chelsio: NAPI speed improvement
[linux-2.6-block.git] / drivers / net / chelsio / sge.c
CommitLineData
8199d3a7
CL
1/*****************************************************************************
2 * *
3 * File: sge.c *
559fb51b
SB
4 * $Revision: 1.26 $ *
5 * $Date: 2005/06/21 18:29:48 $ *
8199d3a7
CL
6 * Description: *
7 * DMA engine. *
8 * part of the Chelsio 10Gb Ethernet Driver. *
9 * *
10 * This program is free software; you can redistribute it and/or modify *
11 * it under the terms of the GNU General Public License, version 2, as *
12 * published by the Free Software Foundation. *
13 * *
14 * You should have received a copy of the GNU General Public License along *
15 * with this program; if not, write to the Free Software Foundation, Inc., *
16 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
17 * *
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED *
19 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF *
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. *
21 * *
22 * http://www.chelsio.com *
23 * *
24 * Copyright (c) 2003 - 2005 Chelsio Communications, Inc. *
25 * All rights reserved. *
26 * *
27 * Maintainers: maintainers@chelsio.com *
28 * *
29 * Authors: Dimitrios Michailidis <dm@chelsio.com> *
30 * Tina Yang <tainay@chelsio.com> *
31 * Felix Marti <felix@chelsio.com> *
32 * Scott Bardone <sbardone@chelsio.com> *
33 * Kurt Ottaway <kottaway@chelsio.com> *
34 * Frank DiMambro <frank@chelsio.com> *
35 * *
36 * History: *
37 * *
38 ****************************************************************************/
39
40#include "common.h"
41
8199d3a7
CL
42#include <linux/types.h>
43#include <linux/errno.h>
44#include <linux/pci.h>
f1d3d38a 45#include <linux/ktime.h>
8199d3a7
CL
46#include <linux/netdevice.h>
47#include <linux/etherdevice.h>
48#include <linux/if_vlan.h>
49#include <linux/skbuff.h>
50#include <linux/init.h>
51#include <linux/mm.h>
f1d3d38a 52#include <linux/tcp.h>
8199d3a7
CL
53#include <linux/ip.h>
54#include <linux/in.h>
55#include <linux/if_arp.h>
56
57#include "cpl5_cmd.h"
58#include "sge.h"
59#include "regs.h"
60#include "espi.h"
61
f1d3d38a
SH
62/* This belongs in if_ether.h */
63#define ETH_P_CPL5 0xf
8199d3a7
CL
64
65#define SGE_CMDQ_N 2
66#define SGE_FREELQ_N 2
559fb51b 67#define SGE_CMDQ0_E_N 1024
8199d3a7
CL
68#define SGE_CMDQ1_E_N 128
69#define SGE_FREEL_SIZE 4096
70#define SGE_JUMBO_FREEL_SIZE 512
71#define SGE_FREEL_REFILL_THRESH 16
72#define SGE_RESPQ_E_N 1024
559fb51b
SB
73#define SGE_INTRTIMER_NRES 1000
74#define SGE_RX_COPY_THRES 256
8199d3a7 75#define SGE_RX_SM_BUF_SIZE 1536
f1d3d38a 76#define SGE_TX_DESC_MAX_PLEN 16384
8199d3a7 77
559fb51b
SB
78# define SGE_RX_DROP_THRES 2
79
80#define SGE_RESPQ_REPLENISH_THRES (SGE_RESPQ_E_N / 4)
81
82/*
83 * Period of the TX buffer reclaim timer. This timer does not need to run
84 * frequently as TX buffers are usually reclaimed by new TX packets.
85 */
86#define TX_RECLAIM_PERIOD (HZ / 4)
8199d3a7 87
559fb51b
SB
88#define M_CMD_LEN 0x7fffffff
89#define V_CMD_LEN(v) (v)
90#define G_CMD_LEN(v) ((v) & M_CMD_LEN)
91#define V_CMD_GEN1(v) ((v) << 31)
92#define V_CMD_GEN2(v) (v)
93#define F_CMD_DATAVALID (1 << 1)
94#define F_CMD_SOP (1 << 2)
95#define V_CMD_EOP(v) ((v) << 3)
96
8199d3a7 97/*
559fb51b 98 * Command queue, receive buffer list, and response queue descriptors.
8199d3a7
CL
99 */
100#if defined(__BIG_ENDIAN_BITFIELD)
101struct cmdQ_e {
559fb51b
SB
102 u32 addr_lo;
103 u32 len_gen;
104 u32 flags;
105 u32 addr_hi;
8199d3a7
CL
106};
107
108struct freelQ_e {
559fb51b
SB
109 u32 addr_lo;
110 u32 len_gen;
111 u32 gen2;
112 u32 addr_hi;
8199d3a7
CL
113};
114
115struct respQ_e {
116 u32 Qsleeping : 4;
117 u32 Cmdq1CreditReturn : 5;
118 u32 Cmdq1DmaComplete : 5;
119 u32 Cmdq0CreditReturn : 5;
120 u32 Cmdq0DmaComplete : 5;
121 u32 FreelistQid : 2;
122 u32 CreditValid : 1;
123 u32 DataValid : 1;
124 u32 Offload : 1;
125 u32 Eop : 1;
126 u32 Sop : 1;
127 u32 GenerationBit : 1;
128 u32 BufferLength;
129};
8199d3a7
CL
130#elif defined(__LITTLE_ENDIAN_BITFIELD)
131struct cmdQ_e {
559fb51b
SB
132 u32 len_gen;
133 u32 addr_lo;
134 u32 addr_hi;
135 u32 flags;
8199d3a7
CL
136};
137
138struct freelQ_e {
559fb51b
SB
139 u32 len_gen;
140 u32 addr_lo;
141 u32 addr_hi;
142 u32 gen2;
8199d3a7
CL
143};
144
145struct respQ_e {
146 u32 BufferLength;
147 u32 GenerationBit : 1;
148 u32 Sop : 1;
149 u32 Eop : 1;
150 u32 Offload : 1;
151 u32 DataValid : 1;
152 u32 CreditValid : 1;
153 u32 FreelistQid : 2;
154 u32 Cmdq0DmaComplete : 5;
155 u32 Cmdq0CreditReturn : 5;
156 u32 Cmdq1DmaComplete : 5;
157 u32 Cmdq1CreditReturn : 5;
158 u32 Qsleeping : 4;
159} ;
160#endif
161
162/*
163 * SW Context Command and Freelist Queue Descriptors
164 */
165struct cmdQ_ce {
166 struct sk_buff *skb;
167 DECLARE_PCI_UNMAP_ADDR(dma_addr);
168 DECLARE_PCI_UNMAP_LEN(dma_len);
8199d3a7
CL
169};
170
171struct freelQ_ce {
172 struct sk_buff *skb;
173 DECLARE_PCI_UNMAP_ADDR(dma_addr);
174 DECLARE_PCI_UNMAP_LEN(dma_len);
175};
176
177/*
559fb51b 178 * SW command, freelist and response rings
8199d3a7
CL
179 */
180struct cmdQ {
559fb51b
SB
181 unsigned long status; /* HW DMA fetch status */
182 unsigned int in_use; /* # of in-use command descriptors */
183 unsigned int size; /* # of descriptors */
f1d3d38a
SH
184 unsigned int processed; /* total # of descs HW has processed */
185 unsigned int cleaned; /* total # of descs SW has reclaimed */
186 unsigned int stop_thres; /* SW TX queue suspend threshold */
559fb51b
SB
187 u16 pidx; /* producer index (SW) */
188 u16 cidx; /* consumer index (HW) */
189 u8 genbit; /* current generation (=valid) bit */
f1d3d38a 190 u8 sop; /* is next entry start of packet? */
559fb51b
SB
191 struct cmdQ_e *entries; /* HW command descriptor Q */
192 struct cmdQ_ce *centries; /* SW command context descriptor Q */
559fb51b 193 dma_addr_t dma_addr; /* DMA addr HW command descriptor Q */
356bd146 194 spinlock_t lock; /* Lock to protect cmdQ enqueuing */
8199d3a7
CL
195};
196
197struct freelQ {
559fb51b
SB
198 unsigned int credits; /* # of available RX buffers */
199 unsigned int size; /* free list capacity */
200 u16 pidx; /* producer index (SW) */
201 u16 cidx; /* consumer index (HW) */
8199d3a7 202 u16 rx_buffer_size; /* Buffer size on this free list */
f1d3d38a
SH
203 u16 dma_offset; /* DMA offset to align IP headers */
204 u16 recycleq_idx; /* skb recycle q to use */
559fb51b
SB
205 u8 genbit; /* current generation (=valid) bit */
206 struct freelQ_e *entries; /* HW freelist descriptor Q */
207 struct freelQ_ce *centries; /* SW freelist context descriptor Q */
208 dma_addr_t dma_addr; /* DMA addr HW freelist descriptor Q */
8199d3a7
CL
209};
210
211struct respQ {
559fb51b
SB
212 unsigned int credits; /* credits to be returned to SGE */
213 unsigned int size; /* # of response Q descriptors */
214 u16 cidx; /* consumer index (SW) */
215 u8 genbit; /* current generation(=valid) bit */
8199d3a7 216 struct respQ_e *entries; /* HW response descriptor Q */
559fb51b
SB
217 dma_addr_t dma_addr; /* DMA addr HW response descriptor Q */
218};
219
220/* Bit flags for cmdQ.status */
221enum {
222 CMDQ_STAT_RUNNING = 1, /* fetch engine is running */
223 CMDQ_STAT_LAST_PKT_DB = 2 /* last packet rung the doorbell */
8199d3a7
CL
224};
225
f1d3d38a
SH
226/* T204 TX SW scheduler */
227
228/* Per T204 TX port */
229struct sched_port {
230 unsigned int avail; /* available bits - quota */
231 unsigned int drain_bits_per_1024ns; /* drain rate */
232 unsigned int speed; /* drain rate, mbps */
233 unsigned int mtu; /* mtu size */
234 struct sk_buff_head skbq; /* pending skbs */
235};
236
237/* Per T204 device */
238struct sched {
239 ktime_t last_updated; /* last time quotas were computed */
356bd146
FR
240 unsigned int max_avail; /* max bits to be sent to any port */
241 unsigned int port; /* port index (round robin ports) */
242 unsigned int num; /* num skbs in per port queues */
f1d3d38a
SH
243 struct sched_port p[MAX_NPORTS];
244 struct tasklet_struct sched_tsk;/* tasklet used to run scheduler */
245};
246static void restart_sched(unsigned long);
247
248
8199d3a7
CL
249/*
250 * Main SGE data structure
251 *
252 * Interrupts are handled by a single CPU and it is likely that on a MP system
253 * the application is migrated to another CPU. In that scenario, we try to
254 * seperate the RX(in irq context) and TX state in order to decrease memory
255 * contention.
256 */
257struct sge {
356bd146 258 struct adapter *adapter; /* adapter backpointer */
559fb51b 259 struct net_device *netdev; /* netdevice backpointer */
356bd146
FR
260 struct freelQ freelQ[SGE_FREELQ_N]; /* buffer free lists */
261 struct respQ respQ; /* response Q */
559fb51b 262 unsigned long stopped_tx_queues; /* bitmap of suspended Tx queues */
8199d3a7
CL
263 unsigned int rx_pkt_pad; /* RX padding for L2 packets */
264 unsigned int jumbo_fl; /* jumbo freelist Q index */
559fb51b 265 unsigned int intrtimer_nres; /* no-resource interrupt timer */
f1d3d38a 266 unsigned int fixed_intrtimer;/* non-adaptive interrupt timer */
559fb51b
SB
267 struct timer_list tx_reclaim_timer; /* reclaims TX buffers */
268 struct timer_list espibug_timer;
f1d3d38a
SH
269 unsigned long espibug_timeout;
270 struct sk_buff *espibug_skb[MAX_NPORTS];
559fb51b
SB
271 u32 sge_control; /* shadow value of sge control reg */
272 struct sge_intr_counts stats;
56f643c2 273 struct sge_port_stats *port_stats[MAX_NPORTS];
f1d3d38a 274 struct sched *tx_sched;
559fb51b 275 struct cmdQ cmdQ[SGE_CMDQ_N] ____cacheline_aligned_in_smp;
8199d3a7
CL
276};
277
f1d3d38a
SH
278/*
279 * stop tasklet and free all pending skb's
280 */
281static void tx_sched_stop(struct sge *sge)
282{
283 struct sched *s = sge->tx_sched;
284 int i;
285
286 tasklet_kill(&s->sched_tsk);
287
288 for (i = 0; i < MAX_NPORTS; i++)
289 __skb_queue_purge(&s->p[s->port].skbq);
290}
291
292/*
293 * t1_sched_update_parms() is called when the MTU or link speed changes. It
294 * re-computes scheduler parameters to scope with the change.
