iommu/arm-smmu: allow translation stage to be forced on the cmdline
[linux-2.6-block.git] / drivers / iommu / arm-smmu.c
CommitLineData
45ae7cff
WD
1/*
2 * IOMMU API for ARM architected SMMU implementations.
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
16 *
17 * Copyright (C) 2013 ARM Limited
18 *
19 * Author: Will Deacon <will.deacon@arm.com>
20 *
21 * This driver currently supports:
22 * - SMMUv1 and v2 implementations
23 * - Stream-matching and stream-indexing
24 * - v7/v8 long-descriptor format
25 * - Non-secure access to the SMMU
26 * - 4k and 64k pages, with contiguous pte hints.
06f983dd 27 * - Up to 42-bit addressing (dependent on VA_BITS)
45ae7cff
WD
28 * - Context fault reporting
29 */
30
31#define pr_fmt(fmt) "arm-smmu: " fmt
32
33#include <linux/delay.h>
34#include <linux/dma-mapping.h>
35#include <linux/err.h>
36#include <linux/interrupt.h>
37#include <linux/io.h>
38#include <linux/iommu.h>
39#include <linux/mm.h>
40#include <linux/module.h>
41#include <linux/of.h>
a9a1b0b5 42#include <linux/pci.h>
45ae7cff
WD
43#include <linux/platform_device.h>
44#include <linux/slab.h>
45#include <linux/spinlock.h>
46
47#include <linux/amba/bus.h>
48
49#include <asm/pgalloc.h>
50
51/* Maximum number of stream IDs assigned to a single device */
636e97b0 52#define MAX_MASTER_STREAMIDS MAX_PHANDLE_ARGS
45ae7cff
WD
53
54/* Maximum number of context banks per SMMU */
55#define ARM_SMMU_MAX_CBS 128
56
57/* Maximum number of mapping groups per SMMU */
58#define ARM_SMMU_MAX_SMRS 128
59
45ae7cff
WD
60/* SMMU global address space */
61#define ARM_SMMU_GR0(smmu) ((smmu)->base)
62#define ARM_SMMU_GR1(smmu) ((smmu)->base + (smmu)->pagesize)
63
3a5df8ff
AH
64/*
65 * SMMU global address space with conditional offset to access secure
66 * aliases of non-secure registers (e.g. nsCR0: 0x400, nsGFSR: 0x448,
67 * nsGFSYNR0: 0x450)
68 */
69#define ARM_SMMU_GR0_NS(smmu) \
70 ((smmu)->base + \
71 ((smmu->options & ARM_SMMU_OPT_SECURE_CFG_ACCESS) \
72 ? 0x400 : 0))
73
45ae7cff 74/* Page table bits */
cf2d45b1 75#define ARM_SMMU_PTE_XN (((pteval_t)3) << 53)
45ae7cff
WD
76#define ARM_SMMU_PTE_CONT (((pteval_t)1) << 52)
77#define ARM_SMMU_PTE_AF (((pteval_t)1) << 10)
78#define ARM_SMMU_PTE_SH_NS (((pteval_t)0) << 8)
79#define ARM_SMMU_PTE_SH_OS (((pteval_t)2) << 8)
80#define ARM_SMMU_PTE_SH_IS (((pteval_t)3) << 8)
cf2d45b1 81#define ARM_SMMU_PTE_PAGE (((pteval_t)3) << 0)
45ae7cff
WD
82
83#if PAGE_SIZE == SZ_4K
84#define ARM_SMMU_PTE_CONT_ENTRIES 16
85#elif PAGE_SIZE == SZ_64K
86#define ARM_SMMU_PTE_CONT_ENTRIES 32
87#else
88#define ARM_SMMU_PTE_CONT_ENTRIES 1
89#endif
90
91#define ARM_SMMU_PTE_CONT_SIZE (PAGE_SIZE * ARM_SMMU_PTE_CONT_ENTRIES)
92#define ARM_SMMU_PTE_CONT_MASK (~(ARM_SMMU_PTE_CONT_SIZE - 1))
45ae7cff
WD
93
94/* Stage-1 PTE */
95#define ARM_SMMU_PTE_AP_UNPRIV (((pteval_t)1) << 6)
96#define ARM_SMMU_PTE_AP_RDONLY (((pteval_t)2) << 6)
97#define ARM_SMMU_PTE_ATTRINDX_SHIFT 2
1463fe44 98#define ARM_SMMU_PTE_nG (((pteval_t)1) << 11)
45ae7cff
WD
99
100/* Stage-2 PTE */
101#define ARM_SMMU_PTE_HAP_FAULT (((pteval_t)0) << 6)
102#define ARM_SMMU_PTE_HAP_READ (((pteval_t)1) << 6)
103#define ARM_SMMU_PTE_HAP_WRITE (((pteval_t)2) << 6)
104#define ARM_SMMU_PTE_MEMATTR_OIWB (((pteval_t)0xf) << 2)
105#define ARM_SMMU_PTE_MEMATTR_NC (((pteval_t)0x5) << 2)
106#define ARM_SMMU_PTE_MEMATTR_DEV (((pteval_t)0x1) << 2)
107
108/* Configuration registers */
109#define ARM_SMMU_GR0_sCR0 0x0
110#define sCR0_CLIENTPD (1 << 0)
111#define sCR0_GFRE (1 << 1)
112#define sCR0_GFIE (1 << 2)
113#define sCR0_GCFGFRE (1 << 4)
114#define sCR0_GCFGFIE (1 << 5)
115#define sCR0_USFCFG (1 << 10)
116#define sCR0_VMIDPNE (1 << 11)
117#define sCR0_PTM (1 << 12)
118#define sCR0_FB (1 << 13)
119#define sCR0_BSU_SHIFT 14
120#define sCR0_BSU_MASK 0x3
121
122/* Identification registers */
123#define ARM_SMMU_GR0_ID0 0x20
124#define ARM_SMMU_GR0_ID1 0x24
125#define ARM_SMMU_GR0_ID2 0x28
126#define ARM_SMMU_GR0_ID3 0x2c
127#define ARM_SMMU_GR0_ID4 0x30
128#define ARM_SMMU_GR0_ID5 0x34
129#define ARM_SMMU_GR0_ID6 0x38
130#define ARM_SMMU_GR0_ID7 0x3c
131#define ARM_SMMU_GR0_sGFSR 0x48
132#define ARM_SMMU_GR0_sGFSYNR0 0x50
133#define ARM_SMMU_GR0_sGFSYNR1 0x54
134#define ARM_SMMU_GR0_sGFSYNR2 0x58
135#define ARM_SMMU_GR0_PIDR0 0xfe0
136#define ARM_SMMU_GR0_PIDR1 0xfe4
137#define ARM_SMMU_GR0_PIDR2 0xfe8
138
139#define ID0_S1TS (1 << 30)
140#define ID0_S2TS (1 << 29)
141#define ID0_NTS (1 << 28)
142#define ID0_SMS (1 << 27)
143#define ID0_PTFS_SHIFT 24
144#define ID0_PTFS_MASK 0x2
145#define ID0_PTFS_V8_ONLY 0x2
146#define ID0_CTTW (1 << 14)
147#define ID0_NUMIRPT_SHIFT 16
148#define ID0_NUMIRPT_MASK 0xff
3c8766d0
OH
149#define ID0_NUMSIDB_SHIFT 9
150#define ID0_NUMSIDB_MASK 0xf
45ae7cff
WD
151#define ID0_NUMSMRG_SHIFT 0
152#define ID0_NUMSMRG_MASK 0xff
153
154#define ID1_PAGESIZE (1 << 31)
155#define ID1_NUMPAGENDXB_SHIFT 28
156#define ID1_NUMPAGENDXB_MASK 7
157#define ID1_NUMS2CB_SHIFT 16
158#define ID1_NUMS2CB_MASK 0xff
159#define ID1_NUMCB_SHIFT 0
160#define ID1_NUMCB_MASK 0xff
161
162#define ID2_OAS_SHIFT 4
163#define ID2_OAS_MASK 0xf
164#define ID2_IAS_SHIFT 0
165#define ID2_IAS_MASK 0xf
166#define ID2_UBS_SHIFT 8
167#define ID2_UBS_MASK 0xf
168#define ID2_PTFS_4K (1 << 12)
169#define ID2_PTFS_16K (1 << 13)
170#define ID2_PTFS_64K (1 << 14)
171
172#define PIDR2_ARCH_SHIFT 4
173#define PIDR2_ARCH_MASK 0xf
174
175/* Global TLB invalidation */
176#define ARM_SMMU_GR0_STLBIALL 0x60
177#define ARM_SMMU_GR0_TLBIVMID 0x64
178#define ARM_SMMU_GR0_TLBIALLNSNH 0x68
179#define ARM_SMMU_GR0_TLBIALLH 0x6c
180#define ARM_SMMU_GR0_sTLBGSYNC 0x70
181#define ARM_SMMU_GR0_sTLBGSTATUS 0x74
182#define sTLBGSTATUS_GSACTIVE (1 << 0)
183#define TLB_LOOP_TIMEOUT 1000000 /* 1s! */
184
185/* Stream mapping registers */
186#define ARM_SMMU_GR0_SMR(n) (0x800 + ((n) << 2))
187#define SMR_VALID (1 << 31)
188#define SMR_MASK_SHIFT 16
189#define SMR_MASK_MASK 0x7fff
190#define SMR_ID_SHIFT 0
191#define SMR_ID_MASK 0x7fff
192
193#define ARM_SMMU_GR0_S2CR(n) (0xc00 + ((n) << 2))
194#define S2CR_CBNDX_SHIFT 0
195#define S2CR_CBNDX_MASK 0xff
196#define S2CR_TYPE_SHIFT 16
197#define S2CR_TYPE_MASK 0x3
198#define S2CR_TYPE_TRANS (0 << S2CR_TYPE_SHIFT)
199#define S2CR_TYPE_BYPASS (1 << S2CR_TYPE_SHIFT)
200#define S2CR_TYPE_FAULT (2 << S2CR_TYPE_SHIFT)
201
202/* Context bank attribute registers */
203#define ARM_SMMU_GR1_CBAR(n) (0x0 + ((n) << 2))
204#define CBAR_VMID_SHIFT 0
205#define CBAR_VMID_MASK 0xff
57ca90f6
WD
206#define CBAR_S1_BPSHCFG_SHIFT 8
207#define CBAR_S1_BPSHCFG_MASK 3
208#define CBAR_S1_BPSHCFG_NSH 3
45ae7cff
WD
209#define CBAR_S1_MEMATTR_SHIFT 12
210#define CBAR_S1_MEMATTR_MASK 0xf
211#define CBAR_S1_MEMATTR_WB 0xf
212#define CBAR_TYPE_SHIFT 16
213#define CBAR_TYPE_MASK 0x3
214#define CBAR_TYPE_S2_TRANS (0 << CBAR_TYPE_SHIFT)
215#define CBAR_TYPE_S1_TRANS_S2_BYPASS (1 << CBAR_TYPE_SHIFT)
216#define CBAR_TYPE_S1_TRANS_S2_FAULT (2 << CBAR_TYPE_SHIFT)
217#define CBAR_TYPE_S1_TRANS_S2_TRANS (3 << CBAR_TYPE_SHIFT)
218#define CBAR_IRPTNDX_SHIFT 24
219#define CBAR_IRPTNDX_MASK 0xff
220
221#define ARM_SMMU_GR1_CBA2R(n) (0x800 + ((n) << 2))
222#define CBA2R_RW64_32BIT (0 << 0)
223#define CBA2R_RW64_64BIT (1 << 0)
224
225/* Translation context bank */
226#define ARM_SMMU_CB_BASE(smmu) ((smmu)->base + ((smmu)->size >> 1))
227#define ARM_SMMU_CB(smmu, n) ((n) * (smmu)->pagesize)
228
229#define ARM_SMMU_CB_SCTLR 0x0
230#define ARM_SMMU_CB_RESUME 0x8
231#define ARM_SMMU_CB_TTBCR2 0x10
232#define ARM_SMMU_CB_TTBR0_LO 0x20
233#define ARM_SMMU_CB_TTBR0_HI 0x24
234#define ARM_SMMU_CB_TTBCR 0x30
235#define ARM_SMMU_CB_S1_MAIR0 0x38
