Merge branch 'acpica'
[linux-2.6-block.git] / drivers / md / raid1.c
CommitLineData
1da177e4
LT
1/*
2 * raid1.c : Multiple Devices driver for Linux
3 *
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
5 *
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
7 *
8 * RAID-1 management functions.
9 *
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
11 *
96de0e25 12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
1da177e4
LT
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
14 *
191ea9b2
N
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
17 *
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
20 *
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
23 *
1da177e4
LT
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
28 *
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
32 */
33
5a0e3ad6 34#include <linux/slab.h>
25570727 35#include <linux/delay.h>
bff61975 36#include <linux/blkdev.h>
056075c7 37#include <linux/module.h>
bff61975 38#include <linux/seq_file.h>
8bda470e 39#include <linux/ratelimit.h>
43b2e5d8 40#include "md.h"
ef740c37
CH
41#include "raid1.h"
42#include "bitmap.h"
191ea9b2 43
1da177e4
LT
44/*
45 * Number of guaranteed r1bios in case of extreme VM load:
46 */
47#define NR_RAID1_BIOS 256
48
473e87ce
JB
49/* when we get a read error on a read-only array, we redirect to another
50 * device without failing the first device, or trying to over-write to
51 * correct the read error. To keep track of bad blocks on a per-bio
52 * level, we store IO_BLOCKED in the appropriate 'bios' pointer
53 */
54#define IO_BLOCKED ((struct bio *)1)
55/* When we successfully write to a known bad-block, we need to remove the
56 * bad-block marking which must be done from process context. So we record
57 * the success by setting devs[n].bio to IO_MADE_GOOD
58 */
59#define IO_MADE_GOOD ((struct bio *)2)
60
61#define BIO_SPECIAL(bio) ((unsigned long)bio <= 2)
62
34db0cd6
N
63/* When there are this many requests queue to be written by
64 * the raid1 thread, we become 'congested' to provide back-pressure
65 * for writeback.
66 */
67static int max_queued_requests = 1024;
1da177e4 68
79ef3a8a 69static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
70 sector_t bi_sector);
e8096360 71static void lower_barrier(struct r1conf *conf);
1da177e4 72
dd0fc66f 73static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
74{
75 struct pool_info *pi = data;
9f2c9d12 76 int size = offsetof(struct r1bio, bios[pi->raid_disks]);
1da177e4
LT
77
78 /* allocate a r1bio with room for raid_disks entries in the bios array */
7eaceacc 79 return kzalloc(size, gfp_flags);
1da177e4
LT
80}
81
82static void r1bio_pool_free(void *r1_bio, void *data)
83{
84 kfree(r1_bio);
85}
86
87#define RESYNC_BLOCK_SIZE (64*1024)
8e005f7c 88#define RESYNC_DEPTH 32
1da177e4
LT
89#define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
90#define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
8e005f7c 91#define RESYNC_WINDOW (RESYNC_BLOCK_SIZE * RESYNC_DEPTH)
92#define RESYNC_WINDOW_SECTORS (RESYNC_WINDOW >> 9)
c40f341f
GR
93#define CLUSTER_RESYNC_WINDOW (16 * RESYNC_WINDOW)
94#define CLUSTER_RESYNC_WINDOW_SECTORS (CLUSTER_RESYNC_WINDOW >> 9)
8e005f7c 95#define NEXT_NORMALIO_DISTANCE (3 * RESYNC_WINDOW_SECTORS)
1da177e4 96
dd0fc66f 97static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
1da177e4
LT
98{
99 struct pool_info *pi = data;
9f2c9d12 100 struct r1bio *r1_bio;
1da177e4 101 struct bio *bio;
da1aab3d 102 int need_pages;
1da177e4
LT
103 int i, j;
104
105 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
7eaceacc 106 if (!r1_bio)
1da177e4 107 return NULL;
1da177e4
LT
108
109 /*
110 * Allocate bios : 1 for reading, n-1 for writing
111 */
112 for (j = pi->raid_disks ; j-- ; ) {
6746557f 113 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
1da177e4
LT
114 if (!bio)
115 goto out_free_bio;
116 r1_bio->bios[j] = bio;
117 }
118 /*
119 * Allocate RESYNC_PAGES data pages and attach them to
d11c171e
N
120 * the first bio.
121 * If this is a user-requested check/repair, allocate
122 * RESYNC_PAGES for each bio.
1da177e4 123 */
d11c171e 124 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
da1aab3d 125 need_pages = pi->raid_disks;
d11c171e 126 else
da1aab3d
N
127 need_pages = 1;
128 for (j = 0; j < need_pages; j++) {
d11c171e 129 bio = r1_bio->bios[j];
a0787606 130 bio->bi_vcnt = RESYNC_PAGES;
d11c171e 131
a0787606 132 if (bio_alloc_pages(bio, gfp_flags))
da1aab3d 133 goto out_free_pages;
d11c171e
N
134 }
135 /* If not user-requests, copy the page pointers to all bios */
136 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
137 for (i=0; i<RESYNC_PAGES ; i++)
138 for (j=1; j<pi->raid_disks; j++)
139 r1_bio->bios[j]->bi_io_vec[i].bv_page =
140 r1_bio->bios[0]->bi_io_vec[i].bv_page;
1da177e4
LT
141 }
142
143 r1_bio->master_bio = NULL;
144
145 return r1_bio;
146
da1aab3d
N
147out_free_pages:
148 while (--j >= 0) {
149 struct bio_vec *bv;
150
151 bio_for_each_segment_all(bv, r1_bio->bios[j], i)
152 __free_page(bv->bv_page);
153 }
154
1da177e4 155out_free_bio:
8f19ccb2 156 while (++j < pi->raid_disks)
1da177e4
LT
157 bio_put(r1_bio->bios[j]);
158 r1bio_pool_free(r1_bio, data);
159 return NULL;
160}
161
162static void r1buf_pool_free(void *__r1_bio, void *data)
163{
164 struct pool_info *pi = data;
d11c171e 165 int i,j;
9f2c9d12 166 struct r1bio *r1bio = __r1_bio;
1da177e4 167
d11c171e
N
168 for (i = 0; i < RESYNC_PAGES; i++)
169 for (j = pi->raid_disks; j-- ;) {
170 if (j == 0 ||
171 r1bio->bios[j]->bi_io_vec[i].bv_page !=
172 r1bio->bios[0]->bi_io_vec[i].bv_page)
1345b1d8 173 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
d11c171e 174 }
1da177e4
LT
175 for (i=0 ; i < pi->raid_disks; i++)
176 bio_put(r1bio->bios[i]);
177
178 r1bio_pool_free(r1bio, data);
179}
180
e8096360 181static void put_all_bios(struct r1conf *conf, struct r1bio *r1_bio)
1da177e4
LT
182{
183 int i;
184
8f19ccb2 185 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4 186 struct bio **bio = r1_bio->bios + i;
4367af55 187 if (!BIO_SPECIAL(*bio))
1da177e4
LT
188 bio_put(*bio);
189 *bio = NULL;
190 }
191}
192
9f2c9d12 193static void free_r1bio(struct r1bio *r1_bio)
1da177e4 194{
e8096360 195 struct r1conf *conf = r1_bio->mddev->private;
1da177e4 196
1da177e4
LT
197 put_all_bios(conf, r1_bio);
198 mempool_free(r1_bio, conf->r1bio_pool);
199}
200
9f2c9d12 201static void put_buf(struct r1bio *r1_bio)
1da177e4 202{
e8096360 203 struct r1conf *conf = r1_bio->mddev->private;
3e198f78
N
204 int i;
205
8f19ccb2 206 for (i = 0; i < conf->raid_disks * 2; i++) {
3e198f78
N
207 struct bio *bio = r1_bio->bios[i];
208 if (bio->bi_end_io)
209 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
210 }
1da177e4
LT
211
212 mempool_free(r1_bio, conf->r1buf_pool);
213
17999be4 214 lower_barrier(conf);
1da177e4
LT
215}
216
9f2c9d12 217static void reschedule_retry(struct r1bio *r1_bio)
1da177e4
LT
218{
219 unsigned long flags;
fd01b88c 220 struct mddev *mddev = r1_bio->mddev;
e8096360 221 struct r1conf *conf = mddev->private;
1da177e4
LT
222
223 spin_lock_irqsave(&conf->device_lock, flags);
224 list_add(&r1_bio->retry_list, &conf->retry_list);
ddaf22ab 225 conf->nr_queued ++;
1da177e4
LT
226 spin_unlock_irqrestore(&conf->device_lock, flags);
227
17999be4 228 wake_up(&conf->wait_barrier);
1da177e4
LT
229 md_wakeup_thread(mddev->thread);
230}
231
232/*
233 * raid_end_bio_io() is called when we have finished servicing a mirrored
234 * operation and are ready to return a success/failure code to the buffer
235 * cache layer.
236 */
9f2c9d12 237static void call_bio_endio(struct r1bio *r1_bio)
d2eb35ac
N
238{
239 struct bio *bio = r1_bio->master_bio;
240 int done;
e8096360 241 struct r1conf *conf = r1_bio->mddev->private;
79ef3a8a 242 sector_t start_next_window = r1_bio->start_next_window;
4f024f37 243 sector_t bi_sector = bio->bi_iter.bi_sector;
d2eb35ac
N
244
245 if (bio->bi_phys_segments) {
246 unsigned long flags;
247 spin_lock_irqsave(&conf->device_lock, flags);
248 bio->bi_phys_segments--;
249 done = (bio->bi_phys_segments == 0);
250 spin_unlock_irqrestore(&conf->device_lock, flags);
79ef3a8a 251 /*
252 * make_request() might be waiting for
253 * bi_phys_segments to decrease
254 */
255 wake_up(&conf->wait_barrier);
d2eb35ac
N
256 } else
257 done = 1;
258
259 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
4246a0b6
CH
260 bio->bi_error = -EIO;
261
d2eb35ac 262 if (done) {
4246a0b6 263 bio_endio(bio);
d2eb35ac
N
264 /*
265 * Wake up any possible resync thread that waits for the device
266 * to go idle.
267 */
79ef3a8a 268 allow_barrier(conf, start_next_window, bi_sector);
d2eb35ac
N
269 }
270}
271
9f2c9d12 272static void raid_end_bio_io(struct r1bio *r1_bio)
1da177e4
LT
273{
274 struct bio *bio = r1_bio->master_bio;
275
4b6d287f
N
276 /* if nobody has done the final endio yet, do it now */
277 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
36a4e1fe
N
278 pr_debug("raid1: sync end %s on sectors %llu-%llu\n",
279 (bio_data_dir(bio) == WRITE) ? "write" : "read",
4f024f37
KO
280 (unsigned long long) bio->bi_iter.bi_sector,
281 (unsigned long long) bio_end_sector(bio) - 1);
4b6d287f 282
d2eb35ac 283 call_bio_endio(r1_bio);
4b6d287f 284 }
1da177e4
LT
285 free_r1bio(r1_bio);
286}
287
288/*
289 * Update disk head position estimator based on IRQ completion info.
290 */
9f2c9d12 291static inline void update_head_pos(int disk, struct r1bio *r1_bio)
1da177e4 292{
e8096360 293 struct r1conf *conf = r1_bio->mddev->private;
1da177e4
LT
294
295 conf->mirrors[disk].head_position =
296 r1_bio->sector + (r1_bio->sectors);
297}
298
ba3ae3be
NK
299/*
300 * Find the disk number which triggered given bio
301 */
9f2c9d12 302static int find_bio_disk(struct r1bio *r1_bio, struct bio *bio)
ba3ae3be
NK
303{
304 int mirror;
30194636
N
305 struct r1conf *conf = r1_bio->mddev->private;
306 int raid_disks = conf->raid_disks;
ba3ae3be 307
8f19ccb2 308 for (mirror = 0; mirror < raid_disks * 2; mirror++)
ba3ae3be
NK
309 if (r1_bio->bios[mirror] == bio)
310 break;
311
8f19ccb2 312 BUG_ON(mirror == raid_disks * 2);
ba3ae3be
NK
313 update_head_pos(mirror, r1_bio);
314
315 return mirror;
316}
317
4246a0b6 318static void raid1_end_read_request(struct bio *bio)
1da177e4 319{
4246a0b6 320 int uptodate = !bio->bi_error;
9f2c9d12 321 struct r1bio *r1_bio = bio->bi_private;
1da177e4 322 int mirror;
e8096360 323 struct r1conf *conf = r1_bio->mddev->private;
1da177e4 324
1da177e4
LT
325 mirror = r1_bio->read_disk;
326 /*
327 * this branch is our 'one mirror IO has finished' event handler:
328 */
ddaf22ab
N
329 update_head_pos(mirror, r1_bio);
330
dd00a99e
N
331 if (uptodate)
332 set_bit(R1BIO_Uptodate, &r1_bio->state);
333 else {
334 /* If all other devices have failed, we want to return
335 * the error upwards rather than fail the last device.
336 * Here we redefine "uptodate" to mean "Don't want to retry"
1da177e4 337 */
dd00a99e
N
338 unsigned long flags;
339 spin_lock_irqsave(&conf->device_lock, flags);
340 if (r1_bio->mddev->degraded == conf->raid_disks ||
341 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
34cab6f4 342 test_bit(In_sync, &conf->mirrors[mirror].rdev->flags)))
dd00a99e
N
343 uptodate = 1;
344 spin_unlock_irqrestore(&conf->device_lock, flags);
345 }
1da177e4 346
7ad4d4a6 347 if (uptodate) {
1da177e4 348 raid_end_bio_io(r1_bio);
7ad4d4a6
N
349 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
350 } else {
1da177e4
LT
351 /*
352 * oops, read error:
353 */
354 char b[BDEVNAME_SIZE];
8bda470e
CD
355 printk_ratelimited(
356 KERN_ERR "md/raid1:%s: %s: "
357 "rescheduling sector %llu\n",
358 mdname(conf->mddev),
359 bdevname(conf->mirrors[mirror].rdev->bdev,
360 b),
361 (unsigned long long)r1_bio->sector);
d2eb35ac 362 set_bit(R1BIO_ReadError, &r1_bio->state);
1da177e4 363 reschedule_retry(r1_bio);
7ad4d4a6 364 /* don't drop the reference on read_disk yet */
1da177e4 365 }
1da177e4
LT
366}
367
9f2c9d12 368static void close_write(struct r1bio *r1_bio)
cd5ff9a1
N
369{
370 /* it really is the end of this request */
371 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
372 /* free extra copy of the data pages */
373 int i = r1_bio->behind_page_count;
374 while (i--)
375 safe_put_page(r1_bio->behind_bvecs[i].bv_page);
376 kfree(r1_bio->behind_bvecs);
377 r1_bio->behind_bvecs = NULL;
378 }
379 /* clear the bitmap if all writes complete successfully */
380 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
381 r1_bio->sectors,
382 !test_bit(R1BIO_Degraded, &r1_bio->state),
383 test_bit(R1BIO_BehindIO, &r1_bio->state));
384 md_write_end(r1_bio->mddev);
385}
386
9f2c9d12 387static void r1_bio_write_done(struct r1bio *r1_bio)
4e78064f 388{
cd5ff9a1
N
389 if (!atomic_dec_and_test(&r1_bio->remaining))
390 return;
391
392 if (test_bit(R1BIO_WriteError, &r1_bio->state))
393 reschedule_retry(r1_bio);
394 else {
395 close_write(r1_bio);
4367af55
N
396 if (test_bit(R1BIO_MadeGood, &r1_bio->state))
397 reschedule_retry(r1_bio);
398 else
399 raid_end_bio_io(r1_bio);
4e78064f
N
400 }
401}
402
4246a0b6 403static void raid1_end_write_request(struct bio *bio)
1da177e4 404{
9f2c9d12 405 struct r1bio *r1_bio = bio->bi_private;
a9701a30 406 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
e8096360 407 struct r1conf *conf = r1_bio->mddev->private;
04b857f7 408 struct bio *to_put = NULL;
1da177e4 409
ba3ae3be 410 mirror = find_bio_disk(r1_bio, bio);
1da177e4 411
e9c7469b
TH
412 /*
413 * 'one mirror IO has finished' event handler:
414 */
4246a0b6 415 if (bio->bi_error) {
cd5ff9a1
N
416 set_bit(WriteErrorSeen,
417 &conf->mirrors[mirror].rdev->flags);
19d67169
N
418 if (!test_and_set_bit(WantReplacement,
419 &conf->mirrors[mirror].rdev->flags))
420 set_bit(MD_RECOVERY_NEEDED, &
421 conf->mddev->recovery);
422
cd5ff9a1 423 set_bit(R1BIO_WriteError, &r1_bio->state);
4367af55 424 } else {
1da177e4 425 /*
e9c7469b
TH
426 * Set R1BIO_Uptodate in our master bio, so that we
427 * will return a good error code for to the higher
428 * levels even if IO on some other mirrored buffer
429 * fails.
430 *
431 * The 'master' represents the composite IO operation
432 * to user-side. So if something waits for IO, then it
433 * will wait for the 'master' bio.
1da177e4 434 */
4367af55
N
435 sector_t first_bad;
436 int bad_sectors;
437
cd5ff9a1
N
438 r1_bio->bios[mirror] = NULL;
439 to_put = bio;
3056e3ae
AL
440 /*
441 * Do not set R1BIO_Uptodate if the current device is
442 * rebuilding or Faulty. This is because we cannot use
443 * such device for properly reading the data back (we could
444 * potentially use it, if the current write would have felt
445 * before rdev->recovery_offset, but for simplicity we don't
446 * check this here.
