 0x101c,
1935 0x1024, 0x10a8,
1936 0x10b4, 0x10f8,
1937 0x1100, 0x1114,
1938 0x111c, 0x112c,
1939 0x1138, 0x113c,
1940 0x1144, 0x114c,
1941 0x1180, 0x1184,
1942 0x1190, 0x1194,
1943 0x11a0, 0x11a4,
1944 0x11b0, 0x11b4,
676d6a75
HS
1945 0x11fc, 0x1258,
1946 0x1280, 0x12d4,
1947 0x12d9, 0x12d9,
1948 0x12de, 0x12de,
1949 0x12e3, 0x12e3,
1950 0x12e8, 0x133c,
ab4b583b
HS
1951 0x1800, 0x18fc,
1952 0x3000, 0x302c,
8119c018
HS
1953 0x3060, 0x30b0,
1954 0x30b8, 0x30d8,
ab4b583b
HS
1955 0x30e0, 0x30fc,
1956 0x3140, 0x357c,
1957 0x35a8, 0x35cc,
1958 0x35ec, 0x35ec,
1959 0x3600, 0x5624,
8119c018
HS
1960 0x56cc, 0x56ec,
1961 0x56f4, 0x5720,
1962 0x5728, 0x575c,
ab4b583b 1963 0x580c, 0x5814,
8119c018
HS
1964 0x5890, 0x589c,
1965 0x58a4, 0x58ac,
1966 0x58b8, 0x58bc,
ab4b583b
HS
1967 0x5940, 0x595c,
1968 0x5980, 0x598c,
8119c018
HS
1969 0x59b0, 0x59c8,
1970 0x59d0, 0x59dc,
ab4b583b
HS
1971 0x59fc, 0x5a18,
1972 0x5a60, 0x5a6c,
8119c018
HS
1973 0x5a80, 0x5a8c,
1974 0x5a94, 0x5a9c,
ab4b583b 1975 0x5b94, 0x5bfc,
8119c018
HS
1976 0x5c10, 0x5e48,
1977 0x5e50, 0x5e94,
1978 0x5ea0, 0x5eb0,
1979 0x5ec0, 0x5ec0,
676d6a75 1980 0x5ec8, 0x5ed0,
8119c018
HS
1981 0x6000, 0x6020,
1982 0x6028, 0x6040,
1983 0x6058, 0x609c,
1984 0x60a8, 0x619c,
ab4b583b
HS
1985 0x7700, 0x7798,
1986 0x77c0, 0x7880,
1987 0x78cc, 0x78fc,
8119c018
HS
1988 0x7b00, 0x7b58,
1989 0x7b60, 0x7b84,
1990 0x7b8c, 0x7c54,
1991 0x7d00, 0x7d38,
1992 0x7d40, 0x7d84,
1993 0x7d8c, 0x7ddc,
1994 0x7de4, 0x7e04,
1995 0x7e10, 0x7e1c,
1996 0x7e24, 0x7e38,
1997 0x7e40, 0x7e44,
1998 0x7e4c, 0x7e78,
1999 0x7e80, 0x7edc,
2000 0x7ee8, 0x7efc,
f109ff11 2001 0x8dc0, 0x8de4,
8119c018
HS
2002 0x8df8, 0x8e04,
2003 0x8e10, 0x8e84,
ab4b583b 2004 0x8ea0, 0x8f88,
8119c018
HS
2005 0x8fb8, 0x9058,
2006 0x9060, 0x9060,
2007 0x9068, 0x90f8,
2008 0x9100, 0x9124,
ab4b583b 2009 0x9400, 0x9470,
8119c018
HS
2010 0x9600, 0x9600,
2011 0x9608, 0x9638,
2012 0x9640, 0x9704,
2013 0x9710, 0x971c,
ab4b583b
HS
2014 0x9800, 0x9808,
2015 0x9820, 0x983c,
2016 0x9850, 0x9864,
2017 0x9c00, 0x9c6c,
2018 0x9c80, 0x9cec,
2019 0x9d00, 0x9d6c,
2020 0x9d80, 0x9dec,
2021 0x9e00, 0x9e6c,
2022 0x9e80, 0x9eec,
2023 0x9f00, 0x9f6c,
2024 0x9f80, 0xa020,
2025 0xd004, 0xd03c,
5b4e83e1 2026 0xd100, 0xd118,
8119c018
HS
2027 0xd200, 0xd214,
2028 0xd220, 0xd234,
2029 0xd240, 0xd254,
2030 0xd260, 0xd274,
2031 0xd280, 0xd294,
2032 0xd2a0, 0xd2b4,
2033 0xd2c0, 0xd2d4,
2034 0xd2e0, 0xd2f4,
2035 0xd300, 0xd31c,
ab4b583b
HS
2036 0xdfc0, 0xdfe0,
2037 0xe000, 0xf008,
2038 0x11000, 0x11014,
8119c018
HS
2039 0x11048, 0x1106c,
2040 0x11074, 0x11088,
2041 0x11098, 0x11120,
2042 0x1112c, 0x1117c,
2043 0x11190, 0x112e0,
ab4b583b 2044 0x11300, 0x1130c,
5b4e83e1 2045 0x12000, 0x1206c,
ab4b583b
HS
2046 0x19040, 0x1906c,
2047 0x19078, 0x19080,
8119c018
HS
2048 0x1908c, 0x190e8,
2049 0x190f0, 0x190f8,
2050 0x19100, 0x19110,
2051 0x19120, 0x19124,
2052 0x19150, 0x19194,
2053 0x1919c, 0x191b0,
ab4b583b 2054 0x191d0, 0x191e8,
676d6a75
HS
2055 0x19238, 0x19290,
2056 0x192a4, 0x192b0,
8119c018
HS
2057 0x192bc, 0x192bc,
2058 0x19348, 0x1934c,
2059 0x193f8, 0x19418,
2060 0x19420, 0x19428,
2061 0x19430, 0x19444,
2062 0x1944c, 0x1946c,
2063 0x19474, 0x19474,
ab4b583b
HS
2064 0x19490, 0x194cc,
2065 0x194f0, 0x194f8,
8119c018
HS
2066 0x19c00, 0x19c48,
2067 0x19c50, 0x19c80,
2068 0x19c94, 0x19c98,
2069 0x19ca0, 0x19cbc,
2070 0x19ce4, 0x19ce4,
2071 0x19cf0, 0x19cf8,
2072 0x19d00, 0x19d28,
ab4b583b 2073 0x19d50, 0x19d78,
8119c018
HS
2074 0x19d94, 0x19d98,
2075 0x19da0, 0x19dc8,
ab4b583b
HS
2076 0x19df0, 0x19e10,
2077 0x19e50, 0x19e6c,
8119c018
HS
2078 0x19ea0, 0x19ebc,
2079 0x19ec4, 0x19ef4,
2080 0x19f04, 0x19f2c,
2081 0x19f34, 0x19f34,
ab4b583b
HS
2082 0x19f40, 0x19f50,
2083 0x19f90, 0x19fac,
8119c018
HS
2084 0x19fc4, 0x19fc8,
2085 0x19fd0, 0x19fe4,
2086 0x1a000, 0x1a004,
2087 0x1a010, 0x1a06c,
2088 0x1a0b0, 0x1a0e4,
2089 0x1a0ec, 0x1a0f8,
2090 0x1a100, 0x1a108,
2091 0x1a114, 0x1a120,
2092 0x1a128, 0x1a130,
2093 0x1a138, 0x1a138,
ab4b583b
HS
2094 0x1a190, 0x1a1c4,
2095 0x1a1fc, 0x1a1fc,
2096 0x1e008, 0x1e00c,
8119c018
HS
2097 0x1e040, 0x1e044,
2098 0x1e04c, 0x1e04c,
ab4b583b
HS
2099 0x1e284, 0x1e290,
2100 0x1e2c0, 0x1e2c0,
2101 0x1e2e0, 0x1e2e0,
2102 0x1e300, 0x1e384,
2103 0x1e3c0, 0x1e3c8,
2104 0x1e408, 0x1e40c,
8119c018
HS
2105 0x1e440, 0x1e444,
2106 0x1e44c, 0x1e44c,
ab4b583b
HS
2107 0x1e684, 0x1e690,
2108 0x1e6c0, 0x1e6c0,
2109 0x1e6e0, 0x1e6e0,
2110 0x1e700, 0x1e784,
2111 0x1e7c0, 0x1e7c8,
2112 0x1e808, 0x1e80c,
8119c018
HS
2113 0x1e840, 0x1e844,
2114 0x1e84c, 0x1e84c,
ab4b583b
HS
2115 0x1ea84, 0x1ea90,
2116 0x1eac0, 0x1eac0,
2117 0x1eae0, 0x1eae0,
2118 0x1eb00, 0x1eb84,
2119 0x1ebc0, 0x1ebc8,
2120 0x1ec08, 0x1ec0c,
8119c018
HS
2121 0x1ec40, 0x1ec44,
2122 0x1ec4c, 0x1ec4c,
ab4b583b
HS
2123 0x1ee84, 0x1ee90,
2124 0x1eec0, 0x1eec0,
2125 0x1eee0, 0x1eee0,
2126 0x1ef00, 0x1ef84,
2127 0x1efc0, 0x1efc8,
2128 0x1f008, 0x1f00c,
8119c018
HS
2129 0x1f040, 0x1f044,
2130 0x1f04c, 0x1f04c,
ab4b583b
HS
2131 0x1f284, 0x1f290,
2132 0x1f2c0, 0x1f2c0,
2133 0x1f2e0, 0x1f2e0,
2134 0x1f300, 0x1f384,
2135 0x1f3c0, 0x1f3c8,
2136 0x1f408, 0x1f40c,
8119c018
HS
2137 0x1f440, 0x1f444,
2138 0x1f44c, 0x1f44c,
ab4b583b
HS
2139 0x1f684, 0x1f690,
2140 0x1f6c0, 0x1f6c0,
2141 0x1f6e0, 0x1f6e0,
2142 0x1f700, 0x1f784,
2143 0x1f7c0, 0x1f7c8,
2144 0x1f808, 0x1f80c,
8119c018
HS
2145 0x1f840, 0x1f844,
2146 0x1f84c, 0x1f84c,
ab4b583b
HS
2147 0x1fa84, 0x1fa90,
2148 0x1fac0, 0x1fac0,
2149 0x1fae0, 0x1fae0,
2150 0x1fb00, 0x1fb84,
2151 0x1fbc0, 0x1fbc8,
2152 0x1fc08, 0x1fc0c,
8119c018
HS
2153 0x1fc40, 0x1fc44,
2154 0x1fc4c, 0x1fc4c,
ab4b583b
HS
2155 0x1fe84, 0x1fe90,
2156 0x1fec0, 0x1fec0,
2157 0x1fee0, 0x1fee0,
2158 0x1ff00, 0x1ff84,
2159 0x1ffc0, 0x1ffc8,
8119c018
HS
2160 0x30000, 0x30030,
2161 0x30038, 0x30038,
2162 0x30040, 0x30040,
2163 0x30048, 0x30048,
2164 0x30050, 0x30050,
2165 0x3005c, 0x30060,
2166 0x30068, 0x30068,
2167 0x30070, 0x30070,
2168 0x30100, 0x30168,
2169 0x30190, 0x301a0,
2170 0x301a8, 0x301b8,
2171 0x301c4, 0x301c8,
2172 0x301d0, 0x301d0,
f109ff11 2173 0x30200, 0x30320,
8119c018
HS
2174 0x30400, 0x304b4,
2175 0x304c0, 0x3052c,
ab4b583b 2176 0x30540, 0x3061c,
8119c018 2177 0x30800, 0x308a0,
ab4b583b
HS
2178 0x308c0, 0x30908,
2179 0x30910, 0x309b8,
2180 0x30a00, 0x30a04,
8119c018
HS
2181 0x30a0c, 0x30a14,
2182 0x30a1c, 0x30a2c,
ab4b583b 2183 0x30a44, 0x30a50,
8119c018
HS
2184 0x30a74, 0x30a74,
2185 0x30a7c, 0x30afc,
2186 0x30b08, 0x30c24,
2187 0x30d00, 0x30d14,
2188 0x30d1c, 0x30d3c,
2189 0x30d44, 0x30d4c,
2190 0x30d54, 0x30d74,
2191 0x30d7c, 0x30d7c,
ab4b583b
HS
2192 0x30de0, 0x30de0,
2193 0x30e00, 0x30ed4,
2194 0x30f00, 0x30fa4,
2195 0x30fc0, 0x30fc4,
2196 0x31000, 0x31004,
2197 0x31080, 0x310fc,
2198 0x31208, 0x31220,
2199 0x3123c, 0x31254,
2200 0x31300, 0x31300,
2201 0x31308, 0x3131c,
2202 0x31338, 0x3133c,
2203 0x31380, 0x31380,
2204 0x31388, 0x313a8,
2205 0x313b4, 0x313b4,
2206 0x31400, 0x31420,
2207 0x31438, 0x3143c,
2208 0x31480, 0x31480,
2209 0x314a8, 0x314a8,
2210 0x314b0, 0x314b4,
2211 0x314c8, 0x314d4,
2212 0x31a40, 0x31a4c,
2213 0x31af0, 0x31b20,
2214 0x31b38, 0x31b3c,
2215 0x31b80, 0x31b80,
2216 0x31ba8, 0x31ba8,
2217 0x31bb0, 0x31bb4,
2218 0x31bc8, 0x31bd4,
2219 0x32140, 0x3218c,
8119c018
HS
2220 0x321f0, 0x321f4,
2221 0x32200, 0x32200,
ab4b583b
HS
2222 0x32218, 0x32218,
2223 0x32400, 0x32400,
2224 0x32408, 0x3241c,
2225 0x32618, 0x32620,
2226 0x32664, 0x32664,
2227 0x326a8, 0x326a8,
2228 0x326ec, 0x326ec,
2229 0x32a00, 0x32abc,
8119c018
HS
2230 0x32b00, 0x32b38,
2231 0x32b40, 0x32b58,
2232 0x32b60, 0x32b78,
ab4b583b
HS
2233 0x32c00, 0x32c00,
2234 0x32c08, 0x32c3c,
2235 0x32e00, 0x32e2c,
2236 0x32f00, 0x32f2c,
8119c018
HS
2237 0x33000, 0x3302c,
2238 0x33034, 0x33050,
2239 0x33058, 0x33058,
2240 0x33060, 0x3308c,
2241 0x3309c, 0x330ac,
2242 0x330c0, 0x330c0,
2243 0x330c8, 0x330d0,
2244 0x330d8, 0x330e0,
2245 0x330ec, 0x3312c,
2246 0x33134, 0x33150,
2247 0x33158, 0x33158,
2248 0x33160, 0x3318c,
2249 0x3319c, 0x331ac,
2250 0x331c0, 0x331c0,
2251 0x331c8, 0x331d0,
2252 0x331d8, 0x331e0,
2253 0x331ec, 0x33290,
2254 0x33298, 0x332c4,
2255 0x332e4, 0x33390,
2256 0x33398, 0x333c4,
2257 0x333e4, 0x3342c,
2258 0x33434, 0x33450,
2259 0x33458, 0x33458,
2260 0x33460, 0x3348c,
2261 0x3349c, 0x334ac,
2262 0x334c0, 0x334c0,
2263 0x334c8, 0x334d0,
2264 0x334d8, 0x334e0,
2265 0x334ec, 0x3352c,
2266 0x33534, 0x33550,
2267 0x33558, 0x33558,
2268 0x33560, 0x3358c,
2269 0x3359c, 0x335ac,
2270 0x335c0, 0x335c0,
2271 0x335c8, 0x335d0,
2272 0x335d8, 0x335e0,
2273 0x335ec, 0x33690,
2274 0x33698, 0x336c4,
2275 0x336e4, 0x33790,
2276 0x33798, 0x337c4,
ab4b583b
HS
2277 0x337e4, 0x337fc,
2278 0x33814, 0x33814,
2279 0x33854, 0x33868,
2280 0x33880, 0x3388c,
2281 0x338c0, 0x338d0,
2282 0x338e8, 0x338ec,
8119c018
HS
2283 0x33900, 0x3392c,
2284 0x33934, 0x33950,
2285 0x33958, 0x33958,
2286 0x33960, 0x3398c,
2287 0x3399c, 0x339ac,
2288 0x339c0, 0x339c0,
2289 0x339c8, 0x339d0,
2290 0x339d8, 0x339e0,
2291 0x339ec, 0x33a90,
2292 0x33a98, 0x33ac4,
ab4b583b 2293 0x33ae4, 0x33b10,
8119c018
HS
2294 0x33b24, 0x33b28,
2295 0x33b38, 0x33b50,
ab4b583b 2296 0x33bf0, 0x33c10,
8119c018
HS
2297 0x33c24, 0x33c28,
2298 0x33c38, 0x33c50,
ab4b583b 2299 0x33cf0, 0x33cfc,
8119c018
HS
2300 0x34000, 0x34030,
2301 0x34038, 0x34038,
2302 0x34040, 0x34040,
2303 0x34048, 0x34048,
2304 0x34050, 0x34050,
2305 0x3405c, 0x34060,
2306 0x34068, 0x34068,
2307 0x34070, 0x34070,
2308 0x34100, 0x34168,
2309 0x34190, 0x341a0,
2310 0x341a8, 0x341b8,
2311 0x341c4, 0x341c8,
2312 0x341d0, 0x341d0,
f109ff11 2313 0x34200, 0x34320,
8119c018
HS
2314 0x34400, 0x344b4,
2315 0x344c0, 0x3452c,
ab4b583b 2316 0x34540, 0x3461c,
8119c018 2317 0x34800, 0x348a0,
ab4b583b
HS
2318 0x348c0, 0x34908,
2319 0x34910, 0x349b8,
2320 0x34a00, 0x34a04,
8119c018
HS
2321 0x34a0c, 0x34a14,
2322 0x34a1c, 0x34a2c,
ab4b583b 2323 0x34a44, 0x34a50,
8119c018
HS
2324 0x34a74, 0x34a74,
2325 0x34a7c, 0x34afc,
2326 0x34b08, 0x34c24,
2327 0x34d00, 0x34d14,
2328 0x34d1c, 0x34d3c,
2329 0x34d44, 0x34d4c,
2330 0x34d54, 0x34d74,
2331 0x34d7c, 0x34d7c,
ab4b583b
HS
2332 0x34de0, 0x34de0,
2333 0x34e00, 0x34ed4,
2334 0x34f00, 0x34fa4,
2335 0x34fc0, 0x34fc4,
2336 0x35000, 0x35004,
2337 0x35080, 0x350fc,
2338 0x35208, 0x35220,
2339 0x3523c, 0x35254,
2340 0x35300, 0x35300,
2341 0x35308, 0x3531c,
2342 0x35338, 0x3533c,
2343 0x35380, 0x35380,
2344 0x35388, 0x353a8,
2345 0x353b4, 0x353b4,
2346 0x35400, 0x35420,
2347 0x35438, 0x3543c,
2348 0x35480, 0x35480,
2349 0x354a8, 0x354a8,
2350 0x354b0, 0x354b4,
2351 0x354c8, 0x354d4,
2352 0x35a40, 0x35a4c,
2353 0x35af0, 0x35b20,
2354 0x35b38, 0x35b3c,
2355 0x35b80, 0x35b80,
2356 0x35ba8, 0x35ba8,
2357 0x35bb0, 0x35bb4,
2358 0x35bc8, 0x35bd4,
2359 0x36140, 0x3618c,
8119c018
HS
2360 0x361f0, 0x361f4,
2361 0x36200, 0x36200,
ab4b583b
HS
2362 0x36218, 0x36218,
2363 0x36400, 0x36400,
2364 0x36408, 0x3641c,
2365 0x36618, 0x36620,
2366 0x36664, 0x36664,
2367 0x366a8, 0x366a8,
2368 0x366ec, 0x366ec,
2369 0x36a00, 0x36abc,
8119c018
HS
2370 0x36b00, 0x36b38,
2371 0x36b40, 0x36b58,
2372 0x36b60, 0x36b78,
ab4b583b
HS
2373 0x36c00, 0x36c00,
2374 0x36c08, 0x36c3c,
2375 0x36e00, 0x36e2c,
2376 0x36f00, 0x36f2c,
8119c018
HS
2377 0x37000, 0x3702c,
2378 0x37034, 0x37050,
2379 0x37058, 0x37058,
2380 0x37060, 0x3708c,
2381 0x3709c, 0x370ac,
2382 0x370c0, 0x370c0,
2383 0x370c8, 0x370d0,
2384 0x370d8, 0x370e0,
2385 0x370ec, 0x3712c,
2386 0x37134, 0x37150,
2387 0x37158, 0x37158,
2388 0x37160, 0x3718c,
2389 0x3719c, 0x371ac,
2390 0x371c0, 0x371c0,
2391 0x371c8, 0x371d0,
2392 0x371d8, 0x371e0,
2393 0x371ec, 0x37290,
2394 0x37298, 0x372c4,
2395 0x372e4, 0x37390,
2396 0x37398, 0x373c4,
2397 0x373e4, 0x3742c,
2398 0x37434, 0x37450,
2399 0x37458, 0x37458,
2400 0x37460, 0x3748c,
2401 0x3749c, 0x374ac,
2402 0x374c0, 0x374c0,
2403 0x374c8, 0x374d0,
2404 0x374d8, 0x374e0,
2405 0x374ec, 0x3752c,
2406 0x37534, 0x37550,
2407 0x37558, 0x37558,
2408 0x37560, 0x3758c,
2409 0x3759c, 0x375ac,
2410 0x375c0, 0x375c0,
2411 0x375c8, 0x375d0,
2412 0x375d8, 0x375e0,
2413 0x375ec, 0x37690,
2414 0x37698, 0x376c4,
2415 0x376e4, 0x37790,
2416 0x37798, 0x377c4,
ab4b583b
HS
2417 0x377e4, 0x377fc,
2418 0x37814, 0x37814,
2419 0x37854, 0x37868,
2420 0x37880, 0x3788c,
2421 0x378c0, 0x378d0,
2422 0x378e8, 0x378ec,
8119c018
HS
2423 0x37900, 0x3792c,
2424 0x37934, 0x37950,
2425 0x37958, 0x37958,
2426 0x37960, 0x3798c,
2427 0x3799c, 0x379ac,
2428 0x379c0, 0x379c0,
2429 0x379c8, 0x379d0,
2430 0x379d8, 0x379e0,
2431 0x379ec, 0x37a90,
2432 0x37a98, 0x37ac4,
ab4b583b 2433 0x37ae4, 0x37b10,
8119c018
HS
2434 0x37b24, 0x37b28,
2435 0x37b38, 0x37b50,
ab4b583b 2436 0x37bf0, 0x37c10,
8119c018
HS
2437 0x37c24, 0x37c28,
2438 0x37c38, 0x37c50,
ab4b583b
HS
2439 0x37cf0, 0x37cfc,
2440 0x40040, 0x40040,
2441 0x40080, 0x40084,
2442 0x40100, 0x40100,
2443 0x40140, 0x401bc,
2444 0x40200, 0x40214,
2445 0x40228, 0x40228,
2446 0x40240, 0x40258,
2447 0x40280, 0x40280,
2448 0x40304, 0x40304,
2449 0x40330, 0x4033c,
676d6a75
HS
2450 0x41304, 0x413b8,
2451 0x413c0, 0x413c8,
8119c018
HS
2452 0x413d0, 0x413dc,
2453 0x413f0, 0x413f0,
2454 0x41400, 0x4140c,
2455 0x41414, 0x4141c,
ab4b583b
HS
2456 0x41480, 0x414d0,
2457 0x44000, 0x4407c,
8119c018
HS
2458 0x440c0, 0x441ac,
2459 0x441b4, 0x4427c,
2460 0x442c0, 0x443ac,
2461 0x443b4, 0x4447c,
2462 0x444c0, 0x445ac,
2463 0x445b4, 0x4467c,
2464 0x446c0, 0x447ac,
2465 0x447b4, 0x4487c,
2466 0x448c0, 0x449ac,
2467 0x449b4, 0x44a7c,
2468 0x44ac0, 0x44bac,
2469 0x44bb4, 0x44c7c,
2470 0x44cc0, 0x44dac,
2471 0x44db4, 0x44e7c,
2472 0x44ec0, 0x44fac,
2473 0x44fb4, 0x4507c,
2474 0x450c0, 0x451ac,
2475 0x451b4, 0x451fc,
2476 0x45800, 0x45804,
2477 0x45810, 0x45830,
2478 0x45840, 0x45860,
2479 0x45868, 0x45868,
ab4b583b
HS
2480 0x45880, 0x45884,
2481 0x458a0, 0x458b0,
8119c018
HS
2482 0x45a00, 0x45a04,
2483 0x45a10, 0x45a30,
2484 0x45a40, 0x45a60,
2485 0x45a68, 0x45a68,
ab4b583b
HS
2486 0x45a80, 0x45a84,
2487 0x45aa0, 0x45ab0,
2488 0x460c0, 0x460e4,
8119c018
HS
2489 0x47000, 0x4703c,
2490 0x47044, 0x4708c,
ab4b583b 2491 0x47200, 0x47250,
8119c018
HS
2492 0x47400, 0x47408,
2493 0x47414, 0x47420,
ab4b583b 2494 0x47600, 0x47618,
8119c018
HS
2495 0x47800, 0x47814,
2496 0x47820, 0x4782c,
2497 0x50000, 0x50084,
2498 0x50090, 0x500cc,
2499 0x50300, 0x50384,
ab4b583b 2500 0x50400, 0x50400,
8119c018
HS
2501 0x50800, 0x50884,
2502 0x50890, 0x508cc,
2503 0x50b00, 0x50b84,
ab4b583b 2504 0x50c00, 0x50c00,
8119c018
HS
2505 0x51000, 0x51020,
2506 0x51028, 0x510b0,
ab4b583b
HS
2507 0x51300, 0x51324,
2508 };
2509
812034f1
HS
2510 u32 *buf_end = (u32 *)((char *)buf + buf_size);
2511 const unsigned int *reg_ranges;
2512 int reg_ranges_size, range;
2513 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
2514
2515 /* Select the right set of register ranges to dump depending on the
2516 * adapter chip type.
2517 */
2518 switch (chip_version) {
2519 case CHELSIO_T4:
2520 reg_ranges = t4_reg_ranges;
2521 reg_ranges_size = ARRAY_SIZE(t4_reg_ranges);
2522 break;
2523
2524 case CHELSIO_T5:
2525 reg_ranges = t5_reg_ranges;
2526 reg_ranges_size = ARRAY_SIZE(t5_reg_ranges);
2527 break;
2528
ab4b583b
HS
2529 case CHELSIO_T6:
2530 reg_ranges = t6_reg_ranges;
2531 reg_ranges_size = ARRAY_SIZE(t6_reg_ranges);
2532 break;
2533
812034f1
HS
2534 default:
2535 dev_err(adap->pdev_dev,
2536 "Unsupported chip version %d\n", chip_version);
2537 return;
2538 }
2539
2540 /* Clear the register buffer and insert the appropriate register
2541 * values selected by the above register ranges.
2542 */
2543 memset(buf, 0, buf_size);
2544 for (range = 0; range < reg_ranges_size; range += 2) {
2545 unsigned int reg = reg_ranges[range];
2546 unsigned int last_reg = reg_ranges[range + 1];
2547 u32 *bufp = (u32 *)((char *)buf + reg);
2548
2549 /* Iterate across the register range filling in the register
2550 * buffer but don't write past the end of the register buffer.
2551 */
2552 while (reg <= last_reg && bufp < buf_end) {
2553 *bufp++ = t4_read_reg(adap, reg);
2554 reg += sizeof(u32);
2555 }
2556 }
2557}
2558
56d36be4 2559#define EEPROM_STAT_ADDR 0x7bfc
67e65879 2560#define VPD_SIZE 0x800
47ce9c48
SR
2561#define VPD_BASE 0x400
2562#define VPD_BASE_OLD 0
0a57a536 2563#define VPD_LEN 1024
63a92fe6 2564#define CHELSIO_VPD_UNIQUE_ID 0x82
56d36be4
DM
2565
2566/**
2567 * t4_seeprom_wp - enable/disable EEPROM write protection
2568 * @adapter: the adapter
2569 * @enable: whether to enable or disable write protection
2570 *
2571 * Enables or disables write protection on the serial EEPROM.
2572 */
2573int t4_seeprom_wp(struct adapter *adapter, bool enable)
2574{
2575 unsigned int v = enable ? 0xc : 0;
2576 int ret = pci_write_vpd(adapter->pdev, EEPROM_STAT_ADDR, 4, &v);
2577 return ret < 0 ? ret : 0;
2578}
2579
2580/**
098ef6c2 2581 * t4_get_raw_vpd_params - read VPD parameters from VPD EEPROM
56d36be4
DM
2582 * @adapter: adapter to read
2583 * @p: where to store the parameters
2584 *
2585 * Reads card parameters stored in VPD EEPROM.
2586 */
098ef6c2 2587int t4_get_raw_vpd_params(struct adapter *adapter, struct vpd_params *p)
56d36be4 2588{
098ef6c2
HS
2589 int i, ret = 0, addr;
2590 int ec, sn, pn, na;
8c357ebd 2591 u8 *vpd, csum;
23d88e1d 2592 unsigned int vpdr_len, kw_offset, id_len;
56d36be4 2593
8c357ebd
VP
2594 vpd = vmalloc(VPD_LEN);
2595 if (!vpd)
2596 return -ENOMEM;
2597
67e65879
HS
2598 /* We have two VPD data structures stored in the adapter VPD area.
2599 * By default, Linux calculates the size of the VPD area by traversing
2600 * the first VPD area at offset 0x0, so we need to tell the OS what
2601 * our real VPD size is.
2602 */
2603 ret = pci_set_vpd_size(adapter->pdev, VPD_SIZE);
2604 if (ret < 0)
2605 goto out;
2606
098ef6c2
HS
2607 /* Card information normally starts at VPD_BASE but early cards had
2608 * it at 0.
2609 */
47ce9c48
SR
2610 ret = pci_read_vpd(adapter->pdev, VPD_BASE, sizeof(u32), vpd);
2611 if (ret < 0)
2612 goto out;
63a92fe6
HS
2613
2614 /* The VPD shall have a unique identifier specified by the PCI SIG.
2615 * For chelsio adapters, the identifier is 0x82. The first byte of a VPD
2616 * shall be CHELSIO_VPD_UNIQUE_ID (0x82). The VPD programming software
2617 * is expected to automatically put this entry at the
2618 * beginning of the VPD.
2619 */
2620 addr = *vpd == CHELSIO_VPD_UNIQUE_ID ? VPD_BASE : VPD_BASE_OLD;
47ce9c48
SR
2621
2622 ret = pci_read_vpd(adapter->pdev, addr, VPD_LEN, vpd);
56d36be4 2623 if (ret < 0)
8c357ebd 2624 goto out;
56d36be4 2625
23d88e1d
DM
2626 if (vpd[0] != PCI_VPD_LRDT_ID_STRING) {
2627 dev_err(adapter->pdev_dev, "missing VPD ID string\n");
8c357ebd
VP
2628 ret = -EINVAL;
2629 goto out;
23d88e1d
DM
2630 }
2631
2632 id_len = pci_vpd_lrdt_size(vpd);
2633 if (id_len > ID_LEN)
2634 id_len = ID_LEN;
2635
2636 i = pci_vpd_find_tag(vpd, 0, VPD_LEN, PCI_VPD_LRDT_RO_DATA);
2637 if (i < 0) {
2638 dev_err(adapter->pdev_dev, "missing VPD-R section\n");
8c357ebd
VP
2639 ret = -EINVAL;
2640 goto out;
23d88e1d
DM
2641 }
2642
2643 vpdr_len = pci_vpd_lrdt_size(&vpd[i]);
2644 kw_offset = i + PCI_VPD_LRDT_TAG_SIZE;
2645 if (vpdr_len + kw_offset > VPD_LEN) {
226ec5fd 2646 dev_err(adapter->pdev_dev, "bad VPD-R length %u\n", vpdr_len);
8c357ebd
VP
2647 ret = -EINVAL;
2648 goto out;
226ec5fd
DM
2649 }
2650
2651#define FIND_VPD_KW(var, name) do { \
23d88e1d 2652 var = pci_vpd_find_info_keyword(vpd, kw_offset, vpdr_len, name); \
226ec5fd
DM
2653 if (var < 0) { \
2654 dev_err(adapter->pdev_dev, "missing VPD keyword " name "\n"); \
8c357ebd
VP
2655 ret = -EINVAL; \
2656 goto out; \
226ec5fd
DM
2657 } \
2658 var += PCI_VPD_INFO_FLD_HDR_SIZE; \
2659} while (0)
2660
2661 FIND_VPD_KW(i, "RV");
2662 for (csum = 0; i >= 0; i--)
2663 csum += vpd[i];
56d36be4
DM
2664
2665 if (csum) {
2666 dev_err(adapter->pdev_dev,
2667 "corrupted VPD EEPROM, actual csum %u\n", csum);
8c357ebd
VP
2668 ret = -EINVAL;
2669 goto out;
56d36be4
DM
2670 }
2671
226ec5fd
DM
2672 FIND_VPD_KW(ec, "EC");
2673 FIND_VPD_KW(sn, "SN");
a94cd705 2674 FIND_VPD_KW(pn, "PN");
098ef6c2 2675 FIND_VPD_KW(na, "NA");
226ec5fd
DM
2676#undef FIND_VPD_KW
2677
23d88e1d 2678 memcpy(p->id, vpd + PCI_VPD_LRDT_TAG_SIZE, id_len);
56d36be4 2679 strim(p->id);
226ec5fd 2680 memcpy(p->ec, vpd + ec, EC_LEN);
56d36be4 2681 strim(p->ec);
226ec5fd
DM
2682 i = pci_vpd_info_field_size(vpd + sn - PCI_VPD_INFO_FLD_HDR_SIZE);
2683 memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
56d36be4 2684 strim(p->sn);
63a92fe6 2685 i = pci_vpd_info_field_size(vpd + pn - PCI_VPD_INFO_FLD_HDR_SIZE);
a94cd705
KS
2686 memcpy(p->pn, vpd + pn, min(i, PN_LEN));
2687 strim(p->pn);
098ef6c2
HS
2688 memcpy(p->na, vpd + na, min(i, MACADDR_LEN));
2689 strim((char *)p->na);
636f9d37 2690
098ef6c2
HS
2691out:
2692 vfree(vpd);
2693 return ret;
2694}
2695
2696/**
2697 * t4_get_vpd_params - read VPD parameters & retrieve Core Clock
2698 * @adapter: adapter to read
2699 * @p: where to store the parameters
2700 *
2701 * Reads card parameters stored in VPD EEPROM and retrieves the Core
2702 * Clock. This can only be called after a connection to the firmware
2703 * is established.
2704 */
2705int t4_get_vpd_params(struct adapter *adapter, struct vpd_params *p)
2706{
2707 u32 cclk_param, cclk_val;
2708 int ret;
2709
2710 /* Grab the raw VPD parameters.
