Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc
[linux-2.6-block.git] / drivers / mtd / nand / s3c2410.c
CommitLineData
1da177e4
LT
1/* linux/drivers/mtd/nand/s3c2410.c
2 *
7e74a507
BD
3 * Copyright © 2004-2008 Simtec Electronics
4 * http://armlinux.simtec.co.uk/
fdf2fd52 5 * Ben Dooks <ben@simtec.co.uk>
1da177e4 6 *
7e74a507 7 * Samsung S3C2410/S3C2440/S3C2412 NAND driver
1da177e4 8 *
1da177e4
LT
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 *
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
22*/
23
92aeb5d2
SK
24#define pr_fmt(fmt) "nand-s3c2410: " fmt
25
1da177e4
LT
26#ifdef CONFIG_MTD_NAND_S3C2410_DEBUG
27#define DEBUG
28#endif
29
30#include <linux/module.h>
31#include <linux/types.h>
1da177e4
LT
32#include <linux/kernel.h>
33#include <linux/string.h>
d2a89be8 34#include <linux/io.h>
1da177e4 35#include <linux/ioport.h>
d052d1be 36#include <linux/platform_device.h>
1da177e4
LT
37#include <linux/delay.h>
38#include <linux/err.h>
4e57b681 39#include <linux/slab.h>
f8ce2547 40#include <linux/clk.h>
30821fee 41#include <linux/cpufreq.h>
1da177e4
LT
42
43#include <linux/mtd/mtd.h>
44#include <linux/mtd/nand.h>
45#include <linux/mtd/nand_ecc.h>
46#include <linux/mtd/partitions.h>
47
436d42c6 48#include <linux/platform_data/mtd-nand-s3c2410.h>
1da177e4 49
02d01862
SK
50#define S3C2410_NFREG(x) (x)
51
52#define S3C2410_NFCONF S3C2410_NFREG(0x00)
53#define S3C2410_NFCMD S3C2410_NFREG(0x04)
54#define S3C2410_NFADDR S3C2410_NFREG(0x08)
55#define S3C2410_NFDATA S3C2410_NFREG(0x0C)
56#define S3C2410_NFSTAT S3C2410_NFREG(0x10)
57#define S3C2410_NFECC S3C2410_NFREG(0x14)
58#define S3C2440_NFCONT S3C2410_NFREG(0x04)
59#define S3C2440_NFCMD S3C2410_NFREG(0x08)
60#define S3C2440_NFADDR S3C2410_NFREG(0x0C)
61#define S3C2440_NFDATA S3C2410_NFREG(0x10)
62#define S3C2440_NFSTAT S3C2410_NFREG(0x20)
63#define S3C2440_NFMECC0 S3C2410_NFREG(0x2C)
64#define S3C2412_NFSTAT S3C2410_NFREG(0x28)
65#define S3C2412_NFMECC0 S3C2410_NFREG(0x34)
66#define S3C2410_NFCONF_EN (1<<15)
67#define S3C2410_NFCONF_INITECC (1<<12)
68#define S3C2410_NFCONF_nFCE (1<<11)
69#define S3C2410_NFCONF_TACLS(x) ((x)<<8)
70#define S3C2410_NFCONF_TWRPH0(x) ((x)<<4)
71#define S3C2410_NFCONF_TWRPH1(x) ((x)<<0)
72#define S3C2410_NFSTAT_BUSY (1<<0)
73#define S3C2440_NFCONF_TACLS(x) ((x)<<12)
74#define S3C2440_NFCONF_TWRPH0(x) ((x)<<8)
75#define S3C2440_NFCONF_TWRPH1(x) ((x)<<4)
76#define S3C2440_NFCONT_INITECC (1<<4)
77#define S3C2440_NFCONT_nFCE (1<<1)
78#define S3C2440_NFCONT_ENABLE (1<<0)
79#define S3C2440_NFSTAT_READY (1<<0)
80#define S3C2412_NFCONF_NANDBOOT (1<<31)
81#define S3C2412_NFCONT_INIT_MAIN_ECC (1<<5)
82#define S3C2412_NFCONT_nFCE0 (1<<1)
83#define S3C2412_NFSTAT_READY (1<<0)
84
1da177e4
LT
85/* new oob placement block for use with hardware ecc generation
86 */
87
5bd34c09 88static struct nand_ecclayout nand_hw_eccoob = {
e0c7d767
DW
89 .eccbytes = 3,
90 .eccpos = {0, 1, 2},
91 .oobfree = {{8, 8}}
1da177e4
LT
92};
93
94/* controller and mtd information */
95
96struct s3c2410_nand_info;
97
3db72151
BD
98/**
99 * struct s3c2410_nand_mtd - driver MTD structure
100 * @mtd: The MTD instance to pass to the MTD layer.
101 * @chip: The NAND chip information.
102 * @set: The platform information supplied for this set of NAND chips.
103 * @info: Link back to the hardware information.
104 * @scan_res: The result from calling nand_scan_ident().
105*/
1da177e4 106struct s3c2410_nand_mtd {
1da177e4
LT
107 struct nand_chip chip;
108 struct s3c2410_nand_set *set;
109 struct s3c2410_nand_info *info;
110 int scan_res;
111};
112
2c06a082
BD
113enum s3c_cpu_type {
114 TYPE_S3C2410,
115 TYPE_S3C2412,
116 TYPE_S3C2440,
117};
118
ac497c16
JP
119enum s3c_nand_clk_state {
120 CLOCK_DISABLE = 0,
121 CLOCK_ENABLE,
122 CLOCK_SUSPEND,
123};
124
1da177e4
LT
125/* overview of the s3c2410 nand state */
126
3db72151
BD
127/**
128 * struct s3c2410_nand_info - NAND controller state.
129 * @mtds: An array of MTD instances on this controoler.
130 * @platform: The platform data for this board.
131 * @device: The platform device we bound to.
3db72151 132 * @clk: The clock resource for this controller.