447 */
448 if (test_bit(In_sync, &conf->mirrors[mirror].rdev->flags) &&
449 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags))
450 set_bit(R1BIO_Uptodate, &r1_bio->state);
e9c7469b 451
4367af55
N
452 /* Maybe we can clear some bad blocks. */
453 if (is_badblock(conf->mirrors[mirror].rdev,
454 r1_bio->sector, r1_bio->sectors,
455 &first_bad, &bad_sectors)) {
456 r1_bio->bios[mirror] = IO_MADE_GOOD;
457 set_bit(R1BIO_MadeGood, &r1_bio->state);
458 }
459 }
460
e9c7469b
TH
461 if (behind) {
462 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
463 atomic_dec(&r1_bio->behind_remaining);
464
465 /*
466 * In behind mode, we ACK the master bio once the I/O
467 * has safely reached all non-writemostly
468 * disks. Setting the Returned bit ensures that this
469 * gets done only once -- we don't ever want to return
470 * -EIO here, instead we'll wait
471 */
472 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
473 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
474 /* Maybe we can return now */
475 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
476 struct bio *mbio = r1_bio->master_bio;
36a4e1fe
N
477 pr_debug("raid1: behind end write sectors"
478 " %llu-%llu\n",
4f024f37
KO
479 (unsigned long long) mbio->bi_iter.bi_sector,
480 (unsigned long long) bio_end_sector(mbio) - 1);
d2eb35ac 481 call_bio_endio(r1_bio);
4b6d287f
N
482 }
483 }
484 }
4367af55
N
485 if (r1_bio->bios[mirror] == NULL)
486 rdev_dec_pending(conf->mirrors[mirror].rdev,
487 conf->mddev);
e9c7469b 488
1da177e4 489 /*
1da177e4
LT
490 * Let's see if all mirrored write operations have finished
491 * already.
492 */
af6d7b76 493 r1_bio_write_done(r1_bio);
c70810b3 494
04b857f7
N
495 if (to_put)
496 bio_put(to_put);
1da177e4
LT
497}
498
1da177e4
LT
499/*
500 * This routine returns the disk from which the requested read should
501 * be done. There is a per-array 'next expected sequential IO' sector
502 * number - if this matches on the next IO then we use the last disk.
503 * There is also a per-disk 'last know head position' sector that is
504 * maintained from IRQ contexts, both the normal and the resync IO
505 * completion handlers update this position correctly. If there is no
506 * perfect sequential match then we pick the disk whose head is closest.
507 *
508 * If there are 2 mirrors in the same 2 devices, performance degrades
509 * because position is mirror, not device based.
510 *
511 * The rdev for the device selected will have nr_pending incremented.
512 */
e8096360 513static int read_balance(struct r1conf *conf, struct r1bio *r1_bio, int *max_sectors)
1da177e4 514{
af3a2cd6 515 const sector_t this_sector = r1_bio->sector;
d2eb35ac
N
516 int sectors;
517 int best_good_sectors;
9dedf603
SL
518 int best_disk, best_dist_disk, best_pending_disk;
519 int has_nonrot_disk;
be4d3280 520 int disk;
76073054 521 sector_t best_dist;
9dedf603 522 unsigned int min_pending;
3cb03002 523 struct md_rdev *rdev;
f3ac8bf7 524 int choose_first;
12cee5a8 525 int choose_next_idle;
1da177e4
LT
526
527 rcu_read_lock();
528 /*
8ddf9efe 529 * Check if we can balance. We can balance on the whole
1da177e4
LT
530 * device if no resync is going on, or below the resync window.
531 * We take the first readable disk when above the resync window.
532 */
533 retry:
d2eb35ac 534 sectors = r1_bio->sectors;
76073054 535 best_disk = -1;
9dedf603 536 best_dist_disk = -1;
76073054 537 best_dist = MaxSector;
9dedf603
SL
538 best_pending_disk = -1;
539 min_pending = UINT_MAX;
d2eb35ac 540 best_good_sectors = 0;
9dedf603 541 has_nonrot_disk = 0;
12cee5a8 542 choose_next_idle = 0;
d2eb35ac 543
7d49ffcf
GR
544 if ((conf->mddev->recovery_cp < this_sector + sectors) ||
545 (mddev_is_clustered(conf->mddev) &&
90382ed9 546 md_cluster_ops->area_resyncing(conf->mddev, READ, this_sector,
7d49ffcf
GR
547 this_sector + sectors)))
548 choose_first = 1;
549 else
550 choose_first = 0;
1da177e4 551
be4d3280 552 for (disk = 0 ; disk < conf->raid_disks * 2 ; disk++) {
76073054 553 sector_t dist;
d2eb35ac
N
554 sector_t first_bad;
555 int bad_sectors;
9dedf603 556 unsigned int pending;
12cee5a8 557 bool nonrot;
d2eb35ac 558
f3ac8bf7
N
559 rdev = rcu_dereference(conf->mirrors[disk].rdev);
560 if (r1_bio->bios[disk] == IO_BLOCKED
561 || rdev == NULL
76073054 562 || test_bit(Faulty, &rdev->flags))
f3ac8bf7 563 continue;
76073054
N
564 if (!test_bit(In_sync, &rdev->flags) &&
565 rdev->recovery_offset < this_sector + sectors)
1da177e4 566 continue;
76073054
N
567 if (test_bit(WriteMostly, &rdev->flags)) {
568 /* Don't balance among write-mostly, just
569 * use the first as a last resort */
d1901ef0 570 if (best_dist_disk < 0) {
307729c8
N
571 if (is_badblock(rdev, this_sector, sectors,
572 &first_bad, &bad_sectors)) {
816b0acf 573 if (first_bad <= this_sector)
307729c8
N
574 /* Cannot use this */
575 continue;
576 best_good_sectors = first_bad - this_sector;
577 } else
578 best_good_sectors = sectors;
d1901ef0
TH
579 best_dist_disk = disk;
580 best_pending_disk = disk;
307729c8 581 }
76073054
N
582 continue;
583 }
584 /* This is a reasonable device to use. It might
585 * even be best.
586 */
d2eb35ac
N
587 if (is_badblock(rdev, this_sector, sectors,
588 &first_bad, &bad_sectors)) {
589 if (best_dist < MaxSector)
590 /* already have a better device */
591 continue;
592 if (first_bad <= this_sector) {
593 /* cannot read here. If this is the 'primary'
594 * device, then we must not read beyond
595 * bad_sectors from another device..
596 */
597 bad_sectors -= (this_sector - first_bad);
598 if (choose_first && sectors > bad_sectors)
599 sectors = bad_sectors;
600 if (best_good_sectors > sectors)
601 best_good_sectors = sectors;
602
603 } else {
604 sector_t good_sectors = first_bad - this_sector;
605 if (good_sectors > best_good_sectors) {
606 best_good_sectors = good_sectors;
607 best_disk = disk;
608 }
609 if (choose_first)
610 break;
611 }
612 continue;
613 } else
614 best_good_sectors = sectors;
615
12cee5a8
SL
616 nonrot = blk_queue_nonrot(bdev_get_queue(rdev->bdev));
617 has_nonrot_disk |= nonrot;
9dedf603 618 pending = atomic_read(&rdev->nr_pending);
76073054 619 dist = abs(this_sector - conf->mirrors[disk].head_position);
12cee5a8 620 if (choose_first) {
76073054 621 best_disk = disk;
1da177e4
LT
622 break;
623 }
12cee5a8
SL
624 /* Don't change to another disk for sequential reads */
625 if (conf->mirrors[disk].next_seq_sect == this_sector
626 || dist == 0) {
627 int opt_iosize = bdev_io_opt(rdev->bdev) >> 9;
628 struct raid1_info *mirror = &conf->mirrors[disk];
629
630 best_disk = disk;
631 /*
632 * If buffered sequential IO size exceeds optimal
633 * iosize, check if there is idle disk. If yes, choose
634 * the idle disk. read_balance could already choose an
635 * idle disk before noticing it's a sequential IO in
636 * this disk. This doesn't matter because this disk
637 * will idle, next time it will be utilized after the
638 * first disk has IO size exceeds optimal iosize. In
639 * this way, iosize of the first disk will be optimal
640 * iosize at least. iosize of the second disk might be
641 * small, but not a big deal since when the second disk
642 * starts IO, the first disk is likely still busy.
643 */
644 if (nonrot && opt_iosize > 0 &&
645 mirror->seq_start != MaxSector &&
646 mirror->next_seq_sect > opt_iosize &&
647 mirror->next_seq_sect - opt_iosize >=
648 mirror->seq_start) {
649 choose_next_idle = 1;
650 continue;
651 }
652 break;
653 }
654 /* If device is idle, use it */
655 if (pending == 0) {
656 best_disk = disk;
657 break;
658 }
659
660 if (choose_next_idle)
661 continue;
9dedf603
SL
662
663 if (min_pending > pending) {
664 min_pending = pending;
665 best_pending_disk = disk;
666 }
667
76073054
N
668 if (dist < best_dist) {
669 best_dist = dist;
9dedf603 670 best_dist_disk = disk;
1da177e4 671 }
f3ac8bf7 672 }
1da177e4 673
9dedf603
SL
674 /*
675 * If all disks are rotational, choose the closest disk. If any disk is
676 * non-rotational, choose the disk with less pending request even the
677 * disk is rotational, which might/might not be optimal for raids with
678 * mixed ratation/non-rotational disks depending on workload.
679 */
680 if (best_disk == -1) {
681 if (has_nonrot_disk)
682 best_disk = best_pending_disk;
683 else
684 best_disk = best_dist_disk;
685 }
686
76073054
N
687 if (best_disk >= 0) {
688 rdev = rcu_dereference(conf->mirrors[best_disk].rdev);
8ddf9efe
N
689 if (!rdev)
690 goto retry;
691 atomic_inc(&rdev->nr_pending);
76073054 692 if (test_bit(Faulty, &rdev->flags)) {
1da177e4
LT
693 /* cannot risk returning a device that failed
694 * before we inc'ed nr_pending
695 */
03c902e1 696 rdev_dec_pending(rdev, conf->mddev);
1da177e4
LT
697 goto retry;
698 }
d2eb35ac 699 sectors = best_good_sectors;
12cee5a8
SL
700
701 if (conf->mirrors[best_disk].next_seq_sect != this_sector)
702 conf->mirrors[best_disk].seq_start = this_sector;
703
be4d3280 704 conf->mirrors[best_disk].next_seq_sect = this_sector + sectors;
1da177e4
LT
705 }
706 rcu_read_unlock();
d2eb35ac 707 *max_sectors = sectors;
1da177e4 708
76073054 709 return best_disk;
1da177e4
LT
710}
711
5c675f83 712static int raid1_congested(struct mddev *mddev, int bits)
0d129228 713{
e8096360 714 struct r1conf *conf = mddev->private;
0d129228
N
715 int i, ret = 0;
716
4452226e 717 if ((bits & (1 << WB_async_congested)) &&
34db0cd6
N
718 conf->pending_count >= max_queued_requests)
719 return 1;
720
0d129228 721 rcu_read_lock();
f53e29fc 722 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 723 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
0d129228 724 if (rdev && !test_bit(Faulty, &rdev->flags)) {
165125e1 725 struct request_queue *q = bdev_get_queue(rdev->bdev);
0d129228 726
1ed7242e
JB
727 BUG_ON(!q);
728
0d129228
N
729 /* Note the '|| 1' - when read_balance prefers
730 * non-congested targets, it can be removed
731 */
4452226e 732 if ((bits & (1 << WB_async_congested)) || 1)
0d129228
N
733 ret |= bdi_congested(&q->backing_dev_info, bits);
734 else
735 ret &= bdi_congested(&q->backing_dev_info, bits);
736 }
737 }
738 rcu_read_unlock();
739 return ret;
740}
0d129228 741
e8096360 742static void flush_pending_writes(struct r1conf *conf)
a35e63ef
N
743{
744 /* Any writes that have been queued but are awaiting
745 * bitmap updates get flushed here.
a35e63ef 746 */
a35e63ef
N
747 spin_lock_irq(&conf->device_lock);
748
749 if (conf->pending_bio_list.head) {
750 struct bio *bio;
751 bio = bio_list_get(&conf->pending_bio_list);
34db0cd6 752 conf->pending_count = 0;
a35e63ef
N
753 spin_unlock_irq(&conf->device_lock);
754 /* flush any pending bitmap writes to
755 * disk before proceeding w/ I/O */
756 bitmap_unplug(conf->mddev->bitmap);
34db0cd6 757 wake_up(&conf->wait_barrier);
a35e63ef
N
758
759 while (bio) { /* submit pending writes */
760 struct bio *next = bio->bi_next;
761 bio->bi_next = NULL;
2ff8cc2c
SL
762 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
763 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
764 /* Just ignore it */
4246a0b6 765 bio_endio(bio);
2ff8cc2c
SL
766 else
767 generic_make_request(bio);
a35e63ef
N
768 bio = next;
769 }
a35e63ef
N
770 } else
771 spin_unlock_irq(&conf->device_lock);
7eaceacc
JA
772}
773
17999be4
N
774/* Barriers....
775 * Sometimes we need to suspend IO while we do something else,
776 * either some resync/recovery, or reconfigure the array.
777 * To do this we raise a 'barrier'.
778 * The 'barrier' is a counter that can be raised multiple times
779 * to count how many activities are happening which preclude
780 * normal IO.
781 * We can only raise the barrier if there is no pending IO.
782 * i.e. if nr_pending == 0.
783 * We choose only to raise the barrier if no-one is waiting for the
784 * barrier to go down. This means that as soon as an IO request
785 * is ready, no other operations which require a barrier will start
786 * until the IO request has had a chance.
787 *
788 * So: regular IO calls 'wait_barrier'. When that returns there
789 * is no backgroup IO happening, It must arrange to call
790 * allow_barrier when it has finished its IO.
791 * backgroup IO calls must call raise_barrier. Once that returns
792 * there is no normal IO happeing. It must arrange to call
793 * lower_barrier when the particular background IO completes.
1da177e4 794 */
c2fd4c94 795static void raise_barrier(struct r1conf *conf, sector_t sector_nr)
1da177e4
LT
796{
797 spin_lock_irq(&conf->resync_lock);
17999be4
N
798
799 /* Wait until no block IO is waiting */
800 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
eed8c02e 801 conf->resync_lock);
17999be4
N
802
803 /* block any new IO from starting */
804 conf->barrier++;
c2fd4c94 805 conf->next_resync = sector_nr;
17999be4 806
79ef3a8a 807 /* For these conditions we must wait:
808 * A: while the array is in frozen state
809 * B: while barrier >= RESYNC_DEPTH, meaning resync reach
810 * the max count which allowed.
811 * C: next_resync + RESYNC_SECTORS > start_next_window, meaning
812 * next resync will reach to the window which normal bios are
813 * handling.
2f73d3c5 814 * D: while there are any active requests in the current window.
79ef3a8a 815 */
17999be4 816 wait_event_lock_irq(conf->wait_barrier,
b364e3d0 817 !conf->array_frozen &&
79ef3a8a 818 conf->barrier < RESYNC_DEPTH &&
2f73d3c5 819 conf->current_window_requests == 0 &&
79ef3a8a 820 (conf->start_next_window >=
821 conf->next_resync + RESYNC_SECTORS),
eed8c02e 822 conf->resync_lock);
17999be4 823
34e97f17 824 conf->nr_pending++;
17999be4
N
825 spin_unlock_irq(&conf->resync_lock);
826}
827
e8096360 828static void lower_barrier(struct r1conf *conf)
17999be4
N
829{
830 unsigned long flags;
709ae487 831 BUG_ON(conf->barrier <= 0);
17999be4
N
832 spin_lock_irqsave(&conf->resync_lock, flags);
833 conf->barrier--;
34e97f17 834 conf->nr_pending--;
17999be4
N
835 spin_unlock_irqrestore(&conf->resync_lock, flags);
836 wake_up(&conf->wait_barrier);
837}
838
79ef3a8a 839static bool need_to_wait_for_sync(struct r1conf *conf, struct bio *bio)
17999be4 840{
79ef3a8a 841 bool wait = false;
842
843 if (conf->array_frozen || !bio)
844 wait = true;
845 else if (conf->barrier && bio_data_dir(bio) == WRITE) {
23554960
N
846 if ((conf->mddev->curr_resync_completed
847 >= bio_end_sector(bio)) ||
848 (conf->next_resync + NEXT_NORMALIO_DISTANCE
849 <= bio->bi_iter.bi_sector))
79ef3a8a 850 wait = false;
851 else
852 wait = true;
853 }
854
855 return wait;
856}
857
858static sector_t wait_barrier(struct r1conf *conf, struct bio *bio)
859{
860 sector_t sector = 0;
861
17999be4 862 spin_lock_irq(&conf->resync_lock);
79ef3a8a 863 if (need_to_wait_for_sync(conf, bio)) {
17999be4 864 conf->nr_waiting++;
d6b42dcb
N
865 /* Wait for the barrier to drop.
