Merge branch 'writeback' of git://git.kernel.dk/linux-2.6-block
[linux-block.git] / drivers / mtd / nand / nand_ecc.c
CommitLineData
1da177e4 1/*
e6cf5df1 2 * This file contains an ECC algorithm that detects and corrects 1 bit
3 * errors in a 256 byte block of data.
1da177e4
LT
4 *
5 * drivers/mtd/nand/nand_ecc.c
6 *
ccbcd6cb
DW
7 * Copyright © 2008 Koninklijke Philips Electronics NV.
8 * Author: Frans Meulenbroeks
1da177e4 9 *
e6cf5df1 10 * Completely replaces the previous ECC implementation which was written by:
11 * Steven J. Hill (sjhill@realitydiluted.com)
12 * Thomas Gleixner (tglx@linutronix.de)
13 *
14 * Information on how this algorithm works and how it was developed
ccbcd6cb 15 * can be found in Documentation/mtd/nand_ecc.txt
819d6a32 16 *
1da177e4
LT
17 * This file is free software; you can redistribute it and/or modify it
18 * under the terms of the GNU General Public License as published by the
19 * Free Software Foundation; either version 2 or (at your option) any
20 * later version.
61b03bd7 21 *
1da177e4
LT
22 * This file is distributed in the hope that it will be useful, but WITHOUT
23 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
24 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
25 * for more details.
61b03bd7 26 *
1da177e4
LT
27 * You should have received a copy of the GNU General Public License along
28 * with this file; if not, write to the Free Software Foundation, Inc.,
29 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
61b03bd7 30 *
1da177e4
LT
31 */
32
e6cf5df1 33/*
34 * The STANDALONE macro is useful when running the code outside the kernel
35 * e.g. when running the code in a testbed or a benchmark program.
36 * When STANDALONE is used, the module related macros are commented out
37 * as well as the linux include files.
ccbcd6cb 38 * Instead a private definition of mtd_info is given to satisfy the compiler
e6cf5df1 39 * (the code does not use mtd_info, so the code does not care)
40 */
41#ifndef STANDALONE
1da177e4
LT
42#include <linux/types.h>
43#include <linux/kernel.h>
44#include <linux/module.h>
d68156cf
SV
45#include <linux/mtd/mtd.h>
46#include <linux/mtd/nand.h>
1da177e4 47#include <linux/mtd/nand_ecc.h>
1077be58 48#include <asm/byteorder.h>
e6cf5df1 49#else
ccbcd6cb
DW
50#include <stdint.h>
51struct mtd_info;
e6cf5df1 52#define EXPORT_SYMBOL(x) /* x */
53
54#define MODULE_LICENSE(x) /* x */
55#define MODULE_AUTHOR(x) /* x */
56#define MODULE_DESCRIPTION(x) /* x */
1077be58 57
58#define printk printf
59#define KERN_ERR ""
e6cf5df1 60#endif
61
62/*
63 * invparity is a 256 byte table that contains the odd parity
64 * for each byte. So if the number of bits in a byte is even,
65 * the array element is 1, and when the number of bits is odd
66 * the array eleemnt is 0.
67 */
68static const char invparity[256] = {
69 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
70 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
71 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
72 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
73 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
74 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
75 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
76 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
77 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
78 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
79 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
80 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
81 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1,
82 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
83 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0,
84 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1
85};
1da177e4
LT
86
87/*
e6cf5df1 88 * bitsperbyte contains the number of bits per byte
89 * this is only used for testing and repairing parity
90 * (a precalculated value slightly improves performance)
1da177e4 91 */
e6cf5df1 92static const char bitsperbyte[256] = {
93 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
94 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
95 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
96 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
97 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
98 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
99 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
100 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
101 1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
102 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
103 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
104 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
105 2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
106 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
107 3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
108 4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8,
109};
110
111/*
112 * addressbits is a lookup table to filter out the bits from the xor-ed
113 * ecc data that identify the faulty location.
