bcache: Update email address
[linux-2.6-block.git] / drivers / md / bcache / request.c
CommitLineData
cafe5635
KO
1/*
2 * Main bcache entry point - handle a read or a write request and decide what to
3 * do with it; the make_request functions are called by the block layer.
4 *
5 * Copyright 2010, 2011 Kent Overstreet <kent.overstreet@gmail.com>
6 * Copyright 2012 Google, Inc.
7 */
8
9#include "bcache.h"
10#include "btree.h"
11#include "debug.h"
12#include "request.h"
279afbad 13#include "writeback.h"
cafe5635
KO
14
15#include <linux/cgroup.h>
16#include <linux/module.h>
17#include <linux/hash.h>
18#include <linux/random.h>
19#include "blk-cgroup.h"
20
21#include <trace/events/bcache.h>
22
23#define CUTOFF_CACHE_ADD 95
24#define CUTOFF_CACHE_READA 90
cafe5635
KO
25
26struct kmem_cache *bch_search_cache;
27
28static void check_should_skip(struct cached_dev *, struct search *);
29
30/* Cgroup interface */
31
32#ifdef CONFIG_CGROUP_BCACHE
33static struct bch_cgroup bcache_default_cgroup = { .cache_mode = -1 };
34
35static struct bch_cgroup *cgroup_to_bcache(struct cgroup *cgroup)
36{
37 struct cgroup_subsys_state *css;
38 return cgroup &&
39 (css = cgroup_subsys_state(cgroup, bcache_subsys_id))
40 ? container_of(css, struct bch_cgroup, css)
41 : &bcache_default_cgroup;
42}
43
44struct bch_cgroup *bch_bio_to_cgroup(struct bio *bio)
45{
46 struct cgroup_subsys_state *css = bio->bi_css
47 ? cgroup_subsys_state(bio->bi_css->cgroup, bcache_subsys_id)
48 : task_subsys_state(current, bcache_subsys_id);
49
50 return css
51 ? container_of(css, struct bch_cgroup, css)
52 : &bcache_default_cgroup;
53}
54
55static ssize_t cache_mode_read(struct cgroup *cgrp, struct cftype *cft,
56 struct file *file,
57 char __user *buf, size_t nbytes, loff_t *ppos)
58{
59 char tmp[1024];
169ef1cf
KO
60 int len = bch_snprint_string_list(tmp, PAGE_SIZE, bch_cache_modes,
61 cgroup_to_bcache(cgrp)->cache_mode + 1);
cafe5635
KO
62
63 if (len < 0)
64 return len;
65
66 return simple_read_from_buffer(buf, nbytes, ppos, tmp, len);
67}
68
69static int cache_mode_write(struct cgroup *cgrp, struct cftype *cft,
70 const char *buf)
71{
169ef1cf 72 int v = bch_read_string_list(buf, bch_cache_modes);
cafe5635
KO
73 if (v < 0)
74 return v;
75
76 cgroup_to_bcache(cgrp)->cache_mode = v - 1;
77 return 0;
78}
79
80static u64 bch_verify_read(struct cgroup *cgrp, struct cftype *cft)
81{
82 return cgroup_to_bcache(cgrp)->verify;
83}
84
85static int bch_verify_write(struct cgroup *cgrp, struct cftype *cft, u64 val)
86{
87 cgroup_to_bcache(cgrp)->verify = val;
88 return 0;
89}
90
91static u64 bch_cache_hits_read(struct cgroup *cgrp, struct cftype *cft)
92{
93 struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
94 return atomic_read(&bcachecg->stats.cache_hits);
95}
96
97static u64 bch_cache_misses_read(struct cgroup *cgrp, struct cftype *cft)
98{
99 struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
100 return atomic_read(&bcachecg->stats.cache_misses);
101}
102
103static u64 bch_cache_bypass_hits_read(struct cgroup *cgrp,
104 struct cftype *cft)
105{
106 struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
107 return atomic_read(&bcachecg->stats.cache_bypass_hits);
108}
109
110static u64 bch_cache_bypass_misses_read(struct cgroup *cgrp,
111 struct cftype *cft)
112{
113 struct bch_cgroup *bcachecg = cgroup_to_bcache(cgrp);
114 return atomic_read(&bcachecg->stats.cache_bypass_misses);
115}
116
117static struct cftype bch_files[] = {
118 {
119 .name = "cache_mode",
120 .read = cache_mode_read,
121 .write_string = cache_mode_write,
122 },
123 {
124 .name = "verify",
125 .read_u64 = bch_verify_read,
126 .write_u64 = bch_verify_write,
127 },
128 {
129 .name = "cache_hits",
130 .read_u64 = bch_cache_hits_read,
131 },
132 {
133 .name = "cache_misses",
134 .read_u64 = bch_cache_misses_read,
135 },
136 {
137 .name = "cache_bypass_hits",
138 .read_u64 = bch_cache_bypass_hits_read,
139 },
140 {
141 .name = "cache_bypass_misses",
142 .read_u64 = bch_cache_bypass_misses_read,
143 },
144 { } /* terminate */
145};
146
147static void init_bch_cgroup(struct bch_cgroup *cg)
148{
149 cg->cache_mode = -1;
150}
151
152static struct cgroup_subsys_state *bcachecg_create(struct cgroup *cgroup)
153{
154 struct bch_cgroup *cg;
155
156 cg = kzalloc(sizeof(*cg), GFP_KERNEL);
157 if (!cg)
158 return ERR_PTR(-ENOMEM);
159 init_bch_cgroup(cg);
160 return &cg->css;
161}
162
163static void bcachecg_destroy(struct cgroup *cgroup)
164{
165 struct bch_cgroup *cg = cgroup_to_bcache(cgroup);
166 free_css_id(&bcache_subsys, &cg->css);
167 kfree(cg);
168}
169
170struct cgroup_subsys bcache_subsys = {
171 .create = bcachecg_create,
172 .destroy = bcachecg_destroy,
173 .subsys_id = bcache_subsys_id,
174 .name = "bcache",
175 .module = THIS_MODULE,
176};
177EXPORT_SYMBOL_GPL(bcache_subsys);
178#endif
179
180static unsigned cache_mode(struct cached_dev *dc, struct bio *bio)