866 * However if there are already pending
867 * requests (preventing the barrier from
868 * rising completely), and the
5965b642 869 * per-process bio queue isn't empty,
d6b42dcb 870 * then don't wait, as we need to empty
5965b642
N
871 * that queue to allow conf->start_next_window
872 * to increase.
d6b42dcb
N
873 */
874 wait_event_lock_irq(conf->wait_barrier,
b364e3d0 875 !conf->array_frozen &&
876 (!conf->barrier ||
5965b642
N
877 ((conf->start_next_window <
878 conf->next_resync + RESYNC_SECTORS) &&
879 current->bio_list &&
880 !bio_list_empty(current->bio_list))),
eed8c02e 881 conf->resync_lock);
17999be4 882 conf->nr_waiting--;
1da177e4 883 }
79ef3a8a 884
885 if (bio && bio_data_dir(bio) == WRITE) {
e8ff8bf0 886 if (bio->bi_iter.bi_sector >= conf->next_resync) {
79ef3a8a 887 if (conf->start_next_window == MaxSector)
888 conf->start_next_window =
889 conf->next_resync +
890 NEXT_NORMALIO_DISTANCE;
891
892 if ((conf->start_next_window + NEXT_NORMALIO_DISTANCE)
4f024f37 893 <= bio->bi_iter.bi_sector)
79ef3a8a 894 conf->next_window_requests++;
895 else
896 conf->current_window_requests++;
79ef3a8a 897 sector = conf->start_next_window;
41a336e0 898 }
79ef3a8a 899 }
900
17999be4 901 conf->nr_pending++;
1da177e4 902 spin_unlock_irq(&conf->resync_lock);
79ef3a8a 903 return sector;
1da177e4
LT
904}
905
79ef3a8a 906static void allow_barrier(struct r1conf *conf, sector_t start_next_window,
907 sector_t bi_sector)
17999be4
N
908{
909 unsigned long flags;
79ef3a8a 910
17999be4
N
911 spin_lock_irqsave(&conf->resync_lock, flags);
912 conf->nr_pending--;
79ef3a8a 913 if (start_next_window) {
914 if (start_next_window == conf->start_next_window) {
915 if (conf->start_next_window + NEXT_NORMALIO_DISTANCE
916 <= bi_sector)
917 conf->next_window_requests--;
918 else
919 conf->current_window_requests--;
920 } else
921 conf->current_window_requests--;
922
923 if (!conf->current_window_requests) {
924 if (conf->next_window_requests) {
925 conf->current_window_requests =
926 conf->next_window_requests;
927 conf->next_window_requests = 0;
928 conf->start_next_window +=
929 NEXT_NORMALIO_DISTANCE;
930 } else
931 conf->start_next_window = MaxSector;
932 }
933 }
17999be4
N
934 spin_unlock_irqrestore(&conf->resync_lock, flags);
935 wake_up(&conf->wait_barrier);
936}
937
e2d59925 938static void freeze_array(struct r1conf *conf, int extra)
ddaf22ab
N
939{
940 /* stop syncio and normal IO and wait for everything to
941 * go quite.
b364e3d0 942 * We wait until nr_pending match nr_queued+extra
1c830532
N
943 * This is called in the context of one normal IO request
944 * that has failed. Thus any sync request that might be pending
945 * will be blocked by nr_pending, and we need to wait for
946 * pending IO requests to complete or be queued for re-try.
e2d59925 947 * Thus the number queued (nr_queued) plus this request (extra)
1c830532
N
948 * must match the number of pending IOs (nr_pending) before
949 * we continue.
ddaf22ab
N
950 */
951 spin_lock_irq(&conf->resync_lock);
b364e3d0 952 conf->array_frozen = 1;
eed8c02e 953 wait_event_lock_irq_cmd(conf->wait_barrier,
e2d59925 954 conf->nr_pending == conf->nr_queued+extra,
eed8c02e
LC
955 conf->resync_lock,
956 flush_pending_writes(conf));
ddaf22ab
N
957 spin_unlock_irq(&conf->resync_lock);
958}
e8096360 959static void unfreeze_array(struct r1conf *conf)
ddaf22ab
N
960{
961 /* reverse the effect of the freeze */
962 spin_lock_irq(&conf->resync_lock);
b364e3d0 963 conf->array_frozen = 0;
ddaf22ab
N
964 wake_up(&conf->wait_barrier);
965 spin_unlock_irq(&conf->resync_lock);
966}
967
f72ffdd6 968/* duplicate the data pages for behind I/O
4e78064f 969 */
9f2c9d12 970static void alloc_behind_pages(struct bio *bio, struct r1bio *r1_bio)
4b6d287f
N
971{
972 int i;
973 struct bio_vec *bvec;
2ca68f5e 974 struct bio_vec *bvecs = kzalloc(bio->bi_vcnt * sizeof(struct bio_vec),
4b6d287f 975 GFP_NOIO);
2ca68f5e 976 if (unlikely(!bvecs))
af6d7b76 977 return;
4b6d287f 978
cb34e057 979 bio_for_each_segment_all(bvec, bio, i) {
2ca68f5e
N
980 bvecs[i] = *bvec;
981 bvecs[i].bv_page = alloc_page(GFP_NOIO);
982 if (unlikely(!bvecs[i].bv_page))
4b6d287f 983 goto do_sync_io;
2ca68f5e
N
984 memcpy(kmap(bvecs[i].bv_page) + bvec->bv_offset,
985 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
986 kunmap(bvecs[i].bv_page);
4b6d287f
N
987 kunmap(bvec->bv_page);
988 }
2ca68f5e 989 r1_bio->behind_bvecs = bvecs;
af6d7b76
N
990 r1_bio->behind_page_count = bio->bi_vcnt;
991 set_bit(R1BIO_BehindIO, &r1_bio->state);
992 return;
4b6d287f
N
993
994do_sync_io:
af6d7b76 995 for (i = 0; i < bio->bi_vcnt; i++)
2ca68f5e
N
996 if (bvecs[i].bv_page)
997 put_page(bvecs[i].bv_page);
998 kfree(bvecs);
4f024f37
KO
999 pr_debug("%dB behind alloc failed, doing sync I/O\n",
1000 bio->bi_iter.bi_size);
4b6d287f
N
1001}
1002
f54a9d0e
N
1003struct raid1_plug_cb {
1004 struct blk_plug_cb cb;
1005 struct bio_list pending;
1006 int pending_cnt;
1007};
1008
1009static void raid1_unplug(struct blk_plug_cb *cb, bool from_schedule)
1010{
1011 struct raid1_plug_cb *plug = container_of(cb, struct raid1_plug_cb,
1012 cb);
1013 struct mddev *mddev = plug->cb.data;
1014 struct r1conf *conf = mddev->private;
1015 struct bio *bio;
1016
874807a8 1017 if (from_schedule || current->bio_list) {
f54a9d0e
N
1018 spin_lock_irq(&conf->device_lock);
1019 bio_list_merge(&conf->pending_bio_list, &plug->pending);
1020 conf->pending_count += plug->pending_cnt;
1021 spin_unlock_irq(&conf->device_lock);
ee0b0244 1022 wake_up(&conf->wait_barrier);
f54a9d0e
N
1023 md_wakeup_thread(mddev->thread);
1024 kfree(plug);
1025 return;
1026 }
1027
1028 /* we aren't scheduling, so we can do the write-out directly. */
1029 bio = bio_list_get(&plug->pending);
1030 bitmap_unplug(mddev->bitmap);
1031 wake_up(&conf->wait_barrier);
1032
1033 while (bio) { /* submit pending writes */
1034 struct bio *next = bio->bi_next;
1035 bio->bi_next = NULL;
32f9f570
SL
1036 if (unlikely((bio->bi_rw & REQ_DISCARD) &&
1037 !blk_queue_discard(bdev_get_queue(bio->bi_bdev))))
1038 /* Just ignore it */
4246a0b6 1039 bio_endio(bio);
32f9f570
SL
1040 else
1041 generic_make_request(bio);
f54a9d0e
N
1042 bio = next;
1043 }
1044 kfree(plug);
1045}
1046
849674e4 1047static void raid1_make_request(struct mddev *mddev, struct bio * bio)
1da177e4 1048{
e8096360 1049 struct r1conf *conf = mddev->private;
0eaf822c 1050 struct raid1_info *mirror;
9f2c9d12 1051 struct r1bio *r1_bio;
1da177e4 1052 struct bio *read_bio;
1f68f0c4 1053 int i, disks;
84255d10 1054 struct bitmap *bitmap;
191ea9b2 1055 unsigned long flags;
a362357b 1056 const int rw = bio_data_dir(bio);
2c7d46ec 1057 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
e9c7469b 1058 const unsigned long do_flush_fua = (bio->bi_rw & (REQ_FLUSH | REQ_FUA));
2ff8cc2c
SL
1059 const unsigned long do_discard = (bio->bi_rw
1060 & (REQ_DISCARD | REQ_SECURE));
c8dc9c65 1061 const unsigned long do_same = (bio->bi_rw & REQ_WRITE_SAME);
3cb03002 1062 struct md_rdev *blocked_rdev;
f54a9d0e
N
1063 struct blk_plug_cb *cb;
1064 struct raid1_plug_cb *plug = NULL;
1f68f0c4
N
1065 int first_clone;
1066 int sectors_handled;
1067 int max_sectors;
79ef3a8a 1068 sector_t start_next_window;
191ea9b2 1069
1da177e4
LT
1070 /*
1071 * Register the new request and wait if the reconstruction
1072 * thread has put up a bar for new requests.
1073 * Continue immediately if no resync is active currently.
1074 */
62de608d 1075
3d310eb7
N
1076 md_write_start(mddev, bio); /* wait on superblock update early */
1077
6eef4b21 1078 if (bio_data_dir(bio) == WRITE &&
589a1c49
GR
1079 ((bio_end_sector(bio) > mddev->suspend_lo &&
1080 bio->bi_iter.bi_sector < mddev->suspend_hi) ||
1081 (mddev_is_clustered(mddev) &&
90382ed9
GR
1082 md_cluster_ops->area_resyncing(mddev, WRITE,
1083 bio->bi_iter.bi_sector, bio_end_sector(bio))))) {
6eef4b21
N
1084 /* As the suspend_* range is controlled by
1085 * userspace, we want an interruptible
1086 * wait.
1087 */
1088 DEFINE_WAIT(w);
1089 for (;;) {
1090 flush_signals(current);
1091 prepare_to_wait(&conf->wait_barrier,
1092 &w, TASK_INTERRUPTIBLE);
f73a1c7d 1093 if (bio_end_sector(bio) <= mddev->suspend_lo ||
589a1c49
GR
1094 bio->bi_iter.bi_sector >= mddev->suspend_hi ||
1095 (mddev_is_clustered(mddev) &&
90382ed9 1096 !md_cluster_ops->area_resyncing(mddev, WRITE,
589a1c49 1097 bio->bi_iter.bi_sector, bio_end_sector(bio))))
6eef4b21
N
1098 break;
1099 schedule();
1100 }
1101 finish_wait(&conf->wait_barrier, &w);
1102 }
62de608d 1103
79ef3a8a 1104 start_next_window = wait_barrier(conf, bio);
1da177e4 1105
84255d10
N
1106 bitmap = mddev->bitmap;
1107
1da177e4
LT
1108 /*
1109 * make_request() can abort the operation when READA is being
1110 * used and no empty request is available.
1111 *
1112 */
1113 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1114
1115 r1_bio->master_bio = bio;
aa8b57aa 1116 r1_bio->sectors = bio_sectors(bio);
191ea9b2 1117 r1_bio->state = 0;
1da177e4 1118 r1_bio->mddev = mddev;
4f024f37 1119 r1_bio->sector = bio->bi_iter.bi_sector;
1da177e4 1120
d2eb35ac
N
1121 /* We might need to issue multiple reads to different
1122 * devices if there are bad blocks around, so we keep
1123 * track of the number of reads in bio->bi_phys_segments.
1124 * If this is 0, there is only one r1_bio and no locking
1125 * will be needed when requests complete. If it is
1126 * non-zero, then it is the number of not-completed requests.
1127 */
1128 bio->bi_phys_segments = 0;
b7c44ed9 1129 bio_clear_flag(bio, BIO_SEG_VALID);
d2eb35ac 1130
a362357b 1131 if (rw == READ) {
1da177e4
LT
1132 /*
1133 * read balancing logic:
1134 */
d2eb35ac
N
1135 int rdisk;
1136
1137read_again:
1138 rdisk = read_balance(conf, r1_bio, &max_sectors);
1da177e4
LT
1139
1140 if (rdisk < 0) {
1141 /* couldn't find anywhere to read from */
1142 raid_end_bio_io(r1_bio);
5a7bbad2 1143 return;
1da177e4
LT
1144 }
1145 mirror = conf->mirrors + rdisk;
1146
e555190d
N
1147 if (test_bit(WriteMostly, &mirror->rdev->flags) &&
1148 bitmap) {
1149 /* Reading from a write-mostly device must
1150 * take care not to over-take any writes
1151 * that are 'behind'
1152 */
1153 wait_event(bitmap->behind_wait,
1154 atomic_read(&bitmap->behind_writes) == 0);
1155 }
1da177e4 1156 r1_bio->read_disk = rdisk;
f0cc9a05 1157 r1_bio->start_next_window = 0;
1da177e4 1158
a167f663 1159 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
4f024f37 1160 bio_trim(read_bio, r1_bio->sector - bio->bi_iter.bi_sector,
6678d83f 1161 max_sectors);
1da177e4
LT
1162
1163 r1_bio->bios[rdisk] = read_bio;
1164
4f024f37
KO
1165 read_bio->bi_iter.bi_sector = r1_bio->sector +
1166 mirror->rdev->data_offset;
1da177e4
LT
1167 read_bio->bi_bdev = mirror->rdev->bdev;
1168 read_bio->bi_end_io = raid1_end_read_request;
7b6d91da 1169 read_bio->bi_rw = READ | do_sync;
1da177e4
LT
1170 read_bio->bi_private = r1_bio;
1171
d2eb35ac
N
1172 if (max_sectors < r1_bio->sectors) {
1173 /* could not read all from this device, so we will
1174 * need another r1_bio.
1175 */
d2eb35ac
N
1176
1177 sectors_handled = (r1_bio->sector + max_sectors
4f024f37 1178 - bio->bi_iter.bi_sector);
d2eb35ac
N
1179 r1_bio->sectors = max_sectors;
1180 spin_lock_irq(&conf->device_lock);
1181 if (bio->bi_phys_segments == 0)
1182 bio->bi_phys_segments = 2;
1183 else
1184 bio->bi_phys_segments++;
1185 spin_unlock_irq(&conf->device_lock);
1186 /* Cannot call generic_make_request directly
1187 * as that will be queued in __make_request
1188 * and subsequent mempool_alloc might block waiting
1189 * for it. So hand bio over to raid1d.
1190 */
1191 reschedule_retry(r1_bio);
1192
1193 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1194
1195 r1_bio->master_bio = bio;
aa8b57aa 1196 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
d2eb35ac
N
1197 r1_bio->state = 0;
1198 r1_bio->mddev = mddev;
4f024f37
KO
1199 r1_bio->sector = bio->bi_iter.bi_sector +
1200 sectors_handled;
d2eb35ac
N
1201 goto read_again;
1202 } else
1203 generic_make_request(read_bio);
5a7bbad2 1204 return;
1da177e4
LT
1205 }
1206
1207 /*
1208 * WRITE:
1209 */
34db0cd6
N
1210 if (conf->pending_count >= max_queued_requests) {
1211 md_wakeup_thread(mddev->thread);
1212 wait_event(conf->wait_barrier,
1213 conf->pending_count < max_queued_requests);
1214 }
1f68f0c4 1215 /* first select target devices under rcu_lock and
1da177e4
LT
1216 * inc refcount on their rdev. Record them by setting
1217 * bios[x] to bio
1f68f0c4
N
1218 * If there are known/acknowledged bad blocks on any device on
1219 * which we have seen a write error, we want to avoid writing those
1220 * blocks.
1221 * This potentially requires several writes to write around
1222 * the bad blocks. Each set of writes gets it's own r1bio
1223 * with a set of bios attached.
1da177e4 1224 */
c3b328ac 1225
8f19ccb2 1226 disks = conf->raid_disks * 2;
6bfe0b49 1227 retry_write:
79ef3a8a 1228 r1_bio->start_next_window = start_next_window;
6bfe0b49 1229 blocked_rdev = NULL;
1da177e4 1230 rcu_read_lock();
1f68f0c4 1231 max_sectors = r1_bio->sectors;
1da177e4 1232 for (i = 0; i < disks; i++) {
3cb03002 1233 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
6bfe0b49
DW
1234 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
1235 atomic_inc(&rdev->nr_pending);
1236 blocked_rdev = rdev;
1237 break;
1238 }
1f68f0c4 1239 r1_bio->bios[i] = NULL;
8ae12666 1240 if (!rdev || test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
1241 if (i < conf->raid_disks)
1242 set_bit(R1BIO_Degraded, &r1_bio->state);
1f68f0c4
N
1243 continue;
1244 }
1245
1246 atomic_inc(&rdev->nr_pending);
1247 if (test_bit(WriteErrorSeen, &rdev->flags)) {
1248 sector_t first_bad;
1249 int bad_sectors;
1250 int is_bad;
1251
1252 is_bad = is_badblock(rdev, r1_bio->sector,
1253 max_sectors,
1254 &first_bad, &bad_sectors);
1255 if (is_bad < 0) {
1256 /* mustn't write here until the bad block is
1257 * acknowledged*/
1258 set_bit(BlockedBadBlocks, &rdev->flags);
1259 blocked_rdev = rdev;
1260 break;
1261 }
1262 if (is_bad && first_bad <= r1_bio->sector) {
1263 /* Cannot write here at all */
1264 bad_sectors -= (r1_bio->sector - first_bad);
1265 if (bad_sectors < max_sectors)
1266 /* mustn't write more than bad_sectors
1267 * to other devices yet
1268 */
1269 max_sectors = bad_sectors;
03c902e1 1270 rdev_dec_pending(rdev, mddev);
1f68f0c4
N
1271 /* We don't set R1BIO_Degraded as that
1272 * only applies if the disk is
1273 * missing, so it might be re-added,
1274 * and we want to know to recover this
1275 * chunk.