295 */
296unsigned int t1_sched_update_parms(struct sge *sge, unsigned int port,
297 unsigned int mtu, unsigned int speed)
298{
299 struct sched *s = sge->tx_sched;
300 struct sched_port *p = &s->p[port];
301 unsigned int max_avail_segs;
302
303 pr_debug("t1_sched_update_params mtu=%d speed=%d\n", mtu, speed);
304 if (speed)
305 p->speed = speed;
306 if (mtu)
307 p->mtu = mtu;
308
309 if (speed || mtu) {
310 unsigned long long drain = 1024ULL * p->speed * (p->mtu - 40);
311 do_div(drain, (p->mtu + 50) * 1000);
312 p->drain_bits_per_1024ns = (unsigned int) drain;
313
314 if (p->speed < 1000)
315 p->drain_bits_per_1024ns =
316 90 * p->drain_bits_per_1024ns / 100;
317 }
318
319 if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204) {
320 p->drain_bits_per_1024ns -= 16;
321 s->max_avail = max(4096U, p->mtu + 16 + 14 + 4);
322 max_avail_segs = max(1U, 4096 / (p->mtu - 40));
323 } else {
324 s->max_avail = 16384;
325 max_avail_segs = max(1U, 9000 / (p->mtu - 40));
326 }
327
328 pr_debug("t1_sched_update_parms: mtu %u speed %u max_avail %u "
329 "max_avail_segs %u drain_bits_per_1024ns %u\n", p->mtu,
330 p->speed, s->max_avail, max_avail_segs,
331 p->drain_bits_per_1024ns);
332
333 return max_avail_segs * (p->mtu - 40);
334}
335
336/*
337 * t1_sched_max_avail_bytes() tells the scheduler the maximum amount of
338 * data that can be pushed per port.
339 */
340void t1_sched_set_max_avail_bytes(struct sge *sge, unsigned int val)
341{
342 struct sched *s = sge->tx_sched;
343 unsigned int i;
344
345 s->max_avail = val;
346 for (i = 0; i < MAX_NPORTS; i++)
347 t1_sched_update_parms(sge, i, 0, 0);
348}
349
350/*
351 * t1_sched_set_drain_bits_per_us() tells the scheduler at which rate a port
352 * is draining.
353 */
354void t1_sched_set_drain_bits_per_us(struct sge *sge, unsigned int port,
355 unsigned int val)
356{
357 struct sched *s = sge->tx_sched;
358 struct sched_port *p = &s->p[port];
359 p->drain_bits_per_1024ns = val * 1024 / 1000;
360 t1_sched_update_parms(sge, port, 0, 0);
361}
362
363
364/*
365 * get_clock() implements a ns clock (see ktime_get)
366 */
367static inline ktime_t get_clock(void)
368{
369 struct timespec ts;
370
371 ktime_get_ts(&ts);
372 return timespec_to_ktime(ts);
373}
374
375/*
376 * tx_sched_init() allocates resources and does basic initialization.
377 */
378static int tx_sched_init(struct sge *sge)
379{
380 struct sched *s;
381 int i;
382
383 s = kzalloc(sizeof (struct sched), GFP_KERNEL);
384 if (!s)
385 return -ENOMEM;
386
387 pr_debug("tx_sched_init\n");
388 tasklet_init(&s->sched_tsk, restart_sched, (unsigned long) sge);
389 sge->tx_sched = s;
390
391 for (i = 0; i < MAX_NPORTS; i++) {
392 skb_queue_head_init(&s->p[i].skbq);
393 t1_sched_update_parms(sge, i, 1500, 1000);
394 }
395
396 return 0;
397}
398
399/*
400 * sched_update_avail() computes the delta since the last time it was called
401 * and updates the per port quota (number of bits that can be sent to the any
402 * port).
403 */
404static inline int sched_update_avail(struct sge *sge)
405{
406 struct sched *s = sge->tx_sched;
407 ktime_t now = get_clock();
408 unsigned int i;
409 long long delta_time_ns;
410
411 delta_time_ns = ktime_to_ns(ktime_sub(now, s->last_updated));
412
413 pr_debug("sched_update_avail delta=%lld\n", delta_time_ns);
414 if (delta_time_ns < 15000)
415 return 0;
416
417 for (i = 0; i < MAX_NPORTS; i++) {
418 struct sched_port *p = &s->p[i];
419 unsigned int delta_avail;
420
421 delta_avail = (p->drain_bits_per_1024ns * delta_time_ns) >> 13;
422 p->avail = min(p->avail + delta_avail, s->max_avail);
423 }
424
425 s->last_updated = now;
426
427 return 1;
428}
429
430/*
431 * sched_skb() is called from two different places. In the tx path, any
432 * packet generating load on an output port will call sched_skb()
433 * (skb != NULL). In addition, sched_skb() is called from the irq/soft irq
434 * context (skb == NULL).
435 * The scheduler only returns a skb (which will then be sent) if the
436 * length of the skb is <= the current quota of the output port.
437 */
438static struct sk_buff *sched_skb(struct sge *sge, struct sk_buff *skb,
439 unsigned int credits)
440{
441 struct sched *s = sge->tx_sched;
442 struct sk_buff_head *skbq;
443 unsigned int i, len, update = 1;
444
445 pr_debug("sched_skb %p\n", skb);
446 if (!skb) {
447 if (!s->num)
448 return NULL;
449 } else {
450 skbq = &s->p[skb->dev->if_port].skbq;
451 __skb_queue_tail(skbq, skb);
452 s->num++;
453 skb = NULL;
454 }
455
456 if (credits < MAX_SKB_FRAGS + 1)
457 goto out;
458
356bd146 459again:
f1d3d38a
SH
460 for (i = 0; i < MAX_NPORTS; i++) {
461 s->port = ++s->port & (MAX_NPORTS - 1);
462 skbq = &s->p[s->port].skbq;
463
464 skb = skb_peek(skbq);
465
466 if (!skb)
467 continue;
468
469 len = skb->len;
470 if (len <= s->p[s->port].avail) {
471 s->p[s->port].avail -= len;
472 s->num--;
473 __skb_unlink(skb, skbq);
474 goto out;
475 }
476 skb = NULL;
477 }
478
479 if (update-- && sched_update_avail(sge))
480 goto again;
481
356bd146
FR
482out:
483 /* If there are more pending skbs, we use the hardware to schedule us
f1d3d38a
SH
484 * again.
485 */
486 if (s->num && !skb) {
487 struct cmdQ *q = &sge->cmdQ[0];
488 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
489 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
490 set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
491 writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
492 }
493 }
494 pr_debug("sched_skb ret %p\n", skb);
495
496 return skb;
497}
498
8199d3a7
CL
499/*
500 * PIO to indicate that memory mapped Q contains valid descriptor(s).
501 */
559fb51b 502static inline void doorbell_pio(struct adapter *adapter, u32 val)
8199d3a7
CL
503{
504 wmb();
559fb51b 505 writel(val, adapter->regs + A_SG_DOORBELL);
8199d3a7
CL
506}
507
508/*
509 * Frees all RX buffers on the freelist Q. The caller must make sure that
510 * the SGE is turned off before calling this function.
511 */
559fb51b 512static void free_freelQ_buffers(struct pci_dev *pdev, struct freelQ *q)
8199d3a7 513{
559fb51b 514 unsigned int cidx = q->cidx;
8199d3a7 515
559fb51b
SB
516 while (q->credits--) {
517 struct freelQ_ce *ce = &q->centries[cidx];
8199d3a7
CL
518
519 pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr),
520 pci_unmap_len(ce, dma_len),
521 PCI_DMA_FROMDEVICE);
522 dev_kfree_skb(ce->skb);
523 ce->skb = NULL;
559fb51b 524 if (++cidx == q->size)
8199d3a7
CL
525 cidx = 0;
526 }
527}
528
529/*
530 * Free RX free list and response queue resources.
531 */
532static void free_rx_resources(struct sge *sge)
533{
534 struct pci_dev *pdev = sge->adapter->pdev;
535 unsigned int size, i;
536
537 if (sge->respQ.entries) {
559fb51b 538 size = sizeof(struct respQ_e) * sge->respQ.size;
8199d3a7
CL
539 pci_free_consistent(pdev, size, sge->respQ.entries,
540 sge->respQ.dma_addr);
541 }
542
543 for (i = 0; i < SGE_FREELQ_N; i++) {
559fb51b 544 struct freelQ *q = &sge->freelQ[i];
8199d3a7 545
559fb51b
SB
546 if (q->centries) {
547 free_freelQ_buffers(pdev, q);
548 kfree(q->centries);
8199d3a7 549 }
559fb51b
SB
550 if (q->entries) {
551 size = sizeof(struct freelQ_e) * q->size;
552 pci_free_consistent(pdev, size, q->entries,
553 q->dma_addr);
8199d3a7
CL
554 }
555 }
556}
557
558/*
559 * Allocates basic RX resources, consisting of memory mapped freelist Qs and a
559fb51b 560 * response queue.
8199d3a7
CL
561 */
562static int alloc_rx_resources(struct sge *sge, struct sge_params *p)
563{
564 struct pci_dev *pdev = sge->adapter->pdev;
565 unsigned int size, i;
566
567 for (i = 0; i < SGE_FREELQ_N; i++) {
559fb51b
SB
568 struct freelQ *q = &sge->freelQ[i];
569
570 q->genbit = 1;
571 q->size = p->freelQ_size[i];
572 q->dma_offset = sge->rx_pkt_pad ? 0 : NET_IP_ALIGN;
573 size = sizeof(struct freelQ_e) * q->size;
3e0f75be 574 q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr);
559fb51b 575 if (!q->entries)
8199d3a7 576 goto err_no_mem;
3e0f75be 577
559fb51b 578 size = sizeof(struct freelQ_ce) * q->size;
cbee9f91 579 q->centries = kzalloc(size, GFP_KERNEL);
559fb51b 580 if (!q->centries)
8199d3a7
CL
581 goto err_no_mem;
582 }
583
584 /*
585 * Calculate the buffer sizes for the two free lists. FL0 accommodates
586 * regular sized Ethernet frames, FL1 is sized not to exceed 16K,
587 * including all the sk_buff overhead.
588 *
589 * Note: For T2 FL0 and FL1 are reversed.
590 */
591 sge->freelQ[!sge->jumbo_fl].rx_buffer_size = SGE_RX_SM_BUF_SIZE +
592 sizeof(struct cpl_rx_data) +
593 sge->freelQ[!sge->jumbo_fl].dma_offset;
f1d3d38a
SH
594
595 size = (16 * 1024) -
596 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
597
598 sge->freelQ[sge->jumbo_fl].rx_buffer_size = size;
8199d3a7 599
559fb51b
SB
600 /*
601 * Setup which skb recycle Q should be used when recycling buffers from
602 * each free list.
603 */
604 sge->freelQ[!sge->jumbo_fl].recycleq_idx = 0;
605 sge->freelQ[sge->jumbo_fl].recycleq_idx = 1;
606
8199d3a7 607 sge->respQ.genbit = 1;
559fb51b
SB
608 sge->respQ.size = SGE_RESPQ_E_N;
609 sge->respQ.credits = 0;
610 size = sizeof(struct respQ_e) * sge->respQ.size;
3e0f75be 611 sge->respQ.entries =
8199d3a7
CL
612 pci_alloc_consistent(pdev, size, &sge->respQ.dma_addr);
613 if (!sge->respQ.entries)
614 goto err_no_mem;
8199d3a7
CL
615 return 0;
616
617err_no_mem:
618 free_rx_resources(sge);
619 return -ENOMEM;
620}
621
622/*
559fb51b 623 * Reclaims n TX descriptors and frees the buffers associated with them.