2711 */
2712 ret = t4_get_raw_vpd_params(adapter, p);
2713 if (ret)
2714 return ret;
2715
2716 /* Ask firmware for the Core Clock since it knows how to translate the
636f9d37
VP
2717 * Reference Clock ('V2') VPD field into a Core Clock value ...
2718 */
5167865a
HS
2719 cclk_param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
2720 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CCLK));
098ef6c2 2721 ret = t4_query_params(adapter, adapter->mbox, adapter->pf, 0,
636f9d37 2722 1, &cclk_param, &cclk_val);
8c357ebd 2723
636f9d37
VP
2724 if (ret)
2725 return ret;
2726 p->cclk = cclk_val;
2727
56d36be4
DM
2728 return 0;
2729}
2730
2731/* serial flash and firmware constants */
2732enum {
2733 SF_ATTEMPTS = 10, /* max retries for SF operations */
2734
2735 /* flash command opcodes */
2736 SF_PROG_PAGE = 2, /* program page */
2737 SF_WR_DISABLE = 4, /* disable writes */
2738 SF_RD_STATUS = 5, /* read status register */
2739 SF_WR_ENABLE = 6, /* enable writes */
2740 SF_RD_DATA_FAST = 0xb, /* read flash */
900a6596 2741 SF_RD_ID = 0x9f, /* read ID */
56d36be4
DM
2742 SF_ERASE_SECTOR = 0xd8, /* erase sector */
2743
6f1d7210 2744 FW_MAX_SIZE = 16 * SF_SEC_SIZE,
56d36be4
DM
2745};
2746
2747/**
2748 * sf1_read - read data from the serial flash
2749 * @adapter: the adapter
2750 * @byte_cnt: number of bytes to read
2751 * @cont: whether another operation will be chained
2752 * @lock: whether to lock SF for PL access only
2753 * @valp: where to store the read data
2754 *
2755 * Reads up to 4 bytes of data from the serial flash. The location of
2756 * the read needs to be specified prior to calling this by issuing the
2757 * appropriate commands to the serial flash.
2758 */
2759static int sf1_read(struct adapter *adapter, unsigned int byte_cnt, int cont,
2760 int lock, u32 *valp)
2761{
2762 int ret;
2763
2764 if (!byte_cnt || byte_cnt > 4)
2765 return -EINVAL;
0d804338 2766 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
56d36be4 2767 return -EBUSY;
0d804338
HS
2768 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2769 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1));
2770 ret = t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
56d36be4 2771 if (!ret)
0d804338 2772 *valp = t4_read_reg(adapter, SF_DATA_A);
56d36be4
DM
2773 return ret;
2774}
2775
2776/**
2777 * sf1_write - write data to the serial flash
2778 * @adapter: the adapter
2779 * @byte_cnt: number of bytes to write
2780 * @cont: whether another operation will be chained
2781 * @lock: whether to lock SF for PL access only
2782 * @val: value to write
2783 *
2784 * Writes up to 4 bytes of data to the serial flash. The location of
2785 * the write needs to be specified prior to calling this by issuing the
2786 * appropriate commands to the serial flash.
2787 */
2788static int sf1_write(struct adapter *adapter, unsigned int byte_cnt, int cont,
2789 int lock, u32 val)
2790{
2791 if (!byte_cnt || byte_cnt > 4)
2792 return -EINVAL;
0d804338 2793 if (t4_read_reg(adapter, SF_OP_A) & SF_BUSY_F)
56d36be4 2794 return -EBUSY;
0d804338
HS
2795 t4_write_reg(adapter, SF_DATA_A, val);
2796 t4_write_reg(adapter, SF_OP_A, SF_LOCK_V(lock) |
2797 SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) | OP_V(1));
2798 return t4_wait_op_done(adapter, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS, 5);
56d36be4
DM
2799}
2800
2801/**
2802 * flash_wait_op - wait for a flash operation to complete
2803 * @adapter: the adapter
2804 * @attempts: max number of polls of the status register
2805 * @delay: delay between polls in ms
2806 *
2807 * Wait for a flash operation to complete by polling the status register.
2808 */
2809static int flash_wait_op(struct adapter *adapter, int attempts, int delay)
2810{
2811 int ret;
2812 u32 status;
2813
2814 while (1) {
2815 if ((ret = sf1_write(adapter, 1, 1, 1, SF_RD_STATUS)) != 0 ||
2816 (ret = sf1_read(adapter, 1, 0, 1, &status)) != 0)
2817 return ret;
2818 if (!(status & 1))
2819 return 0;
2820 if (--attempts == 0)
2821 return -EAGAIN;
2822 if (delay)
2823 msleep(delay);
2824 }
2825}
2826
2827/**
2828 * t4_read_flash - read words from serial flash
2829 * @adapter: the adapter
2830 * @addr: the start address for the read
2831 * @nwords: how many 32-bit words to read
2832 * @data: where to store the read data
2833 * @byte_oriented: whether to store data as bytes or as words
2834 *
2835 * Read the specified number of 32-bit words from the serial flash.
2836 * If @byte_oriented is set the read data is stored as a byte array
2837 * (i.e., big-endian), otherwise as 32-bit words in the platform's
dbedd44e 2838 * natural endianness.
56d36be4 2839 */
49216c1c
HS
2840int t4_read_flash(struct adapter *adapter, unsigned int addr,
2841 unsigned int nwords, u32 *data, int byte_oriented)
56d36be4
DM
2842{
2843 int ret;
2844
900a6596 2845 if (addr + nwords * sizeof(u32) > adapter->params.sf_size || (addr & 3))
56d36be4
DM
2846 return -EINVAL;
2847
2848 addr = swab32(addr) | SF_RD_DATA_FAST;
2849
2850 if ((ret = sf1_write(adapter, 4, 1, 0, addr)) != 0 ||
2851 (ret = sf1_read(adapter, 1, 1, 0, data)) != 0)
2852 return ret;
2853
2854 for ( ; nwords; nwords--, data++) {
2855 ret = sf1_read(adapter, 4, nwords > 1, nwords == 1, data);
2856 if (nwords == 1)
0d804338 2857 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
56d36be4
DM
2858 if (ret)
2859 return ret;
2860 if (byte_oriented)
f404f80c 2861 *data = (__force __u32)(cpu_to_be32(*data));
56d36be4
DM
2862 }
2863 return 0;
2864}
2865
2866/**
2867 * t4_write_flash - write up to a page of data to the serial flash
2868 * @adapter: the adapter
2869 * @addr: the start address to write
2870 * @n: length of data to write in bytes
2871 * @data: the data to write
2872 *
2873 * Writes up to a page of data (256 bytes) to the serial flash starting
2874 * at the given address. All the data must be written to the same page.
2875 */
2876static int t4_write_flash(struct adapter *adapter, unsigned int addr,
2877 unsigned int n, const u8 *data)
2878{
2879 int ret;
2880 u32 buf[64];
2881 unsigned int i, c, left, val, offset = addr & 0xff;
2882
900a6596 2883 if (addr >= adapter->params.sf_size || offset + n > SF_PAGE_SIZE)
56d36be4
DM
2884 return -EINVAL;
2885
2886 val = swab32(addr) | SF_PROG_PAGE;
2887
2888 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
2889 (ret = sf1_write(adapter, 4, 1, 1, val)) != 0)
2890 goto unlock;
2891
2892 for (left = n; left; left -= c) {
2893 c = min(left, 4U);
2894 for (val = 0, i = 0; i < c; ++i)
2895 val = (val << 8) + *data++;
2896
2897 ret = sf1_write(adapter, c, c != left, 1, val);
2898 if (ret)
2899 goto unlock;
2900 }
900a6596 2901 ret = flash_wait_op(adapter, 8, 1);
56d36be4
DM
2902 if (ret)
2903 goto unlock;
2904
0d804338 2905 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
56d36be4
DM
2906
2907 /* Read the page to verify the write succeeded */
2908 ret = t4_read_flash(adapter, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
2909 if (ret)
2910 return ret;
2911
2912 if (memcmp(data - n, (u8 *)buf + offset, n)) {
2913 dev_err(adapter->pdev_dev,
2914 "failed to correctly write the flash page at %#x\n",
2915 addr);
2916 return -EIO;
2917 }
2918 return 0;
2919
2920unlock:
0d804338 2921 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
56d36be4
DM
2922 return ret;
2923}
2924
2925/**
16e47624 2926 * t4_get_fw_version - read the firmware version
56d36be4
DM
2927 * @adapter: the adapter
2928 * @vers: where to place the version
2929 *
2930 * Reads the FW version from flash.
2931 */
16e47624 2932int t4_get_fw_version(struct adapter *adapter, u32 *vers)
56d36be4 2933{
16e47624
HS
2934 return t4_read_flash(adapter, FLASH_FW_START +
2935 offsetof(struct fw_hdr, fw_ver), 1,
2936 vers, 0);
56d36be4
DM
2937}
2938
2939/**
16e47624 2940 * t4_get_tp_version - read the TP microcode version
56d36be4
DM
2941 * @adapter: the adapter
2942 * @vers: where to place the version
2943 *
2944 * Reads the TP microcode version from flash.
2945 */
16e47624 2946int t4_get_tp_version(struct adapter *adapter, u32 *vers)
56d36be4 2947{
16e47624 2948 return t4_read_flash(adapter, FLASH_FW_START +
900a6596 2949 offsetof(struct fw_hdr, tp_microcode_ver),
56d36be4
DM
2950 1, vers, 0);
2951}
2952
ba3f8cd5
HS
2953/**
2954 * t4_get_exprom_version - return the Expansion ROM version (if any)
2955 * @adapter: the adapter
2956 * @vers: where to place the version
2957 *
2958 * Reads the Expansion ROM header from FLASH and returns the version
2959 * number (if present) through the @vers return value pointer. We return
2960 * this in the Firmware Version Format since it's convenient. Return
2961 * 0 on success, -ENOENT if no Expansion ROM is present.
2962 */
2963int t4_get_exprom_version(struct adapter *adap, u32 *vers)
2964{
2965 struct exprom_header {
2966 unsigned char hdr_arr[16]; /* must start with 0x55aa */
2967 unsigned char hdr_ver[4]; /* Expansion ROM version */
2968 } *hdr;
2969 u32 exprom_header_buf[DIV_ROUND_UP(sizeof(struct exprom_header),
2970 sizeof(u32))];
2971 int ret;
2972
2973 ret = t4_read_flash(adap, FLASH_EXP_ROM_START,
2974 ARRAY_SIZE(exprom_header_buf), exprom_header_buf,
2975 0);
2976 if (ret)
2977 return ret;
2978
2979 hdr = (struct exprom_header *)exprom_header_buf;
2980 if (hdr->hdr_arr[0] != 0x55 || hdr->hdr_arr[1] != 0xaa)
2981 return -ENOENT;
2982
2983 *vers = (FW_HDR_FW_VER_MAJOR_V(hdr->hdr_ver[0]) |
2984 FW_HDR_FW_VER_MINOR_V(hdr->hdr_ver[1]) |
2985 FW_HDR_FW_VER_MICRO_V(hdr->hdr_ver[2]) |
2986 FW_HDR_FW_VER_BUILD_V(hdr->hdr_ver[3]));
2987 return 0;
2988}
2989
a69265e9
HS
2990/**
2991 * t4_check_fw_version - check if the FW is supported with this driver
2992 * @adap: the adapter
2993 *
2994 * Checks if an adapter's FW is compatible with the driver. Returns 0
2995 * if there's exact match, a negative error if the version could not be
2996 * read or there's a major version mismatch
2997 */
2998int t4_check_fw_version(struct adapter *adap)
2999{
21d11bd6 3000 int i, ret, major, minor, micro;
a69265e9
HS
3001 int exp_major, exp_minor, exp_micro;
3002 unsigned int chip_version = CHELSIO_CHIP_VERSION(adap->params.chip);
3003
3004 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
21d11bd6
HS
3005 /* Try multiple times before returning error */
3006 for (i = 0; (ret == -EBUSY || ret == -EAGAIN) && i < 3; i++)
3007 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
3008
a69265e9
HS
3009 if (ret)
3010 return ret;
3011
3012 major = FW_HDR_FW_VER_MAJOR_G(adap->params.fw_vers);
3013 minor = FW_HDR_FW_VER_MINOR_G(adap->params.fw_vers);
3014 micro = FW_HDR_FW_VER_MICRO_G(adap->params.fw_vers);
3015
3016 switch (chip_version) {
3017 case CHELSIO_T4:
3018 exp_major = T4FW_MIN_VERSION_MAJOR;
3019 exp_minor = T4FW_MIN_VERSION_MINOR;
3020 exp_micro = T4FW_MIN_VERSION_MICRO;
3021 break;
3022 case CHELSIO_T5:
3023 exp_major = T5FW_MIN_VERSION_MAJOR;
3024 exp_minor = T5FW_MIN_VERSION_MINOR;
3025 exp_micro = T5FW_MIN_VERSION_MICRO;
3026 break;
3027 case CHELSIO_T6:
3028 exp_major = T6FW_MIN_VERSION_MAJOR;
3029 exp_minor = T6FW_MIN_VERSION_MINOR;
3030 exp_micro = T6FW_MIN_VERSION_MICRO;
3031 break;
3032 default:
3033 dev_err(adap->pdev_dev, "Unsupported chip type, %x\n",
3034 adap->chip);
3035 return -EINVAL;
3036 }
3037
3038 if (major < exp_major || (major == exp_major && minor < exp_minor) ||
3039 (major == exp_major && minor == exp_minor && micro < exp_micro)) {
3040 dev_err(adap->pdev_dev,
3041 "Card has firmware version %u.%u.%u, minimum "
3042 "supported firmware is %u.%u.%u.\n", major, minor,
3043 micro, exp_major, exp_minor, exp_micro);
3044 return -EFAULT;
3045 }
3046 return 0;
3047}
3048
16e47624
HS
3049/* Is the given firmware API compatible with the one the driver was compiled
3050 * with?
56d36be4 3051 */
16e47624 3052static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
56d36be4 3053{
56d36be4 3054
16e47624
HS
3055 /* short circuit if it's the exact same firmware version */
3056 if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
3057 return 1;
56d36be4 3058
16e47624
HS
3059#define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
3060 if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
3061 SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
3062 return 1;
3063#undef SAME_INTF
0a57a536 3064
16e47624
HS
3065 return 0;
3066}
56d36be4 3067
16e47624
HS
3068/* The firmware in the filesystem is usable, but should it be installed?
3069 * This routine explains itself in detail if it indicates the filesystem
3070 * firmware should be installed.
3071 */
3072static int should_install_fs_fw(struct adapter *adap, int card_fw_usable,
3073 int k, int c)
3074{
3075 const char *reason;
3076
3077 if (!card_fw_usable) {
3078 reason = "incompatible or unusable";
3079 goto install;
e69972f5
JH
3080 }
3081
16e47624
HS
3082 if (k > c) {
3083 reason = "older than the version supported with this driver";
3084 goto install;
56d36be4
DM
3085 }
3086
16e47624
HS
3087 return 0;
3088
3089install:
3090 dev_err(adap->pdev_dev, "firmware on card (%u.%u.%u.%u) is %s, "
3091 "installing firmware %u.%u.%u.%u on card.\n",
b2e1a3f0
HS
3092 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3093 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
3094 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3095 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
56d36be4 3096
56d36be4
DM
3097 return 1;
3098}
3099
16e47624
HS
3100int t4_prep_fw(struct adapter *adap, struct fw_info *fw_info,
3101 const u8 *fw_data, unsigned int fw_size,
3102 struct fw_hdr *card_fw, enum dev_state state,
3103 int *reset)
3104{
3105 int ret, card_fw_usable, fs_fw_usable;
3106 const struct fw_hdr *fs_fw;
3107 const struct fw_hdr *drv_fw;
3108
3109 drv_fw = &fw_info->fw_hdr;
3110
3111 /* Read the header of the firmware on the card */
3112 ret = -t4_read_flash(adap, FLASH_FW_START,
3113 sizeof(*card_fw) / sizeof(uint32_t),
3114 (uint32_t *)card_fw, 1);
3115 if (ret == 0) {
3116 card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
3117 } else {
3118 dev_err(adap->pdev_dev,
3119 "Unable to read card's firmware header: %d\n", ret);
3120 card_fw_usable = 0;
3121 }
3122
3123 if (fw_data != NULL) {
3124 fs_fw = (const void *)fw_data;
3125 fs_fw_usable = fw_compatible(drv_fw, fs_fw);
3126 } else {
3127 fs_fw = NULL;
3128 fs_fw_usable = 0;
3129 }
3130
3131 if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
3132 (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
3133 /* Common case: the firmware on the card is an exact match and
3134 * the filesystem one is an exact match too, or the filesystem
3135 * one is absent/incompatible.
3136 */
3137 } else if (fs_fw_usable && state == DEV_STATE_UNINIT &&
3138 should_install_fs_fw(adap, card_fw_usable,
3139 be32_to_cpu(fs_fw->fw_ver),
3140 be32_to_cpu(card_fw->fw_ver))) {
3141 ret = -t4_fw_upgrade(adap, adap->mbox, fw_data,
3142 fw_size, 0);
3143 if (ret != 0) {
3144 dev_err(adap->pdev_dev,
3145 "failed to install firmware: %d\n", ret);
3146 goto bye;
3147 }
3148
3149 /* Installed successfully, update the cached header too. */
e3d50738 3150 *card_fw = *fs_fw;
16e47624
HS
3151 card_fw_usable = 1;
3152 *reset = 0; /* already reset as part of load_fw */
3153 }
3154
3155 if (!card_fw_usable) {
3156 uint32_t d, c, k;
3157
3158 d = be32_to_cpu(drv_fw->fw_ver);
3159 c = be32_to_cpu(card_fw->fw_ver);
3160 k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
3161
3162 dev_err(adap->pdev_dev, "Cannot find a usable firmware: "
3163 "chip state %d, "
3164 "driver compiled with %d.%d.%d.%d, "
3165 "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
3166 state,
b2e1a3f0
HS
3167 FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
3168 FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
3169 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
3170 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
3171 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
3172 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
16e47624
HS
3173 ret = EINVAL;
3174 goto bye;
3175 }
3176
3177 /* We're using whatever's on the card and it's known to be good. */
3178 adap->params.fw_vers = be32_to_cpu(card_fw->fw_ver);
3179 adap->params.tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
3180
3181bye:
3182 return ret;
3183}
3184
56d36be4
DM
3185/**
3186 * t4_flash_erase_sectors - erase a range of flash sectors
3187 * @adapter: the adapter
3188 * @start: the first sector to erase
3189 * @end: the last sector to erase
3190 *
3191 * Erases the sectors in the given inclusive range.
3192 */
3193static int t4_flash_erase_sectors(struct adapter *adapter, int start, int end)
3194{
3195 int ret = 0;
3196
c0d5b8cf
HS
3197 if (end >= adapter->params.sf_nsec)
3198 return -EINVAL;
3199
56d36be4
DM
3200 while (start <= end) {
3201 if ((ret = sf1_write(adapter, 1, 0, 1, SF_WR_ENABLE)) != 0 ||
3202 (ret = sf1_write(adapter, 4, 0, 1,
3203 SF_ERASE_SECTOR | (start << 8))) != 0 ||
900a6596 3204 (ret = flash_wait_op(adapter, 14, 500)) != 0) {
56d36be4
DM
3205 dev_err(adapter->pdev_dev,
3206 "erase of flash sector %d failed, error %d\n",
3207 start, ret);
3208 break;
3209 }
3210 start++;
3211 }
0d804338 3212 t4_write_reg(adapter, SF_OP_A, 0); /* unlock SF */
56d36be4
DM
3213 return ret;
3214}
3215
636f9d37
VP
3216/**
3217 * t4_flash_cfg_addr - return the address of the flash configuration file
3218 * @adapter: the adapter
3219 *
3220 * Return the address within the flash where the Firmware Configuration
3221 * File is stored.
3222 */
3223unsigned int t4_flash_cfg_addr(struct adapter *adapter)
3224{
3225 if (adapter->params.sf_size == 0x100000)
3226 return FLASH_FPGA_CFG_START;
3227 else
3228 return FLASH_CFG_START;
3229}
3230
79af221d
HS
3231/* Return TRUE if the specified firmware matches the adapter. I.e. T4
3232 * firmware for T4 adapters, T5 firmware for T5 adapters, etc. We go ahead
3233 * and emit an error message for mismatched firmware to save our caller the
3234 * effort ...
3235 */
3236static bool t4_fw_matches_chip(const struct adapter *adap,
3237 const struct fw_hdr *hdr)
3238{
3239 /* The expression below will return FALSE for any unsupported adapter
3240 * which will keep us "honest" in the future ...
3241 */
3242 if ((is_t4(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T4) ||
3ccc6cf7
HS
3243 (is_t5(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T5) ||
3244 (is_t6(adap->params.chip) && hdr->chip == FW_HDR_CHIP_T6))
79af221d
HS
3245 return true;
3246
3247 dev_err(adap->pdev_dev,
3248 "FW image (%d) is not suitable for this adapter (%d)\n",
3249 hdr->chip, CHELSIO_CHIP_VERSION(adap->params.chip));
3250 return false;
3251}
3252
56d36be4
DM
3253/**
3254 * t4_load_fw - download firmware
3255 * @adap: the adapter
3256 * @fw_data: the firmware image to write
3257 * @size: image size
3258 *
3259 * Write the supplied firmware image to the card's serial flash.
3260 */
3261int t4_load_fw(struct adapter *adap, const u8 *fw_data, unsigned int size)
3262{
3263 u32 csum;
3264 int ret, addr;
3265 unsigned int i;
3266 u8 first_page[SF_PAGE_SIZE];
404d9e3f 3267 const __be32 *p = (const __be32 *)fw_data;
56d36be4 3268 const struct fw_hdr *hdr = (const struct fw_hdr *)fw_data;
900a6596
DM
3269 unsigned int sf_sec_size = adap->params.sf_size / adap->params.sf_nsec;
3270 unsigned int fw_img_start = adap->params.sf_fw_start;
3271 unsigned int fw_start_sec = fw_img_start / sf_sec_size;
56d36be4
DM
3272
3273 if (!size) {
3274 dev_err(adap->pdev_dev, "FW image has no data\n");
3275 return -EINVAL;
3276 }
3277 if (size & 511) {
3278 dev_err(adap->pdev_dev,
3279 "FW image size not multiple of 512 bytes\n");
3280 return -EINVAL;
3281 }
f404f80c 3282 if ((unsigned int)be16_to_cpu(hdr->len512) * 512 != size) {
56d36be4
DM
3283 dev_err(adap->pdev_dev,
3284 "FW image size differs from size in FW header\n");
3285 return -EINVAL;
3286 }
3287 if (size > FW_MAX_SIZE) {
3288 dev_err(adap->pdev_dev, "FW image too large, max is %u bytes\n",
3289 FW_MAX_SIZE);
3290 return -EFBIG;
3291 }
79af221d
HS
3292 if (!t4_fw_matches_chip(adap, hdr))
3293 return -EINVAL;
56d36be4
DM
3294
3295 for (csum = 0, i = 0; i < size / sizeof(csum); i++)
f404f80c 3296 csum += be32_to_cpu(p[i]);
56d36be4
DM
3297
3298 if (csum != 0xffffffff) {
3299 dev_err(adap->pdev_dev,
3300 "corrupted firmware image, checksum %#x\n", csum);
3301 return -EINVAL;
3302 }
3303
900a6596
DM
3304 i = DIV_ROUND_UP(size, sf_sec_size); /* # of sectors spanned */
3305 ret = t4_flash_erase_sectors(adap, fw_start_sec, fw_start_sec + i - 1);
56d36be4
DM
3306 if (ret)
3307 goto out;
3308
3309 /*
3310 * We write the correct version at the end so the driver can see a bad
3311 * version if the FW write fails. Start by writing a copy of the
3312 * first page with a bad version.
3313 */
3314 memcpy(first_page, fw_data, SF_PAGE_SIZE);
f404f80c 3315 ((struct fw_hdr *)first_page)->fw_ver = cpu_to_be32(0xffffffff);
900a6596 3316 ret = t4_write_flash(adap, fw_img_start, SF_PAGE_SIZE, first_page);
56d36be4
DM
3317 if (ret)
3318 goto out;
3319
900a6596 3320 addr = fw_img_start;
56d36be4
DM
3321 for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
3322 addr += SF_PAGE_SIZE;
3323 fw_data += SF_PAGE_SIZE;
3324 ret = t4_write_flash(adap, addr, SF_PAGE_SIZE, fw_data);
3325 if (ret)
3326 goto out;
3327 }
3328
3329 ret = t4_write_flash(adap,
900a6596 3330 fw_img_start + offsetof(struct fw_hdr, fw_ver),
56d36be4
DM
3331 sizeof(hdr->fw_ver), (const u8 *)&hdr->fw_ver);
3332out:
3333 if (ret)
3334 dev_err(adap->pdev_dev, "firmware download failed, error %d\n",
3335 ret);
dff04bce
HS
3336 else
3337 ret = t4_get_fw_version(adap, &adap->params.fw_vers);
56d36be4
DM
3338 return ret;
3339}
3340
01b69614
HS
3341/**
3342 * t4_phy_fw_ver - return current PHY firmware version
3343 * @adap: the adapter
3344 * @phy_fw_ver: return value buffer for PHY firmware version
3345 *
3346 * Returns the current version of external PHY firmware on the
3347 * adapter.
3348 */
3349int t4_phy_fw_ver(struct adapter *adap, int *phy_fw_ver)
3350{
3351 u32 param, val;
3352 int ret;
3353
3354 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3355 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3356 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3357 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_VERSION));
b2612722 3358 ret = t4_query_params(adap, adap->mbox, adap->pf, 0, 1,
01b69614
HS
3359 &param, &val);
3360 if (ret < 0)
3361 return ret;
3362 *phy_fw_ver = val;
3363 return 0;
3364}
3365
3366/**
3367 * t4_load_phy_fw - download port PHY firmware
3368 * @adap: the adapter
3369 * @win: the PCI-E Memory Window index to use for t4_memory_rw()
3370 * @win_lock: the lock to use to guard the memory copy
3371 * @phy_fw_version: function to check PHY firmware versions
3372 * @phy_fw_data: the PHY firmware image to write
3373 * @phy_fw_size: image size
3374 *
3375 * Transfer the specified PHY firmware to the adapter. If a non-NULL
3376 * @phy_fw_version is supplied, then it will be used to determine if
3377 * it's necessary to perform the transfer by comparing the version
3378 * of any existing adapter PHY firmware with that of the passed in
3379 * PHY firmware image. If @win_lock is non-NULL then it will be used
3380 * around the call to t4_memory_rw() which transfers the PHY firmware
3381 * to the adapter.
3382 *
3383 * A negative error number will be returned if an error occurs. If
3384 * version number support is available and there's no need to upgrade
3385 * the firmware, 0 will be returned. If firmware is successfully
3386 * transferred to the adapter, 1 will be retured.
3387 *
3388 * NOTE: some adapters only have local RAM to store the PHY firmware. As
3389 * a result, a RESET of the adapter would cause that RAM to lose its
3390 * contents. Thus, loading PHY firmware on such adapters must happen
3391 * after any FW_RESET_CMDs ...
3392 */
3393int t4_load_phy_fw(struct adapter *adap,
3394 int win, spinlock_t *win_lock,
3395 int (*phy_fw_version)(const u8 *, size_t),
3396 const u8 *phy_fw_data, size_t phy_fw_size)
3397{
3398 unsigned long mtype = 0, maddr = 0;
3399 u32 param, val;
3400 int cur_phy_fw_ver = 0, new_phy_fw_vers = 0;
3401 int ret;
3402
3403 /* If we have version number support, then check to see if the adapter
3404 * already has up-to-date PHY firmware loaded.
3405 */
3406 if (phy_fw_version) {
3407 new_phy_fw_vers = phy_fw_version(phy_fw_data, phy_fw_size);
3408 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3409 if (ret < 0)
3410 return ret;
3411
3412 if (cur_phy_fw_ver >= new_phy_fw_vers) {
3413 CH_WARN(adap, "PHY Firmware already up-to-date, "
3414 "version %#x\n", cur_phy_fw_ver);
3415 return 0;
3416 }
3417 }
3418
3419 /* Ask the firmware where it wants us to copy the PHY firmware image.
3420 * The size of the file requires a special version of the READ coommand
3421 * which will pass the file size via the values field in PARAMS_CMD and
3422 * retrieve the return value from firmware and place it in the same
3423 * buffer values
3424 */
3425 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3426 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3427 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3428 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
3429 val = phy_fw_size;
b2612722 3430 ret = t4_query_params_rw(adap, adap->mbox, adap->pf, 0, 1,
01b69614
HS
3431 &param, &val, 1);
3432 if (ret < 0)
3433 return ret;
3434 mtype = val >> 8;
3435 maddr = (val & 0xff) << 16;
3436
3437 /* Copy the supplied PHY Firmware image to the adapter memory location
3438 * allocated by the adapter firmware.
3439 */
3440 if (win_lock)
3441 spin_lock_bh(win_lock);
3442 ret = t4_memory_rw(adap, win, mtype, maddr,
3443 phy_fw_size, (__be32 *)phy_fw_data,
3444 T4_MEMORY_WRITE);
3445 if (win_lock)
3446 spin_unlock_bh(win_lock);
3447 if (ret)
3448 return ret;
3449
3450 /* Tell the firmware that the PHY firmware image has been written to
3451 * RAM and it can now start copying it over to the PHYs. The chip
3452 * firmware will RESET the affected PHYs as part of this operation
3453 * leaving them running the new PHY firmware image.
3454 */
3455 param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3456 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_PHYFW) |
3457 FW_PARAMS_PARAM_Y_V(adap->params.portvec) |
3458 FW_PARAMS_PARAM_Z_V(FW_PARAMS_PARAM_DEV_PHYFW_DOWNLOAD));
b2612722 3459 ret = t4_set_params_timeout(adap, adap->mbox, adap->pf, 0, 1,
01b69614
HS
3460 &param, &val, 30000);
3461
3462 /* If we have version number support, then check to see that the new
3463 * firmware got loaded properly.
3464 */
3465 if (phy_fw_version) {
3466 ret = t4_phy_fw_ver(adap, &cur_phy_fw_ver);
3467 if (ret < 0)
3468 return ret;
3469
3470 if (cur_phy_fw_ver != new_phy_fw_vers) {
3471 CH_WARN(adap, "PHY Firmware did not update: "
3472 "version on adapter %#x, "
3473 "version flashed %#x\n",
3474 cur_phy_fw_ver, new_phy_fw_vers);
3475 return -ENXIO;
3476 }
3477 }
3478
3479 return 1;
3480}
3481
49216c1c
HS
3482/**
3483 * t4_fwcache - firmware cache operation
3484 * @adap: the adapter
3485 * @op : the operation (flush or flush and invalidate)
3486 */
3487int t4_fwcache(struct adapter *adap, enum fw_params_param_dev_fwcache op)
3488{
3489 struct fw_params_cmd c;
3490
3491 memset(&c, 0, sizeof(c));
3492 c.op_to_vfn =
3493 cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
3494 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
b2612722 3495 FW_PARAMS_CMD_PFN_V(adap->pf) |
49216c1c
HS
3496 FW_PARAMS_CMD_VFN_V(0));
3497 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
3498 c.param[0].mnem =
3499 cpu_to_be32(FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
3500 FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_FWCACHE));
3501 c.param[0].val = (__force __be32)op;
3502
3503 return t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), NULL);
3504}
3505
19689609
HS
3506void t4_cim_read_pif_la(struct adapter *adap, u32 *pif_req, u32 *pif_rsp,
3507 unsigned int *pif_req_wrptr,
3508 unsigned int *pif_rsp_wrptr)
3509{
3510 int i, j;
3511 u32 cfg, val, req, rsp;
3512
3513 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3514 if (cfg & LADBGEN_F)
3515 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3516
3517 val = t4_read_reg(adap, CIM_DEBUGSTS_A);
3518 req = POLADBGWRPTR_G(val);
3519 rsp = PILADBGWRPTR_G(val);
3520 if (pif_req_wrptr)
3521 *pif_req_wrptr = req;
3522 if (pif_rsp_wrptr)
3523 *pif_rsp_wrptr = rsp;
3524
3525 for (i = 0; i < CIM_PIFLA_SIZE; i++) {
3526 for (j = 0; j < 6; j++) {
3527 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(req) |
3528 PILADBGRDPTR_V(rsp));
3529 *pif_req++ = t4_read_reg(adap, CIM_PO_LA_DEBUGDATA_A);
3530 *pif_rsp++ = t4_read_reg(adap, CIM_PI_LA_DEBUGDATA_A);
3531 req++;
3532 rsp++;
3533 }
3534 req = (req + 2) & POLADBGRDPTR_M;
3535 rsp = (rsp + 2) & PILADBGRDPTR_M;
3536 }
3537 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3538}
3539
26fae93f
HS
3540void t4_cim_read_ma_la(struct adapter *adap, u32 *ma_req, u32 *ma_rsp)
3541{
3542 u32 cfg;
3543 int i, j, idx;
3544
3545 cfg = t4_read_reg(adap, CIM_DEBUGCFG_A);
3546 if (cfg & LADBGEN_F)
3547 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg ^ LADBGEN_F);
3548
3549 for (i = 0; i < CIM_MALA_SIZE; i++) {
3550 for (j = 0; j < 5; j++) {
3551 idx = 8 * i + j;
3552 t4_write_reg(adap, CIM_DEBUGCFG_A, POLADBGRDPTR_V(idx) |
3553 PILADBGRDPTR_V(idx));
3554 *ma_req++ = t4_read_reg(adap, CIM_PO_LA_MADEBUGDATA_A);
3555 *ma_rsp++ = t4_read_reg(adap, CIM_PI_LA_MADEBUGDATA_A);
3556 }
3557 }
3558 t4_write_reg(adap, CIM_DEBUGCFG_A, cfg);
3559}
3560
797ff0f5
HS
3561void t4_ulprx_read_la(struct adapter *adap, u32 *la_buf)
3562{
3563 unsigned int i, j;
3564
3565 for (i = 0; i < 8; i++) {
3566 u32 *p = la_buf + i;
3567
3568 t4_write_reg(adap, ULP_RX_LA_CTL_A, i);
3569 j = t4_read_reg(adap, ULP_RX_LA_WRPTR_A);
3570 t4_write_reg(adap, ULP_RX_LA_RDPTR_A, j);
3571 for (j = 0; j < ULPRX_LA_SIZE; j++, p += 8)
3572 *p = t4_read_reg(adap, ULP_RX_LA_RDDATA_A);
3573 }
3574}
3575
56d36be4 3576#define ADVERT_MASK (FW_PORT_CAP_SPEED_100M | FW_PORT_CAP_SPEED_1G |\
72aca4bf
KS
3577 FW_PORT_CAP_SPEED_10G | FW_PORT_CAP_SPEED_40G | \
3578 FW_PORT_CAP_ANEG)
56d36be4
DM
3579
3580/**
4036da90 3581 * t4_link_l1cfg - apply link configuration to MAC/PHY
56d36be4
DM
3582 * @phy: the PHY to setup
3583 * @mac: the MAC to setup
3584 * @lc: the requested link configuration
3585 *
3586 * Set up a port's MAC and PHY according to a desired link configuration.