6f32a3e2 133 * @regs: The area mapped for the hardware registers.
3db72151
BD
134 * @sel_reg: Pointer to the register controlling the NAND selection.
135 * @sel_bit: The bit in @sel_reg to select the NAND chip.
136 * @mtd_count: The number of MTDs created from this controller.
137 * @save_sel: The contents of @sel_reg to be saved over suspend.
138 * @clk_rate: The clock rate from @clk.
ac497c16 139 * @clk_state: The current clock state.
3db72151
BD
140 * @cpu_type: The exact type of this controller.
141 */
1da177e4
LT
142struct s3c2410_nand_info {
143 /* mtd info */
144 struct nand_hw_control controller;
145 struct s3c2410_nand_mtd *mtds;
146 struct s3c2410_platform_nand *platform;
147
148 /* device info */
149 struct device *device;
1da177e4 150 struct clk *clk;
fdf2fd52 151 void __iomem *regs;
2c06a082
BD
152 void __iomem *sel_reg;
153 int sel_bit;
1da177e4 154 int mtd_count;
09160832 155 unsigned long save_sel;
30821fee 156 unsigned long clk_rate;
ac497c16 157 enum s3c_nand_clk_state clk_state;
03680b1e 158
2c06a082 159 enum s3c_cpu_type cpu_type;
30821fee
BD
160
161#ifdef CONFIG_CPU_FREQ
162 struct notifier_block freq_transition;
163#endif
1da177e4
LT
164};
165
166/* conversion functions */
167
168static struct s3c2410_nand_mtd *s3c2410_nand_mtd_toours(struct mtd_info *mtd)
169{
7208b997
BB
170 return container_of(mtd_to_nand(mtd), struct s3c2410_nand_mtd,
171 chip);
1da177e4
LT
172}
173
174static struct s3c2410_nand_info *s3c2410_nand_mtd_toinfo(struct mtd_info *mtd)
175{
176 return s3c2410_nand_mtd_toours(mtd)->info;
177}
178
3ae5eaec 179static struct s3c2410_nand_info *to_nand_info(struct platform_device *dev)
1da177e4 180{
3ae5eaec 181 return platform_get_drvdata(dev);
1da177e4
LT
182}
183
3ae5eaec 184static struct s3c2410_platform_nand *to_nand_plat(struct platform_device *dev)
1da177e4 185{
453810b7 186 return dev_get_platdata(&dev->dev);
1da177e4
LT
187}
188
ac497c16 189static inline int allow_clk_suspend(struct s3c2410_nand_info *info)
d1fef3c5 190{
a68c5ec8
SK
191#ifdef CONFIG_MTD_NAND_S3C2410_CLKSTOP
192 return 1;
193#else
194 return 0;
195#endif
d1fef3c5
BD
196}
197
ac497c16
JP
198/**
199 * s3c2410_nand_clk_set_state - Enable, disable or suspend NAND clock.
200 * @info: The controller instance.
201 * @new_state: State to which clock should be set.
202 */
203static void s3c2410_nand_clk_set_state(struct s3c2410_nand_info *info,
204 enum s3c_nand_clk_state new_state)
205{
206 if (!allow_clk_suspend(info) && new_state == CLOCK_SUSPEND)
207 return;
208
209 if (info->clk_state == CLOCK_ENABLE) {
210 if (new_state != CLOCK_ENABLE)
887957b4 211 clk_disable_unprepare(info->clk);
ac497c16
JP
212 } else {
213 if (new_state == CLOCK_ENABLE)
887957b4 214 clk_prepare_enable(info->clk);
ac497c16
JP
215 }
216
217 info->clk_state = new_state;
218}
219
1da177e4
LT
220/* timing calculations */
221
cfd320fb 222#define NS_IN_KHZ 1000000
1da177e4 223
3db72151
BD
224/**
225 * s3c_nand_calc_rate - calculate timing data.
226 * @wanted: The cycle time in nanoseconds.
227 * @clk: The clock rate in kHz.
228 * @max: The maximum divider value.
229 *
230 * Calculate the timing value from the given parameters.
231 */
2c06a082 232static int s3c_nand_calc_rate(int wanted, unsigned long clk, int max)
1da177e4
LT
233{
234 int result;
235
947391cf 236 result = DIV_ROUND_UP((wanted * clk), NS_IN_KHZ);
1da177e4
LT
237
238 pr_debug("result %d from %ld, %d\n", result, clk, wanted);
239
240 if (result > max) {
92aeb5d2
SK
241 pr_err("%d ns is too big for current clock rate %ld\n",
242 wanted, clk);
1da177e4
LT
243 return -1;
244 }
245
246 if (result < 1)
247 result = 1;
248
249 return result;
250}
251
54cd0208 252#define to_ns(ticks, clk) (((ticks) * NS_IN_KHZ) / (unsigned int)(clk))
1da177e4
LT
253
254/* controller setup */
255
3db72151
BD
256/**
257 * s3c2410_nand_setrate - setup controller timing information.
258 * @info: The controller instance.
259 *
260 * Given the information supplied by the platform, calculate and set
261 * the necessary timing registers in the hardware to generate the
262 * necessary timing cycles to the hardware.