1276 * In this case the device is here,
1277 * and the fact that this chunk is not
1278 * in-sync is recorded in the bad
1279 * block log
1280 */
1281 continue;
964147d5 1282 }
1f68f0c4
N
1283 if (is_bad) {
1284 int good_sectors = first_bad - r1_bio->sector;
1285 if (good_sectors < max_sectors)
1286 max_sectors = good_sectors;
1287 }
1288 }
1289 r1_bio->bios[i] = bio;
1da177e4
LT
1290 }
1291 rcu_read_unlock();
1292
6bfe0b49
DW
1293 if (unlikely(blocked_rdev)) {
1294 /* Wait for this device to become unblocked */
1295 int j;
79ef3a8a 1296 sector_t old = start_next_window;
6bfe0b49
DW
1297
1298 for (j = 0; j < i; j++)
1299 if (r1_bio->bios[j])
1300 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
1f68f0c4 1301 r1_bio->state = 0;
4f024f37 1302 allow_barrier(conf, start_next_window, bio->bi_iter.bi_sector);
6bfe0b49 1303 md_wait_for_blocked_rdev(blocked_rdev, mddev);
79ef3a8a 1304 start_next_window = wait_barrier(conf, bio);
1305 /*
1306 * We must make sure the multi r1bios of bio have
1307 * the same value of bi_phys_segments
1308 */
1309 if (bio->bi_phys_segments && old &&
1310 old != start_next_window)
1311 /* Wait for the former r1bio(s) to complete */
1312 wait_event(conf->wait_barrier,
1313 bio->bi_phys_segments == 1);
6bfe0b49
DW
1314 goto retry_write;
1315 }
1316
1f68f0c4
N
1317 if (max_sectors < r1_bio->sectors) {
1318 /* We are splitting this write into multiple parts, so
1319 * we need to prepare for allocating another r1_bio.
1320 */
1321 r1_bio->sectors = max_sectors;
1322 spin_lock_irq(&conf->device_lock);
1323 if (bio->bi_phys_segments == 0)
1324 bio->bi_phys_segments = 2;
1325 else
1326 bio->bi_phys_segments++;
1327 spin_unlock_irq(&conf->device_lock);
191ea9b2 1328 }
4f024f37 1329 sectors_handled = r1_bio->sector + max_sectors - bio->bi_iter.bi_sector;
4b6d287f 1330
4e78064f 1331 atomic_set(&r1_bio->remaining, 1);
4b6d287f 1332 atomic_set(&r1_bio->behind_remaining, 0);
06d91a5f 1333
1f68f0c4 1334 first_clone = 1;
1da177e4
LT
1335 for (i = 0; i < disks; i++) {
1336 struct bio *mbio;
1337 if (!r1_bio->bios[i])
1338 continue;
1339
a167f663 1340 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
4f024f37 1341 bio_trim(mbio, r1_bio->sector - bio->bi_iter.bi_sector, max_sectors);
1f68f0c4
N
1342
1343 if (first_clone) {
1344 /* do behind I/O ?
1345 * Not if there are too many, or cannot
1346 * allocate memory, or a reader on WriteMostly
1347 * is waiting for behind writes to flush */
1348 if (bitmap &&
1349 (atomic_read(&bitmap->behind_writes)
1350 < mddev->bitmap_info.max_write_behind) &&
1351 !waitqueue_active(&bitmap->behind_wait))
1352 alloc_behind_pages(mbio, r1_bio);
1353
1354 bitmap_startwrite(bitmap, r1_bio->sector,
1355 r1_bio->sectors,
1356 test_bit(R1BIO_BehindIO,
1357 &r1_bio->state));
1358 first_clone = 0;
1359 }
2ca68f5e 1360 if (r1_bio->behind_bvecs) {
4b6d287f
N
1361 struct bio_vec *bvec;
1362 int j;
1363
cb34e057
KO
1364 /*
1365 * We trimmed the bio, so _all is legit
4b6d287f 1366 */
d74c6d51 1367 bio_for_each_segment_all(bvec, mbio, j)
2ca68f5e 1368 bvec->bv_page = r1_bio->behind_bvecs[j].bv_page;
4b6d287f
N
1369 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
1370 atomic_inc(&r1_bio->behind_remaining);
1371 }
1372
1f68f0c4
N
1373 r1_bio->bios[i] = mbio;
1374
4f024f37 1375 mbio->bi_iter.bi_sector = (r1_bio->sector +
1f68f0c4
N
1376 conf->mirrors[i].rdev->data_offset);
1377 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1378 mbio->bi_end_io = raid1_end_write_request;
c8dc9c65
JL
1379 mbio->bi_rw =
1380 WRITE | do_flush_fua | do_sync | do_discard | do_same;
1f68f0c4
N
1381 mbio->bi_private = r1_bio;
1382
1da177e4 1383 atomic_inc(&r1_bio->remaining);
f54a9d0e
N
1384
1385 cb = blk_check_plugged(raid1_unplug, mddev, sizeof(*plug));
1386 if (cb)
1387 plug = container_of(cb, struct raid1_plug_cb, cb);
1388 else
1389 plug = NULL;
4e78064f 1390 spin_lock_irqsave(&conf->device_lock, flags);
f54a9d0e
N
1391 if (plug) {
1392 bio_list_add(&plug->pending, mbio);
1393 plug->pending_cnt++;
1394 } else {
1395 bio_list_add(&conf->pending_bio_list, mbio);
1396 conf->pending_count++;
1397 }
4e78064f 1398 spin_unlock_irqrestore(&conf->device_lock, flags);
f54a9d0e 1399 if (!plug)
b357f04a 1400 md_wakeup_thread(mddev->thread);
1da177e4 1401 }
079fa166
N
1402 /* Mustn't call r1_bio_write_done before this next test,
1403 * as it could result in the bio being freed.
1404 */
aa8b57aa 1405 if (sectors_handled < bio_sectors(bio)) {
079fa166 1406 r1_bio_write_done(r1_bio);
1f68f0c4
N
1407 /* We need another r1_bio. It has already been counted
1408 * in bio->bi_phys_segments
1409 */
1410 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
1411 r1_bio->master_bio = bio;
aa8b57aa 1412 r1_bio->sectors = bio_sectors(bio) - sectors_handled;
1f68f0c4
N
1413 r1_bio->state = 0;
1414 r1_bio->mddev = mddev;
4f024f37 1415 r1_bio->sector = bio->bi_iter.bi_sector + sectors_handled;
1f68f0c4
N
1416 goto retry_write;
1417 }
1418
079fa166
N
1419 r1_bio_write_done(r1_bio);
1420
1421 /* In case raid1d snuck in to freeze_array */
1422 wake_up(&conf->wait_barrier);
1da177e4
LT
1423}
1424
849674e4 1425static void raid1_status(struct seq_file *seq, struct mddev *mddev)
1da177e4 1426{
e8096360 1427 struct r1conf *conf = mddev->private;
1da177e4
LT
1428 int i;
1429
1430 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
11ce99e6 1431 conf->raid_disks - mddev->degraded);
ddac7c7e
N
1432 rcu_read_lock();
1433 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1434 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
1da177e4 1435 seq_printf(seq, "%s",
ddac7c7e
N
1436 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1437 }
1438 rcu_read_unlock();
1da177e4
LT
1439 seq_printf(seq, "]");
1440}
1441
849674e4 1442static void raid1_error(struct mddev *mddev, struct md_rdev *rdev)
1da177e4
LT
1443{
1444 char b[BDEVNAME_SIZE];
e8096360 1445 struct r1conf *conf = mddev->private;
423f04d6 1446 unsigned long flags;
1da177e4
LT
1447
1448 /*
1449 * If it is not operational, then we have already marked it as dead
1450 * else if it is the last working disks, ignore the error, let the
1451 * next level up know.
1452 * else mark the drive as failed
1453 */
b2d444d7 1454 if (test_bit(In_sync, &rdev->flags)
4044ba58 1455 && (conf->raid_disks - mddev->degraded) == 1) {
1da177e4
LT
1456 /*
1457 * Don't fail the drive, act as though we were just a
4044ba58
N
1458 * normal single drive.
1459 * However don't try a recovery from this drive as
1460 * it is very likely to fail.
1da177e4 1461 */
5389042f 1462 conf->recovery_disabled = mddev->recovery_disabled;
1da177e4 1463 return;
4044ba58 1464 }
de393cde 1465 set_bit(Blocked, &rdev->flags);
423f04d6 1466 spin_lock_irqsave(&conf->device_lock, flags);
c04be0aa 1467 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1da177e4 1468 mddev->degraded++;
dd00a99e 1469 set_bit(Faulty, &rdev->flags);
dd00a99e
N
1470 } else
1471 set_bit(Faulty, &rdev->flags);
423f04d6 1472 spin_unlock_irqrestore(&conf->device_lock, flags);
2446dba0
N
1473 /*
1474 * if recovery is running, make sure it aborts.
1475 */
1476 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
850b2b42 1477 set_bit(MD_CHANGE_DEVS, &mddev->flags);
55ce74d4 1478 set_bit(MD_CHANGE_PENDING, &mddev->flags);
067032bc
JP
1479 printk(KERN_ALERT
1480 "md/raid1:%s: Disk failure on %s, disabling device.\n"
1481 "md/raid1:%s: Operation continuing on %d devices.\n",
9dd1e2fa
N
1482 mdname(mddev), bdevname(rdev->bdev, b),
1483 mdname(mddev), conf->raid_disks - mddev->degraded);
1da177e4
LT
1484}
1485
e8096360 1486static void print_conf(struct r1conf *conf)
1da177e4
LT
1487{
1488 int i;
1da177e4 1489
9dd1e2fa 1490 printk(KERN_DEBUG "RAID1 conf printout:\n");
1da177e4 1491 if (!conf) {
9dd1e2fa 1492 printk(KERN_DEBUG "(!conf)\n");
1da177e4
LT
1493 return;
1494 }
9dd1e2fa 1495 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1da177e4
LT
1496 conf->raid_disks);
1497
ddac7c7e 1498 rcu_read_lock();
1da177e4
LT
1499 for (i = 0; i < conf->raid_disks; i++) {
1500 char b[BDEVNAME_SIZE];
3cb03002 1501 struct md_rdev *rdev = rcu_dereference(conf->mirrors[i].rdev);
ddac7c7e 1502 if (rdev)
9dd1e2fa 1503 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
ddac7c7e
N
1504 i, !test_bit(In_sync, &rdev->flags),
1505 !test_bit(Faulty, &rdev->flags),
1506 bdevname(rdev->bdev,b));
1da177e4 1507 }
ddac7c7e 1508 rcu_read_unlock();
1da177e4
LT
1509}
1510
e8096360 1511static void close_sync(struct r1conf *conf)
1da177e4 1512{
79ef3a8a 1513 wait_barrier(conf, NULL);
1514 allow_barrier(conf, 0, 0);
1da177e4
LT
1515
1516 mempool_destroy(conf->r1buf_pool);
1517 conf->r1buf_pool = NULL;
79ef3a8a 1518
669cc7ba 1519 spin_lock_irq(&conf->resync_lock);
e8ff8bf0 1520 conf->next_resync = MaxSector - 2 * NEXT_NORMALIO_DISTANCE;
79ef3a8a 1521 conf->start_next_window = MaxSector;
669cc7ba
N
1522 conf->current_window_requests +=
1523 conf->next_window_requests;
1524 conf->next_window_requests = 0;
1525 spin_unlock_irq(&conf->resync_lock);
1da177e4
LT
1526}
1527
fd01b88c 1528static int raid1_spare_active(struct mddev *mddev)
1da177e4
LT
1529{
1530 int i;
e8096360 1531 struct r1conf *conf = mddev->private;
6b965620
N
1532 int count = 0;
1533 unsigned long flags;
1da177e4
LT
1534
1535 /*
f72ffdd6 1536 * Find all failed disks within the RAID1 configuration
ddac7c7e
N
1537 * and mark them readable.
1538 * Called under mddev lock, so rcu protection not needed.
423f04d6
N
1539 * device_lock used to avoid races with raid1_end_read_request
1540 * which expects 'In_sync' flags and ->degraded to be consistent.
1da177e4 1541 */
423f04d6 1542 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 1543 for (i = 0; i < conf->raid_disks; i++) {
3cb03002 1544 struct md_rdev *rdev = conf->mirrors[i].rdev;
8c7a2c2b
N
1545 struct md_rdev *repl = conf->mirrors[conf->raid_disks + i].rdev;
1546 if (repl
1aee41f6 1547 && !test_bit(Candidate, &repl->flags)
8c7a2c2b
N
1548 && repl->recovery_offset == MaxSector
1549 && !test_bit(Faulty, &repl->flags)
1550 && !test_and_set_bit(In_sync, &repl->flags)) {
1551 /* replacement has just become active */
1552 if (!rdev ||
1553 !test_and_clear_bit(In_sync, &rdev->flags))
1554 count++;
1555 if (rdev) {
1556 /* Replaced device not technically
1557 * faulty, but we need to be sure
1558 * it gets removed and never re-added
1559 */
1560 set_bit(Faulty, &rdev->flags);
1561 sysfs_notify_dirent_safe(
1562 rdev->sysfs_state);
1563 }
1564 }
ddac7c7e 1565 if (rdev
61e4947c 1566 && rdev->recovery_offset == MaxSector
ddac7c7e 1567 && !test_bit(Faulty, &rdev->flags)
c04be0aa 1568 && !test_and_set_bit(In_sync, &rdev->flags)) {
6b965620 1569 count++;
654e8b5a 1570 sysfs_notify_dirent_safe(rdev->sysfs_state);
1da177e4
LT
1571 }
1572 }
6b965620
N
1573 mddev->degraded -= count;
1574 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4
LT
1575
1576 print_conf(conf);
6b965620 1577 return count;
1da177e4
LT
1578}
1579
fd01b88c 1580static int raid1_add_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1581{
e8096360 1582 struct r1conf *conf = mddev->private;
199050ea 1583 int err = -EEXIST;
41158c7e 1584 int mirror = 0;
0eaf822c 1585 struct raid1_info *p;
6c2fce2e 1586 int first = 0;
30194636 1587 int last = conf->raid_disks - 1;
1da177e4 1588
5389042f
N
1589 if (mddev->recovery_disabled == conf->recovery_disabled)
1590 return -EBUSY;
1591
1501efad
DW
1592 if (md_integrity_add_rdev(rdev, mddev))
1593 return -ENXIO;
1594
6c2fce2e
NB
1595 if (rdev->raid_disk >= 0)
1596 first = last = rdev->raid_disk;
1597
70bcecdb
GR
1598 /*
1599 * find the disk ... but prefer rdev->saved_raid_disk
1600 * if possible.
1601 */
1602 if (rdev->saved_raid_disk >= 0 &&
1603 rdev->saved_raid_disk >= first &&
1604 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1605 first = last = rdev->saved_raid_disk;
1606
7ef449d1
N
1607 for (mirror = first; mirror <= last; mirror++) {
1608 p = conf->mirrors+mirror;
1609 if (!p->rdev) {
1da177e4 1610
9092c02d
JB
1611 if (mddev->gendisk)
1612 disk_stack_limits(mddev->gendisk, rdev->bdev,
1613 rdev->data_offset << 9);
1da177e4
LT
1614
1615 p->head_position = 0;
1616 rdev->raid_disk = mirror;
199050ea 1617 err = 0;
6aea114a
N
1618 /* As all devices are equivalent, we don't need a full recovery
1619 * if this was recently any drive of the array
1620 */
1621 if (rdev->saved_raid_disk < 0)
41158c7e 1622 conf->fullsync = 1;
d6065f7b 1623 rcu_assign_pointer(p->rdev, rdev);
1da177e4
LT
1624 break;
1625 }
7ef449d1
N
1626 if (test_bit(WantReplacement, &p->rdev->flags) &&
1627 p[conf->raid_disks].rdev == NULL) {
1628 /* Add this device as a replacement */
1629 clear_bit(In_sync, &rdev->flags);
1630 set_bit(Replacement, &rdev->flags);
1631 rdev->raid_disk = mirror;
1632 err = 0;
1633 conf->fullsync = 1;
1634 rcu_assign_pointer(p[conf->raid_disks].rdev, rdev);
1635 break;
1636 }
1637 }
9092c02d 1638 if (mddev->queue && blk_queue_discard(bdev_get_queue(rdev->bdev)))
2ff8cc2c 1639 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, mddev->queue);
1da177e4 1640 print_conf(conf);
199050ea 1641 return err;
1da177e4
LT
1642}
1643
b8321b68 1644static int raid1_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
1da177e4 1645{
e8096360 1646 struct r1conf *conf = mddev->private;
1da177e4 1647 int err = 0;
b8321b68 1648 int number = rdev->raid_disk;
0eaf822c 1649 struct raid1_info *p = conf->mirrors + number;
1da177e4 1650
b014f14c
N
1651 if (rdev != p->rdev)
1652 p = conf->mirrors + conf->raid_disks + number;
1653
1da177e4 1654 print_conf(conf);
b8321b68 1655 if (rdev == p->rdev) {
b2d444d7 1656 if (test_bit(In_sync, &rdev->flags) ||
1da177e4
LT
1657 atomic_read(&rdev->nr_pending)) {
1658 err = -EBUSY;
1659 goto abort;
1660 }
046abeed 1661 /* Only remove non-faulty devices if recovery
dfc70645
N
1662 * is not possible.