181{
182#ifdef CONFIG_CGROUP_BCACHE
183 int r = bch_bio_to_cgroup(bio)->cache_mode;
184 if (r >= 0)
185 return r;
186#endif
187 return BDEV_CACHE_MODE(&dc->sb);
188}
189
190static bool verify(struct cached_dev *dc, struct bio *bio)
191{
192#ifdef CONFIG_CGROUP_BCACHE
193 if (bch_bio_to_cgroup(bio)->verify)
194 return true;
195#endif
196 return dc->verify;
197}
198
199static void bio_csum(struct bio *bio, struct bkey *k)
200{
201 struct bio_vec *bv;
202 uint64_t csum = 0;
203 int i;
204
205 bio_for_each_segment(bv, bio, i) {
206 void *d = kmap(bv->bv_page) + bv->bv_offset;
169ef1cf 207 csum = bch_crc64_update(csum, d, bv->bv_len);
cafe5635
KO
208 kunmap(bv->bv_page);
209 }
210
211 k->ptr[KEY_PTRS(k)] = csum & (~0ULL >> 1);
212}
213
214/* Insert data into cache */
215
216static void bio_invalidate(struct closure *cl)
217{
218 struct btree_op *op = container_of(cl, struct btree_op, cl);
219 struct bio *bio = op->cache_bio;
220
221 pr_debug("invalidating %i sectors from %llu",
222 bio_sectors(bio), (uint64_t) bio->bi_sector);
223
224 while (bio_sectors(bio)) {
225 unsigned len = min(bio_sectors(bio), 1U << 14);
226
227 if (bch_keylist_realloc(&op->keys, 0, op->c))
228 goto out;
229
230 bio->bi_sector += len;
231 bio->bi_size -= len << 9;
232
233 bch_keylist_add(&op->keys,
234 &KEY(op->inode, bio->bi_sector, len));
235 }
236
237 op->insert_data_done = true;
238 bio_put(bio);
239out:
240 continue_at(cl, bch_journal, bcache_wq);
241}
242
243struct open_bucket {
244 struct list_head list;
245 struct task_struct *last;
246 unsigned sectors_free;
247 BKEY_PADDED(key);
248};
249
250void bch_open_buckets_free(struct cache_set *c)
251{
252 struct open_bucket *b;
253
254 while (!list_empty(&c->data_buckets)) {
255 b = list_first_entry(&c->data_buckets,
256 struct open_bucket, list);
257 list_del(&b->list);
258 kfree(b);
259 }
260}
261
262int bch_open_buckets_alloc(struct cache_set *c)
263{
264 int i;
265
266 spin_lock_init(&c->data_bucket_lock);
267
268 for (i = 0; i < 6; i++) {
269 struct open_bucket *b = kzalloc(sizeof(*b), GFP_KERNEL);
270 if (!b)
271 return -ENOMEM;
272
273 list_add(&b->list, &c->data_buckets);
274 }
275
276 return 0;
277}
278
279/*
280 * We keep multiple buckets open for writes, and try to segregate different
281 * write streams for better cache utilization: first we look for a bucket where
282 * the last write to it was sequential with the current write, and failing that
283 * we look for a bucket that was last used by the same task.
284 *
285 * The ideas is if you've got multiple tasks pulling data into the cache at the
286 * same time, you'll get better cache utilization if you try to segregate their
287 * data and preserve locality.
288 *
289 * For example, say you've starting Firefox at the same time you're copying a
290 * bunch of files. Firefox will likely end up being fairly hot and stay in the
291 * cache awhile, but the data you copied might not be; if you wrote all that
292 * data to the same buckets it'd get invalidated at the same time.
293 *
294 * Both of those tasks will be doing fairly random IO so we can't rely on
295 * detecting sequential IO to segregate their data, but going off of the task
296 * should be a sane heuristic.
297 */
298static struct open_bucket *pick_data_bucket(struct cache_set *c,
299 const struct bkey *search,
300 struct task_struct *task,
301 struct bkey *alloc)
302{
303 struct open_bucket *ret, *ret_task = NULL;
304
305 list_for_each_entry_reverse(ret, &c->data_buckets, list)
306 if (!bkey_cmp(&ret->key, search))
307 goto found;
308 else if (ret->last == task)
309 ret_task = ret;
310
311 ret = ret_task ?: list_first_entry(&c->data_buckets,
312 struct open_bucket, list);
313found:
314 if (!ret->sectors_free && KEY_PTRS(alloc)) {
315 ret->sectors_free = c->sb.bucket_size;
316 bkey_copy(&ret->key, alloc);
317 bkey_init(alloc);
318 }
319
320 if (!ret->sectors_free)
321 ret = NULL;
322
323 return ret;
324}
325
326/*
327 * Allocates some space in the cache to write to, and k to point to the newly
328 * allocated space, and updates KEY_SIZE(k) and KEY_OFFSET(k) (to point to the
329 * end of the newly allocated space).
330 *
331 * May allocate fewer sectors than @sectors, KEY_SIZE(k) indicates how many
332 * sectors were actually allocated.
333 *
334 * If s->writeback is true, will not fail.
335 */
336static bool bch_alloc_sectors(struct bkey *k, unsigned sectors,
337 struct search *s)
338{
339 struct cache_set *c = s->op.c;
340 struct open_bucket *b;
341 BKEY_PADDED(key) alloc;
342 struct closure cl, *w = NULL;
343 unsigned i;
344
345 if (s->writeback) {
346 closure_init_stack(&cl);
347 w = &cl;
348 }
349
350 /*
351 * We might have to allocate a new bucket, which we can't do with a
352 * spinlock held. So if we have to allocate, we drop the lock, allocate
353 * and then retry. KEY_PTRS() indicates whether alloc points to
354 * allocated bucket(s).
