dm: introduce split_discard_requests
[linux-2.6-block.git] / drivers / md / dm-thin.c
CommitLineData
991d9fa0
JT
1/*
2 * Copyright (C) 2011 Red Hat UK.
3 *
4 * This file is released under the GPL.
5 */
6
7#include "dm-thin-metadata.h"
8
9#include <linux/device-mapper.h>
10#include <linux/dm-io.h>
11#include <linux/dm-kcopyd.h>
12#include <linux/list.h>
13#include <linux/init.h>
14#include <linux/module.h>
15#include <linux/slab.h>
16
17#define DM_MSG_PREFIX "thin"
18
19/*
20 * Tunable constants
21 */
7768ed33 22#define ENDIO_HOOK_POOL_SIZE 1024
991d9fa0
JT
23#define DEFERRED_SET_SIZE 64
24#define MAPPING_POOL_SIZE 1024
25#define PRISON_CELLS 1024
905e51b3 26#define COMMIT_PERIOD HZ
991d9fa0
JT
27
28/*
29 * The block size of the device holding pool data must be
30 * between 64KB and 1GB.
31 */
32#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
33#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
34
991d9fa0
JT
35/*
36 * Device id is restricted to 24 bits.
37 */
38#define MAX_DEV_ID ((1 << 24) - 1)
39
40/*
41 * How do we handle breaking sharing of data blocks?
42 * =================================================
43 *
44 * We use a standard copy-on-write btree to store the mappings for the
45 * devices (note I'm talking about copy-on-write of the metadata here, not
46 * the data). When you take an internal snapshot you clone the root node
47 * of the origin btree. After this there is no concept of an origin or a
48 * snapshot. They are just two device trees that happen to point to the
49 * same data blocks.
50 *
51 * When we get a write in we decide if it's to a shared data block using
52 * some timestamp magic. If it is, we have to break sharing.
53 *
54 * Let's say we write to a shared block in what was the origin. The
55 * steps are:
56 *
57 * i) plug io further to this physical block. (see bio_prison code).
58 *
59 * ii) quiesce any read io to that shared data block. Obviously
60 * including all devices that share this block. (see deferred_set code)
61 *
62 * iii) copy the data block to a newly allocate block. This step can be
63 * missed out if the io covers the block. (schedule_copy).
64 *
65 * iv) insert the new mapping into the origin's btree
fe878f34 66 * (process_prepared_mapping). This act of inserting breaks some
991d9fa0
JT
67 * sharing of btree nodes between the two devices. Breaking sharing only
68 * effects the btree of that specific device. Btrees for the other
69 * devices that share the block never change. The btree for the origin
70 * device as it was after the last commit is untouched, ie. we're using
71 * persistent data structures in the functional programming sense.
72 *
73 * v) unplug io to this physical block, including the io that triggered
74 * the breaking of sharing.
75 *
76 * Steps (ii) and (iii) occur in parallel.
77 *
78 * The metadata _doesn't_ need to be committed before the io continues. We
79 * get away with this because the io is always written to a _new_ block.
80 * If there's a crash, then:
81 *
82 * - The origin mapping will point to the old origin block (the shared
83 * one). This will contain the data as it was before the io that triggered
84 * the breaking of sharing came in.
85 *
86 * - The snap mapping still points to the old block. As it would after
87 * the commit.
88 *
89 * The downside of this scheme is the timestamp magic isn't perfect, and
90 * will continue to think that data block in the snapshot device is shared
91 * even after the write to the origin has broken sharing. I suspect data
92 * blocks will typically be shared by many different devices, so we're
93 * breaking sharing n + 1 times, rather than n, where n is the number of
94 * devices that reference this data block. At the moment I think the
95 * benefits far, far outweigh the disadvantages.
96 */
97
98/*----------------------------------------------------------------*/
99
100/*
101 * Sometimes we can't deal with a bio straight away. We put them in prison
102 * where they can't cause any mischief. Bios are put in a cell identified
103 * by a key, multiple bios can be in the same cell. When the cell is
104 * subsequently unlocked the bios become available.
105 */
106struct bio_prison;
107
108struct cell_key {
109 int virtual;
110 dm_thin_id dev;
111 dm_block_t block;
112};
113
a24c2569 114struct dm_bio_prison_cell {
991d9fa0
JT
115 struct hlist_node list;
116 struct bio_prison *prison;
117 struct cell_key key;
6f94a4c4 118 struct bio *holder;
991d9fa0
JT
119 struct bio_list bios;
120};
121
122struct bio_prison {
123 spinlock_t lock;
124 mempool_t *cell_pool;
125
126 unsigned nr_buckets;
127 unsigned hash_mask;
128 struct hlist_head *cells;
129};
130
131static uint32_t calc_nr_buckets(unsigned nr_cells)
132{
133 uint32_t n = 128;
134
135 nr_cells /= 4;
136 nr_cells = min(nr_cells, 8192u);
137
138 while (n < nr_cells)
139 n <<= 1;
140
141 return n;
142}
143
a24c2569
MS
144static struct kmem_cache *_cell_cache;
145
991d9fa0
JT
146/*
147 * @nr_cells should be the number of cells you want in use _concurrently_.
148 * Don't confuse it with the number of distinct keys.
149 */
150static struct bio_prison *prison_create(unsigned nr_cells)
151{
152 unsigned i;
153 uint32_t nr_buckets = calc_nr_buckets(nr_cells);
154 size_t len = sizeof(struct bio_prison) +
155 (sizeof(struct hlist_head) * nr_buckets);
156 struct bio_prison *prison = kmalloc(len, GFP_KERNEL);
157
158 if (!prison)
159 return NULL;
160
161 spin_lock_init(&prison->lock);
a24c2569 162 prison->cell_pool = mempool_create_slab_pool(nr_cells, _cell_cache);
991d9fa0
JT
163 if (!prison->cell_pool) {
164 kfree(prison);
165 return NULL;
166 }
167
168 prison->nr_buckets = nr_buckets;
169 prison->hash_mask = nr_buckets - 1;
170 prison->cells = (struct hlist_head *) (prison + 1);
171 for (i = 0; i < nr_buckets; i++)
172 INIT_HLIST_HEAD(prison->cells + i);
173
174 return prison;
175}
176
177static void prison_destroy(struct bio_prison *prison)
178{
179 mempool_destroy(prison->cell_pool);
180 kfree(prison);
181}
182
183static uint32_t hash_key(struct bio_prison *prison, struct cell_key *key)
184{
185 const unsigned long BIG_PRIME = 4294967291UL;
186 uint64_t hash = key->block * BIG_PRIME;
187
188 return (uint32_t) (hash & prison->hash_mask);
189}
190
191static int keys_equal(struct cell_key *lhs, struct cell_key *rhs)
192{
193 return (lhs->virtual == rhs->virtual) &&
194 (lhs->dev == rhs->dev) &&
195 (lhs->block == rhs->block);
196}
197
a24c2569
MS
198static struct dm_bio_prison_cell *__search_bucket(struct hlist_head *bucket,
199 struct cell_key *key)
991d9fa0 200{
a24c2569 201 struct dm_bio_prison_cell *cell;
991d9fa0
JT
202 struct hlist_node *tmp;
203
204 hlist_for_each_entry(cell, tmp, bucket, list)
205 if (keys_equal(&cell->key, key))
206 return cell;
207
208 return NULL;
209}
210
211/*
212 * This may block if a new cell needs allocating. You must ensure that
213 * cells will be unlocked even if the calling thread is blocked.
214 *
6f94a4c4 215 * Returns 1 if the cell was already held, 0 if @inmate is the new holder.
991d9fa0
JT
216 */
217static int bio_detain(struct bio_prison *prison, struct cell_key *key,
a24c2569 218 struct bio *inmate, struct dm_bio_prison_cell **ref)
991d9fa0 219{
6f94a4c4 220 int r = 1;
991d9fa0
JT
221 unsigned long flags;
222 uint32_t hash = hash_key(prison, key);
a24c2569 223 struct dm_bio_prison_cell *cell, *cell2;
991d9fa0
JT
224
225 BUG_ON(hash > prison->nr_buckets);
226
227 spin_lock_irqsave(&prison->lock, flags);
991d9fa0 228
6f94a4c4
JT
229 cell = __search_bucket(prison->cells + hash, key);
230 if (cell) {
231 bio_list_add(&cell->bios, inmate);
232 goto out;
991d9fa0
JT
233 }
234
6f94a4c4
JT
235 /*
236 * Allocate a new cell
237 */
991d9fa0 238 spin_unlock_irqrestore(&prison->lock, flags);
6f94a4c4
JT
239 cell2 = mempool_alloc(prison->cell_pool, GFP_NOIO);
240 spin_lock_irqsave(&prison->lock, flags);
991d9fa0 241
6f94a4c4
JT
242 /*
243 * We've been unlocked, so we have to double check that
244 * nobody else has inserted this cell in the meantime.
245 */
246 cell = __search_bucket(prison->cells + hash, key);
247 if (cell) {
991d9fa0 248 mempool_free(cell2, prison->cell_pool);
6f94a4c4
JT
249 bio_list_add(&cell->bios, inmate);
250 goto out;
251 }
252
253 /*
254 * Use new cell.
255 */
256 cell = cell2;
257
258 cell->prison = prison;
259 memcpy(&cell->key, key, sizeof(cell->key));
260 cell->holder = inmate;
261 bio_list_init(&cell->bios);
262 hlist_add_head(&cell->list, prison->cells + hash);
263
264 r = 0;
265
266out:
267 spin_unlock_irqrestore(&prison->lock, flags);
991d9fa0
JT
268
269 *ref = cell;
270
271 return r;
272}
273
274/*
275 * @inmates must have been initialised prior to this call
276 */
a24c2569 277static void __cell_release(struct dm_bio_prison_cell *cell, struct bio_list *inmates)
991d9fa0
JT
278{
279 struct bio_prison *prison = cell->prison;
280
281 hlist_del(&cell->list);
282
03aaae7c
MS
283 if (inmates) {
284 bio_list_add(inmates, cell->holder);
285 bio_list_merge(inmates, &cell->bios);
286 }
991d9fa0
JT
287
288 mempool_free(cell, prison->cell_pool);
289}
290
a24c2569 291static void cell_release(struct dm_bio_prison_cell *cell, struct bio_list *bios)
991d9fa0
JT
292{
293 unsigned long flags;
294 struct bio_prison *prison = cell->prison;
295
296 spin_lock_irqsave(&prison->lock, flags);
297 __cell_release(cell, bios);
298 spin_unlock_irqrestore(&prison->lock, flags);
299}
300
301/*
302 * There are a couple of places where we put a bio into a cell briefly
303 * before taking it out again. In these situations we know that no other
304 * bio may be in the cell. This function releases the cell, and also does
305 * a sanity check.
306 */
a24c2569 307static void __cell_release_singleton(struct dm_bio_prison_cell *cell, struct bio *bio)
6f94a4c4 308{
6f94a4c4
JT
309 BUG_ON(cell->holder != bio);
310 BUG_ON(!bio_list_empty(&cell->bios));
03aaae7c
MS
311
312 __cell_release(cell, NULL);
6f94a4c4
JT
313}
314
a24c2569 315static void cell_release_singleton(struct dm_bio_prison_cell *cell, struct bio *bio)
991d9fa0 316{
991d9fa0 317 unsigned long flags;
6f94a4c4 318 struct bio_prison *prison = cell->prison;
991d9fa0
JT
319
320 spin_lock_irqsave(&prison->lock, flags);
6f94a4c4 321 __cell_release_singleton(cell, bio);
991d9fa0 322 spin_unlock_irqrestore(&prison->lock, flags);
6f94a4c4
JT
323}
324
325/*
326 * Sometimes we don't want the holder, just the additional bios.