3587 * - If the PHY can auto-negotiate first decide what to advertise, then
3588 * enable/disable auto-negotiation as desired, and reset.
3589 * - If the PHY does not auto-negotiate just reset it.
3590 * - If auto-negotiation is off set the MAC to the proper speed/duplex/FC,
3591 * otherwise do it later based on the outcome of auto-negotiation.
3592 */
4036da90 3593int t4_link_l1cfg(struct adapter *adap, unsigned int mbox, unsigned int port,
56d36be4
DM
3594 struct link_config *lc)
3595{
3596 struct fw_port_cmd c;
2b5fb1f2 3597 unsigned int fc = 0, mdi = FW_PORT_CAP_MDI_V(FW_PORT_CAP_MDI_AUTO);
56d36be4
DM
3598
3599 lc->link_ok = 0;
3600 if (lc->requested_fc & PAUSE_RX)
3601 fc |= FW_PORT_CAP_FC_RX;
3602 if (lc->requested_fc & PAUSE_TX)
3603 fc |= FW_PORT_CAP_FC_TX;
3604
3605 memset(&c, 0, sizeof(c));
f404f80c
HS
3606 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
3607 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
3608 FW_PORT_CMD_PORTID_V(port));
3609 c.action_to_len16 =
3610 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
3611 FW_LEN16(c));
56d36be4
DM
3612
3613 if (!(lc->supported & FW_PORT_CAP_ANEG)) {
f404f80c
HS
3614 c.u.l1cfg.rcap = cpu_to_be32((lc->supported & ADVERT_MASK) |
3615 fc);
56d36be4
DM
3616 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
3617 } else if (lc->autoneg == AUTONEG_DISABLE) {
f404f80c 3618 c.u.l1cfg.rcap = cpu_to_be32(lc->requested_speed | fc | mdi);
56d36be4
DM
3619 lc->fc = lc->requested_fc & (PAUSE_RX | PAUSE_TX);
3620 } else
f404f80c 3621 c.u.l1cfg.rcap = cpu_to_be32(lc->advertising | fc | mdi);
56d36be4
DM
3622
3623 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3624}
3625
3626/**
3627 * t4_restart_aneg - restart autonegotiation
3628 * @adap: the adapter
3629 * @mbox: mbox to use for the FW command
3630 * @port: the port id
3631 *
3632 * Restarts autonegotiation for the selected port.
3633 */
3634int t4_restart_aneg(struct adapter *adap, unsigned int mbox, unsigned int port)
3635{
3636 struct fw_port_cmd c;
3637
3638 memset(&c, 0, sizeof(c));
f404f80c
HS
3639 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
3640 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
3641 FW_PORT_CMD_PORTID_V(port));
3642 c.action_to_len16 =
3643 cpu_to_be32(FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_L1_CFG) |
3644 FW_LEN16(c));
3645 c.u.l1cfg.rcap = cpu_to_be32(FW_PORT_CAP_ANEG);
56d36be4
DM
3646 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
3647}
3648
8caa1e84
VP
3649typedef void (*int_handler_t)(struct adapter *adap);
3650
56d36be4
DM
3651struct intr_info {
3652 unsigned int mask; /* bits to check in interrupt status */
3653 const char *msg; /* message to print or NULL */
3654 short stat_idx; /* stat counter to increment or -1 */
3655 unsigned short fatal; /* whether the condition reported is fatal */
8caa1e84 3656 int_handler_t int_handler; /* platform-specific int handler */
56d36be4
DM
3657};
3658
3659/**
3660 * t4_handle_intr_status - table driven interrupt handler
3661 * @adapter: the adapter that generated the interrupt
3662 * @reg: the interrupt status register to process
3663 * @acts: table of interrupt actions
3664 *
3665 * A table driven interrupt handler that applies a set of masks to an
3666 * interrupt status word and performs the corresponding actions if the
25985edc 3667 * interrupts described by the mask have occurred. The actions include
56d36be4
DM
3668 * optionally emitting a warning or alert message. The table is terminated
3669 * by an entry specifying mask 0. Returns the number of fatal interrupt
3670 * conditions.
3671 */
3672static int t4_handle_intr_status(struct adapter *adapter, unsigned int reg,
3673 const struct intr_info *acts)
3674{
3675 int fatal = 0;
3676 unsigned int mask = 0;
3677 unsigned int status = t4_read_reg(adapter, reg);
3678
3679 for ( ; acts->mask; ++acts) {
3680 if (!(status & acts->mask))
3681 continue;
3682 if (acts->fatal) {
3683 fatal++;
3684 dev_alert(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
3685 status & acts->mask);
3686 } else if (acts->msg && printk_ratelimit())
3687 dev_warn(adapter->pdev_dev, "%s (0x%x)\n", acts->msg,
3688 status & acts->mask);
8caa1e84
VP
3689 if (acts->int_handler)
3690 acts->int_handler(adapter);
56d36be4
DM
3691 mask |= acts->mask;
3692 }
3693 status &= mask;
3694 if (status) /* clear processed interrupts */
3695 t4_write_reg(adapter, reg, status);
3696 return fatal;
3697}
3698
3699/*
3700 * Interrupt handler for the PCIE module.
3701 */
3702static void pcie_intr_handler(struct adapter *adapter)
3703{
005b5717 3704 static const struct intr_info sysbus_intr_info[] = {
f061de42
HS
3705 { RNPP_F, "RXNP array parity error", -1, 1 },
3706 { RPCP_F, "RXPC array parity error", -1, 1 },
3707 { RCIP_F, "RXCIF array parity error", -1, 1 },
3708 { RCCP_F, "Rx completions control array parity error", -1, 1 },
3709 { RFTP_F, "RXFT array parity error", -1, 1 },
56d36be4
DM
3710 { 0 }
3711 };
005b5717 3712 static const struct intr_info pcie_port_intr_info[] = {
f061de42
HS
3713 { TPCP_F, "TXPC array parity error", -1, 1 },
3714 { TNPP_F, "TXNP array parity error", -1, 1 },
3715 { TFTP_F, "TXFT array parity error", -1, 1 },
3716 { TCAP_F, "TXCA array parity error", -1, 1 },
3717 { TCIP_F, "TXCIF array parity error", -1, 1 },
3718 { RCAP_F, "RXCA array parity error", -1, 1 },
3719 { OTDD_F, "outbound request TLP discarded", -1, 1 },
3720 { RDPE_F, "Rx data parity error", -1, 1 },
3721 { TDUE_F, "Tx uncorrectable data error", -1, 1 },
56d36be4
DM
3722 { 0 }
3723 };
005b5717 3724 static const struct intr_info pcie_intr_info[] = {
f061de42
HS
3725 { MSIADDRLPERR_F, "MSI AddrL parity error", -1, 1 },
3726 { MSIADDRHPERR_F, "MSI AddrH parity error", -1, 1 },
3727 { MSIDATAPERR_F, "MSI data parity error", -1, 1 },
3728 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
3729 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
3730 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
3731 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
3732 { PIOCPLPERR_F, "PCI PIO completion FIFO parity error", -1, 1 },
3733 { PIOREQPERR_F, "PCI PIO request FIFO parity error", -1, 1 },
3734 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
3735 { CCNTPERR_F, "PCI CMD channel count parity error", -1, 1 },
3736 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
3737 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
3738 { DCNTPERR_F, "PCI DMA channel count parity error", -1, 1 },
3739 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
3740 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
3741 { HCNTPERR_F, "PCI HMA channel count parity error", -1, 1 },
3742 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
3743 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
3744 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
3745 { FIDPERR_F, "PCI FID parity error", -1, 1 },
3746 { INTXCLRPERR_F, "PCI INTx clear parity error", -1, 1 },
3747 { MATAGPERR_F, "PCI MA tag parity error", -1, 1 },
3748 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
3749 { RXCPLPERR_F, "PCI Rx completion parity error", -1, 1 },
3750 { RXWRPERR_F, "PCI Rx write parity error", -1, 1 },
3751 { RPLPERR_F, "PCI replay buffer parity error", -1, 1 },
3752 { PCIESINT_F, "PCI core secondary fault", -1, 1 },
3753 { PCIEPINT_F, "PCI core primary fault", -1, 1 },
3754 { UNXSPLCPLERR_F, "PCI unexpected split completion error",
3755 -1, 0 },
56d36be4
DM
3756 { 0 }
3757 };
3758
0a57a536 3759 static struct intr_info t5_pcie_intr_info[] = {
f061de42 3760 { MSTGRPPERR_F, "Master Response Read Queue parity error",
0a57a536 3761 -1, 1 },
f061de42
HS
3762 { MSTTIMEOUTPERR_F, "Master Timeout FIFO parity error", -1, 1 },
3763 { MSIXSTIPERR_F, "MSI-X STI SRAM parity error", -1, 1 },
3764 { MSIXADDRLPERR_F, "MSI-X AddrL parity error", -1, 1 },
3765 { MSIXADDRHPERR_F, "MSI-X AddrH parity error", -1, 1 },
3766 { MSIXDATAPERR_F, "MSI-X data parity error", -1, 1 },
3767 { MSIXDIPERR_F, "MSI-X DI parity error", -1, 1 },
3768 { PIOCPLGRPPERR_F, "PCI PIO completion Group FIFO parity error",
0a57a536 3769 -1, 1 },
f061de42 3770 { PIOREQGRPPERR_F, "PCI PIO request Group FIFO parity error",
0a57a536 3771 -1, 1 },
f061de42
HS
3772 { TARTAGPERR_F, "PCI PCI target tag FIFO parity error", -1, 1 },
3773 { MSTTAGQPERR_F, "PCI master tag queue parity error", -1, 1 },
3774 { CREQPERR_F, "PCI CMD channel request parity error", -1, 1 },
3775 { CRSPPERR_F, "PCI CMD channel response parity error", -1, 1 },
3776 { DREQWRPERR_F, "PCI DMA channel write request parity error",
0a57a536 3777 -1, 1 },
f061de42
HS
3778 { DREQPERR_F, "PCI DMA channel request parity error", -1, 1 },
3779 { DRSPPERR_F, "PCI DMA channel response parity error", -1, 1 },
3780 { HREQWRPERR_F, "PCI HMA channel count parity error", -1, 1 },
3781 { HREQPERR_F, "PCI HMA channel request parity error", -1, 1 },
3782 { HRSPPERR_F, "PCI HMA channel response parity error", -1, 1 },
3783 { CFGSNPPERR_F, "PCI config snoop FIFO parity error", -1, 1 },
3784 { FIDPERR_F, "PCI FID parity error", -1, 1 },
3785 { VFIDPERR_F, "PCI INTx clear parity error", -1, 1 },
3786 { MAGRPPERR_F, "PCI MA group FIFO parity error", -1, 1 },
3787 { PIOTAGPERR_F, "PCI PIO tag parity error", -1, 1 },
3788 { IPRXHDRGRPPERR_F, "PCI IP Rx header group parity error",
0a57a536 3789 -1, 1 },
f061de42
HS
3790 { IPRXDATAGRPPERR_F, "PCI IP Rx data group parity error",
3791 -1, 1 },
3792 { RPLPERR_F, "PCI IP replay buffer parity error", -1, 1 },
3793 { IPSOTPERR_F, "PCI IP SOT buffer parity error", -1, 1 },
3794 { TRGT1GRPPERR_F, "PCI TRGT1 group FIFOs parity error", -1, 1 },
3795 { READRSPERR_F, "Outbound read error", -1, 0 },
0a57a536
SR
3796 { 0 }
3797 };
3798
56d36be4
DM
3799 int fat;
3800
9bb59b96
HS
3801 if (is_t4(adapter->params.chip))
3802 fat = t4_handle_intr_status(adapter,
f061de42
HS
3803 PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS_A,
3804 sysbus_intr_info) +
9bb59b96 3805 t4_handle_intr_status(adapter,
f061de42
HS
3806 PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS_A,
3807 pcie_port_intr_info) +
3808 t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
9bb59b96
HS
3809 pcie_intr_info);
3810 else
f061de42 3811 fat = t4_handle_intr_status(adapter, PCIE_INT_CAUSE_A,
9bb59b96 3812 t5_pcie_intr_info);
0a57a536 3813
56d36be4
DM
3814 if (fat)
3815 t4_fatal_err(adapter);
3816}
3817
3818/*
3819 * TP interrupt handler.
3820 */
3821static void tp_intr_handler(struct adapter *adapter)
3822{
005b5717 3823 static const struct intr_info tp_intr_info[] = {
56d36be4 3824 { 0x3fffffff, "TP parity error", -1, 1 },
837e4a42 3825 { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
56d36be4
DM
3826 { 0 }
3827 };
3828
837e4a42 3829 if (t4_handle_intr_status(adapter, TP_INT_CAUSE_A, tp_intr_info))
56d36be4
DM
3830 t4_fatal_err(adapter);
3831}
3832
3833/*
3834 * SGE interrupt handler.
3835 */
3836static void sge_intr_handler(struct adapter *adapter)
3837{
3838 u64 v;
3ccc6cf7 3839 u32 err;
56d36be4 3840
005b5717 3841 static const struct intr_info sge_intr_info[] = {
f612b815 3842 { ERR_CPL_EXCEED_IQE_SIZE_F,
56d36be4 3843 "SGE received CPL exceeding IQE size", -1, 1 },
f612b815 3844 { ERR_INVALID_CIDX_INC_F,
56d36be4 3845 "SGE GTS CIDX increment too large", -1, 0 },
f612b815
HS
3846 { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
3847 { DBFIFO_LP_INT_F, NULL, -1, 0, t4_db_full },
f612b815 3848 { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
56d36be4 3849 "SGE IQID > 1023 received CPL for FL", -1, 0 },
f612b815 3850 { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
56d36be4 3851 0 },
f612b815 3852 { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
56d36be4 3853 0 },
f612b815 3854 { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
56d36be4 3855 0 },
f612b815 3856 { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
56d36be4 3857 0 },
f612b815 3858 { ERR_ING_CTXT_PRIO_F,
56d36be4 3859 "SGE too many priority ingress contexts", -1, 0 },
f612b815
HS
3860 { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
3861 { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
56d36be4
DM
3862 { 0 }
3863 };
3864
3ccc6cf7
HS
3865 static struct intr_info t4t5_sge_intr_info[] = {
3866 { ERR_DROPPED_DB_F, NULL, -1, 0, t4_db_dropped },
3867 { DBFIFO_HP_INT_F, NULL, -1, 0, t4_db_full },
3868 { ERR_EGR_CTXT_PRIO_F,
3869 "SGE too many priority egress contexts", -1, 0 },
3870 { 0 }
3871 };
3872
f612b815
HS
3873 v = (u64)t4_read_reg(adapter, SGE_INT_CAUSE1_A) |
3874 ((u64)t4_read_reg(adapter, SGE_INT_CAUSE2_A) << 32);
56d36be4
DM
3875 if (v) {
3876 dev_alert(adapter->pdev_dev, "SGE parity error (%#llx)\n",
8caa1e84 3877 (unsigned long long)v);
f612b815
HS
3878 t4_write_reg(adapter, SGE_INT_CAUSE1_A, v);
3879 t4_write_reg(adapter, SGE_INT_CAUSE2_A, v >> 32);
56d36be4
DM
3880 }
3881
3ccc6cf7
HS
3882 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A, sge_intr_info);
3883 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
3884 v |= t4_handle_intr_status(adapter, SGE_INT_CAUSE3_A,
3885 t4t5_sge_intr_info);
3886
3887 err = t4_read_reg(adapter, SGE_ERROR_STATS_A);
3888 if (err & ERROR_QID_VALID_F) {
3889 dev_err(adapter->pdev_dev, "SGE error for queue %u\n",
3890 ERROR_QID_G(err));
3891 if (err & UNCAPTURED_ERROR_F)
3892 dev_err(adapter->pdev_dev,
3893 "SGE UNCAPTURED_ERROR set (clearing)\n");
3894 t4_write_reg(adapter, SGE_ERROR_STATS_A, ERROR_QID_VALID_F |
3895 UNCAPTURED_ERROR_F);
3896 }
3897
3898 if (v != 0)
56d36be4
DM
3899 t4_fatal_err(adapter);
3900}
3901
89c3a86c
HS
3902#define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
3903 OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
3904#define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
3905 IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
3906
56d36be4
DM
3907/*
3908 * CIM interrupt handler.
3909 */
3910static void cim_intr_handler(struct adapter *adapter)
3911{
005b5717 3912 static const struct intr_info cim_intr_info[] = {
89c3a86c
HS
3913 { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
3914 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
3915 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
3916 { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
3917 { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
3918 { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
3919 { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
56d36be4
DM
3920 { 0 }
3921 };
005b5717 3922 static const struct intr_info cim_upintr_info[] = {
89c3a86c
HS
3923 { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
3924 { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
3925 { ILLWRINT_F, "CIM illegal write", -1, 1 },
3926 { ILLRDINT_F, "CIM illegal read", -1, 1 },
3927 { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
3928 { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
3929 { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
3930 { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
3931 { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
3932 { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
3933 { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
3934 { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
3935 { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
3936 { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
3937 { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
3938 { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
3939 { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
3940 { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
3941 { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
3942 { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
3943 { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
3944 { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
3945 { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
3946 { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
3947 { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
3948 { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
3949 { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
3950 { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
56d36be4
DM
3951 { 0 }
3952 };
3953
3954 int fat;
3955
f061de42 3956 if (t4_read_reg(adapter, PCIE_FW_A) & PCIE_FW_ERR_F)
31d55c2d
HS
3957 t4_report_fw_error(adapter);
3958
89c3a86c 3959 fat = t4_handle_intr_status(adapter, CIM_HOST_INT_CAUSE_A,
56d36be4 3960 cim_intr_info) +
89c3a86c 3961 t4_handle_intr_status(adapter, CIM_HOST_UPACC_INT_CAUSE_A,
56d36be4
DM
3962 cim_upintr_info);
3963 if (fat)
3964 t4_fatal_err(adapter);
3965}
3966
3967/*
3968 * ULP RX interrupt handler.
3969 */
3970static void ulprx_intr_handler(struct adapter *adapter)
3971{
005b5717 3972 static const struct intr_info ulprx_intr_info[] = {
91e9a1ec 3973 { 0x1800000, "ULPRX context error", -1, 1 },
56d36be4
DM
3974 { 0x7fffff, "ULPRX parity error", -1, 1 },
3975 { 0 }
3976 };
3977
0d804338 3978 if (t4_handle_intr_status(adapter, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
56d36be4
DM
3979 t4_fatal_err(adapter);
3980}
3981
3982/*
3983 * ULP TX interrupt handler.
3984 */
3985static void ulptx_intr_handler(struct adapter *adapter)
3986{
005b5717 3987 static const struct intr_info ulptx_intr_info[] = {
837e4a42 3988 { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
56d36be4 3989 0 },
837e4a42 3990 { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
56d36be4 3991 0 },
837e4a42 3992 { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
56d36be4 3993 0 },
837e4a42 3994 { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
56d36be4
DM
3995 0 },
3996 { 0xfffffff, "ULPTX parity error", -1, 1 },
3997 { 0 }
3998 };
3999
837e4a42 4000 if (t4_handle_intr_status(adapter, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
56d36be4
DM
4001 t4_fatal_err(adapter);
4002}
4003
4004/*
4005 * PM TX interrupt handler.
4006 */
4007static void pmtx_intr_handler(struct adapter *adapter)
4008{
005b5717 4009 static const struct intr_info pmtx_intr_info[] = {
837e4a42
HS
4010 { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
4011 { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
4012 { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
4013 { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
4014 { PMTX_FRAMING_ERROR_F, "PMTX framing error", -1, 1 },
4015 { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
4016 { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error",
4017 -1, 1 },
4018 { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
4019 { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
56d36be4
DM
4020 { 0 }
4021 };
4022
837e4a42 4023 if (t4_handle_intr_status(adapter, PM_TX_INT_CAUSE_A, pmtx_intr_info))
56d36be4
DM
4024 t4_fatal_err(adapter);
4025}
4026
4027/*
4028 * PM RX interrupt handler.
4029 */
4030static void pmrx_intr_handler(struct adapter *adapter)
4031{
005b5717 4032 static const struct intr_info pmrx_intr_info[] = {
837e4a42
HS
4033 { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
4034 { PMRX_FRAMING_ERROR_F, "PMRX framing error", -1, 1 },
4035 { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
4036 { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error",
4037 -1, 1 },
4038 { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
4039 { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
56d36be4
DM
4040 { 0 }
4041 };
4042
837e4a42 4043 if (t4_handle_intr_status(adapter, PM_RX_INT_CAUSE_A, pmrx_intr_info))
56d36be4
DM
4044 t4_fatal_err(adapter);
4045}
4046
4047/*
4048 * CPL switch interrupt handler.
4049 */
4050static void cplsw_intr_handler(struct adapter *adapter)
4051{
005b5717 4052 static const struct intr_info cplsw_intr_info[] = {
0d804338
HS
4053 { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
4054 { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
4055 { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
4056 { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
4057 { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
4058 { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
56d36be4
DM
4059 { 0 }
4060 };
4061
0d804338 4062 if (t4_handle_intr_status(adapter, CPL_INTR_CAUSE_A, cplsw_intr_info))
56d36be4
DM
4063 t4_fatal_err(adapter);
4064}
4065
4066/*
4067 * LE interrupt handler.
4068 */
4069static void le_intr_handler(struct adapter *adap)
4070{
3ccc6cf7 4071 enum chip_type chip = CHELSIO_CHIP_VERSION(adap->params.chip);
005b5717 4072 static const struct intr_info le_intr_info[] = {
0d804338
HS
4073 { LIPMISS_F, "LE LIP miss", -1, 0 },
4074 { LIP0_F, "LE 0 LIP error", -1, 0 },
4075 { PARITYERR_F, "LE parity error", -1, 1 },
4076 { UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4077 { REQQPARERR_F, "LE request queue parity error", -1, 1 },
56d36be4
DM
4078 { 0 }
4079 };
4080
3ccc6cf7
HS
4081 static struct intr_info t6_le_intr_info[] = {
4082 { T6_LIPMISS_F, "LE LIP miss", -1, 0 },
4083 { T6_LIP0_F, "LE 0 LIP error", -1, 0 },
4084 { TCAMINTPERR_F, "LE parity error", -1, 1 },
4085 { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
4086 { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
4087 { 0 }
4088 };
4089
4090 if (t4_handle_intr_status(adap, LE_DB_INT_CAUSE_A,
4091 (chip <= CHELSIO_T5) ?
4092 le_intr_info : t6_le_intr_info))
56d36be4
DM
4093 t4_fatal_err(adap);
4094}
4095
4096/*
4097 * MPS interrupt handler.
4098 */
4099static void mps_intr_handler(struct adapter *adapter)
4100{
005b5717 4101 static const struct intr_info mps_rx_intr_info[] = {
56d36be4
DM
4102 { 0xffffff, "MPS Rx parity error", -1, 1 },
4103 { 0 }
4104 };
005b5717 4105 static const struct intr_info mps_tx_intr_info[] = {
837e4a42
HS
4106 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
4107 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
4108 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
4109 -1, 1 },
4110 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
4111 -1, 1 },
4112 { BUBBLE_F, "MPS Tx underflow", -1, 1 },
4113 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
4114 { FRMERR_F, "MPS Tx framing error", -1, 1 },
56d36be4
DM
4115 { 0 }
4116 };
005b5717 4117 static const struct intr_info mps_trc_intr_info[] = {
837e4a42
HS
4118 { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
4119 { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
4120 -1, 1 },
4121 { MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
56d36be4
DM
4122 { 0 }
4123 };
005b5717 4124 static const struct intr_info mps_stat_sram_intr_info[] = {
56d36be4
DM
4125 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
4126 { 0 }
4127 };
005b5717 4128 static const struct intr_info mps_stat_tx_intr_info[] = {
56d36be4
DM
4129 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
4130 { 0 }
4131 };
005b5717 4132 static const struct intr_info mps_stat_rx_intr_info[] = {
56d36be4
DM
4133 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
4134 { 0 }
4135 };
005b5717 4136 static const struct intr_info mps_cls_intr_info[] = {
837e4a42
HS
4137 { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
4138 { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
4139 { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
56d36be4
DM
4140 { 0 }
4141 };
4142
4143 int fat;
4144
837e4a42 4145 fat = t4_handle_intr_status(adapter, MPS_RX_PERR_INT_CAUSE_A,
56d36be4 4146 mps_rx_intr_info) +
837e4a42 4147 t4_handle_intr_status(adapter, MPS_TX_INT_CAUSE_A,
56d36be4 4148 mps_tx_intr_info) +
837e4a42 4149 t4_handle_intr_status(adapter, MPS_TRC_INT_CAUSE_A,
56d36be4 4150 mps_trc_intr_info) +
837e4a42 4151 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
56d36be4 4152 mps_stat_sram_intr_info) +
837e4a42 4153 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
56d36be4 4154 mps_stat_tx_intr_info) +
837e4a42 4155 t4_handle_intr_status(adapter, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
56d36be4 4156 mps_stat_rx_intr_info) +
837e4a42 4157 t4_handle_intr_status(adapter, MPS_CLS_INT_CAUSE_A,
56d36be4
DM
4158 mps_cls_intr_info);
4159
837e4a42
HS
4160 t4_write_reg(adapter, MPS_INT_CAUSE_A, 0);
4161 t4_read_reg(adapter, MPS_INT_CAUSE_A); /* flush */
56d36be4
DM
4162 if (fat)
4163 t4_fatal_err(adapter);
4164}
4165
89c3a86c
HS
4166#define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
4167 ECC_UE_INT_CAUSE_F)
56d36be4
DM
4168
4169/*
4170 * EDC/MC interrupt handler.
4171 */
4172static void mem_intr_handler(struct adapter *adapter, int idx)
4173{
822dd8a8 4174 static const char name[4][7] = { "EDC0", "EDC1", "MC/MC0", "MC1" };
56d36be4
DM
4175
4176 unsigned int addr, cnt_addr, v;
4177
4178 if (idx <= MEM_EDC1) {
89c3a86c
HS
4179 addr = EDC_REG(EDC_INT_CAUSE_A, idx);
4180 cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
822dd8a8
HS
4181 } else if (idx == MEM_MC) {
4182 if (is_t4(adapter->params.chip)) {
89c3a86c
HS
4183 addr = MC_INT_CAUSE_A;
4184 cnt_addr = MC_ECC_STATUS_A;
822dd8a8 4185 } else {
89c3a86c
HS
4186 addr = MC_P_INT_CAUSE_A;
4187 cnt_addr = MC_P_ECC_STATUS_A;
822dd8a8 4188 }
56d36be4 4189 } else {
89c3a86c
HS
4190 addr = MC_REG(MC_P_INT_CAUSE_A, 1);
4191 cnt_addr = MC_REG(MC_P_ECC_STATUS_A, 1);
56d36be4
DM
4192 }
4193
4194 v = t4_read_reg(adapter, addr) & MEM_INT_MASK;
89c3a86c 4195 if (v & PERR_INT_CAUSE_F)
56d36be4
DM
4196 dev_alert(adapter->pdev_dev, "%s FIFO parity error\n",
4197 name[idx]);
89c3a86c
HS
4198 if (v & ECC_CE_INT_CAUSE_F) {
4199 u32 cnt = ECC_CECNT_G(t4_read_reg(adapter, cnt_addr));
56d36be4 4200
bf8ebb67
HS
4201 t4_edc_err_read(adapter, idx);
4202
89c3a86c 4203 t4_write_reg(adapter, cnt_addr, ECC_CECNT_V(ECC_CECNT_M));
56d36be4
DM
4204 if (printk_ratelimit())
4205 dev_warn(adapter->pdev_dev,
4206 "%u %s correctable ECC data error%s\n",
4207 cnt, name[idx], cnt > 1 ? "s" : "");
4208 }
89c3a86c 4209 if (v & ECC_UE_INT_CAUSE_F)
56d36be4
DM
4210 dev_alert(adapter->pdev_dev,
4211 "%s uncorrectable ECC data error\n", name[idx]);
4212
4213 t4_write_reg(adapter, addr, v);
89c3a86c 4214 if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
56d36be4
DM
4215 t4_fatal_err(adapter);
4216}
4217
4218/*
4219 * MA interrupt handler.
4220 */
4221static void ma_intr_handler(struct adapter *adap)
4222{
89c3a86c 4223 u32 v, status = t4_read_reg(adap, MA_INT_CAUSE_A);
56d36be4 4224
89c3a86c 4225 if (status & MEM_PERR_INT_CAUSE_F) {
56d36be4
DM
4226 dev_alert(adap->pdev_dev,
4227 "MA parity error, parity status %#x\n",
89c3a86c 4228 t4_read_reg(adap, MA_PARITY_ERROR_STATUS1_A));
9bb59b96
HS
4229 if (is_t5(adap->params.chip))
4230 dev_alert(adap->pdev_dev,
4231 "MA parity error, parity status %#x\n",
4232 t4_read_reg(adap,
89c3a86c 4233 MA_PARITY_ERROR_STATUS2_A));
9bb59b96 4234 }
89c3a86c
HS
4235 if (status & MEM_WRAP_INT_CAUSE_F) {
4236 v = t4_read_reg(adap, MA_INT_WRAP_STATUS_A);
56d36be4
DM
4237 dev_alert(adap->pdev_dev, "MA address wrap-around error by "
4238 "client %u to address %#x\n",
89c3a86c
HS
4239 MEM_WRAP_CLIENT_NUM_G(v),
4240 MEM_WRAP_ADDRESS_G(v) << 4);
56d36be4 4241 }
89c3a86c 4242 t4_write_reg(adap, MA_INT_CAUSE_A, status);
56d36be4
DM
4243 t4_fatal_err(adap);
4244}
4245
4246/*
4247 * SMB interrupt handler.
4248 */
4249static void smb_intr_handler(struct adapter *adap)
4250{
005b5717 4251 static const struct intr_info smb_intr_info[] = {
0d804338
HS
4252 { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
4253 { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
4254 { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
56d36be4
DM
4255 { 0 }
4256 };
4257
0d804338 4258 if (t4_handle_intr_status(adap, SMB_INT_CAUSE_A, smb_intr_info))
56d36be4
DM
4259 t4_fatal_err(adap);
4260}
4261
4262/*
4263 * NC-SI interrupt handler.
4264 */
4265static void ncsi_intr_handler(struct adapter *adap)
4266{
005b5717 4267 static const struct intr_info ncsi_intr_info[] = {
0d804338
HS
4268 { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
4269 { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
4270 { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
4271 { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
56d36be4
DM
4272 { 0 }
4273 };
4274
0d804338 4275 if (t4_handle_intr_status(adap, NCSI_INT_CAUSE_A, ncsi_intr_info))
56d36be4
DM
4276 t4_fatal_err(adap);
4277}
4278
4279/*
4280 * XGMAC interrupt handler.
4281 */
4282static void xgmac_intr_handler(struct adapter *adap, int port)
4283{
0a57a536
SR
4284 u32 v, int_cause_reg;
4285
d14807dd 4286 if (is_t4(adap->params.chip))
0d804338 4287 int_cause_reg = PORT_REG(port, XGMAC_PORT_INT_CAUSE_A);
0a57a536 4288 else
0d804338 4289 int_cause_reg = T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A);
0a57a536
SR
4290
4291 v = t4_read_reg(adap, int_cause_reg);
56d36be4 4292
0d804338 4293 v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
56d36be4
DM
4294 if (!v)
4295 return;
4296
0d804338 4297 if (v & TXFIFO_PRTY_ERR_F)
56d36be4
DM
4298 dev_alert(adap->pdev_dev, "XGMAC %d Tx FIFO parity error\n",
4299 port);
0d804338 4300 if (v & RXFIFO_PRTY_ERR_F)
56d36be4
DM
4301 dev_alert(adap->pdev_dev, "XGMAC %d Rx FIFO parity error\n",
4302 port);
0d804338 4303 t4_write_reg(adap, PORT_REG(port, XGMAC_PORT_INT_CAUSE_A), v);
56d36be4
DM
4304 t4_fatal_err(adap);
4305}
4306
4307/*
4308 * PL interrupt handler.
4309 */
4310static void pl_intr_handler(struct adapter *adap)
4311{
005b5717 4312 static const struct intr_info pl_intr_info[] = {
0d804338
HS
4313 { FATALPERR_F, "T4 fatal parity error", -1, 1 },
4314 { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
56d36be4
DM
4315 { 0 }
4316 };
4317
0d804338 4318 if (t4_handle_intr_status(adap, PL_PL_INT_CAUSE_A, pl_intr_info))
56d36be4
DM
4319 t4_fatal_err(adap);
4320}
4321
0d804338
HS
4322#define PF_INTR_MASK (PFSW_F)
4323#define GLBL_INTR_MASK (CIM_F | MPS_F | PL_F | PCIE_F | MC_F | EDC0_F | \
4324 EDC1_F | LE_F | TP_F | MA_F | PM_TX_F | PM_RX_F | ULP_RX_F | \
4325 CPL_SWITCH_F | SGE_F | ULP_TX_F)
56d36be4
DM
4326
4327/**
4328 * t4_slow_intr_handler - control path interrupt handler
4329 * @adapter: the adapter
4330 *
4331 * T4 interrupt handler for non-data global interrupt events, e.g., errors.
4332 * The designation 'slow' is because it involves register reads, while
4333 * data interrupts typically don't involve any MMIOs.