1663 */
1664 if (!test_bit(Faulty, &rdev->flags) &&
5389042f 1665 mddev->recovery_disabled != conf->recovery_disabled &&
dfc70645
N
1666 mddev->degraded < conf->raid_disks) {
1667 err = -EBUSY;
1668 goto abort;
1669 }
1da177e4 1670 p->rdev = NULL;
fbd568a3 1671 synchronize_rcu();
1da177e4
LT
1672 if (atomic_read(&rdev->nr_pending)) {
1673 /* lost the race, try later */
1674 err = -EBUSY;
1675 p->rdev = rdev;
ac5e7113 1676 goto abort;
8c7a2c2b
N
1677 } else if (conf->mirrors[conf->raid_disks + number].rdev) {
1678 /* We just removed a device that is being replaced.
1679 * Move down the replacement. We drain all IO before
1680 * doing this to avoid confusion.
1681 */
1682 struct md_rdev *repl =
1683 conf->mirrors[conf->raid_disks + number].rdev;
e2d59925 1684 freeze_array(conf, 0);
8c7a2c2b
N
1685 clear_bit(Replacement, &repl->flags);
1686 p->rdev = repl;
1687 conf->mirrors[conf->raid_disks + number].rdev = NULL;
e2d59925 1688 unfreeze_array(conf);
8c7a2c2b
N
1689 clear_bit(WantReplacement, &rdev->flags);
1690 } else
b014f14c 1691 clear_bit(WantReplacement, &rdev->flags);
a91a2785 1692 err = md_integrity_register(mddev);
1da177e4
LT
1693 }
1694abort:
1695
1696 print_conf(conf);
1697 return err;
1698}
1699
4246a0b6 1700static void end_sync_read(struct bio *bio)
1da177e4 1701{
9f2c9d12 1702 struct r1bio *r1_bio = bio->bi_private;
1da177e4 1703
0fc280f6 1704 update_head_pos(r1_bio->read_disk, r1_bio);
ba3ae3be 1705
1da177e4
LT
1706 /*
1707 * we have read a block, now it needs to be re-written,
1708 * or re-read if the read failed.
1709 * We don't do much here, just schedule handling by raid1d
1710 */
4246a0b6 1711 if (!bio->bi_error)
1da177e4 1712 set_bit(R1BIO_Uptodate, &r1_bio->state);
d11c171e
N
1713
1714 if (atomic_dec_and_test(&r1_bio->remaining))
1715 reschedule_retry(r1_bio);
1da177e4
LT
1716}
1717
4246a0b6 1718static void end_sync_write(struct bio *bio)
1da177e4 1719{
4246a0b6 1720 int uptodate = !bio->bi_error;
9f2c9d12 1721 struct r1bio *r1_bio = bio->bi_private;
fd01b88c 1722 struct mddev *mddev = r1_bio->mddev;
e8096360 1723 struct r1conf *conf = mddev->private;
1da177e4 1724 int mirror=0;
4367af55
N
1725 sector_t first_bad;
1726 int bad_sectors;
1da177e4 1727
ba3ae3be
NK
1728 mirror = find_bio_disk(r1_bio, bio);
1729
6b1117d5 1730 if (!uptodate) {
57dab0bd 1731 sector_t sync_blocks = 0;
6b1117d5
N
1732 sector_t s = r1_bio->sector;
1733 long sectors_to_go = r1_bio->sectors;
1734 /* make sure these bits doesn't get cleared. */
1735 do {
5e3db645 1736 bitmap_end_sync(mddev->bitmap, s,
6b1117d5
N
1737 &sync_blocks, 1);
1738 s += sync_blocks;
1739 sectors_to_go -= sync_blocks;
1740 } while (sectors_to_go > 0);
d8f05d29
N
1741 set_bit(WriteErrorSeen,
1742 &conf->mirrors[mirror].rdev->flags);
19d67169
N
1743 if (!test_and_set_bit(WantReplacement,
1744 &conf->mirrors[mirror].rdev->flags))
1745 set_bit(MD_RECOVERY_NEEDED, &
1746 mddev->recovery);
d8f05d29 1747 set_bit(R1BIO_WriteError, &r1_bio->state);
4367af55
N
1748 } else if (is_badblock(conf->mirrors[mirror].rdev,
1749 r1_bio->sector,
1750 r1_bio->sectors,
3a9f28a5
N
1751 &first_bad, &bad_sectors) &&
1752 !is_badblock(conf->mirrors[r1_bio->read_disk].rdev,
1753 r1_bio->sector,
1754 r1_bio->sectors,
1755 &first_bad, &bad_sectors)
1756 )
4367af55 1757 set_bit(R1BIO_MadeGood, &r1_bio->state);
e3b9703e 1758
1da177e4 1759 if (atomic_dec_and_test(&r1_bio->remaining)) {
4367af55 1760 int s = r1_bio->sectors;
d8f05d29
N
1761 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
1762 test_bit(R1BIO_WriteError, &r1_bio->state))
4367af55
N
1763 reschedule_retry(r1_bio);
1764 else {
1765 put_buf(r1_bio);
1766 md_done_sync(mddev, s, uptodate);
1767 }
1da177e4 1768 }
1da177e4
LT
1769}
1770
3cb03002 1771static int r1_sync_page_io(struct md_rdev *rdev, sector_t sector,
d8f05d29
N
1772 int sectors, struct page *page, int rw)
1773{
1774 if (sync_page_io(rdev, sector, sectors << 9, page, rw, false))
1775 /* success */
1776 return 1;
19d67169 1777 if (rw == WRITE) {
d8f05d29 1778 set_bit(WriteErrorSeen, &rdev->flags);
19d67169
N
1779 if (!test_and_set_bit(WantReplacement,
1780 &rdev->flags))
1781 set_bit(MD_RECOVERY_NEEDED, &
1782 rdev->mddev->recovery);
1783 }
d8f05d29
N
1784 /* need to record an error - either for the block or the device */
1785 if (!rdev_set_badblocks(rdev, sector, sectors, 0))
1786 md_error(rdev->mddev, rdev);
1787 return 0;
1788}
1789
9f2c9d12 1790static int fix_sync_read_error(struct r1bio *r1_bio)
1da177e4 1791{
a68e5870
N
1792 /* Try some synchronous reads of other devices to get
1793 * good data, much like with normal read errors. Only
1794 * read into the pages we already have so we don't
1795 * need to re-issue the read request.
1796 * We don't need to freeze the array, because being in an
1797 * active sync request, there is no normal IO, and
1798 * no overlapping syncs.
06f60385
N
1799 * We don't need to check is_badblock() again as we
1800 * made sure that anything with a bad block in range
1801 * will have bi_end_io clear.
a68e5870 1802 */
fd01b88c 1803 struct mddev *mddev = r1_bio->mddev;
e8096360 1804 struct r1conf *conf = mddev->private;
a68e5870
N
1805 struct bio *bio = r1_bio->bios[r1_bio->read_disk];
1806 sector_t sect = r1_bio->sector;
1807 int sectors = r1_bio->sectors;
1808 int idx = 0;
1809
1810 while(sectors) {
1811 int s = sectors;
1812 int d = r1_bio->read_disk;
1813 int success = 0;
3cb03002 1814 struct md_rdev *rdev;
78d7f5f7 1815 int start;
a68e5870
N
1816
1817 if (s > (PAGE_SIZE>>9))
1818 s = PAGE_SIZE >> 9;
1819 do {
1820 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1821 /* No rcu protection needed here devices
1822 * can only be removed when no resync is
1823 * active, and resync is currently active
1824 */
1825 rdev = conf->mirrors[d].rdev;
9d3d8011 1826 if (sync_page_io(rdev, sect, s<<9,
a68e5870
N
1827 bio->bi_io_vec[idx].bv_page,
1828 READ, false)) {
1829 success = 1;
1830 break;
1831 }
1832 }
1833 d++;
8f19ccb2 1834 if (d == conf->raid_disks * 2)
a68e5870
N
1835 d = 0;
1836 } while (!success && d != r1_bio->read_disk);
1837
78d7f5f7 1838 if (!success) {
a68e5870 1839 char b[BDEVNAME_SIZE];
3a9f28a5
N
1840 int abort = 0;
1841 /* Cannot read from anywhere, this block is lost.
1842 * Record a bad block on each device. If that doesn't
1843 * work just disable and interrupt the recovery.
1844 * Don't fail devices as that won't really help.
1845 */
a68e5870
N
1846 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O read error"
1847 " for block %llu\n",
1848 mdname(mddev),
1849 bdevname(bio->bi_bdev, b),
1850 (unsigned long long)r1_bio->sector);
8f19ccb2 1851 for (d = 0; d < conf->raid_disks * 2; d++) {
3a9f28a5
N
1852 rdev = conf->mirrors[d].rdev;
1853 if (!rdev || test_bit(Faulty, &rdev->flags))
1854 continue;
1855 if (!rdev_set_badblocks(rdev, sect, s, 0))
1856 abort = 1;
1857 }
1858 if (abort) {
d890fa2b
N
1859 conf->recovery_disabled =
1860 mddev->recovery_disabled;
3a9f28a5
N
1861 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1862 md_done_sync(mddev, r1_bio->sectors, 0);
1863 put_buf(r1_bio);
1864 return 0;
1865 }
1866 /* Try next page */
1867 sectors -= s;
1868 sect += s;
1869 idx++;
1870 continue;
d11c171e 1871 }
78d7f5f7
N
1872
1873 start = d;
1874 /* write it back and re-read */
1875 while (d != r1_bio->read_disk) {
1876 if (d == 0)
8f19ccb2 1877 d = conf->raid_disks * 2;
78d7f5f7
N
1878 d--;
1879 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1880 continue;
1881 rdev = conf->mirrors[d].rdev;
d8f05d29
N
1882 if (r1_sync_page_io(rdev, sect, s,
1883 bio->bi_io_vec[idx].bv_page,
1884 WRITE) == 0) {
78d7f5f7
N
1885 r1_bio->bios[d]->bi_end_io = NULL;
1886 rdev_dec_pending(rdev, mddev);
9d3d8011 1887 }
78d7f5f7
N
1888 }
1889 d = start;
1890 while (d != r1_bio->read_disk) {
1891 if (d == 0)
8f19ccb2 1892 d = conf->raid_disks * 2;
78d7f5f7
N
1893 d--;
1894 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1895 continue;
1896 rdev = conf->mirrors[d].rdev;
d8f05d29
N
1897 if (r1_sync_page_io(rdev, sect, s,
1898 bio->bi_io_vec[idx].bv_page,
1899 READ) != 0)
9d3d8011 1900 atomic_add(s, &rdev->corrected_errors);
78d7f5f7 1901 }
a68e5870
N
1902 sectors -= s;
1903 sect += s;
1904 idx ++;
1905 }
78d7f5f7 1906 set_bit(R1BIO_Uptodate, &r1_bio->state);
4246a0b6 1907 bio->bi_error = 0;
a68e5870
N
1908 return 1;
1909}
1910
c95e6385 1911static void process_checks(struct r1bio *r1_bio)
a68e5870
N
1912{
1913 /* We have read all readable devices. If we haven't
1914 * got the block, then there is no hope left.
1915 * If we have, then we want to do a comparison
1916 * and skip the write if everything is the same.
1917 * If any blocks failed to read, then we need to
1918 * attempt an over-write
1919 */
fd01b88c 1920 struct mddev *mddev = r1_bio->mddev;
e8096360 1921 struct r1conf *conf = mddev->private;
a68e5870
N
1922 int primary;
1923 int i;
f4380a91 1924 int vcnt;
a68e5870 1925
30bc9b53
N
1926 /* Fix variable parts of all bios */
1927 vcnt = (r1_bio->sectors + PAGE_SIZE / 512 - 1) >> (PAGE_SHIFT - 9);
1928 for (i = 0; i < conf->raid_disks * 2; i++) {
1929 int j;
1930 int size;
4246a0b6 1931 int error;
30bc9b53
N
1932 struct bio *b = r1_bio->bios[i];
1933 if (b->bi_end_io != end_sync_read)
1934 continue;
4246a0b6
CH
1935 /* fixup the bio for reuse, but preserve errno */
1936 error = b->bi_error;
30bc9b53 1937 bio_reset(b);
4246a0b6 1938 b->bi_error = error;
30bc9b53 1939 b->bi_vcnt = vcnt;
4f024f37
KO
1940 b->bi_iter.bi_size = r1_bio->sectors << 9;
1941 b->bi_iter.bi_sector = r1_bio->sector +
30bc9b53
N
1942 conf->mirrors[i].rdev->data_offset;
1943 b->bi_bdev = conf->mirrors[i].rdev->bdev;
1944 b->bi_end_io = end_sync_read;
1945 b->bi_private = r1_bio;
1946
4f024f37 1947 size = b->bi_iter.bi_size;
30bc9b53
N
1948 for (j = 0; j < vcnt ; j++) {
1949 struct bio_vec *bi;
1950 bi = &b->bi_io_vec[j];
1951 bi->bv_offset = 0;
1952 if (size > PAGE_SIZE)
1953 bi->bv_len = PAGE_SIZE;
1954 else
1955 bi->bv_len = size;
1956 size -= PAGE_SIZE;
1957 }
1958 }
8f19ccb2 1959 for (primary = 0; primary < conf->raid_disks * 2; primary++)
a68e5870 1960 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
4246a0b6 1961 !r1_bio->bios[primary]->bi_error) {
a68e5870
N
1962 r1_bio->bios[primary]->bi_end_io = NULL;
1963 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1964 break;
1965 }
1966 r1_bio->read_disk = primary;
8f19ccb2 1967 for (i = 0; i < conf->raid_disks * 2; i++) {
78d7f5f7 1968 int j;
78d7f5f7
N
1969 struct bio *pbio = r1_bio->bios[primary];
1970 struct bio *sbio = r1_bio->bios[i];
4246a0b6 1971 int error = sbio->bi_error;
a68e5870 1972
2aabaa65 1973 if (sbio->bi_end_io != end_sync_read)
78d7f5f7 1974 continue;
4246a0b6
CH
1975 /* Now we can 'fixup' the error value */
1976 sbio->bi_error = 0;
78d7f5f7 1977
4246a0b6 1978 if (!error) {
78d7f5f7
N
1979 for (j = vcnt; j-- ; ) {
1980 struct page *p, *s;
1981 p = pbio->bi_io_vec[j].bv_page;
1982 s = sbio->bi_io_vec[j].bv_page;
1983 if (memcmp(page_address(p),
1984 page_address(s),
5020ad7d 1985 sbio->bi_io_vec[j].bv_len))
78d7f5f7 1986 break;
69382e85 1987 }
78d7f5f7
N
1988 } else
1989 j = 0;
1990 if (j >= 0)
7f7583d4 1991 atomic64_add(r1_bio->sectors, &mddev->resync_mismatches);
78d7f5f7 1992 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
4246a0b6 1993 && !error)) {
78d7f5f7
N
1994 /* No need to write to this device. */
1995 sbio->bi_end_io = NULL;
1996 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1997 continue;
1998 }
d3b45c2a
KO
1999
2000 bio_copy_data(sbio, pbio);
78d7f5f7 2001 }
a68e5870
N
2002}
2003
9f2c9d12 2004static void sync_request_write(struct mddev *mddev, struct r1bio *r1_bio)
a68e5870 2005{
e8096360 2006 struct r1conf *conf = mddev->private;
a68e5870 2007 int i;
8f19ccb2 2008 int disks = conf->raid_disks * 2;
a68e5870
N
2009 struct bio *bio, *wbio;
2010
2011 bio = r1_bio->bios[r1_bio->read_disk];
2012
a68e5870
N
2013 if (!test_bit(R1BIO_Uptodate, &r1_bio->state))
2014 /* ouch - failed to read all of that. */
2015 if (!fix_sync_read_error(r1_bio))
2016 return;
7ca78d57
N
2017
2018 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
c95e6385
N
2019 process_checks(r1_bio);
2020
d11c171e
N
2021 /*
2022 * schedule writes
2023 */
1da177e4
LT
2024 atomic_set(&r1_bio->remaining, 1);
2025 for (i = 0; i < disks ; i++) {
2026 wbio = r1_bio->bios[i];
3e198f78
N
2027 if (wbio->bi_end_io == NULL ||
2028 (wbio->bi_end_io == end_sync_read &&
2029 (i == r1_bio->read_disk ||
2030 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1da177e4
LT
2031 continue;
2032
3e198f78
N
2033 wbio->bi_rw = WRITE;
2034 wbio->bi_end_io = end_sync_write;
1da177e4 2035 atomic_inc(&r1_bio->remaining);
aa8b57aa 2036 md_sync_acct(conf->mirrors[i].rdev->bdev, bio_sectors(wbio));
191ea9b2 2037
1da177e4
LT
2038 generic_make_request(wbio);
2039 }
2040
2041 if (atomic_dec_and_test(&r1_bio->remaining)) {
191ea9b2 2042 /* if we're here, all write(s) have completed, so clean up */
58e94ae1
N
2043 int s = r1_bio->sectors;
2044 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
2045 test_bit(R1BIO_WriteError, &r1_bio->state))
2046 reschedule_retry(r1_bio);
2047 else {
2048 put_buf(r1_bio);
2049 md_done_sync(mddev, s, 1);
2050 }
1da177e4
LT
2051 }
2052}
2053
2054/*
2055 * This is a kernel thread which:
2056 *
2057 * 1. Retries failed read operations on working mirrors.