327 */
a24c2569
MS
328static void __cell_release_no_holder(struct dm_bio_prison_cell *cell,
329 struct bio_list *inmates)
6f94a4c4
JT
330{
331 struct bio_prison *prison = cell->prison;
332
333 hlist_del(&cell->list);
334 bio_list_merge(inmates, &cell->bios);
335
336 mempool_free(cell, prison->cell_pool);
337}
338
a24c2569
MS
339static void cell_release_no_holder(struct dm_bio_prison_cell *cell,
340 struct bio_list *inmates)
6f94a4c4
JT
341{
342 unsigned long flags;
343 struct bio_prison *prison = cell->prison;
991d9fa0 344
6f94a4c4
JT
345 spin_lock_irqsave(&prison->lock, flags);
346 __cell_release_no_holder(cell, inmates);
347 spin_unlock_irqrestore(&prison->lock, flags);
991d9fa0
JT
348}
349
a24c2569 350static void cell_error(struct dm_bio_prison_cell *cell)
991d9fa0
JT
351{
352 struct bio_prison *prison = cell->prison;
353 struct bio_list bios;
354 struct bio *bio;
355 unsigned long flags;
356
357 bio_list_init(&bios);
358
359 spin_lock_irqsave(&prison->lock, flags);
360 __cell_release(cell, &bios);
361 spin_unlock_irqrestore(&prison->lock, flags);
362
363 while ((bio = bio_list_pop(&bios)))
364 bio_io_error(bio);
365}
366
367/*----------------------------------------------------------------*/
368
369/*
370 * We use the deferred set to keep track of pending reads to shared blocks.
371 * We do this to ensure the new mapping caused by a write isn't performed
372 * until these prior reads have completed. Otherwise the insertion of the
373 * new mapping could free the old block that the read bios are mapped to.
374 */
375
376struct deferred_set;
377struct deferred_entry {
378 struct deferred_set *ds;
379 unsigned count;
380 struct list_head work_items;
381};
382
383struct deferred_set {
384 spinlock_t lock;
385 unsigned current_entry;
386 unsigned sweeper;
387 struct deferred_entry entries[DEFERRED_SET_SIZE];
388};
389
390static void ds_init(struct deferred_set *ds)
391{
392 int i;
393
394 spin_lock_init(&ds->lock);
395 ds->current_entry = 0;
396 ds->sweeper = 0;
397 for (i = 0; i < DEFERRED_SET_SIZE; i++) {
398 ds->entries[i].ds = ds;
399 ds->entries[i].count = 0;
400 INIT_LIST_HEAD(&ds->entries[i].work_items);
401 }
402}
403
404static struct deferred_entry *ds_inc(struct deferred_set *ds)
405{
406 unsigned long flags;
407 struct deferred_entry *entry;
408
409 spin_lock_irqsave(&ds->lock, flags);
410 entry = ds->entries + ds->current_entry;
411 entry->count++;
412 spin_unlock_irqrestore(&ds->lock, flags);
413
414 return entry;
415}
416
417static unsigned ds_next(unsigned index)
418{
419 return (index + 1) % DEFERRED_SET_SIZE;
420}
421
422static void __sweep(struct deferred_set *ds, struct list_head *head)
423{
424 while ((ds->sweeper != ds->current_entry) &&
425 !ds->entries[ds->sweeper].count) {
426 list_splice_init(&ds->entries[ds->sweeper].work_items, head);
427 ds->sweeper = ds_next(ds->sweeper);
428 }
429
430 if ((ds->sweeper == ds->current_entry) && !ds->entries[ds->sweeper].count)
431 list_splice_init(&ds->entries[ds->sweeper].work_items, head);
432}
433
434static void ds_dec(struct deferred_entry *entry, struct list_head *head)
435{
436 unsigned long flags;
437
438 spin_lock_irqsave(&entry->ds->lock, flags);
439 BUG_ON(!entry->count);
440 --entry->count;
441 __sweep(entry->ds, head);
442 spin_unlock_irqrestore(&entry->ds->lock, flags);
443}
444
445/*
446 * Returns 1 if deferred or 0 if no pending items to delay job.
447 */
448static int ds_add_work(struct deferred_set *ds, struct list_head *work)
449{
450 int r = 1;
451 unsigned long flags;
452 unsigned next_entry;
453
454 spin_lock_irqsave(&ds->lock, flags);
455 if ((ds->sweeper == ds->current_entry) &&
456 !ds->entries[ds->current_entry].count)
457 r = 0;
458 else {
459 list_add(work, &ds->entries[ds->current_entry].work_items);
460 next_entry = ds_next(ds->current_entry);
461 if (!ds->entries[next_entry].count)
462 ds->current_entry = next_entry;
463 }
464 spin_unlock_irqrestore(&ds->lock, flags);
465
466 return r;
467}
468
469/*----------------------------------------------------------------*/
470
471/*
472 * Key building.
473 */
474static void build_data_key(struct dm_thin_device *td,
475 dm_block_t b, struct cell_key *key)
476{
477 key->virtual = 0;
478 key->dev = dm_thin_dev_id(td);
479 key->block = b;
480}
481
482static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
483 struct cell_key *key)
484{
485 key->virtual = 1;
486 key->dev = dm_thin_dev_id(td);
487 key->block = b;
488}
489
490/*----------------------------------------------------------------*/
491
492/*
493 * A pool device ties together a metadata device and a data device. It
494 * also provides the interface for creating and destroying internal
495 * devices.
496 */
a24c2569 497struct dm_thin_new_mapping;
67e2e2b2
JT
498
499struct pool_features {
500 unsigned zero_new_blocks:1;
501 unsigned discard_enabled:1;
502 unsigned discard_passdown:1;
503};
504
991d9fa0
JT
505struct pool {
506 struct list_head list;
507 struct dm_target *ti; /* Only set if a pool target is bound */
508
509 struct mapped_device *pool_md;
510 struct block_device *md_dev;
511 struct dm_pool_metadata *pmd;
512
991d9fa0 513 dm_block_t low_water_blocks;
55f2b8bd 514 uint32_t sectors_per_block;
991d9fa0 515
67e2e2b2 516 struct pool_features pf;
991d9fa0
JT
517 unsigned low_water_triggered:1; /* A dm event has been sent */
518 unsigned no_free_space:1; /* A -ENOSPC warning has been issued */
519
520 struct bio_prison *prison;
521 struct dm_kcopyd_client *copier;
522
523 struct workqueue_struct *wq;
524 struct work_struct worker;
905e51b3 525 struct delayed_work waker;
991d9fa0 526
905e51b3 527 unsigned long last_commit_jiffies;
55f2b8bd 528 unsigned ref_count;
991d9fa0
JT
529
530 spinlock_t lock;
531 struct bio_list deferred_bios;
532 struct bio_list deferred_flush_bios;
533 struct list_head prepared_mappings;
104655fd 534 struct list_head prepared_discards;
991d9fa0
JT
535
536 struct bio_list retry_on_resume_list;
537
eb2aa48d 538 struct deferred_set shared_read_ds;
104655fd 539 struct deferred_set all_io_ds;
991d9fa0 540
a24c2569 541 struct dm_thin_new_mapping *next_mapping;
991d9fa0
JT
542 mempool_t *mapping_pool;
543 mempool_t *endio_hook_pool;
544};
545
546/*
547 * Target context for a pool.
548 */
549struct pool_c {
550 struct dm_target *ti;
551 struct pool *pool;
552 struct dm_dev *data_dev;
553 struct dm_dev *metadata_dev;
554 struct dm_target_callbacks callbacks;
555
556 dm_block_t low_water_blocks;
67e2e2b2 557 struct pool_features pf;
991d9fa0
JT
558};
559
560/*
561 * Target context for a thin.
562 */
563struct thin_c {
564 struct dm_dev *pool_dev;
2dd9c257 565 struct dm_dev *origin_dev;
991d9fa0
JT
566 dm_thin_id dev_id;
567
568 struct pool *pool;
569 struct dm_thin_device *td;
570};
571
572/*----------------------------------------------------------------*/
573
574/*
575 * A global list of pools that uses a struct mapped_device as a key.
576 */
577static struct dm_thin_pool_table {
578 struct mutex mutex;
579 struct list_head pools;
580} dm_thin_pool_table;
581
582static void pool_table_init(void)
583{
584 mutex_init(&dm_thin_pool_table.mutex);
585 INIT_LIST_HEAD(&dm_thin_pool_table.pools);
586}
587
588static void __pool_table_insert(struct pool *pool)
589{
590 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
591 list_add(&pool->list, &dm_thin_pool_table.pools);
592}
593
594static void __pool_table_remove(struct pool *pool)
595{
596 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
597 list_del(&pool->list);
598}
599
600static struct pool *__pool_table_lookup(struct mapped_device *md)
601{
602 struct pool *pool = NULL, *tmp;
603
604 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
605
606 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
607 if (tmp->pool_md == md) {
608 pool = tmp;
609 break;
610 }
611 }
612
613 return pool;
614}
615
616static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
617{
618 struct pool *pool = NULL, *tmp;
619
620 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
621
622 list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
623 if (tmp->md_dev == md_dev) {
624 pool = tmp;
625 break;
626 }
627 }
628
629 return pool;
630}
631
632/*----------------------------------------------------------------*/
633
a24c2569 634struct dm_thin_endio_hook {
eb2aa48d
JT
635 struct thin_c *tc;
636 struct deferred_entry *shared_read_entry;
104655fd 637 struct deferred_entry *all_io_entry;
a24c2569 638 struct dm_thin_new_mapping *overwrite_mapping;
eb2aa48d
JT
639};
640
991d9fa0
JT
641static void __requeue_bio_list(struct thin_c *tc, struct bio_list *master)
642{
643 struct bio *bio;
644 struct bio_list bios;
645
646 bio_list_init(&bios);
647 bio_list_merge(&bios, master);
648 bio_list_init(master);
649
650 while ((bio = bio_list_pop(&bios))) {
a24c2569
MS
651 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
652
eb2aa48d 653 if (h->tc == tc)
991d9fa0
JT
654 bio_endio(bio, DM_ENDIO_REQUEUE);
655 else
656 bio_list_add(master, bio);
657 }
658}
659
660static void requeue_io(struct thin_c *tc)
661{
662 struct pool *pool = tc->pool;
663 unsigned long flags;
664
665 spin_lock_irqsave(&pool->lock, flags);
666 __requeue_bio_list(tc, &pool->deferred_bios);
667 __requeue_bio_list(tc, &pool->retry_on_resume_list);
668 spin_unlock_irqrestore(&pool->lock, flags);
669}
670
671/*
672 * This section of code contains the logic for processing a thin device's IO.
673 * Much of the code depends on pool object resources (lists, workqueues, etc)
674 * but most is exclusively called from the thin target rather than the thin-pool
675 * target.
676 */
677
678static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
679{
55f2b8bd
MS
680 sector_t block_nr = bio->bi_sector;
681
682 (void) sector_div(block_nr, tc->pool->sectors_per_block);
683
684 return block_nr;
991d9fa0
JT
685}
686
687static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
688{
689 struct pool *pool = tc->pool;
55f2b8bd 690 sector_t bi_sector = bio->bi_sector;
991d9fa0
JT
691
692 bio->bi_bdev = tc->pool_dev->bdev;
55f2b8bd
MS
693 bio->bi_sector = (block * pool->sectors_per_block) +
694 sector_div(bi_sector, pool->sectors_per_block);
991d9fa0
JT
695}
696
2dd9c257
JT
697static void remap_to_origin(struct thin_c *tc, struct bio *bio)
698{
699 bio->bi_bdev = tc->origin_dev->bdev;
700}
701
702static void issue(struct thin_c *tc, struct bio *bio)
991d9fa0
JT
703{
704 struct pool *pool = tc->pool;
705 unsigned long flags;
706
991d9fa0
JT
707 /*
708 * Batch together any FUA/FLUSH bios we find and then issue
709 * a single commit for them in process_deferred_bios().
710 */
711 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
712 spin_lock_irqsave(&pool->lock, flags);
713 bio_list_add(&pool->deferred_flush_bios, bio);
714 spin_unlock_irqrestore(&pool->lock, flags);
715 } else
716 generic_make_request(bio);
717}
718
2dd9c257
JT
719static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
720{
721 remap_to_origin(tc, bio);
722 issue(tc, bio);
723}
724
725static void remap_and_issue(struct thin_c *tc, struct bio *bio,
726 dm_block_t block)
727{
728 remap(tc, bio, block);
729 issue(tc, bio);
730}
731
991d9fa0
JT
732/*
733 * wake_worker() is used when new work is queued and when pool_resume is
734 * ready to continue deferred IO processing.