355 */
356
357 bkey_init(&alloc.key);
358 spin_lock(&c->data_bucket_lock);
359
360 while (!(b = pick_data_bucket(c, k, s->task, &alloc.key))) {
361 unsigned watermark = s->op.write_prio
362 ? WATERMARK_MOVINGGC
363 : WATERMARK_NONE;
364
365 spin_unlock(&c->data_bucket_lock);
366
367 if (bch_bucket_alloc_set(c, watermark, &alloc.key, 1, w))
368 return false;
369
370 spin_lock(&c->data_bucket_lock);
371 }
372
373 /*
374 * If we had to allocate, we might race and not need to allocate the
375 * second time we call find_data_bucket(). If we allocated a bucket but
376 * didn't use it, drop the refcount bch_bucket_alloc_set() took:
377 */
378 if (KEY_PTRS(&alloc.key))
379 __bkey_put(c, &alloc.key);
380
381 for (i = 0; i < KEY_PTRS(&b->key); i++)
382 EBUG_ON(ptr_stale(c, &b->key, i));
383
384 /* Set up the pointer to the space we're allocating: */
385
386 for (i = 0; i < KEY_PTRS(&b->key); i++)
387 k->ptr[i] = b->key.ptr[i];
388
389 sectors = min(sectors, b->sectors_free);
390
391 SET_KEY_OFFSET(k, KEY_OFFSET(k) + sectors);
392 SET_KEY_SIZE(k, sectors);
393 SET_KEY_PTRS(k, KEY_PTRS(&b->key));
394
395 /*
396 * Move b to the end of the lru, and keep track of what this bucket was
397 * last used for:
398 */
399 list_move_tail(&b->list, &c->data_buckets);
400 bkey_copy_key(&b->key, k);
401 b->last = s->task;
402
403 b->sectors_free -= sectors;
404
405 for (i = 0; i < KEY_PTRS(&b->key); i++) {
406 SET_PTR_OFFSET(&b->key, i, PTR_OFFSET(&b->key, i) + sectors);
407
408 atomic_long_add(sectors,
409 &PTR_CACHE(c, &b->key, i)->sectors_written);
410 }
411
412 if (b->sectors_free < c->sb.block_size)
413 b->sectors_free = 0;
414
415 /*
416 * k takes refcounts on the buckets it points to until it's inserted
417 * into the btree, but if we're done with this bucket we just transfer
418 * get_data_bucket()'s refcount.
419 */
420 if (b->sectors_free)
421 for (i = 0; i < KEY_PTRS(&b->key); i++)
422 atomic_inc(&PTR_BUCKET(c, &b->key, i)->pin);
423
424 spin_unlock(&c->data_bucket_lock);
425 return true;
426}
427
428static void bch_insert_data_error(struct closure *cl)
429{
430 struct btree_op *op = container_of(cl, struct btree_op, cl);
431
432 /*
433 * Our data write just errored, which means we've got a bunch of keys to
434 * insert that point to data that wasn't succesfully written.
435 *
436 * We don't have to insert those keys but we still have to invalidate
437 * that region of the cache - so, if we just strip off all the pointers
438 * from the keys we'll accomplish just that.
439 */
440
441 struct bkey *src = op->keys.bottom, *dst = op->keys.bottom;
442
443 while (src != op->keys.top) {
444 struct bkey *n = bkey_next(src);
445
446 SET_KEY_PTRS(src, 0);
447 bkey_copy(dst, src);
448
449 dst = bkey_next(dst);
450 src = n;
451 }
452
453 op->keys.top = dst;
454
455 bch_journal(cl);
456}
457
458static void bch_insert_data_endio(struct bio *bio, int error)
459{
460 struct closure *cl = bio->bi_private;
461 struct btree_op *op = container_of(cl, struct btree_op, cl);
462 struct search *s = container_of(op, struct search, op);
463
464 if (error) {
465 /* TODO: We could try to recover from this. */
466 if (s->writeback)
467 s->error = error;
468 else if (s->write)
469 set_closure_fn(cl, bch_insert_data_error, bcache_wq);
470 else
471 set_closure_fn(cl, NULL, NULL);
472 }
473
474 bch_bbio_endio(op->c, bio, error, "writing data to cache");
475}
476
477static void bch_insert_data_loop(struct closure *cl)
478{
479 struct btree_op *op = container_of(cl, struct btree_op, cl);
480 struct search *s = container_of(op, struct search, op);
481 struct bio *bio = op->cache_bio, *n;
482
483 if (op->skip)
484 return bio_invalidate(cl);
485
486 if (atomic_sub_return(bio_sectors(bio), &op->c->sectors_to_gc) < 0) {
487 set_gc_sectors(op->c);
488 bch_queue_gc(op->c);
489 }
490
491 do {
492 unsigned i;
493 struct bkey *k;
494 struct bio_set *split = s->d
495 ? s->d->bio_split : op->c->bio_split;
496
497 /* 1 for the device pointer and 1 for the chksum */
498 if (bch_keylist_realloc(&op->keys,
499 1 + (op->csum ? 1 : 0),
500 op->c))
501 continue_at(cl, bch_journal, bcache_wq);
502
503 k = op->keys.top;
504 bkey_init(k);
505 SET_KEY_INODE(k, op->inode);
506 SET_KEY_OFFSET(k, bio->bi_sector);
507
508 if (!bch_alloc_sectors(k, bio_sectors(bio), s))
509 goto err;
510
511 n = bch_bio_split(bio, KEY_SIZE(k), GFP_NOIO, split);
512 if (!n) {
513 __bkey_put(op->c, k);
514 continue_at(cl, bch_insert_data_loop, bcache_wq);
515 }
516
517 n->bi_end_io = bch_insert_data_endio;
518 n->bi_private = cl;
519
520 if (s->writeback) {
521 SET_KEY_DIRTY(k, true);
522
523 for (i = 0; i < KEY_PTRS(k); i++)
524 SET_GC_MARK(PTR_BUCKET(op->c, k, i),
525 GC_MARK_DIRTY);
526 }
527
528 SET_KEY_CSUM(k, op->csum);
529 if (KEY_CSUM(k))
530 bio_csum(n, k);
531
c37511b8 532 trace_bcache_cache_insert(k);
cafe5635
KO
533 bch_keylist_push(&op->keys);
534
cafe5635
KO
535 n->bi_rw |= REQ_WRITE;
536 bch_submit_bbio(n, op->c, k, 0);
537 } while (n != bio);
538
539 op->insert_data_done = true;
540 continue_at(cl, bch_journal, bcache_wq);
541err:
542 /* bch_alloc_sectors() blocks if s->writeback = true */
543 BUG_ON(s->writeback);
544
545 /*
546 * But if it's not a writeback write we'd rather just bail out if
547 * there aren't any buckets ready to write to - it might take awhile and
548 * we might be starving btree writes for gc or something.