263 */
30821fee 264static int s3c2410_nand_setrate(struct s3c2410_nand_info *info)
1da177e4 265{
30821fee 266 struct s3c2410_platform_nand *plat = info->platform;
2c06a082 267 int tacls_max = (info->cpu_type == TYPE_S3C2412) ? 8 : 4;
cfd320fb 268 int tacls, twrph0, twrph1;
30821fee 269 unsigned long clkrate = clk_get_rate(info->clk);
2612e523 270 unsigned long uninitialized_var(set), cfg, uninitialized_var(mask);
30821fee 271 unsigned long flags;
1da177e4
LT
272
273 /* calculate the timing information for the controller */
274
30821fee 275 info->clk_rate = clkrate;
cfd320fb
BD
276 clkrate /= 1000; /* turn clock into kHz for ease of use */
277
1da177e4 278 if (plat != NULL) {
2c06a082
BD
279 tacls = s3c_nand_calc_rate(plat->tacls, clkrate, tacls_max);
280 twrph0 = s3c_nand_calc_rate(plat->twrph0, clkrate, 8);
281 twrph1 = s3c_nand_calc_rate(plat->twrph1, clkrate, 8);
1da177e4
LT
282 } else {
283 /* default timings */
2c06a082 284 tacls = tacls_max;
1da177e4
LT
285 twrph0 = 8;
286 twrph1 = 8;
287 }
61b03bd7 288
1da177e4 289 if (tacls < 0 || twrph0 < 0 || twrph1 < 0) {
99974c62 290 dev_err(info->device, "cannot get suitable timings\n");
1da177e4
LT
291 return -EINVAL;
292 }
293
99974c62 294 dev_info(info->device, "Tacls=%d, %dns Twrph0=%d %dns, Twrph1=%d %dns\n",
54cd0208
SK
295 tacls, to_ns(tacls, clkrate), twrph0, to_ns(twrph0, clkrate),
296 twrph1, to_ns(twrph1, clkrate));
1da177e4 297
30821fee
BD
298 switch (info->cpu_type) {
299 case TYPE_S3C2410:
300 mask = (S3C2410_NFCONF_TACLS(3) |
301 S3C2410_NFCONF_TWRPH0(7) |
302 S3C2410_NFCONF_TWRPH1(7));
303 set = S3C2410_NFCONF_EN;
304 set |= S3C2410_NFCONF_TACLS(tacls - 1);
305 set |= S3C2410_NFCONF_TWRPH0(twrph0 - 1);
306 set |= S3C2410_NFCONF_TWRPH1(twrph1 - 1);
307 break;
308
309 case TYPE_S3C2440:
310 case TYPE_S3C2412:
a755a385
PK
311 mask = (S3C2440_NFCONF_TACLS(tacls_max - 1) |
312 S3C2440_NFCONF_TWRPH0(7) |
313 S3C2440_NFCONF_TWRPH1(7));
30821fee
BD
314
315 set = S3C2440_NFCONF_TACLS(tacls - 1);
316 set |= S3C2440_NFCONF_TWRPH0(twrph0 - 1);
317 set |= S3C2440_NFCONF_TWRPH1(twrph1 - 1);
318 break;
319
320 default:
30821fee
BD
321 BUG();
322 }
323
30821fee
BD
324 local_irq_save(flags);
325
326 cfg = readl(info->regs + S3C2410_NFCONF);
327 cfg &= ~mask;
328 cfg |= set;
329 writel(cfg, info->regs + S3C2410_NFCONF);
330
331 local_irq_restore(flags);
332
ae7304e5
AG
333 dev_dbg(info->device, "NF_CONF is 0x%lx\n", cfg);
334
30821fee
BD
335 return 0;
336}
337
3db72151
BD
338/**
339 * s3c2410_nand_inithw - basic hardware initialisation
340 * @info: The hardware state.
341 *
342 * Do the basic initialisation of the hardware, using s3c2410_nand_setrate()
343 * to setup the hardware access speeds and set the controller to be enabled.
344*/
30821fee
BD
345static int s3c2410_nand_inithw(struct s3c2410_nand_info *info)
346{
347 int ret;
348
349 ret = s3c2410_nand_setrate(info);
350 if (ret < 0)
351 return ret;
352
54cd0208
SK
353 switch (info->cpu_type) {
354 case TYPE_S3C2410:
30821fee 355 default:
2c06a082
BD
356 break;
357
54cd0208
SK
358 case TYPE_S3C2440:
359 case TYPE_S3C2412:
d1fef3c5
BD
360 /* enable the controller and de-assert nFCE */
361
2c06a082 362 writel(S3C2440_NFCONT_ENABLE, info->regs + S3C2440_NFCONT);
a4f957f1 363 }
1da177e4 364
1da177e4
LT
365 return 0;
366}
367
3db72151
BD
368/**
369 * s3c2410_nand_select_chip - select the given nand chip
370 * @mtd: The MTD instance for this chip.
371 * @chip: The chip number.
372 *
373 * This is called by the MTD layer to either select a given chip for the
374 * @mtd instance, or to indicate that the access has finished and the
375 * chip can be de-selected.
376 *
377 * The routine ensures that the nFCE line is correctly setup, and any
378 * platform specific selection code is called to route nFCE to the specific
379 * chip.