735 */
736static void wake_worker(struct pool *pool)
737{
738 queue_work(pool->wq, &pool->worker);
739}
740
741/*----------------------------------------------------------------*/
742
743/*
744 * Bio endio functions.
745 */
a24c2569 746struct dm_thin_new_mapping {
991d9fa0
JT
747 struct list_head list;
748
eb2aa48d
JT
749 unsigned quiesced:1;
750 unsigned prepared:1;
104655fd 751 unsigned pass_discard:1;
991d9fa0
JT
752
753 struct thin_c *tc;
754 dm_block_t virt_block;
755 dm_block_t data_block;
a24c2569 756 struct dm_bio_prison_cell *cell, *cell2;
991d9fa0
JT
757 int err;
758
759 /*
760 * If the bio covers the whole area of a block then we can avoid
761 * zeroing or copying. Instead this bio is hooked. The bio will
762 * still be in the cell, so care has to be taken to avoid issuing
763 * the bio twice.
764 */
765 struct bio *bio;
766 bio_end_io_t *saved_bi_end_io;
767};
768
a24c2569 769static void __maybe_add_mapping(struct dm_thin_new_mapping *m)
991d9fa0
JT
770{
771 struct pool *pool = m->tc->pool;
772
eb2aa48d 773 if (m->quiesced && m->prepared) {
991d9fa0
JT
774 list_add(&m->list, &pool->prepared_mappings);
775 wake_worker(pool);
776 }
777}
778
779static void copy_complete(int read_err, unsigned long write_err, void *context)
780{
781 unsigned long flags;
a24c2569 782 struct dm_thin_new_mapping *m = context;
991d9fa0
JT
783 struct pool *pool = m->tc->pool;
784
785 m->err = read_err || write_err ? -EIO : 0;
786
787 spin_lock_irqsave(&pool->lock, flags);
788 m->prepared = 1;
789 __maybe_add_mapping(m);
790 spin_unlock_irqrestore(&pool->lock, flags);
791}
792
793static void overwrite_endio(struct bio *bio, int err)
794{
795 unsigned long flags;
a24c2569
MS
796 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
797 struct dm_thin_new_mapping *m = h->overwrite_mapping;
991d9fa0
JT
798 struct pool *pool = m->tc->pool;
799
800 m->err = err;
801
802 spin_lock_irqsave(&pool->lock, flags);
803 m->prepared = 1;
804 __maybe_add_mapping(m);
805 spin_unlock_irqrestore(&pool->lock, flags);
806}
807
991d9fa0
JT
808/*----------------------------------------------------------------*/
809
810/*
811 * Workqueue.
812 */
813
814/*
815 * Prepared mapping jobs.
816 */
817
818/*
819 * This sends the bios in the cell back to the deferred_bios list.
820 */
a24c2569 821static void cell_defer(struct thin_c *tc, struct dm_bio_prison_cell *cell,
991d9fa0
JT
822 dm_block_t data_block)
823{
824 struct pool *pool = tc->pool;
825 unsigned long flags;
826
827 spin_lock_irqsave(&pool->lock, flags);
828 cell_release(cell, &pool->deferred_bios);
829 spin_unlock_irqrestore(&tc->pool->lock, flags);
830
831 wake_worker(pool);
832}
833
834/*
835 * Same as cell_defer above, except it omits one particular detainee,
836 * a write bio that covers the block and has already been processed.
837 */
a24c2569 838static void cell_defer_except(struct thin_c *tc, struct dm_bio_prison_cell *cell)
991d9fa0
JT
839{
840 struct bio_list bios;
991d9fa0
JT
841 struct pool *pool = tc->pool;
842 unsigned long flags;
843
844 bio_list_init(&bios);
991d9fa0
JT
845
846 spin_lock_irqsave(&pool->lock, flags);
6f94a4c4 847 cell_release_no_holder(cell, &pool->deferred_bios);
991d9fa0
JT
848 spin_unlock_irqrestore(&pool->lock, flags);
849
850 wake_worker(pool);
851}
852
a24c2569 853static void process_prepared_mapping(struct dm_thin_new_mapping *m)
991d9fa0
JT
854{
855 struct thin_c *tc = m->tc;
856 struct bio *bio;
857 int r;
858
859 bio = m->bio;
860 if (bio)
861 bio->bi_end_io = m->saved_bi_end_io;
862
863 if (m->err) {
864 cell_error(m->cell);
865 return;
866 }
867
868 /*
869 * Commit the prepared block into the mapping btree.
870 * Any I/O for this block arriving after this point will get
871 * remapped to it directly.
872 */
873 r = dm_thin_insert_block(tc->td, m->virt_block, m->data_block);
874 if (r) {
875 DMERR("dm_thin_insert_block() failed");
876 cell_error(m->cell);
877 return;
878 }
879
880 /*
881 * Release any bios held while the block was being provisioned.
882 * If we are processing a write bio that completely covers the block,
883 * we already processed it so can ignore it now when processing
884 * the bios in the cell.
885 */
886 if (bio) {
6f94a4c4 887 cell_defer_except(tc, m->cell);
991d9fa0
JT
888 bio_endio(bio, 0);
889 } else
890 cell_defer(tc, m->cell, m->data_block);
891
892 list_del(&m->list);
893 mempool_free(m, tc->pool->mapping_pool);
894}
895
a24c2569 896static void process_prepared_discard(struct dm_thin_new_mapping *m)
104655fd
JT
897{
898 int r;
899 struct thin_c *tc = m->tc;
900
901 r = dm_thin_remove_block(tc->td, m->virt_block);
902 if (r)
903 DMERR("dm_thin_remove_block() failed");
904
905 /*
906 * Pass the discard down to the underlying device?
907 */
908 if (m->pass_discard)
909 remap_and_issue(tc, m->bio, m->data_block);
910 else
911 bio_endio(m->bio, 0);
912
913 cell_defer_except(tc, m->cell);
914 cell_defer_except(tc, m->cell2);
915 mempool_free(m, tc->pool->mapping_pool);
916}
917
918static void process_prepared(struct pool *pool, struct list_head *head,
a24c2569 919 void (*fn)(struct dm_thin_new_mapping *))
991d9fa0
JT
920{
921 unsigned long flags;
922 struct list_head maps;
a24c2569 923 struct dm_thin_new_mapping *m, *tmp;
991d9fa0
JT
924
925 INIT_LIST_HEAD(&maps);
926 spin_lock_irqsave(&pool->lock, flags);
104655fd 927 list_splice_init(head, &maps);
991d9fa0
JT
928 spin_unlock_irqrestore(&pool->lock, flags);
929
930 list_for_each_entry_safe(m, tmp, &maps, list)
104655fd 931 fn(m);
991d9fa0
JT
932}
933
934/*
935 * Deferred bio jobs.
936 */
104655fd 937static int io_overlaps_block(struct pool *pool, struct bio *bio)
991d9fa0 938{
55f2b8bd 939 sector_t bi_sector = bio->bi_sector;
104655fd 940
55f2b8bd
MS
941 return !sector_div(bi_sector, pool->sectors_per_block) &&
942 (bio->bi_size == (pool->sectors_per_block << SECTOR_SHIFT));
104655fd
JT
943}
944
945static int io_overwrites_block(struct pool *pool, struct bio *bio)
946{
947 return (bio_data_dir(bio) == WRITE) &&
948 io_overlaps_block(pool, bio);
991d9fa0
JT
949}
950
951static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
952 bio_end_io_t *fn)
953{
954 *save = bio->bi_end_io;
955 bio->bi_end_io = fn;
956}
957
958static int ensure_next_mapping(struct pool *pool)
959{
960 if (pool->next_mapping)
961 return 0;
962
963 pool->next_mapping = mempool_alloc(pool->mapping_pool, GFP_ATOMIC);
964
965 return pool->next_mapping ? 0 : -ENOMEM;
966}
967
a24c2569 968static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
991d9fa0 969{
a24c2569 970 struct dm_thin_new_mapping *r = pool->next_mapping;
991d9fa0
JT
971
972 BUG_ON(!pool->next_mapping);
973
974 pool->next_mapping = NULL;
975
976 return r;
977}
978
979static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
2dd9c257
JT
980 struct dm_dev *origin, dm_block_t data_origin,
981 dm_block_t data_dest,
a24c2569 982 struct dm_bio_prison_cell *cell, struct bio *bio)
991d9fa0
JT
983{
984 int r;
985 struct pool *pool = tc->pool;
a24c2569 986 struct dm_thin_new_mapping *m = get_next_mapping(pool);
991d9fa0
JT
987
988 INIT_LIST_HEAD(&m->list);
eb2aa48d 989 m->quiesced = 0;
991d9fa0
JT
990 m->prepared = 0;
991 m->tc = tc;
992 m->virt_block = virt_block;
993 m->data_block = data_dest;
994 m->cell = cell;
995 m->err = 0;
996 m->bio = NULL;
997
eb2aa48d
JT
998 if (!ds_add_work(&pool->shared_read_ds, &m->list))
999 m->quiesced = 1;
991d9fa0
JT
1000
1001 /*
1002 * IO to pool_dev remaps to the pool target's data_dev.
1003 *
1004 * If the whole block of data is being overwritten, we can issue the
1005 * bio immediately. Otherwise we use kcopyd to clone the data first.
1006 */
1007 if (io_overwrites_block(pool, bio)) {
a24c2569
MS
1008 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1009
eb2aa48d 1010 h->overwrite_mapping = m;
991d9fa0
JT
1011 m->bio = bio;
1012 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
991d9fa0
JT
1013 remap_and_issue(tc, bio, data_dest);
1014 } else {
1015 struct dm_io_region from, to;
1016
2dd9c257 1017 from.bdev = origin->bdev;
991d9fa0
JT
1018 from.sector = data_origin * pool->sectors_per_block;
1019 from.count = pool->sectors_per_block;
1020
1021 to.bdev = tc->pool_dev->bdev;
1022 to.sector = data_dest * pool->sectors_per_block;
1023 to.count = pool->sectors_per_block;
1024
1025 r = dm_kcopyd_copy(pool->copier, &from, 1, &to,
1026 0, copy_complete, m);
1027 if (r < 0) {
1028 mempool_free(m, pool->mapping_pool);
1029 DMERR("dm_kcopyd_copy() failed");
1030 cell_error(cell);
1031 }
1032 }
1033}
1034
2dd9c257
JT
1035static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1036 dm_block_t data_origin, dm_block_t data_dest,
a24c2569 1037 struct dm_bio_prison_cell *cell, struct bio *bio)
2dd9c257
JT
1038{
1039 schedule_copy(tc, virt_block, tc->pool_dev,
1040 data_origin, data_dest, cell, bio);
1041}
1042
1043static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1044 dm_block_t data_dest,
a24c2569 1045 struct dm_bio_prison_cell *cell, struct bio *bio)
2dd9c257
JT
1046{
1047 schedule_copy(tc, virt_block, tc->origin_dev,
1048 virt_block, data_dest, cell, bio);
1049}
1050
991d9fa0 1051static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
a24c2569 1052 dm_block_t data_block, struct dm_bio_prison_cell *cell,
991d9fa0
JT
1053 struct bio *bio)
1054{
1055 struct pool *pool = tc->pool;
a24c2569 1056 struct dm_thin_new_mapping *m = get_next_mapping(pool);
991d9fa0
JT
1057
1058 INIT_LIST_HEAD(&m->list);
eb2aa48d 1059 m->quiesced = 1;
991d9fa0
JT
1060 m->prepared = 0;
1061 m->tc = tc;
1062 m->virt_block = virt_block;
1063 m->data_block = data_block;
1064 m->cell = cell;
1065 m->err = 0;
1066 m->bio = NULL;
1067
1068 /*
1069 * If the whole block of data is being overwritten or we are not
1070 * zeroing pre-existing data, we can issue the bio immediately.
1071 * Otherwise we use kcopyd to zero the data first.