549 */
550
551 if (s->write) {
552 /*
553 * Writethrough write: We can't complete the write until we've
554 * updated the index. But we don't want to delay the write while
555 * we wait for buckets to be freed up, so just invalidate the
556 * rest of the write.
557 */
558 op->skip = true;
559 return bio_invalidate(cl);
560 } else {
561 /*
562 * From a cache miss, we can just insert the keys for the data
563 * we have written or bail out if we didn't do anything.
564 */
565 op->insert_data_done = true;
566 bio_put(bio);
567
568 if (!bch_keylist_empty(&op->keys))
569 continue_at(cl, bch_journal, bcache_wq);
570 else
571 closure_return(cl);
572 }
573}
574
575/**
576 * bch_insert_data - stick some data in the cache
577 *
578 * This is the starting point for any data to end up in a cache device; it could
579 * be from a normal write, or a writeback write, or a write to a flash only
580 * volume - it's also used by the moving garbage collector to compact data in
581 * mostly empty buckets.
582 *
583 * It first writes the data to the cache, creating a list of keys to be inserted
584 * (if the data had to be fragmented there will be multiple keys); after the
585 * data is written it calls bch_journal, and after the keys have been added to
586 * the next journal write they're inserted into the btree.
587 *
588 * It inserts the data in op->cache_bio; bi_sector is used for the key offset,
589 * and op->inode is used for the key inode.
590 *
591 * If op->skip is true, instead of inserting the data it invalidates the region
592 * of the cache represented by op->cache_bio and op->inode.
593 */
594void bch_insert_data(struct closure *cl)
595{
596 struct btree_op *op = container_of(cl, struct btree_op, cl);
597
598 bch_keylist_init(&op->keys);
599 bio_get(op->cache_bio);
600 bch_insert_data_loop(cl);
601}
602
603void bch_btree_insert_async(struct closure *cl)
604{
605 struct btree_op *op = container_of(cl, struct btree_op, cl);
606 struct search *s = container_of(op, struct search, op);
607
608 if (bch_btree_insert(op, op->c)) {
609 s->error = -ENOMEM;
610 op->insert_data_done = true;
611 }
612
613 if (op->insert_data_done) {
614 bch_keylist_free(&op->keys);
615 closure_return(cl);
616 } else
617 continue_at(cl, bch_insert_data_loop, bcache_wq);
618}
619
620/* Common code for the make_request functions */
621
622static void request_endio(struct bio *bio, int error)
623{
624 struct closure *cl = bio->bi_private;
625
626 if (error) {
627 struct search *s = container_of(cl, struct search, cl);
628 s->error = error;
629 /* Only cache read errors are recoverable */
630 s->recoverable = false;
631 }
632
633 bio_put(bio);
634 closure_put(cl);
635}
636
637void bch_cache_read_endio(struct bio *bio, int error)
638{
639 struct bbio *b = container_of(bio, struct bbio, bio);
640 struct closure *cl = bio->bi_private;
641 struct search *s = container_of(cl, struct search, cl);
642
643 /*
644 * If the bucket was reused while our bio was in flight, we might have
645 * read the wrong data. Set s->error but not error so it doesn't get
646 * counted against the cache device, but we'll still reread the data
647 * from the backing device.
648 */
649
650 if (error)
651 s->error = error;
652 else if (ptr_stale(s->op.c, &b->key, 0)) {
653 atomic_long_inc(&s->op.c->cache_read_races);
654 s->error = -EINTR;
655 }
656
657 bch_bbio_endio(s->op.c, bio, error, "reading from cache");
658}
659
660static void bio_complete(struct search *s)
661{
662 if (s->orig_bio) {
663 int cpu, rw = bio_data_dir(s->orig_bio);
664 unsigned long duration = jiffies - s->start_time;
665
666 cpu = part_stat_lock();
667 part_round_stats(cpu, &s->d->disk->part0);
668 part_stat_add(cpu, &s->d->disk->part0, ticks[rw], duration);
669 part_stat_unlock();
670
671 trace_bcache_request_end(s, s->orig_bio);
672 bio_endio(s->orig_bio, s->error);
673 s->orig_bio = NULL;
674 }
675}
676
677static void do_bio_hook(struct search *s)
678{
679 struct bio *bio = &s->bio.bio;
680 memcpy(bio, s->orig_bio, sizeof(struct bio));
681
682 bio->bi_end_io = request_endio;
683 bio->bi_private = &s->cl;
684 atomic_set(&bio->bi_cnt, 3);
685}
686
687static void search_free(struct closure *cl)
688{
689 struct search *s = container_of(cl, struct search, cl);
690 bio_complete(s);
691
692 if (s->op.cache_bio)
693 bio_put(s->op.cache_bio);
694
695 if (s->unaligned_bvec)
696 mempool_free(s->bio.bio.bi_io_vec, s->d->unaligned_bvec);
697
698 closure_debug_destroy(cl);
699 mempool_free(s, s->d->c->search);
700}
701
702static struct search *search_alloc(struct bio *bio, struct bcache_device *d)
703{
704 struct bio_vec *bv;
705 struct search *s = mempool_alloc(d->c->search, GFP_NOIO);
706 memset(s, 0, offsetof(struct search, op.keys));
707
708 __closure_init(&s->cl, NULL);
709
710 s->op.inode = d->id;
711 s->op.c = d->c;