2058 * 2. Updates the raid superblock when problems encounter.
d2eb35ac 2059 * 3. Performs writes following reads for array synchronising.
1da177e4
LT
2060 */
2061
e8096360 2062static void fix_read_error(struct r1conf *conf, int read_disk,
867868fb
N
2063 sector_t sect, int sectors)
2064{
fd01b88c 2065 struct mddev *mddev = conf->mddev;
867868fb
N
2066 while(sectors) {
2067 int s = sectors;
2068 int d = read_disk;
2069 int success = 0;
2070 int start;
3cb03002 2071 struct md_rdev *rdev;
867868fb
N
2072
2073 if (s > (PAGE_SIZE>>9))
2074 s = PAGE_SIZE >> 9;
2075
2076 do {
2077 /* Note: no rcu protection needed here
2078 * as this is synchronous in the raid1d thread
2079 * which is the thread that might remove
2080 * a device. If raid1d ever becomes multi-threaded....
2081 */
d2eb35ac
N
2082 sector_t first_bad;
2083 int bad_sectors;
2084
867868fb
N
2085 rdev = conf->mirrors[d].rdev;
2086 if (rdev &&
da8840a7 2087 (test_bit(In_sync, &rdev->flags) ||
2088 (!test_bit(Faulty, &rdev->flags) &&
2089 rdev->recovery_offset >= sect + s)) &&
d2eb35ac
N
2090 is_badblock(rdev, sect, s,
2091 &first_bad, &bad_sectors) == 0 &&
ccebd4c4
JB
2092 sync_page_io(rdev, sect, s<<9,
2093 conf->tmppage, READ, false))
867868fb
N
2094 success = 1;
2095 else {
2096 d++;
8f19ccb2 2097 if (d == conf->raid_disks * 2)
867868fb
N
2098 d = 0;
2099 }
2100 } while (!success && d != read_disk);
2101
2102 if (!success) {
d8f05d29 2103 /* Cannot read from anywhere - mark it bad */
3cb03002 2104 struct md_rdev *rdev = conf->mirrors[read_disk].rdev;
d8f05d29
N
2105 if (!rdev_set_badblocks(rdev, sect, s, 0))
2106 md_error(mddev, rdev);
867868fb
N
2107 break;
2108 }
2109 /* write it back and re-read */
2110 start = d;
2111 while (d != read_disk) {
2112 if (d==0)
8f19ccb2 2113 d = conf->raid_disks * 2;
867868fb
N
2114 d--;
2115 rdev = conf->mirrors[d].rdev;
2116 if (rdev &&
b8cb6b4c 2117 !test_bit(Faulty, &rdev->flags))
d8f05d29
N
2118 r1_sync_page_io(rdev, sect, s,
2119 conf->tmppage, WRITE);
867868fb
N
2120 }
2121 d = start;
2122 while (d != read_disk) {
2123 char b[BDEVNAME_SIZE];
2124 if (d==0)
8f19ccb2 2125 d = conf->raid_disks * 2;
867868fb
N
2126 d--;
2127 rdev = conf->mirrors[d].rdev;
2128 if (rdev &&
b8cb6b4c 2129 !test_bit(Faulty, &rdev->flags)) {
d8f05d29
N
2130 if (r1_sync_page_io(rdev, sect, s,
2131 conf->tmppage, READ)) {
867868fb
N
2132 atomic_add(s, &rdev->corrected_errors);
2133 printk(KERN_INFO
9dd1e2fa 2134 "md/raid1:%s: read error corrected "
867868fb
N
2135 "(%d sectors at %llu on %s)\n",
2136 mdname(mddev), s,
969b755a
RD
2137 (unsigned long long)(sect +
2138 rdev->data_offset),
867868fb
N
2139 bdevname(rdev->bdev, b));
2140 }
2141 }
2142 }
2143 sectors -= s;
2144 sect += s;
2145 }
2146}
2147
9f2c9d12 2148static int narrow_write_error(struct r1bio *r1_bio, int i)
cd5ff9a1 2149{
fd01b88c 2150 struct mddev *mddev = r1_bio->mddev;
e8096360 2151 struct r1conf *conf = mddev->private;
3cb03002 2152 struct md_rdev *rdev = conf->mirrors[i].rdev;
cd5ff9a1
N
2153
2154 /* bio has the data to be written to device 'i' where
2155 * we just recently had a write error.
2156 * We repeatedly clone the bio and trim down to one block,
2157 * then try the write. Where the write fails we record
2158 * a bad block.
2159 * It is conceivable that the bio doesn't exactly align with
2160 * blocks. We must handle this somehow.
2161 *
2162 * We currently own a reference on the rdev.
2163 */
2164
2165 int block_sectors;
2166 sector_t sector;
2167 int sectors;
2168 int sect_to_write = r1_bio->sectors;
2169 int ok = 1;
2170
2171 if (rdev->badblocks.shift < 0)
2172 return 0;
2173
ab713cdc
ND
2174 block_sectors = roundup(1 << rdev->badblocks.shift,
2175 bdev_logical_block_size(rdev->bdev) >> 9);
cd5ff9a1
N
2176 sector = r1_bio->sector;
2177 sectors = ((sector + block_sectors)
2178 & ~(sector_t)(block_sectors - 1))
2179 - sector;
2180
cd5ff9a1
N
2181 while (sect_to_write) {
2182 struct bio *wbio;
2183 if (sectors > sect_to_write)
2184 sectors = sect_to_write;
2185 /* Write at 'sector' for 'sectors'*/
2186
b783863f
KO
2187 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
2188 unsigned vcnt = r1_bio->behind_page_count;
2189 struct bio_vec *vec = r1_bio->behind_bvecs;
2190
2191 while (!vec->bv_page) {
2192 vec++;
2193 vcnt--;
2194 }
2195
2196 wbio = bio_alloc_mddev(GFP_NOIO, vcnt, mddev);
2197 memcpy(wbio->bi_io_vec, vec, vcnt * sizeof(struct bio_vec));
2198
2199 wbio->bi_vcnt = vcnt;
2200 } else {
2201 wbio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
2202 }
2203
cd5ff9a1 2204 wbio->bi_rw = WRITE;
4f024f37
KO
2205 wbio->bi_iter.bi_sector = r1_bio->sector;
2206 wbio->bi_iter.bi_size = r1_bio->sectors << 9;
cd5ff9a1 2207
6678d83f 2208 bio_trim(wbio, sector - r1_bio->sector, sectors);
4f024f37 2209 wbio->bi_iter.bi_sector += rdev->data_offset;
cd5ff9a1 2210 wbio->bi_bdev = rdev->bdev;
203d27b0 2211 if (submit_bio_wait(WRITE, wbio) < 0)
cd5ff9a1
N
2212 /* failure! */
2213 ok = rdev_set_badblocks(rdev, sector,
2214 sectors, 0)
2215 && ok;
2216
2217 bio_put(wbio);
2218 sect_to_write -= sectors;
2219 sector += sectors;
2220 sectors = block_sectors;
2221 }
2222 return ok;
2223}
2224
e8096360 2225static void handle_sync_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2226{
2227 int m;
2228 int s = r1_bio->sectors;
8f19ccb2 2229 for (m = 0; m < conf->raid_disks * 2 ; m++) {
3cb03002 2230 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2231 struct bio *bio = r1_bio->bios[m];
2232 if (bio->bi_end_io == NULL)
2233 continue;
4246a0b6 2234 if (!bio->bi_error &&
62096bce 2235 test_bit(R1BIO_MadeGood, &r1_bio->state)) {
c6563a8c 2236 rdev_clear_badblocks(rdev, r1_bio->sector, s, 0);
62096bce 2237 }
4246a0b6 2238 if (bio->bi_error &&
62096bce
N
2239 test_bit(R1BIO_WriteError, &r1_bio->state)) {
2240 if (!rdev_set_badblocks(rdev, r1_bio->sector, s, 0))
2241 md_error(conf->mddev, rdev);
2242 }
2243 }
2244 put_buf(r1_bio);
2245 md_done_sync(conf->mddev, s, 1);
2246}
2247
e8096360 2248static void handle_write_finished(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2249{
2250 int m;
55ce74d4 2251 bool fail = false;
8f19ccb2 2252 for (m = 0; m < conf->raid_disks * 2 ; m++)
62096bce 2253 if (r1_bio->bios[m] == IO_MADE_GOOD) {
3cb03002 2254 struct md_rdev *rdev = conf->mirrors[m].rdev;
62096bce
N
2255 rdev_clear_badblocks(rdev,
2256 r1_bio->sector,
c6563a8c 2257 r1_bio->sectors, 0);
62096bce
N
2258 rdev_dec_pending(rdev, conf->mddev);
2259 } else if (r1_bio->bios[m] != NULL) {
2260 /* This drive got a write error. We need to
2261 * narrow down and record precise write
2262 * errors.
2263 */
55ce74d4 2264 fail = true;
62096bce
N
2265 if (!narrow_write_error(r1_bio, m)) {
2266 md_error(conf->mddev,
2267 conf->mirrors[m].rdev);
2268 /* an I/O failed, we can't clear the bitmap */
2269 set_bit(R1BIO_Degraded, &r1_bio->state);
2270 }
2271 rdev_dec_pending(conf->mirrors[m].rdev,
2272 conf->mddev);
2273 }
55ce74d4
N
2274 if (fail) {
2275 spin_lock_irq(&conf->device_lock);
2276 list_add(&r1_bio->retry_list, &conf->bio_end_io_list);
ccfc7bf1 2277 conf->nr_queued++;
55ce74d4
N
2278 spin_unlock_irq(&conf->device_lock);
2279 md_wakeup_thread(conf->mddev->thread);
bd8688a1
N
2280 } else {
2281 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2282 close_write(r1_bio);
55ce74d4 2283 raid_end_bio_io(r1_bio);
bd8688a1 2284 }
62096bce
N
2285}
2286
e8096360 2287static void handle_read_error(struct r1conf *conf, struct r1bio *r1_bio)
62096bce
N
2288{
2289 int disk;
2290 int max_sectors;
fd01b88c 2291 struct mddev *mddev = conf->mddev;
62096bce
N
2292 struct bio *bio;
2293 char b[BDEVNAME_SIZE];
3cb03002 2294 struct md_rdev *rdev;
62096bce
N
2295
2296 clear_bit(R1BIO_ReadError, &r1_bio->state);
2297 /* we got a read error. Maybe the drive is bad. Maybe just
2298 * the block and we can fix it.
2299 * We freeze all other IO, and try reading the block from
2300 * other devices. When we find one, we re-write
2301 * and check it that fixes the read error.
2302 * This is all done synchronously while the array is
2303 * frozen
2304 */
2305 if (mddev->ro == 0) {
e2d59925 2306 freeze_array(conf, 1);
62096bce
N
2307 fix_read_error(conf, r1_bio->read_disk,
2308 r1_bio->sector, r1_bio->sectors);
2309 unfreeze_array(conf);
2310 } else
2311 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
7ad4d4a6 2312 rdev_dec_pending(conf->mirrors[r1_bio->read_disk].rdev, conf->mddev);
62096bce
N
2313
2314 bio = r1_bio->bios[r1_bio->read_disk];
2315 bdevname(bio->bi_bdev, b);
2316read_more:
2317 disk = read_balance(conf, r1_bio, &max_sectors);
2318 if (disk == -1) {
2319 printk(KERN_ALERT "md/raid1:%s: %s: unrecoverable I/O"
2320 " read error for block %llu\n",
2321 mdname(mddev), b, (unsigned long long)r1_bio->sector);
2322 raid_end_bio_io(r1_bio);
2323 } else {
2324 const unsigned long do_sync
2325 = r1_bio->master_bio->bi_rw & REQ_SYNC;
2326 if (bio) {
2327 r1_bio->bios[r1_bio->read_disk] =
2328 mddev->ro ? IO_BLOCKED : NULL;
2329 bio_put(bio);
2330 }
2331 r1_bio->read_disk = disk;
2332 bio = bio_clone_mddev(r1_bio->master_bio, GFP_NOIO, mddev);
4f024f37
KO
2333 bio_trim(bio, r1_bio->sector - bio->bi_iter.bi_sector,
2334 max_sectors);
62096bce
N
2335 r1_bio->bios[r1_bio->read_disk] = bio;
2336 rdev = conf->mirrors[disk].rdev;
2337 printk_ratelimited(KERN_ERR
2338 "md/raid1:%s: redirecting sector %llu"
2339 " to other mirror: %s\n",
2340 mdname(mddev),
2341 (unsigned long long)r1_bio->sector,
2342 bdevname(rdev->bdev, b));
4f024f37 2343 bio->bi_iter.bi_sector = r1_bio->sector + rdev->data_offset;
62096bce
N
2344 bio->bi_bdev = rdev->bdev;
2345 bio->bi_end_io = raid1_end_read_request;
2346 bio->bi_rw = READ | do_sync;
2347 bio->bi_private = r1_bio;
2348 if (max_sectors < r1_bio->sectors) {
2349 /* Drat - have to split this up more */
2350 struct bio *mbio = r1_bio->master_bio;
2351 int sectors_handled = (r1_bio->sector + max_sectors
4f024f37 2352 - mbio->bi_iter.bi_sector);
62096bce
N
2353 r1_bio->sectors = max_sectors;
2354 spin_lock_irq(&conf->device_lock);
2355 if (mbio->bi_phys_segments == 0)
2356 mbio->bi_phys_segments = 2;
2357 else
2358 mbio->bi_phys_segments++;
2359 spin_unlock_irq(&conf->device_lock);
2360 generic_make_request(bio);
2361 bio = NULL;
2362
2363 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
2364
2365 r1_bio->master_bio = mbio;
aa8b57aa 2366 r1_bio->sectors = bio_sectors(mbio) - sectors_handled;
62096bce
N
2367 r1_bio->state = 0;
2368 set_bit(R1BIO_ReadError, &r1_bio->state);
2369 r1_bio->mddev = mddev;
4f024f37
KO
2370 r1_bio->sector = mbio->bi_iter.bi_sector +
2371 sectors_handled;
62096bce
N
2372
2373 goto read_more;
2374 } else
2375 generic_make_request(bio);
2376 }
2377}
2378
4ed8731d 2379static void raid1d(struct md_thread *thread)
1da177e4 2380{
4ed8731d 2381 struct mddev *mddev = thread->mddev;
9f2c9d12 2382 struct r1bio *r1_bio;
1da177e4 2383 unsigned long flags;
e8096360 2384 struct r1conf *conf = mddev->private;
1da177e4 2385 struct list_head *head = &conf->retry_list;
e1dfa0a2 2386 struct blk_plug plug;
1da177e4
LT
2387
2388 md_check_recovery(mddev);
e1dfa0a2 2389
55ce74d4
N
2390 if (!list_empty_careful(&conf->bio_end_io_list) &&
2391 !test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
2392 LIST_HEAD(tmp);
2393 spin_lock_irqsave(&conf->device_lock, flags);
2394 if (!test_bit(MD_CHANGE_PENDING, &mddev->flags)) {
ccfc7bf1
ND
2395 while (!list_empty(&conf->bio_end_io_list)) {
2396 list_move(conf->bio_end_io_list.prev, &tmp);
2397 conf->nr_queued--;
2398 }
55ce74d4
N
2399 }
2400 spin_unlock_irqrestore(&conf->device_lock, flags);
2401 while (!list_empty(&tmp)) {
a452744b
MP
2402 r1_bio = list_first_entry(&tmp, struct r1bio,
2403 retry_list);
55ce74d4 2404 list_del(&r1_bio->retry_list);
bd8688a1
N
2405 if (mddev->degraded)
2406 set_bit(R1BIO_Degraded, &r1_bio->state);
2407 if (test_bit(R1BIO_WriteError, &r1_bio->state))
2408 close_write(r1_bio);
55ce74d4
N
2409 raid_end_bio_io(r1_bio);
2410 }
2411 }
2412
e1dfa0a2 2413 blk_start_plug(&plug);
1da177e4 2414 for (;;) {
191ea9b2 2415
0021b7bc 2416 flush_pending_writes(conf);
191ea9b2 2417
a35e63ef
N
2418 spin_lock_irqsave(&conf->device_lock, flags);
2419 if (list_empty(head)) {
2420 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 2421 break;
a35e63ef 2422 }
9f2c9d12 2423 r1_bio = list_entry(head->prev, struct r1bio, retry_list);
1da177e4 2424 list_del(head->prev);
ddaf22ab 2425 conf->nr_queued--;
1da177e4
LT
2426 spin_unlock_irqrestore(&conf->device_lock, flags);
2427
2428 mddev = r1_bio->mddev;
070ec55d 2429 conf = mddev->private;
4367af55 2430 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
d8f05d29 2431 if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2432 test_bit(R1BIO_WriteError, &r1_bio->state))
2433 handle_sync_write_finished(conf, r1_bio);
2434 else
4367af55 2435 sync_request_write(mddev, r1_bio);
cd5ff9a1 2436 } else if (test_bit(R1BIO_MadeGood, &r1_bio->state) ||
62096bce
N
2437 test_bit(R1BIO_WriteError, &r1_bio->state))
2438 handle_write_finished(conf, r1_bio);
2439 else if (test_bit(R1BIO_ReadError, &r1_bio->state))
2440 handle_read_error(conf, r1_bio);
2441 else
d2eb35ac
N
2442 /* just a partial read to be scheduled from separate
2443 * context
2444 */
2445 generic_make_request(r1_bio->bios[r1_bio->read_disk]);
62096bce 2446
1d9d5241 2447 cond_resched();
de393cde
N
2448 if (mddev->flags & ~(1<<MD_CHANGE_PENDING))
2449 md_check_recovery(mddev);
1da177e4 2450 }
e1dfa0a2 2451 blk_finish_plug(&plug);
1da177e4
LT
2452}
2453
e8096360 2454static int init_resync(struct r1conf *conf)
1da177e4
LT
2455{
2456 int buffs;
2457
2458 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
9e77c485 2459 BUG_ON(conf->r1buf_pool);
1da177e4
LT
2460 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
2461 conf->poolinfo);
2462 if (!conf->r1buf_pool)
2463 return -ENOMEM;
2464 conf->next_resync = 0;
2465 return 0;
2466}
2467
2468/*
2469 * perform a "sync" on one "block"
2470 *
2471 * We need to make sure that no normal I/O request - particularly write
2472 * requests - conflict with active sync requests.