8199d3a7 624 */
559fb51b 625static void free_cmdQ_buffers(struct sge *sge, struct cmdQ *q, unsigned int n)
8199d3a7 626{
559fb51b 627 struct cmdQ_ce *ce;
8199d3a7 628 struct pci_dev *pdev = sge->adapter->pdev;
559fb51b 629 unsigned int cidx = q->cidx;
8199d3a7 630
559fb51b
SB
631 q->in_use -= n;
632 ce = &q->centries[cidx];
633 while (n--) {
3e0f75be
FR
634 if (likely(pci_unmap_len(ce, dma_len))) {
635 pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr),
636 pci_unmap_len(ce, dma_len),
637 PCI_DMA_TODEVICE);
638 if (q->sop)
f1d3d38a 639 q->sop = 0;
f1d3d38a 640 }
559fb51b 641 if (ce->skb) {
f1d3d38a 642 dev_kfree_skb_any(ce->skb);
559fb51b
SB
643 q->sop = 1;
644 }
8199d3a7 645 ce++;
559fb51b 646 if (++cidx == q->size) {
8199d3a7 647 cidx = 0;
559fb51b 648 ce = q->centries;
8199d3a7
CL
649 }
650 }
559fb51b 651 q->cidx = cidx;
8199d3a7
CL
652}
653
654/*
655 * Free TX resources.
656 *
657 * Assumes that SGE is stopped and all interrupts are disabled.
658 */
659static void free_tx_resources(struct sge *sge)
660{
661 struct pci_dev *pdev = sge->adapter->pdev;
662 unsigned int size, i;
663
664 for (i = 0; i < SGE_CMDQ_N; i++) {
559fb51b 665 struct cmdQ *q = &sge->cmdQ[i];
8199d3a7 666
559fb51b
SB
667 if (q->centries) {
668 if (q->in_use)
669 free_cmdQ_buffers(sge, q, q->in_use);
670 kfree(q->centries);
8199d3a7 671 }
559fb51b
SB
672 if (q->entries) {
673 size = sizeof(struct cmdQ_e) * q->size;
674 pci_free_consistent(pdev, size, q->entries,
675 q->dma_addr);
8199d3a7
CL
676 }
677 }
678}
679
680/*
681 * Allocates basic TX resources, consisting of memory mapped command Qs.
682 */
683static int alloc_tx_resources(struct sge *sge, struct sge_params *p)
684{
685 struct pci_dev *pdev = sge->adapter->pdev;
686 unsigned int size, i;
687
688 for (i = 0; i < SGE_CMDQ_N; i++) {
559fb51b
SB
689 struct cmdQ *q = &sge->cmdQ[i];
690
691 q->genbit = 1;
692 q->sop = 1;
693 q->size = p->cmdQ_size[i];
694 q->in_use = 0;
695 q->status = 0;
696 q->processed = q->cleaned = 0;
697 q->stop_thres = 0;
698 spin_lock_init(&q->lock);
699 size = sizeof(struct cmdQ_e) * q->size;
3e0f75be 700 q->entries = pci_alloc_consistent(pdev, size, &q->dma_addr);
559fb51b 701 if (!q->entries)
8199d3a7 702 goto err_no_mem;
3e0f75be 703
559fb51b 704 size = sizeof(struct cmdQ_ce) * q->size;
cbee9f91 705 q->centries = kzalloc(size, GFP_KERNEL);
559fb51b 706 if (!q->centries)
8199d3a7
CL
707 goto err_no_mem;
708 }
709
559fb51b
SB
710 /*
711 * CommandQ 0 handles Ethernet and TOE packets, while queue 1 is TOE
712 * only. For queue 0 set the stop threshold so we can handle one more
713 * packet from each port, plus reserve an additional 24 entries for
714 * Ethernet packets only. Queue 1 never suspends nor do we reserve
715 * space for Ethernet packets.
716 */
717 sge->cmdQ[0].stop_thres = sge->adapter->params.nports *
718 (MAX_SKB_FRAGS + 1);
8199d3a7
CL
719 return 0;
720
721err_no_mem:
722 free_tx_resources(sge);
723 return -ENOMEM;
724}
725
726static inline void setup_ring_params(struct adapter *adapter, u64 addr,
727 u32 size, int base_reg_lo,
728 int base_reg_hi, int size_reg)
729{
559fb51b
SB
730 writel((u32)addr, adapter->regs + base_reg_lo);
731 writel(addr >> 32, adapter->regs + base_reg_hi);
732 writel(size, adapter->regs + size_reg);
8199d3a7
CL
733}
734
735/*
736 * Enable/disable VLAN acceleration.
737 */
738void t1_set_vlan_accel(struct adapter *adapter, int on_off)
739{
740 struct sge *sge = adapter->sge;
741
742 sge->sge_control &= ~F_VLAN_XTRACT;
743 if (on_off)
744 sge->sge_control |= F_VLAN_XTRACT;
745 if (adapter->open_device_map) {
559fb51b 746 writel(sge->sge_control, adapter->regs + A_SG_CONTROL);
f1d3d38a 747 readl(adapter->regs + A_SG_CONTROL); /* flush */
8199d3a7
CL
748 }
749}
750
8199d3a7
CL
751/*
752 * Programs the various SGE registers. However, the engine is not yet enabled,
753 * but sge->sge_control is setup and ready to go.
754 */
755static void configure_sge(struct sge *sge, struct sge_params *p)
756{
757 struct adapter *ap = sge->adapter;
356bd146 758
559fb51b
SB
759 writel(0, ap->regs + A_SG_CONTROL);
760 setup_ring_params(ap, sge->cmdQ[0].dma_addr, sge->cmdQ[0].size,
8199d3a7 761 A_SG_CMD0BASELWR, A_SG_CMD0BASEUPR, A_SG_CMD0SIZE);
559fb51b 762 setup_ring_params(ap, sge->cmdQ[1].dma_addr, sge->cmdQ[1].size,
8199d3a7
CL
763 A_SG_CMD1BASELWR, A_SG_CMD1BASEUPR, A_SG_CMD1SIZE);
764 setup_ring_params(ap, sge->freelQ[0].dma_addr,
559fb51b 765 sge->freelQ[0].size, A_SG_FL0BASELWR,
8199d3a7
CL
766 A_SG_FL0BASEUPR, A_SG_FL0SIZE);
767 setup_ring_params(ap, sge->freelQ[1].dma_addr,
559fb51b 768 sge->freelQ[1].size, A_SG_FL1BASELWR,
8199d3a7
CL
769 A_SG_FL1BASEUPR, A_SG_FL1SIZE);
770
771 /* The threshold comparison uses <. */
559fb51b 772 writel(SGE_RX_SM_BUF_SIZE + 1, ap->regs + A_SG_FLTHRESHOLD);
8199d3a7 773
559fb51b
SB
774 setup_ring_params(ap, sge->respQ.dma_addr, sge->respQ.size,
775 A_SG_RSPBASELWR, A_SG_RSPBASEUPR, A_SG_RSPSIZE);
776 writel((u32)sge->respQ.size - 1, ap->regs + A_SG_RSPQUEUECREDIT);
8199d3a7
CL
777
778 sge->sge_control = F_CMDQ0_ENABLE | F_CMDQ1_ENABLE | F_FL0_ENABLE |
779 F_FL1_ENABLE | F_CPL_ENABLE | F_RESPONSE_QUEUE_ENABLE |
780 V_CMDQ_PRIORITY(2) | F_DISABLE_CMDQ1_GTS | F_ISCSI_COALESCE |
781 V_RX_PKT_OFFSET(sge->rx_pkt_pad);
782
783#if defined(__BIG_ENDIAN_BITFIELD)
784 sge->sge_control |= F_ENABLE_BIG_ENDIAN;
785#endif
786
559fb51b
SB
787 /* Initialize no-resource timer */
788 sge->intrtimer_nres = SGE_INTRTIMER_NRES * core_ticks_per_usec(ap);
789
790 t1_sge_set_coalesce_params(sge, p);
8199d3a7
CL
791}
792
793/*
794 * Return the payload capacity of the jumbo free-list buffers.
795 */
796static inline unsigned int jumbo_payload_capacity(const struct sge *sge)
797{
798 return sge->freelQ[sge->jumbo_fl].rx_buffer_size -
559fb51b
SB
799 sge->freelQ[sge->jumbo_fl].dma_offset -
800 sizeof(struct cpl_rx_data);
8199d3a7
CL
801}
802
803/*
804 * Frees all SGE related resources and the sge structure itself
805 */
806void t1_sge_destroy(struct sge *sge)
807{
56f643c2
SH
808 int i;
809
810 for_each_port(sge->adapter, i)
811 free_percpu(sge->port_stats[i]);
812
f1d3d38a 813 kfree(sge->tx_sched);
8199d3a7
CL
814 free_tx_resources(sge);
815 free_rx_resources(sge);
816 kfree(sge);
817}
818
819/*
820 * Allocates new RX buffers on the freelist Q (and tracks them on the freelist
821 * context Q) until the Q is full or alloc_skb fails.
822 *
823 * It is possible that the generation bits already match, indicating that the
824 * buffer is already valid and nothing needs to be done. This happens when we
825 * copied a received buffer into a new sk_buff during the interrupt processing.
826 *
827 * If the SGE doesn't automatically align packets properly (!sge->rx_pkt_pad),
828 * we specify a RX_OFFSET in order to make sure that the IP header is 4B
829 * aligned.
830 */
559fb51b 831static void refill_free_list(struct sge *sge, struct freelQ *q)
8199d3a7
CL
832{
833 struct pci_dev *pdev = sge->adapter->pdev;
559fb51b
SB
834 struct freelQ_ce *ce = &q->centries[q->pidx];
835 struct freelQ_e *e = &q->entries[q->pidx];
836 unsigned int dma_len = q->rx_buffer_size - q->dma_offset;
8199d3a7 837
559fb51b
SB
838 while (q->credits < q->size) {
839 struct sk_buff *skb;
840 dma_addr_t mapping;
8199d3a7 841
559fb51b
SB
842 skb = alloc_skb(q->rx_buffer_size, GFP_ATOMIC);
843 if (!skb)
844 break;
845
846 skb_reserve(skb, q->dma_offset);
847 mapping = pci_map_single(pdev, skb->data, dma_len,
848 PCI_DMA_FROMDEVICE);
849 ce->skb = skb;
850 pci_unmap_addr_set(ce, dma_addr, mapping);
851 pci_unmap_len_set(ce, dma_len, dma_len);
852 e->addr_lo = (u32)mapping;
853 e->addr_hi = (u64)mapping >> 32;
854 e->len_gen = V_CMD_LEN(dma_len) | V_CMD_GEN1(q->genbit);
855 wmb();
856 e->gen2 = V_CMD_GEN2(q->genbit);
8199d3a7
CL
857
858 e++;
859 ce++;
559fb51b
SB
860 if (++q->pidx == q->size) {
861 q->pidx = 0;
862 q->genbit ^= 1;
863 ce = q->centries;
864 e = q->entries;
8199d3a7 865 }
559fb51b 866 q->credits++;
8199d3a7 867 }
8199d3a7
CL
868}
869
870/*
559fb51b
SB
871 * Calls refill_free_list for both free lists. If we cannot fill at least 1/4
872 * of both rings, we go into 'few interrupt mode' in order to give the system
873 * time to free up resources.