236#define ARM_SMMU_CB_FSR 0x58
237#define ARM_SMMU_CB_FAR_LO 0x60
238#define ARM_SMMU_CB_FAR_HI 0x64
239#define ARM_SMMU_CB_FSYNR0 0x68
1463fe44 240#define ARM_SMMU_CB_S1_TLBIASID 0x610
45ae7cff
WD
241
242#define SCTLR_S1_ASIDPNE (1 << 12)
243#define SCTLR_CFCFG (1 << 7)
244#define SCTLR_CFIE (1 << 6)
245#define SCTLR_CFRE (1 << 5)
246#define SCTLR_E (1 << 4)
247#define SCTLR_AFE (1 << 2)
248#define SCTLR_TRE (1 << 1)
249#define SCTLR_M (1 << 0)
250#define SCTLR_EAE_SBOP (SCTLR_AFE | SCTLR_TRE)
251
252#define RESUME_RETRY (0 << 0)
253#define RESUME_TERMINATE (1 << 0)
254
255#define TTBCR_EAE (1 << 31)
256
257#define TTBCR_PASIZE_SHIFT 16
258#define TTBCR_PASIZE_MASK 0x7
259
260#define TTBCR_TG0_4K (0 << 14)
261#define TTBCR_TG0_64K (1 << 14)
262
263#define TTBCR_SH0_SHIFT 12
264#define TTBCR_SH0_MASK 0x3
265#define TTBCR_SH_NS 0
266#define TTBCR_SH_OS 2
267#define TTBCR_SH_IS 3
268
269#define TTBCR_ORGN0_SHIFT 10
270#define TTBCR_IRGN0_SHIFT 8
271#define TTBCR_RGN_MASK 0x3
272#define TTBCR_RGN_NC 0
273#define TTBCR_RGN_WBWA 1
274#define TTBCR_RGN_WT 2
275#define TTBCR_RGN_WB 3
276
277#define TTBCR_SL0_SHIFT 6
278#define TTBCR_SL0_MASK 0x3
279#define TTBCR_SL0_LVL_2 0
280#define TTBCR_SL0_LVL_1 1
281
282#define TTBCR_T1SZ_SHIFT 16
283#define TTBCR_T0SZ_SHIFT 0
284#define TTBCR_SZ_MASK 0xf
285
286#define TTBCR2_SEP_SHIFT 15
287#define TTBCR2_SEP_MASK 0x7
288
289#define TTBCR2_PASIZE_SHIFT 0
290#define TTBCR2_PASIZE_MASK 0x7
291
292/* Common definitions for PASize and SEP fields */
293#define TTBCR2_ADDR_32 0
294#define TTBCR2_ADDR_36 1
295#define TTBCR2_ADDR_40 2
296#define TTBCR2_ADDR_42 3
297#define TTBCR2_ADDR_44 4
298#define TTBCR2_ADDR_48 5
299
1463fe44
WD
300#define TTBRn_HI_ASID_SHIFT 16
301
45ae7cff
WD
302#define MAIR_ATTR_SHIFT(n) ((n) << 3)
303#define MAIR_ATTR_MASK 0xff
304#define MAIR_ATTR_DEVICE 0x04
305#define MAIR_ATTR_NC 0x44
306#define MAIR_ATTR_WBRWA 0xff
307#define MAIR_ATTR_IDX_NC 0
308#define MAIR_ATTR_IDX_CACHE 1
309#define MAIR_ATTR_IDX_DEV 2
310
311#define FSR_MULTI (1 << 31)
312#define FSR_SS (1 << 30)
313#define FSR_UUT (1 << 8)
314#define FSR_ASF (1 << 7)
315#define FSR_TLBLKF (1 << 6)
316#define FSR_TLBMCF (1 << 5)
317#define FSR_EF (1 << 4)
318#define FSR_PF (1 << 3)
319#define FSR_AFF (1 << 2)
320#define FSR_TF (1 << 1)
321
2907320d
MH
322#define FSR_IGN (FSR_AFF | FSR_ASF | \
323 FSR_TLBMCF | FSR_TLBLKF)
324#define FSR_FAULT (FSR_MULTI | FSR_SS | FSR_UUT | \
adaba320 325 FSR_EF | FSR_PF | FSR_TF | FSR_IGN)
45ae7cff
WD
326
327#define FSYNR0_WNR (1 << 4)
328
4cf740b0
WD
329static int force_stage;
330module_param_named(force_stage, force_stage, int, S_IRUGO | S_IWUSR);
331MODULE_PARM_DESC(force_stage,
332 "Force SMMU mappings to be installed at a particular stage of translation. A value of '1' or '2' forces the corresponding stage. All other values are ignored (i.e. no stage is forced). Note that selecting a specific stage will disable support for nested translation.");
333
45ae7cff
WD
334struct arm_smmu_smr {
335 u8 idx;
336 u16 mask;
337 u16 id;
338};
339
a9a1b0b5 340struct arm_smmu_master_cfg {
45ae7cff
WD
341 int num_streamids;
342 u16 streamids[MAX_MASTER_STREAMIDS];
45ae7cff
WD
343 struct arm_smmu_smr *smrs;
344};
345
a9a1b0b5
WD
346struct arm_smmu_master {
347 struct device_node *of_node;
a9a1b0b5
WD
348 struct rb_node node;
349 struct arm_smmu_master_cfg cfg;
350};
351
45ae7cff
WD
352struct arm_smmu_device {
353 struct device *dev;
45ae7cff
WD
354
355 void __iomem *base;
356 unsigned long size;
357 unsigned long pagesize;
358
359#define ARM_SMMU_FEAT_COHERENT_WALK (1 << 0)
360#define ARM_SMMU_FEAT_STREAM_MATCH (1 << 1)
361#define ARM_SMMU_FEAT_TRANS_S1 (1 << 2)
362#define ARM_SMMU_FEAT_TRANS_S2 (1 << 3)
363#define ARM_SMMU_FEAT_TRANS_NESTED (1 << 4)
364 u32 features;
3a5df8ff
AH
365
366#define ARM_SMMU_OPT_SECURE_CFG_ACCESS (1 << 0)
367 u32 options;
45ae7cff
WD
368 int version;
369
370 u32 num_context_banks;
371 u32 num_s2_context_banks;
372 DECLARE_BITMAP(context_map, ARM_SMMU_MAX_CBS);
373 atomic_t irptndx;
374
375 u32 num_mapping_groups;
376 DECLARE_BITMAP(smr_map, ARM_SMMU_MAX_SMRS);
377
378 unsigned long input_size;
379 unsigned long s1_output_size;
380 unsigned long s2_output_size;
381
382 u32 num_global_irqs;
383 u32 num_context_irqs;
384 unsigned int *irqs;
385
45ae7cff
WD
386 struct list_head list;
387 struct rb_root masters;
388};
389
390struct arm_smmu_cfg {
45ae7cff
WD
391 u8 cbndx;
392 u8 irptndx;
393 u32 cbar;
394 pgd_t *pgd;
395};
faea13b7 396#define INVALID_IRPTNDX 0xff
45ae7cff 397
ecfadb6e
WD
398#define ARM_SMMU_CB_ASID(cfg) ((cfg)->cbndx)
399#define ARM_SMMU_CB_VMID(cfg) ((cfg)->cbndx + 1)
400
45ae7cff 401struct arm_smmu_domain {
44680eed
WD
402 struct arm_smmu_device *smmu;
403 struct arm_smmu_cfg cfg;
c9d09e27 404 spinlock_t lock;
45ae7cff
WD
405};
406
407static DEFINE_SPINLOCK(arm_smmu_devices_lock);
408static LIST_HEAD(arm_smmu_devices);
409
3a5df8ff
AH
410struct arm_smmu_option_prop {
411 u32 opt;
412 const char *prop;
413};
414
2907320d 415static struct arm_smmu_option_prop arm_smmu_options[] = {
3a5df8ff
AH
416 { ARM_SMMU_OPT_SECURE_CFG_ACCESS, "calxeda,smmu-secure-config-access" },
417 { 0, NULL},
418};
419
420static void parse_driver_options(struct arm_smmu_device *smmu)
421{
422 int i = 0;
2907320d 423
3a5df8ff
AH
424 do {
425 if (of_property_read_bool(smmu->dev->of_node,
426 arm_smmu_options[i].prop)) {
427 smmu->options |= arm_smmu_options[i].opt;
428 dev_notice(smmu->dev, "option %s\n",
429 arm_smmu_options[i].prop);
430 }
431 } while (arm_smmu_options[++i].opt);
432}
433
a9a1b0b5
WD
434static struct device *dev_get_master_dev(struct device *dev)
435{
436 if (dev_is_pci(dev)) {
437 struct pci_bus *bus = to_pci_dev(dev)->bus;
2907320d 438
a9a1b0b5
WD
439 while (!pci_is_root_bus(bus))
440 bus = bus->parent;
441 return bus->bridge->parent;
442 }
443
444 return dev;
445}
446
45ae7cff
WD
447static struct arm_smmu_master *find_smmu_master(struct arm_smmu_device *smmu,
448 struct device_node *dev_node)
449{
450 struct rb_node *node = smmu->masters.rb_node;
451
452 while (node) {
453 struct arm_smmu_master *master;
2907320d 454
45ae7cff
WD
455 master = container_of(node, struct arm_smmu_master, node);
456
457 if (dev_node < master->of_node)
458 node = node->rb_left;
459 else if (dev_node > master->of_node)
460 node = node->rb_right;
461 else
462 return master;
463 }
464
465 return NULL;
466}
467
a9a1b0b5
WD
468static struct arm_smmu_master_cfg *
469find_smmu_master_cfg(struct arm_smmu_device *smmu, struct device *dev)
470{
471 struct arm_smmu_master *master;
472
473 if (dev_is_pci(dev))
474 return dev->archdata.iommu;
475
476 master = find_smmu_master(smmu, dev->of_node);
477 return master ? &master->cfg : NULL;
478}
479
45ae7cff
WD
480static int insert_smmu_master(struct arm_smmu_device *smmu,
481 struct arm_smmu_master *master)
482{
483 struct rb_node **new, *parent;
484
485 new = &smmu->masters.rb_node;
486 parent = NULL;
487 while (*new) {
2907320d
MH
488 struct arm_smmu_master *this
489 = container_of(*new, struct arm_smmu_master, node);
45ae7cff
WD
490
491 parent = *new;
492 if (master->of_node < this->of_node)
493 new = &((*new)->rb_left);
494 else if (master->of_node > this->of_node)
495 new = &((*new)->rb_right);
496 else
497 return -EEXIST;
498 }
499
500 rb_link_node(&master->node, parent, new);
501 rb_insert_color(&master->node, &smmu->masters);
502 return 0;
503}
504
505static int register_smmu_master(struct arm_smmu_device *smmu,
506 struct device *dev,
507 struct of_phandle_args *masterspec)
508{
509 int i;
510 struct arm_smmu_master *master;
511