2473 *
2474 * This is achieved by tracking pending requests and a 'barrier' concept
2475 * that can be installed to exclude normal IO requests.
2476 */
2477
849674e4
SL
2478static sector_t raid1_sync_request(struct mddev *mddev, sector_t sector_nr,
2479 int *skipped)
1da177e4 2480{
e8096360 2481 struct r1conf *conf = mddev->private;
9f2c9d12 2482 struct r1bio *r1_bio;
1da177e4
LT
2483 struct bio *bio;
2484 sector_t max_sector, nr_sectors;
3e198f78 2485 int disk = -1;
1da177e4 2486 int i;
3e198f78
N
2487 int wonly = -1;
2488 int write_targets = 0, read_targets = 0;
57dab0bd 2489 sector_t sync_blocks;
e3b9703e 2490 int still_degraded = 0;
06f60385
N
2491 int good_sectors = RESYNC_SECTORS;
2492 int min_bad = 0; /* number of sectors that are bad in all devices */
1da177e4
LT
2493
2494 if (!conf->r1buf_pool)
2495 if (init_resync(conf))
57afd89f 2496 return 0;
1da177e4 2497
58c0fed4 2498 max_sector = mddev->dev_sectors;
1da177e4 2499 if (sector_nr >= max_sector) {
191ea9b2
N
2500 /* If we aborted, we need to abort the
2501 * sync on the 'current' bitmap chunk (there will
2502 * only be one in raid1 resync.
2503 * We can find the current addess in mddev->curr_resync
2504 */
6a806c51
N
2505 if (mddev->curr_resync < max_sector) /* aborted */
2506 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
191ea9b2 2507 &sync_blocks, 1);
6a806c51 2508 else /* completed sync */
191ea9b2 2509 conf->fullsync = 0;
6a806c51
N
2510
2511 bitmap_close_sync(mddev->bitmap);
1da177e4 2512 close_sync(conf);
c40f341f
GR
2513
2514 if (mddev_is_clustered(mddev)) {
2515 conf->cluster_sync_low = 0;
2516 conf->cluster_sync_high = 0;
c40f341f 2517 }
1da177e4
LT
2518 return 0;
2519 }
2520
07d84d10
N
2521 if (mddev->bitmap == NULL &&
2522 mddev->recovery_cp == MaxSector &&
6394cca5 2523 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
07d84d10
N
2524 conf->fullsync == 0) {
2525 *skipped = 1;
2526 return max_sector - sector_nr;
2527 }
6394cca5
N
2528 /* before building a request, check if we can skip these blocks..
2529 * This call the bitmap_start_sync doesn't actually record anything
2530 */
e3b9703e 2531 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
e5de485f 2532 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
191ea9b2
N
2533 /* We can skip this block, and probably several more */
2534 *skipped = 1;
2535 return sync_blocks;
2536 }
17999be4 2537
c40f341f
GR
2538 /* we are incrementing sector_nr below. To be safe, we check against
2539 * sector_nr + two times RESYNC_SECTORS
2540 */
2541
2542 bitmap_cond_end_sync(mddev->bitmap, sector_nr,
2543 mddev_is_clustered(mddev) && (sector_nr + 2 * RESYNC_SECTORS > conf->cluster_sync_high));
1c4588e9 2544 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
17999be4 2545
c2fd4c94 2546 raise_barrier(conf, sector_nr);
1da177e4 2547
3e198f78 2548 rcu_read_lock();
1da177e4 2549 /*
3e198f78
N
2550 * If we get a correctably read error during resync or recovery,
2551 * we might want to read from a different device. So we
2552 * flag all drives that could conceivably be read from for READ,
2553 * and any others (which will be non-In_sync devices) for WRITE.
2554 * If a read fails, we try reading from something else for which READ
2555 * is OK.
1da177e4 2556 */
1da177e4 2557
1da177e4
LT
2558 r1_bio->mddev = mddev;
2559 r1_bio->sector = sector_nr;
191ea9b2 2560 r1_bio->state = 0;
1da177e4 2561 set_bit(R1BIO_IsSync, &r1_bio->state);
1da177e4 2562
8f19ccb2 2563 for (i = 0; i < conf->raid_disks * 2; i++) {
3cb03002 2564 struct md_rdev *rdev;
1da177e4 2565 bio = r1_bio->bios[i];
2aabaa65 2566 bio_reset(bio);
1da177e4 2567
3e198f78
N
2568 rdev = rcu_dereference(conf->mirrors[i].rdev);
2569 if (rdev == NULL ||
06f60385 2570 test_bit(Faulty, &rdev->flags)) {
8f19ccb2
N
2571 if (i < conf->raid_disks)
2572 still_degraded = 1;
3e198f78 2573 } else if (!test_bit(In_sync, &rdev->flags)) {
1da177e4
LT
2574 bio->bi_rw = WRITE;
2575 bio->bi_end_io = end_sync_write;
2576 write_targets ++;
3e198f78
N
2577 } else {
2578 /* may need to read from here */
06f60385
N
2579 sector_t first_bad = MaxSector;
2580 int bad_sectors;
2581
2582 if (is_badblock(rdev, sector_nr, good_sectors,
2583 &first_bad, &bad_sectors)) {
2584 if (first_bad > sector_nr)
2585 good_sectors = first_bad - sector_nr;
2586 else {
2587 bad_sectors -= (sector_nr - first_bad);
2588 if (min_bad == 0 ||
2589 min_bad > bad_sectors)
2590 min_bad = bad_sectors;
2591 }
2592 }
2593 if (sector_nr < first_bad) {
2594 if (test_bit(WriteMostly, &rdev->flags)) {
2595 if (wonly < 0)
2596 wonly = i;
2597 } else {
2598 if (disk < 0)
2599 disk = i;
2600 }
2601 bio->bi_rw = READ;
2602 bio->bi_end_io = end_sync_read;
2603 read_targets++;
d57368af
AL
2604 } else if (!test_bit(WriteErrorSeen, &rdev->flags) &&
2605 test_bit(MD_RECOVERY_SYNC, &mddev->recovery) &&
2606 !test_bit(MD_RECOVERY_CHECK, &mddev->recovery)) {
2607 /*
2608 * The device is suitable for reading (InSync),
2609 * but has bad block(s) here. Let's try to correct them,
2610 * if we are doing resync or repair. Otherwise, leave
2611 * this device alone for this sync request.
2612 */
2613 bio->bi_rw = WRITE;
2614 bio->bi_end_io = end_sync_write;
2615 write_targets++;
3e198f78 2616 }
3e198f78 2617 }
06f60385
N
2618 if (bio->bi_end_io) {
2619 atomic_inc(&rdev->nr_pending);
4f024f37 2620 bio->bi_iter.bi_sector = sector_nr + rdev->data_offset;
06f60385
N
2621 bio->bi_bdev = rdev->bdev;
2622 bio->bi_private = r1_bio;
2623 }
1da177e4 2624 }
3e198f78
N
2625 rcu_read_unlock();
2626 if (disk < 0)
2627 disk = wonly;
2628 r1_bio->read_disk = disk;
191ea9b2 2629
06f60385
N
2630 if (read_targets == 0 && min_bad > 0) {
2631 /* These sectors are bad on all InSync devices, so we
2632 * need to mark them bad on all write targets
2633 */
2634 int ok = 1;
8f19ccb2 2635 for (i = 0 ; i < conf->raid_disks * 2 ; i++)
06f60385 2636 if (r1_bio->bios[i]->bi_end_io == end_sync_write) {
a42f9d83 2637 struct md_rdev *rdev = conf->mirrors[i].rdev;
06f60385
N
2638 ok = rdev_set_badblocks(rdev, sector_nr,
2639 min_bad, 0
2640 ) && ok;
2641 }
2642 set_bit(MD_CHANGE_DEVS, &mddev->flags);
2643 *skipped = 1;
2644 put_buf(r1_bio);
2645
2646 if (!ok) {
2647 /* Cannot record the badblocks, so need to
2648 * abort the resync.
2649 * If there are multiple read targets, could just
2650 * fail the really bad ones ???
2651 */
2652 conf->recovery_disabled = mddev->recovery_disabled;
2653 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2654 return 0;
2655 } else
2656 return min_bad;
2657
2658 }
2659 if (min_bad > 0 && min_bad < good_sectors) {
2660 /* only resync enough to reach the next bad->good
2661 * transition */
2662 good_sectors = min_bad;
2663 }
2664
3e198f78
N
2665 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
2666 /* extra read targets are also write targets */
2667 write_targets += read_targets-1;
2668
2669 if (write_targets == 0 || read_targets == 0) {
1da177e4
LT
2670 /* There is nowhere to write, so all non-sync
2671 * drives must be failed - so we are finished
2672 */
b7219ccb
N
2673 sector_t rv;
2674 if (min_bad > 0)
2675 max_sector = sector_nr + min_bad;
2676 rv = max_sector - sector_nr;
57afd89f 2677 *skipped = 1;
1da177e4 2678 put_buf(r1_bio);
1da177e4
LT
2679 return rv;
2680 }
2681
c6207277
N
2682 if (max_sector > mddev->resync_max)
2683 max_sector = mddev->resync_max; /* Don't do IO beyond here */
06f60385
N
2684 if (max_sector > sector_nr + good_sectors)
2685 max_sector = sector_nr + good_sectors;
1da177e4 2686 nr_sectors = 0;
289e99e8 2687 sync_blocks = 0;
1da177e4
LT
2688 do {
2689 struct page *page;
2690 int len = PAGE_SIZE;
2691 if (sector_nr + (len>>9) > max_sector)
2692 len = (max_sector - sector_nr) << 9;
2693 if (len == 0)
2694 break;
6a806c51
N
2695 if (sync_blocks == 0) {
2696 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
e5de485f
N
2697 &sync_blocks, still_degraded) &&
2698 !conf->fullsync &&
2699 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
6a806c51 2700 break;
7571ae88 2701 if ((len >> 9) > sync_blocks)
6a806c51 2702 len = sync_blocks<<9;
ab7a30c7 2703 }
191ea9b2 2704
8f19ccb2 2705 for (i = 0 ; i < conf->raid_disks * 2; i++) {
1da177e4
LT
2706 bio = r1_bio->bios[i];
2707 if (bio->bi_end_io) {
d11c171e 2708 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1da177e4
LT
2709 if (bio_add_page(bio, page, len, 0) == 0) {
2710 /* stop here */
d11c171e 2711 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1da177e4
LT
2712 while (i > 0) {
2713 i--;
2714 bio = r1_bio->bios[i];
6a806c51
N
2715 if (bio->bi_end_io==NULL)
2716 continue;
1da177e4
LT
2717 /* remove last page from this bio */
2718 bio->bi_vcnt--;
4f024f37 2719 bio->bi_iter.bi_size -= len;
b7c44ed9 2720 bio_clear_flag(bio, BIO_SEG_VALID);
1da177e4
LT
2721 }
2722 goto bio_full;
2723 }
2724 }
2725 }
2726 nr_sectors += len>>9;
2727 sector_nr += len>>9;
191ea9b2 2728 sync_blocks -= (len>>9);
1da177e4
LT
2729 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
2730 bio_full:
1da177e4
LT
2731 r1_bio->sectors = nr_sectors;
2732
c40f341f
GR
2733 if (mddev_is_clustered(mddev) &&
2734 conf->cluster_sync_high < sector_nr + nr_sectors) {
2735 conf->cluster_sync_low = mddev->curr_resync_completed;
2736 conf->cluster_sync_high = conf->cluster_sync_low + CLUSTER_RESYNC_WINDOW_SECTORS;
2737 /* Send resync message */
2738 md_cluster_ops->resync_info_update(mddev,
2739 conf->cluster_sync_low,
2740 conf->cluster_sync_high);
2741 }
2742
d11c171e
N
2743 /* For a user-requested sync, we read all readable devices and do a
2744 * compare
2745 */
2746 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
2747 atomic_set(&r1_bio->remaining, read_targets);
2d4f4f33 2748 for (i = 0; i < conf->raid_disks * 2 && read_targets; i++) {
d11c171e
N
2749 bio = r1_bio->bios[i];
2750 if (bio->bi_end_io == end_sync_read) {
2d4f4f33 2751 read_targets--;
ddac7c7e 2752 md_sync_acct(bio->bi_bdev, nr_sectors);
d11c171e
N
2753 generic_make_request(bio);
2754 }
2755 }
2756 } else {
2757 atomic_set(&r1_bio->remaining, 1);
2758 bio = r1_bio->bios[r1_bio->read_disk];
ddac7c7e 2759 md_sync_acct(bio->bi_bdev, nr_sectors);
d11c171e 2760 generic_make_request(bio);
1da177e4 2761
d11c171e 2762 }
1da177e4
LT
2763 return nr_sectors;
2764}
2765
fd01b88c 2766static sector_t raid1_size(struct mddev *mddev, sector_t sectors, int raid_disks)
80c3a6ce
DW
2767{
2768 if (sectors)
2769 return sectors;
2770
2771 return mddev->dev_sectors;
2772}
2773
e8096360 2774static struct r1conf *setup_conf(struct mddev *mddev)
1da177e4 2775{
e8096360 2776 struct r1conf *conf;
709ae487 2777 int i;
0eaf822c 2778 struct raid1_info *disk;
3cb03002 2779 struct md_rdev *rdev;
709ae487 2780 int err = -ENOMEM;
1da177e4 2781
e8096360 2782 conf = kzalloc(sizeof(struct r1conf), GFP_KERNEL);
1da177e4 2783 if (!conf)
709ae487 2784 goto abort;
1da177e4 2785
0eaf822c 2786 conf->mirrors = kzalloc(sizeof(struct raid1_info)
8f19ccb2 2787 * mddev->raid_disks * 2,
1da177e4
LT
2788 GFP_KERNEL);
2789 if (!conf->mirrors)
709ae487 2790 goto abort;
1da177e4 2791
ddaf22ab
N
2792 conf->tmppage = alloc_page(GFP_KERNEL);
2793 if (!conf->tmppage)
709ae487 2794 goto abort;
ddaf22ab 2795
709ae487 2796 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1da177e4 2797 if (!conf->poolinfo)
709ae487 2798 goto abort;
8f19ccb2 2799 conf->poolinfo->raid_disks = mddev->raid_disks * 2;
1da177e4
LT
2800 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2801 r1bio_pool_free,
2802 conf->poolinfo);
2803 if (!conf->r1bio_pool)
709ae487
N
2804 goto abort;
2805
ed9bfdf1 2806 conf->poolinfo->mddev = mddev;
1da177e4 2807
c19d5798 2808 err = -EINVAL;
e7e72bf6 2809 spin_lock_init(&conf->device_lock);
dafb20fa 2810 rdev_for_each(rdev, mddev) {
aba336bd 2811 struct request_queue *q;
709ae487 2812 int disk_idx = rdev->raid_disk;
1da177e4
LT
2813 if (disk_idx >= mddev->raid_disks
2814 || disk_idx < 0)
2815 continue;
c19d5798 2816 if (test_bit(Replacement, &rdev->flags))
02b898f2 2817 disk = conf->mirrors + mddev->raid_disks + disk_idx;
c19d5798
N
2818 else
2819 disk = conf->mirrors + disk_idx;
1da177e4 2820
c19d5798
N
2821 if (disk->rdev)
2822 goto abort;
1da177e4 2823 disk->rdev = rdev;
aba336bd 2824 q = bdev_get_queue(rdev->bdev);
1da177e4
LT
2825
2826 disk->head_position = 0;
12cee5a8 2827 disk->seq_start = MaxSector;
1da177e4
LT
2828 }
2829 conf->raid_disks = mddev->raid_disks;
2830 conf->mddev = mddev;
1da177e4 2831 INIT_LIST_HEAD(&conf->retry_list);
55ce74d4 2832 INIT_LIST_HEAD(&conf->bio_end_io_list);
1da177e4
LT
2833
2834 spin_lock_init(&conf->resync_lock);
17999be4 2835 init_waitqueue_head(&conf->wait_barrier);
1da177e4 2836