8199d3a7
CL
874 */
875static void freelQs_empty(struct sge *sge)
876{
559fb51b
SB
877 struct adapter *adapter = sge->adapter;
878 u32 irq_reg = readl(adapter->regs + A_SG_INT_ENABLE);
8199d3a7
CL
879 u32 irqholdoff_reg;
880
881 refill_free_list(sge, &sge->freelQ[0]);
882 refill_free_list(sge, &sge->freelQ[1]);
883
559fb51b
SB
884 if (sge->freelQ[0].credits > (sge->freelQ[0].size >> 2) &&
885 sge->freelQ[1].credits > (sge->freelQ[1].size >> 2)) {
8199d3a7 886 irq_reg |= F_FL_EXHAUSTED;
559fb51b 887 irqholdoff_reg = sge->fixed_intrtimer;
8199d3a7
CL
888 } else {
889 /* Clear the F_FL_EXHAUSTED interrupts for now */
890 irq_reg &= ~F_FL_EXHAUSTED;
891 irqholdoff_reg = sge->intrtimer_nres;
892 }
559fb51b
SB
893 writel(irqholdoff_reg, adapter->regs + A_SG_INTRTIMER);
894 writel(irq_reg, adapter->regs + A_SG_INT_ENABLE);
8199d3a7
CL
895
896 /* We reenable the Qs to force a freelist GTS interrupt later */
559fb51b 897 doorbell_pio(adapter, F_FL0_ENABLE | F_FL1_ENABLE);
8199d3a7
CL
898}
899
900#define SGE_PL_INTR_MASK (F_PL_INTR_SGE_ERR | F_PL_INTR_SGE_DATA)
901#define SGE_INT_FATAL (F_RESPQ_OVERFLOW | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
902#define SGE_INT_ENABLE (F_RESPQ_EXHAUSTED | F_RESPQ_OVERFLOW | \
903 F_FL_EXHAUSTED | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
904
905/*
906 * Disable SGE Interrupts
907 */
908void t1_sge_intr_disable(struct sge *sge)
909{
559fb51b 910 u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
8199d3a7 911
559fb51b
SB
912 writel(val & ~SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
913 writel(0, sge->adapter->regs + A_SG_INT_ENABLE);
8199d3a7
CL
914}
915
916/*
917 * Enable SGE interrupts.
918 */
919void t1_sge_intr_enable(struct sge *sge)
920{
921 u32 en = SGE_INT_ENABLE;
559fb51b 922 u32 val = readl(sge->adapter->regs + A_PL_ENABLE);
8199d3a7
CL
923
924 if (sge->adapter->flags & TSO_CAPABLE)
925 en &= ~F_PACKET_TOO_BIG;
559fb51b
SB
926 writel(en, sge->adapter->regs + A_SG_INT_ENABLE);
927 writel(val | SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_ENABLE);
8199d3a7
CL
928}
929
930/*
931 * Clear SGE interrupts.
932 */
933void t1_sge_intr_clear(struct sge *sge)
934{
559fb51b
SB
935 writel(SGE_PL_INTR_MASK, sge->adapter->regs + A_PL_CAUSE);
936 writel(0xffffffff, sge->adapter->regs + A_SG_INT_CAUSE);
8199d3a7
CL
937}
938
939/*
940 * SGE 'Error' interrupt handler
941 */
942int t1_sge_intr_error_handler(struct sge *sge)
943{
944 struct adapter *adapter = sge->adapter;
559fb51b 945 u32 cause = readl(adapter->regs + A_SG_INT_CAUSE);
8199d3a7
CL
946
947 if (adapter->flags & TSO_CAPABLE)
948 cause &= ~F_PACKET_TOO_BIG;
949 if (cause & F_RESPQ_EXHAUSTED)
559fb51b 950 sge->stats.respQ_empty++;
8199d3a7 951 if (cause & F_RESPQ_OVERFLOW) {
559fb51b 952 sge->stats.respQ_overflow++;
8199d3a7
CL
953 CH_ALERT("%s: SGE response queue overflow\n",
954 adapter->name);
955 }
956 if (cause & F_FL_EXHAUSTED) {
559fb51b 957 sge->stats.freelistQ_empty++;
8199d3a7
CL
958 freelQs_empty(sge);
959 }
960 if (cause & F_PACKET_TOO_BIG) {
559fb51b 961 sge->stats.pkt_too_big++;
8199d3a7
CL
962 CH_ALERT("%s: SGE max packet size exceeded\n",
963 adapter->name);
964 }
965 if (cause & F_PACKET_MISMATCH) {
559fb51b 966 sge->stats.pkt_mismatch++;
8199d3a7
CL
967 CH_ALERT("%s: SGE packet mismatch\n", adapter->name);
968 }
969 if (cause & SGE_INT_FATAL)
970 t1_fatal_err(adapter);
971
559fb51b 972 writel(cause, adapter->regs + A_SG_INT_CAUSE);
8199d3a7
CL
973 return 0;
974}
975
56f643c2 976const struct sge_intr_counts *t1_sge_get_intr_counts(const struct sge *sge)
559fb51b
SB
977{
978 return &sge->stats;
979}
980
56f643c2
SH
981void t1_sge_get_port_stats(const struct sge *sge, int port,
982 struct sge_port_stats *ss)
559fb51b 983{
56f643c2
SH
984 int cpu;
985
986 memset(ss, 0, sizeof(*ss));
987 for_each_possible_cpu(cpu) {
988 struct sge_port_stats *st = per_cpu_ptr(sge->port_stats[port], cpu);
989
990 ss->rx_packets += st->rx_packets;
991 ss->rx_cso_good += st->rx_cso_good;
992 ss->tx_packets += st->tx_packets;
993 ss->tx_cso += st->tx_cso;
994 ss->tx_tso += st->tx_tso;
995 ss->vlan_xtract += st->vlan_xtract;
996 ss->vlan_insert += st->vlan_insert;
997 }
559fb51b
SB
998}
999
1000/**
1001 * recycle_fl_buf - recycle a free list buffer
1002 * @fl: the free list
1003 * @idx: index of buffer to recycle
8199d3a7 1004 *
559fb51b
SB
1005 * Recycles the specified buffer on the given free list by adding it at
1006 * the next available slot on the list.
8199d3a7 1007 */
559fb51b 1008static void recycle_fl_buf(struct freelQ *fl, int idx)
8199d3a7 1009{
559fb51b
SB
1010 struct freelQ_e *from = &fl->entries[idx];
1011 struct freelQ_e *to = &fl->entries[fl->pidx];
8199d3a7 1012
559fb51b
SB
1013 fl->centries[fl->pidx] = fl->centries[idx];
1014 to->addr_lo = from->addr_lo;
1015 to->addr_hi = from->addr_hi;
1016 to->len_gen = G_CMD_LEN(from->len_gen) | V_CMD_GEN1(fl->genbit);
1017 wmb();
1018 to->gen2 = V_CMD_GEN2(fl->genbit);
1019 fl->credits++;
8199d3a7 1020
559fb51b
SB
1021 if (++fl->pidx == fl->size) {
1022 fl->pidx = 0;
1023 fl->genbit ^= 1;
8199d3a7 1024 }
559fb51b 1025}
8199d3a7 1026
559fb51b
SB
1027/**
1028 * get_packet - return the next ingress packet buffer
1029 * @pdev: the PCI device that received the packet
1030 * @fl: the SGE free list holding the packet
1031 * @len: the actual packet length, excluding any SGE padding
1032 * @dma_pad: padding at beginning of buffer left by SGE DMA
1033 * @skb_pad: padding to be used if the packet is copied
1034 * @copy_thres: length threshold under which a packet should be copied
1035 * @drop_thres: # of remaining buffers before we start dropping packets
1036 *
1037 * Get the next packet from a free list and complete setup of the
1038 * sk_buff. If the packet is small we make a copy and recycle the
1039 * original buffer, otherwise we use the original buffer itself. If a
1040 * positive drop threshold is supplied packets are dropped and their
1041 * buffers recycled if (a) the number of remaining buffers is under the
1042 * threshold and the packet is too big to copy, or (b) the packet should
1043 * be copied but there is no memory for the copy.
1044 */
1045static inline struct sk_buff *get_packet(struct pci_dev *pdev,
1046 struct freelQ *fl, unsigned int len,
1047 int dma_pad, int skb_pad,
1048 unsigned int copy_thres,
1049 unsigned int drop_thres)
1050{
1051 struct sk_buff *skb;
1052 struct freelQ_ce *ce = &fl->centries[fl->cidx];
1053
1054 if (len < copy_thres) {
1055 skb = alloc_skb(len + skb_pad, GFP_ATOMIC);
1056 if (likely(skb != NULL)) {
1057 skb_reserve(skb, skb_pad);
1058 skb_put(skb, len);
1059 pci_dma_sync_single_for_cpu(pdev,
1060 pci_unmap_addr(ce, dma_addr),
356bd146 1061 pci_unmap_len(ce, dma_len),
559fb51b
SB
1062 PCI_DMA_FROMDEVICE);
1063 memcpy(skb->data, ce->skb->data + dma_pad, len);
1064 pci_dma_sync_single_for_device(pdev,
1065 pci_unmap_addr(ce, dma_addr),
356bd146 1066 pci_unmap_len(ce, dma_len),
559fb51b
SB
1067 PCI_DMA_FROMDEVICE);
1068 } else if (!drop_thres)
1069 goto use_orig_buf;
8199d3a7 1070
559fb51b
SB
1071 recycle_fl_buf(fl, fl->cidx);
1072 return skb;
8199d3a7
CL
1073 }
1074
559fb51b
SB
1075 if (fl->credits < drop_thres) {
1076 recycle_fl_buf(fl, fl->cidx);
1077 return NULL;
1078 }
8199d3a7 1079
559fb51b
SB
1080use_orig_buf:
1081 pci_unmap_single(pdev, pci_unmap_addr(ce, dma_addr),
1082 pci_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
1083 skb = ce->skb;
1084 skb_reserve(skb, dma_pad);
1085 skb_put(skb, len);
1086 return skb;
1087}
8199d3a7 1088
559fb51b
SB
1089/**
1090 * unexpected_offload - handle an unexpected offload packet
1091 * @adapter: the adapter
1092 * @fl: the free list that received the packet
1093 *
1094 * Called when we receive an unexpected offload packet (e.g., the TOE
1095 * function is disabled or the card is a NIC). Prints a message and
1096 * recycles the buffer.
1097 */
1098static void unexpected_offload(struct adapter *adapter, struct freelQ *fl)
1099{
1100 struct freelQ_ce *ce = &fl->centries[fl->cidx];
1101 struct sk_buff *skb = ce->skb;
1102
1103 pci_dma_sync_single_for_cpu(adapter->pdev, pci_unmap_addr(ce, dma_addr),
1104 pci_unmap_len(ce, dma_len), PCI_DMA_FROMDEVICE);
1105 CH_ERR("%s: unexpected offload packet, cmd %u\n",
1106 adapter->name, *skb->data);
1107 recycle_fl_buf(fl, fl->cidx);
8199d3a7
CL
1108}
1109
f1d3d38a
SH
1110/*
1111 * T1/T2 SGE limits the maximum DMA size per TX descriptor to
1112 * SGE_TX_DESC_MAX_PLEN (16KB). If the PAGE_SIZE is larger than 16KB, the
1113 * stack might send more than SGE_TX_DESC_MAX_PLEN in a contiguous manner.
1114 * Note that the *_large_page_tx_descs stuff will be optimized out when
1115 * PAGE_SIZE <= SGE_TX_DESC_MAX_PLEN.
1116 *
1117 * compute_large_page_descs() computes how many additional descriptors are
1118 * required to break down the stack's request.
1119 */
1120static inline unsigned int compute_large_page_tx_descs(struct sk_buff *skb)
1121{
1122 unsigned int count = 0;
356bd146 1123
f1d3d38a
SH
1124 if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
1125 unsigned int nfrags = skb_shinfo(skb)->nr_frags;
1126 unsigned int i, len = skb->len - skb->data_len;
1127 while (len > SGE_TX_DESC_MAX_PLEN) {
1128 count++;
1129 len -= SGE_TX_DESC_MAX_PLEN;
1130 }
1131 for (i = 0; nfrags--; i++) {
1132 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1133 len = frag->size;
1134 while (len > SGE_TX_DESC_MAX_PLEN) {
1135 count++;
1136 len -= SGE_TX_DESC_MAX_PLEN;
1137 }
1138 }
1139 }
1140 return count;
1141}
1142
1143/*
1144 * Write a cmdQ entry.
1145 *
1146 * Since this function writes the 'flags' field, it must not be used to
1147 * write the first cmdQ entry.