512 master = find_smmu_master(smmu, masterspec->np);
513 if (master) {
514 dev_err(dev,
515 "rejecting multiple registrations for master device %s\n",
516 masterspec->np->name);
517 return -EBUSY;
518 }
519
520 if (masterspec->args_count > MAX_MASTER_STREAMIDS) {
521 dev_err(dev,
522 "reached maximum number (%d) of stream IDs for master device %s\n",
523 MAX_MASTER_STREAMIDS, masterspec->np->name);
524 return -ENOSPC;
525 }
526
527 master = devm_kzalloc(dev, sizeof(*master), GFP_KERNEL);
528 if (!master)
529 return -ENOMEM;
530
a9a1b0b5
WD
531 master->of_node = masterspec->np;
532 master->cfg.num_streamids = masterspec->args_count;
45ae7cff 533
3c8766d0
OH
534 for (i = 0; i < master->cfg.num_streamids; ++i) {
535 u16 streamid = masterspec->args[i];
45ae7cff 536
3c8766d0
OH
537 if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH) &&
538 (streamid >= smmu->num_mapping_groups)) {
539 dev_err(dev,
540 "stream ID for master device %s greater than maximum allowed (%d)\n",
541 masterspec->np->name, smmu->num_mapping_groups);
542 return -ERANGE;
543 }
544 master->cfg.streamids[i] = streamid;
545 }
45ae7cff
WD
546 return insert_smmu_master(smmu, master);
547}
548
44680eed 549static struct arm_smmu_device *find_smmu_for_device(struct device *dev)
45ae7cff 550{
44680eed 551 struct arm_smmu_device *smmu;
a9a1b0b5
WD
552 struct arm_smmu_master *master = NULL;
553 struct device_node *dev_node = dev_get_master_dev(dev)->of_node;
45ae7cff
WD
554
555 spin_lock(&arm_smmu_devices_lock);
44680eed 556 list_for_each_entry(smmu, &arm_smmu_devices, list) {
a9a1b0b5
WD
557 master = find_smmu_master(smmu, dev_node);
558 if (master)
559 break;
560 }
45ae7cff 561 spin_unlock(&arm_smmu_devices_lock);
44680eed 562
a9a1b0b5 563 return master ? smmu : NULL;
45ae7cff
WD
564}
565
566static int __arm_smmu_alloc_bitmap(unsigned long *map, int start, int end)
567{
568 int idx;
569
570 do {
571 idx = find_next_zero_bit(map, end, start);
572 if (idx == end)
573 return -ENOSPC;
574 } while (test_and_set_bit(idx, map));
575
576 return idx;
577}
578
579static void __arm_smmu_free_bitmap(unsigned long *map, int idx)
580{
581 clear_bit(idx, map);
582}
583
584/* Wait for any pending TLB invalidations to complete */
585static void arm_smmu_tlb_sync(struct arm_smmu_device *smmu)
586{
587 int count = 0;
588 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
589
590 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_sTLBGSYNC);
591 while (readl_relaxed(gr0_base + ARM_SMMU_GR0_sTLBGSTATUS)
592 & sTLBGSTATUS_GSACTIVE) {
593 cpu_relax();
594 if (++count == TLB_LOOP_TIMEOUT) {
595 dev_err_ratelimited(smmu->dev,
596 "TLB sync timed out -- SMMU may be deadlocked\n");
597 return;
598 }
599 udelay(1);
600 }
601}
602
44680eed 603static void arm_smmu_tlb_inv_context(struct arm_smmu_domain *smmu_domain)
1463fe44 604{
44680eed
WD
605 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
606 struct arm_smmu_device *smmu = smmu_domain->smmu;
1463fe44
WD
607 void __iomem *base = ARM_SMMU_GR0(smmu);
608 bool stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
609
610 if (stage1) {
611 base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
ecfadb6e
WD
612 writel_relaxed(ARM_SMMU_CB_ASID(cfg),
613 base + ARM_SMMU_CB_S1_TLBIASID);
1463fe44
WD
614 } else {
615 base = ARM_SMMU_GR0(smmu);
ecfadb6e
WD
616 writel_relaxed(ARM_SMMU_CB_VMID(cfg),
617 base + ARM_SMMU_GR0_TLBIVMID);
1463fe44
WD
618 }
619
620 arm_smmu_tlb_sync(smmu);
621}
622
45ae7cff
WD
623static irqreturn_t arm_smmu_context_fault(int irq, void *dev)
624{
625 int flags, ret;
626 u32 fsr, far, fsynr, resume;
627 unsigned long iova;
628 struct iommu_domain *domain = dev;
629 struct arm_smmu_domain *smmu_domain = domain->priv;
44680eed
WD
630 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
631 struct arm_smmu_device *smmu = smmu_domain->smmu;
45ae7cff
WD
632 void __iomem *cb_base;
633
44680eed 634 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
45ae7cff
WD
635 fsr = readl_relaxed(cb_base + ARM_SMMU_CB_FSR);
636
637 if (!(fsr & FSR_FAULT))
638 return IRQ_NONE;
639
640 if (fsr & FSR_IGN)
641 dev_err_ratelimited(smmu->dev,
70c9a7db 642 "Unexpected context fault (fsr 0x%x)\n",
45ae7cff
WD
643 fsr);
644
645 fsynr = readl_relaxed(cb_base + ARM_SMMU_CB_FSYNR0);
646 flags = fsynr & FSYNR0_WNR ? IOMMU_FAULT_WRITE : IOMMU_FAULT_READ;
647
648 far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_LO);
649 iova = far;
650#ifdef CONFIG_64BIT
651 far = readl_relaxed(cb_base + ARM_SMMU_CB_FAR_HI);
652 iova |= ((unsigned long)far << 32);
653#endif
654
655 if (!report_iommu_fault(domain, smmu->dev, iova, flags)) {
656 ret = IRQ_HANDLED;
657 resume = RESUME_RETRY;
658 } else {
2ef0f031
AH
659 dev_err_ratelimited(smmu->dev,
660 "Unhandled context fault: iova=0x%08lx, fsynr=0x%x, cb=%d\n",
44680eed 661 iova, fsynr, cfg->cbndx);
45ae7cff
WD
662 ret = IRQ_NONE;
663 resume = RESUME_TERMINATE;
664 }
665
666 /* Clear the faulting FSR */
667 writel(fsr, cb_base + ARM_SMMU_CB_FSR);
668
669 /* Retry or terminate any stalled transactions */
670 if (fsr & FSR_SS)
671 writel_relaxed(resume, cb_base + ARM_SMMU_CB_RESUME);
672
673 return ret;
674}
675
676static irqreturn_t arm_smmu_global_fault(int irq, void *dev)
677{
678 u32 gfsr, gfsynr0, gfsynr1, gfsynr2;
679 struct arm_smmu_device *smmu = dev;
3a5df8ff 680 void __iomem *gr0_base = ARM_SMMU_GR0_NS(smmu);
45ae7cff
WD
681
682 gfsr = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSR);
683 gfsynr0 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR0);
684 gfsynr1 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR1);
685 gfsynr2 = readl_relaxed(gr0_base + ARM_SMMU_GR0_sGFSYNR2);
686
3a5df8ff
AH
687 if (!gfsr)
688 return IRQ_NONE;
689
45ae7cff
WD
690 dev_err_ratelimited(smmu->dev,
691 "Unexpected global fault, this could be serious\n");
692 dev_err_ratelimited(smmu->dev,
693 "\tGFSR 0x%08x, GFSYNR0 0x%08x, GFSYNR1 0x%08x, GFSYNR2 0x%08x\n",
694 gfsr, gfsynr0, gfsynr1, gfsynr2);
695
696 writel(gfsr, gr0_base + ARM_SMMU_GR0_sGFSR);
adaba320 697 return IRQ_HANDLED;
45ae7cff
WD
698}
699
6dd35f45
WD
700static void arm_smmu_flush_pgtable(struct arm_smmu_device *smmu, void *addr,
701 size_t size)
702{
703 unsigned long offset = (unsigned long)addr & ~PAGE_MASK;
704
705
706 /* Ensure new page tables are visible to the hardware walker */
707 if (smmu->features & ARM_SMMU_FEAT_COHERENT_WALK) {
3aa80ea4 708 dsb(ishst);
6dd35f45
WD
709 } else {
710 /*
711 * If the SMMU can't walk tables in the CPU caches, treat them
712 * like non-coherent DMA since we need to flush the new entries
713 * all the way out to memory. There's no possibility of
714 * recursion here as the SMMU table walker will not be wired
715 * through another SMMU.
716 */
717 dma_map_page(smmu->dev, virt_to_page(addr), offset, size,
718 DMA_TO_DEVICE);
719 }
720}
721
45ae7cff
WD
722static void arm_smmu_init_context_bank(struct arm_smmu_domain *smmu_domain)
723{
724 u32 reg;
725 bool stage1;
44680eed
WD
726 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
727 struct arm_smmu_device *smmu = smmu_domain->smmu;
45ae7cff
WD
728 void __iomem *cb_base, *gr0_base, *gr1_base;
729
730 gr0_base = ARM_SMMU_GR0(smmu);
731 gr1_base = ARM_SMMU_GR1(smmu);
44680eed
WD
732 stage1 = cfg->cbar != CBAR_TYPE_S2_TRANS;
733 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
45ae7cff
WD
734
735 /* CBAR */
44680eed 736 reg = cfg->cbar;
45ae7cff 737 if (smmu->version == 1)
2907320d 738 reg |= cfg->irptndx << CBAR_IRPTNDX_SHIFT;
45ae7cff 739
57ca90f6
WD
740 /*
741 * Use the weakest shareability/memory types, so they are
742 * overridden by the ttbcr/pte.