380 */
1da177e4
LT
381static void s3c2410_nand_select_chip(struct mtd_info *mtd, int chip)
382{
383 struct s3c2410_nand_info *info;
61b03bd7 384 struct s3c2410_nand_mtd *nmtd;
4bd4ebcc 385 struct nand_chip *this = mtd_to_nand(mtd);
1da177e4
LT
386 unsigned long cur;
387
d699ed25 388 nmtd = nand_get_controller_data(this);
1da177e4
LT
389 info = nmtd->info;
390
ac497c16
JP
391 if (chip != -1)
392 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
d1fef3c5 393
2c06a082 394 cur = readl(info->sel_reg);
1da177e4
LT
395
396 if (chip == -1) {
2c06a082 397 cur |= info->sel_bit;
1da177e4 398 } else {
fb8d82a8 399 if (nmtd->set != NULL && chip > nmtd->set->nr_chips) {
99974c62 400 dev_err(info->device, "invalid chip %d\n", chip);
1da177e4
LT
401 return;
402 }
403
404 if (info->platform != NULL) {
405 if (info->platform->select_chip != NULL)
e0c7d767 406 (info->platform->select_chip) (nmtd->set, chip);
1da177e4
LT
407 }
408
2c06a082 409 cur &= ~info->sel_bit;
1da177e4
LT
410 }
411
2c06a082 412 writel(cur, info->sel_reg);
d1fef3c5 413
ac497c16
JP
414 if (chip == -1)
415 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
1da177e4
LT
416}
417
ad3b5fb7 418/* s3c2410_nand_hwcontrol
a4f957f1 419 *
ad3b5fb7 420 * Issue command and address cycles to the chip
a4f957f1 421*/
1da177e4 422
7abd3ef9 423static void s3c2410_nand_hwcontrol(struct mtd_info *mtd, int cmd,
f9068876 424 unsigned int ctrl)
1da177e4
LT
425{
426 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
c9ac5977 427
7abd3ef9
TG
428 if (cmd == NAND_CMD_NONE)
429 return;
430
f9068876 431 if (ctrl & NAND_CLE)
7abd3ef9
TG
432 writeb(cmd, info->regs + S3C2410_NFCMD);
433 else
434 writeb(cmd, info->regs + S3C2410_NFADDR);
a4f957f1
BD
435}
436
437/* command and control functions */
438
f9068876
DW
439static void s3c2440_nand_hwcontrol(struct mtd_info *mtd, int cmd,
440 unsigned int ctrl)
a4f957f1
BD
441{
442 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
1da177e4 443
7abd3ef9
TG
444 if (cmd == NAND_CMD_NONE)
445 return;
446
f9068876 447 if (ctrl & NAND_CLE)
7abd3ef9
TG
448 writeb(cmd, info->regs + S3C2440_NFCMD);
449 else
450 writeb(cmd, info->regs + S3C2440_NFADDR);
1da177e4
LT
451}
452
1da177e4
LT
453/* s3c2410_nand_devready()
454 *
455 * returns 0 if the nand is busy, 1 if it is ready
456*/
457
458static int s3c2410_nand_devready(struct mtd_info *mtd)
459{
460 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
1da177e4
LT
461 return readb(info->regs + S3C2410_NFSTAT) & S3C2410_NFSTAT_BUSY;
462}
463
2c06a082
BD
464static int s3c2440_nand_devready(struct mtd_info *mtd)
465{
466 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
467 return readb(info->regs + S3C2440_NFSTAT) & S3C2440_NFSTAT_READY;
468}
469
470static int s3c2412_nand_devready(struct mtd_info *mtd)
471{
472 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
473 return readb(info->regs + S3C2412_NFSTAT) & S3C2412_NFSTAT_READY;
474}
475
1da177e4
LT
476/* ECC handling functions */
477
19da4158 478#ifdef CONFIG_MTD_NAND_S3C2410_HWECC
2c06a082
BD
479static int s3c2410_nand_correct_data(struct mtd_info *mtd, u_char *dat,
480 u_char *read_ecc, u_char *calc_ecc)
1da177e4 481{
a2593247
BD
482 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
483 unsigned int diff0, diff1, diff2;
484 unsigned int bit, byte;
485
486 pr_debug("%s(%p,%p,%p,%p)\n", __func__, mtd, dat, read_ecc, calc_ecc);
487
488 diff0 = read_ecc[0] ^ calc_ecc[0];
489 diff1 = read_ecc[1] ^ calc_ecc[1];
490 diff2 = read_ecc[2] ^ calc_ecc[2];
491
13e85974
AS
492 pr_debug("%s: rd %*phN calc %*phN diff %02x%02x%02x\n",
493 __func__, 3, read_ecc, 3, calc_ecc,
a2593247
BD
494 diff0, diff1, diff2);
495
496 if (diff0 == 0 && diff1 == 0 && diff2 == 0)
497 return 0; /* ECC is ok */
498
c45c6c68
BD
499 /* sometimes people do not think about using the ECC, so check
500 * to see if we have an 0xff,0xff,0xff read ECC and then ignore
501 * the error, on the assumption that this is an un-eccd page.
502 */
503 if (read_ecc[0] == 0xff && read_ecc[1] == 0xff && read_ecc[2] == 0xff
504 && info->platform->ignore_unset_ecc)
505 return 0;
506
a2593247
BD
507 /* Can we correct this ECC (ie, one row and column change).
508 * Note, this is similar to the 256 error code on smartmedia */
509
510 if (((diff0 ^ (diff0 >> 1)) & 0x55) == 0x55 &&
511 ((diff1 ^ (diff1 >> 1)) & 0x55) == 0x55 &&
512 ((diff2 ^ (diff2 >> 1)) & 0x55) == 0x55) {
513 /* calculate the bit position of the error */
514
d0bf3793
MR
515 bit = ((diff2 >> 3) & 1) |
516 ((diff2 >> 4) & 2) |
517 ((diff2 >> 5) & 4);
1da177e4 518
a2593247 519 /* calculate the byte position of the error */
1da177e4 520
d0bf3793
MR
521 byte = ((diff2 << 7) & 0x100) |
522 ((diff1 << 0) & 0x80) |
523 ((diff1 << 1) & 0x40) |
524 ((diff1 << 2) & 0x20) |
525 ((diff1 << 3) & 0x10) |
526 ((diff0 >> 4) & 0x08) |
527 ((diff0 >> 3) & 0x04) |
528 ((diff0 >> 2) & 0x02) |
529 ((diff0 >> 1) & 0x01);
a2593247
BD
530
531 dev_dbg(info->device, "correcting error bit %d, byte %d\n",
532 bit, byte);
533
534 dat[byte] ^= (1 << bit);
535 return 1;
536 }
537
538 /* if there is only one bit difference in the ECC, then
539 * one of only a row or column parity has changed, which
540 * means the error is most probably in the ECC itself */
541
542 diff0 |= (diff1 << 8);
543 diff0 |= (diff2 << 16);
544
545 if ((diff0 & ~(1<<fls(diff0))) == 0)
546 return 1;
547
4fac9f69 548 return -1;
1da177e4
LT
549}
550
a4f957f1
BD
551/* ECC functions
552 *