1148 */
1149static inline void write_tx_desc(struct cmdQ_e *e, dma_addr_t mapping,
1150 unsigned int len, unsigned int gen,
1151 unsigned int eop)
1152{
1153 if (unlikely(len > SGE_TX_DESC_MAX_PLEN))
1154 BUG();
1155 e->addr_lo = (u32)mapping;
1156 e->addr_hi = (u64)mapping >> 32;
1157 e->len_gen = V_CMD_LEN(len) | V_CMD_GEN1(gen);
1158 e->flags = F_CMD_DATAVALID | V_CMD_EOP(eop) | V_CMD_GEN2(gen);
1159}
1160
1161/*
1162 * See comment for previous function.
1163 *
1164 * write_tx_descs_large_page() writes additional SGE tx descriptors if
1165 * *desc_len exceeds HW's capability.
1166 */
1167static inline unsigned int write_large_page_tx_descs(unsigned int pidx,
1168 struct cmdQ_e **e,
1169 struct cmdQ_ce **ce,
1170 unsigned int *gen,
1171 dma_addr_t *desc_mapping,
1172 unsigned int *desc_len,
1173 unsigned int nfrags,
1174 struct cmdQ *q)
1175{
1176 if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN) {
1177 struct cmdQ_e *e1 = *e;
1178 struct cmdQ_ce *ce1 = *ce;
1179
1180 while (*desc_len > SGE_TX_DESC_MAX_PLEN) {
1181 *desc_len -= SGE_TX_DESC_MAX_PLEN;
1182 write_tx_desc(e1, *desc_mapping, SGE_TX_DESC_MAX_PLEN,
1183 *gen, nfrags == 0 && *desc_len == 0);
1184 ce1->skb = NULL;
1185 pci_unmap_len_set(ce1, dma_len, 0);
1186 *desc_mapping += SGE_TX_DESC_MAX_PLEN;
1187 if (*desc_len) {
1188 ce1++;
1189 e1++;
1190 if (++pidx == q->size) {
1191 pidx = 0;
1192 *gen ^= 1;
1193 ce1 = q->centries;
1194 e1 = q->entries;
1195 }
1196 }
1197 }
1198 *e = e1;
1199 *ce = ce1;
1200 }
1201 return pidx;
1202}
1203
8199d3a7 1204/*
559fb51b
SB
1205 * Write the command descriptors to transmit the given skb starting at
1206 * descriptor pidx with the given generation.
8199d3a7 1207 */
559fb51b
SB
1208static inline void write_tx_descs(struct adapter *adapter, struct sk_buff *skb,
1209 unsigned int pidx, unsigned int gen,
1210 struct cmdQ *q)
8199d3a7 1211{
f1d3d38a 1212 dma_addr_t mapping, desc_mapping;
559fb51b
SB
1213 struct cmdQ_e *e, *e1;
1214 struct cmdQ_ce *ce;
f1d3d38a
SH
1215 unsigned int i, flags, first_desc_len, desc_len,
1216 nfrags = skb_shinfo(skb)->nr_frags;
559fb51b 1217
f1d3d38a 1218 e = e1 = &q->entries[pidx];
559fb51b 1219 ce = &q->centries[pidx];
f1d3d38a
SH
1220
1221 mapping = pci_map_single(adapter->pdev, skb->data,
1222 skb->len - skb->data_len, PCI_DMA_TODEVICE);
1223
1224 desc_mapping = mapping;
1225 desc_len = skb->len - skb->data_len;
1226
1227 flags = F_CMD_DATAVALID | F_CMD_SOP |
1228 V_CMD_EOP(nfrags == 0 && desc_len <= SGE_TX_DESC_MAX_PLEN) |
1229 V_CMD_GEN2(gen);
1230 first_desc_len = (desc_len <= SGE_TX_DESC_MAX_PLEN) ?
1231 desc_len : SGE_TX_DESC_MAX_PLEN;
1232 e->addr_lo = (u32)desc_mapping;
1233 e->addr_hi = (u64)desc_mapping >> 32;
1234 e->len_gen = V_CMD_LEN(first_desc_len) | V_CMD_GEN1(gen);
1235 ce->skb = NULL;
1236 pci_unmap_len_set(ce, dma_len, 0);
1237
1238 if (PAGE_SIZE > SGE_TX_DESC_MAX_PLEN &&
1239 desc_len > SGE_TX_DESC_MAX_PLEN) {
1240 desc_mapping += first_desc_len;
1241 desc_len -= first_desc_len;
1242 e1++;
1243 ce++;
1244 if (++pidx == q->size) {
1245 pidx = 0;
1246 gen ^= 1;
1247 e1 = q->entries;
1248 ce = q->centries;
1249 }
1250 pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
1251 &desc_mapping, &desc_len,
1252 nfrags, q);
1253
1254 if (likely(desc_len))
1255 write_tx_desc(e1, desc_mapping, desc_len, gen,
1256 nfrags == 0);
1257 }
1258
559fb51b
SB
1259 ce->skb = NULL;
1260 pci_unmap_addr_set(ce, dma_addr, mapping);
1261 pci_unmap_len_set(ce, dma_len, skb->len - skb->data_len);
8199d3a7 1262
f1d3d38a 1263 for (i = 0; nfrags--; i++) {
559fb51b 1264 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
559fb51b 1265 e1++;
f1d3d38a 1266 ce++;
559fb51b
SB
1267 if (++pidx == q->size) {
1268 pidx = 0;
1269 gen ^= 1;
559fb51b 1270 e1 = q->entries;
f1d3d38a 1271 ce = q->centries;
8199d3a7 1272 }
8199d3a7 1273
559fb51b
SB
1274 mapping = pci_map_page(adapter->pdev, frag->page,
1275 frag->page_offset, frag->size,
1276 PCI_DMA_TODEVICE);
f1d3d38a
SH
1277 desc_mapping = mapping;
1278 desc_len = frag->size;
1279
1280 pidx = write_large_page_tx_descs(pidx, &e1, &ce, &gen,
1281 &desc_mapping, &desc_len,
1282 nfrags, q);
1283 if (likely(desc_len))
1284 write_tx_desc(e1, desc_mapping, desc_len, gen,
1285 nfrags == 0);
559fb51b
SB
1286 ce->skb = NULL;
1287 pci_unmap_addr_set(ce, dma_addr, mapping);
1288 pci_unmap_len_set(ce, dma_len, frag->size);
8199d3a7 1289 }
559fb51b
SB
1290 ce->skb = skb;
1291 wmb();
1292 e->flags = flags;
1293}
8199d3a7 1294
559fb51b
SB
1295/*
1296 * Clean up completed Tx buffers.
1297 */
1298static inline void reclaim_completed_tx(struct sge *sge, struct cmdQ *q)
1299{
1300 unsigned int reclaim = q->processed - q->cleaned;
8199d3a7 1301
559fb51b 1302 if (reclaim) {
f1d3d38a
SH
1303 pr_debug("reclaim_completed_tx processed:%d cleaned:%d\n",
1304 q->processed, q->cleaned);
559fb51b
SB
1305 free_cmdQ_buffers(sge, q, reclaim);
1306 q->cleaned += reclaim;
8199d3a7 1307 }
559fb51b 1308}
8199d3a7 1309
f1d3d38a
SH
1310/*
1311 * Called from tasklet. Checks the scheduler for any
1312 * pending skbs that can be sent.
1313 */
1314static void restart_sched(unsigned long arg)
1315{
1316 struct sge *sge = (struct sge *) arg;
1317 struct adapter *adapter = sge->adapter;
1318 struct cmdQ *q = &sge->cmdQ[0];
1319 struct sk_buff *skb;
1320 unsigned int credits, queued_skb = 0;
1321
1322 spin_lock(&q->lock);
1323 reclaim_completed_tx(sge, q);
1324
1325 credits = q->size - q->in_use;
1326 pr_debug("restart_sched credits=%d\n", credits);
1327 while ((skb = sched_skb(sge, NULL, credits)) != NULL) {
1328 unsigned int genbit, pidx, count;
1329 count = 1 + skb_shinfo(skb)->nr_frags;
356bd146 1330 count += compute_large_page_tx_descs(skb);
f1d3d38a
SH
1331 q->in_use += count;
1332 genbit = q->genbit;
1333 pidx = q->pidx;
1334 q->pidx += count;
1335 if (q->pidx >= q->size) {
1336 q->pidx -= q->size;
1337 q->genbit ^= 1;
1338 }
1339 write_tx_descs(adapter, skb, pidx, genbit, q);
1340 credits = q->size - q->in_use;
1341 queued_skb = 1;
1342 }
1343
1344 if (queued_skb) {
1345 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1346 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
1347 set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1348 writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1349 }
1350 }
1351 spin_unlock(&q->lock);
1352}
8199d3a7 1353
559fb51b
SB
1354/**
1355 * sge_rx - process an ingress ethernet packet
1356 * @sge: the sge structure
1357 * @fl: the free list that contains the packet buffer
1358 * @len: the packet length
8199d3a7 1359 *
559fb51b 1360 * Process an ingress ethernet pakcet and deliver it to the stack.
8199d3a7 1361 */
559fb51b 1362static int sge_rx(struct sge *sge, struct freelQ *fl, unsigned int len)
8199d3a7 1363{
559fb51b
SB
1364 struct sk_buff *skb;
1365 struct cpl_rx_pkt *p;
1366 struct adapter *adapter = sge->adapter;
56f643c2 1367 struct sge_port_stats *st;
8199d3a7 1368
559fb51b
SB
1369 skb = get_packet(adapter->pdev, fl, len - sge->rx_pkt_pad,
1370 sge->rx_pkt_pad, 2, SGE_RX_COPY_THRES,
1371 SGE_RX_DROP_THRES);
56f643c2
SH
1372 if (unlikely(!skb)) {
1373 sge->stats.rx_drops++;
559fb51b 1374 return 0;
8199d3a7 1375 }
559fb51b
SB
1376
1377 p = (struct cpl_rx_pkt *)skb->data;
1378 skb_pull(skb, sizeof(*p));
f1d3d38a
SH
1379 if (p->iff >= adapter->params.nports) {
1380 kfree_skb(skb);
1381 return 0;
1382 }
1383
56f643c2 1384 skb->dev = adapter->port[p->iff].dev;
559fb51b 1385 skb->dev->last_rx = jiffies;
56f643c2
SH
1386 st = per_cpu_ptr(sge->port_stats[p->iff], smp_processor_id());
1387 st->rx_packets++;
1388
559fb51b
SB
1389 skb->protocol = eth_type_trans(skb, skb->dev);
1390 if ((adapter->flags & RX_CSUM_ENABLED) && p->csum == 0xffff &&
1391 skb->protocol == htons(ETH_P_IP) &&
1392 (skb->data[9] == IPPROTO_TCP || skb->data[9] == IPPROTO_UDP)) {
56f643c2 1393 ++st->rx_cso_good;
559fb51b
SB
1394 skb->ip_summed = CHECKSUM_UNNECESSARY;
1395 } else
1396 skb->ip_summed = CHECKSUM_NONE;
1397
1398 if (unlikely(adapter->vlan_grp && p->vlan_valid)) {
56f643c2 1399 st->vlan_xtract++;
7fe26a60 1400#ifdef CONFIG_CHELSIO_T1_NAPI
559fb51b
SB
1401 vlan_hwaccel_receive_skb(skb, adapter->vlan_grp,
1402 ntohs(p->vlan));
7fe26a60 1403#else
559fb51b
SB
1404 vlan_hwaccel_rx(skb, adapter->vlan_grp,
1405 ntohs(p->vlan));
7fe26a60
SH
1406#endif
1407 } else {
1408#ifdef CONFIG_CHELSIO_T1_NAPI
559fb51b 1409 netif_receive_skb(skb);
7fe26a60 1410#else
559fb51b 1411 netif_rx(skb);
7fe26a60
SH
1412#endif
1413 }
559fb51b 1414 return 0;
8199d3a7
CL
1415}
1416
1417/*
559fb51b 1418 * Returns true if a command queue has enough available descriptors that
8199d3a7
CL
1419 * we can resume Tx operation after temporarily disabling its packet queue.