4334 */
4335int t4_slow_intr_handler(struct adapter *adapter)
4336{
0d804338 4337 u32 cause = t4_read_reg(adapter, PL_INT_CAUSE_A);
56d36be4
DM
4338
4339 if (!(cause & GLBL_INTR_MASK))
4340 return 0;
0d804338 4341 if (cause & CIM_F)
56d36be4 4342 cim_intr_handler(adapter);
0d804338 4343 if (cause & MPS_F)
56d36be4 4344 mps_intr_handler(adapter);
0d804338 4345 if (cause & NCSI_F)
56d36be4 4346 ncsi_intr_handler(adapter);
0d804338 4347 if (cause & PL_F)
56d36be4 4348 pl_intr_handler(adapter);
0d804338 4349 if (cause & SMB_F)
56d36be4 4350 smb_intr_handler(adapter);
0d804338 4351 if (cause & XGMAC0_F)
56d36be4 4352 xgmac_intr_handler(adapter, 0);
0d804338 4353 if (cause & XGMAC1_F)
56d36be4 4354 xgmac_intr_handler(adapter, 1);
0d804338 4355 if (cause & XGMAC_KR0_F)
56d36be4 4356 xgmac_intr_handler(adapter, 2);
0d804338 4357 if (cause & XGMAC_KR1_F)
56d36be4 4358 xgmac_intr_handler(adapter, 3);
0d804338 4359 if (cause & PCIE_F)
56d36be4 4360 pcie_intr_handler(adapter);
0d804338 4361 if (cause & MC_F)
56d36be4 4362 mem_intr_handler(adapter, MEM_MC);
3ccc6cf7 4363 if (is_t5(adapter->params.chip) && (cause & MC1_F))
822dd8a8 4364 mem_intr_handler(adapter, MEM_MC1);
0d804338 4365 if (cause & EDC0_F)
56d36be4 4366 mem_intr_handler(adapter, MEM_EDC0);
0d804338 4367 if (cause & EDC1_F)
56d36be4 4368 mem_intr_handler(adapter, MEM_EDC1);
0d804338 4369 if (cause & LE_F)
56d36be4 4370 le_intr_handler(adapter);
0d804338 4371 if (cause & TP_F)
56d36be4 4372 tp_intr_handler(adapter);
0d804338 4373 if (cause & MA_F)
56d36be4 4374 ma_intr_handler(adapter);
0d804338 4375 if (cause & PM_TX_F)
56d36be4 4376 pmtx_intr_handler(adapter);
0d804338 4377 if (cause & PM_RX_F)
56d36be4 4378 pmrx_intr_handler(adapter);
0d804338 4379 if (cause & ULP_RX_F)
56d36be4 4380 ulprx_intr_handler(adapter);
0d804338 4381 if (cause & CPL_SWITCH_F)
56d36be4 4382 cplsw_intr_handler(adapter);
0d804338 4383 if (cause & SGE_F)
56d36be4 4384 sge_intr_handler(adapter);
0d804338 4385 if (cause & ULP_TX_F)
56d36be4
DM
4386 ulptx_intr_handler(adapter);
4387
4388 /* Clear the interrupts just processed for which we are the master. */
0d804338
HS
4389 t4_write_reg(adapter, PL_INT_CAUSE_A, cause & GLBL_INTR_MASK);
4390 (void)t4_read_reg(adapter, PL_INT_CAUSE_A); /* flush */
56d36be4
DM
4391 return 1;
4392}
4393
4394/**
4395 * t4_intr_enable - enable interrupts
4396 * @adapter: the adapter whose interrupts should be enabled
4397 *
4398 * Enable PF-specific interrupts for the calling function and the top-level
4399 * interrupt concentrator for global interrupts. Interrupts are already
4400 * enabled at each module, here we just enable the roots of the interrupt
4401 * hierarchies.
4402 *
4403 * Note: this function should be called only when the driver manages
4404 * non PF-specific interrupts from the various HW modules. Only one PCI
4405 * function at a time should be doing this.
4406 */
4407void t4_intr_enable(struct adapter *adapter)
4408{
3ccc6cf7 4409 u32 val = 0;
d86bd29e
HS
4410 u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4411 u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4412 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
56d36be4 4413
3ccc6cf7
HS
4414 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5)
4415 val = ERR_DROPPED_DB_F | ERR_EGR_CTXT_PRIO_F | DBFIFO_HP_INT_F;
f612b815
HS
4416 t4_write_reg(adapter, SGE_INT_ENABLE3_A, ERR_CPL_EXCEED_IQE_SIZE_F |
4417 ERR_INVALID_CIDX_INC_F | ERR_CPL_OPCODE_0_F |
3ccc6cf7 4418 ERR_DATA_CPL_ON_HIGH_QID1_F | INGRESS_SIZE_ERR_F |
f612b815
HS
4419 ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
4420 ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
4421 ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
3ccc6cf7 4422 DBFIFO_LP_INT_F | EGRESS_SIZE_ERR_F | val);
0d804338
HS
4423 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), PF_INTR_MASK);
4424 t4_set_reg_field(adapter, PL_INT_MAP0_A, 0, 1 << pf);
56d36be4
DM
4425}
4426
4427/**
4428 * t4_intr_disable - disable interrupts
4429 * @adapter: the adapter whose interrupts should be disabled
4430 *
4431 * Disable interrupts. We only disable the top-level interrupt
4432 * concentrators. The caller must be a PCI function managing global
4433 * interrupts.
4434 */
4435void t4_intr_disable(struct adapter *adapter)
4436{
d86bd29e
HS
4437 u32 whoami = t4_read_reg(adapter, PL_WHOAMI_A);
4438 u32 pf = CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5 ?
4439 SOURCEPF_G(whoami) : T6_SOURCEPF_G(whoami);
56d36be4 4440
0d804338
HS
4441 t4_write_reg(adapter, MYPF_REG(PL_PF_INT_ENABLE_A), 0);
4442 t4_set_reg_field(adapter, PL_INT_MAP0_A, 1 << pf, 0);
56d36be4
DM
4443}
4444
56d36be4
DM
4445/**
4446 * t4_config_rss_range - configure a portion of the RSS mapping table
4447 * @adapter: the adapter
4448 * @mbox: mbox to use for the FW command
4449 * @viid: virtual interface whose RSS subtable is to be written
4450 * @start: start entry in the table to write
4451 * @n: how many table entries to write
4452 * @rspq: values for the response queue lookup table
4453 * @nrspq: number of values in @rspq
4454 *
4455 * Programs the selected part of the VI's RSS mapping table with the
4456 * provided values. If @nrspq < @n the supplied values are used repeatedly
4457 * until the full table range is populated.
4458 *
4459 * The caller must ensure the values in @rspq are in the range allowed for
4460 * @viid.
4461 */
4462int t4_config_rss_range(struct adapter *adapter, int mbox, unsigned int viid,
4463 int start, int n, const u16 *rspq, unsigned int nrspq)
4464{
4465 int ret;
4466 const u16 *rsp = rspq;
4467 const u16 *rsp_end = rspq + nrspq;
4468 struct fw_rss_ind_tbl_cmd cmd;
4469
4470 memset(&cmd, 0, sizeof(cmd));
f404f80c 4471 cmd.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_IND_TBL_CMD) |
e2ac9628 4472 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
b2e1a3f0 4473 FW_RSS_IND_TBL_CMD_VIID_V(viid));
f404f80c 4474 cmd.retval_len16 = cpu_to_be32(FW_LEN16(cmd));
56d36be4
DM
4475
4476 /* each fw_rss_ind_tbl_cmd takes up to 32 entries */
4477 while (n > 0) {
4478 int nq = min(n, 32);
4479 __be32 *qp = &cmd.iq0_to_iq2;
4480
f404f80c
HS
4481 cmd.niqid = cpu_to_be16(nq);
4482 cmd.startidx = cpu_to_be16(start);
56d36be4
DM
4483
4484 start += nq;
4485 n -= nq;
4486
4487 while (nq > 0) {
4488 unsigned int v;
4489
b2e1a3f0 4490 v = FW_RSS_IND_TBL_CMD_IQ0_V(*rsp);
56d36be4
DM
4491 if (++rsp >= rsp_end)
4492 rsp = rspq;
b2e1a3f0 4493 v |= FW_RSS_IND_TBL_CMD_IQ1_V(*rsp);
56d36be4
DM
4494 if (++rsp >= rsp_end)
4495 rsp = rspq;
b2e1a3f0 4496 v |= FW_RSS_IND_TBL_CMD_IQ2_V(*rsp);
56d36be4
DM
4497 if (++rsp >= rsp_end)
4498 rsp = rspq;
4499
f404f80c 4500 *qp++ = cpu_to_be32(v);
56d36be4
DM
4501 nq -= 3;
4502 }
4503
4504 ret = t4_wr_mbox(adapter, mbox, &cmd, sizeof(cmd), NULL);
4505 if (ret)
4506 return ret;
4507 }
4508 return 0;
4509}
4510
4511/**
4512 * t4_config_glbl_rss - configure the global RSS mode
4513 * @adapter: the adapter
4514 * @mbox: mbox to use for the FW command
4515 * @mode: global RSS mode
4516 * @flags: mode-specific flags
4517 *
4518 * Sets the global RSS mode.
4519 */
4520int t4_config_glbl_rss(struct adapter *adapter, int mbox, unsigned int mode,
4521 unsigned int flags)
4522{
4523 struct fw_rss_glb_config_cmd c;
4524
4525 memset(&c, 0, sizeof(c));
f404f80c
HS
4526 c.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_RSS_GLB_CONFIG_CMD) |
4527 FW_CMD_REQUEST_F | FW_CMD_WRITE_F);
4528 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
56d36be4 4529 if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_MANUAL) {
f404f80c
HS
4530 c.u.manual.mode_pkd =
4531 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
56d36be4
DM
4532 } else if (mode == FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL) {
4533 c.u.basicvirtual.mode_pkd =
f404f80c
HS
4534 cpu_to_be32(FW_RSS_GLB_CONFIG_CMD_MODE_V(mode));
4535 c.u.basicvirtual.synmapen_to_hashtoeplitz = cpu_to_be32(flags);
56d36be4
DM
4536 } else
4537 return -EINVAL;
4538 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4539}
4540
c035e183
HS
4541/**
4542 * t4_config_vi_rss - configure per VI RSS settings
4543 * @adapter: the adapter
4544 * @mbox: mbox to use for the FW command
4545 * @viid: the VI id
4546 * @flags: RSS flags
4547 * @defq: id of the default RSS queue for the VI.
4548 *
4549 * Configures VI-specific RSS properties.
4550 */
4551int t4_config_vi_rss(struct adapter *adapter, int mbox, unsigned int viid,
4552 unsigned int flags, unsigned int defq)
4553{
4554 struct fw_rss_vi_config_cmd c;
4555
4556 memset(&c, 0, sizeof(c));
4557 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
4558 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
4559 FW_RSS_VI_CONFIG_CMD_VIID_V(viid));
4560 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
4561 c.u.basicvirtual.defaultq_to_udpen = cpu_to_be32(flags |
4562 FW_RSS_VI_CONFIG_CMD_DEFAULTQ_V(defq));
4563 return t4_wr_mbox(adapter, mbox, &c, sizeof(c), NULL);
4564}
4565
688ea5fe
HS
4566/* Read an RSS table row */
4567static int rd_rss_row(struct adapter *adap, int row, u32 *val)
4568{
4569 t4_write_reg(adap, TP_RSS_LKP_TABLE_A, 0xfff00000 | row);
4570 return t4_wait_op_done_val(adap, TP_RSS_LKP_TABLE_A, LKPTBLROWVLD_F, 1,
4571 5, 0, val);
4572}
4573
4574/**
4575 * t4_read_rss - read the contents of the RSS mapping table
4576 * @adapter: the adapter
4577 * @map: holds the contents of the RSS mapping table
4578 *
4579 * Reads the contents of the RSS hash->queue mapping table.
4580 */
4581int t4_read_rss(struct adapter *adapter, u16 *map)
4582{
4583 u32 val;
4584 int i, ret;
4585
4586 for (i = 0; i < RSS_NENTRIES / 2; ++i) {
4587 ret = rd_rss_row(adapter, i, &val);
4588 if (ret)
4589 return ret;
4590 *map++ = LKPTBLQUEUE0_G(val);
4591 *map++ = LKPTBLQUEUE1_G(val);
4592 }
4593 return 0;
4594}
4595
0b2c2a93
HS
4596static unsigned int t4_use_ldst(struct adapter *adap)
4597{
4598 return (adap->flags & FW_OK) || !adap->use_bd;
4599}
4600
c1e9af0c
HS
4601/**
4602 * t4_fw_tp_pio_rw - Access TP PIO through LDST
4603 * @adap: the adapter
4604 * @vals: where the indirect register values are stored/written
4605 * @nregs: how many indirect registers to read/write
4606 * @start_idx: index of first indirect register to read/write
4607 * @rw: Read (1) or Write (0)
4608 *
4609 * Access TP PIO registers through LDST
4610 */
4611static void t4_fw_tp_pio_rw(struct adapter *adap, u32 *vals, unsigned int nregs,
4612 unsigned int start_index, unsigned int rw)
4613{
4614 int ret, i;
4615 int cmd = FW_LDST_ADDRSPC_TP_PIO;
4616 struct fw_ldst_cmd c;
4617
4618 for (i = 0 ; i < nregs; i++) {
4619 memset(&c, 0, sizeof(c));
4620 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
4621 FW_CMD_REQUEST_F |
4622 (rw ? FW_CMD_READ_F :
4623 FW_CMD_WRITE_F) |
4624 FW_LDST_CMD_ADDRSPACE_V(cmd));
4625 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
4626
4627 c.u.addrval.addr = cpu_to_be32(start_index + i);
4628 c.u.addrval.val = rw ? 0 : cpu_to_be32(vals[i]);
4629 ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c);
4630 if (!ret && rw)
4631 vals[i] = be32_to_cpu(c.u.addrval.val);
4632 }
4633}
4634
688ea5fe
HS
4635/**
4636 * t4_read_rss_key - read the global RSS key
4637 * @adap: the adapter
4638 * @key: 10-entry array holding the 320-bit RSS key
4639 *
4640 * Reads the global 320-bit RSS key.
4641 */
4642void t4_read_rss_key(struct adapter *adap, u32 *key)
4643{
0b2c2a93 4644 if (t4_use_ldst(adap))
c1e9af0c
HS
4645 t4_fw_tp_pio_rw(adap, key, 10, TP_RSS_SECRET_KEY0_A, 1);
4646 else
4647 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
4648 TP_RSS_SECRET_KEY0_A);
688ea5fe
HS
4649}
4650
4651/**
4652 * t4_write_rss_key - program one of the RSS keys
4653 * @adap: the adapter
4654 * @key: 10-entry array holding the 320-bit RSS key
4655 * @idx: which RSS key to write
4656 *
4657 * Writes one of the RSS keys with the given 320-bit value. If @idx is
4658 * 0..15 the corresponding entry in the RSS key table is written,
4659 * otherwise the global RSS key is written.
4660 */
4661void t4_write_rss_key(struct adapter *adap, const u32 *key, int idx)
4662{
3ccc6cf7
HS
4663 u8 rss_key_addr_cnt = 16;
4664 u32 vrt = t4_read_reg(adap, TP_RSS_CONFIG_VRT_A);
4665
4666 /* T6 and later: for KeyMode 3 (per-vf and per-vf scramble),
4667 * allows access to key addresses 16-63 by using KeyWrAddrX
4668 * as index[5:4](upper 2) into key table
4669 */
4670 if ((CHELSIO_CHIP_VERSION(adap->params.chip) > CHELSIO_T5) &&
4671 (vrt & KEYEXTEND_F) && (KEYMODE_G(vrt) == 3))
4672 rss_key_addr_cnt = 32;
4673
0b2c2a93 4674 if (t4_use_ldst(adap))
c1e9af0c
HS
4675 t4_fw_tp_pio_rw(adap, (void *)key, 10, TP_RSS_SECRET_KEY0_A, 0);
4676 else
4677 t4_write_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A, key, 10,
4678 TP_RSS_SECRET_KEY0_A);
3ccc6cf7
HS
4679
4680 if (idx >= 0 && idx < rss_key_addr_cnt) {
4681 if (rss_key_addr_cnt > 16)
4682 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
4683 KEYWRADDRX_V(idx >> 4) |
4684 T6_VFWRADDR_V(idx) | KEYWREN_F);
4685 else
4686 t4_write_reg(adap, TP_RSS_CONFIG_VRT_A,
4687 KEYWRADDR_V(idx) | KEYWREN_F);
4688 }
688ea5fe
HS
4689}
4690
4691/**
4692 * t4_read_rss_pf_config - read PF RSS Configuration Table
4693 * @adapter: the adapter
4694 * @index: the entry in the PF RSS table to read
4695 * @valp: where to store the returned value
4696 *
4697 * Reads the PF RSS Configuration Table at the specified index and returns
4698 * the value found there.
4699 */
4700void t4_read_rss_pf_config(struct adapter *adapter, unsigned int index,
4701 u32 *valp)
4702{
0b2c2a93 4703 if (t4_use_ldst(adapter))
c1e9af0c
HS
4704 t4_fw_tp_pio_rw(adapter, valp, 1,
4705 TP_RSS_PF0_CONFIG_A + index, 1);
4706 else
4707 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4708 valp, 1, TP_RSS_PF0_CONFIG_A + index);
688ea5fe
HS
4709}
4710
4711/**
4712 * t4_read_rss_vf_config - read VF RSS Configuration Table
4713 * @adapter: the adapter
4714 * @index: the entry in the VF RSS table to read
4715 * @vfl: where to store the returned VFL
4716 * @vfh: where to store the returned VFH
4717 *
4718 * Reads the VF RSS Configuration Table at the specified index and returns
4719 * the (VFL, VFH) values found there.
4720 */
4721void t4_read_rss_vf_config(struct adapter *adapter, unsigned int index,
4722 u32 *vfl, u32 *vfh)
4723{
4724 u32 vrt, mask, data;
4725
3ccc6cf7
HS
4726 if (CHELSIO_CHIP_VERSION(adapter->params.chip) <= CHELSIO_T5) {
4727 mask = VFWRADDR_V(VFWRADDR_M);
4728 data = VFWRADDR_V(index);
4729 } else {
4730 mask = T6_VFWRADDR_V(T6_VFWRADDR_M);
4731 data = T6_VFWRADDR_V(index);
4732 }
688ea5fe
HS
4733
4734 /* Request that the index'th VF Table values be read into VFL/VFH.
4735 */
4736 vrt = t4_read_reg(adapter, TP_RSS_CONFIG_VRT_A);
4737 vrt &= ~(VFRDRG_F | VFWREN_F | KEYWREN_F | mask);
4738 vrt |= data | VFRDEN_F;
4739 t4_write_reg(adapter, TP_RSS_CONFIG_VRT_A, vrt);
4740
4741 /* Grab the VFL/VFH values ...
4742 */
0b2c2a93 4743 if (t4_use_ldst(adapter)) {
c1e9af0c
HS
4744 t4_fw_tp_pio_rw(adapter, vfl, 1, TP_RSS_VFL_CONFIG_A, 1);
4745 t4_fw_tp_pio_rw(adapter, vfh, 1, TP_RSS_VFH_CONFIG_A, 1);
4746 } else {
4747 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4748 vfl, 1, TP_RSS_VFL_CONFIG_A);
4749 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4750 vfh, 1, TP_RSS_VFH_CONFIG_A);
4751 }
688ea5fe
HS
4752}
4753
4754/**
4755 * t4_read_rss_pf_map - read PF RSS Map
4756 * @adapter: the adapter
4757 *
4758 * Reads the PF RSS Map register and returns its value.
4759 */
4760u32 t4_read_rss_pf_map(struct adapter *adapter)
4761{
4762 u32 pfmap;
4763
0b2c2a93 4764 if (t4_use_ldst(adapter))
c1e9af0c
HS
4765 t4_fw_tp_pio_rw(adapter, &pfmap, 1, TP_RSS_PF_MAP_A, 1);
4766 else
4767 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4768 &pfmap, 1, TP_RSS_PF_MAP_A);
688ea5fe
HS
4769 return pfmap;
4770}
4771
4772/**
4773 * t4_read_rss_pf_mask - read PF RSS Mask
4774 * @adapter: the adapter
4775 *
4776 * Reads the PF RSS Mask register and returns its value.
4777 */
4778u32 t4_read_rss_pf_mask(struct adapter *adapter)
4779{
4780 u32 pfmask;
4781
0b2c2a93 4782 if (t4_use_ldst(adapter))
c1e9af0c
HS
4783 t4_fw_tp_pio_rw(adapter, &pfmask, 1, TP_RSS_PF_MSK_A, 1);
4784 else
4785 t4_read_indirect(adapter, TP_PIO_ADDR_A, TP_PIO_DATA_A,
4786 &pfmask, 1, TP_RSS_PF_MSK_A);
688ea5fe
HS
4787 return pfmask;
4788}
4789
56d36be4
DM
4790/**
4791 * t4_tp_get_tcp_stats - read TP's TCP MIB counters
4792 * @adap: the adapter
4793 * @v4: holds the TCP/IP counter values
4794 * @v6: holds the TCP/IPv6 counter values
4795 *
4796 * Returns the values of TP's TCP/IP and TCP/IPv6 MIB counters.
4797 * Either @v4 or @v6 may be %NULL to skip the corresponding stats.
4798 */
4799void t4_tp_get_tcp_stats(struct adapter *adap, struct tp_tcp_stats *v4,
4800 struct tp_tcp_stats *v6)
4801{
837e4a42 4802 u32 val[TP_MIB_TCP_RXT_SEG_LO_A - TP_MIB_TCP_OUT_RST_A + 1];
56d36be4 4803
837e4a42 4804#define STAT_IDX(x) ((TP_MIB_TCP_##x##_A) - TP_MIB_TCP_OUT_RST_A)
56d36be4
DM
4805#define STAT(x) val[STAT_IDX(x)]
4806#define STAT64(x) (((u64)STAT(x##_HI) << 32) | STAT(x##_LO))
4807
4808 if (v4) {
837e4a42
HS
4809 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4810 ARRAY_SIZE(val), TP_MIB_TCP_OUT_RST_A);
a4cfd929
HS
4811 v4->tcp_out_rsts = STAT(OUT_RST);
4812 v4->tcp_in_segs = STAT64(IN_SEG);
4813 v4->tcp_out_segs = STAT64(OUT_SEG);
4814 v4->tcp_retrans_segs = STAT64(RXT_SEG);
56d36be4
DM
4815 }
4816 if (v6) {
837e4a42
HS
4817 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4818 ARRAY_SIZE(val), TP_MIB_TCP_V6OUT_RST_A);
a4cfd929
HS
4819 v6->tcp_out_rsts = STAT(OUT_RST);
4820 v6->tcp_in_segs = STAT64(IN_SEG);
4821 v6->tcp_out_segs = STAT64(OUT_SEG);
4822 v6->tcp_retrans_segs = STAT64(RXT_SEG);
56d36be4
DM
4823 }
4824#undef STAT64
4825#undef STAT
4826#undef STAT_IDX
4827}
4828
a4cfd929
HS
4829/**
4830 * t4_tp_get_err_stats - read TP's error MIB counters
4831 * @adap: the adapter
4832 * @st: holds the counter values
4833 *
4834 * Returns the values of TP's error counters.
4835 */
4836void t4_tp_get_err_stats(struct adapter *adap, struct tp_err_stats *st)
4837{
df459ebc
HS
4838 int nchan = adap->params.arch.nchan;
4839
4840 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4841 st->mac_in_errs, nchan, TP_MIB_MAC_IN_ERR_0_A);
4842 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4843 st->hdr_in_errs, nchan, TP_MIB_HDR_IN_ERR_0_A);
4844 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4845 st->tcp_in_errs, nchan, TP_MIB_TCP_IN_ERR_0_A);
4846 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4847 st->tnl_cong_drops, nchan, TP_MIB_TNL_CNG_DROP_0_A);
4848 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4849 st->ofld_chan_drops, nchan, TP_MIB_OFD_CHN_DROP_0_A);
4850 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4851 st->tnl_tx_drops, nchan, TP_MIB_TNL_DROP_0_A);
4852 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4853 st->ofld_vlan_drops, nchan, TP_MIB_OFD_VLN_DROP_0_A);
4854 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4855 st->tcp6_in_errs, nchan, TP_MIB_TCP_V6IN_ERR_0_A);
4856
a4cfd929
HS
4857 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A,
4858 &st->ofld_no_neigh, 2, TP_MIB_OFD_ARP_DROP_A);
4859}
4860
a6222975
HS
4861/**
4862 * t4_tp_get_cpl_stats - read TP's CPL MIB counters
4863 * @adap: the adapter
4864 * @st: holds the counter values
4865 *
4866 * Returns the values of TP's CPL counters.
4867 */
4868void t4_tp_get_cpl_stats(struct adapter *adap, struct tp_cpl_stats *st)
4869{
df459ebc
HS
4870 int nchan = adap->params.arch.nchan;
4871
4872 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->req,
4873 nchan, TP_MIB_CPL_IN_REQ_0_A);
4874 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, st->rsp,
4875 nchan, TP_MIB_CPL_OUT_RSP_0_A);
4876
a6222975
HS
4877}
4878
a4cfd929
HS
4879/**
4880 * t4_tp_get_rdma_stats - read TP's RDMA MIB counters
4881 * @adap: the adapter
4882 * @st: holds the counter values
4883 *
4884 * Returns the values of TP's RDMA counters.
4885 */
4886void t4_tp_get_rdma_stats(struct adapter *adap, struct tp_rdma_stats *st)
4887{
4888 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->rqe_dfr_pkt,
4889 2, TP_MIB_RQE_DFR_PKT_A);
4890}
4891
a6222975
HS
4892/**
4893 * t4_get_fcoe_stats - read TP's FCoE MIB counters for a port
4894 * @adap: the adapter
4895 * @idx: the port index
4896 * @st: holds the counter values
4897 *
4898 * Returns the values of TP's FCoE counters for the selected port.
4899 */
4900void t4_get_fcoe_stats(struct adapter *adap, unsigned int idx,
4901 struct tp_fcoe_stats *st)
4902{
4903 u32 val[2];
4904
4905 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_ddp,
4906 1, TP_MIB_FCOE_DDP_0_A + idx);
4907 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, &st->frames_drop,
4908 1, TP_MIB_FCOE_DROP_0_A + idx);
4909 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val,
4910 2, TP_MIB_FCOE_BYTE_0_HI_A + 2 * idx);
4911 st->octets_ddp = ((u64)val[0] << 32) | val[1];
4912}
4913
a4cfd929
HS
4914/**
4915 * t4_get_usm_stats - read TP's non-TCP DDP MIB counters
4916 * @adap: the adapter
4917 * @st: holds the counter values
4918 *
4919 * Returns the values of TP's counters for non-TCP directly-placed packets.
4920 */
4921void t4_get_usm_stats(struct adapter *adap, struct tp_usm_stats *st)
4922{
4923 u32 val[4];
4924
4925 t4_read_indirect(adap, TP_MIB_INDEX_A, TP_MIB_DATA_A, val, 4,
4926 TP_MIB_USM_PKTS_A);
4927 st->frames = val[0];
4928 st->drops = val[1];
4929 st->octets = ((u64)val[2] << 32) | val[3];
4930}
4931
56d36be4
DM
4932/**
4933 * t4_read_mtu_tbl - returns the values in the HW path MTU table
4934 * @adap: the adapter
4935 * @mtus: where to store the MTU values
4936 * @mtu_log: where to store the MTU base-2 log (may be %NULL)
4937 *
4938 * Reads the HW path MTU table.
4939 */
4940void t4_read_mtu_tbl(struct adapter *adap, u16 *mtus, u8 *mtu_log)
4941{
4942 u32 v;
4943 int i;
4944
4945 for (i = 0; i < NMTUS; ++i) {
837e4a42
HS
4946 t4_write_reg(adap, TP_MTU_TABLE_A,
4947 MTUINDEX_V(0xff) | MTUVALUE_V(i));
4948 v = t4_read_reg(adap, TP_MTU_TABLE_A);
4949 mtus[i] = MTUVALUE_G(v);
56d36be4 4950 if (mtu_log)
837e4a42 4951 mtu_log[i] = MTUWIDTH_G(v);
56d36be4
DM
4952 }
4953}
4954
bad43792
HS
4955/**
4956 * t4_read_cong_tbl - reads the congestion control table
4957 * @adap: the adapter
4958 * @incr: where to store the alpha values
4959 *
4960 * Reads the additive increments programmed into the HW congestion
4961 * control table.
4962 */
4963void t4_read_cong_tbl(struct adapter *adap, u16 incr[NMTUS][NCCTRL_WIN])
4964{
4965 unsigned int mtu, w;
4966
4967 for (mtu = 0; mtu < NMTUS; ++mtu)
4968 for (w = 0; w < NCCTRL_WIN; ++w) {
4969 t4_write_reg(adap, TP_CCTRL_TABLE_A,
4970 ROWINDEX_V(0xffff) | (mtu << 5) | w);
4971 incr[mtu][w] = (u16)t4_read_reg(adap,
4972 TP_CCTRL_TABLE_A) & 0x1fff;
4973 }
4974}
4975
636f9d37
VP
4976/**
4977 * t4_tp_wr_bits_indirect - set/clear bits in an indirect TP register
4978 * @adap: the adapter
4979 * @addr: the indirect TP register address
4980 * @mask: specifies the field within the register to modify
4981 * @val: new value for the field
4982 *
4983 * Sets a field of an indirect TP register to the given value.
4984 */
4985void t4_tp_wr_bits_indirect(struct adapter *adap, unsigned int addr,
4986 unsigned int mask, unsigned int val)
4987{
837e4a42
HS
4988 t4_write_reg(adap, TP_PIO_ADDR_A, addr);
4989 val |= t4_read_reg(adap, TP_PIO_DATA_A) & ~mask;
4990 t4_write_reg(adap, TP_PIO_DATA_A, val);
636f9d37
VP
4991}
4992
56d36be4
DM
4993/**
4994 * init_cong_ctrl - initialize congestion control parameters
4995 * @a: the alpha values for congestion control
4996 * @b: the beta values for congestion control
4997 *
4998 * Initialize the congestion control parameters.
4999 */
91744948 5000static void init_cong_ctrl(unsigned short *a, unsigned short *b)
56d36be4
DM
5001{
5002 a[0] = a[1] = a[2] = a[3] = a[4] = a[5] = a[6] = a[7] = a[8] = 1;
5003 a[9] = 2;
5004 a[10] = 3;
5005 a[11] = 4;
5006 a[12] = 5;
5007 a[13] = 6;
5008 a[14] = 7;
5009 a[15] = 8;
5010 a[16] = 9;
5011 a[17] = 10;
5012 a[18] = 14;
5013 a[19] = 17;
5014 a[20] = 21;
5015 a[21] = 25;
5016 a[22] = 30;
5017 a[23] = 35;
5018 a[24] = 45;
5019 a[25] = 60;
5020 a[26] = 80;
5021 a[27] = 100;
5022 a[28] = 200;
5023 a[29] = 300;
5024 a[30] = 400;
5025 a[31] = 500;
5026
5027 b[0] = b[1] = b[2] = b[3] = b[4] = b[5] = b[6] = b[7] = b[8] = 0;
5028 b[9] = b[10] = 1;
5029 b[11] = b[12] = 2;
5030 b[13] = b[14] = b[15] = b[16] = 3;
5031 b[17] = b[18] = b[19] = b[20] = b[21] = 4;
5032 b[22] = b[23] = b[24] = b[25] = b[26] = b[27] = 5;
5033 b[28] = b[29] = 6;
5034 b[30] = b[31] = 7;
5035}
5036
5037/* The minimum additive increment value for the congestion control table */
5038#define CC_MIN_INCR 2U
5039
5040/**
5041 * t4_load_mtus - write the MTU and congestion control HW tables
5042 * @adap: the adapter
5043 * @mtus: the values for the MTU table
5044 * @alpha: the values for the congestion control alpha parameter
5045 * @beta: the values for the congestion control beta parameter
5046 *
5047 * Write the HW MTU table with the supplied MTUs and the high-speed
5048 * congestion control table with the supplied alpha, beta, and MTUs.
5049 * We write the two tables together because the additive increments
5050 * depend on the MTUs.
5051 */
5052void t4_load_mtus(struct adapter *adap, const unsigned short *mtus,
5053 const unsigned short *alpha, const unsigned short *beta)
5054{
5055 static const unsigned int avg_pkts[NCCTRL_WIN] = {
5056 2, 6, 10, 14, 20, 28, 40, 56, 80, 112, 160, 224, 320, 448, 640,
5057 896, 1281, 1792, 2560, 3584, 5120, 7168, 10240, 14336, 20480,
5058 28672, 40960, 57344, 81920, 114688, 163840, 229376
5059 };
5060
5061 unsigned int i, w;
5062
5063 for (i = 0; i < NMTUS; ++i) {
5064 unsigned int mtu = mtus[i];
5065 unsigned int log2 = fls(mtu);
5066
5067 if (!(mtu & ((1 << log2) >> 2))) /* round */
5068 log2--;
837e4a42
HS
5069 t4_write_reg(adap, TP_MTU_TABLE_A, MTUINDEX_V(i) |
5070 MTUWIDTH_V(log2) | MTUVALUE_V(mtu));
56d36be4
DM
5071
5072 for (w = 0; w < NCCTRL_WIN; ++w) {
5073 unsigned int inc;
5074
5075 inc = max(((mtu - 40) * alpha[w]) / avg_pkts[w],
5076 CC_MIN_INCR);
5077
837e4a42 5078 t4_write_reg(adap, TP_CCTRL_TABLE_A, (i << 21) |
56d36be4
DM
5079 (w << 16) | (beta[w] << 13) | inc);
5080 }
5081 }
5082}
5083
7864026b
HS
5084/* Calculates a rate in bytes/s given the number of 256-byte units per 4K core
5085 * clocks. The formula is
5086 *
5087 * bytes/s = bytes256 * 256 * ClkFreq / 4096
5088 *
5089 * which is equivalent to
5090 *
5091 * bytes/s = 62.5 * bytes256 * ClkFreq_ms
5092 */
5093static u64 chan_rate(struct adapter *adap, unsigned int bytes256)
5094{
5095 u64 v = bytes256 * adap->params.vpd.cclk;
5096
5097 return v * 62 + v / 2;
5098}
5099
5100/**
5101 * t4_get_chan_txrate - get the current per channel Tx rates
5102 * @adap: the adapter
5103 * @nic_rate: rates for NIC traffic
5104 * @ofld_rate: rates for offloaded traffic
5105 *
5106 * Return the current Tx rates in bytes/s for NIC and offloaded traffic
5107 * for each channel.
5108 */
5109void t4_get_chan_txrate(struct adapter *adap, u64 *nic_rate, u64 *ofld_rate)
5110{
5111 u32 v;
5112
5113 v = t4_read_reg(adap, TP_TX_TRATE_A);
5114 nic_rate[0] = chan_rate(adap, TNLRATE0_G(v));
5115 nic_rate[1] = chan_rate(adap, TNLRATE1_G(v));
5116 if (adap->params.arch.nchan == NCHAN) {
5117 nic_rate[2] = chan_rate(adap, TNLRATE2_G(v));
5118 nic_rate[3] = chan_rate(adap, TNLRATE3_G(v));
5119 }
5120
5121 v = t4_read_reg(adap, TP_TX_ORATE_A);
5122 ofld_rate[0] = chan_rate(adap, OFDRATE0_G(v));
5123 ofld_rate[1] = chan_rate(adap, OFDRATE1_G(v));
5124 if (adap->params.arch.nchan == NCHAN) {
5125 ofld_rate[2] = chan_rate(adap, OFDRATE2_G(v));
5126 ofld_rate[3] = chan_rate(adap, OFDRATE3_G(v));
5127 }
5128}
5129
8e3d04fd
HS
5130/**
5131 * t4_set_trace_filter - configure one of the tracing filters
5132 * @adap: the adapter
5133 * @tp: the desired trace filter parameters
5134 * @idx: which filter to configure
5135 * @enable: whether to enable or disable the filter
5136 *
5137 * Configures one of the tracing filters available in HW. If @enable is
5138 * %0 @tp is not examined and may be %NULL. The user is responsible to
5139 * set the single/multiple trace mode by writing to MPS_TRC_CFG_A register
5140 */
5141int t4_set_trace_filter(struct adapter *adap, const struct trace_params *tp,
5142 int idx, int enable)
5143{
5144 int i, ofst = idx * 4;
5145 u32 data_reg, mask_reg, cfg;
5146 u32 multitrc = TRCMULTIFILTER_F;
5147
5148 if (!enable) {
5149 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5150 return 0;
5151 }
5152
5153 cfg = t4_read_reg(adap, MPS_TRC_CFG_A);
5154 if (cfg & TRCMULTIFILTER_F) {
5155 /* If multiple tracers are enabled, then maximum
5156 * capture size is 2.5KB (FIFO size of a single channel)
5157 * minus 2 flits for CPL_TRACE_PKT header.