1072 */
67e2e2b2 1073 if (!pool->pf.zero_new_blocks)
991d9fa0
JT
1074 process_prepared_mapping(m);
1075
1076 else if (io_overwrites_block(pool, bio)) {
a24c2569
MS
1077 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
1078
eb2aa48d 1079 h->overwrite_mapping = m;
991d9fa0
JT
1080 m->bio = bio;
1081 save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
991d9fa0 1082 remap_and_issue(tc, bio, data_block);
991d9fa0
JT
1083 } else {
1084 int r;
1085 struct dm_io_region to;
1086
1087 to.bdev = tc->pool_dev->bdev;
1088 to.sector = data_block * pool->sectors_per_block;
1089 to.count = pool->sectors_per_block;
1090
1091 r = dm_kcopyd_zero(pool->copier, 1, &to, 0, copy_complete, m);
1092 if (r < 0) {
1093 mempool_free(m, pool->mapping_pool);
1094 DMERR("dm_kcopyd_zero() failed");
1095 cell_error(cell);
1096 }
1097 }
1098}
1099
1100static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1101{
1102 int r;
1103 dm_block_t free_blocks;
1104 unsigned long flags;
1105 struct pool *pool = tc->pool;
1106
1107 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1108 if (r)
1109 return r;
1110
1111 if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1112 DMWARN("%s: reached low water mark, sending event.",
1113 dm_device_name(pool->pool_md));
1114 spin_lock_irqsave(&pool->lock, flags);
1115 pool->low_water_triggered = 1;
1116 spin_unlock_irqrestore(&pool->lock, flags);
1117 dm_table_event(pool->ti->table);
1118 }
1119
1120 if (!free_blocks) {
1121 if (pool->no_free_space)
1122 return -ENOSPC;
1123 else {
1124 /*
1125 * Try to commit to see if that will free up some
1126 * more space.
1127 */
1128 r = dm_pool_commit_metadata(pool->pmd);
1129 if (r) {
1130 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
1131 __func__, r);
1132 return r;
1133 }
1134
1135 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1136 if (r)
1137 return r;
1138
1139 /*
1140 * If we still have no space we set a flag to avoid
1141 * doing all this checking and return -ENOSPC.
1142 */
1143 if (!free_blocks) {
1144 DMWARN("%s: no free space available.",
1145 dm_device_name(pool->pool_md));
1146 spin_lock_irqsave(&pool->lock, flags);
1147 pool->no_free_space = 1;
1148 spin_unlock_irqrestore(&pool->lock, flags);
1149 return -ENOSPC;
1150 }
1151 }
1152 }
1153
1154 r = dm_pool_alloc_data_block(pool->pmd, result);
1155 if (r)
1156 return r;
1157
1158 return 0;
1159}
1160
1161/*
1162 * If we have run out of space, queue bios until the device is
1163 * resumed, presumably after having been reloaded with more space.
1164 */
1165static void retry_on_resume(struct bio *bio)
1166{
a24c2569 1167 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
eb2aa48d 1168 struct thin_c *tc = h->tc;
991d9fa0
JT
1169 struct pool *pool = tc->pool;
1170 unsigned long flags;
1171
1172 spin_lock_irqsave(&pool->lock, flags);
1173 bio_list_add(&pool->retry_on_resume_list, bio);
1174 spin_unlock_irqrestore(&pool->lock, flags);
1175}
1176
a24c2569 1177static void no_space(struct dm_bio_prison_cell *cell)
991d9fa0
JT
1178{
1179 struct bio *bio;
1180 struct bio_list bios;
1181
1182 bio_list_init(&bios);
1183 cell_release(cell, &bios);
1184
1185 while ((bio = bio_list_pop(&bios)))
1186 retry_on_resume(bio);
1187}
1188
104655fd
JT
1189static void process_discard(struct thin_c *tc, struct bio *bio)
1190{
1191 int r;
c3a0ce2e 1192 unsigned long flags;
104655fd 1193 struct pool *pool = tc->pool;
a24c2569 1194 struct dm_bio_prison_cell *cell, *cell2;
104655fd
JT
1195 struct cell_key key, key2;
1196 dm_block_t block = get_bio_block(tc, bio);
1197 struct dm_thin_lookup_result lookup_result;
a24c2569 1198 struct dm_thin_new_mapping *m;
104655fd
JT
1199
1200 build_virtual_key(tc->td, block, &key);
1201 if (bio_detain(tc->pool->prison, &key, bio, &cell))
1202 return;
1203
1204 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1205 switch (r) {
1206 case 0:
1207 /*
1208 * Check nobody is fiddling with this pool block. This can
1209 * happen if someone's in the process of breaking sharing
1210 * on this block.
1211 */
1212 build_data_key(tc->td, lookup_result.block, &key2);
1213 if (bio_detain(tc->pool->prison, &key2, bio, &cell2)) {
1214 cell_release_singleton(cell, bio);
1215 break;
1216 }
1217
1218 if (io_overlaps_block(pool, bio)) {
1219 /*
1220 * IO may still be going to the destination block. We must
1221 * quiesce before we can do the removal.
1222 */
1223 m = get_next_mapping(pool);
1224 m->tc = tc;
17b7d63f 1225 m->pass_discard = (!lookup_result.shared) && pool->pf.discard_passdown;
104655fd
JT
1226 m->virt_block = block;
1227 m->data_block = lookup_result.block;
1228 m->cell = cell;
1229 m->cell2 = cell2;
1230 m->err = 0;
1231 m->bio = bio;
1232
1233 if (!ds_add_work(&pool->all_io_ds, &m->list)) {
c3a0ce2e 1234 spin_lock_irqsave(&pool->lock, flags);
104655fd 1235 list_add(&m->list, &pool->prepared_discards);
c3a0ce2e 1236 spin_unlock_irqrestore(&pool->lock, flags);
104655fd
JT
1237 wake_worker(pool);
1238 }
1239 } else {
1240 /*
1241 * This path is hit if people are ignoring
1242 * limits->discard_granularity. It ignores any
1243 * part of the discard that is in a subsequent
1244 * block.
1245 */
55f2b8bd
MS
1246 sector_t offset = bio->bi_sector - (block * pool->sectors_per_block);
1247 unsigned remaining = (pool->sectors_per_block - offset) << SECTOR_SHIFT;
104655fd
JT
1248 bio->bi_size = min(bio->bi_size, remaining);
1249
1250 cell_release_singleton(cell, bio);
1251 cell_release_singleton(cell2, bio);
650d2a06
MP
1252 if ((!lookup_result.shared) && pool->pf.discard_passdown)
1253 remap_and_issue(tc, bio, lookup_result.block);
1254 else
1255 bio_endio(bio, 0);
104655fd
JT
1256 }
1257 break;
1258
1259 case -ENODATA:
1260 /*
1261 * It isn't provisioned, just forget it.
1262 */
1263 cell_release_singleton(cell, bio);
1264 bio_endio(bio, 0);
1265 break;
1266
1267 default:
1268 DMERR("discard: find block unexpectedly returned %d", r);
1269 cell_release_singleton(cell, bio);
1270 bio_io_error(bio);
1271 break;
1272 }
1273}
1274
991d9fa0
JT
1275static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1276 struct cell_key *key,
1277 struct dm_thin_lookup_result *lookup_result,
a24c2569 1278 struct dm_bio_prison_cell *cell)
991d9fa0
JT
1279{
1280 int r;
1281 dm_block_t data_block;
1282
1283 r = alloc_data_block(tc, &data_block);
1284 switch (r) {
1285 case 0:
2dd9c257
JT
1286 schedule_internal_copy(tc, block, lookup_result->block,
1287 data_block, cell, bio);
991d9fa0
JT
1288 break;
1289
1290 case -ENOSPC:
1291 no_space(cell);
1292 break;
1293
1294 default:
1295 DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
1296 cell_error(cell);
1297 break;
1298 }
1299}
1300
1301static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1302 dm_block_t block,
1303 struct dm_thin_lookup_result *lookup_result)
1304{
a24c2569 1305 struct dm_bio_prison_cell *cell;
991d9fa0
JT
1306 struct pool *pool = tc->pool;
1307 struct cell_key key;
1308
1309 /*
1310 * If cell is already occupied, then sharing is already in the process
1311 * of being broken so we have nothing further to do here.
1312 */
1313 build_data_key(tc->td, lookup_result->block, &key);
1314 if (bio_detain(pool->prison, &key, bio, &cell))
1315 return;
1316
1317 if (bio_data_dir(bio) == WRITE)
1318 break_sharing(tc, bio, block, &key, lookup_result, cell);
1319 else {
a24c2569 1320 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
991d9fa0 1321
eb2aa48d 1322 h->shared_read_entry = ds_inc(&pool->shared_read_ds);
991d9fa0
JT
1323
1324 cell_release_singleton(cell, bio);
1325 remap_and_issue(tc, bio, lookup_result->block);
1326 }
1327}
1328
1329static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
a24c2569 1330 struct dm_bio_prison_cell *cell)
991d9fa0
JT
1331{
1332 int r;
1333 dm_block_t data_block;
1334
1335 /*
1336 * Remap empty bios (flushes) immediately, without provisioning.
1337 */
1338 if (!bio->bi_size) {
1339 cell_release_singleton(cell, bio);
1340 remap_and_issue(tc, bio, 0);
1341 return;
1342 }
1343
1344 /*
1345 * Fill read bios with zeroes and complete them immediately.
1346 */
1347 if (bio_data_dir(bio) == READ) {
1348 zero_fill_bio(bio);
1349 cell_release_singleton(cell, bio);
1350 bio_endio(bio, 0);
1351 return;
1352 }
1353
1354 r = alloc_data_block(tc, &data_block);
1355 switch (r) {
1356 case 0:
2dd9c257
JT
1357 if (tc->origin_dev)
1358 schedule_external_copy(tc, block, data_block, cell, bio);
1359 else
1360 schedule_zero(tc, block, data_block, cell, bio);
991d9fa0
JT
1361 break;
1362
1363 case -ENOSPC:
1364 no_space(cell);
1365 break;
1366
1367 default:
1368 DMERR("%s: alloc_data_block() failed, error = %d", __func__, r);
1369 cell_error(cell);
1370 break;
1371 }
1372}
1373
1374static void process_bio(struct thin_c *tc, struct bio *bio)
1375{
1376 int r;
1377 dm_block_t block = get_bio_block(tc, bio);
a24c2569 1378 struct dm_bio_prison_cell *cell;
991d9fa0
JT
1379 struct cell_key key;
1380 struct dm_thin_lookup_result lookup_result;
1381
1382 /*
1383 * If cell is already occupied, then the block is already
1384 * being provisioned so we have nothing further to do here.
1385 */
1386 build_virtual_key(tc->td, block, &key);
1387 if (bio_detain(tc->pool->prison, &key, bio, &cell))
1388 return;
1389
1390 r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1391 switch (r) {
1392 case 0:
1393 /*
1394 * We can release this cell now. This thread is the only
1395 * one that puts bios into a cell, and we know there were
1396 * no preceding bios.
1397 */
1398 /*
1399 * TODO: this will probably have to change when discard goes
1400 * back in.
1401 */
1402 cell_release_singleton(cell, bio);
1403
1404 if (lookup_result.shared)
1405 process_shared_bio(tc, bio, block, &lookup_result);
1406 else
1407 remap_and_issue(tc, bio, lookup_result.block);
1408 break;
1409
1410 case -ENODATA:
2dd9c257
JT
1411 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1412 cell_release_singleton(cell, bio);
1413 remap_to_origin_and_issue(tc, bio);
1414 } else
1415 provision_block(tc, bio, block, cell);
991d9fa0
JT
1416 break;
1417
1418 default:
1419 DMERR("dm_thin_find_block() failed, error = %d", r);
104655fd 1420 cell_release_singleton(cell, bio);
991d9fa0
JT
1421 bio_io_error(bio);
1422 break;
1423 }
1424}
1425
905e51b3
JT
1426static int need_commit_due_to_time(struct pool *pool)
1427{
1428 return jiffies < pool->last_commit_jiffies ||
1429 jiffies > pool->last_commit_jiffies + COMMIT_PERIOD;
1430}
1431
991d9fa0
JT
1432static void process_deferred_bios(struct pool *pool)
1433{
1434 unsigned long flags;
1435 struct bio *bio;
1436 struct bio_list bios;
1437 int r;
1438
1439 bio_list_init(&bios);
1440
1441 spin_lock_irqsave(&pool->lock, flags);
1442 bio_list_merge(&bios, &pool->deferred_bios);
1443 bio_list_init(&pool->deferred_bios);
1444 spin_unlock_irqrestore(&pool->lock, flags);
1445
1446 while ((bio = bio_list_pop(&bios))) {
a24c2569 1447 struct dm_thin_endio_hook *h = dm_get_mapinfo(bio)->ptr;
eb2aa48d
JT
1448 struct thin_c *tc = h->tc;
1449
991d9fa0
JT
1450 /*
1451 * If we've got no free new_mapping structs, and processing
1452 * this bio might require one, we pause until there are some
1453 * prepared mappings to process.