1420 */
559fb51b 1421static inline int enough_free_Tx_descs(const struct cmdQ *q)
8199d3a7 1422{
559fb51b
SB
1423 unsigned int r = q->processed - q->cleaned;
1424
1425 return q->in_use - r < (q->size >> 1);
8199d3a7
CL
1426}
1427
1428/*
559fb51b
SB
1429 * Called when sufficient space has become available in the SGE command queues
1430 * after the Tx packet schedulers have been suspended to restart the Tx path.
8199d3a7 1431 */
559fb51b 1432static void restart_tx_queues(struct sge *sge)
8199d3a7 1433{
559fb51b 1434 struct adapter *adap = sge->adapter;
3e0f75be 1435 int i;
8199d3a7 1436
3e0f75be
FR
1437 if (!enough_free_Tx_descs(&sge->cmdQ[0]))
1438 return;
559fb51b 1439
3e0f75be
FR
1440 for_each_port(adap, i) {
1441 struct net_device *nd = adap->port[i].dev;
559fb51b 1442
3e0f75be
FR
1443 if (test_and_clear_bit(nd->if_port, &sge->stopped_tx_queues) &&
1444 netif_running(nd)) {
1445 sge->stats.cmdQ_restarted[2]++;
1446 netif_wake_queue(nd);
559fb51b
SB
1447 }
1448 }
1449}
1450
1451/*
356bd146 1452 * update_tx_info is called from the interrupt handler/NAPI to return cmdQ0
559fb51b
SB
1453 * information.
1454 */
356bd146
FR
1455static unsigned int update_tx_info(struct adapter *adapter,
1456 unsigned int flags,
559fb51b
SB
1457 unsigned int pr0)
1458{
1459 struct sge *sge = adapter->sge;
1460 struct cmdQ *cmdq = &sge->cmdQ[0];
8199d3a7 1461
559fb51b 1462 cmdq->processed += pr0;
f1d3d38a
SH
1463 if (flags & (F_FL0_ENABLE | F_FL1_ENABLE)) {
1464 freelQs_empty(sge);
1465 flags &= ~(F_FL0_ENABLE | F_FL1_ENABLE);
1466 }
559fb51b
SB
1467 if (flags & F_CMDQ0_ENABLE) {
1468 clear_bit(CMDQ_STAT_RUNNING, &cmdq->status);
f1d3d38a 1469
559fb51b
SB
1470 if (cmdq->cleaned + cmdq->in_use != cmdq->processed &&
1471 !test_and_set_bit(CMDQ_STAT_LAST_PKT_DB, &cmdq->status)) {
1472 set_bit(CMDQ_STAT_RUNNING, &cmdq->status);
1473 writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1474 }
f1d3d38a
SH
1475 if (sge->tx_sched)
1476 tasklet_hi_schedule(&sge->tx_sched->sched_tsk);
1477
1478 flags &= ~F_CMDQ0_ENABLE;
559fb51b 1479 }
f1d3d38a 1480
559fb51b
SB
1481 if (unlikely(sge->stopped_tx_queues != 0))
1482 restart_tx_queues(sge);
8199d3a7 1483
559fb51b
SB
1484 return flags;
1485}
8199d3a7 1486
559fb51b
SB
1487/*
1488 * Process SGE responses, up to the supplied budget. Returns the number of
1489 * responses processed. A negative budget is effectively unlimited.
1490 */
1491static int process_responses(struct adapter *adapter, int budget)
1492{
1493 struct sge *sge = adapter->sge;
1494 struct respQ *q = &sge->respQ;
1495 struct respQ_e *e = &q->entries[q->cidx];
1496 int budget_left = budget;
1497 unsigned int flags = 0;
1498 unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
356bd146 1499
559fb51b
SB
1500
1501 while (likely(budget_left && e->GenerationBit == q->genbit)) {
1502 flags |= e->Qsleeping;
356bd146 1503
559fb51b
SB
1504 cmdq_processed[0] += e->Cmdq0CreditReturn;
1505 cmdq_processed[1] += e->Cmdq1CreditReturn;
356bd146 1506
559fb51b
SB
1507 /* We batch updates to the TX side to avoid cacheline
1508 * ping-pong of TX state information on MP where the sender
1509 * might run on a different CPU than this function...
1510 */
1511 if (unlikely(flags & F_CMDQ0_ENABLE || cmdq_processed[0] > 64)) {
1512 flags = update_tx_info(adapter, flags, cmdq_processed[0]);
1513 cmdq_processed[0] = 0;
1514 }
1515 if (unlikely(cmdq_processed[1] > 16)) {
1516 sge->cmdQ[1].processed += cmdq_processed[1];
1517 cmdq_processed[1] = 0;
8199d3a7
CL
1518 }
1519 if (likely(e->DataValid)) {
559fb51b
SB
1520 struct freelQ *fl = &sge->freelQ[e->FreelistQid];
1521
5d9428de 1522 BUG_ON(!e->Sop || !e->Eop);
559fb51b
SB
1523 if (unlikely(e->Offload))
1524 unexpected_offload(adapter, fl);
1525 else
1526 sge_rx(sge, fl, e->BufferLength);
1527
1528 /*
1529 * Note: this depends on each packet consuming a
1530 * single free-list buffer; cf. the BUG above.
1531 */
1532 if (++fl->cidx == fl->size)
1533 fl->cidx = 0;
1534 if (unlikely(--fl->credits <
1535 fl->size - SGE_FREEL_REFILL_THRESH))
1536 refill_free_list(sge, fl);
1537 } else
1538 sge->stats.pure_rsps++;
8199d3a7 1539
8199d3a7 1540 e++;
559fb51b
SB
1541 if (unlikely(++q->cidx == q->size)) {
1542 q->cidx = 0;
1543 q->genbit ^= 1;
1544 e = q->entries;
1545 }
1546 prefetch(e);
1547
1548 if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
1549 writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
1550 q->credits = 0;
8199d3a7 1551 }
559fb51b 1552 --budget_left;
8199d3a7
CL
1553 }
1554
356bd146 1555 flags = update_tx_info(adapter, flags, cmdq_processed[0]);
559fb51b 1556 sge->cmdQ[1].processed += cmdq_processed[1];
8199d3a7 1557
559fb51b
SB
1558 budget -= budget_left;
1559 return budget;
1560}
8199d3a7 1561
3de00b89
SH
1562static inline int responses_pending(const struct adapter *adapter)
1563{
1564 const struct respQ *Q = &adapter->sge->respQ;
1565 const struct respQ_e *e = &Q->entries[Q->cidx];
1566
1567 return (e->GenerationBit == Q->genbit);
1568}
1569
7fe26a60 1570#ifdef CONFIG_CHELSIO_T1_NAPI
559fb51b
SB
1571/*
1572 * A simpler version of process_responses() that handles only pure (i.e.,
1573 * non data-carrying) responses. Such respones are too light-weight to justify
1574 * calling a softirq when using NAPI, so we handle them specially in hard
1575 * interrupt context. The function is called with a pointer to a response,
1576 * which the caller must ensure is a valid pure response. Returns 1 if it
1577 * encounters a valid data-carrying response, 0 otherwise.
1578 */
3de00b89 1579static int process_pure_responses(struct adapter *adapter)
559fb51b
SB
1580{
1581 struct sge *sge = adapter->sge;
1582 struct respQ *q = &sge->respQ;
3de00b89 1583 struct respQ_e *e = &q->entries[q->cidx];
559fb51b
SB
1584 unsigned int flags = 0;
1585 unsigned int cmdq_processed[SGE_CMDQ_N] = {0, 0};
8199d3a7 1586
3de00b89
SH
1587 if (e->DataValid)
1588 return 1;
559fb51b
SB
1589 do {
1590 flags |= e->Qsleeping;
8199d3a7 1591
559fb51b
SB
1592 cmdq_processed[0] += e->Cmdq0CreditReturn;
1593 cmdq_processed[1] += e->Cmdq1CreditReturn;
356bd146 1594
559fb51b
SB
1595 e++;
1596 if (unlikely(++q->cidx == q->size)) {
1597 q->cidx = 0;
1598 q->genbit ^= 1;
1599 e = q->entries;
8199d3a7 1600 }
559fb51b 1601 prefetch(e);
8199d3a7 1602
559fb51b
SB
1603 if (++q->credits > SGE_RESPQ_REPLENISH_THRES) {
1604 writel(q->credits, adapter->regs + A_SG_RSPQUEUECREDIT);
1605 q->credits = 0;
8199d3a7 1606 }
559fb51b
SB
1607 sge->stats.pure_rsps++;
1608 } while (e->GenerationBit == q->genbit && !e->DataValid);
8199d3a7 1609
356bd146 1610 flags = update_tx_info(adapter, flags, cmdq_processed[0]);
559fb51b 1611 sge->cmdQ[1].processed += cmdq_processed[1];
8199d3a7 1612
559fb51b 1613 return e->GenerationBit == q->genbit;
8199d3a7
CL
1614}
1615
1616/*
559fb51b
SB
1617 * Handler for new data events when using NAPI. This does not need any locking
1618 * or protection from interrupts as data interrupts are off at this point and
1619 * other adapter interrupts do not interfere.
8199d3a7 1620 */
7fe26a60 1621int t1_poll(struct net_device *dev, int *budget)
8199d3a7 1622{
559fb51b 1623 struct adapter *adapter = dev->priv;
3de00b89 1624 int work_done;
7fe26a60 1625
3de00b89 1626 work_done = process_responses(adapter, min(*budget, dev->quota));
559fb51b
SB
1627 *budget -= work_done;
1628 dev->quota -= work_done;
8199d3a7 1629
3de00b89 1630 if (unlikely(responses_pending(adapter)))
559fb51b
SB
1631 return 1;
1632
3de00b89 1633 netif_rx_complete(dev);
559fb51b 1634 writel(adapter->sge->respQ.cidx, adapter->regs + A_SG_SLEEPING);
8199d3a7 1635
7fe26a60 1636 return 0;
3de00b89 1637
559fb51b 1638}
8199d3a7 1639
559fb51b
SB
1640/*
1641 * NAPI version of the main interrupt handler.
1642 */
7fe26a60 1643irqreturn_t t1_interrupt(int irq, void *data)
559fb51b 1644{
559fb51b
SB
1645 struct adapter *adapter = data;
1646 struct sge *sge = adapter->sge;
3de00b89 1647 int handled;
559fb51b 1648
3de00b89
SH
1649 if (likely(responses_pending(adapter))) {
1650 struct net_device *dev = sge->netdev;
559fb51b 1651
356bd146 1652 writel(F_PL_INTR_SGE_DATA, adapter->regs + A_PL_CAUSE);
7fe26a60 1653
3de00b89
SH
1654 if (__netif_rx_schedule_prep(dev)) {
1655 if (process_pure_responses(adapter))
1656 __netif_rx_schedule(dev);
1657 else {
1658 /* no data, no NAPI needed */
1659 writel(sge->respQ.cidx, adapter->regs + A_SG_SLEEPING);
1660 netif_poll_enable(dev); /* undo schedule_prep */
7fe26a60 1661 }
7fe26a60 1662 }
3de00b89
SH
1663 return IRQ_HANDLED;
1664 }
1665
1666 spin_lock(&adapter->async_lock);
1667 handled = t1_slow_intr_handler(adapter);
1668 spin_unlock(&adapter->async_lock);
7fe26a60 1669
559fb51b
SB
1670 if (!handled)
1671 sge->stats.unhandled_irqs++;
3de00b89 1672
559fb51b
SB
1673 return IRQ_RETVAL(handled != 0);
1674}
8199d3a7 1675
7fe26a60 1676#else
559fb51b
SB
1677/*
1678 * Main interrupt handler, optimized assuming that we took a 'DATA'
1679 * interrupt.
1680 *
1681 * 1. Clear the interrupt
1682 * 2. Loop while we find valid descriptors and process them; accumulate
1683 * information that can be processed after the loop
1684 * 3. Tell the SGE at which index we stopped processing descriptors
1685 * 4. Bookkeeping; free TX buffers, ring doorbell if there are any
1686 * outstanding TX buffers waiting, replenish RX buffers, potentially
1687 * reenable upper layers if they were turned off due to lack of TX
1688 * resources which are available again.
1689 * 5. If we took an interrupt, but no valid respQ descriptors was found we
1690 * let the slow_intr_handler run and do error handling.