553 * These allow the s3c2410 and s3c2440 to use the controller's ECC
554 * generator block to ECC the data as it passes through]
555*/
556
1da177e4
LT
557static void s3c2410_nand_enable_hwecc(struct mtd_info *mtd, int mode)
558{
559 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
560 unsigned long ctrl;
561
562 ctrl = readl(info->regs + S3C2410_NFCONF);
563 ctrl |= S3C2410_NFCONF_INITECC;
564 writel(ctrl, info->regs + S3C2410_NFCONF);
565}
566
4f659923
MC
567static void s3c2412_nand_enable_hwecc(struct mtd_info *mtd, int mode)
568{
569 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
570 unsigned long ctrl;
571
572 ctrl = readl(info->regs + S3C2440_NFCONT);
f938bc56
SK
573 writel(ctrl | S3C2412_NFCONT_INIT_MAIN_ECC,
574 info->regs + S3C2440_NFCONT);
4f659923
MC
575}
576
a4f957f1
BD
577static void s3c2440_nand_enable_hwecc(struct mtd_info *mtd, int mode)
578{
579 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
580 unsigned long ctrl;
581
582 ctrl = readl(info->regs + S3C2440_NFCONT);
583 writel(ctrl | S3C2440_NFCONT_INITECC, info->regs + S3C2440_NFCONT);
584}
585
f938bc56
SK
586static int s3c2410_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
587 u_char *ecc_code)
1da177e4
LT
588{
589 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
590
591 ecc_code[0] = readb(info->regs + S3C2410_NFECC + 0);
592 ecc_code[1] = readb(info->regs + S3C2410_NFECC + 1);
593 ecc_code[2] = readb(info->regs + S3C2410_NFECC + 2);
594
13e85974 595 pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
1da177e4
LT
596
597 return 0;
598}
599
f938bc56
SK
600static int s3c2412_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
601 u_char *ecc_code)
4f659923
MC
602{
603 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
604 unsigned long ecc = readl(info->regs + S3C2412_NFMECC0);
605
606 ecc_code[0] = ecc;
607 ecc_code[1] = ecc >> 8;
608 ecc_code[2] = ecc >> 16;
609
13e85974 610 pr_debug("%s: returning ecc %*phN\n", __func__, 3, ecc_code);
4f659923
MC
611
612 return 0;
613}
614
f938bc56
SK
615static int s3c2440_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
616 u_char *ecc_code)
a4f957f1
BD
617{
618 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
619 unsigned long ecc = readl(info->regs + S3C2440_NFMECC0);
620
621 ecc_code[0] = ecc;
622 ecc_code[1] = ecc >> 8;
623 ecc_code[2] = ecc >> 16;
624
71d54f38 625 pr_debug("%s: returning ecc %06lx\n", __func__, ecc & 0xffffff);
a4f957f1
BD
626
627 return 0;
628}
19da4158 629#endif
a4f957f1 630
a4f957f1
BD
631/* over-ride the standard functions for a little more speed. We can
632 * use read/write block to move the data buffers to/from the controller
633*/
1da177e4
LT
634
635static void s3c2410_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
636{
4bd4ebcc 637 struct nand_chip *this = mtd_to_nand(mtd);
1da177e4
LT
638 readsb(this->IO_ADDR_R, buf, len);
639}
640
b773bb2e
MR
641static void s3c2440_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
642{
643 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
dea2aa6f
BD
644
645 readsl(info->regs + S3C2440_NFDATA, buf, len >> 2);
646
647 /* cleanup if we've got less than a word to do */
648 if (len & 3) {
649 buf += len & ~3;
650
651 for (; len & 3; len--)
652 *buf++ = readb(info->regs + S3C2440_NFDATA);
653 }
b773bb2e
MR
654}
655
f938bc56
SK
656static void s3c2410_nand_write_buf(struct mtd_info *mtd, const u_char *buf,
657 int len)
1da177e4 658{
4bd4ebcc 659 struct nand_chip *this = mtd_to_nand(mtd);
1da177e4
LT
660 writesb(this->IO_ADDR_W, buf, len);
661}
662
f938bc56
SK
663static void s3c2440_nand_write_buf(struct mtd_info *mtd, const u_char *buf,
664 int len)
b773bb2e
MR
665{
666 struct s3c2410_nand_info *info = s3c2410_nand_mtd_toinfo(mtd);
dea2aa6f
BD
667
668 writesl(info->regs + S3C2440_NFDATA, buf, len >> 2);
669
670 /* cleanup any fractional write */
671 if (len & 3) {
672 buf += len & ~3;
673
674 for (; len & 3; len--, buf++)
675 writeb(*buf, info->regs + S3C2440_NFDATA);
676 }
b773bb2e
MR
677}
678
30821fee
BD
679/* cpufreq driver support */
680
681#ifdef CONFIG_CPU_FREQ
682
683static int s3c2410_nand_cpufreq_transition(struct notifier_block *nb,
684 unsigned long val, void *data)
685{
686 struct s3c2410_nand_info *info;
687 unsigned long newclk;
688
689 info = container_of(nb, struct s3c2410_nand_info, freq_transition);
690 newclk = clk_get_rate(info->clk);
691
692 if ((val == CPUFREQ_POSTCHANGE && newclk < info->clk_rate) ||
693 (val == CPUFREQ_PRECHANGE && newclk > info->clk_rate)) {
694 s3c2410_nand_setrate(info);
695 }
696
697 return 0;
698}
699
700static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
701{
702 info->freq_transition.notifier_call = s3c2410_nand_cpufreq_transition;
703
704 return cpufreq_register_notifier(&info->freq_transition,
705 CPUFREQ_TRANSITION_NOTIFIER);
706}
707
f938bc56
SK
708static inline void
709s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
30821fee
BD
710{
711 cpufreq_unregister_notifier(&info->freq_transition,
712 CPUFREQ_TRANSITION_NOTIFIER);
713}
714
715#else
716static inline int s3c2410_nand_cpufreq_register(struct s3c2410_nand_info *info)
717{
718 return 0;
719}
720
f938bc56
SK
721static inline void
722s3c2410_nand_cpufreq_deregister(struct s3c2410_nand_info *info)
30821fee
BD
723{
724}
725#endif
726
1da177e4
LT
727/* device management functions */
728
ec0482e6 729static int s3c24xx_nand_remove(struct platform_device *pdev)