743 */
744 if (stage1) {
745 reg |= (CBAR_S1_BPSHCFG_NSH << CBAR_S1_BPSHCFG_SHIFT) |
746 (CBAR_S1_MEMATTR_WB << CBAR_S1_MEMATTR_SHIFT);
747 } else {
44680eed 748 reg |= ARM_SMMU_CB_VMID(cfg) << CBAR_VMID_SHIFT;
57ca90f6 749 }
44680eed 750 writel_relaxed(reg, gr1_base + ARM_SMMU_GR1_CBAR(cfg->cbndx));
45ae7cff
WD
751
752 if (smmu->version > 1) {
753 /* CBA2R */
754#ifdef CONFIG_64BIT
755 reg = CBA2R_RW64_64BIT;
756#else
757 reg = CBA2R_RW64_32BIT;
758#endif
759 writel_relaxed(reg,
44680eed 760 gr1_base + ARM_SMMU_GR1_CBA2R(cfg->cbndx));
45ae7cff
WD
761
762 /* TTBCR2 */
763 switch (smmu->input_size) {
764 case 32:
765 reg = (TTBCR2_ADDR_32 << TTBCR2_SEP_SHIFT);
766 break;
767 case 36:
768 reg = (TTBCR2_ADDR_36 << TTBCR2_SEP_SHIFT);
769 break;
770 case 39:
4d09d99d 771 case 40:
45ae7cff
WD
772 reg = (TTBCR2_ADDR_40 << TTBCR2_SEP_SHIFT);
773 break;
774 case 42:
775 reg = (TTBCR2_ADDR_42 << TTBCR2_SEP_SHIFT);
776 break;
777 case 44:
778 reg = (TTBCR2_ADDR_44 << TTBCR2_SEP_SHIFT);
779 break;
780 case 48:
781 reg = (TTBCR2_ADDR_48 << TTBCR2_SEP_SHIFT);
782 break;
783 }
784
785 switch (smmu->s1_output_size) {
786 case 32:
787 reg |= (TTBCR2_ADDR_32 << TTBCR2_PASIZE_SHIFT);
788 break;
789 case 36:
790 reg |= (TTBCR2_ADDR_36 << TTBCR2_PASIZE_SHIFT);
791 break;
792 case 39:
4d09d99d 793 case 40:
45ae7cff
WD
794 reg |= (TTBCR2_ADDR_40 << TTBCR2_PASIZE_SHIFT);
795 break;
796 case 42:
797 reg |= (TTBCR2_ADDR_42 << TTBCR2_PASIZE_SHIFT);
798 break;
799 case 44:
800 reg |= (TTBCR2_ADDR_44 << TTBCR2_PASIZE_SHIFT);
801 break;
802 case 48:
803 reg |= (TTBCR2_ADDR_48 << TTBCR2_PASIZE_SHIFT);
804 break;
805 }
806
807 if (stage1)
808 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR2);
809 }
810
811 /* TTBR0 */
44680eed 812 arm_smmu_flush_pgtable(smmu, cfg->pgd,
6dd35f45 813 PTRS_PER_PGD * sizeof(pgd_t));
44680eed 814 reg = __pa(cfg->pgd);
45ae7cff 815 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_LO);
44680eed 816 reg = (phys_addr_t)__pa(cfg->pgd) >> 32;
1463fe44 817 if (stage1)
44680eed 818 reg |= ARM_SMMU_CB_ASID(cfg) << TTBRn_HI_ASID_SHIFT;
45ae7cff 819 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBR0_HI);
45ae7cff
WD
820
821 /*
822 * TTBCR
823 * We use long descriptor, with inner-shareable WBWA tables in TTBR0.
824 */
825 if (smmu->version > 1) {
826 if (PAGE_SIZE == SZ_4K)
827 reg = TTBCR_TG0_4K;
828 else
829 reg = TTBCR_TG0_64K;
830
831 if (!stage1) {
a65217a4
WD
832 reg |= (64 - smmu->s1_output_size) << TTBCR_T0SZ_SHIFT;
833
45ae7cff
WD
834 switch (smmu->s2_output_size) {
835 case 32:
836 reg |= (TTBCR2_ADDR_32 << TTBCR_PASIZE_SHIFT);
837 break;
838 case 36:
839 reg |= (TTBCR2_ADDR_36 << TTBCR_PASIZE_SHIFT);
840 break;
841 case 40:
842 reg |= (TTBCR2_ADDR_40 << TTBCR_PASIZE_SHIFT);
843 break;
844 case 42:
845 reg |= (TTBCR2_ADDR_42 << TTBCR_PASIZE_SHIFT);
846 break;
847 case 44:
848 reg |= (TTBCR2_ADDR_44 << TTBCR_PASIZE_SHIFT);
849 break;
850 case 48:
851 reg |= (TTBCR2_ADDR_48 << TTBCR_PASIZE_SHIFT);
852 break;
853 }
854 } else {
a65217a4 855 reg |= (64 - smmu->input_size) << TTBCR_T0SZ_SHIFT;
45ae7cff
WD
856 }
857 } else {
858 reg = 0;
859 }
860
861 reg |= TTBCR_EAE |
862 (TTBCR_SH_IS << TTBCR_SH0_SHIFT) |
863 (TTBCR_RGN_WBWA << TTBCR_ORGN0_SHIFT) |
1fc870c7
OH
864 (TTBCR_RGN_WBWA << TTBCR_IRGN0_SHIFT);
865
866 if (!stage1)
867 reg |= (TTBCR_SL0_LVL_1 << TTBCR_SL0_SHIFT);
868
45ae7cff
WD
869 writel_relaxed(reg, cb_base + ARM_SMMU_CB_TTBCR);
870
871 /* MAIR0 (stage-1 only) */
872 if (stage1) {
873 reg = (MAIR_ATTR_NC << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_NC)) |
874 (MAIR_ATTR_WBRWA << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_CACHE)) |
875 (MAIR_ATTR_DEVICE << MAIR_ATTR_SHIFT(MAIR_ATTR_IDX_DEV));
876 writel_relaxed(reg, cb_base + ARM_SMMU_CB_S1_MAIR0);
877 }
878
45ae7cff
WD
879 /* SCTLR */
880 reg = SCTLR_CFCFG | SCTLR_CFIE | SCTLR_CFRE | SCTLR_M | SCTLR_EAE_SBOP;
881 if (stage1)
882 reg |= SCTLR_S1_ASIDPNE;
883#ifdef __BIG_ENDIAN
884 reg |= SCTLR_E;
885#endif
25724841 886 writel_relaxed(reg, cb_base + ARM_SMMU_CB_SCTLR);
45ae7cff
WD
887}
888
889static int arm_smmu_init_domain_context(struct iommu_domain *domain,
44680eed 890 struct arm_smmu_device *smmu)
45ae7cff 891{
a18037b2
MH
892 int irq, start, ret = 0;
893 unsigned long flags;
45ae7cff 894 struct arm_smmu_domain *smmu_domain = domain->priv;
44680eed 895 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
45ae7cff 896
a18037b2
MH
897 spin_lock_irqsave(&smmu_domain->lock, flags);
898 if (smmu_domain->smmu)
899 goto out_unlock;
900
45ae7cff
WD
901 if (smmu->features & ARM_SMMU_FEAT_TRANS_NESTED) {
902 /*
903 * We will likely want to change this if/when KVM gets
904 * involved.
905 */
44680eed 906 cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
45ae7cff 907 start = smmu->num_s2_context_banks;
9c5c92e3 908 } else if (smmu->features & ARM_SMMU_FEAT_TRANS_S1) {
44680eed 909 cfg->cbar = CBAR_TYPE_S1_TRANS_S2_BYPASS;
45ae7cff 910 start = smmu->num_s2_context_banks;
9c5c92e3
WD
911 } else {
912 cfg->cbar = CBAR_TYPE_S2_TRANS;
913 start = 0;
45ae7cff
WD
914 }
915
916 ret = __arm_smmu_alloc_bitmap(smmu->context_map, start,
917 smmu->num_context_banks);
918 if (IS_ERR_VALUE(ret))
a18037b2 919 goto out_unlock;
45ae7cff 920
44680eed 921 cfg->cbndx = ret;
45ae7cff 922 if (smmu->version == 1) {
44680eed
WD
923 cfg->irptndx = atomic_inc_return(&smmu->irptndx);
924 cfg->irptndx %= smmu->num_context_irqs;
45ae7cff 925 } else {
44680eed 926 cfg->irptndx = cfg->cbndx;
45ae7cff
WD
927 }
928
a18037b2
MH
929 ACCESS_ONCE(smmu_domain->smmu) = smmu;
930 arm_smmu_init_context_bank(smmu_domain);
931 spin_unlock_irqrestore(&smmu_domain->lock, flags);
932
44680eed 933 irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
45ae7cff
WD
934 ret = request_irq(irq, arm_smmu_context_fault, IRQF_SHARED,
935 "arm-smmu-context-fault", domain);
936 if (IS_ERR_VALUE(ret)) {
937 dev_err(smmu->dev, "failed to request context IRQ %d (%u)\n",
44680eed
WD
938 cfg->irptndx, irq);
939 cfg->irptndx = INVALID_IRPTNDX;
45ae7cff
WD
940 }
941
a9a1b0b5 942 return 0;
45ae7cff 943
a18037b2
MH
944out_unlock:
945 spin_unlock_irqrestore(&smmu_domain->lock, flags);
45ae7cff
WD
946 return ret;
947}
948
949static void arm_smmu_destroy_domain_context(struct iommu_domain *domain)
950{
951 struct arm_smmu_domain *smmu_domain = domain->priv;
44680eed
WD
952 struct arm_smmu_device *smmu = smmu_domain->smmu;
953 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
1463fe44 954 void __iomem *cb_base;
45ae7cff
WD
955 int irq;
956
957 if (!smmu)
958 return;
959
1463fe44 960 /* Disable the context bank and nuke the TLB before freeing it. */
44680eed 961 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, cfg->cbndx);
1463fe44 962 writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
44680eed 963 arm_smmu_tlb_inv_context(smmu_domain);
1463fe44 964
44680eed
WD
965 if (cfg->irptndx != INVALID_IRPTNDX) {
966 irq = smmu->irqs[smmu->num_global_irqs + cfg->irptndx];
45ae7cff
WD
967 free_irq(irq, domain);
968 }
969
44680eed 970 __arm_smmu_free_bitmap(smmu->context_map, cfg->cbndx);
45ae7cff
WD
971}
972
973static int arm_smmu_domain_init(struct iommu_domain *domain)
974{
975 struct arm_smmu_domain *smmu_domain;
976 pgd_t *pgd;
977
978 /*
979 * Allocate the domain and initialise some of its data structures.
980 * We can't really do anything meaningful until we've added a
981 * master.
982 */
983 smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
984 if (!smmu_domain)
985 return -ENOMEM;
986
2907320d 987 pgd = kcalloc(PTRS_PER_PGD, sizeof(pgd_t), GFP_KERNEL);
45ae7cff
WD
988 if (!pgd)
989 goto out_free_domain;
44680eed 990 smmu_domain->cfg.pgd = pgd;
45ae7cff 991
c9d09e27 992 spin_lock_init(&smmu_domain->lock);
45ae7cff
WD
993 domain->priv = smmu_domain;
994 return 0;
995
996out_free_domain:
997 kfree(smmu_domain);
998 return -ENOMEM;
999}
1000
1001static void arm_smmu_free_ptes(pmd_t *pmd)
1002{
1003 pgtable_t table = pmd_pgtable(*pmd);
2907320d 1004
45ae7cff
WD
1005 __free_page(table);
1006}
1007
1008static void arm_smmu_free_pmds(pud_t *pud)
1009{
1010 int i;
1011 pmd_t *pmd, *pmd_base = pmd_offset(pud, 0);
1012
1013 pmd = pmd_base;
1014 for (i = 0; i < PTRS_PER_PMD; ++i) {
1015 if (pmd_none(*pmd))
1016 continue;
1017
1018 arm_smmu_free_ptes(pmd);
1019 pmd++;
1020 }
1021
1022 pmd_free(NULL, pmd_base);
1023}
1024
1025static void arm_smmu_free_puds(pgd_t *pgd)
1026{
1027 int i;
1028 pud_t *pud, *pud_base = pud_offset(pgd, 0);
1029
1030 pud = pud_base;
1031 for (i = 0; i < PTRS_PER_PUD; ++i) {
1032 if (pud_none(*pud))
1033 continue;
1034
1035 arm_smmu_free_pmds(pud);
1036 pud++;
1037 }
1038
1039 pud_free(NULL, pud_base);
1040}
1041
1042static void arm_smmu_free_pgtables(struct arm_smmu_domain *smmu_domain)
1043{
1044 int i;
44680eed
WD
1045 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
1046 pgd_t *pgd, *pgd_base = cfg->pgd;
45ae7cff
WD
1047
1048 /*
1049 * Recursively free the page tables for this domain. We don't
34fb4b37
WD
1050 * care about speculative TLB filling because the tables should
1051 * not be active in any context bank at this point (SCTLR.M is 0).