712 s->d = d;
713 s->op.lock = -1;
714 s->task = current;
715 s->orig_bio = bio;
716 s->write = (bio->bi_rw & REQ_WRITE) != 0;
717 s->op.flush_journal = (bio->bi_rw & REQ_FLUSH) != 0;
718 s->op.skip = (bio->bi_rw & REQ_DISCARD) != 0;
719 s->recoverable = 1;
720 s->start_time = jiffies;
721 do_bio_hook(s);
722
723 if (bio->bi_size != bio_segments(bio) * PAGE_SIZE) {
724 bv = mempool_alloc(d->unaligned_bvec, GFP_NOIO);
725 memcpy(bv, bio_iovec(bio),
726 sizeof(struct bio_vec) * bio_segments(bio));
727
728 s->bio.bio.bi_io_vec = bv;
729 s->unaligned_bvec = 1;
730 }
731
732 return s;
733}
734
735static void btree_read_async(struct closure *cl)
736{
737 struct btree_op *op = container_of(cl, struct btree_op, cl);
738
739 int ret = btree_root(search_recurse, op->c, op);
740
741 if (ret == -EAGAIN)
742 continue_at(cl, btree_read_async, bcache_wq);
743
744 closure_return(cl);
745}
746
747/* Cached devices */
748
749static void cached_dev_bio_complete(struct closure *cl)
750{
751 struct search *s = container_of(cl, struct search, cl);
752 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
753
754 search_free(cl);
755 cached_dev_put(dc);
756}
757
758/* Process reads */
759
760static void cached_dev_read_complete(struct closure *cl)
761{
762 struct search *s = container_of(cl, struct search, cl);
763
764 if (s->op.insert_collision)
765 bch_mark_cache_miss_collision(s);
766
767 if (s->op.cache_bio) {
768 int i;
769 struct bio_vec *bv;
770
771 __bio_for_each_segment(bv, s->op.cache_bio, i, 0)
772 __free_page(bv->bv_page);
773 }
774
775 cached_dev_bio_complete(cl);
776}
777
778static void request_read_error(struct closure *cl)
779{
780 struct search *s = container_of(cl, struct search, cl);
781 struct bio_vec *bv;
782 int i;
783
784 if (s->recoverable) {
c37511b8
KO
785 /* Retry from the backing device: */
786 trace_bcache_read_retry(s->orig_bio);
cafe5635
KO
787
788 s->error = 0;
789 bv = s->bio.bio.bi_io_vec;
790 do_bio_hook(s);
791 s->bio.bio.bi_io_vec = bv;
792
793 if (!s->unaligned_bvec)
794 bio_for_each_segment(bv, s->orig_bio, i)
795 bv->bv_offset = 0, bv->bv_len = PAGE_SIZE;
796 else
797 memcpy(s->bio.bio.bi_io_vec,
798 bio_iovec(s->orig_bio),
799 sizeof(struct bio_vec) *
800 bio_segments(s->orig_bio));
801
802 /* XXX: invalidate cache */
803
cafe5635
KO
804 closure_bio_submit(&s->bio.bio, &s->cl, s->d);
805 }
806
807 continue_at(cl, cached_dev_read_complete, NULL);
808}
809
810static void request_read_done(struct closure *cl)
811{
812 struct search *s = container_of(cl, struct search, cl);
813 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
814
815 /*
816 * s->cache_bio != NULL implies that we had a cache miss; cache_bio now
817 * contains data ready to be inserted into the cache.
818 *
819 * First, we copy the data we just read from cache_bio's bounce buffers
820 * to the buffers the original bio pointed to:
821 */
822
823 if (s->op.cache_bio) {
824 struct bio_vec *src, *dst;
825 unsigned src_offset, dst_offset, bytes;
826 void *dst_ptr;
827
828 bio_reset(s->op.cache_bio);
829 s->op.cache_bio->bi_sector = s->cache_miss->bi_sector;
830 s->op.cache_bio->bi_bdev = s->cache_miss->bi_bdev;
831 s->op.cache_bio->bi_size = s->cache_bio_sectors << 9;
169ef1cf 832 bch_bio_map(s->op.cache_bio, NULL);
cafe5635
KO
833
834 src = bio_iovec(s->op.cache_bio);
835 dst = bio_iovec(s->cache_miss);
836 src_offset = src->bv_offset;
837 dst_offset = dst->bv_offset;
838 dst_ptr = kmap(dst->bv_page);
839
840 while (1) {
841 if (dst_offset == dst->bv_offset + dst->bv_len) {
842 kunmap(dst->bv_page);
843 dst++;
844 if (dst == bio_iovec_idx(s->cache_miss,
845 s->cache_miss->bi_vcnt))
846 break;
847
848 dst_offset = dst->bv_offset;
849 dst_ptr = kmap(dst->bv_page);
850 }
851
852 if (src_offset == src->bv_offset + src->bv_len) {
853 src++;
854 if (src == bio_iovec_idx(s->op.cache_bio,
855 s->op.cache_bio->bi_vcnt))
856 BUG();
857
858 src_offset = src->bv_offset;
859 }
860
861 bytes = min(dst->bv_offset + dst->bv_len - dst_offset,
862 src->bv_offset + src->bv_len - src_offset);
863
864 memcpy(dst_ptr + dst_offset,
865 page_address(src->bv_page) + src_offset,
866 bytes);
867
868 src_offset += bytes;
869 dst_offset += bytes;
870 }
871
872 bio_put(s->cache_miss);
873 s->cache_miss = NULL;
874 }
875
876 if (verify(dc, &s->bio.bio) && s->recoverable)
877 bch_data_verify(s);
878
879 bio_complete(s);
880
881 if (s->op.cache_bio &&
882 !test_bit(CACHE_SET_STOPPING, &s->op.c->flags)) {
883 s->op.type = BTREE_REPLACE;
884 closure_call(&s->op.cl, bch_insert_data, NULL, cl);
885 }
886
887 continue_at(cl, cached_dev_read_complete, NULL);
888}
889
890static void request_read_done_bh(struct closure *cl)
891{
892 struct search *s = container_of(cl, struct search, cl);
893 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
894