1da177e4 730{
3ae5eaec 731 struct s3c2410_nand_info *info = to_nand_info(pdev);
1da177e4 732
61b03bd7 733 if (info == NULL)
1da177e4
LT
734 return 0;
735
30821fee
BD
736 s3c2410_nand_cpufreq_deregister(info);
737
738 /* Release all our mtds and their partitions, then go through
739 * freeing the resources used
1da177e4 740 */
61b03bd7 741
1da177e4
LT
742 if (info->mtds != NULL) {
743 struct s3c2410_nand_mtd *ptr = info->mtds;
744 int mtdno;
745
746 for (mtdno = 0; mtdno < info->mtd_count; mtdno++, ptr++) {
747 pr_debug("releasing mtd %d (%p)\n", mtdno, ptr);
7208b997 748 nand_release(nand_to_mtd(&ptr->chip));
1da177e4 749 }
1da177e4
LT
750 }
751
752 /* free the common resources */
753
6f32a3e2 754 if (!IS_ERR(info->clk))
ac497c16 755 s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
1da177e4
LT
756
757 return 0;
758}
759
1da177e4
LT
760static int s3c2410_nand_add_partition(struct s3c2410_nand_info *info,
761 struct s3c2410_nand_mtd *mtd,
762 struct s3c2410_nand_set *set)
763{
ded4c55d 764 if (set) {
7208b997 765 struct mtd_info *mtdinfo = nand_to_mtd(&mtd->chip);
ed27f028 766
7208b997
BB
767 mtdinfo->name = set->name;
768
769 return mtd_device_parse_register(mtdinfo, NULL, NULL,
42d7fbe2 770 set->partitions, set->nr_partitions);
ded4c55d
SK
771 }
772
773 return -ENODEV;
1da177e4 774}
1da177e4 775
3db72151
BD
776/**
777 * s3c2410_nand_init_chip - initialise a single instance of an chip
778 * @info: The base NAND controller the chip is on.
779 * @nmtd: The new controller MTD instance to fill in.
780 * @set: The information passed from the board specific platform data.
1da177e4 781 *
3db72151
BD
782 * Initialise the given @nmtd from the information in @info and @set. This
783 * readies the structure for use with the MTD layer functions by ensuring
784 * all pointers are setup and the necessary control routines selected.
785 */
1da177e4
LT
786static void s3c2410_nand_init_chip(struct s3c2410_nand_info *info,
787 struct s3c2410_nand_mtd *nmtd,
788 struct s3c2410_nand_set *set)
789{
790 struct nand_chip *chip = &nmtd->chip;
2c06a082 791 void __iomem *regs = info->regs;
1da177e4 792
1da177e4
LT
793 chip->write_buf = s3c2410_nand_write_buf;
794 chip->read_buf = s3c2410_nand_read_buf;
795 chip->select_chip = s3c2410_nand_select_chip;
796 chip->chip_delay = 50;
d699ed25 797 nand_set_controller_data(chip, nmtd);
74218fed 798 chip->options = set->options;
1da177e4
LT
799 chip->controller = &info->controller;
800
2c06a082
BD
801 switch (info->cpu_type) {
802 case TYPE_S3C2410:
803 chip->IO_ADDR_W = regs + S3C2410_NFDATA;
804 info->sel_reg = regs + S3C2410_NFCONF;
805 info->sel_bit = S3C2410_NFCONF_nFCE;
806 chip->cmd_ctrl = s3c2410_nand_hwcontrol;
807 chip->dev_ready = s3c2410_nand_devready;
808 break;
809
810 case TYPE_S3C2440:
811 chip->IO_ADDR_W = regs + S3C2440_NFDATA;
812 info->sel_reg = regs + S3C2440_NFCONT;
813 info->sel_bit = S3C2440_NFCONT_nFCE;
814 chip->cmd_ctrl = s3c2440_nand_hwcontrol;
815 chip->dev_ready = s3c2440_nand_devready;
b773bb2e
MR
816 chip->read_buf = s3c2440_nand_read_buf;
817 chip->write_buf = s3c2440_nand_write_buf;
2c06a082
BD
818 break;
819
820 case TYPE_S3C2412:
821 chip->IO_ADDR_W = regs + S3C2440_NFDATA;
822 info->sel_reg = regs + S3C2440_NFCONT;
823 info->sel_bit = S3C2412_NFCONT_nFCE0;
824 chip->cmd_ctrl = s3c2440_nand_hwcontrol;
825 chip->dev_ready = s3c2412_nand_devready;
826
827 if (readl(regs + S3C2410_NFCONF) & S3C2412_NFCONF_NANDBOOT)
828 dev_info(info->device, "System booted from NAND\n");
829
830 break;
54cd0208 831 }
2c06a082
BD
832
833 chip->IO_ADDR_R = chip->IO_ADDR_W;
a4f957f1 834
1da177e4 835 nmtd->info = info;
1da177e4
LT
836 nmtd->set = set;
837
a68c5ec8
SK
838#ifdef CONFIG_MTD_NAND_S3C2410_HWECC
839 chip->ecc.calculate = s3c2410_nand_calculate_ecc;
840 chip->ecc.correct = s3c2410_nand_correct_data;
841 chip->ecc.mode = NAND_ECC_HW;
842 chip->ecc.strength = 1;
843
844 switch (info->cpu_type) {
845 case TYPE_S3C2410:
846 chip->ecc.hwctl = s3c2410_nand_enable_hwecc;
6dfc6d25 847 chip->ecc.calculate = s3c2410_nand_calculate_ecc;
a68c5ec8 848 break;
2c06a082 849
a68c5ec8
SK
850 case TYPE_S3C2412:
851 chip->ecc.hwctl = s3c2412_nand_enable_hwecc;
852 chip->ecc.calculate = s3c2412_nand_calculate_ecc;
853 break;
854
855 case TYPE_S3C2440:
856 chip->ecc.hwctl = s3c2440_nand_enable_hwecc;
857 chip->ecc.calculate = s3c2440_nand_calculate_ecc;
858 break;
1da177e4 859 }
a68c5ec8
SK
860#else
861 chip->ecc.mode = NAND_ECC_SOFT;
862#endif
1c21ab67 863
37e5ffa3
BD
864 if (set->disable_ecc)
865 chip->ecc.mode = NAND_ECC_NONE;
8c3e843d
AG
866
867 switch (chip->ecc.mode) {
868 case NAND_ECC_NONE:
869 dev_info(info->device, "NAND ECC disabled\n");
870 break;
871 case NAND_ECC_SOFT:
872 dev_info(info->device, "NAND soft ECC\n");
873 break;
874 case NAND_ECC_HW:
875 dev_info(info->device, "NAND hardware ECC\n");
876 break;
877 default:
878 dev_info(info->device, "NAND ECC UNKNOWN\n");
879 break;
880 }
9db41f9e
MP
881
882 /* If you use u-boot BBT creation code, specifying this flag will
883 * let the kernel fish out the BBT from the NAND, and also skip the
884 * full NAND scan that can take 1/2s or so. Little things... */
a40f7341 885 if (set->flash_bbt) {
bb9ebd4e 886 chip->bbt_options |= NAND_BBT_USE_FLASH;
a40f7341
BN
887 chip->options |= NAND_SKIP_BBTSCAN;
888 }
1da177e4
LT
889}
890
3db72151
BD
891/**
892 * s3c2410_nand_update_chip - post probe update
893 * @info: The controller instance.