45ae7cff
WD
1052 */
1053 pgd = pgd_base;
1054 for (i = 0; i < PTRS_PER_PGD; ++i) {
1055 if (pgd_none(*pgd))
1056 continue;
1057 arm_smmu_free_puds(pgd);
1058 pgd++;
1059 }
1060
1061 kfree(pgd_base);
1062}
1063
1064static void arm_smmu_domain_destroy(struct iommu_domain *domain)
1065{
1066 struct arm_smmu_domain *smmu_domain = domain->priv;
1463fe44
WD
1067
1068 /*
1069 * Free the domain resources. We assume that all devices have
1070 * already been detached.
1071 */
45ae7cff
WD
1072 arm_smmu_destroy_domain_context(domain);
1073 arm_smmu_free_pgtables(smmu_domain);
1074 kfree(smmu_domain);
1075}
1076
1077static int arm_smmu_master_configure_smrs(struct arm_smmu_device *smmu,
a9a1b0b5 1078 struct arm_smmu_master_cfg *cfg)
45ae7cff
WD
1079{
1080 int i;
1081 struct arm_smmu_smr *smrs;
1082 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1083
1084 if (!(smmu->features & ARM_SMMU_FEAT_STREAM_MATCH))
1085 return 0;
1086
a9a1b0b5 1087 if (cfg->smrs)
45ae7cff
WD
1088 return -EEXIST;
1089
2907320d 1090 smrs = kmalloc_array(cfg->num_streamids, sizeof(*smrs), GFP_KERNEL);
45ae7cff 1091 if (!smrs) {
a9a1b0b5
WD
1092 dev_err(smmu->dev, "failed to allocate %d SMRs\n",
1093 cfg->num_streamids);
45ae7cff
WD
1094 return -ENOMEM;
1095 }
1096
44680eed 1097 /* Allocate the SMRs on the SMMU */
a9a1b0b5 1098 for (i = 0; i < cfg->num_streamids; ++i) {
45ae7cff
WD
1099 int idx = __arm_smmu_alloc_bitmap(smmu->smr_map, 0,
1100 smmu->num_mapping_groups);
1101 if (IS_ERR_VALUE(idx)) {
1102 dev_err(smmu->dev, "failed to allocate free SMR\n");
1103 goto err_free_smrs;
1104 }
1105
1106 smrs[i] = (struct arm_smmu_smr) {
1107 .idx = idx,
1108 .mask = 0, /* We don't currently share SMRs */
a9a1b0b5 1109 .id = cfg->streamids[i],
45ae7cff
WD
1110 };
1111 }
1112
1113 /* It worked! Now, poke the actual hardware */
a9a1b0b5 1114 for (i = 0; i < cfg->num_streamids; ++i) {
45ae7cff
WD
1115 u32 reg = SMR_VALID | smrs[i].id << SMR_ID_SHIFT |
1116 smrs[i].mask << SMR_MASK_SHIFT;
1117 writel_relaxed(reg, gr0_base + ARM_SMMU_GR0_SMR(smrs[i].idx));
1118 }
1119
a9a1b0b5 1120 cfg->smrs = smrs;
45ae7cff
WD
1121 return 0;
1122
1123err_free_smrs:
1124 while (--i >= 0)
1125 __arm_smmu_free_bitmap(smmu->smr_map, smrs[i].idx);
1126 kfree(smrs);
1127 return -ENOSPC;
1128}
1129
1130static void arm_smmu_master_free_smrs(struct arm_smmu_device *smmu,
a9a1b0b5 1131 struct arm_smmu_master_cfg *cfg)
45ae7cff
WD
1132{
1133 int i;
1134 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
a9a1b0b5 1135 struct arm_smmu_smr *smrs = cfg->smrs;
45ae7cff 1136
43b412be
WD
1137 if (!smrs)
1138 return;
1139
45ae7cff 1140 /* Invalidate the SMRs before freeing back to the allocator */
a9a1b0b5 1141 for (i = 0; i < cfg->num_streamids; ++i) {
45ae7cff 1142 u8 idx = smrs[i].idx;
2907320d 1143
45ae7cff
WD
1144 writel_relaxed(~SMR_VALID, gr0_base + ARM_SMMU_GR0_SMR(idx));
1145 __arm_smmu_free_bitmap(smmu->smr_map, idx);
1146 }
1147
a9a1b0b5 1148 cfg->smrs = NULL;
45ae7cff
WD
1149 kfree(smrs);
1150}
1151
45ae7cff 1152static int arm_smmu_domain_add_master(struct arm_smmu_domain *smmu_domain,
a9a1b0b5 1153 struct arm_smmu_master_cfg *cfg)
45ae7cff
WD
1154{
1155 int i, ret;
44680eed 1156 struct arm_smmu_device *smmu = smmu_domain->smmu;
45ae7cff
WD
1157 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1158
a9a1b0b5 1159 ret = arm_smmu_master_configure_smrs(smmu, cfg);
45ae7cff
WD
1160 if (ret)
1161 return ret;
1162
a9a1b0b5 1163 for (i = 0; i < cfg->num_streamids; ++i) {
45ae7cff 1164 u32 idx, s2cr;
2907320d 1165
a9a1b0b5 1166 idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
6069d23c 1167 s2cr = S2CR_TYPE_TRANS |
44680eed 1168 (smmu_domain->cfg.cbndx << S2CR_CBNDX_SHIFT);
45ae7cff
WD
1169 writel_relaxed(s2cr, gr0_base + ARM_SMMU_GR0_S2CR(idx));
1170 }
1171
1172 return 0;
1173}
1174
1175static void arm_smmu_domain_remove_master(struct arm_smmu_domain *smmu_domain,
a9a1b0b5 1176 struct arm_smmu_master_cfg *cfg)
45ae7cff 1177{
43b412be 1178 int i;
44680eed 1179 struct arm_smmu_device *smmu = smmu_domain->smmu;
43b412be 1180 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
45ae7cff
WD
1181
1182 /*
1183 * We *must* clear the S2CR first, because freeing the SMR means
1184 * that it can be re-allocated immediately.
1185 */
43b412be
WD
1186 for (i = 0; i < cfg->num_streamids; ++i) {
1187 u32 idx = cfg->smrs ? cfg->smrs[i].idx : cfg->streamids[i];
1188
1189 writel_relaxed(S2CR_TYPE_BYPASS,
1190 gr0_base + ARM_SMMU_GR0_S2CR(idx));
1191 }
1192
a9a1b0b5 1193 arm_smmu_master_free_smrs(smmu, cfg);
45ae7cff
WD
1194}
1195
1196static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
1197{
a18037b2 1198 int ret;
45ae7cff 1199 struct arm_smmu_domain *smmu_domain = domain->priv;
a18037b2 1200 struct arm_smmu_device *smmu, *dom_smmu;
a9a1b0b5 1201 struct arm_smmu_master_cfg *cfg;
45ae7cff 1202
44680eed
WD
1203 smmu = dev_get_master_dev(dev)->archdata.iommu;
1204 if (!smmu) {
45ae7cff
WD
1205 dev_err(dev, "cannot attach to SMMU, is it on the same bus?\n");
1206 return -ENXIO;
1207 }
1208
1209 /*
44680eed
WD
1210 * Sanity check the domain. We don't support domains across
1211 * different SMMUs.
45ae7cff 1212 */
a18037b2
MH
1213 dom_smmu = ACCESS_ONCE(smmu_domain->smmu);
1214 if (!dom_smmu) {
45ae7cff 1215 /* Now that we have a master, we can finalise the domain */
44680eed 1216 ret = arm_smmu_init_domain_context(domain, smmu);
45ae7cff 1217 if (IS_ERR_VALUE(ret))
a18037b2
MH
1218 return ret;
1219
1220 dom_smmu = smmu_domain->smmu;
1221 }
1222
1223 if (dom_smmu != smmu) {
45ae7cff
WD
1224 dev_err(dev,
1225 "cannot attach to SMMU %s whilst already attached to domain on SMMU %s\n",
a18037b2
MH
1226 dev_name(smmu_domain->smmu->dev), dev_name(smmu->dev));
1227 return -EINVAL;
45ae7cff 1228 }
45ae7cff
WD
1229
1230 /* Looks ok, so add the device to the domain */
44680eed 1231 cfg = find_smmu_master_cfg(smmu_domain->smmu, dev);
a9a1b0b5 1232 if (!cfg)
45ae7cff
WD
1233 return -ENODEV;
1234
a9a1b0b5 1235 return arm_smmu_domain_add_master(smmu_domain, cfg);
45ae7cff
WD
1236}
1237
1238static void arm_smmu_detach_dev(struct iommu_domain *domain, struct device *dev)
1239{
1240 struct arm_smmu_domain *smmu_domain = domain->priv;
a9a1b0b5 1241 struct arm_smmu_master_cfg *cfg;
45ae7cff 1242
44680eed 1243 cfg = find_smmu_master_cfg(smmu_domain->smmu, dev);
a9a1b0b5
WD
1244 if (cfg)
1245 arm_smmu_domain_remove_master(smmu_domain, cfg);
45ae7cff
WD
1246}
1247
45ae7cff
WD
1248static bool arm_smmu_pte_is_contiguous_range(unsigned long addr,
1249 unsigned long end)
1250{
1251 return !(addr & ~ARM_SMMU_PTE_CONT_MASK) &&
1252 (addr + ARM_SMMU_PTE_CONT_SIZE <= end);
1253}
1254
1255static int arm_smmu_alloc_init_pte(struct arm_smmu_device *smmu, pmd_t *pmd,
1256 unsigned long addr, unsigned long end,
b410aed9 1257 unsigned long pfn, int prot, int stage)
45ae7cff
WD
1258{
1259 pte_t *pte, *start;
cf2d45b1 1260 pteval_t pteval = ARM_SMMU_PTE_PAGE | ARM_SMMU_PTE_AF | ARM_SMMU_PTE_XN;
45ae7cff
WD
1261
1262 if (pmd_none(*pmd)) {
1263 /* Allocate a new set of tables */
c9d09e27 1264 pgtable_t table = alloc_page(GFP_ATOMIC|__GFP_ZERO);
2907320d 1265
45ae7cff
WD
1266 if (!table)
1267 return -ENOMEM;
1268
6dd35f45 1269 arm_smmu_flush_pgtable(smmu, page_address(table), PAGE_SIZE);
45ae7cff
WD
1270 pmd_populate(NULL, pmd, table);
1271 arm_smmu_flush_pgtable(smmu, pmd, sizeof(*pmd));
1272 }
1273
1274 if (stage == 1) {
1463fe44 1275 pteval |= ARM_SMMU_PTE_AP_UNPRIV | ARM_SMMU_PTE_nG;
b410aed9 1276 if (!(prot & IOMMU_WRITE) && (prot & IOMMU_READ))
45ae7cff
WD
1277 pteval |= ARM_SMMU_PTE_AP_RDONLY;
1278
b410aed9 1279 if (prot & IOMMU_CACHE)
45ae7cff
WD
1280 pteval |= (MAIR_ATTR_IDX_CACHE <<
1281 ARM_SMMU_PTE_ATTRINDX_SHIFT);
1282 } else {
1283 pteval |= ARM_SMMU_PTE_HAP_FAULT;
b410aed9 1284 if (prot & IOMMU_READ)
45ae7cff 1285 pteval |= ARM_SMMU_PTE_HAP_READ;
b410aed9 1286 if (prot & IOMMU_WRITE)
45ae7cff 1287 pteval |= ARM_SMMU_PTE_HAP_WRITE;
b410aed9 1288 if (prot & IOMMU_CACHE)
45ae7cff
WD
1289 pteval |= ARM_SMMU_PTE_MEMATTR_OIWB;
1290 else
1291 pteval |= ARM_SMMU_PTE_MEMATTR_NC;
1292 }
1293
1294 /* If no access, create a faulting entry to avoid TLB fills */
b410aed9 1295 if (prot & IOMMU_EXEC)
cf2d45b1 1296 pteval &= ~ARM_SMMU_PTE_XN;
b410aed9 1297 else if (!(prot & (IOMMU_READ | IOMMU_WRITE)))
45ae7cff
WD
1298 pteval &= ~ARM_SMMU_PTE_PAGE;
1299
1300 pteval |= ARM_SMMU_PTE_SH_IS;
1301 start = pmd_page_vaddr(*pmd) + pte_index(addr);
1302 pte = start;
1303
1304 /*
1305 * Install the page table entries. This is fairly complicated
1306 * since we attempt to make use of the contiguous hint in the
1307 * ptes where possible. The contiguous hint indicates a series
1308 * of ARM_SMMU_PTE_CONT_ENTRIES ptes mapping a physically
1309 * contiguous region with the following constraints:
1310 *
1311 * - The region start is aligned to ARM_SMMU_PTE_CONT_SIZE
1312 * - Each pte in the region has the contiguous hint bit set
1313 *
1314 * This complicates unmapping (also handled by this code, when
1315 * neither IOMMU_READ or IOMMU_WRITE are set) because it is
1316 * possible, yet highly unlikely, that a client may unmap only
1317 * part of a contiguous range. This requires clearing of the
1318 * contiguous hint bits in the range before installing the new
1319 * faulting entries.