114 * this is only used for repairing parity
115 * see the comments in nand_correct_data for more details
116 */
117static const char addressbits[256] = {
118 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
119 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
120 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
121 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
122 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
123 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
124 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
125 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
126 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
127 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
128 0x00, 0x00, 0x01, 0x01, 0x00, 0x00, 0x01, 0x01,
129 0x02, 0x02, 0x03, 0x03, 0x02, 0x02, 0x03, 0x03,
130 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
131 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
132 0x04, 0x04, 0x05, 0x05, 0x04, 0x04, 0x05, 0x05,
133 0x06, 0x06, 0x07, 0x07, 0x06, 0x06, 0x07, 0x07,
134 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
135 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
136 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
137 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
138 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
139 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f,
140 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
141 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f,
142 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
143 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
144 0x08, 0x08, 0x09, 0x09, 0x08, 0x08, 0x09, 0x09,
145 0x0a, 0x0a, 0x0b, 0x0b, 0x0a, 0x0a, 0x0b, 0x0b,
146 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
147 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f,
148 0x0c, 0x0c, 0x0d, 0x0d, 0x0c, 0x0c, 0x0d, 0x0d,
149 0x0e, 0x0e, 0x0f, 0x0f, 0x0e, 0x0e, 0x0f, 0x0f
1da177e4
LT
150};
151
1da177e4 152/**
d68156cf
SV
153 * nand_calculate_ecc - [NAND Interface] Calculate 3-byte ECC for 256/512-byte
154 * block
155 * @mtd: MTD block structure
17c1d2be
AK
156 * @buf: input buffer with raw data
157 * @code: output buffer with ECC
1da177e4 158 */
e6cf5df1 159int nand_calculate_ecc(struct mtd_info *mtd, const unsigned char *buf,
160 unsigned char *code)
1da177e4 161{
819d6a32 162 int i;
e6cf5df1 163 const uint32_t *bp = (uint32_t *)buf;
d68156cf
SV
164 /* 256 or 512 bytes/ecc */
165 const uint32_t eccsize_mult =
166 (((struct nand_chip *)mtd->priv)->ecc.size) >> 8;
e6cf5df1 167 uint32_t cur; /* current value in buffer */
d68156cf 168 /* rp0..rp15..rp17 are the various accumulated parities (per byte) */
e6cf5df1 169 uint32_t rp0, rp1, rp2, rp3, rp4, rp5, rp6, rp7;
d68156cf
SV
170 uint32_t rp8, rp9, rp10, rp11, rp12, rp13, rp14, rp15, rp16;
171 uint32_t uninitialized_var(rp17); /* to make compiler happy */
e6cf5df1 172 uint32_t par; /* the cumulative parity for all data */
173 uint32_t tmppar; /* the cumulative parity for this iteration;
d68156cf
SV
174 for rp12, rp14 and rp16 at the end of the
175 loop */
e6cf5df1 176
177 par = 0;
178 rp4 = 0;
179 rp6 = 0;
180 rp8 = 0;
181 rp10 = 0;
182 rp12 = 0;
183 rp14 = 0;
d68156cf 184 rp16 = 0;
e6cf5df1 185
186 /*
187 * The loop is unrolled a number of times;
188 * This avoids if statements to decide on which rp value to update
189 * Also we process the data by longwords.
190 * Note: passing unaligned data might give a performance penalty.
191 * It is assumed that the buffers are aligned.
192 * tmppar is the cumulative sum of this iteration.
d68156cf 193 * needed for calculating rp12, rp14, rp16 and par