191ea9b2 2837 bio_list_init(&conf->pending_bio_list);
34db0cd6 2838 conf->pending_count = 0;
d890fa2b 2839 conf->recovery_disabled = mddev->recovery_disabled - 1;
191ea9b2 2840
79ef3a8a 2841 conf->start_next_window = MaxSector;
2842 conf->current_window_requests = conf->next_window_requests = 0;
2843
c19d5798 2844 err = -EIO;
8f19ccb2 2845 for (i = 0; i < conf->raid_disks * 2; i++) {
1da177e4
LT
2846
2847 disk = conf->mirrors + i;
2848
c19d5798
N
2849 if (i < conf->raid_disks &&
2850 disk[conf->raid_disks].rdev) {
2851 /* This slot has a replacement. */
2852 if (!disk->rdev) {
2853 /* No original, just make the replacement
2854 * a recovering spare
2855 */
2856 disk->rdev =
2857 disk[conf->raid_disks].rdev;
2858 disk[conf->raid_disks].rdev = NULL;
2859 } else if (!test_bit(In_sync, &disk->rdev->flags))
2860 /* Original is not in_sync - bad */
2861 goto abort;
2862 }
2863
5fd6c1dc
N
2864 if (!disk->rdev ||
2865 !test_bit(In_sync, &disk->rdev->flags)) {
1da177e4 2866 disk->head_position = 0;
4f0a5e01
JB
2867 if (disk->rdev &&
2868 (disk->rdev->saved_raid_disk < 0))
918f0238 2869 conf->fullsync = 1;
be4d3280 2870 }
1da177e4 2871 }
709ae487 2872
709ae487 2873 err = -ENOMEM;
0232605d 2874 conf->thread = md_register_thread(raid1d, mddev, "raid1");
709ae487
N
2875 if (!conf->thread) {
2876 printk(KERN_ERR
9dd1e2fa 2877 "md/raid1:%s: couldn't allocate thread\n",
709ae487
N
2878 mdname(mddev));
2879 goto abort;
11ce99e6 2880 }
1da177e4 2881
709ae487
N
2882 return conf;
2883
2884 abort:
2885 if (conf) {
644df1a8 2886 mempool_destroy(conf->r1bio_pool);
709ae487
N
2887 kfree(conf->mirrors);
2888 safe_put_page(conf->tmppage);
2889 kfree(conf->poolinfo);
2890 kfree(conf);
2891 }
2892 return ERR_PTR(err);
2893}
2894
afa0f557 2895static void raid1_free(struct mddev *mddev, void *priv);
849674e4 2896static int raid1_run(struct mddev *mddev)
709ae487 2897{
e8096360 2898 struct r1conf *conf;
709ae487 2899 int i;
3cb03002 2900 struct md_rdev *rdev;
5220ea1e 2901 int ret;
2ff8cc2c 2902 bool discard_supported = false;
709ae487
N
2903
2904 if (mddev->level != 1) {
9dd1e2fa 2905 printk(KERN_ERR "md/raid1:%s: raid level not set to mirroring (%d)\n",
709ae487
N
2906 mdname(mddev), mddev->level);
2907 return -EIO;
2908 }
2909 if (mddev->reshape_position != MaxSector) {
9dd1e2fa 2910 printk(KERN_ERR "md/raid1:%s: reshape_position set but not supported\n",
709ae487
N
2911 mdname(mddev));
2912 return -EIO;
2913 }
1da177e4 2914 /*
709ae487
N
2915 * copy the already verified devices into our private RAID1
2916 * bookkeeping area. [whatever we allocate in run(),
afa0f557 2917 * should be freed in raid1_free()]
1da177e4 2918 */
709ae487
N
2919 if (mddev->private == NULL)
2920 conf = setup_conf(mddev);
2921 else
2922 conf = mddev->private;
1da177e4 2923
709ae487
N
2924 if (IS_ERR(conf))
2925 return PTR_ERR(conf);
1da177e4 2926
c8dc9c65 2927 if (mddev->queue)
5026d7a9
PA
2928 blk_queue_max_write_same_sectors(mddev->queue, 0);
2929
dafb20fa 2930 rdev_for_each(rdev, mddev) {
1ed7242e
JB
2931 if (!mddev->gendisk)
2932 continue;
709ae487
N
2933 disk_stack_limits(mddev->gendisk, rdev->bdev,
2934 rdev->data_offset << 9);
2ff8cc2c
SL
2935 if (blk_queue_discard(bdev_get_queue(rdev->bdev)))
2936 discard_supported = true;
1da177e4 2937 }
191ea9b2 2938
709ae487
N
2939 mddev->degraded = 0;
2940 for (i=0; i < conf->raid_disks; i++)
2941 if (conf->mirrors[i].rdev == NULL ||
2942 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2943 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2944 mddev->degraded++;
2945
2946 if (conf->raid_disks - mddev->degraded == 1)
2947 mddev->recovery_cp = MaxSector;
2948
8c6ac868 2949 if (mddev->recovery_cp != MaxSector)
9dd1e2fa 2950 printk(KERN_NOTICE "md/raid1:%s: not clean"
8c6ac868
AN
2951 " -- starting background reconstruction\n",
2952 mdname(mddev));
f72ffdd6 2953 printk(KERN_INFO
9dd1e2fa 2954 "md/raid1:%s: active with %d out of %d mirrors\n",
f72ffdd6 2955 mdname(mddev), mddev->raid_disks - mddev->degraded,
1da177e4 2956 mddev->raid_disks);
709ae487 2957
1da177e4
LT
2958 /*
2959 * Ok, everything is just fine now
2960 */
709ae487
N
2961 mddev->thread = conf->thread;
2962 conf->thread = NULL;
2963 mddev->private = conf;
2964
1f403624 2965 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
1da177e4 2966
1ed7242e 2967 if (mddev->queue) {
2ff8cc2c
SL
2968 if (discard_supported)
2969 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD,
2970 mddev->queue);
2971 else
2972 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD,
2973 mddev->queue);
1ed7242e 2974 }
5220ea1e 2975
2976 ret = md_integrity_register(mddev);
5aa61f42
N
2977 if (ret) {
2978 md_unregister_thread(&mddev->thread);
afa0f557 2979 raid1_free(mddev, conf);
5aa61f42 2980 }
5220ea1e 2981 return ret;
1da177e4
LT
2982}
2983
afa0f557 2984static void raid1_free(struct mddev *mddev, void *priv)
1da177e4 2985{
afa0f557 2986 struct r1conf *conf = priv;
409c57f3 2987
644df1a8 2988 mempool_destroy(conf->r1bio_pool);
990a8baf 2989 kfree(conf->mirrors);
0fea7ed8 2990 safe_put_page(conf->tmppage);
990a8baf 2991 kfree(conf->poolinfo);
1da177e4 2992 kfree(conf);
1da177e4
LT
2993}
2994
fd01b88c 2995static int raid1_resize(struct mddev *mddev, sector_t sectors)
1da177e4
LT
2996{
2997 /* no resync is happening, and there is enough space
2998 * on all devices, so we can resize.
2999 * We need to make sure resync covers any new space.
3000 * If the array is shrinking we should possibly wait until
3001 * any io in the removed space completes, but it hardly seems
3002 * worth it.
3003 */
a4a6125a
N
3004 sector_t newsize = raid1_size(mddev, sectors, 0);
3005 if (mddev->external_size &&
3006 mddev->array_sectors > newsize)
b522adcd 3007 return -EINVAL;
a4a6125a
N
3008 if (mddev->bitmap) {
3009 int ret = bitmap_resize(mddev->bitmap, newsize, 0, 0);
3010 if (ret)
3011 return ret;
3012 }
3013 md_set_array_sectors(mddev, newsize);
f233ea5c 3014 set_capacity(mddev->gendisk, mddev->array_sectors);
449aad3e 3015 revalidate_disk(mddev->gendisk);
b522adcd 3016 if (sectors > mddev->dev_sectors &&
b098636c 3017 mddev->recovery_cp > mddev->dev_sectors) {
58c0fed4 3018 mddev->recovery_cp = mddev->dev_sectors;
1da177e4
LT
3019 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3020 }
b522adcd 3021 mddev->dev_sectors = sectors;
4b5c7ae8 3022 mddev->resync_max_sectors = sectors;
1da177e4
LT
3023 return 0;
3024}
3025
fd01b88c 3026static int raid1_reshape(struct mddev *mddev)
1da177e4
LT
3027{
3028 /* We need to:
3029 * 1/ resize the r1bio_pool
3030 * 2/ resize conf->mirrors
3031 *
3032 * We allocate a new r1bio_pool if we can.
3033 * Then raise a device barrier and wait until all IO stops.
3034 * Then resize conf->mirrors and swap in the new r1bio pool.
6ea9c07c
N
3035 *
3036 * At the same time, we "pack" the devices so that all the missing
3037 * devices have the higher raid_disk numbers.
1da177e4
LT
3038 */
3039 mempool_t *newpool, *oldpool;
3040 struct pool_info *newpoolinfo;
0eaf822c 3041 struct raid1_info *newmirrors;
e8096360 3042 struct r1conf *conf = mddev->private;
63c70c4f 3043 int cnt, raid_disks;
c04be0aa 3044 unsigned long flags;
b5470dc5 3045 int d, d2, err;
1da177e4 3046
63c70c4f 3047 /* Cannot change chunk_size, layout, or level */
664e7c41 3048 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
63c70c4f
N
3049 mddev->layout != mddev->new_layout ||
3050 mddev->level != mddev->new_level) {
664e7c41 3051 mddev->new_chunk_sectors = mddev->chunk_sectors;
63c70c4f
N
3052 mddev->new_layout = mddev->layout;
3053 mddev->new_level = mddev->level;
3054 return -EINVAL;
3055 }
3056
28c1b9fd
GR
3057 if (!mddev_is_clustered(mddev)) {
3058 err = md_allow_write(mddev);
3059 if (err)
3060 return err;
3061 }
2a2275d6 3062
63c70c4f
N
3063 raid_disks = mddev->raid_disks + mddev->delta_disks;
3064
6ea9c07c
N
3065 if (raid_disks < conf->raid_disks) {
3066 cnt=0;
3067 for (d= 0; d < conf->raid_disks; d++)
3068 if (conf->mirrors[d].rdev)
3069 cnt++;
3070 if (cnt > raid_disks)
1da177e4 3071 return -EBUSY;
6ea9c07c 3072 }
1da177e4
LT
3073
3074 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
3075 if (!newpoolinfo)
3076 return -ENOMEM;
3077 newpoolinfo->mddev = mddev;
8f19ccb2 3078 newpoolinfo->raid_disks = raid_disks * 2;
1da177e4
LT
3079
3080 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
3081 r1bio_pool_free, newpoolinfo);
3082 if (!newpool) {
3083 kfree(newpoolinfo);
3084 return -ENOMEM;
3085 }
0eaf822c 3086 newmirrors = kzalloc(sizeof(struct raid1_info) * raid_disks * 2,
8f19ccb2 3087 GFP_KERNEL);
1da177e4
LT
3088 if (!newmirrors) {
3089 kfree(newpoolinfo);
3090 mempool_destroy(newpool);
3091 return -ENOMEM;
3092 }
1da177e4 3093
e2d59925 3094 freeze_array(conf, 0);
1da177e4
LT
3095
3096 /* ok, everything is stopped */
3097 oldpool = conf->r1bio_pool;
3098 conf->r1bio_pool = newpool;
6ea9c07c 3099
a88aa786 3100 for (d = d2 = 0; d < conf->raid_disks; d++) {
3cb03002 3101 struct md_rdev *rdev = conf->mirrors[d].rdev;
a88aa786 3102 if (rdev && rdev->raid_disk != d2) {
36fad858 3103 sysfs_unlink_rdev(mddev, rdev);
a88aa786 3104 rdev->raid_disk = d2;
36fad858
NK
3105 sysfs_unlink_rdev(mddev, rdev);
3106 if (sysfs_link_rdev(mddev, rdev))
a88aa786 3107 printk(KERN_WARNING
36fad858
NK
3108 "md/raid1:%s: cannot register rd%d\n",
3109 mdname(mddev), rdev->raid_disk);
6ea9c07c 3110 }
a88aa786
N
3111 if (rdev)
3112 newmirrors[d2++].rdev = rdev;
3113 }
1da177e4
LT
3114 kfree(conf->mirrors);
3115 conf->mirrors = newmirrors;
3116 kfree(conf->poolinfo);
3117 conf->poolinfo = newpoolinfo;
3118
c04be0aa 3119 spin_lock_irqsave(&conf->device_lock, flags);
1da177e4 3120 mddev->degraded += (raid_disks - conf->raid_disks);
c04be0aa 3121 spin_unlock_irqrestore(&conf->device_lock, flags);
1da177e4 3122 conf->raid_disks = mddev->raid_disks = raid_disks;
63c70c4f 3123 mddev->delta_disks = 0;
1da177e4 3124
e2d59925 3125 unfreeze_array(conf);
1da177e4 3126
985ca973 3127 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
1da177e4
LT
3128 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3129 md_wakeup_thread(mddev->thread);
3130
3131 mempool_destroy(oldpool);
3132 return 0;
3133}
3134
fd01b88c 3135static void raid1_quiesce(struct mddev *mddev, int state)
36fa3063 3136{
e8096360 3137 struct r1conf *conf = mddev->private;
36fa3063
N
3138
3139 switch(state) {
6eef4b21
N
3140 case 2: /* wake for suspend */
3141 wake_up(&conf->wait_barrier);
3142 break;
9e6603da 3143 case 1:
07169fd4 3144 freeze_array(conf, 0);
36fa3063 3145 break;
9e6603da 3146 case 0:
07169fd4 3147 unfreeze_array(conf);
36fa3063
N
3148 break;
3149 }
36fa3063
N
3150}
3151
fd01b88c 3152static void *raid1_takeover(struct mddev *mddev)
709ae487
N
3153{
3154 /* raid1 can take over:
3155 * raid5 with 2 devices, any layout or chunk size
3156 */
3157 if (mddev->level == 5 && mddev->raid_disks == 2) {
e8096360 3158 struct r1conf *conf;
709ae487
N
3159 mddev->new_level = 1;
3160 mddev->new_layout = 0;
3161 mddev->new_chunk_sectors = 0;
3162 conf = setup_conf(mddev);
3163 if (!IS_ERR(conf))
07169fd4 3164 /* Array must appear to be quiesced */
3165 conf->array_frozen = 1;
709ae487
N
3166 return conf;
3167 }
3168 return ERR_PTR(-EINVAL);
3169}
1da177e4 3170
84fc4b56 3171static struct md_personality raid1_personality =
1da177e4
LT
3172{
3173 .name = "raid1",
2604b703 3174 .level = 1,
1da177e4 3175 .owner = THIS_MODULE,
849674e4
SL
3176 .make_request = raid1_make_request,
3177 .run = raid1_run,
afa0f557 3178 .free = raid1_free,
849674e4
SL
3179 .status = raid1_status,
3180 .error_handler = raid1_error,
1da177e4
LT
3181 .hot_add_disk = raid1_add_disk,
3182 .hot_remove_disk= raid1_remove_disk,
3183 .spare_active = raid1_spare_active,
849674e4 3184 .sync_request = raid1_sync_request,
1da177e4 3185 .resize = raid1_resize,
80c3a6ce 3186 .size = raid1_size,
63c70c4f 3187 .check_reshape = raid1_reshape,
36fa3063 3188 .quiesce = raid1_quiesce,
709ae487 3189 .takeover = raid1_takeover,
5c675f83 3190 .congested = raid1_congested,
1da177e4
LT
3191};
3192
3193static int __init raid_init(void)
3194{
2604b703 3195 return register_md_personality(&raid1_personality);
1da177e4
LT
3196}
3197
3198static void raid_exit(void)
3199{
2604b703 3200 unregister_md_personality(&raid1_personality);
1da177e4
LT
3201}
3202
3203module_init(raid_init);
3204module_exit(raid_exit);
3205MODULE_LICENSE("GPL");
0efb9e61 3206MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
1da177e4 3207MODULE_ALIAS("md-personality-3"); /* RAID1 */
d9d166c2 3208MODULE_ALIAS("md-raid1");
2604b703 3209MODULE_ALIAS("md-level-1");
34db0cd6
N
3210
3211module_param(max_queued_requests, int, S_IRUGO|S_IWUSR);