5158 */
5159 if (tp->snap_len > ((10 * 1024 / 4) - (2 * 8)))
5160 return -EINVAL;
5161 } else {
5162 /* If multiple tracers are disabled, to avoid deadlocks
5163 * maximum packet capture size of 9600 bytes is recommended.
5164 * Also in this mode, only trace0 can be enabled and running.
5165 */
5166 multitrc = 0;
5167 if (tp->snap_len > 9600 || idx)
5168 return -EINVAL;
5169 }
5170
5171 if (tp->port > (is_t4(adap->params.chip) ? 11 : 19) || tp->invert > 1 ||
5172 tp->skip_len > TFLENGTH_M || tp->skip_ofst > TFOFFSET_M ||
5173 tp->min_len > TFMINPKTSIZE_M)
5174 return -EINVAL;
5175
5176 /* stop the tracer we'll be changing */
5177 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst, 0);
5178
5179 idx *= (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A);
5180 data_reg = MPS_TRC_FILTER0_MATCH_A + idx;
5181 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + idx;
5182
5183 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5184 t4_write_reg(adap, data_reg, tp->data[i]);
5185 t4_write_reg(adap, mask_reg, ~tp->mask[i]);
5186 }
5187 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst,
5188 TFCAPTUREMAX_V(tp->snap_len) |
5189 TFMINPKTSIZE_V(tp->min_len));
5190 t4_write_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst,
5191 TFOFFSET_V(tp->skip_ofst) | TFLENGTH_V(tp->skip_len) |
5192 (is_t4(adap->params.chip) ?
5193 TFPORT_V(tp->port) | TFEN_F | TFINVERTMATCH_V(tp->invert) :
5194 T5_TFPORT_V(tp->port) | T5_TFEN_F |
5195 T5_TFINVERTMATCH_V(tp->invert)));
5196
5197 return 0;
5198}
5199
5200/**
5201 * t4_get_trace_filter - query one of the tracing filters
5202 * @adap: the adapter
5203 * @tp: the current trace filter parameters
5204 * @idx: which trace filter to query
5205 * @enabled: non-zero if the filter is enabled
5206 *
5207 * Returns the current settings of one of the HW tracing filters.
5208 */
5209void t4_get_trace_filter(struct adapter *adap, struct trace_params *tp, int idx,
5210 int *enabled)
5211{
5212 u32 ctla, ctlb;
5213 int i, ofst = idx * 4;
5214 u32 data_reg, mask_reg;
5215
5216 ctla = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_A_A + ofst);
5217 ctlb = t4_read_reg(adap, MPS_TRC_FILTER_MATCH_CTL_B_A + ofst);
5218
5219 if (is_t4(adap->params.chip)) {
5220 *enabled = !!(ctla & TFEN_F);
5221 tp->port = TFPORT_G(ctla);
5222 tp->invert = !!(ctla & TFINVERTMATCH_F);
5223 } else {
5224 *enabled = !!(ctla & T5_TFEN_F);
5225 tp->port = T5_TFPORT_G(ctla);
5226 tp->invert = !!(ctla & T5_TFINVERTMATCH_F);
5227 }
5228 tp->snap_len = TFCAPTUREMAX_G(ctlb);
5229 tp->min_len = TFMINPKTSIZE_G(ctlb);
5230 tp->skip_ofst = TFOFFSET_G(ctla);
5231 tp->skip_len = TFLENGTH_G(ctla);
5232
5233 ofst = (MPS_TRC_FILTER1_MATCH_A - MPS_TRC_FILTER0_MATCH_A) * idx;
5234 data_reg = MPS_TRC_FILTER0_MATCH_A + ofst;
5235 mask_reg = MPS_TRC_FILTER0_DONT_CARE_A + ofst;
5236
5237 for (i = 0; i < TRACE_LEN / 4; i++, data_reg += 4, mask_reg += 4) {
5238 tp->mask[i] = ~t4_read_reg(adap, mask_reg);
5239 tp->data[i] = t4_read_reg(adap, data_reg) & tp->mask[i];
5240 }
5241}
5242
b3bbe36a
HS
5243/**
5244 * t4_pmtx_get_stats - returns the HW stats from PMTX
5245 * @adap: the adapter
5246 * @cnt: where to store the count statistics
5247 * @cycles: where to store the cycle statistics
5248 *
5249 * Returns performance statistics from PMTX.
5250 */
5251void t4_pmtx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5252{
5253 int i;
5254 u32 data[2];
5255
44588560 5256 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
b3bbe36a
HS
5257 t4_write_reg(adap, PM_TX_STAT_CONFIG_A, i + 1);
5258 cnt[i] = t4_read_reg(adap, PM_TX_STAT_COUNT_A);
5259 if (is_t4(adap->params.chip)) {
5260 cycles[i] = t4_read_reg64(adap, PM_TX_STAT_LSB_A);
5261 } else {
5262 t4_read_indirect(adap, PM_TX_DBG_CTRL_A,
5263 PM_TX_DBG_DATA_A, data, 2,
5264 PM_TX_DBG_STAT_MSB_A);
5265 cycles[i] = (((u64)data[0] << 32) | data[1]);
5266 }
5267 }
5268}
5269
5270/**
5271 * t4_pmrx_get_stats - returns the HW stats from PMRX
5272 * @adap: the adapter
5273 * @cnt: where to store the count statistics
5274 * @cycles: where to store the cycle statistics
5275 *
5276 * Returns performance statistics from PMRX.
5277 */
5278void t4_pmrx_get_stats(struct adapter *adap, u32 cnt[], u64 cycles[])
5279{
5280 int i;
5281 u32 data[2];
5282
44588560 5283 for (i = 0; i < adap->params.arch.pm_stats_cnt; i++) {
b3bbe36a
HS
5284 t4_write_reg(adap, PM_RX_STAT_CONFIG_A, i + 1);
5285 cnt[i] = t4_read_reg(adap, PM_RX_STAT_COUNT_A);
5286 if (is_t4(adap->params.chip)) {
5287 cycles[i] = t4_read_reg64(adap, PM_RX_STAT_LSB_A);
5288 } else {
5289 t4_read_indirect(adap, PM_RX_DBG_CTRL_A,
5290 PM_RX_DBG_DATA_A, data, 2,
5291 PM_RX_DBG_STAT_MSB_A);
5292 cycles[i] = (((u64)data[0] << 32) | data[1]);
5293 }
5294 }
5295}
5296
56d36be4 5297/**
145ef8a5 5298 * t4_get_mps_bg_map - return the buffer groups associated with a port
56d36be4
DM
5299 * @adap: the adapter
5300 * @idx: the port index
5301 *
5302 * Returns a bitmap indicating which MPS buffer groups are associated
5303 * with the given port. Bit i is set if buffer group i is used by the
5304 * port.
5305 */
145ef8a5 5306unsigned int t4_get_mps_bg_map(struct adapter *adap, int idx)
56d36be4 5307{
837e4a42 5308 u32 n = NUMPORTS_G(t4_read_reg(adap, MPS_CMN_CTL_A));
56d36be4
DM
5309
5310 if (n == 0)
5311 return idx == 0 ? 0xf : 0;
e9faeab8
HS
5312 /* In T6 (which is a 2 port card),
5313 * port 0 is mapped to channel 0 and port 1 is mapped to channel 1.
5314 * For 2 port T4/T5 adapter,
5315 * port 0 is mapped to channel 0 and 1,
5316 * port 1 is mapped to channel 2 and 3.
5317 */
5318 if ((n == 1) &&
5319 (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5))
56d36be4
DM
5320 return idx < 2 ? (3 << (2 * idx)) : 0;
5321 return 1 << idx;
5322}
5323
72aca4bf
KS
5324/**
5325 * t4_get_port_type_description - return Port Type string description
5326 * @port_type: firmware Port Type enumeration
5327 */
5328const char *t4_get_port_type_description(enum fw_port_type port_type)
5329{
5330 static const char *const port_type_description[] = {
5331 "R XFI",
5332 "R XAUI",
5333 "T SGMII",
5334 "T XFI",
5335 "T XAUI",
5336 "KX4",
5337 "CX4",
5338 "KX",
5339 "KR",
5340 "R SFP+",
5341 "KR/KX",
5342 "KR/KX/KX4",
5343 "R QSFP_10G",
5aa80e51 5344 "R QSA",
72aca4bf
KS
5345 "R QSFP",
5346 "R BP40_BA",
5347 };
5348
5349 if (port_type < ARRAY_SIZE(port_type_description))
5350 return port_type_description[port_type];
5351 return "UNKNOWN";
5352}
5353
a4cfd929
HS
5354/**
5355 * t4_get_port_stats_offset - collect port stats relative to a previous
5356 * snapshot
5357 * @adap: The adapter
5358 * @idx: The port
5359 * @stats: Current stats to fill
5360 * @offset: Previous stats snapshot
5361 */
5362void t4_get_port_stats_offset(struct adapter *adap, int idx,
5363 struct port_stats *stats,
5364 struct port_stats *offset)
5365{
5366 u64 *s, *o;
5367 int i;
5368
5369 t4_get_port_stats(adap, idx, stats);
5370 for (i = 0, s = (u64 *)stats, o = (u64 *)offset;
5371 i < (sizeof(struct port_stats) / sizeof(u64));
5372 i++, s++, o++)
5373 *s -= *o;
5374}
5375
56d36be4
DM
5376/**
5377 * t4_get_port_stats - collect port statistics
5378 * @adap: the adapter
5379 * @idx: the port index
5380 * @p: the stats structure to fill
5381 *
5382 * Collect statistics related to the given port from HW.
5383 */
5384void t4_get_port_stats(struct adapter *adap, int idx, struct port_stats *p)
5385{
145ef8a5 5386 u32 bgmap = t4_get_mps_bg_map(adap, idx);
56d36be4
DM
5387
5388#define GET_STAT(name) \
0a57a536 5389 t4_read_reg64(adap, \
d14807dd 5390 (is_t4(adap->params.chip) ? PORT_REG(idx, MPS_PORT_STAT_##name##_L) : \
0a57a536 5391 T5_PORT_REG(idx, MPS_PORT_STAT_##name##_L)))
56d36be4
DM
5392#define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
5393
5394 p->tx_octets = GET_STAT(TX_PORT_BYTES);
5395 p->tx_frames = GET_STAT(TX_PORT_FRAMES);
5396 p->tx_bcast_frames = GET_STAT(TX_PORT_BCAST);
5397 p->tx_mcast_frames = GET_STAT(TX_PORT_MCAST);
5398 p->tx_ucast_frames = GET_STAT(TX_PORT_UCAST);
5399 p->tx_error_frames = GET_STAT(TX_PORT_ERROR);
5400 p->tx_frames_64 = GET_STAT(TX_PORT_64B);
5401 p->tx_frames_65_127 = GET_STAT(TX_PORT_65B_127B);
5402 p->tx_frames_128_255 = GET_STAT(TX_PORT_128B_255B);
5403 p->tx_frames_256_511 = GET_STAT(TX_PORT_256B_511B);
5404 p->tx_frames_512_1023 = GET_STAT(TX_PORT_512B_1023B);
5405 p->tx_frames_1024_1518 = GET_STAT(TX_PORT_1024B_1518B);
5406 p->tx_frames_1519_max = GET_STAT(TX_PORT_1519B_MAX);
5407 p->tx_drop = GET_STAT(TX_PORT_DROP);
5408 p->tx_pause = GET_STAT(TX_PORT_PAUSE);
5409 p->tx_ppp0 = GET_STAT(TX_PORT_PPP0);
5410 p->tx_ppp1 = GET_STAT(TX_PORT_PPP1);
5411 p->tx_ppp2 = GET_STAT(TX_PORT_PPP2);
5412 p->tx_ppp3 = GET_STAT(TX_PORT_PPP3);
5413 p->tx_ppp4 = GET_STAT(TX_PORT_PPP4);
5414 p->tx_ppp5 = GET_STAT(TX_PORT_PPP5);
5415 p->tx_ppp6 = GET_STAT(TX_PORT_PPP6);
5416 p->tx_ppp7 = GET_STAT(TX_PORT_PPP7);
5417
5418 p->rx_octets = GET_STAT(RX_PORT_BYTES);
5419 p->rx_frames = GET_STAT(RX_PORT_FRAMES);
5420 p->rx_bcast_frames = GET_STAT(RX_PORT_BCAST);
5421 p->rx_mcast_frames = GET_STAT(RX_PORT_MCAST);
5422 p->rx_ucast_frames = GET_STAT(RX_PORT_UCAST);
5423 p->rx_too_long = GET_STAT(RX_PORT_MTU_ERROR);
5424 p->rx_jabber = GET_STAT(RX_PORT_MTU_CRC_ERROR);
5425 p->rx_fcs_err = GET_STAT(RX_PORT_CRC_ERROR);
5426 p->rx_len_err = GET_STAT(RX_PORT_LEN_ERROR);
5427 p->rx_symbol_err = GET_STAT(RX_PORT_SYM_ERROR);
5428 p->rx_runt = GET_STAT(RX_PORT_LESS_64B);
5429 p->rx_frames_64 = GET_STAT(RX_PORT_64B);
5430 p->rx_frames_65_127 = GET_STAT(RX_PORT_65B_127B);
5431 p->rx_frames_128_255 = GET_STAT(RX_PORT_128B_255B);
5432 p->rx_frames_256_511 = GET_STAT(RX_PORT_256B_511B);
5433 p->rx_frames_512_1023 = GET_STAT(RX_PORT_512B_1023B);
5434 p->rx_frames_1024_1518 = GET_STAT(RX_PORT_1024B_1518B);
5435 p->rx_frames_1519_max = GET_STAT(RX_PORT_1519B_MAX);
5436 p->rx_pause = GET_STAT(RX_PORT_PAUSE);
5437 p->rx_ppp0 = GET_STAT(RX_PORT_PPP0);
5438 p->rx_ppp1 = GET_STAT(RX_PORT_PPP1);
5439 p->rx_ppp2 = GET_STAT(RX_PORT_PPP2);
5440 p->rx_ppp3 = GET_STAT(RX_PORT_PPP3);
5441 p->rx_ppp4 = GET_STAT(RX_PORT_PPP4);
5442 p->rx_ppp5 = GET_STAT(RX_PORT_PPP5);
5443 p->rx_ppp6 = GET_STAT(RX_PORT_PPP6);
5444 p->rx_ppp7 = GET_STAT(RX_PORT_PPP7);
5445
5446 p->rx_ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_DROP_FRAME) : 0;
5447 p->rx_ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_DROP_FRAME) : 0;
5448 p->rx_ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_DROP_FRAME) : 0;
5449 p->rx_ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_DROP_FRAME) : 0;
5450 p->rx_trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_MAC_TRUNC_FRAME) : 0;
5451 p->rx_trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_MAC_TRUNC_FRAME) : 0;
5452 p->rx_trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_MAC_TRUNC_FRAME) : 0;
5453 p->rx_trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_MAC_TRUNC_FRAME) : 0;
5454
5455#undef GET_STAT
5456#undef GET_STAT_COM
5457}
5458
56d36be4 5459/**
65046e84 5460 * t4_get_lb_stats - collect loopback port statistics
56d36be4 5461 * @adap: the adapter
65046e84
HS
5462 * @idx: the loopback port index
5463 * @p: the stats structure to fill
56d36be4 5464 *
65046e84 5465 * Return HW statistics for the given loopback port.
56d36be4 5466 */
65046e84 5467void t4_get_lb_stats(struct adapter *adap, int idx, struct lb_port_stats *p)
56d36be4 5468{
65046e84 5469 u32 bgmap = t4_get_mps_bg_map(adap, idx);
56d36be4 5470
65046e84
HS
5471#define GET_STAT(name) \
5472 t4_read_reg64(adap, \
0d804338 5473 (is_t4(adap->params.chip) ? \
65046e84
HS
5474 PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L) : \
5475 T5_PORT_REG(idx, MPS_PORT_STAT_LB_PORT_##name##_L)))
5476#define GET_STAT_COM(name) t4_read_reg64(adap, MPS_STAT_##name##_L)
56d36be4 5477
65046e84
HS
5478 p->octets = GET_STAT(BYTES);
5479 p->frames = GET_STAT(FRAMES);
5480 p->bcast_frames = GET_STAT(BCAST);
5481 p->mcast_frames = GET_STAT(MCAST);
5482 p->ucast_frames = GET_STAT(UCAST);
5483 p->error_frames = GET_STAT(ERROR);
5484
5485 p->frames_64 = GET_STAT(64B);
5486 p->frames_65_127 = GET_STAT(65B_127B);
5487 p->frames_128_255 = GET_STAT(128B_255B);
5488 p->frames_256_511 = GET_STAT(256B_511B);
5489 p->frames_512_1023 = GET_STAT(512B_1023B);
5490 p->frames_1024_1518 = GET_STAT(1024B_1518B);
5491 p->frames_1519_max = GET_STAT(1519B_MAX);
5492 p->drop = GET_STAT(DROP_FRAMES);
5493
5494 p->ovflow0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_DROP_FRAME) : 0;
5495 p->ovflow1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_DROP_FRAME) : 0;
5496 p->ovflow2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_DROP_FRAME) : 0;
5497 p->ovflow3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_DROP_FRAME) : 0;
5498 p->trunc0 = (bgmap & 1) ? GET_STAT_COM(RX_BG_0_LB_TRUNC_FRAME) : 0;
5499 p->trunc1 = (bgmap & 2) ? GET_STAT_COM(RX_BG_1_LB_TRUNC_FRAME) : 0;
5500 p->trunc2 = (bgmap & 4) ? GET_STAT_COM(RX_BG_2_LB_TRUNC_FRAME) : 0;
5501 p->trunc3 = (bgmap & 8) ? GET_STAT_COM(RX_BG_3_LB_TRUNC_FRAME) : 0;
56d36be4 5502
65046e84
HS
5503#undef GET_STAT
5504#undef GET_STAT_COM
56d36be4
DM
5505}
5506
f2b7e78d
VP
5507/* t4_mk_filtdelwr - create a delete filter WR
5508 * @ftid: the filter ID
5509 * @wr: the filter work request to populate
5510 * @qid: ingress queue to receive the delete notification
5511 *
5512 * Creates a filter work request to delete the supplied filter. If @qid is
5513 * negative the delete notification is suppressed.
5514 */
5515void t4_mk_filtdelwr(unsigned int ftid, struct fw_filter_wr *wr, int qid)
5516{
5517 memset(wr, 0, sizeof(*wr));
f404f80c
HS
5518 wr->op_pkd = cpu_to_be32(FW_WR_OP_V(FW_FILTER_WR));
5519 wr->len16_pkd = cpu_to_be32(FW_WR_LEN16_V(sizeof(*wr) / 16));
5520 wr->tid_to_iq = cpu_to_be32(FW_FILTER_WR_TID_V(ftid) |
5521 FW_FILTER_WR_NOREPLY_V(qid < 0));
5522 wr->del_filter_to_l2tix = cpu_to_be32(FW_FILTER_WR_DEL_FILTER_F);
f2b7e78d 5523 if (qid >= 0)
f404f80c
HS
5524 wr->rx_chan_rx_rpl_iq =
5525 cpu_to_be16(FW_FILTER_WR_RX_RPL_IQ_V(qid));
f2b7e78d
VP
5526}
5527
56d36be4 5528#define INIT_CMD(var, cmd, rd_wr) do { \
f404f80c
HS
5529 (var).op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_##cmd##_CMD) | \
5530 FW_CMD_REQUEST_F | \
5531 FW_CMD_##rd_wr##_F); \
5532 (var).retval_len16 = cpu_to_be32(FW_LEN16(var)); \
56d36be4
DM
5533} while (0)
5534
8caa1e84
VP
5535int t4_fwaddrspace_write(struct adapter *adap, unsigned int mbox,
5536 u32 addr, u32 val)
5537{
f404f80c 5538 u32 ldst_addrspace;
8caa1e84
VP
5539 struct fw_ldst_cmd c;
5540
5541 memset(&c, 0, sizeof(c));
f404f80c
HS
5542 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_FIRMWARE);
5543 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5544 FW_CMD_REQUEST_F |
5545 FW_CMD_WRITE_F |
5546 ldst_addrspace);
5547 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5548 c.u.addrval.addr = cpu_to_be32(addr);
5549 c.u.addrval.val = cpu_to_be32(val);
8caa1e84
VP
5550
5551 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5552}
5553
56d36be4
DM
5554/**
5555 * t4_mdio_rd - read a PHY register through MDIO
5556 * @adap: the adapter
5557 * @mbox: mailbox to use for the FW command
5558 * @phy_addr: the PHY address
5559 * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
5560 * @reg: the register to read
5561 * @valp: where to store the value
5562 *
5563 * Issues a FW command through the given mailbox to read a PHY register.
5564 */
5565int t4_mdio_rd(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
5566 unsigned int mmd, unsigned int reg, u16 *valp)
5567{
5568 int ret;
f404f80c 5569 u32 ldst_addrspace;
56d36be4
DM
5570 struct fw_ldst_cmd c;
5571
5572 memset(&c, 0, sizeof(c));
f404f80c
HS
5573 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
5574 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5575 FW_CMD_REQUEST_F | FW_CMD_READ_F |
5576 ldst_addrspace);
5577 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5578 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
5579 FW_LDST_CMD_MMD_V(mmd));
5580 c.u.mdio.raddr = cpu_to_be16(reg);
56d36be4
DM
5581
5582 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5583 if (ret == 0)
f404f80c 5584 *valp = be16_to_cpu(c.u.mdio.rval);
56d36be4
DM
5585 return ret;
5586}
5587
5588/**
5589 * t4_mdio_wr - write a PHY register through MDIO
5590 * @adap: the adapter
5591 * @mbox: mailbox to use for the FW command
5592 * @phy_addr: the PHY address
5593 * @mmd: the PHY MMD to access (0 for clause 22 PHYs)
5594 * @reg: the register to write
5595 * @valp: value to write
5596 *
5597 * Issues a FW command through the given mailbox to write a PHY register.
5598 */
5599int t4_mdio_wr(struct adapter *adap, unsigned int mbox, unsigned int phy_addr,
5600 unsigned int mmd, unsigned int reg, u16 val)
5601{
f404f80c 5602 u32 ldst_addrspace;
56d36be4
DM
5603 struct fw_ldst_cmd c;
5604
5605 memset(&c, 0, sizeof(c));
f404f80c
HS
5606 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_MDIO);
5607 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5608 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
5609 ldst_addrspace);
5610 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5611 c.u.mdio.paddr_mmd = cpu_to_be16(FW_LDST_CMD_PADDR_V(phy_addr) |
5612 FW_LDST_CMD_MMD_V(mmd));
5613 c.u.mdio.raddr = cpu_to_be16(reg);
5614 c.u.mdio.rval = cpu_to_be16(val);
56d36be4
DM
5615
5616 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5617}
5618
68bce192
KS
5619/**
5620 * t4_sge_decode_idma_state - decode the idma state
5621 * @adap: the adapter
5622 * @state: the state idma is stuck in
5623 */
5624void t4_sge_decode_idma_state(struct adapter *adapter, int state)
5625{
5626 static const char * const t4_decode[] = {
5627 "IDMA_IDLE",
5628 "IDMA_PUSH_MORE_CPL_FIFO",
5629 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
5630 "Not used",
5631 "IDMA_PHYSADDR_SEND_PCIEHDR",
5632 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
5633 "IDMA_PHYSADDR_SEND_PAYLOAD",
5634 "IDMA_SEND_FIFO_TO_IMSG",
5635 "IDMA_FL_REQ_DATA_FL_PREP",
5636 "IDMA_FL_REQ_DATA_FL",
5637 "IDMA_FL_DROP",
5638 "IDMA_FL_H_REQ_HEADER_FL",
5639 "IDMA_FL_H_SEND_PCIEHDR",
5640 "IDMA_FL_H_PUSH_CPL_FIFO",
5641 "IDMA_FL_H_SEND_CPL",
5642 "IDMA_FL_H_SEND_IP_HDR_FIRST",
5643 "IDMA_FL_H_SEND_IP_HDR",
5644 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
5645 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
5646 "IDMA_FL_H_SEND_IP_HDR_PADDING",
5647 "IDMA_FL_D_SEND_PCIEHDR",
5648 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
5649 "IDMA_FL_D_REQ_NEXT_DATA_FL",
5650 "IDMA_FL_SEND_PCIEHDR",
5651 "IDMA_FL_PUSH_CPL_FIFO",
5652 "IDMA_FL_SEND_CPL",
5653 "IDMA_FL_SEND_PAYLOAD_FIRST",
5654 "IDMA_FL_SEND_PAYLOAD",
5655 "IDMA_FL_REQ_NEXT_DATA_FL",
5656 "IDMA_FL_SEND_NEXT_PCIEHDR",
5657 "IDMA_FL_SEND_PADDING",
5658 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
5659 "IDMA_FL_SEND_FIFO_TO_IMSG",
5660 "IDMA_FL_REQ_DATAFL_DONE",
5661 "IDMA_FL_REQ_HEADERFL_DONE",
5662 };
5663 static const char * const t5_decode[] = {
5664 "IDMA_IDLE",
5665 "IDMA_ALMOST_IDLE",
5666 "IDMA_PUSH_MORE_CPL_FIFO",
5667 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
5668 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
5669 "IDMA_PHYSADDR_SEND_PCIEHDR",
5670 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
5671 "IDMA_PHYSADDR_SEND_PAYLOAD",
5672 "IDMA_SEND_FIFO_TO_IMSG",
5673 "IDMA_FL_REQ_DATA_FL",
5674 "IDMA_FL_DROP",
5675 "IDMA_FL_DROP_SEND_INC",
5676 "IDMA_FL_H_REQ_HEADER_FL",
5677 "IDMA_FL_H_SEND_PCIEHDR",
5678 "IDMA_FL_H_PUSH_CPL_FIFO",
5679 "IDMA_FL_H_SEND_CPL",
5680 "IDMA_FL_H_SEND_IP_HDR_FIRST",
5681 "IDMA_FL_H_SEND_IP_HDR",
5682 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
5683 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
5684 "IDMA_FL_H_SEND_IP_HDR_PADDING",
5685 "IDMA_FL_D_SEND_PCIEHDR",
5686 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
5687 "IDMA_FL_D_REQ_NEXT_DATA_FL",
5688 "IDMA_FL_SEND_PCIEHDR",
5689 "IDMA_FL_PUSH_CPL_FIFO",
5690 "IDMA_FL_SEND_CPL",
5691 "IDMA_FL_SEND_PAYLOAD_FIRST",
5692 "IDMA_FL_SEND_PAYLOAD",
5693 "IDMA_FL_REQ_NEXT_DATA_FL",
5694 "IDMA_FL_SEND_NEXT_PCIEHDR",
5695 "IDMA_FL_SEND_PADDING",
5696 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
5697 };
6df39753
HS
5698 static const char * const t6_decode[] = {
5699 "IDMA_IDLE",
5700 "IDMA_PUSH_MORE_CPL_FIFO",
5701 "IDMA_PUSH_CPL_MSG_HEADER_TO_FIFO",
5702 "IDMA_SGEFLRFLUSH_SEND_PCIEHDR",
5703 "IDMA_PHYSADDR_SEND_PCIEHDR",
5704 "IDMA_PHYSADDR_SEND_PAYLOAD_FIRST",
5705 "IDMA_PHYSADDR_SEND_PAYLOAD",
5706 "IDMA_FL_REQ_DATA_FL",
5707 "IDMA_FL_DROP",
5708 "IDMA_FL_DROP_SEND_INC",
5709 "IDMA_FL_H_REQ_HEADER_FL",
5710 "IDMA_FL_H_SEND_PCIEHDR",
5711 "IDMA_FL_H_PUSH_CPL_FIFO",
5712 "IDMA_FL_H_SEND_CPL",
5713 "IDMA_FL_H_SEND_IP_HDR_FIRST",
5714 "IDMA_FL_H_SEND_IP_HDR",
5715 "IDMA_FL_H_REQ_NEXT_HEADER_FL",
5716 "IDMA_FL_H_SEND_NEXT_PCIEHDR",
5717 "IDMA_FL_H_SEND_IP_HDR_PADDING",
5718 "IDMA_FL_D_SEND_PCIEHDR",
5719 "IDMA_FL_D_SEND_CPL_AND_IP_HDR",
5720 "IDMA_FL_D_REQ_NEXT_DATA_FL",
5721 "IDMA_FL_SEND_PCIEHDR",
5722 "IDMA_FL_PUSH_CPL_FIFO",
5723 "IDMA_FL_SEND_CPL",
5724 "IDMA_FL_SEND_PAYLOAD_FIRST",
5725 "IDMA_FL_SEND_PAYLOAD",
5726 "IDMA_FL_REQ_NEXT_DATA_FL",
5727 "IDMA_FL_SEND_NEXT_PCIEHDR",
5728 "IDMA_FL_SEND_PADDING",
5729 "IDMA_FL_SEND_COMPLETION_TO_IMSG",
5730 };
68bce192 5731 static const u32 sge_regs[] = {
f061de42
HS
5732 SGE_DEBUG_DATA_LOW_INDEX_2_A,
5733 SGE_DEBUG_DATA_LOW_INDEX_3_A,
5734 SGE_DEBUG_DATA_HIGH_INDEX_10_A,
68bce192
KS
5735 };
5736 const char **sge_idma_decode;
5737 int sge_idma_decode_nstates;
5738 int i;
6df39753
HS
5739 unsigned int chip_version = CHELSIO_CHIP_VERSION(adapter->params.chip);
5740
5741 /* Select the right set of decode strings to dump depending on the
5742 * adapter chip type.
5743 */
5744 switch (chip_version) {
5745 case CHELSIO_T4:
5746 sge_idma_decode = (const char **)t4_decode;
5747 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
5748 break;
5749
5750 case CHELSIO_T5:
5751 sge_idma_decode = (const char **)t5_decode;
5752 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
5753 break;
5754
5755 case CHELSIO_T6:
5756 sge_idma_decode = (const char **)t6_decode;
5757 sge_idma_decode_nstates = ARRAY_SIZE(t6_decode);
5758 break;
5759
5760 default:
5761 dev_err(adapter->pdev_dev,
5762 "Unsupported chip version %d\n", chip_version);
5763 return;
5764 }
68bce192
KS
5765
5766 if (is_t4(adapter->params.chip)) {
5767 sge_idma_decode = (const char **)t4_decode;
5768 sge_idma_decode_nstates = ARRAY_SIZE(t4_decode);
5769 } else {
5770 sge_idma_decode = (const char **)t5_decode;
5771 sge_idma_decode_nstates = ARRAY_SIZE(t5_decode);
5772 }
5773
5774 if (state < sge_idma_decode_nstates)
5775 CH_WARN(adapter, "idma state %s\n", sge_idma_decode[state]);
5776 else
5777 CH_WARN(adapter, "idma state %d unknown\n", state);
5778
5779 for (i = 0; i < ARRAY_SIZE(sge_regs); i++)
5780 CH_WARN(adapter, "SGE register %#x value %#x\n",
5781 sge_regs[i], t4_read_reg(adapter, sge_regs[i]));
5782}
5783
5d700ecb
HS
5784/**
5785 * t4_sge_ctxt_flush - flush the SGE context cache
5786 * @adap: the adapter
5787 * @mbox: mailbox to use for the FW command
5788 *
5789 * Issues a FW command through the given mailbox to flush the
5790 * SGE context cache.
5791 */
5792int t4_sge_ctxt_flush(struct adapter *adap, unsigned int mbox)
5793{
5794 int ret;
5795 u32 ldst_addrspace;
5796 struct fw_ldst_cmd c;
5797
5798 memset(&c, 0, sizeof(c));
5799 ldst_addrspace = FW_LDST_CMD_ADDRSPACE_V(FW_LDST_ADDRSPC_SGE_EGRC);
5800 c.op_to_addrspace = cpu_to_be32(FW_CMD_OP_V(FW_LDST_CMD) |
5801 FW_CMD_REQUEST_F | FW_CMD_READ_F |
5802 ldst_addrspace);
5803 c.cycles_to_len16 = cpu_to_be32(FW_LEN16(c));
5804 c.u.idctxt.msg_ctxtflush = cpu_to_be32(FW_LDST_CMD_CTXTFLUSH_F);
5805
5806 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
5807 return ret;
5808}
5809
56d36be4 5810/**
636f9d37
VP
5811 * t4_fw_hello - establish communication with FW
5812 * @adap: the adapter
5813 * @mbox: mailbox to use for the FW command
5814 * @evt_mbox: mailbox to receive async FW events
5815 * @master: specifies the caller's willingness to be the device master
5816 * @state: returns the current device state (if non-NULL)
56d36be4 5817 *
636f9d37
VP
5818 * Issues a command to establish communication with FW. Returns either
5819 * an error (negative integer) or the mailbox of the Master PF.
56d36be4
DM
5820 */
5821int t4_fw_hello(struct adapter *adap, unsigned int mbox, unsigned int evt_mbox,
5822 enum dev_master master, enum dev_state *state)
5823{
5824 int ret;
5825 struct fw_hello_cmd c;
636f9d37
VP
5826 u32 v;
5827 unsigned int master_mbox;
5828 int retries = FW_CMD_HELLO_RETRIES;
56d36be4 5829
636f9d37
VP
5830retry:
5831 memset(&c, 0, sizeof(c));
56d36be4 5832 INIT_CMD(c, HELLO, WRITE);
f404f80c 5833 c.err_to_clearinit = cpu_to_be32(
5167865a
HS
5834 FW_HELLO_CMD_MASTERDIS_V(master == MASTER_CANT) |
5835 FW_HELLO_CMD_MASTERFORCE_V(master == MASTER_MUST) |
f404f80c
HS
5836 FW_HELLO_CMD_MBMASTER_V(master == MASTER_MUST ?
5837 mbox : FW_HELLO_CMD_MBMASTER_M) |
5167865a
HS
5838 FW_HELLO_CMD_MBASYNCNOT_V(evt_mbox) |
5839 FW_HELLO_CMD_STAGE_V(fw_hello_cmd_stage_os) |
5840 FW_HELLO_CMD_CLEARINIT_F);
56d36be4 5841
636f9d37
VP
5842 /*
5843 * Issue the HELLO command to the firmware. If it's not successful
5844 * but indicates that we got a "busy" or "timeout" condition, retry
31d55c2d
HS
5845 * the HELLO until we exhaust our retry limit. If we do exceed our
5846 * retry limit, check to see if the firmware left us any error
5847 * information and report that if so.