895 bch_mark_cache_accounting(s, !s->cache_miss, s->op.skip);
c37511b8 896 trace_bcache_read(s->orig_bio, !s->cache_miss, s->op.skip);
cafe5635
KO
897
898 if (s->error)
899 continue_at_nobarrier(cl, request_read_error, bcache_wq);
900 else if (s->op.cache_bio || verify(dc, &s->bio.bio))
901 continue_at_nobarrier(cl, request_read_done, bcache_wq);
902 else
903 continue_at_nobarrier(cl, cached_dev_read_complete, NULL);
904}
905
906static int cached_dev_cache_miss(struct btree *b, struct search *s,
907 struct bio *bio, unsigned sectors)
908{
909 int ret = 0;
910 unsigned reada;
911 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
912 struct bio *miss;
913
914 miss = bch_bio_split(bio, sectors, GFP_NOIO, s->d->bio_split);
915 if (!miss)
916 return -EAGAIN;
917
918 if (miss == bio)
919 s->op.lookup_done = true;
920
921 miss->bi_end_io = request_endio;
922 miss->bi_private = &s->cl;
923
924 if (s->cache_miss || s->op.skip)
925 goto out_submit;
926
927 if (miss != bio ||
928 (bio->bi_rw & REQ_RAHEAD) ||
929 (bio->bi_rw & REQ_META) ||
930 s->op.c->gc_stats.in_use >= CUTOFF_CACHE_READA)
931 reada = 0;
932 else {
933 reada = min(dc->readahead >> 9,
934 sectors - bio_sectors(miss));
935
936 if (bio_end(miss) + reada > bdev_sectors(miss->bi_bdev))
937 reada = bdev_sectors(miss->bi_bdev) - bio_end(miss);
938 }
939
940 s->cache_bio_sectors = bio_sectors(miss) + reada;
941 s->op.cache_bio = bio_alloc_bioset(GFP_NOWAIT,
942 DIV_ROUND_UP(s->cache_bio_sectors, PAGE_SECTORS),
943 dc->disk.bio_split);
944
945 if (!s->op.cache_bio)
946 goto out_submit;
947
948 s->op.cache_bio->bi_sector = miss->bi_sector;
949 s->op.cache_bio->bi_bdev = miss->bi_bdev;
950 s->op.cache_bio->bi_size = s->cache_bio_sectors << 9;
951
952 s->op.cache_bio->bi_end_io = request_endio;
953 s->op.cache_bio->bi_private = &s->cl;
954
955 /* btree_search_recurse()'s btree iterator is no good anymore */
956 ret = -EINTR;
957 if (!bch_btree_insert_check_key(b, &s->op, s->op.cache_bio))
958 goto out_put;
959
169ef1cf
KO
960 bch_bio_map(s->op.cache_bio, NULL);
961 if (bch_bio_alloc_pages(s->op.cache_bio, __GFP_NOWARN|GFP_NOIO))
cafe5635
KO
962 goto out_put;
963
964 s->cache_miss = miss;
965 bio_get(s->op.cache_bio);
966
cafe5635
KO
967 closure_bio_submit(s->op.cache_bio, &s->cl, s->d);
968
969 return ret;
970out_put:
971 bio_put(s->op.cache_bio);
972 s->op.cache_bio = NULL;
973out_submit:
974 closure_bio_submit(miss, &s->cl, s->d);
975 return ret;
976}
977
978static void request_read(struct cached_dev *dc, struct search *s)
979{
980 struct closure *cl = &s->cl;
981
982 check_should_skip(dc, s);
983 closure_call(&s->op.cl, btree_read_async, NULL, cl);
984
985 continue_at(cl, request_read_done_bh, NULL);
986}
987
988/* Process writes */
989
990static void cached_dev_write_complete(struct closure *cl)
991{
992 struct search *s = container_of(cl, struct search, cl);
993 struct cached_dev *dc = container_of(s->d, struct cached_dev, disk);
994
995 up_read_non_owner(&dc->writeback_lock);
996 cached_dev_bio_complete(cl);
997}
998
cafe5635
KO
999static void request_write(struct cached_dev *dc, struct search *s)
1000{
1001 struct closure *cl = &s->cl;
1002 struct bio *bio = &s->bio.bio;
1003 struct bkey start, end;
1004 start = KEY(dc->disk.id, bio->bi_sector, 0);
1005 end = KEY(dc->disk.id, bio_end(bio), 0);
1006
1007 bch_keybuf_check_overlapping(&s->op.c->moving_gc_keys, &start, &end);
1008
1009 check_should_skip(dc, s);
1010 down_read_non_owner(&dc->writeback_lock);
1011
1012 if (bch_keybuf_check_overlapping(&dc->writeback_keys, &start, &end)) {
1013 s->op.skip = false;
1014 s->writeback = true;
1015 }
1016
1017 if (bio->bi_rw & REQ_DISCARD)
1018 goto skip;
1019
72c27061
KO
1020 if (should_writeback(dc, s->orig_bio,
1021 cache_mode(dc, bio),
1022 s->op.skip)) {
1023 s->op.skip = false;
1024 s->writeback = true;
1025 }
1026
cafe5635
KO
1027 if (s->op.skip)
1028 goto skip;
1029
c37511b8
KO
1030 trace_bcache_write(s->orig_bio, s->writeback, s->op.skip);
1031
cafe5635
KO
1032 if (!s->writeback) {
1033 s->op.cache_bio = bio_clone_bioset(bio, GFP_NOIO,
1034 dc->disk.bio_split);
1035
cafe5635
KO
1036 closure_bio_submit(bio, cl, s->d);
1037 } else {
279afbad 1038 bch_writeback_add(dc);
e49c7c37
KO
1039
1040 if (s->op.flush_journal) {
1041 /* Also need to send a flush to the backing device */
1042 s->op.cache_bio = bio_clone_bioset(bio, GFP_NOIO,
1043 dc->disk.bio_split);
1044
1045 bio->bi_size = 0;
1046 bio->bi_vcnt = 0;
1047 closure_bio_submit(bio, cl, s->d);
1048 } else {
1049 s->op.cache_bio = bio;
1050 }
cafe5635
KO
1051 }
1052out:
1053 closure_call(&s->op.cl, bch_insert_data, NULL, cl);
1054 continue_at(cl, cached_dev_write_complete, NULL);
1055skip:
1056 s->op.skip = true;
1057 s->op.cache_bio = s->orig_bio;
1058 bio_get(s->op.cache_bio);
cafe5635
KO
1059