e6cf5df1 194 * also used as a performance improvement for rp6, rp8 and rp10
195 */
d68156cf 196 for (i = 0; i < eccsize_mult << 2; i++) {
e6cf5df1 197 cur = *bp++;
198 tmppar = cur;
199 rp4 ^= cur;
200 cur = *bp++;
201 tmppar ^= cur;
202 rp6 ^= tmppar;
203 cur = *bp++;
204 tmppar ^= cur;
205 rp4 ^= cur;
206 cur = *bp++;
207 tmppar ^= cur;
208 rp8 ^= tmppar;
61b03bd7 209
e6cf5df1 210 cur = *bp++;
211 tmppar ^= cur;
212 rp4 ^= cur;
213 rp6 ^= cur;
214 cur = *bp++;
215 tmppar ^= cur;
216 rp6 ^= cur;
217 cur = *bp++;
218 tmppar ^= cur;
219 rp4 ^= cur;
220 cur = *bp++;
221 tmppar ^= cur;
222 rp10 ^= tmppar;
61b03bd7 223
e6cf5df1 224 cur = *bp++;
225 tmppar ^= cur;
226 rp4 ^= cur;
227 rp6 ^= cur;
228 rp8 ^= cur;
229 cur = *bp++;
230 tmppar ^= cur;
231 rp6 ^= cur;
232 rp8 ^= cur;
233 cur = *bp++;
234 tmppar ^= cur;
235 rp4 ^= cur;
236 rp8 ^= cur;
237 cur = *bp++;
238 tmppar ^= cur;
239 rp8 ^= cur;
61b03bd7 240
e6cf5df1 241 cur = *bp++;
242 tmppar ^= cur;
243 rp4 ^= cur;
244 rp6 ^= cur;
245 cur = *bp++;
246 tmppar ^= cur;
247 rp6 ^= cur;
248 cur = *bp++;
249 tmppar ^= cur;
250 rp4 ^= cur;
251 cur = *bp++;
252 tmppar ^= cur;
253
254 par ^= tmppar;
255 if ((i & 0x1) == 0)
256 rp12 ^= tmppar;
257 if ((i & 0x2) == 0)
258 rp14 ^= tmppar;
d68156cf
SV
259 if (eccsize_mult == 2 && (i & 0x4) == 0)
260 rp16 ^= tmppar;
1da177e4 261 }
61b03bd7 262
e6cf5df1 263 /*
264 * handle the fact that we use longword operations
d68156cf
SV
265 * we'll bring rp4..rp14..rp16 back to single byte entities by
266 * shifting and xoring first fold the upper and lower 16 bits,
e6cf5df1 267 * then the upper and lower 8 bits.
268 */
269 rp4 ^= (rp4 >> 16);
270 rp4 ^= (rp4 >> 8);
271 rp4 &= 0xff;
272 rp6 ^= (rp6 >> 16);
273 rp6 ^= (rp6 >> 8);
274 rp6 &= 0xff;
275 rp8 ^= (rp8 >> 16);
276 rp8 ^= (rp8 >> 8);
277 rp8 &= 0xff;
278 rp10 ^= (rp10 >> 16);
279 rp10 ^= (rp10 >> 8);
280 rp10 &= 0xff;
281 rp12 ^= (rp12 >> 16);
282 rp12 ^= (rp12 >> 8);
283 rp12 &= 0xff;
284 rp14 ^= (rp14 >> 16);
285 rp14 ^= (rp14 >> 8);
286 rp14 &= 0xff;
d68156cf
SV
287 if (eccsize_mult == 2) {
288 rp16 ^= (rp16 >> 16);
289 rp16 ^= (rp16 >> 8);
290 rp16 &= 0xff;
291 }
e6cf5df1 292
293 /*
294 * we also need to calculate the row parity for rp0..rp3
295 * This is present in par, because par is now
1077be58 296 * rp3 rp3 rp2 rp2 in little endian and
297 * rp2 rp2 rp3 rp3 in big endian
e6cf5df1 298 * as well as
1077be58 299 * rp1 rp0 rp1 rp0 in little endian and
300 * rp0 rp1 rp0 rp1 in big endian
e6cf5df1 301 * First calculate rp2 and rp3
e6cf5df1 302 */
1077be58 303#ifdef __BIG_ENDIAN
304 rp2 = (par >> 16);
305 rp2 ^= (rp2 >> 8);
306 rp2 &= 0xff;
307 rp3 = par & 0xffff;
308 rp3 ^= (rp3 >> 8);
309 rp3 &= 0xff;
310#else
e6cf5df1 311 rp3 = (par >> 16);
312 rp3 ^= (rp3 >> 8);
313 rp3 &= 0xff;
314 rp2 = par & 0xffff;
315 rp2 ^= (rp2 >> 8);
316 rp2 &= 0xff;
1077be58 317#endif
e6cf5df1 318
319 /* reduce par to 16 bits then calculate rp1 and rp0 */
320 par ^= (par >> 16);
1077be58 321#ifdef __BIG_ENDIAN
322 rp0 = (par >> 8) & 0xff;
323 rp1 = (par & 0xff);
324#else
e6cf5df1 325 rp1 = (par >> 8) & 0xff;
326 rp0 = (par & 0xff);
1077be58 327#endif
e6cf5df1 328
329 /* finally reduce par to 8 bits */
330 par ^= (par >> 8);
331 par &= 0xff;
332
333 /*
d68156cf 334 * and calculate rp5..rp15..rp17
e6cf5df1 335 * note that par = rp4 ^ rp5 and due to the commutative property
336 * of the ^ operator we can say:
337 * rp5 = (par ^ rp4);
338 * The & 0xff seems superfluous, but benchmarking learned that
339 * leaving it out gives slightly worse results. No idea why, probably
340 * it has to do with the way the pipeline in pentium is organized.