636f9d37 5848 */
56d36be4 5849 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
636f9d37
VP
5850 if (ret < 0) {
5851 if ((ret == -EBUSY || ret == -ETIMEDOUT) && retries-- > 0)
5852 goto retry;
f061de42 5853 if (t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_ERR_F)
31d55c2d 5854 t4_report_fw_error(adap);
636f9d37
VP
5855 return ret;
5856 }
5857
f404f80c 5858 v = be32_to_cpu(c.err_to_clearinit);
5167865a 5859 master_mbox = FW_HELLO_CMD_MBMASTER_G(v);
636f9d37 5860 if (state) {
5167865a 5861 if (v & FW_HELLO_CMD_ERR_F)
56d36be4 5862 *state = DEV_STATE_ERR;
5167865a 5863 else if (v & FW_HELLO_CMD_INIT_F)
636f9d37 5864 *state = DEV_STATE_INIT;
56d36be4
DM
5865 else
5866 *state = DEV_STATE_UNINIT;
5867 }
636f9d37
VP
5868
5869 /*
5870 * If we're not the Master PF then we need to wait around for the
5871 * Master PF Driver to finish setting up the adapter.
5872 *
5873 * Note that we also do this wait if we're a non-Master-capable PF and
5874 * there is no current Master PF; a Master PF may show up momentarily
5875 * and we wouldn't want to fail pointlessly. (This can happen when an
5876 * OS loads lots of different drivers rapidly at the same time). In
5877 * this case, the Master PF returned by the firmware will be
b2e1a3f0 5878 * PCIE_FW_MASTER_M so the test below will work ...
636f9d37 5879 */
5167865a 5880 if ((v & (FW_HELLO_CMD_ERR_F|FW_HELLO_CMD_INIT_F)) == 0 &&
636f9d37
VP
5881 master_mbox != mbox) {
5882 int waiting = FW_CMD_HELLO_TIMEOUT;
5883
5884 /*
5885 * Wait for the firmware to either indicate an error or
5886 * initialized state. If we see either of these we bail out
5887 * and report the issue to the caller. If we exhaust the
5888 * "hello timeout" and we haven't exhausted our retries, try
5889 * again. Otherwise bail with a timeout error.
5890 */
5891 for (;;) {
5892 u32 pcie_fw;
5893
5894 msleep(50);
5895 waiting -= 50;
5896
5897 /*
5898 * If neither Error nor Initialialized are indicated
5899 * by the firmware keep waiting till we exaust our
5900 * timeout ... and then retry if we haven't exhausted
5901 * our retries ...
5902 */
f061de42
HS
5903 pcie_fw = t4_read_reg(adap, PCIE_FW_A);
5904 if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
636f9d37
VP
5905 if (waiting <= 0) {
5906 if (retries-- > 0)
5907 goto retry;
5908
5909 return -ETIMEDOUT;
5910 }
5911 continue;
5912 }
5913
5914 /*
5915 * We either have an Error or Initialized condition
5916 * report errors preferentially.
5917 */
5918 if (state) {
f061de42 5919 if (pcie_fw & PCIE_FW_ERR_F)
636f9d37 5920 *state = DEV_STATE_ERR;
f061de42 5921 else if (pcie_fw & PCIE_FW_INIT_F)
636f9d37
VP
5922 *state = DEV_STATE_INIT;
5923 }
5924
5925 /*
5926 * If we arrived before a Master PF was selected and
5927 * there's not a valid Master PF, grab its identity
5928 * for our caller.
5929 */
b2e1a3f0 5930 if (master_mbox == PCIE_FW_MASTER_M &&
f061de42 5931 (pcie_fw & PCIE_FW_MASTER_VLD_F))
b2e1a3f0 5932 master_mbox = PCIE_FW_MASTER_G(pcie_fw);
636f9d37
VP
5933 break;
5934 }
5935 }
5936
5937 return master_mbox;
56d36be4
DM
5938}
5939
5940/**
5941 * t4_fw_bye - end communication with FW
5942 * @adap: the adapter
5943 * @mbox: mailbox to use for the FW command
5944 *
5945 * Issues a command to terminate communication with FW.
5946 */
5947int t4_fw_bye(struct adapter *adap, unsigned int mbox)
5948{
5949 struct fw_bye_cmd c;
5950
0062b15c 5951 memset(&c, 0, sizeof(c));
56d36be4
DM
5952 INIT_CMD(c, BYE, WRITE);
5953 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5954}
5955
5956/**
5957 * t4_init_cmd - ask FW to initialize the device
5958 * @adap: the adapter
5959 * @mbox: mailbox to use for the FW command
5960 *
5961 * Issues a command to FW to partially initialize the device. This
5962 * performs initialization that generally doesn't depend on user input.
5963 */
5964int t4_early_init(struct adapter *adap, unsigned int mbox)
5965{
5966 struct fw_initialize_cmd c;
5967
0062b15c 5968 memset(&c, 0, sizeof(c));
56d36be4
DM
5969 INIT_CMD(c, INITIALIZE, WRITE);
5970 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5971}
5972
5973/**
5974 * t4_fw_reset - issue a reset to FW
5975 * @adap: the adapter
5976 * @mbox: mailbox to use for the FW command
5977 * @reset: specifies the type of reset to perform
5978 *
5979 * Issues a reset command of the specified type to FW.
5980 */
5981int t4_fw_reset(struct adapter *adap, unsigned int mbox, int reset)
5982{
5983 struct fw_reset_cmd c;
5984
0062b15c 5985 memset(&c, 0, sizeof(c));
56d36be4 5986 INIT_CMD(c, RESET, WRITE);
f404f80c 5987 c.val = cpu_to_be32(reset);
56d36be4
DM
5988 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
5989}
5990
26f7cbc0
VP
5991/**
5992 * t4_fw_halt - issue a reset/halt to FW and put uP into RESET
5993 * @adap: the adapter
5994 * @mbox: mailbox to use for the FW RESET command (if desired)
5995 * @force: force uP into RESET even if FW RESET command fails
5996 *
5997 * Issues a RESET command to firmware (if desired) with a HALT indication
5998 * and then puts the microprocessor into RESET state. The RESET command
5999 * will only be issued if a legitimate mailbox is provided (mbox <=
b2e1a3f0 6000 * PCIE_FW_MASTER_M).
26f7cbc0
VP
6001 *
6002 * This is generally used in order for the host to safely manipulate the
6003 * adapter without fear of conflicting with whatever the firmware might
6004 * be doing. The only way out of this state is to RESTART the firmware
6005 * ...
6006 */
de5b8677 6007static int t4_fw_halt(struct adapter *adap, unsigned int mbox, int force)
26f7cbc0
VP
6008{
6009 int ret = 0;
6010
6011 /*
6012 * If a legitimate mailbox is provided, issue a RESET command
6013 * with a HALT indication.
6014 */
b2e1a3f0 6015 if (mbox <= PCIE_FW_MASTER_M) {
26f7cbc0
VP
6016 struct fw_reset_cmd c;
6017
6018 memset(&c, 0, sizeof(c));
6019 INIT_CMD(c, RESET, WRITE);
f404f80c
HS
6020 c.val = cpu_to_be32(PIORST_F | PIORSTMODE_F);
6021 c.halt_pkd = cpu_to_be32(FW_RESET_CMD_HALT_F);
26f7cbc0
VP
6022 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6023 }
6024
6025 /*
6026 * Normally we won't complete the operation if the firmware RESET
6027 * command fails but if our caller insists we'll go ahead and put the
6028 * uP into RESET. This can be useful if the firmware is hung or even
6029 * missing ... We'll have to take the risk of putting the uP into
6030 * RESET without the cooperation of firmware in that case.
6031 *
6032 * We also force the firmware's HALT flag to be on in case we bypassed
6033 * the firmware RESET command above or we're dealing with old firmware
6034 * which doesn't have the HALT capability. This will serve as a flag
6035 * for the incoming firmware to know that it's coming out of a HALT
6036 * rather than a RESET ... if it's new enough to understand that ...
6037 */
6038 if (ret == 0 || force) {
89c3a86c 6039 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
f061de42 6040 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F,
b2e1a3f0 6041 PCIE_FW_HALT_F);
26f7cbc0
VP
6042 }
6043
6044 /*
6045 * And we always return the result of the firmware RESET command
6046 * even when we force the uP into RESET ...
6047 */
6048 return ret;
6049}
6050
6051/**
6052 * t4_fw_restart - restart the firmware by taking the uP out of RESET
6053 * @adap: the adapter
6054 * @reset: if we want to do a RESET to restart things
6055 *
6056 * Restart firmware previously halted by t4_fw_halt(). On successful
6057 * return the previous PF Master remains as the new PF Master and there
6058 * is no need to issue a new HELLO command, etc.
6059 *
6060 * We do this in two ways:
6061 *
6062 * 1. If we're dealing with newer firmware we'll simply want to take
6063 * the chip's microprocessor out of RESET. This will cause the
6064 * firmware to start up from its start vector. And then we'll loop
6065 * until the firmware indicates it's started again (PCIE_FW.HALT
6066 * reset to 0) or we timeout.
6067 *
6068 * 2. If we're dealing with older firmware then we'll need to RESET
6069 * the chip since older firmware won't recognize the PCIE_FW.HALT
6070 * flag and automatically RESET itself on startup.
6071 */
de5b8677 6072static int t4_fw_restart(struct adapter *adap, unsigned int mbox, int reset)
26f7cbc0
VP
6073{
6074 if (reset) {
6075 /*
6076 * Since we're directing the RESET instead of the firmware
6077 * doing it automatically, we need to clear the PCIE_FW.HALT
6078 * bit.
6079 */
f061de42 6080 t4_set_reg_field(adap, PCIE_FW_A, PCIE_FW_HALT_F, 0);
26f7cbc0
VP
6081
6082 /*
6083 * If we've been given a valid mailbox, first try to get the
6084 * firmware to do the RESET. If that works, great and we can
6085 * return success. Otherwise, if we haven't been given a
6086 * valid mailbox or the RESET command failed, fall back to
6087 * hitting the chip with a hammer.
6088 */
b2e1a3f0 6089 if (mbox <= PCIE_FW_MASTER_M) {
89c3a86c 6090 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
26f7cbc0
VP
6091 msleep(100);
6092 if (t4_fw_reset(adap, mbox,
0d804338 6093 PIORST_F | PIORSTMODE_F) == 0)
26f7cbc0
VP
6094 return 0;
6095 }
6096
0d804338 6097 t4_write_reg(adap, PL_RST_A, PIORST_F | PIORSTMODE_F);
26f7cbc0
VP
6098 msleep(2000);
6099 } else {
6100 int ms;
6101
89c3a86c 6102 t4_set_reg_field(adap, CIM_BOOT_CFG_A, UPCRST_F, 0);
26f7cbc0 6103 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
f061de42 6104 if (!(t4_read_reg(adap, PCIE_FW_A) & PCIE_FW_HALT_F))
26f7cbc0
VP
6105 return 0;
6106 msleep(100);
6107 ms += 100;
6108 }
6109 return -ETIMEDOUT;
6110 }
6111 return 0;
6112}
6113
6114/**
6115 * t4_fw_upgrade - perform all of the steps necessary to upgrade FW
6116 * @adap: the adapter
6117 * @mbox: mailbox to use for the FW RESET command (if desired)
6118 * @fw_data: the firmware image to write
6119 * @size: image size
6120 * @force: force upgrade even if firmware doesn't cooperate
6121 *
6122 * Perform all of the steps necessary for upgrading an adapter's
6123 * firmware image. Normally this requires the cooperation of the
6124 * existing firmware in order to halt all existing activities
6125 * but if an invalid mailbox token is passed in we skip that step
6126 * (though we'll still put the adapter microprocessor into RESET in
6127 * that case).
6128 *
6129 * On successful return the new firmware will have been loaded and
6130 * the adapter will have been fully RESET losing all previous setup
6131 * state. On unsuccessful return the adapter may be completely hosed ...
6132 * positive errno indicates that the adapter is ~probably~ intact, a
6133 * negative errno indicates that things are looking bad ...
6134 */
22c0b963
HS
6135int t4_fw_upgrade(struct adapter *adap, unsigned int mbox,
6136 const u8 *fw_data, unsigned int size, int force)
26f7cbc0
VP
6137{
6138 const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
6139 int reset, ret;
6140
79af221d
HS
6141 if (!t4_fw_matches_chip(adap, fw_hdr))
6142 return -EINVAL;
6143
26f7cbc0
VP
6144 ret = t4_fw_halt(adap, mbox, force);
6145 if (ret < 0 && !force)
6146 return ret;
6147
6148 ret = t4_load_fw(adap, fw_data, size);
6149 if (ret < 0)
6150 return ret;
6151
6152 /*
6153 * Older versions of the firmware don't understand the new
6154 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
6155 * restart. So for newly loaded older firmware we'll have to do the
6156 * RESET for it so it starts up on a clean slate. We can tell if
6157 * the newly loaded firmware will handle this right by checking
6158 * its header flags to see if it advertises the capability.
6159 */
f404f80c 6160 reset = ((be32_to_cpu(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
26f7cbc0
VP
6161 return t4_fw_restart(adap, mbox, reset);
6162}
6163
acac5962
HS
6164/**
6165 * t4_fl_pkt_align - return the fl packet alignment
6166 * @adap: the adapter
6167 *
6168 * T4 has a single field to specify the packing and padding boundary.
6169 * T5 onwards has separate fields for this and hence the alignment for
6170 * next packet offset is maximum of these two.
6171 *
6172 */
6173int t4_fl_pkt_align(struct adapter *adap)
6174{
6175 u32 sge_control, sge_control2;
6176 unsigned int ingpadboundary, ingpackboundary, fl_align, ingpad_shift;
6177
6178 sge_control = t4_read_reg(adap, SGE_CONTROL_A);
6179
6180 /* T4 uses a single control field to specify both the PCIe Padding and
6181 * Packing Boundary. T5 introduced the ability to specify these
6182 * separately. The actual Ingress Packet Data alignment boundary
6183 * within Packed Buffer Mode is the maximum of these two
6184 * specifications. (Note that it makes no real practical sense to
6185 * have the Pading Boudary be larger than the Packing Boundary but you
6186 * could set the chip up that way and, in fact, legacy T4 code would
6187 * end doing this because it would initialize the Padding Boundary and
6188 * leave the Packing Boundary initialized to 0 (16 bytes).)
6189 * Padding Boundary values in T6 starts from 8B,
6190 * where as it is 32B for T4 and T5.
6191 */
6192 if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5)
6193 ingpad_shift = INGPADBOUNDARY_SHIFT_X;
6194 else
6195 ingpad_shift = T6_INGPADBOUNDARY_SHIFT_X;
6196
6197 ingpadboundary = 1 << (INGPADBOUNDARY_G(sge_control) + ingpad_shift);
6198
6199 fl_align = ingpadboundary;
6200 if (!is_t4(adap->params.chip)) {
6201 /* T5 has a weird interpretation of one of the PCIe Packing
6202 * Boundary values. No idea why ...
6203 */
6204 sge_control2 = t4_read_reg(adap, SGE_CONTROL2_A);
6205 ingpackboundary = INGPACKBOUNDARY_G(sge_control2);
6206 if (ingpackboundary == INGPACKBOUNDARY_16B_X)
6207 ingpackboundary = 16;
6208 else
6209 ingpackboundary = 1 << (ingpackboundary +
6210 INGPACKBOUNDARY_SHIFT_X);
6211
6212 fl_align = max(ingpadboundary, ingpackboundary);
6213 }
6214 return fl_align;
6215}
6216
636f9d37
VP
6217/**
6218 * t4_fixup_host_params - fix up host-dependent parameters
6219 * @adap: the adapter
6220 * @page_size: the host's Base Page Size
6221 * @cache_line_size: the host's Cache Line Size
6222 *
6223 * Various registers in T4 contain values which are dependent on the
6224 * host's Base Page and Cache Line Sizes. This function will fix all of
6225 * those registers with the appropriate values as passed in ...
6226 */
6227int t4_fixup_host_params(struct adapter *adap, unsigned int page_size,
6228 unsigned int cache_line_size)
6229{
6230 unsigned int page_shift = fls(page_size) - 1;
6231 unsigned int sge_hps = page_shift - 10;
6232 unsigned int stat_len = cache_line_size > 64 ? 128 : 64;
6233 unsigned int fl_align = cache_line_size < 32 ? 32 : cache_line_size;
6234 unsigned int fl_align_log = fls(fl_align) - 1;
acac5962 6235 unsigned int ingpad;
636f9d37 6236
f612b815
HS
6237 t4_write_reg(adap, SGE_HOST_PAGE_SIZE_A,
6238 HOSTPAGESIZEPF0_V(sge_hps) |
6239 HOSTPAGESIZEPF1_V(sge_hps) |
6240 HOSTPAGESIZEPF2_V(sge_hps) |
6241 HOSTPAGESIZEPF3_V(sge_hps) |
6242 HOSTPAGESIZEPF4_V(sge_hps) |
6243 HOSTPAGESIZEPF5_V(sge_hps) |
6244 HOSTPAGESIZEPF6_V(sge_hps) |
6245 HOSTPAGESIZEPF7_V(sge_hps));
636f9d37 6246
ce8f407a 6247 if (is_t4(adap->params.chip)) {
f612b815
HS
6248 t4_set_reg_field(adap, SGE_CONTROL_A,
6249 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
6250 EGRSTATUSPAGESIZE_F,
6251 INGPADBOUNDARY_V(fl_align_log -
6252 INGPADBOUNDARY_SHIFT_X) |
6253 EGRSTATUSPAGESIZE_V(stat_len != 64));
ce8f407a
HS
6254 } else {
6255 /* T5 introduced the separation of the Free List Padding and
6256 * Packing Boundaries. Thus, we can select a smaller Padding
6257 * Boundary to avoid uselessly chewing up PCIe Link and Memory
6258 * Bandwidth, and use a Packing Boundary which is large enough
6259 * to avoid false sharing between CPUs, etc.
6260 *
6261 * For the PCI Link, the smaller the Padding Boundary the
6262 * better. For the Memory Controller, a smaller Padding
6263 * Boundary is better until we cross under the Memory Line
6264 * Size (the minimum unit of transfer to/from Memory). If we
6265 * have a Padding Boundary which is smaller than the Memory
6266 * Line Size, that'll involve a Read-Modify-Write cycle on the
6267 * Memory Controller which is never good. For T5 the smallest
6268 * Padding Boundary which we can select is 32 bytes which is
6269 * larger than any known Memory Controller Line Size so we'll
6270 * use that.
6271 *
6272 * T5 has a different interpretation of the "0" value for the
6273 * Packing Boundary. This corresponds to 16 bytes instead of
6274 * the expected 32 bytes. We never have a Packing Boundary
6275 * less than 32 bytes so we can't use that special value but
6276 * on the other hand, if we wanted 32 bytes, the best we can
6277 * really do is 64 bytes.
6278 */
6279 if (fl_align <= 32) {
6280 fl_align = 64;
6281 fl_align_log = 6;
6282 }
acac5962
HS
6283
6284 if (is_t5(adap->params.chip))
6285 ingpad = INGPCIEBOUNDARY_32B_X;
6286 else
6287 ingpad = T6_INGPADBOUNDARY_32B_X;
6288
f612b815
HS
6289 t4_set_reg_field(adap, SGE_CONTROL_A,
6290 INGPADBOUNDARY_V(INGPADBOUNDARY_M) |
6291 EGRSTATUSPAGESIZE_F,
acac5962 6292 INGPADBOUNDARY_V(ingpad) |
f612b815 6293 EGRSTATUSPAGESIZE_V(stat_len != 64));
ce8f407a
HS
6294 t4_set_reg_field(adap, SGE_CONTROL2_A,
6295 INGPACKBOUNDARY_V(INGPACKBOUNDARY_M),
6296 INGPACKBOUNDARY_V(fl_align_log -
f612b815 6297 INGPACKBOUNDARY_SHIFT_X));
ce8f407a 6298 }
636f9d37
VP
6299 /*
6300 * Adjust various SGE Free List Host Buffer Sizes.
6301 *
6302 * This is something of a crock since we're using fixed indices into
6303 * the array which are also known by the sge.c code and the T4
6304 * Firmware Configuration File. We need to come up with a much better
6305 * approach to managing this array. For now, the first four entries
6306 * are:
6307 *
6308 * 0: Host Page Size
6309 * 1: 64KB
6310 * 2: Buffer size corresponding to 1500 byte MTU (unpacked mode)
6311 * 3: Buffer size corresponding to 9000 byte MTU (unpacked mode)
6312 *
6313 * For the single-MTU buffers in unpacked mode we need to include
6314 * space for the SGE Control Packet Shift, 14 byte Ethernet header,
6315 * possible 4 byte VLAN tag, all rounded up to the next Ingress Packet
dbedd44e 6316 * Padding boundary. All of these are accommodated in the Factory
636f9d37
VP
6317 * Default Firmware Configuration File but we need to adjust it for
6318 * this host's cache line size.
6319 */
f612b815
HS
6320 t4_write_reg(adap, SGE_FL_BUFFER_SIZE0_A, page_size);
6321 t4_write_reg(adap, SGE_FL_BUFFER_SIZE2_A,
6322 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE2_A) + fl_align-1)
636f9d37 6323 & ~(fl_align-1));
f612b815
HS
6324 t4_write_reg(adap, SGE_FL_BUFFER_SIZE3_A,
6325 (t4_read_reg(adap, SGE_FL_BUFFER_SIZE3_A) + fl_align-1)
636f9d37
VP
6326 & ~(fl_align-1));
6327
0d804338 6328 t4_write_reg(adap, ULP_RX_TDDP_PSZ_A, HPZ0_V(page_shift - 12));
636f9d37
VP
6329
6330 return 0;
6331}
6332
6333/**
6334 * t4_fw_initialize - ask FW to initialize the device
6335 * @adap: the adapter
6336 * @mbox: mailbox to use for the FW command
6337 *
6338 * Issues a command to FW to partially initialize the device. This
6339 * performs initialization that generally doesn't depend on user input.
6340 */
6341int t4_fw_initialize(struct adapter *adap, unsigned int mbox)
6342{
6343 struct fw_initialize_cmd c;
6344
6345 memset(&c, 0, sizeof(c));
6346 INIT_CMD(c, INITIALIZE, WRITE);
6347 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6348}
6349
56d36be4 6350/**
01b69614 6351 * t4_query_params_rw - query FW or device parameters
56d36be4
DM
6352 * @adap: the adapter
6353 * @mbox: mailbox to use for the FW command
6354 * @pf: the PF
6355 * @vf: the VF
6356 * @nparams: the number of parameters
6357 * @params: the parameter names
6358 * @val: the parameter values
01b69614 6359 * @rw: Write and read flag
56d36be4
DM
6360 *
6361 * Reads the value of FW or device parameters. Up to 7 parameters can be
6362 * queried at once.
6363 */
01b69614
HS
6364int t4_query_params_rw(struct adapter *adap, unsigned int mbox, unsigned int pf,
6365 unsigned int vf, unsigned int nparams, const u32 *params,
6366 u32 *val, int rw)
56d36be4
DM
6367{
6368 int i, ret;
6369 struct fw_params_cmd c;
6370 __be32 *p = &c.param[0].mnem;
6371
6372 if (nparams > 7)
6373 return -EINVAL;
6374
6375 memset(&c, 0, sizeof(c));
f404f80c
HS
6376 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
6377 FW_CMD_REQUEST_F | FW_CMD_READ_F |
6378 FW_PARAMS_CMD_PFN_V(pf) |
6379 FW_PARAMS_CMD_VFN_V(vf));
6380 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6381
01b69614
HS
6382 for (i = 0; i < nparams; i++) {
6383 *p++ = cpu_to_be32(*params++);
6384 if (rw)
6385 *p = cpu_to_be32(*(val + i));
6386 p++;
6387 }
56d36be4
DM
6388
6389 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6390 if (ret == 0)
6391 for (i = 0, p = &c.param[0].val; i < nparams; i++, p += 2)
f404f80c 6392 *val++ = be32_to_cpu(*p);
56d36be4
DM
6393 return ret;
6394}
6395
01b69614
HS
6396int t4_query_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6397 unsigned int vf, unsigned int nparams, const u32 *params,
6398 u32 *val)
6399{
6400 return t4_query_params_rw(adap, mbox, pf, vf, nparams, params, val, 0);
6401}
6402
688848b1 6403/**
01b69614 6404 * t4_set_params_timeout - sets FW or device parameters
688848b1
AB
6405 * @adap: the adapter
6406 * @mbox: mailbox to use for the FW command
6407 * @pf: the PF
6408 * @vf: the VF
6409 * @nparams: the number of parameters
6410 * @params: the parameter names
6411 * @val: the parameter values
01b69614 6412 * @timeout: the timeout time
688848b1 6413 *
688848b1
AB
6414 * Sets the value of FW or device parameters. Up to 7 parameters can be
6415 * specified at once.
6416 */
01b69614 6417int t4_set_params_timeout(struct adapter *adap, unsigned int mbox,
688848b1
AB
6418 unsigned int pf, unsigned int vf,
6419 unsigned int nparams, const u32 *params,
01b69614 6420 const u32 *val, int timeout)
688848b1
AB
6421{
6422 struct fw_params_cmd c;
6423 __be32 *p = &c.param[0].mnem;
6424
6425 if (nparams > 7)
6426 return -EINVAL;
6427
6428 memset(&c, 0, sizeof(c));
e2ac9628 6429 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PARAMS_CMD) |
01b69614
HS
6430 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6431 FW_PARAMS_CMD_PFN_V(pf) |
6432 FW_PARAMS_CMD_VFN_V(vf));
688848b1
AB
6433 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6434
6435 while (nparams--) {
6436 *p++ = cpu_to_be32(*params++);
6437 *p++ = cpu_to_be32(*val++);
6438 }
6439
01b69614 6440 return t4_wr_mbox_timeout(adap, mbox, &c, sizeof(c), NULL, timeout);
688848b1
AB
6441}
6442
56d36be4
DM
6443/**
6444 * t4_set_params - sets FW or device parameters
6445 * @adap: the adapter
6446 * @mbox: mailbox to use for the FW command
6447 * @pf: the PF
6448 * @vf: the VF
6449 * @nparams: the number of parameters
6450 * @params: the parameter names
6451 * @val: the parameter values
6452 *
6453 * Sets the value of FW or device parameters. Up to 7 parameters can be
6454 * specified at once.
6455 */
6456int t4_set_params(struct adapter *adap, unsigned int mbox, unsigned int pf,
6457 unsigned int vf, unsigned int nparams, const u32 *params,
6458 const u32 *val)
6459{
01b69614
HS
6460 return t4_set_params_timeout(adap, mbox, pf, vf, nparams, params, val,
6461 FW_CMD_MAX_TIMEOUT);
56d36be4
DM
6462}
6463
6464/**
6465 * t4_cfg_pfvf - configure PF/VF resource limits
6466 * @adap: the adapter
6467 * @mbox: mailbox to use for the FW command
6468 * @pf: the PF being configured
6469 * @vf: the VF being configured
6470 * @txq: the max number of egress queues
6471 * @txq_eth_ctrl: the max number of egress Ethernet or control queues
6472 * @rxqi: the max number of interrupt-capable ingress queues
6473 * @rxq: the max number of interruptless ingress queues
6474 * @tc: the PCI traffic class
6475 * @vi: the max number of virtual interfaces
6476 * @cmask: the channel access rights mask for the PF/VF
6477 * @pmask: the port access rights mask for the PF/VF
6478 * @nexact: the maximum number of exact MPS filters
6479 * @rcaps: read capabilities
6480 * @wxcaps: write/execute capabilities
6481 *
6482 * Configures resource limits and capabilities for a physical or virtual
6483 * function.
6484 */
6485int t4_cfg_pfvf(struct adapter *adap, unsigned int mbox, unsigned int pf,
6486 unsigned int vf, unsigned int txq, unsigned int txq_eth_ctrl,
6487 unsigned int rxqi, unsigned int rxq, unsigned int tc,
6488 unsigned int vi, unsigned int cmask, unsigned int pmask,
6489 unsigned int nexact, unsigned int rcaps, unsigned int wxcaps)
6490{
6491 struct fw_pfvf_cmd c;
6492
6493 memset(&c, 0, sizeof(c));
f404f80c
HS
6494 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_PFVF_CMD) | FW_CMD_REQUEST_F |
6495 FW_CMD_WRITE_F | FW_PFVF_CMD_PFN_V(pf) |
6496 FW_PFVF_CMD_VFN_V(vf));
6497 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6498 c.niqflint_niq = cpu_to_be32(FW_PFVF_CMD_NIQFLINT_V(rxqi) |
6499 FW_PFVF_CMD_NIQ_V(rxq));
6500 c.type_to_neq = cpu_to_be32(FW_PFVF_CMD_CMASK_V(cmask) |
6501 FW_PFVF_CMD_PMASK_V(pmask) |
6502 FW_PFVF_CMD_NEQ_V(txq));
6503 c.tc_to_nexactf = cpu_to_be32(FW_PFVF_CMD_TC_V(tc) |
6504 FW_PFVF_CMD_NVI_V(vi) |
6505 FW_PFVF_CMD_NEXACTF_V(nexact));
6506 c.r_caps_to_nethctrl = cpu_to_be32(FW_PFVF_CMD_R_CAPS_V(rcaps) |
6507 FW_PFVF_CMD_WX_CAPS_V(wxcaps) |
6508 FW_PFVF_CMD_NETHCTRL_V(txq_eth_ctrl));
56d36be4
DM
6509 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6510}
6511
6512/**
6513 * t4_alloc_vi - allocate a virtual interface
6514 * @adap: the adapter
6515 * @mbox: mailbox to use for the FW command
6516 * @port: physical port associated with the VI
6517 * @pf: the PF owning the VI
6518 * @vf: the VF owning the VI
6519 * @nmac: number of MAC addresses needed (1 to 5)
6520 * @mac: the MAC addresses of the VI
6521 * @rss_size: size of RSS table slice associated with this VI
6522 *
6523 * Allocates a virtual interface for the given physical port. If @mac is
6524 * not %NULL it contains the MAC addresses of the VI as assigned by FW.
6525 * @mac should be large enough to hold @nmac Ethernet addresses, they are
6526 * stored consecutively so the space needed is @nmac * 6 bytes.
6527 * Returns a negative error number or the non-negative VI id.
6528 */
6529int t4_alloc_vi(struct adapter *adap, unsigned int mbox, unsigned int port,
6530 unsigned int pf, unsigned int vf, unsigned int nmac, u8 *mac,
6531 unsigned int *rss_size)
6532{
6533 int ret;
6534 struct fw_vi_cmd c;
6535
6536 memset(&c, 0, sizeof(c));
f404f80c
HS
6537 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) | FW_CMD_REQUEST_F |
6538 FW_CMD_WRITE_F | FW_CMD_EXEC_F |
6539 FW_VI_CMD_PFN_V(pf) | FW_VI_CMD_VFN_V(vf));
6540 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_ALLOC_F | FW_LEN16(c));
2b5fb1f2 6541 c.portid_pkd = FW_VI_CMD_PORTID_V(port);
56d36be4
DM
6542 c.nmac = nmac - 1;
6543
6544 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6545 if (ret)
6546 return ret;
6547
6548 if (mac) {
6549 memcpy(mac, c.mac, sizeof(c.mac));
6550 switch (nmac) {
6551 case 5:
6552 memcpy(mac + 24, c.nmac3, sizeof(c.nmac3));
6553 case 4:
6554 memcpy(mac + 18, c.nmac2, sizeof(c.nmac2));
6555 case 3:
6556 memcpy(mac + 12, c.nmac1, sizeof(c.nmac1));
6557 case 2:
6558 memcpy(mac + 6, c.nmac0, sizeof(c.nmac0));
6559 }
6560 }
6561 if (rss_size)
f404f80c
HS
6562 *rss_size = FW_VI_CMD_RSSSIZE_G(be16_to_cpu(c.rsssize_pkd));
6563 return FW_VI_CMD_VIID_G(be16_to_cpu(c.type_viid));
56d36be4
DM
6564}
6565
4f3a0fcf
HS
6566/**
6567 * t4_free_vi - free a virtual interface
6568 * @adap: the adapter
6569 * @mbox: mailbox to use for the FW command
6570 * @pf: the PF owning the VI
6571 * @vf: the VF owning the VI
6572 * @viid: virtual interface identifiler
6573 *
6574 * Free a previously allocated virtual interface.
6575 */
6576int t4_free_vi(struct adapter *adap, unsigned int mbox, unsigned int pf,
6577 unsigned int vf, unsigned int viid)
6578{
6579 struct fw_vi_cmd c;
6580
6581 memset(&c, 0, sizeof(c));
6582 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_VI_CMD) |
6583 FW_CMD_REQUEST_F |
6584 FW_CMD_EXEC_F |
6585 FW_VI_CMD_PFN_V(pf) |
6586 FW_VI_CMD_VFN_V(vf));
6587 c.alloc_to_len16 = cpu_to_be32(FW_VI_CMD_FREE_F | FW_LEN16(c));
6588 c.type_viid = cpu_to_be16(FW_VI_CMD_VIID_V(viid));
6589
6590 return t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
56d36be4
DM
6591}
6592
56d36be4
DM
6593/**
6594 * t4_set_rxmode - set Rx properties of a virtual interface
6595 * @adap: the adapter
6596 * @mbox: mailbox to use for the FW command
6597 * @viid: the VI id
6598 * @mtu: the new MTU or -1
6599 * @promisc: 1 to enable promiscuous mode, 0 to disable it, -1 no change
6600 * @all_multi: 1 to enable all-multi mode, 0 to disable it, -1 no change
6601 * @bcast: 1 to enable broadcast Rx, 0 to disable it, -1 no change
f8f5aafa 6602 * @vlanex: 1 to enable HW VLAN extraction, 0 to disable it, -1 no change
56d36be4
DM
6603 * @sleep_ok: if true we may sleep while awaiting command completion
6604 *
6605 * Sets Rx properties of a virtual interface.