1060 if ((bio->bi_rw & REQ_DISCARD) &&
1061 !blk_queue_discard(bdev_get_queue(dc->bdev)))
1062 goto out;
1063
1064 closure_bio_submit(bio, cl, s->d);
1065 goto out;
1066}
1067
1068static void request_nodata(struct cached_dev *dc, struct search *s)
1069{
1070 struct closure *cl = &s->cl;
1071 struct bio *bio = &s->bio.bio;
1072
1073 if (bio->bi_rw & REQ_DISCARD) {
1074 request_write(dc, s);
1075 return;
1076 }
1077
1078 if (s->op.flush_journal)
1079 bch_journal_meta(s->op.c, cl);
1080
1081 closure_bio_submit(bio, cl, s->d);
1082
1083 continue_at(cl, cached_dev_bio_complete, NULL);
1084}
1085
1086/* Cached devices - read & write stuff */
1087
c37511b8 1088unsigned bch_get_congested(struct cache_set *c)
cafe5635
KO
1089{
1090 int i;
c37511b8 1091 long rand;
cafe5635
KO
1092
1093 if (!c->congested_read_threshold_us &&
1094 !c->congested_write_threshold_us)
1095 return 0;
1096
1097 i = (local_clock_us() - c->congested_last_us) / 1024;
1098 if (i < 0)
1099 return 0;
1100
1101 i += atomic_read(&c->congested);
1102 if (i >= 0)
1103 return 0;
1104
1105 i += CONGESTED_MAX;
1106
c37511b8
KO
1107 if (i > 0)
1108 i = fract_exp_two(i, 6);
1109
1110 rand = get_random_int();
1111 i -= bitmap_weight(&rand, BITS_PER_LONG);
1112
1113 return i > 0 ? i : 1;
cafe5635
KO
1114}
1115
1116static void add_sequential(struct task_struct *t)
1117{
1118 ewma_add(t->sequential_io_avg,
1119 t->sequential_io, 8, 0);
1120
1121 t->sequential_io = 0;
1122}
1123
b1a67b0f 1124static struct hlist_head *iohash(struct cached_dev *dc, uint64_t k)
cafe5635 1125{
b1a67b0f
KO
1126 return &dc->io_hash[hash_64(k, RECENT_IO_BITS)];
1127}
cafe5635 1128
b1a67b0f
KO
1129static void check_should_skip(struct cached_dev *dc, struct search *s)
1130{
cafe5635
KO
1131 struct cache_set *c = s->op.c;
1132 struct bio *bio = &s->bio.bio;
cafe5635 1133 unsigned mode = cache_mode(dc, bio);
c37511b8 1134 unsigned sectors, congested = bch_get_congested(c);
cafe5635
KO
1135
1136 if (atomic_read(&dc->disk.detaching) ||
1137 c->gc_stats.in_use > CUTOFF_CACHE_ADD ||
1138 (bio->bi_rw & REQ_DISCARD))
1139 goto skip;
1140
1141 if (mode == CACHE_MODE_NONE ||
1142 (mode == CACHE_MODE_WRITEAROUND &&
1143 (bio->bi_rw & REQ_WRITE)))
1144 goto skip;
1145
1146 if (bio->bi_sector & (c->sb.block_size - 1) ||
1147 bio_sectors(bio) & (c->sb.block_size - 1)) {
1148 pr_debug("skipping unaligned io");
1149 goto skip;
1150 }
1151
c37511b8
KO
1152 if (!congested && !dc->sequential_cutoff)
1153 goto rescale;
cafe5635 1154
c37511b8
KO
1155 if (!congested &&
1156 mode == CACHE_MODE_WRITEBACK &&
1157 (bio->bi_rw & REQ_WRITE) &&
1158 (bio->bi_rw & REQ_SYNC))
1159 goto rescale;
cafe5635
KO
1160
1161 if (dc->sequential_merge) {
1162 struct io *i;
1163
1164 spin_lock(&dc->io_lock);
1165
b1a67b0f 1166 hlist_for_each_entry(i, iohash(dc, bio->bi_sector), hash)
cafe5635
KO
1167 if (i->last == bio->bi_sector &&
1168 time_before(jiffies, i->jiffies))
1169 goto found;
1170
1171 i = list_first_entry(&dc->io_lru, struct io, lru);
1172
1173 add_sequential(s->task);
1174 i->sequential = 0;
1175found:
1176 if (i->sequential + bio->bi_size > i->sequential)
1177 i->sequential += bio->bi_size;
1178
1179 i->last = bio_end(bio);
1180 i->jiffies = jiffies + msecs_to_jiffies(5000);
1181 s->task->sequential_io = i->sequential;
1182
1183 hlist_del(&i->hash);
b1a67b0f 1184 hlist_add_head(&i->hash, iohash(dc, i->last));
cafe5635
KO
1185 list_move_tail(&i->lru, &dc->io_lru);
1186
1187 spin_unlock(&dc->io_lock);
1188 } else {
1189 s->task->sequential_io = bio->bi_size;
1190
1191 add_sequential(s->task);
1192 }
1193
c37511b8
KO
1194 sectors = max(s->task->sequential_io,
1195 s->task->sequential_io_avg) >> 9;
cafe5635 1196
c37511b8
KO
1197 if (dc->sequential_cutoff &&
1198 sectors >= dc->sequential_cutoff >> 9) {
1199 trace_bcache_bypass_sequential(s->orig_bio);
cafe5635 1200 goto skip;
c37511b8
KO
1201 }
1202
1203 if (congested && sectors >= congested) {
1204 trace_bcache_bypass_congested(s->orig_bio);
1205 goto skip;
1206 }
cafe5635
KO
1207
1208rescale:
1209 bch_rescale_priorities(c, bio_sectors(bio));
1210 return;
1211skip:
1212 bch_mark_sectors_bypassed(s, bio_sectors(bio));
1213 s->op.skip = true;
1214}
1215
1216static void cached_dev_make_request(struct request_queue *q, struct bio *bio)
1217{
1218 struct search *s;
1219 struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
1220 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1221 int cpu, rw = bio_data_dir(bio);
1222
1223 cpu = part_stat_lock();
1224 part_stat_inc(cpu, &d->disk->part0, ios[rw]);
1225 part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio));
1226 part_stat_unlock();
1227
1228 bio->bi_bdev = dc->bdev;
2903381f 1229 bio->bi_sector += dc->sb.data_offset;
cafe5635
KO
1230
1231 if (cached_dev_get(dc)) {
1232 s = search_alloc(bio, d);
1233 trace_bcache_request_start(s, bio);