1320 *
1321 * Note that re-mapping an address range without first unmapping
1322 * it is not supported, so TLB invalidation is not required here
1323 * and is instead performed at unmap and domain-init time.
1324 */
1325 do {
1326 int i = 1;
2907320d 1327
45ae7cff
WD
1328 pteval &= ~ARM_SMMU_PTE_CONT;
1329
1330 if (arm_smmu_pte_is_contiguous_range(addr, end)) {
1331 i = ARM_SMMU_PTE_CONT_ENTRIES;
1332 pteval |= ARM_SMMU_PTE_CONT;
1333 } else if (pte_val(*pte) &
1334 (ARM_SMMU_PTE_CONT | ARM_SMMU_PTE_PAGE)) {
1335 int j;
1336 pte_t *cont_start;
1337 unsigned long idx = pte_index(addr);
1338
1339 idx &= ~(ARM_SMMU_PTE_CONT_ENTRIES - 1);
1340 cont_start = pmd_page_vaddr(*pmd) + idx;
1341 for (j = 0; j < ARM_SMMU_PTE_CONT_ENTRIES; ++j)
2907320d
MH
1342 pte_val(*(cont_start + j)) &=
1343 ~ARM_SMMU_PTE_CONT;
45ae7cff
WD
1344
1345 arm_smmu_flush_pgtable(smmu, cont_start,
1346 sizeof(*pte) *
1347 ARM_SMMU_PTE_CONT_ENTRIES);
1348 }
1349
1350 do {
1351 *pte = pfn_pte(pfn, __pgprot(pteval));
1352 } while (pte++, pfn++, addr += PAGE_SIZE, --i);
1353 } while (addr != end);
1354
1355 arm_smmu_flush_pgtable(smmu, start, sizeof(*pte) * (pte - start));
1356 return 0;
1357}
1358
1359static int arm_smmu_alloc_init_pmd(struct arm_smmu_device *smmu, pud_t *pud,
1360 unsigned long addr, unsigned long end,
b410aed9 1361 phys_addr_t phys, int prot, int stage)
45ae7cff
WD
1362{
1363 int ret;
1364 pmd_t *pmd;
1365 unsigned long next, pfn = __phys_to_pfn(phys);
1366
1367#ifndef __PAGETABLE_PMD_FOLDED
1368 if (pud_none(*pud)) {
c9d09e27 1369 pmd = (pmd_t *)get_zeroed_page(GFP_ATOMIC);
45ae7cff
WD
1370 if (!pmd)
1371 return -ENOMEM;
97a64420 1372
6dd35f45 1373 arm_smmu_flush_pgtable(smmu, pmd, PAGE_SIZE);
97a64420
YZ
1374 pud_populate(NULL, pud, pmd);
1375 arm_smmu_flush_pgtable(smmu, pud, sizeof(*pud));
1376
1377 pmd += pmd_index(addr);
45ae7cff
WD
1378 } else
1379#endif
1380 pmd = pmd_offset(pud, addr);
1381
1382 do {
1383 next = pmd_addr_end(addr, end);
aca1bc45 1384 ret = arm_smmu_alloc_init_pte(smmu, pmd, addr, next, pfn,
b410aed9 1385 prot, stage);
45ae7cff
WD
1386 phys += next - addr;
1387 } while (pmd++, addr = next, addr < end);
1388
1389 return ret;
1390}
1391
1392static int arm_smmu_alloc_init_pud(struct arm_smmu_device *smmu, pgd_t *pgd,
1393 unsigned long addr, unsigned long end,
b410aed9 1394 phys_addr_t phys, int prot, int stage)
45ae7cff
WD
1395{
1396 int ret = 0;
1397 pud_t *pud;
1398 unsigned long next;
1399
1400#ifndef __PAGETABLE_PUD_FOLDED
1401 if (pgd_none(*pgd)) {
c9d09e27 1402 pud = (pud_t *)get_zeroed_page(GFP_ATOMIC);
45ae7cff
WD
1403 if (!pud)
1404 return -ENOMEM;
97a64420 1405
6dd35f45 1406 arm_smmu_flush_pgtable(smmu, pud, PAGE_SIZE);
97a64420
YZ
1407 pgd_populate(NULL, pgd, pud);
1408 arm_smmu_flush_pgtable(smmu, pgd, sizeof(*pgd));
1409
1410 pud += pud_index(addr);
45ae7cff
WD
1411 } else
1412#endif
1413 pud = pud_offset(pgd, addr);
1414
1415 do {
1416 next = pud_addr_end(addr, end);
1417 ret = arm_smmu_alloc_init_pmd(smmu, pud, addr, next, phys,
b410aed9 1418 prot, stage);
45ae7cff
WD
1419 phys += next - addr;
1420 } while (pud++, addr = next, addr < end);
1421
1422 return ret;
1423}
1424
1425static int arm_smmu_handle_mapping(struct arm_smmu_domain *smmu_domain,
1426 unsigned long iova, phys_addr_t paddr,
b410aed9 1427 size_t size, int prot)
45ae7cff
WD
1428{
1429 int ret, stage;
1430 unsigned long end;
1431 phys_addr_t input_mask, output_mask;
44680eed
WD
1432 struct arm_smmu_device *smmu = smmu_domain->smmu;
1433 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
1434 pgd_t *pgd = cfg->pgd;
b410aed9 1435 unsigned long flags;
45ae7cff 1436
44680eed 1437 if (cfg->cbar == CBAR_TYPE_S2_TRANS) {
45ae7cff
WD
1438 stage = 2;
1439 output_mask = (1ULL << smmu->s2_output_size) - 1;
1440 } else {
1441 stage = 1;
1442 output_mask = (1ULL << smmu->s1_output_size) - 1;
1443 }
1444
1445 if (!pgd)
1446 return -EINVAL;
1447
1448 if (size & ~PAGE_MASK)
1449 return -EINVAL;
1450
1451 input_mask = (1ULL << smmu->input_size) - 1;
1452 if ((phys_addr_t)iova & ~input_mask)
1453 return -ERANGE;
1454
1455 if (paddr & ~output_mask)
1456 return -ERANGE;
1457
b410aed9 1458 spin_lock_irqsave(&smmu_domain->lock, flags);
45ae7cff
WD
1459 pgd += pgd_index(iova);
1460 end = iova + size;
1461 do {
1462 unsigned long next = pgd_addr_end(iova, end);
1463
1464 ret = arm_smmu_alloc_init_pud(smmu, pgd, iova, next, paddr,
b410aed9 1465 prot, stage);
45ae7cff
WD
1466 if (ret)
1467 goto out_unlock;
1468
1469 paddr += next - iova;
1470 iova = next;
1471 } while (pgd++, iova != end);
1472
1473out_unlock:
b410aed9 1474 spin_unlock_irqrestore(&smmu_domain->lock, flags);
45ae7cff 1475
45ae7cff
WD
1476 return ret;
1477}
1478
1479static int arm_smmu_map(struct iommu_domain *domain, unsigned long iova,
b410aed9 1480 phys_addr_t paddr, size_t size, int prot)
45ae7cff
WD
1481{
1482 struct arm_smmu_domain *smmu_domain = domain->priv;
45ae7cff 1483
5552ecdb 1484 if (!smmu_domain)
45ae7cff
WD
1485 return -ENODEV;
1486
b410aed9 1487 return arm_smmu_handle_mapping(smmu_domain, iova, paddr, size, prot);
45ae7cff
WD
1488}
1489
1490static size_t arm_smmu_unmap(struct iommu_domain *domain, unsigned long iova,
1491 size_t size)
1492{
1493 int ret;
1494 struct arm_smmu_domain *smmu_domain = domain->priv;
45ae7cff
WD
1495
1496 ret = arm_smmu_handle_mapping(smmu_domain, iova, 0, size, 0);
44680eed 1497 arm_smmu_tlb_inv_context(smmu_domain);
16c50dcf 1498 return ret ? 0 : size;
45ae7cff
WD
1499}
1500
1501static phys_addr_t arm_smmu_iova_to_phys(struct iommu_domain *domain,
1502 dma_addr_t iova)
1503{
a44a9791
WD
1504 pgd_t *pgdp, pgd;
1505 pud_t pud;
1506 pmd_t pmd;
1507 pte_t pte;
45ae7cff 1508 struct arm_smmu_domain *smmu_domain = domain->priv;
44680eed 1509 struct arm_smmu_cfg *cfg = &smmu_domain->cfg;
45ae7cff 1510
44680eed 1511 pgdp = cfg->pgd;
a44a9791
WD
1512 if (!pgdp)
1513 return 0;
45ae7cff 1514
a44a9791
WD
1515 pgd = *(pgdp + pgd_index(iova));
1516 if (pgd_none(pgd))
1517 return 0;
45ae7cff 1518
a44a9791
WD
1519 pud = *pud_offset(&pgd, iova);
1520 if (pud_none(pud))
1521 return 0;
45ae7cff 1522
a44a9791
WD
1523 pmd = *pmd_offset(&pud, iova);
1524 if (pmd_none(pmd))
1525 return 0;
45ae7cff 1526
a44a9791 1527 pte = *(pmd_page_vaddr(pmd) + pte_index(iova));
45ae7cff 1528 if (pte_none(pte))
a44a9791 1529 return 0;
45ae7cff 1530
a44a9791 1531 return __pfn_to_phys(pte_pfn(pte)) | (iova & ~PAGE_MASK);
45ae7cff
WD
1532}
1533
1534static int arm_smmu_domain_has_cap(struct iommu_domain *domain,
1535 unsigned long cap)
1536{
45ae7cff 1537 struct arm_smmu_domain *smmu_domain = domain->priv;
d3bca166
WD
1538 struct arm_smmu_device *smmu = smmu_domain->smmu;
1539 u32 features = smmu ? smmu->features : 0;
d0948945
WD
1540
1541 switch (cap) {
1542 case IOMMU_CAP_CACHE_COHERENCY:
1543 return features & ARM_SMMU_FEAT_COHERENT_WALK;
1544 case IOMMU_CAP_INTR_REMAP:
1545 return 1; /* MSIs are just memory writes */
1546 default:
1547 return 0;
1548 }
45ae7cff 1549}
45ae7cff 1550
a9a1b0b5
WD
1551static int __arm_smmu_get_pci_sid(struct pci_dev *pdev, u16 alias, void *data)
1552{
1553 *((u16 *)data) = alias;
1554 return 0; /* Continue walking */
45ae7cff
WD
1555}
1556
1557static int arm_smmu_add_device(struct device *dev)
1558{
a9a1b0b5 1559 struct arm_smmu_device *smmu;
5fc63a7c
AM
1560 struct iommu_group *group;
1561 int ret;
1562
1563 if (dev->archdata.iommu) {
1564 dev_warn(dev, "IOMMU driver already assigned to device\n");
1565 return -EINVAL;
1566 }
45ae7cff 1567
44680eed 1568 smmu = find_smmu_for_device(dev);
a9a1b0b5 1569 if (!smmu)
45ae7cff
WD
1570 return -ENODEV;
1571
5fc63a7c
AM
1572 group = iommu_group_alloc();
1573 if (IS_ERR(group)) {
1574 dev_err(dev, "Failed to allocate IOMMU group\n");
1575 return PTR_ERR(group);
1576 }
1577
a9a1b0b5
WD
1578 if (dev_is_pci(dev)) {
1579 struct arm_smmu_master_cfg *cfg;
1580 struct pci_dev *pdev = to_pci_dev(dev);
1581
1582 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
1583 if (!cfg) {
1584 ret = -ENOMEM;
1585 goto out_put_group;
1586 }
1587
1588 cfg->num_streamids = 1;
1589 /*
1590 * Assume Stream ID == Requester ID for now.