1454 */
1455 if (ensure_next_mapping(pool)) {
1456 spin_lock_irqsave(&pool->lock, flags);
1457 bio_list_merge(&pool->deferred_bios, &bios);
1458 spin_unlock_irqrestore(&pool->lock, flags);
1459
1460 break;
1461 }
104655fd
JT
1462
1463 if (bio->bi_rw & REQ_DISCARD)
1464 process_discard(tc, bio);
1465 else
1466 process_bio(tc, bio);
991d9fa0
JT
1467 }
1468
1469 /*
1470 * If there are any deferred flush bios, we must commit
1471 * the metadata before issuing them.
1472 */
1473 bio_list_init(&bios);
1474 spin_lock_irqsave(&pool->lock, flags);
1475 bio_list_merge(&bios, &pool->deferred_flush_bios);
1476 bio_list_init(&pool->deferred_flush_bios);
1477 spin_unlock_irqrestore(&pool->lock, flags);
1478
905e51b3 1479 if (bio_list_empty(&bios) && !need_commit_due_to_time(pool))
991d9fa0
JT
1480 return;
1481
1482 r = dm_pool_commit_metadata(pool->pmd);
1483 if (r) {
1484 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
1485 __func__, r);
1486 while ((bio = bio_list_pop(&bios)))
1487 bio_io_error(bio);
1488 return;
1489 }
905e51b3 1490 pool->last_commit_jiffies = jiffies;
991d9fa0
JT
1491
1492 while ((bio = bio_list_pop(&bios)))
1493 generic_make_request(bio);
1494}
1495
1496static void do_worker(struct work_struct *ws)
1497{
1498 struct pool *pool = container_of(ws, struct pool, worker);
1499
104655fd
JT
1500 process_prepared(pool, &pool->prepared_mappings, process_prepared_mapping);
1501 process_prepared(pool, &pool->prepared_discards, process_prepared_discard);
991d9fa0
JT
1502 process_deferred_bios(pool);
1503}
1504
905e51b3
JT
1505/*
1506 * We want to commit periodically so that not too much
1507 * unwritten data builds up.
1508 */
1509static void do_waker(struct work_struct *ws)
1510{
1511 struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
1512 wake_worker(pool);
1513 queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
1514}
1515
991d9fa0
JT
1516/*----------------------------------------------------------------*/
1517
1518/*
1519 * Mapping functions.
1520 */
1521
1522/*
1523 * Called only while mapping a thin bio to hand it over to the workqueue.
1524 */
1525static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
1526{
1527 unsigned long flags;
1528 struct pool *pool = tc->pool;
1529
1530 spin_lock_irqsave(&pool->lock, flags);
1531 bio_list_add(&pool->deferred_bios, bio);
1532 spin_unlock_irqrestore(&pool->lock, flags);
1533
1534 wake_worker(pool);
1535}
1536
a24c2569 1537static struct dm_thin_endio_hook *thin_hook_bio(struct thin_c *tc, struct bio *bio)
eb2aa48d
JT
1538{
1539 struct pool *pool = tc->pool;
a24c2569 1540 struct dm_thin_endio_hook *h = mempool_alloc(pool->endio_hook_pool, GFP_NOIO);
eb2aa48d
JT
1541
1542 h->tc = tc;
1543 h->shared_read_entry = NULL;
104655fd 1544 h->all_io_entry = bio->bi_rw & REQ_DISCARD ? NULL : ds_inc(&pool->all_io_ds);
eb2aa48d
JT
1545 h->overwrite_mapping = NULL;
1546
1547 return h;
1548}
1549
991d9fa0
JT
1550/*
1551 * Non-blocking function called from the thin target's map function.
1552 */
1553static int thin_bio_map(struct dm_target *ti, struct bio *bio,
1554 union map_info *map_context)
1555{
1556 int r;
1557 struct thin_c *tc = ti->private;
1558 dm_block_t block = get_bio_block(tc, bio);
1559 struct dm_thin_device *td = tc->td;
1560 struct dm_thin_lookup_result result;
1561
eb2aa48d 1562 map_context->ptr = thin_hook_bio(tc, bio);
104655fd 1563 if (bio->bi_rw & (REQ_DISCARD | REQ_FLUSH | REQ_FUA)) {
991d9fa0
JT
1564 thin_defer_bio(tc, bio);
1565 return DM_MAPIO_SUBMITTED;
1566 }
1567
1568 r = dm_thin_find_block(td, block, 0, &result);
1569
1570 /*
1571 * Note that we defer readahead too.
1572 */
1573 switch (r) {
1574 case 0:
1575 if (unlikely(result.shared)) {
1576 /*
1577 * We have a race condition here between the
1578 * result.shared value returned by the lookup and
1579 * snapshot creation, which may cause new
1580 * sharing.
1581 *
1582 * To avoid this always quiesce the origin before
1583 * taking the snap. You want to do this anyway to
1584 * ensure a consistent application view
1585 * (i.e. lockfs).
1586 *
1587 * More distant ancestors are irrelevant. The
1588 * shared flag will be set in their case.
1589 */
1590 thin_defer_bio(tc, bio);
1591 r = DM_MAPIO_SUBMITTED;
1592 } else {
1593 remap(tc, bio, result.block);
1594 r = DM_MAPIO_REMAPPED;
1595 }
1596 break;
1597
1598 case -ENODATA:
1599 /*
1600 * In future, the failed dm_thin_find_block above could
1601 * provide the hint to load the metadata into cache.
1602 */
1603 case -EWOULDBLOCK:
1604 thin_defer_bio(tc, bio);
1605 r = DM_MAPIO_SUBMITTED;
1606 break;
1607 }
1608
1609 return r;
1610}
1611
1612static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1613{
1614 int r;
1615 unsigned long flags;
1616 struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
1617
1618 spin_lock_irqsave(&pt->pool->lock, flags);
1619 r = !bio_list_empty(&pt->pool->retry_on_resume_list);
1620 spin_unlock_irqrestore(&pt->pool->lock, flags);
1621
1622 if (!r) {
1623 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1624 r = bdi_congested(&q->backing_dev_info, bdi_bits);
1625 }
1626
1627 return r;
1628}
1629
1630static void __requeue_bios(struct pool *pool)
1631{
1632 bio_list_merge(&pool->deferred_bios, &pool->retry_on_resume_list);
1633 bio_list_init(&pool->retry_on_resume_list);
1634}
1635
1636/*----------------------------------------------------------------
1637 * Binding of control targets to a pool object
1638 *--------------------------------------------------------------*/
1639static int bind_control_target(struct pool *pool, struct dm_target *ti)
1640{
1641 struct pool_c *pt = ti->private;
1642
1643 pool->ti = ti;
1644 pool->low_water_blocks = pt->low_water_blocks;
67e2e2b2 1645 pool->pf = pt->pf;
991d9fa0 1646
f402693d
MS
1647 /*
1648 * If discard_passdown was enabled verify that the data device
1649 * supports discards. Disable discard_passdown if not; otherwise
1650 * -EOPNOTSUPP will be returned.
1651 */
1652 if (pt->pf.discard_passdown) {
1653 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
1654 if (!q || !blk_queue_discard(q)) {
1655 char buf[BDEVNAME_SIZE];
1656 DMWARN("Discard unsupported by data device (%s): Disabling discard passdown.",
1657 bdevname(pt->data_dev->bdev, buf));
1658 pool->pf.discard_passdown = 0;
1659 }
1660 }
1661
991d9fa0
JT
1662 return 0;
1663}
1664
1665static void unbind_control_target(struct pool *pool, struct dm_target *ti)
1666{
1667 if (pool->ti == ti)
1668 pool->ti = NULL;
1669}
1670
1671/*----------------------------------------------------------------
1672 * Pool creation
1673 *--------------------------------------------------------------*/
67e2e2b2
JT
1674/* Initialize pool features. */
1675static void pool_features_init(struct pool_features *pf)
1676{
1677 pf->zero_new_blocks = 1;
1678 pf->discard_enabled = 1;
1679 pf->discard_passdown = 1;
1680}
1681
991d9fa0
JT
1682static void __pool_destroy(struct pool *pool)
1683{
1684 __pool_table_remove(pool);
1685
1686 if (dm_pool_metadata_close(pool->pmd) < 0)
1687 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1688
1689 prison_destroy(pool->prison);
1690 dm_kcopyd_client_destroy(pool->copier);
1691
1692 if (pool->wq)
1693 destroy_workqueue(pool->wq);
1694
1695 if (pool->next_mapping)
1696 mempool_free(pool->next_mapping, pool->mapping_pool);
1697 mempool_destroy(pool->mapping_pool);
1698 mempool_destroy(pool->endio_hook_pool);
1699 kfree(pool);
1700}
1701
a24c2569
MS
1702static struct kmem_cache *_new_mapping_cache;
1703static struct kmem_cache *_endio_hook_cache;
1704
991d9fa0
JT
1705static struct pool *pool_create(struct mapped_device *pool_md,
1706 struct block_device *metadata_dev,
1707 unsigned long block_size, char **error)
1708{
1709 int r;
1710 void *err_p;
1711 struct pool *pool;
1712 struct dm_pool_metadata *pmd;
1713
1714 pmd = dm_pool_metadata_open(metadata_dev, block_size);
1715 if (IS_ERR(pmd)) {
1716 *error = "Error creating metadata object";
1717 return (struct pool *)pmd;
1718 }
1719
1720 pool = kmalloc(sizeof(*pool), GFP_KERNEL);
1721 if (!pool) {
1722 *error = "Error allocating memory for pool";
1723 err_p = ERR_PTR(-ENOMEM);
1724 goto bad_pool;
1725 }
1726
1727 pool->pmd = pmd;
1728 pool->sectors_per_block = block_size;
991d9fa0 1729 pool->low_water_blocks = 0;
67e2e2b2 1730 pool_features_init(&pool->pf);
991d9fa0
JT
1731 pool->prison = prison_create(PRISON_CELLS);
1732 if (!pool->prison) {
1733 *error = "Error creating pool's bio prison";
1734 err_p = ERR_PTR(-ENOMEM);
1735 goto bad_prison;
1736 }
1737
1738 pool->copier = dm_kcopyd_client_create();
1739 if (IS_ERR(pool->copier)) {
1740 r = PTR_ERR(pool->copier);
1741 *error = "Error creating pool's kcopyd client";
1742 err_p = ERR_PTR(r);
1743 goto bad_kcopyd_client;
1744 }
1745
1746 /*
1747 * Create singlethreaded workqueue that will service all devices
1748 * that use this metadata.