341 */
342 rp5 = (par ^ rp4) & 0xff;
343 rp7 = (par ^ rp6) & 0xff;
344 rp9 = (par ^ rp8) & 0xff;
345 rp11 = (par ^ rp10) & 0xff;
346 rp13 = (par ^ rp12) & 0xff;
347 rp15 = (par ^ rp14) & 0xff;
d68156cf
SV
348 if (eccsize_mult == 2)
349 rp17 = (par ^ rp16) & 0xff;
e6cf5df1 350
351 /*
352 * Finally calculate the ecc bits.
353 * Again here it might seem that there are performance optimisations
354 * possible, but benchmarks showed that on the system this is developed
355 * the code below is the fastest
356 */
fc029194 357#ifdef CONFIG_MTD_NAND_ECC_SMC
e6cf5df1 358 code[0] =
359 (invparity[rp7] << 7) |
360 (invparity[rp6] << 6) |
361 (invparity[rp5] << 5) |
362 (invparity[rp4] << 4) |
363 (invparity[rp3] << 3) |
364 (invparity[rp2] << 2) |
365 (invparity[rp1] << 1) |
366 (invparity[rp0]);
367 code[1] =
368 (invparity[rp15] << 7) |
369 (invparity[rp14] << 6) |
370 (invparity[rp13] << 5) |
371 (invparity[rp12] << 4) |
372 (invparity[rp11] << 3) |
373 (invparity[rp10] << 2) |
374 (invparity[rp9] << 1) |
375 (invparity[rp8]);
819d6a32 376#else
e6cf5df1 377 code[1] =
378 (invparity[rp7] << 7) |
379 (invparity[rp6] << 6) |
380 (invparity[rp5] << 5) |
381 (invparity[rp4] << 4) |
382 (invparity[rp3] << 3) |
383 (invparity[rp2] << 2) |
384 (invparity[rp1] << 1) |
385 (invparity[rp0]);
386 code[0] =
387 (invparity[rp15] << 7) |
388 (invparity[rp14] << 6) |
389 (invparity[rp13] << 5) |
390 (invparity[rp12] << 4) |
391 (invparity[rp11] << 3) |
392 (invparity[rp10] << 2) |
393 (invparity[rp9] << 1) |
394 (invparity[rp8]);
819d6a32 395#endif
d68156cf
SV
396 if (eccsize_mult == 1)
397 code[2] =
398 (invparity[par & 0xf0] << 7) |
399 (invparity[par & 0x0f] << 6) |
400 (invparity[par & 0xcc] << 5) |
401 (invparity[par & 0x33] << 4) |
402 (invparity[par & 0xaa] << 3) |
403 (invparity[par & 0x55] << 2) |
404 3;
405 else
406 code[2] =
407 (invparity[par & 0xf0] << 7) |
408 (invparity[par & 0x0f] << 6) |
409 (invparity[par & 0xcc] << 5) |
410 (invparity[par & 0x33] << 4) |
411 (invparity[par & 0xaa] << 3) |
412 (invparity[par & 0x55] << 2) |
413 (invparity[rp17] << 1) |
414 (invparity[rp16] << 0);
1da177e4
LT
415 return 0;
416}
819d6a32
TG
417EXPORT_SYMBOL(nand_calculate_ecc);
418
1da177e4 419/**
be2f092b 420 * __nand_correct_data - [NAND Interface] Detect and correct bit error(s)
17c1d2be 421 * @buf: raw data read from the chip
1da177e4
LT
422 * @read_ecc: ECC from the chip
423 * @calc_ecc: the ECC calculated from raw data
be2f092b 424 * @eccsize: data bytes per ecc step (256 or 512)
1da177e4 425 *
be2f092b 426 * Detect and correct a 1 bit error for eccsize byte block
1da177e4 427 */
be2f092b
AN
428int __nand_correct_data(unsigned char *buf,
429 unsigned char *read_ecc, unsigned char *calc_ecc,
430 unsigned int eccsize)
1da177e4 431{
260dc003
VS
432 unsigned char b0, b1, b2, bit_addr;
433 unsigned int byte_addr;
d68156cf 434 /* 256 or 512 bytes/ecc */
be2f092b 435 const uint32_t eccsize_mult = eccsize >> 8;
819d6a32 436
e6cf5df1 437 /*
438 * b0 to b2 indicate which bit is faulty (if any)
439 * we might need the xor result more than once,
440 * so keep them in a local var