1591 * We need a way to describe the ID mappings in FDT.
1592 */
1593 pci_for_each_dma_alias(pdev, __arm_smmu_get_pci_sid,
1594 &cfg->streamids[0]);
1595 dev->archdata.iommu = cfg;
1596 } else {
1597 dev->archdata.iommu = smmu;
1598 }
1599
5fc63a7c 1600 ret = iommu_group_add_device(group, dev);
5fc63a7c 1601
a9a1b0b5
WD
1602out_put_group:
1603 iommu_group_put(group);
5fc63a7c 1604 return ret;
45ae7cff
WD
1605}
1606
1607static void arm_smmu_remove_device(struct device *dev)
1608{
a9a1b0b5
WD
1609 if (dev_is_pci(dev))
1610 kfree(dev->archdata.iommu);
1611
45ae7cff 1612 dev->archdata.iommu = NULL;
5fc63a7c 1613 iommu_group_remove_device(dev);
45ae7cff
WD
1614}
1615
b22f6434 1616static const struct iommu_ops arm_smmu_ops = {
45ae7cff
WD
1617 .domain_init = arm_smmu_domain_init,
1618 .domain_destroy = arm_smmu_domain_destroy,
1619 .attach_dev = arm_smmu_attach_dev,
1620 .detach_dev = arm_smmu_detach_dev,
1621 .map = arm_smmu_map,
1622 .unmap = arm_smmu_unmap,
1623 .iova_to_phys = arm_smmu_iova_to_phys,
1624 .domain_has_cap = arm_smmu_domain_has_cap,
1625 .add_device = arm_smmu_add_device,
1626 .remove_device = arm_smmu_remove_device,
1627 .pgsize_bitmap = (SECTION_SIZE |
1628 ARM_SMMU_PTE_CONT_SIZE |
1629 PAGE_SIZE),
1630};
1631
1632static void arm_smmu_device_reset(struct arm_smmu_device *smmu)
1633{
1634 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
659db6f6 1635 void __iomem *cb_base;
45ae7cff 1636 int i = 0;
659db6f6
AH
1637 u32 reg;
1638
3a5df8ff
AH
1639 /* clear global FSR */
1640 reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
1641 writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sGFSR);
45ae7cff
WD
1642
1643 /* Mark all SMRn as invalid and all S2CRn as bypass */
1644 for (i = 0; i < smmu->num_mapping_groups; ++i) {
3c8766d0 1645 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_SMR(i));
2907320d
MH
1646 writel_relaxed(S2CR_TYPE_BYPASS,
1647 gr0_base + ARM_SMMU_GR0_S2CR(i));
45ae7cff
WD
1648 }
1649
659db6f6
AH
1650 /* Make sure all context banks are disabled and clear CB_FSR */
1651 for (i = 0; i < smmu->num_context_banks; ++i) {
1652 cb_base = ARM_SMMU_CB_BASE(smmu) + ARM_SMMU_CB(smmu, i);
1653 writel_relaxed(0, cb_base + ARM_SMMU_CB_SCTLR);
1654 writel_relaxed(FSR_FAULT, cb_base + ARM_SMMU_CB_FSR);
1655 }
1463fe44 1656
45ae7cff
WD
1657 /* Invalidate the TLB, just in case */
1658 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_STLBIALL);
1659 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLH);
1660 writel_relaxed(0, gr0_base + ARM_SMMU_GR0_TLBIALLNSNH);
1661
3a5df8ff 1662 reg = readl_relaxed(ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
659db6f6 1663
45ae7cff 1664 /* Enable fault reporting */
659db6f6 1665 reg |= (sCR0_GFRE | sCR0_GFIE | sCR0_GCFGFRE | sCR0_GCFGFIE);
45ae7cff
WD
1666
1667 /* Disable TLB broadcasting. */
659db6f6 1668 reg |= (sCR0_VMIDPNE | sCR0_PTM);
45ae7cff
WD
1669
1670 /* Enable client access, but bypass when no mapping is found */
659db6f6 1671 reg &= ~(sCR0_CLIENTPD | sCR0_USFCFG);
45ae7cff
WD
1672
1673 /* Disable forced broadcasting */
659db6f6 1674 reg &= ~sCR0_FB;
45ae7cff
WD
1675
1676 /* Don't upgrade barriers */
659db6f6 1677 reg &= ~(sCR0_BSU_MASK << sCR0_BSU_SHIFT);
45ae7cff
WD
1678
1679 /* Push the button */
1680 arm_smmu_tlb_sync(smmu);
3a5df8ff 1681 writel(reg, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
45ae7cff
WD
1682}
1683
1684static int arm_smmu_id_size_to_bits(int size)
1685{
1686 switch (size) {
1687 case 0:
1688 return 32;
1689 case 1:
1690 return 36;
1691 case 2:
1692 return 40;
1693 case 3:
1694 return 42;
1695 case 4:
1696 return 44;
1697 case 5:
1698 default:
1699 return 48;
1700 }
1701}
1702
1703static int arm_smmu_device_cfg_probe(struct arm_smmu_device *smmu)
1704{
1705 unsigned long size;
1706 void __iomem *gr0_base = ARM_SMMU_GR0(smmu);
1707 u32 id;
1708
1709 dev_notice(smmu->dev, "probing hardware configuration...\n");
1710
1711 /* Primecell ID */
1712 id = readl_relaxed(gr0_base + ARM_SMMU_GR0_PIDR2);
1713 smmu->version = ((id >> PIDR2_ARCH_SHIFT) & PIDR2_ARCH_MASK) + 1;
1714 dev_notice(smmu->dev, "SMMUv%d with:\n", smmu->version);
1715
1716 /* ID0 */
1717 id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID0);
1718#ifndef CONFIG_64BIT
1719 if (((id >> ID0_PTFS_SHIFT) & ID0_PTFS_MASK) == ID0_PTFS_V8_ONLY) {
1720 dev_err(smmu->dev, "\tno v7 descriptor support!\n");
1721 return -ENODEV;
1722 }
1723#endif
4cf740b0
WD
1724
1725 /* Restrict available stages based on module parameter */
1726 if (force_stage == 1)
1727 id &= ~(ID0_S2TS | ID0_NTS);
1728 else if (force_stage == 2)
1729 id &= ~(ID0_S1TS | ID0_NTS);
1730
45ae7cff
WD
1731 if (id & ID0_S1TS) {
1732 smmu->features |= ARM_SMMU_FEAT_TRANS_S1;
1733 dev_notice(smmu->dev, "\tstage 1 translation\n");
1734 }
1735
1736 if (id & ID0_S2TS) {
1737 smmu->features |= ARM_SMMU_FEAT_TRANS_S2;
1738 dev_notice(smmu->dev, "\tstage 2 translation\n");
1739 }
1740
1741 if (id & ID0_NTS) {
1742 smmu->features |= ARM_SMMU_FEAT_TRANS_NESTED;
1743 dev_notice(smmu->dev, "\tnested translation\n");
1744 }
1745
1746 if (!(smmu->features &
4cf740b0 1747 (ARM_SMMU_FEAT_TRANS_S1 | ARM_SMMU_FEAT_TRANS_S2))) {
45ae7cff
WD
1748 dev_err(smmu->dev, "\tno translation support!\n");
1749 return -ENODEV;
1750 }
1751
1752 if (id & ID0_CTTW) {
1753 smmu->features |= ARM_SMMU_FEAT_COHERENT_WALK;
1754 dev_notice(smmu->dev, "\tcoherent table walk\n");
1755 }
1756
1757 if (id & ID0_SMS) {
1758 u32 smr, sid, mask;
1759
1760 smmu->features |= ARM_SMMU_FEAT_STREAM_MATCH;
1761 smmu->num_mapping_groups = (id >> ID0_NUMSMRG_SHIFT) &
1762 ID0_NUMSMRG_MASK;
1763 if (smmu->num_mapping_groups == 0) {
1764 dev_err(smmu->dev,
1765 "stream-matching supported, but no SMRs present!\n");
1766 return -ENODEV;
1767 }
1768
1769 smr = SMR_MASK_MASK << SMR_MASK_SHIFT;
1770 smr |= (SMR_ID_MASK << SMR_ID_SHIFT);
1771 writel_relaxed(smr, gr0_base + ARM_SMMU_GR0_SMR(0));
1772 smr = readl_relaxed(gr0_base + ARM_SMMU_GR0_SMR(0));
1773
1774 mask = (smr >> SMR_MASK_SHIFT) & SMR_MASK_MASK;
1775 sid = (smr >> SMR_ID_SHIFT) & SMR_ID_MASK;
1776 if ((mask & sid) != sid) {
1777 dev_err(smmu->dev,
1778 "SMR mask bits (0x%x) insufficient for ID field (0x%x)\n",
1779 mask, sid);
1780 return -ENODEV;
1781 }
1782
1783 dev_notice(smmu->dev,
1784 "\tstream matching with %u register groups, mask 0x%x",
1785 smmu->num_mapping_groups, mask);
3c8766d0
OH
1786 } else {
1787 smmu->num_mapping_groups = (id >> ID0_NUMSIDB_SHIFT) &
1788 ID0_NUMSIDB_MASK;
45ae7cff
WD
1789 }
1790
1791 /* ID1 */
1792 id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID1);
1793 smmu->pagesize = (id & ID1_PAGESIZE) ? SZ_64K : SZ_4K;
1794
c55af7f7 1795 /* Check for size mismatch of SMMU address space from mapped region */
2907320d
MH
1796 size = 1 <<
1797 (((id >> ID1_NUMPAGENDXB_SHIFT) & ID1_NUMPAGENDXB_MASK) + 1);
45ae7cff 1798 size *= (smmu->pagesize << 1);
c55af7f7 1799 if (smmu->size != size)
2907320d
MH
1800 dev_warn(smmu->dev,
1801 "SMMU address space size (0x%lx) differs from mapped region size (0x%lx)!\n",
1802 size, smmu->size);
45ae7cff
WD
1803
1804 smmu->num_s2_context_banks = (id >> ID1_NUMS2CB_SHIFT) &
1805 ID1_NUMS2CB_MASK;
1806 smmu->num_context_banks = (id >> ID1_NUMCB_SHIFT) & ID1_NUMCB_MASK;
1807 if (smmu->num_s2_context_banks > smmu->num_context_banks) {
1808 dev_err(smmu->dev, "impossible number of S2 context banks!\n");
1809 return -ENODEV;
1810 }
1811 dev_notice(smmu->dev, "\t%u context banks (%u stage-2 only)\n",
1812 smmu->num_context_banks, smmu->num_s2_context_banks);
1813
1814 /* ID2 */
1815 id = readl_relaxed(gr0_base + ARM_SMMU_GR0_ID2);
1816 size = arm_smmu_id_size_to_bits((id >> ID2_IAS_SHIFT) & ID2_IAS_MASK);
1817
1818 /*
1819 * Stage-1 output limited by stage-2 input size due to pgd
1820 * allocation (PTRS_PER_PGD).