1749 */
1750 pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
1751 if (!pool->wq) {
1752 *error = "Error creating pool's workqueue";
1753 err_p = ERR_PTR(-ENOMEM);
1754 goto bad_wq;
1755 }
1756
1757 INIT_WORK(&pool->worker, do_worker);
905e51b3 1758 INIT_DELAYED_WORK(&pool->waker, do_waker);
991d9fa0
JT
1759 spin_lock_init(&pool->lock);
1760 bio_list_init(&pool->deferred_bios);
1761 bio_list_init(&pool->deferred_flush_bios);
1762 INIT_LIST_HEAD(&pool->prepared_mappings);
104655fd 1763 INIT_LIST_HEAD(&pool->prepared_discards);
991d9fa0
JT
1764 pool->low_water_triggered = 0;
1765 pool->no_free_space = 0;
1766 bio_list_init(&pool->retry_on_resume_list);
eb2aa48d 1767 ds_init(&pool->shared_read_ds);
104655fd 1768 ds_init(&pool->all_io_ds);
991d9fa0
JT
1769
1770 pool->next_mapping = NULL;
a24c2569
MS
1771 pool->mapping_pool = mempool_create_slab_pool(MAPPING_POOL_SIZE,
1772 _new_mapping_cache);
991d9fa0
JT
1773 if (!pool->mapping_pool) {
1774 *error = "Error creating pool's mapping mempool";
1775 err_p = ERR_PTR(-ENOMEM);
1776 goto bad_mapping_pool;
1777 }
1778
a24c2569
MS
1779 pool->endio_hook_pool = mempool_create_slab_pool(ENDIO_HOOK_POOL_SIZE,
1780 _endio_hook_cache);
991d9fa0
JT
1781 if (!pool->endio_hook_pool) {
1782 *error = "Error creating pool's endio_hook mempool";
1783 err_p = ERR_PTR(-ENOMEM);
1784 goto bad_endio_hook_pool;
1785 }
1786 pool->ref_count = 1;
905e51b3 1787 pool->last_commit_jiffies = jiffies;
991d9fa0
JT
1788 pool->pool_md = pool_md;
1789 pool->md_dev = metadata_dev;
1790 __pool_table_insert(pool);
1791
1792 return pool;
1793
1794bad_endio_hook_pool:
1795 mempool_destroy(pool->mapping_pool);
1796bad_mapping_pool:
1797 destroy_workqueue(pool->wq);
1798bad_wq:
1799 dm_kcopyd_client_destroy(pool->copier);
1800bad_kcopyd_client:
1801 prison_destroy(pool->prison);
1802bad_prison:
1803 kfree(pool);
1804bad_pool:
1805 if (dm_pool_metadata_close(pmd))
1806 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
1807
1808 return err_p;
1809}
1810
1811static void __pool_inc(struct pool *pool)
1812{
1813 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1814 pool->ref_count++;
1815}
1816
1817static void __pool_dec(struct pool *pool)
1818{
1819 BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
1820 BUG_ON(!pool->ref_count);
1821 if (!--pool->ref_count)
1822 __pool_destroy(pool);
1823}
1824
1825static struct pool *__pool_find(struct mapped_device *pool_md,
1826 struct block_device *metadata_dev,
67e2e2b2
JT
1827 unsigned long block_size, char **error,
1828 int *created)
991d9fa0
JT
1829{
1830 struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
1831
1832 if (pool) {
f09996c9
MS
1833 if (pool->pool_md != pool_md) {
1834 *error = "metadata device already in use by a pool";
991d9fa0 1835 return ERR_PTR(-EBUSY);
f09996c9 1836 }
991d9fa0
JT
1837 __pool_inc(pool);
1838
1839 } else {
1840 pool = __pool_table_lookup(pool_md);
1841 if (pool) {
f09996c9
MS
1842 if (pool->md_dev != metadata_dev) {
1843 *error = "different pool cannot replace a pool";
991d9fa0 1844 return ERR_PTR(-EINVAL);
f09996c9 1845 }
991d9fa0
JT
1846 __pool_inc(pool);
1847
67e2e2b2 1848 } else {
991d9fa0 1849 pool = pool_create(pool_md, metadata_dev, block_size, error);
67e2e2b2
JT
1850 *created = 1;
1851 }
991d9fa0
JT
1852 }
1853
1854 return pool;
1855}
1856
1857/*----------------------------------------------------------------
1858 * Pool target methods
1859 *--------------------------------------------------------------*/
1860static void pool_dtr(struct dm_target *ti)
1861{
1862 struct pool_c *pt = ti->private;
1863
1864 mutex_lock(&dm_thin_pool_table.mutex);
1865
1866 unbind_control_target(pt->pool, ti);
1867 __pool_dec(pt->pool);
1868 dm_put_device(ti, pt->metadata_dev);
1869 dm_put_device(ti, pt->data_dev);
1870 kfree(pt);
1871
1872 mutex_unlock(&dm_thin_pool_table.mutex);
1873}
1874
991d9fa0
JT
1875static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
1876 struct dm_target *ti)
1877{
1878 int r;
1879 unsigned argc;
1880 const char *arg_name;
1881
1882 static struct dm_arg _args[] = {
67e2e2b2 1883 {0, 3, "Invalid number of pool feature arguments"},
991d9fa0
JT
1884 };
1885
1886 /*
1887 * No feature arguments supplied.
1888 */
1889 if (!as->argc)
1890 return 0;
1891
1892 r = dm_read_arg_group(_args, as, &argc, &ti->error);
1893 if (r)
1894 return -EINVAL;
1895
1896 while (argc && !r) {
1897 arg_name = dm_shift_arg(as);
1898 argc--;
1899
1900 if (!strcasecmp(arg_name, "skip_block_zeroing")) {
1901 pf->zero_new_blocks = 0;
1902 continue;
67e2e2b2
JT
1903 } else if (!strcasecmp(arg_name, "ignore_discard")) {
1904 pf->discard_enabled = 0;
1905 continue;
1906 } else if (!strcasecmp(arg_name, "no_discard_passdown")) {
1907 pf->discard_passdown = 0;
1908 continue;
991d9fa0
JT
1909 }
1910
1911 ti->error = "Unrecognised pool feature requested";
1912 r = -EINVAL;
1913 }
1914
1915 return r;
1916}
1917
1918/*
1919 * thin-pool <metadata dev> <data dev>
1920 * <data block size (sectors)>
1921 * <low water mark (blocks)>
1922 * [<#feature args> [<arg>]*]
1923 *
1924 * Optional feature arguments are:
1925 * skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
67e2e2b2
JT
1926 * ignore_discard: disable discard
1927 * no_discard_passdown: don't pass discards down to the data device
991d9fa0
JT
1928 */
1929static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
1930{
67e2e2b2 1931 int r, pool_created = 0;
991d9fa0
JT
1932 struct pool_c *pt;
1933 struct pool *pool;
1934 struct pool_features pf;
1935 struct dm_arg_set as;
1936 struct dm_dev *data_dev;
1937 unsigned long block_size;
1938 dm_block_t low_water_blocks;
1939 struct dm_dev *metadata_dev;
1940 sector_t metadata_dev_size;
c4a69ecd 1941 char b[BDEVNAME_SIZE];
991d9fa0
JT
1942
1943 /*
1944 * FIXME Remove validation from scope of lock.
1945 */
1946 mutex_lock(&dm_thin_pool_table.mutex);
1947
1948 if (argc < 4) {
1949 ti->error = "Invalid argument count";
1950 r = -EINVAL;
1951 goto out_unlock;
1952 }
1953 as.argc = argc;
1954 as.argv = argv;
1955
1956 r = dm_get_device(ti, argv[0], FMODE_READ | FMODE_WRITE, &metadata_dev);
1957 if (r) {
1958 ti->error = "Error opening metadata block device";
1959 goto out_unlock;
1960 }
1961
1962 metadata_dev_size = i_size_read(metadata_dev->bdev->bd_inode) >> SECTOR_SHIFT;
c4a69ecd
MS
1963 if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
1964 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1965 bdevname(metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
991d9fa0
JT
1966
1967 r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
1968 if (r) {
1969 ti->error = "Error getting data device";
1970 goto out_metadata;
1971 }
1972
1973 if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
1974 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
1975 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
55f2b8bd 1976 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
991d9fa0
JT
1977 ti->error = "Invalid block size";
1978 r = -EINVAL;
1979 goto out;
1980 }
1981
1982 if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
1983 ti->error = "Invalid low water mark";
1984 r = -EINVAL;
1985 goto out;
1986 }
1987
1988 /*
1989 * Set default pool features.
1990 */
67e2e2b2 1991 pool_features_init(&pf);
991d9fa0
JT
1992
1993 dm_consume_args(&as, 4);
1994 r = parse_pool_features(&as, &pf, ti);
1995 if (r)
1996 goto out;
1997
1998 pt = kzalloc(sizeof(*pt), GFP_KERNEL);
1999 if (!pt) {
2000 r = -ENOMEM;
2001 goto out;
2002 }
2003
2004 pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev,
67e2e2b2 2005 block_size, &ti->error, &pool_created);
991d9fa0
JT
2006 if (IS_ERR(pool)) {
2007 r = PTR_ERR(pool);
2008 goto out_free_pt;
2009 }
2010
67e2e2b2
JT
2011 /*
2012 * 'pool_created' reflects whether this is the first table load.
2013 * Top level discard support is not allowed to be changed after
2014 * initial load. This would require a pool reload to trigger thin
2015 * device changes.
2016 */
2017 if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
2018 ti->error = "Discard support cannot be disabled once enabled";
2019 r = -EINVAL;
2020 goto out_flags_changed;
2021 }
2022
55f2b8bd
MS
2023 /*
2024 * The block layer requires discard_granularity to be a power of 2.
2025 */
2026 if (pf.discard_enabled && !is_power_of_2(block_size)) {
2027 ti->error = "Discard support must be disabled when the block size is not a power of 2";
2028 r = -EINVAL;
2029 goto out_flags_changed;
2030 }
2031
991d9fa0
JT
2032 pt->pool = pool;
2033 pt->ti = ti;
2034 pt->metadata_dev = metadata_dev;
2035 pt->data_dev = data_dev;
2036 pt->low_water_blocks = low_water_blocks;
67e2e2b2 2037 pt->pf = pf;
991d9fa0 2038 ti->num_flush_requests = 1;
67e2e2b2
JT
2039 /*
2040 * Only need to enable discards if the pool should pass
2041 * them down to the data device. The thin device's discard
2042 * processing will cause mappings to be removed from the btree.
2043 */
2044 if (pf.discard_enabled && pf.discard_passdown) {
2045 ti->num_discard_requests = 1;
2046 /*
2047 * Setting 'discards_supported' circumvents the normal
2048 * stacking of discard limits (this keeps the pool and
2049 * thin devices' discard limits consistent).
2050 */
2051 ti->discards_supported = 1;
2052 }
991d9fa0
JT
2053 ti->private = pt;
2054
2055 pt->callbacks.congested_fn = pool_is_congested;
2056 dm_table_add_target_callbacks(ti->table, &pt->callbacks);
2057
2058 mutex_unlock(&dm_thin_pool_table.mutex);
2059
2060 return 0;
2061
67e2e2b2
JT
2062out_flags_changed:
2063 __pool_dec(pool);
991d9fa0
JT
2064out_free_pt:
2065 kfree(pt);
2066out:
2067 dm_put_device(ti, data_dev);
2068out_metadata:
2069 dm_put_device(ti, metadata_dev);
2070out_unlock:
2071 mutex_unlock(&dm_thin_pool_table.mutex);
2072
2073 return r;
2074}
2075
2076static int pool_map(struct dm_target *ti, struct bio *bio,
2077 union map_info *map_context)
2078{
2079 int r;
2080 struct pool_c *pt = ti->private;
2081 struct pool *pool = pt->pool;
2082 unsigned long flags;
2083
2084 /*
2085 * As this is a singleton target, ti->begin is always zero.
2086 */
2087 spin_lock_irqsave(&pool->lock, flags);
2088 bio->bi_bdev = pt->data_dev->bdev;
2089 r = DM_MAPIO_REMAPPED;
2090 spin_unlock_irqrestore(&pool->lock, flags);
2091
2092 return r;
2093}
2094
2095/*
2096 * Retrieves the number of blocks of the data device from
2097 * the superblock and compares it to the actual device size,
2098 * thus resizing the data device in case it has grown.
2099 *
2100 * This both copes with opening preallocated data devices in the ctr
2101 * being followed by a resume
2102 * -and-
2103 * calling the resume method individually after userspace has
2104 * grown the data device in reaction to a table event.
2105 */
2106static int pool_preresume(struct dm_target *ti)
2107{
2108 int r;
2109 struct pool_c *pt = ti->private;
2110 struct pool *pool = pt->pool;
55f2b8bd
MS
2111 sector_t data_size = ti->len;
2112 dm_block_t sb_data_size;
991d9fa0
JT
2113
2114 /*
2115 * Take control of the pool object.