6606 */
6607int t4_set_rxmode(struct adapter *adap, unsigned int mbox, unsigned int viid,
f8f5aafa
DM
6608 int mtu, int promisc, int all_multi, int bcast, int vlanex,
6609 bool sleep_ok)
56d36be4
DM
6610{
6611 struct fw_vi_rxmode_cmd c;
6612
6613 /* convert to FW values */
6614 if (mtu < 0)
6615 mtu = FW_RXMODE_MTU_NO_CHG;
6616 if (promisc < 0)
2b5fb1f2 6617 promisc = FW_VI_RXMODE_CMD_PROMISCEN_M;
56d36be4 6618 if (all_multi < 0)
2b5fb1f2 6619 all_multi = FW_VI_RXMODE_CMD_ALLMULTIEN_M;
56d36be4 6620 if (bcast < 0)
2b5fb1f2 6621 bcast = FW_VI_RXMODE_CMD_BROADCASTEN_M;
f8f5aafa 6622 if (vlanex < 0)
2b5fb1f2 6623 vlanex = FW_VI_RXMODE_CMD_VLANEXEN_M;
56d36be4
DM
6624
6625 memset(&c, 0, sizeof(c));
f404f80c
HS
6626 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_RXMODE_CMD) |
6627 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6628 FW_VI_RXMODE_CMD_VIID_V(viid));
6629 c.retval_len16 = cpu_to_be32(FW_LEN16(c));
6630 c.mtu_to_vlanexen =
6631 cpu_to_be32(FW_VI_RXMODE_CMD_MTU_V(mtu) |
6632 FW_VI_RXMODE_CMD_PROMISCEN_V(promisc) |
6633 FW_VI_RXMODE_CMD_ALLMULTIEN_V(all_multi) |
6634 FW_VI_RXMODE_CMD_BROADCASTEN_V(bcast) |
6635 FW_VI_RXMODE_CMD_VLANEXEN_V(vlanex));
56d36be4
DM
6636 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
6637}
6638
6639/**
6640 * t4_alloc_mac_filt - allocates exact-match filters for MAC addresses
6641 * @adap: the adapter
6642 * @mbox: mailbox to use for the FW command
6643 * @viid: the VI id
6644 * @free: if true any existing filters for this VI id are first removed
6645 * @naddr: the number of MAC addresses to allocate filters for (up to 7)
6646 * @addr: the MAC address(es)
6647 * @idx: where to store the index of each allocated filter
6648 * @hash: pointer to hash address filter bitmap
6649 * @sleep_ok: call is allowed to sleep
6650 *
6651 * Allocates an exact-match filter for each of the supplied addresses and
6652 * sets it to the corresponding address. If @idx is not %NULL it should
6653 * have at least @naddr entries, each of which will be set to the index of
6654 * the filter allocated for the corresponding MAC address. If a filter
6655 * could not be allocated for an address its index is set to 0xffff.
6656 * If @hash is not %NULL addresses that fail to allocate an exact filter
6657 * are hashed and update the hash filter bitmap pointed at by @hash.
6658 *
6659 * Returns a negative error number or the number of filters allocated.
6660 */
6661int t4_alloc_mac_filt(struct adapter *adap, unsigned int mbox,
6662 unsigned int viid, bool free, unsigned int naddr,
6663 const u8 **addr, u16 *idx, u64 *hash, bool sleep_ok)
6664{
3ccc6cf7 6665 int offset, ret = 0;
56d36be4 6666 struct fw_vi_mac_cmd c;
3ccc6cf7
HS
6667 unsigned int nfilters = 0;
6668 unsigned int max_naddr = adap->params.arch.mps_tcam_size;
6669 unsigned int rem = naddr;
56d36be4 6670
3ccc6cf7 6671 if (naddr > max_naddr)
56d36be4
DM
6672 return -EINVAL;
6673
3ccc6cf7
HS
6674 for (offset = 0; offset < naddr ; /**/) {
6675 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact) ?
6676 rem : ARRAY_SIZE(c.u.exact));
6677 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
6678 u.exact[fw_naddr]), 16);
6679 struct fw_vi_mac_exact *p;
6680 int i;
56d36be4 6681
3ccc6cf7
HS
6682 memset(&c, 0, sizeof(c));
6683 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6684 FW_CMD_REQUEST_F |
6685 FW_CMD_WRITE_F |
6686 FW_CMD_EXEC_V(free) |
6687 FW_VI_MAC_CMD_VIID_V(viid));
6688 c.freemacs_to_len16 =
6689 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(free) |
6690 FW_CMD_LEN16_V(len16));
6691
6692 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
6693 p->valid_to_idx =
6694 cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
6695 FW_VI_MAC_CMD_IDX_V(
6696 FW_VI_MAC_ADD_MAC));
6697 memcpy(p->macaddr, addr[offset + i],
6698 sizeof(p->macaddr));
6699 }
56d36be4 6700
3ccc6cf7
HS
6701 /* It's okay if we run out of space in our MAC address arena.
6702 * Some of the addresses we submit may get stored so we need
6703 * to run through the reply to see what the results were ...
6704 */
6705 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
6706 if (ret && ret != -FW_ENOMEM)
6707 break;
56d36be4 6708
3ccc6cf7
HS
6709 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
6710 u16 index = FW_VI_MAC_CMD_IDX_G(
6711 be16_to_cpu(p->valid_to_idx));
6712
6713 if (idx)
6714 idx[offset + i] = (index >= max_naddr ?
6715 0xffff : index);
6716 if (index < max_naddr)
6717 nfilters++;
6718 else if (hash)
6719 *hash |= (1ULL <<
6720 hash_mac_addr(addr[offset + i]));
6721 }
56d36be4 6722
3ccc6cf7
HS
6723 free = false;
6724 offset += fw_naddr;
6725 rem -= fw_naddr;
56d36be4 6726 }
3ccc6cf7
HS
6727
6728 if (ret == 0 || ret == -FW_ENOMEM)
6729 ret = nfilters;
56d36be4
DM
6730 return ret;
6731}
6732
fc08a01a
HS
6733/**
6734 * t4_free_mac_filt - frees exact-match filters of given MAC addresses
6735 * @adap: the adapter
6736 * @mbox: mailbox to use for the FW command
6737 * @viid: the VI id
6738 * @naddr: the number of MAC addresses to allocate filters for (up to 7)
6739 * @addr: the MAC address(es)
6740 * @sleep_ok: call is allowed to sleep
6741 *
6742 * Frees the exact-match filter for each of the supplied addresses
6743 *
6744 * Returns a negative error number or the number of filters freed.
6745 */
6746int t4_free_mac_filt(struct adapter *adap, unsigned int mbox,
6747 unsigned int viid, unsigned int naddr,
6748 const u8 **addr, bool sleep_ok)
6749{
6750 int offset, ret = 0;
6751 struct fw_vi_mac_cmd c;
6752 unsigned int nfilters = 0;
6753 unsigned int max_naddr = is_t4(adap->params.chip) ?
6754 NUM_MPS_CLS_SRAM_L_INSTANCES :
6755 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
6756 unsigned int rem = naddr;
6757
6758 if (naddr > max_naddr)
6759 return -EINVAL;
6760
6761 for (offset = 0; offset < (int)naddr ; /**/) {
6762 unsigned int fw_naddr = (rem < ARRAY_SIZE(c.u.exact)
6763 ? rem
6764 : ARRAY_SIZE(c.u.exact));
6765 size_t len16 = DIV_ROUND_UP(offsetof(struct fw_vi_mac_cmd,
6766 u.exact[fw_naddr]), 16);
6767 struct fw_vi_mac_exact *p;
6768 int i;
6769
6770 memset(&c, 0, sizeof(c));
6771 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6772 FW_CMD_REQUEST_F |
6773 FW_CMD_WRITE_F |
6774 FW_CMD_EXEC_V(0) |
6775 FW_VI_MAC_CMD_VIID_V(viid));
6776 c.freemacs_to_len16 =
6777 cpu_to_be32(FW_VI_MAC_CMD_FREEMACS_V(0) |
6778 FW_CMD_LEN16_V(len16));
6779
6780 for (i = 0, p = c.u.exact; i < (int)fw_naddr; i++, p++) {
6781 p->valid_to_idx = cpu_to_be16(
6782 FW_VI_MAC_CMD_VALID_F |
6783 FW_VI_MAC_CMD_IDX_V(FW_VI_MAC_MAC_BASED_FREE));
6784 memcpy(p->macaddr, addr[offset+i], sizeof(p->macaddr));
6785 }
6786
6787 ret = t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), &c, sleep_ok);
6788 if (ret)
6789 break;
6790
6791 for (i = 0, p = c.u.exact; i < fw_naddr; i++, p++) {
6792 u16 index = FW_VI_MAC_CMD_IDX_G(
6793 be16_to_cpu(p->valid_to_idx));
6794
6795 if (index < max_naddr)
6796 nfilters++;
6797 }
6798
6799 offset += fw_naddr;
6800 rem -= fw_naddr;
6801 }
6802
6803 if (ret == 0)
6804 ret = nfilters;
6805 return ret;
6806}
6807
56d36be4
DM
6808/**
6809 * t4_change_mac - modifies the exact-match filter for a MAC address
6810 * @adap: the adapter
6811 * @mbox: mailbox to use for the FW command
6812 * @viid: the VI id
6813 * @idx: index of existing filter for old value of MAC address, or -1
6814 * @addr: the new MAC address value
6815 * @persist: whether a new MAC allocation should be persistent
6816 * @add_smt: if true also add the address to the HW SMT
6817 *
6818 * Modifies an exact-match filter and sets it to the new MAC address.
6819 * Note that in general it is not possible to modify the value of a given
6820 * filter so the generic way to modify an address filter is to free the one
6821 * being used by the old address value and allocate a new filter for the
6822 * new address value. @idx can be -1 if the address is a new addition.
6823 *
6824 * Returns a negative error number or the index of the filter with the new
6825 * MAC value.
6826 */
6827int t4_change_mac(struct adapter *adap, unsigned int mbox, unsigned int viid,
6828 int idx, const u8 *addr, bool persist, bool add_smt)
6829{
6830 int ret, mode;
6831 struct fw_vi_mac_cmd c;
6832 struct fw_vi_mac_exact *p = c.u.exact;
3ccc6cf7 6833 unsigned int max_mac_addr = adap->params.arch.mps_tcam_size;
56d36be4
DM
6834
6835 if (idx < 0) /* new allocation */
6836 idx = persist ? FW_VI_MAC_ADD_PERSIST_MAC : FW_VI_MAC_ADD_MAC;
6837 mode = add_smt ? FW_VI_MAC_SMT_AND_MPSTCAM : FW_VI_MAC_MPS_TCAM_ENTRY;
6838
6839 memset(&c, 0, sizeof(c));
f404f80c
HS
6840 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6841 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6842 FW_VI_MAC_CMD_VIID_V(viid));
6843 c.freemacs_to_len16 = cpu_to_be32(FW_CMD_LEN16_V(1));
6844 p->valid_to_idx = cpu_to_be16(FW_VI_MAC_CMD_VALID_F |
6845 FW_VI_MAC_CMD_SMAC_RESULT_V(mode) |
6846 FW_VI_MAC_CMD_IDX_V(idx));
56d36be4
DM
6847 memcpy(p->macaddr, addr, sizeof(p->macaddr));
6848
6849 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
6850 if (ret == 0) {
f404f80c 6851 ret = FW_VI_MAC_CMD_IDX_G(be16_to_cpu(p->valid_to_idx));
0a57a536 6852 if (ret >= max_mac_addr)
56d36be4
DM
6853 ret = -ENOMEM;
6854 }
6855 return ret;
6856}
6857
6858/**
6859 * t4_set_addr_hash - program the MAC inexact-match hash filter
6860 * @adap: the adapter
6861 * @mbox: mailbox to use for the FW command
6862 * @viid: the VI id
6863 * @ucast: whether the hash filter should also match unicast addresses
6864 * @vec: the value to be written to the hash filter
6865 * @sleep_ok: call is allowed to sleep
6866 *
6867 * Sets the 64-bit inexact-match hash filter for a virtual interface.
6868 */
6869int t4_set_addr_hash(struct adapter *adap, unsigned int mbox, unsigned int viid,
6870 bool ucast, u64 vec, bool sleep_ok)
6871{
6872 struct fw_vi_mac_cmd c;
6873
6874 memset(&c, 0, sizeof(c));
f404f80c
HS
6875 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_MAC_CMD) |
6876 FW_CMD_REQUEST_F | FW_CMD_WRITE_F |
6877 FW_VI_ENABLE_CMD_VIID_V(viid));
6878 c.freemacs_to_len16 = cpu_to_be32(FW_VI_MAC_CMD_HASHVECEN_F |
6879 FW_VI_MAC_CMD_HASHUNIEN_V(ucast) |
6880 FW_CMD_LEN16_V(1));
56d36be4
DM
6881 c.u.hash.hashvec = cpu_to_be64(vec);
6882 return t4_wr_mbox_meat(adap, mbox, &c, sizeof(c), NULL, sleep_ok);
6883}
6884
688848b1
AB
6885/**
6886 * t4_enable_vi_params - enable/disable a virtual interface
6887 * @adap: the adapter
6888 * @mbox: mailbox to use for the FW command
6889 * @viid: the VI id
6890 * @rx_en: 1=enable Rx, 0=disable Rx
6891 * @tx_en: 1=enable Tx, 0=disable Tx
6892 * @dcb_en: 1=enable delivery of Data Center Bridging messages.
6893 *
6894 * Enables/disables a virtual interface. Note that setting DCB Enable
6895 * only makes sense when enabling a Virtual Interface ...
6896 */
6897int t4_enable_vi_params(struct adapter *adap, unsigned int mbox,
6898 unsigned int viid, bool rx_en, bool tx_en, bool dcb_en)
6899{
6900 struct fw_vi_enable_cmd c;
6901
6902 memset(&c, 0, sizeof(c));
f404f80c
HS
6903 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
6904 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
6905 FW_VI_ENABLE_CMD_VIID_V(viid));
6906 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_IEN_V(rx_en) |
6907 FW_VI_ENABLE_CMD_EEN_V(tx_en) |
6908 FW_VI_ENABLE_CMD_DCB_INFO_V(dcb_en) |
6909 FW_LEN16(c));
30f00847 6910 return t4_wr_mbox_ns(adap, mbox, &c, sizeof(c), NULL);
688848b1
AB
6911}
6912
56d36be4
DM
6913/**
6914 * t4_enable_vi - enable/disable a virtual interface
6915 * @adap: the adapter
6916 * @mbox: mailbox to use for the FW command
6917 * @viid: the VI id
6918 * @rx_en: 1=enable Rx, 0=disable Rx
6919 * @tx_en: 1=enable Tx, 0=disable Tx
6920 *
6921 * Enables/disables a virtual interface.
6922 */
6923int t4_enable_vi(struct adapter *adap, unsigned int mbox, unsigned int viid,
6924 bool rx_en, bool tx_en)
6925{
688848b1 6926 return t4_enable_vi_params(adap, mbox, viid, rx_en, tx_en, 0);
56d36be4
DM
6927}
6928
6929/**
6930 * t4_identify_port - identify a VI's port by blinking its LED
6931 * @adap: the adapter
6932 * @mbox: mailbox to use for the FW command
6933 * @viid: the VI id
6934 * @nblinks: how many times to blink LED at 2.5 Hz
6935 *
6936 * Identifies a VI's port by blinking its LED.
6937 */
6938int t4_identify_port(struct adapter *adap, unsigned int mbox, unsigned int viid,
6939 unsigned int nblinks)
6940{
6941 struct fw_vi_enable_cmd c;
6942
0062b15c 6943 memset(&c, 0, sizeof(c));
f404f80c
HS
6944 c.op_to_viid = cpu_to_be32(FW_CMD_OP_V(FW_VI_ENABLE_CMD) |
6945 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
6946 FW_VI_ENABLE_CMD_VIID_V(viid));
6947 c.ien_to_len16 = cpu_to_be32(FW_VI_ENABLE_CMD_LED_F | FW_LEN16(c));
6948 c.blinkdur = cpu_to_be16(nblinks);
56d36be4 6949 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
56d36be4
DM
6950}
6951
ebf4dc2b
HS
6952/**
6953 * t4_iq_stop - stop an ingress queue and its FLs
6954 * @adap: the adapter
6955 * @mbox: mailbox to use for the FW command
6956 * @pf: the PF owning the queues
6957 * @vf: the VF owning the queues
6958 * @iqtype: the ingress queue type (FW_IQ_TYPE_FL_INT_CAP, etc.)
6959 * @iqid: ingress queue id
6960 * @fl0id: FL0 queue id or 0xffff if no attached FL0
6961 * @fl1id: FL1 queue id or 0xffff if no attached FL1
6962 *
6963 * Stops an ingress queue and its associated FLs, if any. This causes
6964 * any current or future data/messages destined for these queues to be
6965 * tossed.
6966 */
6967int t4_iq_stop(struct adapter *adap, unsigned int mbox, unsigned int pf,
6968 unsigned int vf, unsigned int iqtype, unsigned int iqid,
6969 unsigned int fl0id, unsigned int fl1id)
6970{
6971 struct fw_iq_cmd c;
6972
6973 memset(&c, 0, sizeof(c));
6974 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
6975 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
6976 FW_IQ_CMD_VFN_V(vf));
6977 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_IQSTOP_F | FW_LEN16(c));
6978 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
6979 c.iqid = cpu_to_be16(iqid);
6980 c.fl0id = cpu_to_be16(fl0id);
6981 c.fl1id = cpu_to_be16(fl1id);
6982 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
6983}
6984
56d36be4
DM
6985/**
6986 * t4_iq_free - free an ingress queue and its FLs
6987 * @adap: the adapter
6988 * @mbox: mailbox to use for the FW command
6989 * @pf: the PF owning the queues
6990 * @vf: the VF owning the queues
6991 * @iqtype: the ingress queue type
6992 * @iqid: ingress queue id
6993 * @fl0id: FL0 queue id or 0xffff if no attached FL0
6994 * @fl1id: FL1 queue id or 0xffff if no attached FL1
6995 *
6996 * Frees an ingress queue and its associated FLs, if any.
6997 */
6998int t4_iq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
6999 unsigned int vf, unsigned int iqtype, unsigned int iqid,
7000 unsigned int fl0id, unsigned int fl1id)
7001{
7002 struct fw_iq_cmd c;
7003
7004 memset(&c, 0, sizeof(c));
f404f80c
HS
7005 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_IQ_CMD) | FW_CMD_REQUEST_F |
7006 FW_CMD_EXEC_F | FW_IQ_CMD_PFN_V(pf) |
7007 FW_IQ_CMD_VFN_V(vf));
7008 c.alloc_to_len16 = cpu_to_be32(FW_IQ_CMD_FREE_F | FW_LEN16(c));
7009 c.type_to_iqandstindex = cpu_to_be32(FW_IQ_CMD_TYPE_V(iqtype));
7010 c.iqid = cpu_to_be16(iqid);
7011 c.fl0id = cpu_to_be16(fl0id);
7012 c.fl1id = cpu_to_be16(fl1id);
56d36be4
DM
7013 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7014}
7015
7016/**
7017 * t4_eth_eq_free - free an Ethernet egress queue
7018 * @adap: the adapter
7019 * @mbox: mailbox to use for the FW command
7020 * @pf: the PF owning the queue
7021 * @vf: the VF owning the queue
7022 * @eqid: egress queue id
7023 *
7024 * Frees an Ethernet egress queue.
7025 */
7026int t4_eth_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7027 unsigned int vf, unsigned int eqid)
7028{
7029 struct fw_eq_eth_cmd c;
7030
7031 memset(&c, 0, sizeof(c));
f404f80c
HS
7032 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_ETH_CMD) |
7033 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7034 FW_EQ_ETH_CMD_PFN_V(pf) |
7035 FW_EQ_ETH_CMD_VFN_V(vf));
7036 c.alloc_to_len16 = cpu_to_be32(FW_EQ_ETH_CMD_FREE_F | FW_LEN16(c));
7037 c.eqid_pkd = cpu_to_be32(FW_EQ_ETH_CMD_EQID_V(eqid));
56d36be4
DM
7038 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7039}
7040
7041/**
7042 * t4_ctrl_eq_free - free a control egress queue
7043 * @adap: the adapter
7044 * @mbox: mailbox to use for the FW command
7045 * @pf: the PF owning the queue
7046 * @vf: the VF owning the queue
7047 * @eqid: egress queue id
7048 *
7049 * Frees a control egress queue.
7050 */
7051int t4_ctrl_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7052 unsigned int vf, unsigned int eqid)
7053{
7054 struct fw_eq_ctrl_cmd c;
7055
7056 memset(&c, 0, sizeof(c));
f404f80c
HS
7057 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_CTRL_CMD) |
7058 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7059 FW_EQ_CTRL_CMD_PFN_V(pf) |
7060 FW_EQ_CTRL_CMD_VFN_V(vf));
7061 c.alloc_to_len16 = cpu_to_be32(FW_EQ_CTRL_CMD_FREE_F | FW_LEN16(c));
7062 c.cmpliqid_eqid = cpu_to_be32(FW_EQ_CTRL_CMD_EQID_V(eqid));
56d36be4
DM
7063 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7064}
7065
7066/**
7067 * t4_ofld_eq_free - free an offload egress queue
7068 * @adap: the adapter
7069 * @mbox: mailbox to use for the FW command
7070 * @pf: the PF owning the queue
7071 * @vf: the VF owning the queue
7072 * @eqid: egress queue id
7073 *
7074 * Frees a control egress queue.
7075 */
7076int t4_ofld_eq_free(struct adapter *adap, unsigned int mbox, unsigned int pf,
7077 unsigned int vf, unsigned int eqid)
7078{
7079 struct fw_eq_ofld_cmd c;
7080
7081 memset(&c, 0, sizeof(c));
f404f80c
HS
7082 c.op_to_vfn = cpu_to_be32(FW_CMD_OP_V(FW_EQ_OFLD_CMD) |
7083 FW_CMD_REQUEST_F | FW_CMD_EXEC_F |
7084 FW_EQ_OFLD_CMD_PFN_V(pf) |
7085 FW_EQ_OFLD_CMD_VFN_V(vf));
7086 c.alloc_to_len16 = cpu_to_be32(FW_EQ_OFLD_CMD_FREE_F | FW_LEN16(c));
7087 c.eqid_pkd = cpu_to_be32(FW_EQ_OFLD_CMD_EQID_V(eqid));
56d36be4
DM
7088 return t4_wr_mbox(adap, mbox, &c, sizeof(c), NULL);
7089}
7090
7091/**
7092 * t4_handle_fw_rpl - process a FW reply message
7093 * @adap: the adapter
7094 * @rpl: start of the FW message
7095 *
7096 * Processes a FW message, such as link state change messages.
7097 */
7098int t4_handle_fw_rpl(struct adapter *adap, const __be64 *rpl)
7099{
7100 u8 opcode = *(const u8 *)rpl;
7101
7102 if (opcode == FW_PORT_CMD) { /* link/module state change message */
7103 int speed = 0, fc = 0;
7104 const struct fw_port_cmd *p = (void *)rpl;
f404f80c 7105 int chan = FW_PORT_CMD_PORTID_G(be32_to_cpu(p->op_to_portid));
56d36be4
DM
7106 int port = adap->chan_map[chan];
7107 struct port_info *pi = adap2pinfo(adap, port);
7108 struct link_config *lc = &pi->link_cfg;
f404f80c 7109 u32 stat = be32_to_cpu(p->u.info.lstatus_to_modtype);
2b5fb1f2
HS
7110 int link_ok = (stat & FW_PORT_CMD_LSTATUS_F) != 0;
7111 u32 mod = FW_PORT_CMD_MODTYPE_G(stat);
56d36be4 7112
2b5fb1f2 7113 if (stat & FW_PORT_CMD_RXPAUSE_F)
56d36be4 7114 fc |= PAUSE_RX;
2b5fb1f2 7115 if (stat & FW_PORT_CMD_TXPAUSE_F)
56d36be4 7116 fc |= PAUSE_TX;
2b5fb1f2 7117 if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
e8b39015 7118 speed = 100;
2b5fb1f2 7119 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
e8b39015 7120 speed = 1000;
2b5fb1f2 7121 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
e8b39015 7122 speed = 10000;
2b5fb1f2 7123 else if (stat & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
e8b39015 7124 speed = 40000;
56d36be4
DM
7125
7126 if (link_ok != lc->link_ok || speed != lc->speed ||
7127 fc != lc->fc) { /* something changed */
7128 lc->link_ok = link_ok;
7129 lc->speed = speed;
7130 lc->fc = fc;
444018a7 7131 lc->supported = be16_to_cpu(p->u.info.pcap);
56d36be4
DM
7132 t4_os_link_changed(adap, port, link_ok);
7133 }
7134 if (mod != pi->mod_type) {
7135 pi->mod_type = mod;
7136 t4_os_portmod_changed(adap, port);
7137 }
7138 }
7139 return 0;
7140}
7141
1dd06ae8 7142static void get_pci_mode(struct adapter *adapter, struct pci_params *p)
56d36be4
DM
7143{
7144 u16 val;
56d36be4 7145
e5c8ae5f
JL
7146 if (pci_is_pcie(adapter->pdev)) {
7147 pcie_capability_read_word(adapter->pdev, PCI_EXP_LNKSTA, &val);
56d36be4
DM
7148 p->speed = val & PCI_EXP_LNKSTA_CLS;
7149 p->width = (val & PCI_EXP_LNKSTA_NLW) >> 4;
7150 }
7151}
7152
7153/**
7154 * init_link_config - initialize a link's SW state
7155 * @lc: structure holding the link state
7156 * @caps: link capabilities
7157 *
7158 * Initializes the SW state maintained for each link, including the link's
7159 * capabilities and default speed/flow-control/autonegotiation settings.
7160 */
1dd06ae8 7161static void init_link_config(struct link_config *lc, unsigned int caps)
56d36be4
DM
7162{
7163 lc->supported = caps;
7164 lc->requested_speed = 0;
7165 lc->speed = 0;
7166 lc->requested_fc = lc->fc = PAUSE_RX | PAUSE_TX;
7167 if (lc->supported & FW_PORT_CAP_ANEG) {
7168 lc->advertising = lc->supported & ADVERT_MASK;
7169 lc->autoneg = AUTONEG_ENABLE;
7170 lc->requested_fc |= PAUSE_AUTONEG;
7171 } else {
7172 lc->advertising = 0;
7173 lc->autoneg = AUTONEG_DISABLE;
7174 }
7175}
7176
8203b509
HS
7177#define CIM_PF_NOACCESS 0xeeeeeeee
7178
7179int t4_wait_dev_ready(void __iomem *regs)
56d36be4 7180{
8203b509
HS
7181 u32 whoami;
7182
0d804338 7183 whoami = readl(regs + PL_WHOAMI_A);
8203b509 7184 if (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS)
56d36be4 7185 return 0;
8203b509 7186
56d36be4 7187 msleep(500);
0d804338 7188 whoami = readl(regs + PL_WHOAMI_A);
8203b509 7189 return (whoami != 0xffffffff && whoami != CIM_PF_NOACCESS ? 0 : -EIO);
56d36be4
DM
7190}
7191
fe2ee139
HS
7192struct flash_desc {
7193 u32 vendor_and_model_id;
7194 u32 size_mb;
7195};
7196
91744948 7197static int get_flash_params(struct adapter *adap)
900a6596 7198{
fe2ee139
HS
7199 /* Table for non-Numonix supported flash parts. Numonix parts are left
7200 * to the preexisting code. All flash parts have 64KB sectors.
7201 */
7202 static struct flash_desc supported_flash[] = {
7203 { 0x150201, 4 << 20 }, /* Spansion 4MB S25FL032P */
7204 };
7205
900a6596
DM
7206 int ret;
7207 u32 info;
7208
7209 ret = sf1_write(adap, 1, 1, 0, SF_RD_ID);
7210 if (!ret)
7211 ret = sf1_read(adap, 3, 0, 1, &info);
0d804338 7212 t4_write_reg(adap, SF_OP_A, 0); /* unlock SF */
900a6596
DM
7213 if (ret)
7214 return ret;
7215
fe2ee139
HS
7216 for (ret = 0; ret < ARRAY_SIZE(supported_flash); ++ret)
7217 if (supported_flash[ret].vendor_and_model_id == info) {
7218 adap->params.sf_size = supported_flash[ret].size_mb;
7219 adap->params.sf_nsec =
7220 adap->params.sf_size / SF_SEC_SIZE;
7221 return 0;
7222 }
7223
900a6596
DM
7224 if ((info & 0xff) != 0x20) /* not a Numonix flash */
7225 return -EINVAL;
7226 info >>= 16; /* log2 of size */
7227 if (info >= 0x14 && info < 0x18)
7228 adap->params.sf_nsec = 1 << (info - 16);
7229 else if (info == 0x18)
7230 adap->params.sf_nsec = 64;
7231 else
7232 return -EINVAL;
7233 adap->params.sf_size = 1 << info;
7234 adap->params.sf_fw_start =
89c3a86c 7235 t4_read_reg(adap, CIM_BOOT_CFG_A) & BOOTADDR_M;
c290607e
HS
7236
7237 if (adap->params.sf_size < FLASH_MIN_SIZE)
7238 dev_warn(adap->pdev_dev, "WARNING!!! FLASH size %#x < %#x!!!\n",
7239 adap->params.sf_size, FLASH_MIN_SIZE);
900a6596
DM
7240 return 0;
7241}
7242
eca0f6ee
HS
7243static void set_pcie_completion_timeout(struct adapter *adapter, u8 range)
7244{
7245 u16 val;
7246 u32 pcie_cap;
7247
7248 pcie_cap = pci_find_capability(adapter->pdev, PCI_CAP_ID_EXP);
7249 if (pcie_cap) {
7250 pci_read_config_word(adapter->pdev,
7251 pcie_cap + PCI_EXP_DEVCTL2, &val);
7252 val &= ~PCI_EXP_DEVCTL2_COMP_TIMEOUT;
7253 val |= range;
7254 pci_write_config_word(adapter->pdev,
7255 pcie_cap + PCI_EXP_DEVCTL2, val);
7256 }
7257}
7258
56d36be4
DM
7259/**
7260 * t4_prep_adapter - prepare SW and HW for operation
7261 * @adapter: the adapter
7262 * @reset: if true perform a HW reset
7263 *
7264 * Initialize adapter SW state for the various HW modules, set initial
7265 * values for some adapter tunables, take PHYs out of reset, and
7266 * initialize the MDIO interface.
7267 */
91744948 7268int t4_prep_adapter(struct adapter *adapter)
56d36be4 7269{
0a57a536
SR
7270 int ret, ver;
7271 uint16_t device_id;
d14807dd 7272 u32 pl_rev;
56d36be4 7273
56d36be4 7274 get_pci_mode(adapter, &adapter->params.pci);
0d804338 7275 pl_rev = REV_G(t4_read_reg(adapter, PL_REV_A));
56d36be4 7276
900a6596
DM
7277 ret = get_flash_params(adapter);
7278 if (ret < 0) {
7279 dev_err(adapter->pdev_dev, "error %d identifying flash\n", ret);
7280 return ret;
7281 }
7282
0a57a536
SR
7283 /* Retrieve adapter's device ID
7284 */
7285 pci_read_config_word(adapter->pdev, PCI_DEVICE_ID, &device_id);
7286 ver = device_id >> 12;
d14807dd 7287 adapter->params.chip = 0;
0a57a536
SR
7288 switch (ver) {
7289 case CHELSIO_T4:
d14807dd 7290 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T4, pl_rev);
3ccc6cf7
HS
7291 adapter->params.arch.sge_fl_db = DBPRIO_F;
7292 adapter->params.arch.mps_tcam_size =
7293 NUM_MPS_CLS_SRAM_L_INSTANCES;
7294 adapter->params.arch.mps_rplc_size = 128;
7295 adapter->params.arch.nchan = NCHAN;
44588560 7296 adapter->params.arch.pm_stats_cnt = PM_NSTATS;
3ccc6cf7 7297 adapter->params.arch.vfcount = 128;
2216d014
HS
7298 /* Congestion map is for 4 channels so that
7299 * MPS can have 4 priority per port.
7300 */
7301 adapter->params.arch.cng_ch_bits_log = 2;
0a57a536
SR
7302 break;
7303 case CHELSIO_T5:
d14807dd 7304 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T5, pl_rev);
3ccc6cf7
HS
7305 adapter->params.arch.sge_fl_db = DBPRIO_F | DBTYPE_F;
7306 adapter->params.arch.mps_tcam_size =
7307 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
7308 adapter->params.arch.mps_rplc_size = 128;
7309 adapter->params.arch.nchan = NCHAN;
44588560 7310 adapter->params.arch.pm_stats_cnt = PM_NSTATS;
3ccc6cf7 7311 adapter->params.arch.vfcount = 128;
2216d014 7312 adapter->params.arch.cng_ch_bits_log = 2;
3ccc6cf7
HS
7313 break;
7314 case CHELSIO_T6:
7315 adapter->params.chip |= CHELSIO_CHIP_CODE(CHELSIO_T6, pl_rev);
7316 adapter->params.arch.sge_fl_db = 0;
7317 adapter->params.arch.mps_tcam_size =
7318 NUM_MPS_T5_CLS_SRAM_L_INSTANCES;
7319 adapter->params.arch.mps_rplc_size = 256;
7320 adapter->params.arch.nchan = 2;
44588560 7321 adapter->params.arch.pm_stats_cnt = T6_PM_NSTATS;
3ccc6cf7 7322 adapter->params.arch.vfcount = 256;
2216d014
HS
7323 /* Congestion map will be for 2 channels so that
7324 * MPS can have 8 priority per port.
7325 */
7326 adapter->params.arch.cng_ch_bits_log = 3;
0a57a536
SR
7327 break;
7328 default:
7329 dev_err(adapter->pdev_dev, "Device %d is not supported\n",
7330 device_id);
7331 return -EINVAL;
7332 }
7333
f1ff24aa 7334 adapter->params.cim_la_size = CIMLA_SIZE;
56d36be4
DM
7335 init_cong_ctrl(adapter->params.a_wnd, adapter->params.b_wnd);
7336
7337 /*
7338 * Default port for debugging in case we can't reach FW.
7339 */
7340 adapter->params.nports = 1;
7341 adapter->params.portvec = 1;
636f9d37 7342 adapter->params.vpd.cclk = 50000;
eca0f6ee
HS
7343
7344 /* Set pci completion timeout value to 4 seconds. */
7345 set_pcie_completion_timeout(adapter, 0xd);
56d36be4
DM
7346 return 0;
7347}
7348
e85c9a7a 7349/**
b2612722 7350 * t4_bar2_sge_qregs - return BAR2 SGE Queue register information
e85c9a7a
HS
7351 * @adapter: the adapter
7352 * @qid: the Queue ID
7353 * @qtype: the Ingress or Egress type for @qid
66cf188e 7354 * @user: true if this request is for a user mode queue
e85c9a7a
HS
7355 * @pbar2_qoffset: BAR2 Queue Offset
7356 * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues
7357 *
7358 * Returns the BAR2 SGE Queue Registers information associated with the
7359 * indicated Absolute Queue ID. These are passed back in return value
7360 * pointers. @qtype should be T4_BAR2_QTYPE_EGRESS for Egress Queue
7361 * and T4_BAR2_QTYPE_INGRESS for Ingress Queues.