894 * @nmtd: The driver version of the MTD instance.
71d54f38 895 *
af901ca1 896 * This routine is called after the chip probe has successfully completed
3db72151
BD
897 * and the relevant per-chip information updated. This call ensure that
898 * we update the internal state accordingly.
899 *
900 * The internal state is currently limited to the ECC state information.
901*/
71d54f38
BD
902static void s3c2410_nand_update_chip(struct s3c2410_nand_info *info,
903 struct s3c2410_nand_mtd *nmtd)
904{
905 struct nand_chip *chip = &nmtd->chip;
906
451d3399
BD
907 dev_dbg(info->device, "chip %p => page shift %d\n",
908 chip, chip->page_shift);
71d54f38 909
8c3e843d
AG
910 if (chip->ecc.mode != NAND_ECC_HW)
911 return;
912
48fc7f7e 913 /* change the behaviour depending on whether we are using
71d54f38
BD
914 * the large or small page nand device */
915
8c3e843d
AG
916 if (chip->page_shift > 10) {
917 chip->ecc.size = 256;
918 chip->ecc.bytes = 3;
919 } else {
920 chip->ecc.size = 512;
921 chip->ecc.bytes = 3;
922 chip->ecc.layout = &nand_hw_eccoob;
71d54f38
BD
923 }
924}
925
ec0482e6 926/* s3c24xx_nand_probe
1da177e4
LT
927 *
928 * called by device layer when it finds a device matching
929 * one our driver can handled. This code checks to see if
930 * it can allocate all necessary resources then calls the
931 * nand layer to look for devices
932*/
ec0482e6 933static int s3c24xx_nand_probe(struct platform_device *pdev)
1da177e4 934{
3ae5eaec 935 struct s3c2410_platform_nand *plat = to_nand_plat(pdev);
54cd0208 936 enum s3c_cpu_type cpu_type;
1da177e4
LT
937 struct s3c2410_nand_info *info;
938 struct s3c2410_nand_mtd *nmtd;
939 struct s3c2410_nand_set *sets;
940 struct resource *res;
941 int err = 0;
942 int size;
943 int nr_sets;
944 int setno;
945
ec0482e6
BD
946 cpu_type = platform_get_device_id(pdev)->driver_data;
947
6f32a3e2 948 info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
1da177e4 949 if (info == NULL) {
1da177e4
LT
950 err = -ENOMEM;
951 goto exit_error;
952 }
953
3ae5eaec 954 platform_set_drvdata(pdev, info);
1da177e4
LT
955
956 spin_lock_init(&info->controller.lock);
a4f957f1 957 init_waitqueue_head(&info->controller.wq);
1da177e4
LT
958
959 /* get the clock source and enable it */
960
6f32a3e2 961 info->clk = devm_clk_get(&pdev->dev, "nand");
1da177e4 962 if (IS_ERR(info->clk)) {
898eb71c 963 dev_err(&pdev->dev, "failed to get clock\n");
1da177e4
LT
964 err = -ENOENT;
965 goto exit_error;
966 }
967
ac497c16 968 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
1da177e4
LT
969
970 /* allocate and map the resource */
971
a4f957f1 972 /* currently we assume we have the one resource */
6f32a3e2 973 res = pdev->resource;
fc161c4e 974 size = resource_size(res);
1da177e4 975
6f32a3e2
SK
976 info->device = &pdev->dev;
977 info->platform = plat;
978 info->cpu_type = cpu_type;
1da177e4 979
b0de774c
TR
980 info->regs = devm_ioremap_resource(&pdev->dev, res);
981 if (IS_ERR(info->regs)) {
982 err = PTR_ERR(info->regs);
1da177e4 983 goto exit_error;
61b03bd7 984 }
1da177e4 985
3ae5eaec 986 dev_dbg(&pdev->dev, "mapped registers at %p\n", info->regs);
1da177e4
LT
987
988 /* initialise the hardware */
989
30821fee 990 err = s3c2410_nand_inithw(info);
1da177e4
LT
991 if (err != 0)
992 goto exit_error;
993
994 sets = (plat != NULL) ? plat->sets : NULL;
995 nr_sets = (plat != NULL) ? plat->nr_sets : 1;
996
997 info->mtd_count = nr_sets;
998
999 /* allocate our information */
1000
1001 size = nr_sets * sizeof(*info->mtds);
6f32a3e2 1002 info->mtds = devm_kzalloc(&pdev->dev, size, GFP_KERNEL);
1da177e4 1003 if (info->mtds == NULL) {
1da177e4
LT
1004 err = -ENOMEM;
1005 goto exit_error;
1006 }
1007
1da177e4
LT
1008 /* initialise all possible chips */
1009
1010 nmtd = info->mtds;
1011
1012 for (setno = 0; setno < nr_sets; setno++, nmtd++) {
7208b997
BB
1013 struct mtd_info *mtd = nand_to_mtd(&nmtd->chip);