2116 */
2117 r = bind_control_target(pool, ti);
2118 if (r)
2119 return r;
2120
55f2b8bd
MS
2121 (void) sector_div(data_size, pool->sectors_per_block);
2122
991d9fa0
JT
2123 r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
2124 if (r) {
2125 DMERR("failed to retrieve data device size");
2126 return r;
2127 }
2128
2129 if (data_size < sb_data_size) {
2130 DMERR("pool target too small, is %llu blocks (expected %llu)",
55f2b8bd 2131 (unsigned long long)data_size, sb_data_size);
991d9fa0
JT
2132 return -EINVAL;
2133
2134 } else if (data_size > sb_data_size) {
2135 r = dm_pool_resize_data_dev(pool->pmd, data_size);
2136 if (r) {
2137 DMERR("failed to resize data device");
2138 return r;
2139 }
2140
2141 r = dm_pool_commit_metadata(pool->pmd);
2142 if (r) {
2143 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
2144 __func__, r);
2145 return r;
2146 }
2147 }
2148
2149 return 0;
2150}
2151
2152static void pool_resume(struct dm_target *ti)
2153{
2154 struct pool_c *pt = ti->private;
2155 struct pool *pool = pt->pool;
2156 unsigned long flags;
2157
2158 spin_lock_irqsave(&pool->lock, flags);
2159 pool->low_water_triggered = 0;
2160 pool->no_free_space = 0;
2161 __requeue_bios(pool);
2162 spin_unlock_irqrestore(&pool->lock, flags);
2163
905e51b3 2164 do_waker(&pool->waker.work);
991d9fa0
JT
2165}
2166
2167static void pool_postsuspend(struct dm_target *ti)
2168{
2169 int r;
2170 struct pool_c *pt = ti->private;
2171 struct pool *pool = pt->pool;
2172
905e51b3 2173 cancel_delayed_work(&pool->waker);
991d9fa0
JT
2174 flush_workqueue(pool->wq);
2175
2176 r = dm_pool_commit_metadata(pool->pmd);
2177 if (r < 0) {
2178 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
2179 __func__, r);
2180 /* FIXME: invalidate device? error the next FUA or FLUSH bio ?*/
2181 }
2182}
2183
2184static int check_arg_count(unsigned argc, unsigned args_required)
2185{
2186 if (argc != args_required) {
2187 DMWARN("Message received with %u arguments instead of %u.",
2188 argc, args_required);
2189 return -EINVAL;
2190 }
2191
2192 return 0;
2193}
2194
2195static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
2196{
2197 if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
2198 *dev_id <= MAX_DEV_ID)
2199 return 0;
2200
2201 if (warning)
2202 DMWARN("Message received with invalid device id: %s", arg);
2203
2204 return -EINVAL;
2205}
2206
2207static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
2208{
2209 dm_thin_id dev_id;
2210 int r;
2211
2212 r = check_arg_count(argc, 2);
2213 if (r)
2214 return r;
2215
2216 r = read_dev_id(argv[1], &dev_id, 1);
2217 if (r)
2218 return r;
2219
2220 r = dm_pool_create_thin(pool->pmd, dev_id);
2221 if (r) {
2222 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
2223 argv[1]);
2224 return r;
2225 }
2226
2227 return 0;
2228}
2229
2230static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2231{
2232 dm_thin_id dev_id;
2233 dm_thin_id origin_dev_id;
2234 int r;
2235
2236 r = check_arg_count(argc, 3);
2237 if (r)
2238 return r;
2239
2240 r = read_dev_id(argv[1], &dev_id, 1);
2241 if (r)
2242 return r;
2243
2244 r = read_dev_id(argv[2], &origin_dev_id, 1);
2245 if (r)
2246 return r;
2247
2248 r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
2249 if (r) {
2250 DMWARN("Creation of new snapshot %s of device %s failed.",
2251 argv[1], argv[2]);
2252 return r;
2253 }
2254
2255 return 0;
2256}
2257
2258static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
2259{
2260 dm_thin_id dev_id;
2261 int r;
2262
2263 r = check_arg_count(argc, 2);
2264 if (r)
2265 return r;
2266
2267 r = read_dev_id(argv[1], &dev_id, 1);
2268 if (r)
2269 return r;
2270
2271 r = dm_pool_delete_thin_device(pool->pmd, dev_id);
2272 if (r)
2273 DMWARN("Deletion of thin device %s failed.", argv[1]);
2274
2275 return r;
2276}
2277
2278static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
2279{
2280 dm_thin_id old_id, new_id;
2281 int r;
2282
2283 r = check_arg_count(argc, 3);
2284 if (r)
2285 return r;
2286
2287 if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
2288 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
2289 return -EINVAL;
2290 }
2291
2292 if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
2293 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
2294 return -EINVAL;
2295 }
2296
2297 r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
2298 if (r) {
2299 DMWARN("Failed to change transaction id from %s to %s.",
2300 argv[1], argv[2]);
2301 return r;
2302 }
2303
2304 return 0;
2305}
2306
cc8394d8
JT
2307static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2308{
2309 int r;
2310
2311 r = check_arg_count(argc, 1);
2312 if (r)
2313 return r;
2314
0d200aef
JT
2315 r = dm_pool_commit_metadata(pool->pmd);
2316 if (r) {
2317 DMERR("%s: dm_pool_commit_metadata() failed, error = %d",
2318 __func__, r);
2319 return r;
2320 }
2321
cc8394d8
JT
2322 r = dm_pool_reserve_metadata_snap(pool->pmd);
2323 if (r)
2324 DMWARN("reserve_metadata_snap message failed.");
2325
2326 return r;
2327}
2328
2329static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
2330{
2331 int r;
2332
2333 r = check_arg_count(argc, 1);
2334 if (r)
2335 return r;
2336
2337 r = dm_pool_release_metadata_snap(pool->pmd);
2338 if (r)
2339 DMWARN("release_metadata_snap message failed.");
2340
2341 return r;
2342}
2343
991d9fa0
JT
2344/*
2345 * Messages supported:
2346 * create_thin <dev_id>
2347 * create_snap <dev_id> <origin_id>
2348 * delete <dev_id>
2349 * trim <dev_id> <new_size_in_sectors>
2350 * set_transaction_id <current_trans_id> <new_trans_id>
cc8394d8
JT
2351 * reserve_metadata_snap
2352 * release_metadata_snap
991d9fa0
JT
2353 */
2354static int pool_message(struct dm_target *ti, unsigned argc, char **argv)
2355{
2356 int r = -EINVAL;
2357 struct pool_c *pt = ti->private;
2358 struct pool *pool = pt->pool;
2359
2360 if (!strcasecmp(argv[0], "create_thin"))
2361 r = process_create_thin_mesg(argc, argv, pool);
2362
2363 else if (!strcasecmp(argv[0], "create_snap"))
2364 r = process_create_snap_mesg(argc, argv, pool);
2365
2366 else if (!strcasecmp(argv[0], "delete"))
2367 r = process_delete_mesg(argc, argv, pool);
2368
2369 else if (!strcasecmp(argv[0], "set_transaction_id"))
2370 r = process_set_transaction_id_mesg(argc, argv, pool);
2371
cc8394d8
JT
2372 else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
2373 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
2374
2375 else if (!strcasecmp(argv[0], "release_metadata_snap"))
2376 r = process_release_metadata_snap_mesg(argc, argv, pool);
2377
991d9fa0
JT
2378 else
2379 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
2380
2381 if (!r) {
2382 r = dm_pool_commit_metadata(pool->pmd);
2383 if (r)
2384 DMERR("%s message: dm_pool_commit_metadata() failed, error = %d",
2385 argv[0], r);
2386 }
2387
2388 return r;
2389}
2390
2391/*
2392 * Status line is:
2393 * <transaction id> <used metadata sectors>/<total metadata sectors>
2394 * <used data sectors>/<total data sectors> <held metadata root>
2395 */
2396static int pool_status(struct dm_target *ti, status_type_t type,
2397 char *result, unsigned maxlen)
2398{
67e2e2b2 2399 int r, count;
991d9fa0
JT
2400 unsigned sz = 0;
2401 uint64_t transaction_id;
2402 dm_block_t nr_free_blocks_data;
2403 dm_block_t nr_free_blocks_metadata;
2404 dm_block_t nr_blocks_data;
2405 dm_block_t nr_blocks_metadata;
2406 dm_block_t held_root;
2407 char buf[BDEVNAME_SIZE];
2408 char buf2[BDEVNAME_SIZE];
2409 struct pool_c *pt = ti->private;
2410 struct pool *pool = pt->pool;
2411
2412 switch (type) {
2413 case STATUSTYPE_INFO:
2414 r = dm_pool_get_metadata_transaction_id(pool->pmd,
2415 &transaction_id);
2416 if (r)
2417 return r;
2418
2419 r = dm_pool_get_free_metadata_block_count(pool->pmd,
2420 &nr_free_blocks_metadata);
2421 if (r)
2422 return r;
2423
2424 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
2425 if (r)
2426 return r;
2427
2428 r = dm_pool_get_free_block_count(pool->pmd,
2429 &nr_free_blocks_data);
2430 if (r)
2431 return r;
2432
2433 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
2434 if (r)
2435 return r;
2436
cc8394d8 2437 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
991d9fa0
JT
2438 if (r)
2439 return r;
2440
2441 DMEMIT("%llu %llu/%llu %llu/%llu ",
2442 (unsigned long long)transaction_id,
2443 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2444 (unsigned long long)nr_blocks_metadata,
2445 (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
2446 (unsigned long long)nr_blocks_data);
2447
2448 if (held_root)
2449 DMEMIT("%llu", held_root);
2450 else
2451 DMEMIT("-");
2452
2453 break;
2454
2455 case STATUSTYPE_TABLE:
2456 DMEMIT("%s %s %lu %llu ",
2457 format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
2458 format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
2459 (unsigned long)pool->sectors_per_block,
2460 (unsigned long long)pt->low_water_blocks);
2461
67e2e2b2 2462 count = !pool->pf.zero_new_blocks + !pool->pf.discard_enabled +
f402693d 2463 !pt->pf.discard_passdown;
67e2e2b2 2464 DMEMIT("%u ", count);
991d9fa0 2465
67e2e2b2 2466 if (!pool->pf.zero_new_blocks)
991d9fa0 2467 DMEMIT("skip_block_zeroing ");
67e2e2b2
JT
2468
2469 if (!pool->pf.discard_enabled)
2470 DMEMIT("ignore_discard ");
2471
f402693d 2472 if (!pt->pf.discard_passdown)
67e2e2b2
JT
2473 DMEMIT("no_discard_passdown ");
2474
991d9fa0
JT
2475 break;
2476 }
2477
2478 return 0;
2479}
2480
2481static int pool_iterate_devices(struct dm_target *ti,
2482 iterate_devices_callout_fn fn, void *data)
2483{
2484 struct pool_c *pt = ti->private;
2485
2486 return fn(ti, pt->data_dev, 0, ti->len, data);
2487}
2488
2489static int pool_merge(struct dm_target *ti, struct bvec_merge_data *bvm,
2490 struct bio_vec *biovec, int max_size)
2491{
2492 struct pool_c *pt = ti->private;
2493 struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2494
2495 if (!q->merge_bvec_fn)
2496 return max_size;
2497
2498 bvm->bi_bdev = pt->data_dev->bdev;
2499
2500 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
2501}
2502
104655fd
JT
2503static void set_discard_limits(struct pool *pool, struct queue_limits *limits)
2504{
67e2e2b2
JT
2505 /*
2506 * FIXME: these limits may be incompatible with the pool's data device
2507 */
104655fd
JT
2508 limits->max_discard_sectors = pool->sectors_per_block;
2509
2510 /*
2511 * This is just a hint, and not enforced. We have to cope with
2512 * bios that overlap 2 blocks.