1234
1235 if (!bio_has_data(bio))
1236 request_nodata(dc, s);
1237 else if (rw)
1238 request_write(dc, s);
1239 else
1240 request_read(dc, s);
1241 } else {
1242 if ((bio->bi_rw & REQ_DISCARD) &&
1243 !blk_queue_discard(bdev_get_queue(dc->bdev)))
1244 bio_endio(bio, 0);
1245 else
1246 bch_generic_make_request(bio, &d->bio_split_hook);
1247 }
1248}
1249
1250static int cached_dev_ioctl(struct bcache_device *d, fmode_t mode,
1251 unsigned int cmd, unsigned long arg)
1252{
1253 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1254 return __blkdev_driver_ioctl(dc->bdev, mode, cmd, arg);
1255}
1256
1257static int cached_dev_congested(void *data, int bits)
1258{
1259 struct bcache_device *d = data;
1260 struct cached_dev *dc = container_of(d, struct cached_dev, disk);
1261 struct request_queue *q = bdev_get_queue(dc->bdev);
1262 int ret = 0;
1263
1264 if (bdi_congested(&q->backing_dev_info, bits))
1265 return 1;
1266
1267 if (cached_dev_get(dc)) {
1268 unsigned i;
1269 struct cache *ca;
1270
1271 for_each_cache(ca, d->c, i) {
1272 q = bdev_get_queue(ca->bdev);
1273 ret |= bdi_congested(&q->backing_dev_info, bits);
1274 }
1275
1276 cached_dev_put(dc);
1277 }
1278
1279 return ret;
1280}
1281
1282void bch_cached_dev_request_init(struct cached_dev *dc)
1283{
1284 struct gendisk *g = dc->disk.disk;
1285
1286 g->queue->make_request_fn = cached_dev_make_request;
1287 g->queue->backing_dev_info.congested_fn = cached_dev_congested;
1288 dc->disk.cache_miss = cached_dev_cache_miss;
1289 dc->disk.ioctl = cached_dev_ioctl;
1290}
1291
1292/* Flash backed devices */
1293
1294static int flash_dev_cache_miss(struct btree *b, struct search *s,
1295 struct bio *bio, unsigned sectors)
1296{
1297 /* Zero fill bio */
1298
1299 while (bio->bi_idx != bio->bi_vcnt) {
1300 struct bio_vec *bv = bio_iovec(bio);
1301 unsigned j = min(bv->bv_len >> 9, sectors);
1302
1303 void *p = kmap(bv->bv_page);
1304 memset(p + bv->bv_offset, 0, j << 9);
1305 kunmap(bv->bv_page);
1306
1307 bv->bv_len -= j << 9;
1308 bv->bv_offset += j << 9;
1309
1310 if (bv->bv_len)
1311 return 0;
1312
1313 bio->bi_sector += j;
1314 bio->bi_size -= j << 9;
1315
1316 bio->bi_idx++;
1317 sectors -= j;
1318 }
1319
1320 s->op.lookup_done = true;
1321
1322 return 0;
1323}
1324
1325static void flash_dev_make_request(struct request_queue *q, struct bio *bio)
1326{
1327 struct search *s;
1328 struct closure *cl;
1329 struct bcache_device *d = bio->bi_bdev->bd_disk->private_data;
1330 int cpu, rw = bio_data_dir(bio);
1331
1332 cpu = part_stat_lock();
1333 part_stat_inc(cpu, &d->disk->part0, ios[rw]);
1334 part_stat_add(cpu, &d->disk->part0, sectors[rw], bio_sectors(bio));
1335 part_stat_unlock();
1336
1337 s = search_alloc(bio, d);
1338 cl = &s->cl;
1339 bio = &s->bio.bio;
1340
1341 trace_bcache_request_start(s, bio);
1342
1343 if (bio_has_data(bio) && !rw) {
1344 closure_call(&s->op.cl, btree_read_async, NULL, cl);
1345 } else if (bio_has_data(bio) || s->op.skip) {
1346 bch_keybuf_check_overlapping(&s->op.c->moving_gc_keys,
1347 &KEY(d->id, bio->bi_sector, 0),
1348 &KEY(d->id, bio_end(bio), 0));
1349
1350 s->writeback = true;
1351 s->op.cache_bio = bio;
1352
1353 closure_call(&s->op.cl, bch_insert_data, NULL, cl);
1354 } else {
1355 /* No data - probably a cache flush */
1356 if (s->op.flush_journal)
1357 bch_journal_meta(s->op.c, cl);
1358 }
1359
1360 continue_at(cl, search_free, NULL);
1361}
1362
1363static int flash_dev_ioctl(struct bcache_device *d, fmode_t mode,
1364 unsigned int cmd, unsigned long arg)
1365{
1366 return -ENOTTY;
1367}
1368
1369static int flash_dev_congested(void *data, int bits)
1370{
1371 struct bcache_device *d = data;
1372 struct request_queue *q;
1373 struct cache *ca;
1374 unsigned i;
1375 int ret = 0;
1376
1377 for_each_cache(ca, d->c, i) {
1378 q = bdev_get_queue(ca->bdev);
1379 ret |= bdi_congested(&q->backing_dev_info, bits);
1380 }
1381
1382 return ret;
1383}
1384
1385void bch_flash_dev_request_init(struct bcache_device *d)
1386{
1387 struct gendisk *g = d->disk;
1388
1389 g->queue->make_request_fn = flash_dev_make_request;
1390 g->queue->backing_dev_info.congested_fn = flash_dev_congested;
1391 d->cache_miss = flash_dev_cache_miss;
1392 d->ioctl = flash_dev_ioctl;
1393}
1394
1395void bch_request_exit(void)
1396{
1397#ifdef CONFIG_CGROUP_BCACHE
1398 cgroup_unload_subsys(&bcache_subsys);
1399#endif
1400 if (bch_search_cache)
1401 kmem_cache_destroy(bch_search_cache);
1402}
1403
1404int __init bch_request_init(void)
1405{
1406 bch_search_cache = KMEM_CACHE(search, 0);
1407 if (!bch_search_cache)
1408 return -ENOMEM;
1409
1410#ifdef CONFIG_CGROUP_BCACHE
1411 cgroup_load_subsys(&bcache_subsys);
1412 init_bch_cgroup(&bcache_default_cgroup);
1413
1414 cgroup_add_cftypes(&bcache_subsys, bch_files);
1415#endif
1416 return 0;
1417}