441 */
fc029194 442#ifdef CONFIG_MTD_NAND_ECC_SMC
e6cf5df1 443 b0 = read_ecc[0] ^ calc_ecc[0];
444 b1 = read_ecc[1] ^ calc_ecc[1];
819d6a32 445#else
e6cf5df1 446 b0 = read_ecc[1] ^ calc_ecc[1];
447 b1 = read_ecc[0] ^ calc_ecc[0];
819d6a32 448#endif
e6cf5df1 449 b2 = read_ecc[2] ^ calc_ecc[2];
819d6a32 450
e6cf5df1 451 /* check if there are any bitfaults */
819d6a32 452
e6cf5df1 453 /* repeated if statements are slightly more efficient than switch ... */
454 /* ordered in order of likelihood */
1077be58 455
456 if ((b0 | b1 | b2) == 0)
ccbcd6cb 457 return 0; /* no error */
1077be58 458
459 if ((((b0 ^ (b0 >> 1)) & 0x55) == 0x55) &&
460 (((b1 ^ (b1 >> 1)) & 0x55) == 0x55) &&
d68156cf
SV
461 ((eccsize_mult == 1 && ((b2 ^ (b2 >> 1)) & 0x54) == 0x54) ||
462 (eccsize_mult == 2 && ((b2 ^ (b2 >> 1)) & 0x55) == 0x55))) {
463 /* single bit error */
e6cf5df1 464 /*
d68156cf
SV
465 * rp17/rp15/13/11/9/7/5/3/1 indicate which byte is the faulty
466 * byte, cp 5/3/1 indicate the faulty bit.
e6cf5df1 467 * A lookup table (called addressbits) is used to filter
468 * the bits from the byte they are in.
469 * A marginal optimisation is possible by having three
470 * different lookup tables.
471 * One as we have now (for b0), one for b2
472 * (that would avoid the >> 1), and one for b1 (with all values
473 * << 4). However it was felt that introducing two more tables
474 * hardly justify the gain.
475 *
476 * The b2 shift is there to get rid of the lowest two bits.
477 * We could also do addressbits[b2] >> 1 but for the
478 * performace it does not make any difference
479 */
d68156cf
SV
480 if (eccsize_mult == 1)
481 byte_addr = (addressbits[b1] << 4) + addressbits[b0];
482 else
483 byte_addr = (addressbits[b2 & 0x3] << 8) +
484 (addressbits[b1] << 4) + addressbits[b0];
e6cf5df1 485 bit_addr = addressbits[b2 >> 2];
486 /* flip the bit */
487 buf[byte_addr] ^= (1 << bit_addr);
ccbcd6cb 488 return 1;
1077be58 489
1da177e4 490 }
1077be58 491 /* count nr of bits; use table lookup, faster than calculating it */
492 if ((bitsperbyte[b0] + bitsperbyte[b1] + bitsperbyte[b2]) == 1)
ccbcd6cb 493 return 1; /* error in ecc data; no action needed */
1077be58 494
495 printk(KERN_ERR "uncorrectable error : ");
e6cf5df1 496 return -1;
1da177e4 497}
be2f092b
AN
498EXPORT_SYMBOL(__nand_correct_data);
499
500/**
501 * nand_correct_data - [NAND Interface] Detect and correct bit error(s)
502 * @mtd: MTD block structure
503 * @buf: raw data read from the chip
504 * @read_ecc: ECC from the chip
505 * @calc_ecc: the ECC calculated from raw data
506 *
507 * Detect and correct a 1 bit error for 256/512 byte block
508 */
509int nand_correct_data(struct mtd_info *mtd, unsigned char *buf,
510 unsigned char *read_ecc, unsigned char *calc_ecc)
511{
512 return __nand_correct_data(buf, read_ecc, calc_ecc,
513 ((struct nand_chip *)mtd->priv)->ecc.size);
514}
1da177e4
LT
515EXPORT_SYMBOL(nand_correct_data);
516
517MODULE_LICENSE("GPL");
e6cf5df1 518MODULE_AUTHOR("Frans Meulenbroeks <fransmeulenbroeks@gmail.com>");
1da177e4 519MODULE_DESCRIPTION("Generic NAND ECC support");