7362 *
7363 * This may return an error which indicates that BAR2 SGE Queue
7364 * registers aren't available. If an error is not returned, then the
7365 * following values are returned:
7366 *
7367 * *@pbar2_qoffset: the BAR2 Offset of the @qid Registers
7368 * *@pbar2_qid: the BAR2 SGE Queue ID or 0 of @qid
7369 *
7370 * If the returned BAR2 Queue ID is 0, then BAR2 SGE registers which
7371 * require the "Inferred Queue ID" ability may be used. E.g. the
7372 * Write Combining Doorbell Buffer. If the BAR2 Queue ID is not 0,
7373 * then these "Inferred Queue ID" register may not be used.
7374 */
b2612722 7375int t4_bar2_sge_qregs(struct adapter *adapter,
e85c9a7a
HS
7376 unsigned int qid,
7377 enum t4_bar2_qtype qtype,
66cf188e 7378 int user,
e85c9a7a
HS
7379 u64 *pbar2_qoffset,
7380 unsigned int *pbar2_qid)
7381{
7382 unsigned int page_shift, page_size, qpp_shift, qpp_mask;
7383 u64 bar2_page_offset, bar2_qoffset;
7384 unsigned int bar2_qid, bar2_qid_offset, bar2_qinferred;
7385
66cf188e
H
7386 /* T4 doesn't support BAR2 SGE Queue registers for kernel mode queues */
7387 if (!user && is_t4(adapter->params.chip))
e85c9a7a
HS
7388 return -EINVAL;
7389
7390 /* Get our SGE Page Size parameters.
7391 */
7392 page_shift = adapter->params.sge.hps + 10;
7393 page_size = 1 << page_shift;
7394
7395 /* Get the right Queues per Page parameters for our Queue.
7396 */
7397 qpp_shift = (qtype == T4_BAR2_QTYPE_EGRESS
7398 ? adapter->params.sge.eq_qpp
7399 : adapter->params.sge.iq_qpp);
7400 qpp_mask = (1 << qpp_shift) - 1;
7401
7402 /* Calculate the basics of the BAR2 SGE Queue register area:
7403 * o The BAR2 page the Queue registers will be in.
7404 * o The BAR2 Queue ID.
7405 * o The BAR2 Queue ID Offset into the BAR2 page.
7406 */
513d1a1d 7407 bar2_page_offset = ((u64)(qid >> qpp_shift) << page_shift);
e85c9a7a
HS
7408 bar2_qid = qid & qpp_mask;
7409 bar2_qid_offset = bar2_qid * SGE_UDB_SIZE;
7410
7411 /* If the BAR2 Queue ID Offset is less than the Page Size, then the
7412 * hardware will infer the Absolute Queue ID simply from the writes to
7413 * the BAR2 Queue ID Offset within the BAR2 Page (and we need to use a
7414 * BAR2 Queue ID of 0 for those writes). Otherwise, we'll simply
7415 * write to the first BAR2 SGE Queue Area within the BAR2 Page with
7416 * the BAR2 Queue ID and the hardware will infer the Absolute Queue ID
7417 * from the BAR2 Page and BAR2 Queue ID.
7418 *
7419 * One important censequence of this is that some BAR2 SGE registers
7420 * have a "Queue ID" field and we can write the BAR2 SGE Queue ID
7421 * there. But other registers synthesize the SGE Queue ID purely
7422 * from the writes to the registers -- the Write Combined Doorbell
7423 * Buffer is a good example. These BAR2 SGE Registers are only
7424 * available for those BAR2 SGE Register areas where the SGE Absolute
7425 * Queue ID can be inferred from simple writes.
7426 */
7427 bar2_qoffset = bar2_page_offset;
7428 bar2_qinferred = (bar2_qid_offset < page_size);
7429 if (bar2_qinferred) {
7430 bar2_qoffset += bar2_qid_offset;
7431 bar2_qid = 0;
7432 }
7433
7434 *pbar2_qoffset = bar2_qoffset;
7435 *pbar2_qid = bar2_qid;
7436 return 0;
7437}
7438
ae469b68
HS
7439/**
7440 * t4_init_devlog_params - initialize adapter->params.devlog
7441 * @adap: the adapter
7442 *
7443 * Initialize various fields of the adapter's Firmware Device Log
7444 * Parameters structure.
7445 */
7446int t4_init_devlog_params(struct adapter *adap)
7447{
7448 struct devlog_params *dparams = &adap->params.devlog;
7449 u32 pf_dparams;
7450 unsigned int devlog_meminfo;
7451 struct fw_devlog_cmd devlog_cmd;
7452 int ret;
7453
7454 /* If we're dealing with newer firmware, the Device Log Paramerters
7455 * are stored in a designated register which allows us to access the
7456 * Device Log even if we can't talk to the firmware.
7457 */
7458 pf_dparams =
7459 t4_read_reg(adap, PCIE_FW_REG(PCIE_FW_PF_A, PCIE_FW_PF_DEVLOG));
7460 if (pf_dparams) {
7461 unsigned int nentries, nentries128;
7462
7463 dparams->memtype = PCIE_FW_PF_DEVLOG_MEMTYPE_G(pf_dparams);
7464 dparams->start = PCIE_FW_PF_DEVLOG_ADDR16_G(pf_dparams) << 4;
7465
7466 nentries128 = PCIE_FW_PF_DEVLOG_NENTRIES128_G(pf_dparams);
7467 nentries = (nentries128 + 1) * 128;
7468 dparams->size = nentries * sizeof(struct fw_devlog_e);
7469
7470 return 0;
7471 }
7472
7473 /* Otherwise, ask the firmware for it's Device Log Parameters.
7474 */
7475 memset(&devlog_cmd, 0, sizeof(devlog_cmd));
f404f80c
HS
7476 devlog_cmd.op_to_write = cpu_to_be32(FW_CMD_OP_V(FW_DEVLOG_CMD) |
7477 FW_CMD_REQUEST_F | FW_CMD_READ_F);
7478 devlog_cmd.retval_len16 = cpu_to_be32(FW_LEN16(devlog_cmd));
ae469b68
HS
7479 ret = t4_wr_mbox(adap, adap->mbox, &devlog_cmd, sizeof(devlog_cmd),
7480 &devlog_cmd);
7481 if (ret)
7482 return ret;
7483
f404f80c
HS
7484 devlog_meminfo =
7485 be32_to_cpu(devlog_cmd.memtype_devlog_memaddr16_devlog);
ae469b68
HS
7486 dparams->memtype = FW_DEVLOG_CMD_MEMTYPE_DEVLOG_G(devlog_meminfo);
7487 dparams->start = FW_DEVLOG_CMD_MEMADDR16_DEVLOG_G(devlog_meminfo) << 4;
f404f80c 7488 dparams->size = be32_to_cpu(devlog_cmd.memsize_devlog);
ae469b68
HS
7489
7490 return 0;
7491}
7492
e85c9a7a
HS
7493/**
7494 * t4_init_sge_params - initialize adap->params.sge
7495 * @adapter: the adapter
7496 *
7497 * Initialize various fields of the adapter's SGE Parameters structure.
7498 */
7499int t4_init_sge_params(struct adapter *adapter)
7500{
7501 struct sge_params *sge_params = &adapter->params.sge;
7502 u32 hps, qpp;
7503 unsigned int s_hps, s_qpp;
7504
7505 /* Extract the SGE Page Size for our PF.
7506 */
f612b815 7507 hps = t4_read_reg(adapter, SGE_HOST_PAGE_SIZE_A);
e85c9a7a 7508 s_hps = (HOSTPAGESIZEPF0_S +
b2612722 7509 (HOSTPAGESIZEPF1_S - HOSTPAGESIZEPF0_S) * adapter->pf);
e85c9a7a
HS
7510 sge_params->hps = ((hps >> s_hps) & HOSTPAGESIZEPF0_M);
7511
7512 /* Extract the SGE Egress and Ingess Queues Per Page for our PF.
7513 */
7514 s_qpp = (QUEUESPERPAGEPF0_S +
b2612722 7515 (QUEUESPERPAGEPF1_S - QUEUESPERPAGEPF0_S) * adapter->pf);
f612b815
HS
7516 qpp = t4_read_reg(adapter, SGE_EGRESS_QUEUES_PER_PAGE_PF_A);
7517 sge_params->eq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
f061de42 7518 qpp = t4_read_reg(adapter, SGE_INGRESS_QUEUES_PER_PAGE_PF_A);
f612b815 7519 sge_params->iq_qpp = ((qpp >> s_qpp) & QUEUESPERPAGEPF0_M);
e85c9a7a
HS
7520
7521 return 0;
7522}
7523
dcf7b6f5
KS
7524/**
7525 * t4_init_tp_params - initialize adap->params.tp
7526 * @adap: the adapter
7527 *
7528 * Initialize various fields of the adapter's TP Parameters structure.
7529 */
7530int t4_init_tp_params(struct adapter *adap)
7531{
7532 int chan;
7533 u32 v;
7534
837e4a42
HS
7535 v = t4_read_reg(adap, TP_TIMER_RESOLUTION_A);
7536 adap->params.tp.tre = TIMERRESOLUTION_G(v);
7537 adap->params.tp.dack_re = DELAYEDACKRESOLUTION_G(v);
dcf7b6f5
KS
7538
7539 /* MODQ_REQ_MAP defaults to setting queues 0-3 to chan 0-3 */
7540 for (chan = 0; chan < NCHAN; chan++)
7541 adap->params.tp.tx_modq[chan] = chan;
7542
7543 /* Cache the adapter's Compressed Filter Mode and global Incress
7544 * Configuration.
7545 */
0b2c2a93 7546 if (t4_use_ldst(adap)) {
c1e9af0c
HS
7547 t4_fw_tp_pio_rw(adap, &adap->params.tp.vlan_pri_map, 1,
7548 TP_VLAN_PRI_MAP_A, 1);
7549 t4_fw_tp_pio_rw(adap, &adap->params.tp.ingress_config, 1,
7550 TP_INGRESS_CONFIG_A, 1);
7551 } else {
7552 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
7553 &adap->params.tp.vlan_pri_map, 1,
7554 TP_VLAN_PRI_MAP_A);
7555 t4_read_indirect(adap, TP_PIO_ADDR_A, TP_PIO_DATA_A,
7556 &adap->params.tp.ingress_config, 1,
7557 TP_INGRESS_CONFIG_A);
7558 }
dcf7b6f5
KS
7559
7560 /* Now that we have TP_VLAN_PRI_MAP cached, we can calculate the field
7561 * shift positions of several elements of the Compressed Filter Tuple
7562 * for this adapter which we need frequently ...
7563 */
0d804338
HS
7564 adap->params.tp.vlan_shift = t4_filter_field_shift(adap, VLAN_F);
7565 adap->params.tp.vnic_shift = t4_filter_field_shift(adap, VNIC_ID_F);
7566 adap->params.tp.port_shift = t4_filter_field_shift(adap, PORT_F);
dcf7b6f5 7567 adap->params.tp.protocol_shift = t4_filter_field_shift(adap,
0d804338 7568 PROTOCOL_F);
dcf7b6f5
KS
7569
7570 /* If TP_INGRESS_CONFIG.VNID == 0, then TP_VLAN_PRI_MAP.VNIC_ID
dbedd44e 7571 * represents the presence of an Outer VLAN instead of a VNIC ID.
dcf7b6f5 7572 */
0d804338 7573 if ((adap->params.tp.ingress_config & VNIC_F) == 0)
dcf7b6f5
KS
7574 adap->params.tp.vnic_shift = -1;
7575
7576 return 0;
7577}
7578
7579/**
7580 * t4_filter_field_shift - calculate filter field shift
7581 * @adap: the adapter
7582 * @filter_sel: the desired field (from TP_VLAN_PRI_MAP bits)
7583 *
7584 * Return the shift position of a filter field within the Compressed
7585 * Filter Tuple. The filter field is specified via its selection bit
7586 * within TP_VLAN_PRI_MAL (filter mode). E.g. F_VLAN.
7587 */
7588int t4_filter_field_shift(const struct adapter *adap, int filter_sel)
7589{
7590 unsigned int filter_mode = adap->params.tp.vlan_pri_map;
7591 unsigned int sel;
7592 int field_shift;
7593
7594 if ((filter_mode & filter_sel) == 0)
7595 return -1;
7596
7597 for (sel = 1, field_shift = 0; sel < filter_sel; sel <<= 1) {
7598 switch (filter_mode & sel) {
0d804338
HS
7599 case FCOE_F:
7600 field_shift += FT_FCOE_W;
dcf7b6f5 7601 break;
0d804338
HS
7602 case PORT_F:
7603 field_shift += FT_PORT_W;
dcf7b6f5 7604 break;
0d804338
HS
7605 case VNIC_ID_F:
7606 field_shift += FT_VNIC_ID_W;
dcf7b6f5 7607 break;
0d804338
HS
7608 case VLAN_F:
7609 field_shift += FT_VLAN_W;
dcf7b6f5 7610 break;
0d804338
HS
7611 case TOS_F:
7612 field_shift += FT_TOS_W;
dcf7b6f5 7613 break;
0d804338
HS
7614 case PROTOCOL_F:
7615 field_shift += FT_PROTOCOL_W;
dcf7b6f5 7616 break;
0d804338
HS
7617 case ETHERTYPE_F:
7618 field_shift += FT_ETHERTYPE_W;
dcf7b6f5 7619 break;
0d804338
HS
7620 case MACMATCH_F:
7621 field_shift += FT_MACMATCH_W;
dcf7b6f5 7622 break;
0d804338
HS
7623 case MPSHITTYPE_F:
7624 field_shift += FT_MPSHITTYPE_W;
dcf7b6f5 7625 break;
0d804338
HS
7626 case FRAGMENTATION_F:
7627 field_shift += FT_FRAGMENTATION_W;
dcf7b6f5
KS
7628 break;
7629 }
7630 }
7631 return field_shift;
7632}
7633
c035e183
HS
7634int t4_init_rss_mode(struct adapter *adap, int mbox)
7635{
7636 int i, ret;
7637 struct fw_rss_vi_config_cmd rvc;
7638
7639 memset(&rvc, 0, sizeof(rvc));
7640
7641 for_each_port(adap, i) {
7642 struct port_info *p = adap2pinfo(adap, i);
7643
f404f80c
HS
7644 rvc.op_to_viid =
7645 cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
7646 FW_CMD_REQUEST_F | FW_CMD_READ_F |
7647 FW_RSS_VI_CONFIG_CMD_VIID_V(p->viid));
7648 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
c035e183
HS
7649 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
7650 if (ret)
7651 return ret;
f404f80c 7652 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
c035e183
HS
7653 }
7654 return 0;
7655}
7656
91744948 7657int t4_port_init(struct adapter *adap, int mbox, int pf, int vf)
56d36be4
DM
7658{
7659 u8 addr[6];
7660 int ret, i, j = 0;
7661 struct fw_port_cmd c;
f796564a 7662 struct fw_rss_vi_config_cmd rvc;
56d36be4
DM
7663
7664 memset(&c, 0, sizeof(c));
f796564a 7665 memset(&rvc, 0, sizeof(rvc));
56d36be4
DM
7666
7667 for_each_port(adap, i) {
7668 unsigned int rss_size;
7669 struct port_info *p = adap2pinfo(adap, i);
7670
7671 while ((adap->params.portvec & (1 << j)) == 0)
7672 j++;
7673
f404f80c
HS
7674 c.op_to_portid = cpu_to_be32(FW_CMD_OP_V(FW_PORT_CMD) |
7675 FW_CMD_REQUEST_F | FW_CMD_READ_F |
7676 FW_PORT_CMD_PORTID_V(j));
7677 c.action_to_len16 = cpu_to_be32(
2b5fb1f2 7678 FW_PORT_CMD_ACTION_V(FW_PORT_ACTION_GET_PORT_INFO) |
56d36be4
DM
7679 FW_LEN16(c));
7680 ret = t4_wr_mbox(adap, mbox, &c, sizeof(c), &c);
7681 if (ret)
7682 return ret;
7683
7684 ret = t4_alloc_vi(adap, mbox, j, pf, vf, 1, addr, &rss_size);
7685 if (ret < 0)
7686 return ret;
7687
7688 p->viid = ret;
7689 p->tx_chan = j;
7690 p->lport = j;
7691 p->rss_size = rss_size;
7692 memcpy(adap->port[i]->dev_addr, addr, ETH_ALEN);
40c9f8ab 7693 adap->port[i]->dev_port = j;
56d36be4 7694
f404f80c 7695 ret = be32_to_cpu(c.u.info.lstatus_to_modtype);
2b5fb1f2
HS
7696 p->mdio_addr = (ret & FW_PORT_CMD_MDIOCAP_F) ?
7697 FW_PORT_CMD_MDIOADDR_G(ret) : -1;
7698 p->port_type = FW_PORT_CMD_PTYPE_G(ret);
a0881cab 7699 p->mod_type = FW_PORT_MOD_TYPE_NA;
56d36be4 7700
f404f80c
HS
7701 rvc.op_to_viid =
7702 cpu_to_be32(FW_CMD_OP_V(FW_RSS_VI_CONFIG_CMD) |
7703 FW_CMD_REQUEST_F | FW_CMD_READ_F |
7704 FW_RSS_VI_CONFIG_CMD_VIID(p->viid));
7705 rvc.retval_len16 = cpu_to_be32(FW_LEN16(rvc));
f796564a
DM
7706 ret = t4_wr_mbox(adap, mbox, &rvc, sizeof(rvc), &rvc);
7707 if (ret)
7708 return ret;
f404f80c 7709 p->rss_mode = be32_to_cpu(rvc.u.basicvirtual.defaultq_to_udpen);
f796564a 7710
f404f80c 7711 init_link_config(&p->link_cfg, be16_to_cpu(c.u.info.pcap));
56d36be4
DM
7712 j++;
7713 }
7714 return 0;
7715}
f1ff24aa 7716
74b3092c
HS
7717/**
7718 * t4_read_cimq_cfg - read CIM queue configuration
7719 * @adap: the adapter
7720 * @base: holds the queue base addresses in bytes
7721 * @size: holds the queue sizes in bytes
7722 * @thres: holds the queue full thresholds in bytes
7723 *
7724 * Returns the current configuration of the CIM queues, starting with
7725 * the IBQs, then the OBQs.
7726 */
7727void t4_read_cimq_cfg(struct adapter *adap, u16 *base, u16 *size, u16 *thres)
7728{
7729 unsigned int i, v;
7730 int cim_num_obq = is_t4(adap->params.chip) ?
7731 CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
7732
7733 for (i = 0; i < CIM_NUM_IBQ; i++) {
7734 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, IBQSELECT_F |
7735 QUENUMSELECT_V(i));
7736 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
7737 /* value is in 256-byte units */
7738 *base++ = CIMQBASE_G(v) * 256;
7739 *size++ = CIMQSIZE_G(v) * 256;
7740 *thres++ = QUEFULLTHRSH_G(v) * 8; /* 8-byte unit */
7741 }
7742 for (i = 0; i < cim_num_obq; i++) {
7743 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
7744 QUENUMSELECT_V(i));
7745 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
7746 /* value is in 256-byte units */
7747 *base++ = CIMQBASE_G(v) * 256;
7748 *size++ = CIMQSIZE_G(v) * 256;
7749 }
7750}
7751
e5f0e43b
HS
7752/**
7753 * t4_read_cim_ibq - read the contents of a CIM inbound queue
7754 * @adap: the adapter
7755 * @qid: the queue index
7756 * @data: where to store the queue contents
7757 * @n: capacity of @data in 32-bit words
7758 *
7759 * Reads the contents of the selected CIM queue starting at address 0 up
7760 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on
7761 * error and the number of 32-bit words actually read on success.
7762 */
7763int t4_read_cim_ibq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
7764{
7765 int i, err, attempts;
7766 unsigned int addr;
7767 const unsigned int nwords = CIM_IBQ_SIZE * 4;
7768
7769 if (qid > 5 || (n & 3))
7770 return -EINVAL;
7771
7772 addr = qid * nwords;
7773 if (n > nwords)
7774 n = nwords;
7775
7776 /* It might take 3-10ms before the IBQ debug read access is allowed.
7777 * Wait for 1 Sec with a delay of 1 usec.
7778 */
7779 attempts = 1000000;
7780
7781 for (i = 0; i < n; i++, addr++) {
7782 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, IBQDBGADDR_V(addr) |
7783 IBQDBGEN_F);
7784 err = t4_wait_op_done(adap, CIM_IBQ_DBG_CFG_A, IBQDBGBUSY_F, 0,
7785 attempts, 1);
7786 if (err)
7787 return err;
7788 *data++ = t4_read_reg(adap, CIM_IBQ_DBG_DATA_A);
7789 }
7790 t4_write_reg(adap, CIM_IBQ_DBG_CFG_A, 0);
c778af7d
HS
7791 return i;
7792}
7793
7794/**
7795 * t4_read_cim_obq - read the contents of a CIM outbound queue
7796 * @adap: the adapter
7797 * @qid: the queue index
7798 * @data: where to store the queue contents
7799 * @n: capacity of @data in 32-bit words
7800 *
7801 * Reads the contents of the selected CIM queue starting at address 0 up
7802 * to the capacity of @data. @n must be a multiple of 4. Returns < 0 on
7803 * error and the number of 32-bit words actually read on success.
7804 */
7805int t4_read_cim_obq(struct adapter *adap, unsigned int qid, u32 *data, size_t n)
7806{
7807 int i, err;
7808 unsigned int addr, v, nwords;
7809 int cim_num_obq = is_t4(adap->params.chip) ?
7810 CIM_NUM_OBQ : CIM_NUM_OBQ_T5;
7811
7812 if ((qid > (cim_num_obq - 1)) || (n & 3))
7813 return -EINVAL;
7814
7815 t4_write_reg(adap, CIM_QUEUE_CONFIG_REF_A, OBQSELECT_F |
7816 QUENUMSELECT_V(qid));
7817 v = t4_read_reg(adap, CIM_QUEUE_CONFIG_CTRL_A);
7818
7819 addr = CIMQBASE_G(v) * 64; /* muliple of 256 -> muliple of 4 */
7820 nwords = CIMQSIZE_G(v) * 64; /* same */
7821 if (n > nwords)
7822 n = nwords;
7823
7824 for (i = 0; i < n; i++, addr++) {
7825 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, OBQDBGADDR_V(addr) |
7826 OBQDBGEN_F);
7827 err = t4_wait_op_done(adap, CIM_OBQ_DBG_CFG_A, OBQDBGBUSY_F, 0,
7828 2, 1);
7829 if (err)
7830 return err;
7831 *data++ = t4_read_reg(adap, CIM_OBQ_DBG_DATA_A);
7832 }
7833 t4_write_reg(adap, CIM_OBQ_DBG_CFG_A, 0);
e5f0e43b
HS
7834 return i;
7835}
7836
f1ff24aa
HS
7837/**
7838 * t4_cim_read - read a block from CIM internal address space
7839 * @adap: the adapter
7840 * @addr: the start address within the CIM address space
7841 * @n: number of words to read
7842 * @valp: where to store the result
7843 *
7844 * Reads a block of 4-byte words from the CIM intenal address space.
7845 */
7846int t4_cim_read(struct adapter *adap, unsigned int addr, unsigned int n,
7847 unsigned int *valp)
7848{
7849 int ret = 0;
7850
7851 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
7852 return -EBUSY;
7853
7854 for ( ; !ret && n--; addr += 4) {
7855 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr);
7856 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
7857 0, 5, 2);
7858 if (!ret)
7859 *valp++ = t4_read_reg(adap, CIM_HOST_ACC_DATA_A);
7860 }
7861 return ret;
7862}
7863
7864/**
7865 * t4_cim_write - write a block into CIM internal address space
7866 * @adap: the adapter
7867 * @addr: the start address within the CIM address space
7868 * @n: number of words to write
7869 * @valp: set of values to write
7870 *
7871 * Writes a block of 4-byte words into the CIM intenal address space.
7872 */
7873int t4_cim_write(struct adapter *adap, unsigned int addr, unsigned int n,
7874 const unsigned int *valp)
7875{
7876 int ret = 0;
7877
7878 if (t4_read_reg(adap, CIM_HOST_ACC_CTRL_A) & HOSTBUSY_F)
7879 return -EBUSY;
7880
7881 for ( ; !ret && n--; addr += 4) {
7882 t4_write_reg(adap, CIM_HOST_ACC_DATA_A, *valp++);
7883 t4_write_reg(adap, CIM_HOST_ACC_CTRL_A, addr | HOSTWRITE_F);
7884 ret = t4_wait_op_done(adap, CIM_HOST_ACC_CTRL_A, HOSTBUSY_F,
7885 0, 5, 2);
7886 }
7887 return ret;
7888}
7889
7890static int t4_cim_write1(struct adapter *adap, unsigned int addr,
7891 unsigned int val)
7892{
7893 return t4_cim_write(adap, addr, 1, &val);
7894}
7895
7896/**
7897 * t4_cim_read_la - read CIM LA capture buffer
7898 * @adap: the adapter
7899 * @la_buf: where to store the LA data
7900 * @wrptr: the HW write pointer within the capture buffer
7901 *
7902 * Reads the contents of the CIM LA buffer with the most recent entry at
7903 * the end of the returned data and with the entry at @wrptr first.
7904 * We try to leave the LA in the running state we find it in.
7905 */
7906int t4_cim_read_la(struct adapter *adap, u32 *la_buf, unsigned int *wrptr)
7907{
7908 int i, ret;
7909 unsigned int cfg, val, idx;
7910
7911 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &cfg);
7912 if (ret)
7913 return ret;
7914
7915 if (cfg & UPDBGLAEN_F) { /* LA is running, freeze it */
7916 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A, 0);
7917 if (ret)
7918 return ret;
7919 }
7920
7921 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
7922 if (ret)
7923 goto restart;
7924
7925 idx = UPDBGLAWRPTR_G(val);
7926 if (wrptr)
7927 *wrptr = idx;
7928
7929 for (i = 0; i < adap->params.cim_la_size; i++) {
7930 ret = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
7931 UPDBGLARDPTR_V(idx) | UPDBGLARDEN_F);
7932 if (ret)
7933 break;
7934 ret = t4_cim_read(adap, UP_UP_DBG_LA_CFG_A, 1, &val);
7935 if (ret)
7936 break;
7937 if (val & UPDBGLARDEN_F) {
7938 ret = -ETIMEDOUT;
7939 break;
7940 }
7941 ret = t4_cim_read(adap, UP_UP_DBG_LA_DATA_A, 1, &la_buf[i]);
7942 if (ret)
7943 break;
7944 idx = (idx + 1) & UPDBGLARDPTR_M;
7945 }
7946restart:
7947 if (cfg & UPDBGLAEN_F) {
7948 int r = t4_cim_write1(adap, UP_UP_DBG_LA_CFG_A,
7949 cfg & ~UPDBGLARDEN_F);
7950 if (!ret)
7951 ret = r;
7952 }
7953 return ret;
7954}
2d277b3b
HS
7955
7956/**
7957 * t4_tp_read_la - read TP LA capture buffer
7958 * @adap: the adapter
7959 * @la_buf: where to store the LA data
7960 * @wrptr: the HW write pointer within the capture buffer
7961 *
7962 * Reads the contents of the TP LA buffer with the most recent entry at
7963 * the end of the returned data and with the entry at @wrptr first.
7964 * We leave the LA in the running state we find it in.
7965 */
7966void t4_tp_read_la(struct adapter *adap, u64 *la_buf, unsigned int *wrptr)
7967{
7968 bool last_incomplete;
7969 unsigned int i, cfg, val, idx;
7970
7971 cfg = t4_read_reg(adap, TP_DBG_LA_CONFIG_A) & 0xffff;
7972 if (cfg & DBGLAENABLE_F) /* freeze LA */
7973 t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
7974 adap->params.tp.la_mask | (cfg ^ DBGLAENABLE_F));
7975
7976 val = t4_read_reg(adap, TP_DBG_LA_CONFIG_A);
7977 idx = DBGLAWPTR_G(val);
7978 last_incomplete = DBGLAMODE_G(val) >= 2 && (val & DBGLAWHLF_F) == 0;
7979 if (last_incomplete)
7980 idx = (idx + 1) & DBGLARPTR_M;
7981 if (wrptr)
7982 *wrptr = idx;
7983
7984 val &= 0xffff;
7985 val &= ~DBGLARPTR_V(DBGLARPTR_M);
7986 val |= adap->params.tp.la_mask;
7987
7988 for (i = 0; i < TPLA_SIZE; i++) {
7989 t4_write_reg(adap, TP_DBG_LA_CONFIG_A, DBGLARPTR_V(idx) | val);
7990 la_buf[i] = t4_read_reg64(adap, TP_DBG_LA_DATAL_A);
7991 idx = (idx + 1) & DBGLARPTR_M;
7992 }
7993
7994 /* Wipe out last entry if it isn't valid */
7995 if (last_incomplete)
7996 la_buf[TPLA_SIZE - 1] = ~0ULL;
7997
7998 if (cfg & DBGLAENABLE_F) /* restore running state */
7999 t4_write_reg(adap, TP_DBG_LA_CONFIG_A,
8000 cfg | adap->params.tp.la_mask);
8001}
a3bfb617
HS
8002
8003/* SGE Hung Ingress DMA Warning Threshold time and Warning Repeat Rate (in
8004 * seconds). If we find one of the SGE Ingress DMA State Machines in the same
8005 * state for more than the Warning Threshold then we'll issue a warning about
8006 * a potential hang. We'll repeat the warning as the SGE Ingress DMA Channel
8007 * appears to be hung every Warning Repeat second till the situation clears.
8008 * If the situation clears, we'll note that as well.
8009 */
8010#define SGE_IDMA_WARN_THRESH 1
8011#define SGE_IDMA_WARN_REPEAT 300
8012
8013/**
8014 * t4_idma_monitor_init - initialize SGE Ingress DMA Monitor
8015 * @adapter: the adapter
8016 * @idma: the adapter IDMA Monitor state
8017 *
8018 * Initialize the state of an SGE Ingress DMA Monitor.
8019 */
8020void t4_idma_monitor_init(struct adapter *adapter,
8021 struct sge_idma_monitor_state *idma)
8022{
8023 /* Initialize the state variables for detecting an SGE Ingress DMA
8024 * hang. The SGE has internal counters which count up on each clock
8025 * tick whenever the SGE finds its Ingress DMA State Engines in the
8026 * same state they were on the previous clock tick. The clock used is
8027 * the Core Clock so we have a limit on the maximum "time" they can
8028 * record; typically a very small number of seconds. For instance,
8029 * with a 600MHz Core Clock, we can only count up to a bit more than
8030 * 7s. So we'll synthesize a larger counter in order to not run the
8031 * risk of having the "timers" overflow and give us the flexibility to
8032 * maintain a Hung SGE State Machine of our own which operates across
8033 * a longer time frame.
8034 */
8035 idma->idma_1s_thresh = core_ticks_per_usec(adapter) * 1000000; /* 1s */
8036 idma->idma_stalled[0] = 0;
8037 idma->idma_stalled[1] = 0;
8038}
8039
8040/**
8041 * t4_idma_monitor - monitor SGE Ingress DMA state
8042 * @adapter: the adapter
8043 * @idma: the adapter IDMA Monitor state
8044 * @hz: number of ticks/second
8045 * @ticks: number of ticks since the last IDMA Monitor call
8046 */
8047void t4_idma_monitor(struct adapter *adapter,
8048 struct sge_idma_monitor_state *idma,
8049 int hz, int ticks)
8050{
8051 int i, idma_same_state_cnt[2];
8052
8053 /* Read the SGE Debug Ingress DMA Same State Count registers. These
8054 * are counters inside the SGE which count up on each clock when the
8055 * SGE finds its Ingress DMA State Engines in the same states they
8056 * were in the previous clock. The counters will peg out at
8057 * 0xffffffff without wrapping around so once they pass the 1s
8058 * threshold they'll stay above that till the IDMA state changes.
8059 */
8060 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 13);
8061 idma_same_state_cnt[0] = t4_read_reg(adapter, SGE_DEBUG_DATA_HIGH_A);
8062 idma_same_state_cnt[1] = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
8063
8064 for (i = 0; i < 2; i++) {
8065 u32 debug0, debug11;
8066
8067 /* If the Ingress DMA Same State Counter ("timer") is less
8068 * than 1s, then we can reset our synthesized Stall Timer and
8069 * continue. If we have previously emitted warnings about a
8070 * potential stalled Ingress Queue, issue a note indicating
8071 * that the Ingress Queue has resumed forward progress.
8072 */
8073 if (idma_same_state_cnt[i] < idma->idma_1s_thresh) {
8074 if (idma->idma_stalled[i] >= SGE_IDMA_WARN_THRESH * hz)
8075 dev_warn(adapter->pdev_dev, "SGE idma%d, queue %u, "
8076 "resumed after %d seconds\n",
8077 i, idma->idma_qid[i],
8078 idma->idma_stalled[i] / hz);
8079 idma->idma_stalled[i] = 0;
8080 continue;
8081 }
8082
8083 /* Synthesize an SGE Ingress DMA Same State Timer in the Hz
8084 * domain. The first time we get here it'll be because we
8085 * passed the 1s Threshold; each additional time it'll be
8086 * because the RX Timer Callback is being fired on its regular
8087 * schedule.
8088 *
8089 * If the stall is below our Potential Hung Ingress Queue
8090 * Warning Threshold, continue.
8091 */
8092 if (idma->idma_stalled[i] == 0) {
8093 idma->idma_stalled[i] = hz;
8094 idma->idma_warn[i] = 0;
8095 } else {
8096 idma->idma_stalled[i] += ticks;
8097 idma->idma_warn[i] -= ticks;
8098 }
8099
8100 if (idma->idma_stalled[i] < SGE_IDMA_WARN_THRESH * hz)
8101 continue;
8102
8103 /* We'll issue a warning every SGE_IDMA_WARN_REPEAT seconds.
8104 */
8105 if (idma->idma_warn[i] > 0)
8106 continue;
8107 idma->idma_warn[i] = SGE_IDMA_WARN_REPEAT * hz;
8108
8109 /* Read and save the SGE IDMA State and Queue ID information.
8110 * We do this every time in case it changes across time ...
8111 * can't be too careful ...
8112 */
8113 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 0);
8114 debug0 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
8115 idma->idma_state[i] = (debug0 >> (i * 9)) & 0x3f;
8116
8117 t4_write_reg(adapter, SGE_DEBUG_INDEX_A, 11);
8118 debug11 = t4_read_reg(adapter, SGE_DEBUG_DATA_LOW_A);
8119 idma->idma_qid[i] = (debug11 >> (i * 16)) & 0xffff;
8120
8121 dev_warn(adapter->pdev_dev, "SGE idma%u, queue %u, potentially stuck in "
8122 "state %u for %d seconds (debug0=%#x, debug11=%#x)\n",
8123 i, idma->idma_qid[i], idma->idma_state[i],
8124 idma->idma_stalled[i] / hz,
8125 debug0, debug11);
8126 t4_sge_decode_idma_state(adapter, idma->idma_state[i]);
8127 }
8128}