2513 */
2514 limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
67e2e2b2 2515 limits->discard_zeroes_data = pool->pf.zero_new_blocks;
104655fd
JT
2516}
2517
991d9fa0
JT
2518static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
2519{
2520 struct pool_c *pt = ti->private;
2521 struct pool *pool = pt->pool;
2522
2523 blk_limits_io_min(limits, 0);
2524 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
67e2e2b2
JT
2525 if (pool->pf.discard_enabled)
2526 set_discard_limits(pool, limits);
991d9fa0
JT
2527}
2528
2529static struct target_type pool_target = {
2530 .name = "thin-pool",
2531 .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
2532 DM_TARGET_IMMUTABLE,
cc8394d8 2533 .version = {1, 2, 0},
991d9fa0
JT
2534 .module = THIS_MODULE,
2535 .ctr = pool_ctr,
2536 .dtr = pool_dtr,
2537 .map = pool_map,
2538 .postsuspend = pool_postsuspend,
2539 .preresume = pool_preresume,
2540 .resume = pool_resume,
2541 .message = pool_message,
2542 .status = pool_status,
2543 .merge = pool_merge,
2544 .iterate_devices = pool_iterate_devices,
2545 .io_hints = pool_io_hints,
2546};
2547
2548/*----------------------------------------------------------------
2549 * Thin target methods
2550 *--------------------------------------------------------------*/
2551static void thin_dtr(struct dm_target *ti)
2552{
2553 struct thin_c *tc = ti->private;
2554
2555 mutex_lock(&dm_thin_pool_table.mutex);
2556
2557 __pool_dec(tc->pool);
2558 dm_pool_close_thin_device(tc->td);
2559 dm_put_device(ti, tc->pool_dev);
2dd9c257
JT
2560 if (tc->origin_dev)
2561 dm_put_device(ti, tc->origin_dev);
991d9fa0
JT
2562 kfree(tc);
2563
2564 mutex_unlock(&dm_thin_pool_table.mutex);
2565}
2566
2567/*
2568 * Thin target parameters:
2569 *
2dd9c257 2570 * <pool_dev> <dev_id> [origin_dev]
991d9fa0
JT
2571 *
2572 * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
2573 * dev_id: the internal device identifier
2dd9c257 2574 * origin_dev: a device external to the pool that should act as the origin
67e2e2b2
JT
2575 *
2576 * If the pool device has discards disabled, they get disabled for the thin
2577 * device as well.
991d9fa0
JT
2578 */
2579static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
2580{
2581 int r;
2582 struct thin_c *tc;
2dd9c257 2583 struct dm_dev *pool_dev, *origin_dev;
991d9fa0
JT
2584 struct mapped_device *pool_md;
2585
2586 mutex_lock(&dm_thin_pool_table.mutex);
2587
2dd9c257 2588 if (argc != 2 && argc != 3) {
991d9fa0
JT
2589 ti->error = "Invalid argument count";
2590 r = -EINVAL;
2591 goto out_unlock;
2592 }
2593
2594 tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
2595 if (!tc) {
2596 ti->error = "Out of memory";
2597 r = -ENOMEM;
2598 goto out_unlock;
2599 }
2600
2dd9c257
JT
2601 if (argc == 3) {
2602 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
2603 if (r) {
2604 ti->error = "Error opening origin device";
2605 goto bad_origin_dev;
2606 }
2607 tc->origin_dev = origin_dev;
2608 }
2609
991d9fa0
JT
2610 r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
2611 if (r) {
2612 ti->error = "Error opening pool device";
2613 goto bad_pool_dev;
2614 }
2615 tc->pool_dev = pool_dev;
2616
2617 if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
2618 ti->error = "Invalid device id";
2619 r = -EINVAL;
2620 goto bad_common;
2621 }
2622
2623 pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
2624 if (!pool_md) {
2625 ti->error = "Couldn't get pool mapped device";
2626 r = -EINVAL;
2627 goto bad_common;
2628 }
2629
2630 tc->pool = __pool_table_lookup(pool_md);
2631 if (!tc->pool) {
2632 ti->error = "Couldn't find pool object";
2633 r = -EINVAL;
2634 goto bad_pool_lookup;
2635 }
2636 __pool_inc(tc->pool);
2637
2638 r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
2639 if (r) {
2640 ti->error = "Couldn't open thin internal device";
2641 goto bad_thin_open;
2642 }
2643
542f9038
MS
2644 r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
2645 if (r)
2646 goto bad_thin_open;
2647
991d9fa0 2648 ti->num_flush_requests = 1;
67e2e2b2
JT
2649
2650 /* In case the pool supports discards, pass them on. */
2651 if (tc->pool->pf.discard_enabled) {
2652 ti->discards_supported = 1;
2653 ti->num_discard_requests = 1;
650d2a06 2654 ti->discard_zeroes_data_unsupported = 1;
67e2e2b2 2655 }
991d9fa0
JT
2656
2657 dm_put(pool_md);
2658
2659 mutex_unlock(&dm_thin_pool_table.mutex);
2660
2661 return 0;
2662
2663bad_thin_open:
2664 __pool_dec(tc->pool);
2665bad_pool_lookup:
2666 dm_put(pool_md);
2667bad_common:
2668 dm_put_device(ti, tc->pool_dev);
2669bad_pool_dev:
2dd9c257
JT
2670 if (tc->origin_dev)
2671 dm_put_device(ti, tc->origin_dev);
2672bad_origin_dev:
991d9fa0
JT
2673 kfree(tc);
2674out_unlock:
2675 mutex_unlock(&dm_thin_pool_table.mutex);
2676
2677 return r;
2678}
2679
2680static int thin_map(struct dm_target *ti, struct bio *bio,
2681 union map_info *map_context)
2682{
6efd6e83 2683 bio->bi_sector = dm_target_offset(ti, bio->bi_sector);
991d9fa0
JT
2684
2685 return thin_bio_map(ti, bio, map_context);
2686}
2687
eb2aa48d
JT
2688static int thin_endio(struct dm_target *ti,
2689 struct bio *bio, int err,
2690 union map_info *map_context)
2691{
2692 unsigned long flags;
a24c2569 2693 struct dm_thin_endio_hook *h = map_context->ptr;
eb2aa48d 2694 struct list_head work;
a24c2569 2695 struct dm_thin_new_mapping *m, *tmp;
eb2aa48d
JT
2696 struct pool *pool = h->tc->pool;
2697
2698 if (h->shared_read_entry) {
2699 INIT_LIST_HEAD(&work);
2700 ds_dec(h->shared_read_entry, &work);
2701
2702 spin_lock_irqsave(&pool->lock, flags);
2703 list_for_each_entry_safe(m, tmp, &work, list) {
2704 list_del(&m->list);
2705 m->quiesced = 1;
2706 __maybe_add_mapping(m);
2707 }
2708 spin_unlock_irqrestore(&pool->lock, flags);
2709 }
2710
104655fd
JT
2711 if (h->all_io_entry) {
2712 INIT_LIST_HEAD(&work);
2713 ds_dec(h->all_io_entry, &work);
c3a0ce2e 2714 spin_lock_irqsave(&pool->lock, flags);
104655fd
JT
2715 list_for_each_entry_safe(m, tmp, &work, list)
2716 list_add(&m->list, &pool->prepared_discards);
c3a0ce2e 2717 spin_unlock_irqrestore(&pool->lock, flags);
104655fd
JT
2718 }
2719
eb2aa48d
JT
2720 mempool_free(h, pool->endio_hook_pool);
2721
2722 return 0;
2723}
2724
991d9fa0
JT
2725static void thin_postsuspend(struct dm_target *ti)
2726{
2727 if (dm_noflush_suspending(ti))
2728 requeue_io((struct thin_c *)ti->private);
2729}
2730
2731/*
2732 * <nr mapped sectors> <highest mapped sector>
2733 */
2734static int thin_status(struct dm_target *ti, status_type_t type,
2735 char *result, unsigned maxlen)
2736{
2737 int r;
2738 ssize_t sz = 0;
2739 dm_block_t mapped, highest;
2740 char buf[BDEVNAME_SIZE];
2741 struct thin_c *tc = ti->private;
2742
2743 if (!tc->td)
2744 DMEMIT("-");
2745 else {
2746 switch (type) {
2747 case STATUSTYPE_INFO:
2748 r = dm_thin_get_mapped_count(tc->td, &mapped);
2749 if (r)
2750 return r;
2751
2752 r = dm_thin_get_highest_mapped_block(tc->td, &highest);
2753 if (r < 0)
2754 return r;
2755
2756 DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
2757 if (r)
2758 DMEMIT("%llu", ((highest + 1) *
2759 tc->pool->sectors_per_block) - 1);
2760 else
2761 DMEMIT("-");
2762 break;
2763
2764 case STATUSTYPE_TABLE:
2765 DMEMIT("%s %lu",
2766 format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
2767 (unsigned long) tc->dev_id);
2dd9c257
JT
2768 if (tc->origin_dev)
2769 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
991d9fa0
JT
2770 break;
2771 }
2772 }
2773
2774 return 0;
2775}
2776
2777static int thin_iterate_devices(struct dm_target *ti,
2778 iterate_devices_callout_fn fn, void *data)
2779{
55f2b8bd 2780 sector_t blocks;
991d9fa0 2781 struct thin_c *tc = ti->private;
55f2b8bd 2782 struct pool *pool = tc->pool;
991d9fa0
JT
2783
2784 /*
2785 * We can't call dm_pool_get_data_dev_size() since that blocks. So
2786 * we follow a more convoluted path through to the pool's target.
2787 */
55f2b8bd 2788 if (!pool->ti)
991d9fa0
JT
2789 return 0; /* nothing is bound */
2790
55f2b8bd
MS
2791 blocks = pool->ti->len;
2792 (void) sector_div(blocks, pool->sectors_per_block);
991d9fa0 2793 if (blocks)
55f2b8bd 2794 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
991d9fa0
JT
2795
2796 return 0;
2797}
2798
2799static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
2800{
2801 struct thin_c *tc = ti->private;
104655fd 2802 struct pool *pool = tc->pool;
991d9fa0
JT
2803
2804 blk_limits_io_min(limits, 0);
104655fd
JT
2805 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
2806 set_discard_limits(pool, limits);
991d9fa0
JT
2807}
2808
2809static struct target_type thin_target = {
2810 .name = "thin",
55f2b8bd 2811 .version = {1, 2, 0},
991d9fa0
JT
2812 .module = THIS_MODULE,
2813 .ctr = thin_ctr,
2814 .dtr = thin_dtr,
2815 .map = thin_map,
eb2aa48d 2816 .end_io = thin_endio,
991d9fa0
JT
2817 .postsuspend = thin_postsuspend,
2818 .status = thin_status,
2819 .iterate_devices = thin_iterate_devices,
2820 .io_hints = thin_io_hints,
2821};
2822
2823/*----------------------------------------------------------------*/
2824
2825static int __init dm_thin_init(void)
2826{
2827 int r;
2828
2829 pool_table_init();
2830
2831 r = dm_register_target(&thin_target);
2832 if (r)
2833 return r;
2834
2835 r = dm_register_target(&pool_target);
2836 if (r)
a24c2569
MS
2837 goto bad_pool_target;
2838
2839 r = -ENOMEM;
2840
2841 _cell_cache = KMEM_CACHE(dm_bio_prison_cell, 0);
2842 if (!_cell_cache)
2843 goto bad_cell_cache;
2844
2845 _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
2846 if (!_new_mapping_cache)
2847 goto bad_new_mapping_cache;
2848
2849 _endio_hook_cache = KMEM_CACHE(dm_thin_endio_hook, 0);
2850 if (!_endio_hook_cache)
2851 goto bad_endio_hook_cache;
2852
2853 return 0;
2854
2855bad_endio_hook_cache:
2856 kmem_cache_destroy(_new_mapping_cache);
2857bad_new_mapping_cache:
2858 kmem_cache_destroy(_cell_cache);
2859bad_cell_cache:
2860 dm_unregister_target(&pool_target);
2861bad_pool_target:
2862 dm_unregister_target(&thin_target);
991d9fa0
JT
2863
2864 return r;
2865}
2866
2867static void dm_thin_exit(void)
2868{
2869 dm_unregister_target(&thin_target);
2870 dm_unregister_target(&pool_target);
a24c2569
MS
2871
2872 kmem_cache_destroy(_cell_cache);
2873 kmem_cache_destroy(_new_mapping_cache);
2874 kmem_cache_destroy(_endio_hook_cache);
991d9fa0
JT
2875}
2876
2877module_init(dm_thin_init);
2878module_exit(dm_thin_exit);
2879
7cab8bf1 2880MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
991d9fa0
JT
2881MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2882MODULE_LICENSE("GPL");