1691 */
7fe26a60 1692irqreturn_t t1_interrupt(int irq, void *cookie)
559fb51b
SB
1693{
1694 int work_done;
559fb51b 1695 struct adapter *adapter = cookie;
8199d3a7 1696
559fb51b 1697 spin_lock(&adapter->async_lock);
8199d3a7 1698
559fb51b 1699 writel(F_PL_INTR_SGE_DATA, adapter->regs + A_PL_CAUSE);
8199d3a7 1700
3de00b89 1701 if (likely(responses_pending(adapter))
559fb51b
SB
1702 work_done = process_responses(adapter, -1);
1703 else
1704 work_done = t1_slow_intr_handler(adapter);
8199d3a7 1705
559fb51b
SB
1706 /*
1707 * The unconditional clearing of the PL_CAUSE above may have raced
1708 * with DMA completion and the corresponding generation of a response
1709 * to cause us to miss the resulting data interrupt. The next write
1710 * is also unconditional to recover the missed interrupt and render
1711 * this race harmless.
1712 */
1713 writel(Q->cidx, adapter->regs + A_SG_SLEEPING);
1714
1715 if (!work_done)
1716 adapter->sge->stats.unhandled_irqs++;
1717 spin_unlock(&adapter->async_lock);
1718 return IRQ_RETVAL(work_done != 0);
1719}
7fe26a60 1720#endif
559fb51b
SB
1721
1722/*
1723 * Enqueues the sk_buff onto the cmdQ[qid] and has hardware fetch it.
1724 *
1725 * The code figures out how many entries the sk_buff will require in the
1726 * cmdQ and updates the cmdQ data structure with the state once the enqueue
1727 * has complete. Then, it doesn't access the global structure anymore, but
1728 * uses the corresponding fields on the stack. In conjuction with a spinlock
1729 * around that code, we can make the function reentrant without holding the
1730 * lock when we actually enqueue (which might be expensive, especially on
1731 * architectures with IO MMUs).
1732 *
1733 * This runs with softirqs disabled.
1734 */
aa84505f
SH
1735static int t1_sge_tx(struct sk_buff *skb, struct adapter *adapter,
1736 unsigned int qid, struct net_device *dev)
559fb51b
SB
1737{
1738 struct sge *sge = adapter->sge;
1739 struct cmdQ *q = &sge->cmdQ[qid];
f1d3d38a 1740 unsigned int credits, pidx, genbit, count, use_sched_skb = 0;
559fb51b 1741
cabdfb37
SH
1742 if (!spin_trylock(&q->lock))
1743 return NETDEV_TX_LOCKED;
1744
559fb51b
SB
1745 reclaim_completed_tx(sge, q);
1746
1747 pidx = q->pidx;
1748 credits = q->size - q->in_use;
1749 count = 1 + skb_shinfo(skb)->nr_frags;
f1d3d38a 1750 count += compute_large_page_tx_descs(skb);
559fb51b 1751
f1d3d38a
SH
1752 /* Ethernet packet */
1753 if (unlikely(credits < count)) {
1754 if (!netif_queue_stopped(dev)) {
559fb51b
SB
1755 netif_stop_queue(dev);
1756 set_bit(dev->if_port, &sge->stopped_tx_queues);
232a347a 1757 sge->stats.cmdQ_full[2]++;
f1d3d38a
SH
1758 CH_ERR("%s: Tx ring full while queue awake!\n",
1759 adapter->name);
8199d3a7 1760 }
f1d3d38a
SH
1761 spin_unlock(&q->lock);
1762 return NETDEV_TX_BUSY;
1763 }
1764
1765 if (unlikely(credits - count < q->stop_thres)) {
1766 netif_stop_queue(dev);
1767 set_bit(dev->if_port, &sge->stopped_tx_queues);
1768 sge->stats.cmdQ_full[2]++;
1769 }
1770
1771 /* T204 cmdQ0 skbs that are destined for a certain port have to go
1772 * through the scheduler.
1773 */
1774 if (sge->tx_sched && !qid && skb->dev) {
356bd146 1775use_sched:
f1d3d38a
SH
1776 use_sched_skb = 1;
1777 /* Note that the scheduler might return a different skb than
1778 * the one passed in.
1779 */
1780 skb = sched_skb(sge, skb, credits);
1781 if (!skb) {
1782 spin_unlock(&q->lock);
1783 return NETDEV_TX_OK;
559fb51b 1784 }
f1d3d38a
SH
1785 pidx = q->pidx;
1786 count = 1 + skb_shinfo(skb)->nr_frags;
1787 count += compute_large_page_tx_descs(skb);
559fb51b 1788 }
f1d3d38a 1789
559fb51b
SB
1790 q->in_use += count;
1791 genbit = q->genbit;
f1d3d38a 1792 pidx = q->pidx;
559fb51b
SB
1793 q->pidx += count;
1794 if (q->pidx >= q->size) {
1795 q->pidx -= q->size;
1796 q->genbit ^= 1;
8199d3a7 1797 }
559fb51b 1798 spin_unlock(&q->lock);
8199d3a7 1799
559fb51b 1800 write_tx_descs(adapter, skb, pidx, genbit, q);
8199d3a7
CL
1801
1802 /*
1803 * We always ring the doorbell for cmdQ1. For cmdQ0, we only ring
1804 * the doorbell if the Q is asleep. There is a natural race, where
1805 * the hardware is going to sleep just after we checked, however,
1806 * then the interrupt handler will detect the outstanding TX packet
1807 * and ring the doorbell for us.
1808 */
559fb51b
SB
1809 if (qid)
1810 doorbell_pio(adapter, F_CMDQ1_ENABLE);
1811 else {
1812 clear_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1813 if (test_and_set_bit(CMDQ_STAT_RUNNING, &q->status) == 0) {
1814 set_bit(CMDQ_STAT_LAST_PKT_DB, &q->status);
1815 writel(F_CMDQ0_ENABLE, adapter->regs + A_SG_DOORBELL);
1816 }
8199d3a7 1817 }
f1d3d38a
SH
1818
1819 if (use_sched_skb) {
1820 if (spin_trylock(&q->lock)) {
1821 credits = q->size - q->in_use;
1822 skb = NULL;
1823 goto use_sched;
1824 }
1825 }
aa84505f 1826 return NETDEV_TX_OK;
8199d3a7
CL
1827}
1828
1829#define MK_ETH_TYPE_MSS(type, mss) (((mss) & 0x3FFF) | ((type) << 14))
1830
559fb51b
SB
1831/*
1832 * eth_hdr_len - return the length of an Ethernet header
1833 * @data: pointer to the start of the Ethernet header
1834 *
1835 * Returns the length of an Ethernet header, including optional VLAN tag.
1836 */
1837static inline int eth_hdr_len(const void *data)
1838{
1839 const struct ethhdr *e = data;
1840
1841 return e->h_proto == htons(ETH_P_8021Q) ? VLAN_ETH_HLEN : ETH_HLEN;
1842}
1843
8199d3a7
CL
1844/*
1845 * Adds the CPL header to the sk_buff and passes it to t1_sge_tx.
1846 */
1847int t1_start_xmit(struct sk_buff *skb, struct net_device *dev)
1848{
1849 struct adapter *adapter = dev->priv;
559fb51b 1850 struct sge *sge = adapter->sge;
56f643c2 1851 struct sge_port_stats *st = per_cpu_ptr(sge->port_stats[dev->if_port], smp_processor_id());
8199d3a7 1852 struct cpl_tx_pkt *cpl;
cabdfb37
SH
1853 struct sk_buff *orig_skb = skb;
1854 int ret;
8199d3a7 1855
f1d3d38a
SH
1856 if (skb->protocol == htons(ETH_P_CPL5))
1857 goto send;
1858
1859 if (skb_shinfo(skb)->gso_size) {
8199d3a7
CL
1860 int eth_type;
1861 struct cpl_tx_pkt_lso *hdr;
1862
56f643c2 1863 ++st->tx_tso;
559fb51b 1864
8199d3a7
CL
1865 eth_type = skb->nh.raw - skb->data == ETH_HLEN ?
1866 CPL_ETH_II : CPL_ETH_II_VLAN;
1867
1868 hdr = (struct cpl_tx_pkt_lso *)skb_push(skb, sizeof(*hdr));
1869 hdr->opcode = CPL_TX_PKT_LSO;
1870 hdr->ip_csum_dis = hdr->l4_csum_dis = 0;
1871 hdr->ip_hdr_words = skb->nh.iph->ihl;
1872 hdr->tcp_hdr_words = skb->h.th->doff;
1873 hdr->eth_type_mss = htons(MK_ETH_TYPE_MSS(eth_type,
f1d3d38a 1874 skb_shinfo(skb)->gso_size));
8199d3a7
CL
1875 hdr->len = htonl(skb->len - sizeof(*hdr));
1876 cpl = (struct cpl_tx_pkt *)hdr;
f1d3d38a 1877 } else {
8199d3a7 1878 /*
356bd146 1879 * Packets shorter than ETH_HLEN can break the MAC, drop them
559fb51b
SB
1880 * early. Also, we may get oversized packets because some
1881 * parts of the kernel don't handle our unusual hard_header_len
1882 * right, drop those too.
8199d3a7 1883 */
559fb51b
SB
1884 if (unlikely(skb->len < ETH_HLEN ||
1885 skb->len > dev->mtu + eth_hdr_len(skb->data))) {
f1d3d38a
SH
1886 pr_debug("%s: packet size %d hdr %d mtu%d\n", dev->name,
1887 skb->len, eth_hdr_len(skb->data), dev->mtu);
559fb51b 1888 dev_kfree_skb_any(skb);
aa84505f 1889 return NETDEV_TX_OK;
559fb51b
SB
1890 }
1891
1892 /*
1893 * We are using a non-standard hard_header_len and some kernel
1894 * components, such as pktgen, do not handle it right.
1895 * Complain when this happens but try to fix things up.
1896 */
f1d3d38a 1897 if (unlikely(skb_headroom(skb) < dev->hard_header_len - ETH_HLEN)) {
f1d3d38a
SH
1898 pr_debug("%s: headroom %d header_len %d\n", dev->name,
1899 skb_headroom(skb), dev->hard_header_len);
1900
559fb51b
SB
1901 if (net_ratelimit())
1902 printk(KERN_ERR "%s: inadequate headroom in "
1903 "Tx packet\n", dev->name);
1904 skb = skb_realloc_headroom(skb, sizeof(*cpl));
1905 dev_kfree_skb_any(orig_skb);
1906 if (!skb)
aa84505f 1907 return NETDEV_TX_OK;
559fb51b 1908 }
8199d3a7
CL
1909
1910 if (!(adapter->flags & UDP_CSUM_CAPABLE) &&
84fa7933 1911 skb->ip_summed == CHECKSUM_PARTIAL &&
f1d3d38a 1912 skb->nh.iph->protocol == IPPROTO_UDP) {
84fa7933 1913 if (unlikely(skb_checksum_help(skb))) {
f1d3d38a 1914 pr_debug("%s: unable to do udp checksum\n", dev->name);
559fb51b 1915 dev_kfree_skb_any(skb);
aa84505f 1916 return NETDEV_TX_OK;
559fb51b 1917 }
f1d3d38a 1918 }
8199d3a7 1919
559fb51b
SB
1920 /* Hmmm, assuming to catch the gratious arp... and we'll use
1921 * it to flush out stuck espi packets...
f1d3d38a
SH
1922 */
1923 if ((unlikely(!adapter->sge->espibug_skb[dev->if_port]))) {
8199d3a7 1924 if (skb->protocol == htons(ETH_P_ARP) &&
559fb51b 1925 skb->nh.arph->ar_op == htons(ARPOP_REQUEST)) {
f1d3d38a 1926 adapter->sge->espibug_skb[dev->if_port] = skb;
559fb51b
SB
1927 /* We want to re-use this skb later. We
1928 * simply bump the reference count and it
1929 * will not be freed...