1014
f938bc56
SK
1015 pr_debug("initialising set %d (%p, info %p)\n",
1016 setno, nmtd, info);
61b03bd7 1017
7208b997 1018 mtd->dev.parent = &pdev->dev;
1da177e4
LT
1019 s3c2410_nand_init_chip(info, nmtd, sets);
1020
7208b997 1021 nmtd->scan_res = nand_scan_ident(mtd,
5e81e88a
DW
1022 (sets) ? sets->nr_chips : 1,
1023 NULL);
1da177e4
LT
1024
1025 if (nmtd->scan_res == 0) {
71d54f38 1026 s3c2410_nand_update_chip(info, nmtd);
7208b997 1027 nand_scan_tail(mtd);
1da177e4
LT
1028 s3c2410_nand_add_partition(info, nmtd, sets);
1029 }
1030
1031 if (sets != NULL)
1032 sets++;
1033 }
61b03bd7 1034
30821fee
BD
1035 err = s3c2410_nand_cpufreq_register(info);
1036 if (err < 0) {
1037 dev_err(&pdev->dev, "failed to init cpufreq support\n");
1038 goto exit_error;
1039 }
1040
ac497c16 1041 if (allow_clk_suspend(info)) {
d1fef3c5 1042 dev_info(&pdev->dev, "clock idle support enabled\n");
ac497c16 1043 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
d1fef3c5
BD
1044 }
1045
1da177e4
LT
1046 return 0;
1047
1048 exit_error:
ec0482e6 1049 s3c24xx_nand_remove(pdev);
1da177e4
LT
1050
1051 if (err == 0)
1052 err = -EINVAL;
1053 return err;
1054}
1055
d1fef3c5
BD
1056/* PM Support */
1057#ifdef CONFIG_PM
1058
1059static int s3c24xx_nand_suspend(struct platform_device *dev, pm_message_t pm)
1060{
1061 struct s3c2410_nand_info *info = platform_get_drvdata(dev);
1062
1063 if (info) {
09160832 1064 info->save_sel = readl(info->sel_reg);
03680b1e
BD
1065
1066 /* For the moment, we must ensure nFCE is high during
1067 * the time we are suspended. This really should be
1068 * handled by suspending the MTDs we are using, but
1069 * that is currently not the case. */
1070
09160832 1071 writel(info->save_sel | info->sel_bit, info->sel_reg);
03680b1e 1072
ac497c16 1073 s3c2410_nand_clk_set_state(info, CLOCK_DISABLE);
d1fef3c5
BD
1074 }
1075
1076 return 0;
1077}
1078
1079static int s3c24xx_nand_resume(struct platform_device *dev)
1080{
1081 struct s3c2410_nand_info *info = platform_get_drvdata(dev);
09160832 1082 unsigned long sel;
d1fef3c5
BD
1083
1084 if (info) {
ac497c16 1085 s3c2410_nand_clk_set_state(info, CLOCK_ENABLE);
30821fee 1086 s3c2410_nand_inithw(info);
d1fef3c5 1087
03680b1e
BD
1088 /* Restore the state of the nFCE line. */
1089
09160832
BD
1090 sel = readl(info->sel_reg);
1091 sel &= ~info->sel_bit;
1092 sel |= info->save_sel & info->sel_bit;
1093 writel(sel, info->sel_reg);
03680b1e 1094
ac497c16 1095 s3c2410_nand_clk_set_state(info, CLOCK_SUSPEND);
d1fef3c5
BD
1096 }
1097
1098 return 0;
1099}
1100
1101#else
1102#define s3c24xx_nand_suspend NULL
1103#define s3c24xx_nand_resume NULL
1104#endif
1105
a4f957f1
BD
1106/* driver device registration */
1107
0abe75d2 1108static const struct platform_device_id s3c24xx_driver_ids[] = {
ec0482e6
BD
1109 {
1110 .name = "s3c2410-nand",
1111 .driver_data = TYPE_S3C2410,
1112 }, {
1113 .name = "s3c2440-nand",
1114 .driver_data = TYPE_S3C2440,
1115 }, {
1116 .name = "s3c2412-nand",
1117 .driver_data = TYPE_S3C2412,
9dbc0902
PK
1118 }, {
1119 .name = "s3c6400-nand",
1120 .driver_data = TYPE_S3C2412, /* compatible with 2412 */
3ae5eaec 1121 },
ec0482e6 1122 { }
1da177e4
LT
1123};
1124
ec0482e6 1125MODULE_DEVICE_TABLE(platform, s3c24xx_driver_ids);
a4f957f1 1126
ec0482e6
BD
1127static struct platform_driver s3c24xx_nand_driver = {
1128 .probe = s3c24xx_nand_probe,
1129 .remove = s3c24xx_nand_remove,
2c06a082
BD
1130 .suspend = s3c24xx_nand_suspend,
1131 .resume = s3c24xx_nand_resume,
ec0482e6 1132 .id_table = s3c24xx_driver_ids,
2c06a082 1133 .driver = {
ec0482e6 1134 .name = "s3c24xx-nand",
2c06a082
BD
1135 },
1136};
1137
056fcab5 1138module_platform_driver(s3c24xx_nand_driver);
1da177e4
LT
1139
1140MODULE_LICENSE("GPL");
1141MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
a4f957f1 1142MODULE_DESCRIPTION("S3C24XX MTD NAND driver");