1930 */
1931 skb = skb_get(skb);
1932 }
8199d3a7 1933 }
559fb51b
SB
1934
1935 cpl = (struct cpl_tx_pkt *)__skb_push(skb, sizeof(*cpl));
8199d3a7
CL
1936 cpl->opcode = CPL_TX_PKT;
1937 cpl->ip_csum_dis = 1; /* SW calculates IP csum */
84fa7933 1938 cpl->l4_csum_dis = skb->ip_summed == CHECKSUM_PARTIAL ? 0 : 1;
8199d3a7 1939 /* the length field isn't used so don't bother setting it */
559fb51b 1940
84fa7933 1941 st->tx_cso += (skb->ip_summed == CHECKSUM_PARTIAL);
8199d3a7
CL
1942 }
1943 cpl->iff = dev->if_port;
1944
1945#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1946 if (adapter->vlan_grp && vlan_tx_tag_present(skb)) {
1947 cpl->vlan_valid = 1;
1948 cpl->vlan = htons(vlan_tx_tag_get(skb));
559fb51b 1949 st->vlan_insert++;
8199d3a7
CL
1950 } else
1951#endif
1952 cpl->vlan_valid = 0;
1953
f1d3d38a 1954send:
56f643c2 1955 st->tx_packets++;
8199d3a7 1956 dev->trans_start = jiffies;
cabdfb37
SH
1957 ret = t1_sge_tx(skb, adapter, 0, dev);
1958
1959 /* If transmit busy, and we reallocated skb's due to headroom limit,
1960 * then silently discard to avoid leak.
1961 */
1962 if (unlikely(ret != NETDEV_TX_OK && skb != orig_skb)) {
356bd146 1963 dev_kfree_skb_any(skb);
cabdfb37 1964 ret = NETDEV_TX_OK;
356bd146 1965 }
cabdfb37 1966 return ret;
559fb51b 1967}
8199d3a7 1968
559fb51b
SB
1969/*
1970 * Callback for the Tx buffer reclaim timer. Runs with softirqs disabled.
1971 */
1972static void sge_tx_reclaim_cb(unsigned long data)
1973{
1974 int i;
1975 struct sge *sge = (struct sge *)data;
1976
1977 for (i = 0; i < SGE_CMDQ_N; ++i) {
1978 struct cmdQ *q = &sge->cmdQ[i];
1979
1980 if (!spin_trylock(&q->lock))
1981 continue;
8199d3a7 1982
559fb51b 1983 reclaim_completed_tx(sge, q);
f1d3d38a
SH
1984 if (i == 0 && q->in_use) { /* flush pending credits */
1985 writel(F_CMDQ0_ENABLE, sge->adapter->regs + A_SG_DOORBELL);
1986 }
559fb51b
SB
1987 spin_unlock(&q->lock);
1988 }
1989 mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
1990}
1991
1992/*
1993 * Propagate changes of the SGE coalescing parameters to the HW.
1994 */
1995int t1_sge_set_coalesce_params(struct sge *sge, struct sge_params *p)
1996{
559fb51b
SB
1997 sge->fixed_intrtimer = p->rx_coalesce_usecs *
1998 core_ticks_per_usec(sge->adapter);
1999 writel(sge->fixed_intrtimer, sge->adapter->regs + A_SG_INTRTIMER);
8199d3a7
CL
2000 return 0;
2001}
2002
559fb51b
SB
2003/*
2004 * Allocates both RX and TX resources and configures the SGE. However,
2005 * the hardware is not enabled yet.
2006 */
2007int t1_sge_configure(struct sge *sge, struct sge_params *p)
8199d3a7 2008{
559fb51b
SB
2009 if (alloc_rx_resources(sge, p))
2010 return -ENOMEM;
2011 if (alloc_tx_resources(sge, p)) {
2012 free_rx_resources(sge);
2013 return -ENOMEM;
2014 }
2015 configure_sge(sge, p);
2016
2017 /*
2018 * Now that we have sized the free lists calculate the payload
2019 * capacity of the large buffers. Other parts of the driver use
2020 * this to set the max offload coalescing size so that RX packets
2021 * do not overflow our large buffers.
2022 */
2023 p->large_buf_capacity = jumbo_payload_capacity(sge);
2024 return 0;
2025}
8199d3a7 2026
559fb51b
SB
2027/*
2028 * Disables the DMA engine.
2029 */
2030void t1_sge_stop(struct sge *sge)
2031{
f1d3d38a 2032 int i;
559fb51b 2033 writel(0, sge->adapter->regs + A_SG_CONTROL);
f1d3d38a
SH
2034 readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
2035
559fb51b
SB
2036 if (is_T2(sge->adapter))
2037 del_timer_sync(&sge->espibug_timer);
f1d3d38a 2038
559fb51b 2039 del_timer_sync(&sge->tx_reclaim_timer);
f1d3d38a
SH
2040 if (sge->tx_sched)
2041 tx_sched_stop(sge);
2042
2043 for (i = 0; i < MAX_NPORTS; i++)
2044 if (sge->espibug_skb[i])
2045 kfree_skb(sge->espibug_skb[i]);
8199d3a7
CL
2046}
2047
559fb51b
SB
2048/*
2049 * Enables the DMA engine.
2050 */
2051void t1_sge_start(struct sge *sge)
8199d3a7 2052{
559fb51b
SB
2053 refill_free_list(sge, &sge->freelQ[0]);
2054 refill_free_list(sge, &sge->freelQ[1]);
2055
2056 writel(sge->sge_control, sge->adapter->regs + A_SG_CONTROL);
2057 doorbell_pio(sge->adapter, F_FL0_ENABLE | F_FL1_ENABLE);
f1d3d38a 2058 readl(sge->adapter->regs + A_SG_CONTROL); /* flush */
559fb51b
SB
2059
2060 mod_timer(&sge->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD);
2061
f1d3d38a 2062 if (is_T2(sge->adapter))
559fb51b
SB
2063 mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2064}
2065
2066/*
2067 * Callback for the T2 ESPI 'stuck packet feature' workaorund
2068 */
f1d3d38a 2069static void espibug_workaround_t204(unsigned long data)
559fb51b
SB
2070{
2071 struct adapter *adapter = (struct adapter *)data;
8199d3a7 2072 struct sge *sge = adapter->sge;
f1d3d38a
SH
2073 unsigned int nports = adapter->params.nports;
2074 u32 seop[MAX_NPORTS];
8199d3a7 2075
f1d3d38a
SH
2076 if (adapter->open_device_map & PORT_MASK) {
2077 int i;
356bd146
FR
2078
2079 if (t1_espi_get_mon_t204(adapter, &(seop[0]), 0) < 0)
f1d3d38a 2080 return;
356bd146 2081
f1d3d38a 2082 for (i = 0; i < nports; i++) {
356bd146
FR
2083 struct sk_buff *skb = sge->espibug_skb[i];
2084
2085 if (!netif_running(adapter->port[i].dev) ||
2086 netif_queue_stopped(adapter->port[i].dev) ||
2087 !seop[i] || ((seop[i] & 0xfff) != 0) || !skb)
2088 continue;
2089
2090 if (!skb->cb[0]) {
2091 u8 ch_mac_addr[ETH_ALEN] = {
2092 0x0, 0x7, 0x43, 0x0, 0x0, 0x0
2093 };
2094
2095 memcpy(skb->data + sizeof(struct cpl_tx_pkt),
2096 ch_mac_addr, ETH_ALEN);
2097 memcpy(skb->data + skb->len - 10,
2098 ch_mac_addr, ETH_ALEN);
2099 skb->cb[0] = 0xff;
559fb51b 2100 }
356bd146
FR
2101
2102 /* bump the reference count to avoid freeing of
2103 * the skb once the DMA has completed.
2104 */
2105 skb = skb_get(skb);
2106 t1_sge_tx(skb, adapter, 0, adapter->port[i].dev);
559fb51b
SB
2107 }
2108 }
2109 mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
8199d3a7
CL
2110}
2111
f1d3d38a
SH
2112static void espibug_workaround(unsigned long data)
2113{
2114 struct adapter *adapter = (struct adapter *)data;
2115 struct sge *sge = adapter->sge;
2116
2117 if (netif_running(adapter->port[0].dev)) {
2118 struct sk_buff *skb = sge->espibug_skb[0];
2119 u32 seop = t1_espi_get_mon(adapter, 0x930, 0);
2120
2121 if ((seop & 0xfff0fff) == 0xfff && skb) {
2122 if (!skb->cb[0]) {
2123 u8 ch_mac_addr[ETH_ALEN] =
2124 {0x0, 0x7, 0x43, 0x0, 0x0, 0x0};
2125 memcpy(skb->data + sizeof(struct cpl_tx_pkt),
2126 ch_mac_addr, ETH_ALEN);
2127 memcpy(skb->data + skb->len - 10, ch_mac_addr,
2128 ETH_ALEN);
2129 skb->cb[0] = 0xff;
2130 }
2131
2132 /* bump the reference count to avoid freeing of the
2133 * skb once the DMA has completed.
2134 */
2135 skb = skb_get(skb);
2136 t1_sge_tx(skb, adapter, 0, adapter->port[0].dev);
2137 }
2138 }
2139 mod_timer(&sge->espibug_timer, jiffies + sge->espibug_timeout);
2140}
2141
559fb51b
SB
2142/*
2143 * Creates a t1_sge structure and returns suggested resource parameters.
2144 */
2145struct sge * __devinit t1_sge_create(struct adapter *adapter,
2146 struct sge_params *p)
2147{
cbee9f91 2148 struct sge *sge = kzalloc(sizeof(*sge), GFP_KERNEL);
56f643c2 2149 int i;
559fb51b
SB
2150
2151 if (!sge)
2152 return NULL;
559fb51b
SB
2153
2154 sge->adapter = adapter;
2155 sge->netdev = adapter->port[0].dev;
2156 sge->rx_pkt_pad = t1_is_T1B(adapter) ? 0 : 2;
2157 sge->jumbo_fl = t1_is_T1B(adapter) ? 1 : 0;
2158
56f643c2
SH
2159 for_each_port(adapter, i) {
2160 sge->port_stats[i] = alloc_percpu(struct sge_port_stats);
2161 if (!sge->port_stats[i])
2162 goto nomem_port;
2163 }
2164
559fb51b
SB
2165 init_timer(&sge->tx_reclaim_timer);
2166 sge->tx_reclaim_timer.data = (unsigned long)sge;
2167 sge->tx_reclaim_timer.function = sge_tx_reclaim_cb;
2168
2169 if (is_T2(sge->adapter)) {
2170 init_timer(&sge->espibug_timer);
f1d3d38a
SH
2171
2172 if (adapter->params.nports > 1) {
2173 tx_sched_init(sge);
2174 sge->espibug_timer.function = espibug_workaround_t204;
d7487421 2175 } else
f1d3d38a 2176 sge->espibug_timer.function = espibug_workaround;
559fb51b 2177 sge->espibug_timer.data = (unsigned long)sge->adapter;
f1d3d38a 2178
559fb51b 2179 sge->espibug_timeout = 1;
f1d3d38a
SH
2180 /* for T204, every 10ms */
2181 if (adapter->params.nports > 1)
2182 sge->espibug_timeout = HZ/100;
559fb51b 2183 }
356bd146 2184
559fb51b
SB
2185
2186 p->cmdQ_size[0] = SGE_CMDQ0_E_N;
2187 p->cmdQ_size[1] = SGE_CMDQ1_E_N;
2188 p->freelQ_size[!sge->jumbo_fl] = SGE_FREEL_SIZE;
2189 p->freelQ_size[sge->jumbo_fl] = SGE_JUMBO_FREEL_SIZE;
f1d3d38a
SH
2190 if (sge->tx_sched) {
2191 if (board_info(sge->adapter)->board == CHBT_BOARD_CHT204)
2192 p->rx_coalesce_usecs = 15;
2193 else
2194 p->rx_coalesce_usecs = 50;
2195 } else
2196 p->rx_coalesce_usecs = 50;
2197
559fb51b
SB
2198 p->coalesce_enable = 0;
2199 p->sample_interval_usecs = 0;
559fb51b
SB
2200
2201 return sge;
56f643c2
SH
2202nomem_port:
2203 while (i >= 0) {
2204 free_percpu(sge->port_stats[i]);
2205 --i;
2206 }
2207 kfree(sge);
2208 return NULL;
2209
559fb51b 2210}