1821 */
4d09d99d 1822 if (smmu->features & ARM_SMMU_FEAT_TRANS_NESTED) {
45ae7cff 1823#ifdef CONFIG_64BIT
4d09d99d 1824 smmu->s1_output_size = min_t(unsigned long, VA_BITS, size);
45ae7cff 1825#else
4d09d99d 1826 smmu->s1_output_size = min(32UL, size);
45ae7cff 1827#endif
4d09d99d
WD
1828 } else {
1829 smmu->s1_output_size = min_t(unsigned long, PHYS_MASK_SHIFT,
1830 size);
1831 }
45ae7cff
WD
1832
1833 /* The stage-2 output mask is also applied for bypass */
1834 size = arm_smmu_id_size_to_bits((id >> ID2_OAS_SHIFT) & ID2_OAS_MASK);
2907320d 1835 smmu->s2_output_size = min_t(unsigned long, PHYS_MASK_SHIFT, size);
45ae7cff
WD
1836
1837 if (smmu->version == 1) {
1838 smmu->input_size = 32;
1839 } else {
1840#ifdef CONFIG_64BIT
1841 size = (id >> ID2_UBS_SHIFT) & ID2_UBS_MASK;
06f983dd 1842 size = min(VA_BITS, arm_smmu_id_size_to_bits(size));
45ae7cff
WD
1843#else
1844 size = 32;
1845#endif
1846 smmu->input_size = size;
1847
1848 if ((PAGE_SIZE == SZ_4K && !(id & ID2_PTFS_4K)) ||
1849 (PAGE_SIZE == SZ_64K && !(id & ID2_PTFS_64K)) ||
1850 (PAGE_SIZE != SZ_4K && PAGE_SIZE != SZ_64K)) {
1851 dev_err(smmu->dev, "CPU page size 0x%lx unsupported\n",
1852 PAGE_SIZE);
1853 return -ENODEV;
1854 }
1855 }
1856
1857 dev_notice(smmu->dev,
1858 "\t%lu-bit VA, %lu-bit IPA, %lu-bit PA\n",
2907320d
MH
1859 smmu->input_size, smmu->s1_output_size,
1860 smmu->s2_output_size);
45ae7cff
WD
1861 return 0;
1862}
1863
1864static int arm_smmu_device_dt_probe(struct platform_device *pdev)
1865{
1866 struct resource *res;
1867 struct arm_smmu_device *smmu;
45ae7cff
WD
1868 struct device *dev = &pdev->dev;
1869 struct rb_node *node;
1870 struct of_phandle_args masterspec;
1871 int num_irqs, i, err;
1872
1873 smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
1874 if (!smmu) {
1875 dev_err(dev, "failed to allocate arm_smmu_device\n");
1876 return -ENOMEM;
1877 }
1878 smmu->dev = dev;
1879
1880 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
8a7f4312
JL
1881 smmu->base = devm_ioremap_resource(dev, res);
1882 if (IS_ERR(smmu->base))
1883 return PTR_ERR(smmu->base);
45ae7cff 1884 smmu->size = resource_size(res);
45ae7cff
WD
1885
1886 if (of_property_read_u32(dev->of_node, "#global-interrupts",
1887 &smmu->num_global_irqs)) {
1888 dev_err(dev, "missing #global-interrupts property\n");
1889 return -ENODEV;
1890 }
1891
1892 num_irqs = 0;
1893 while ((res = platform_get_resource(pdev, IORESOURCE_IRQ, num_irqs))) {
1894 num_irqs++;
1895 if (num_irqs > smmu->num_global_irqs)
1896 smmu->num_context_irqs++;
1897 }
1898
44a08de2
AH
1899 if (!smmu->num_context_irqs) {
1900 dev_err(dev, "found %d interrupts but expected at least %d\n",
1901 num_irqs, smmu->num_global_irqs + 1);
1902 return -ENODEV;
45ae7cff 1903 }
45ae7cff
WD
1904
1905 smmu->irqs = devm_kzalloc(dev, sizeof(*smmu->irqs) * num_irqs,
1906 GFP_KERNEL);
1907 if (!smmu->irqs) {
1908 dev_err(dev, "failed to allocate %d irqs\n", num_irqs);
1909 return -ENOMEM;
1910 }
1911
1912 for (i = 0; i < num_irqs; ++i) {
1913 int irq = platform_get_irq(pdev, i);
2907320d 1914
45ae7cff
WD
1915 if (irq < 0) {
1916 dev_err(dev, "failed to get irq index %d\n", i);
1917 return -ENODEV;
1918 }
1919 smmu->irqs[i] = irq;
1920 }
1921
3c8766d0
OH
1922 err = arm_smmu_device_cfg_probe(smmu);
1923 if (err)
1924 return err;
1925
45ae7cff
WD
1926 i = 0;
1927 smmu->masters = RB_ROOT;
1928 while (!of_parse_phandle_with_args(dev->of_node, "mmu-masters",
1929 "#stream-id-cells", i,
1930 &masterspec)) {
1931 err = register_smmu_master(smmu, dev, &masterspec);
1932 if (err) {
1933 dev_err(dev, "failed to add master %s\n",
1934 masterspec.np->name);
1935 goto out_put_masters;
1936 }
1937
1938 i++;
1939 }
1940 dev_notice(dev, "registered %d master devices\n", i);
1941
3a5df8ff
AH
1942 parse_driver_options(smmu);
1943
45ae7cff
WD
1944 if (smmu->version > 1 &&
1945 smmu->num_context_banks != smmu->num_context_irqs) {
1946 dev_err(dev,
1947 "found only %d context interrupt(s) but %d required\n",
1948 smmu->num_context_irqs, smmu->num_context_banks);
89a23cde 1949 err = -ENODEV;
44680eed 1950 goto out_put_masters;
45ae7cff
WD
1951 }
1952
45ae7cff
WD
1953 for (i = 0; i < smmu->num_global_irqs; ++i) {
1954 err = request_irq(smmu->irqs[i],
1955 arm_smmu_global_fault,
1956 IRQF_SHARED,
1957 "arm-smmu global fault",
1958 smmu);
1959 if (err) {
1960 dev_err(dev, "failed to request global IRQ %d (%u)\n",
1961 i, smmu->irqs[i]);
1962 goto out_free_irqs;
1963 }
1964 }
1965
1966 INIT_LIST_HEAD(&smmu->list);
1967 spin_lock(&arm_smmu_devices_lock);
1968 list_add(&smmu->list, &arm_smmu_devices);
1969 spin_unlock(&arm_smmu_devices_lock);
fd90cecb
WD
1970
1971 arm_smmu_device_reset(smmu);
45ae7cff
WD
1972 return 0;
1973
1974out_free_irqs:
1975 while (i--)
1976 free_irq(smmu->irqs[i], smmu);
1977
45ae7cff
WD
1978out_put_masters:
1979 for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
2907320d
MH
1980 struct arm_smmu_master *master
1981 = container_of(node, struct arm_smmu_master, node);
45ae7cff
WD
1982 of_node_put(master->of_node);
1983 }
1984
1985 return err;
1986}
1987
1988static int arm_smmu_device_remove(struct platform_device *pdev)
1989{
1990 int i;
1991 struct device *dev = &pdev->dev;
1992 struct arm_smmu_device *curr, *smmu = NULL;
1993 struct rb_node *node;
1994
1995 spin_lock(&arm_smmu_devices_lock);
1996 list_for_each_entry(curr, &arm_smmu_devices, list) {
1997 if (curr->dev == dev) {
1998 smmu = curr;
1999 list_del(&smmu->list);
2000 break;
2001 }
2002 }
2003 spin_unlock(&arm_smmu_devices_lock);
2004
2005 if (!smmu)
2006 return -ENODEV;
2007
45ae7cff 2008 for (node = rb_first(&smmu->masters); node; node = rb_next(node)) {
2907320d
MH
2009 struct arm_smmu_master *master
2010 = container_of(node, struct arm_smmu_master, node);
45ae7cff
WD
2011 of_node_put(master->of_node);
2012 }
2013
ecfadb6e 2014 if (!bitmap_empty(smmu->context_map, ARM_SMMU_MAX_CBS))
45ae7cff
WD
2015 dev_err(dev, "removing device with active domains!\n");
2016
2017 for (i = 0; i < smmu->num_global_irqs; ++i)
2018 free_irq(smmu->irqs[i], smmu);
2019
2020 /* Turn the thing off */
2907320d 2021 writel(sCR0_CLIENTPD, ARM_SMMU_GR0_NS(smmu) + ARM_SMMU_GR0_sCR0);
45ae7cff
WD
2022 return 0;
2023}
2024
2025#ifdef CONFIG_OF
2026static struct of_device_id arm_smmu_of_match[] = {
2027 { .compatible = "arm,smmu-v1", },
2028 { .compatible = "arm,smmu-v2", },
2029 { .compatible = "arm,mmu-400", },
2030 { .compatible = "arm,mmu-500", },
2031 { },
2032};
2033MODULE_DEVICE_TABLE(of, arm_smmu_of_match);
2034#endif
2035
2036static struct platform_driver arm_smmu_driver = {
2037 .driver = {
2038 .owner = THIS_MODULE,
2039 .name = "arm-smmu",
2040 .of_match_table = of_match_ptr(arm_smmu_of_match),
2041 },
2042 .probe = arm_smmu_device_dt_probe,
2043 .remove = arm_smmu_device_remove,
2044};
2045
2046static int __init arm_smmu_init(void)
2047{
2048 int ret;
2049
2050 ret = platform_driver_register(&arm_smmu_driver);
2051 if (ret)
2052 return ret;
2053
2054 /* Oh, for a proper bus abstraction */
6614ee77 2055 if (!iommu_present(&platform_bus_type))
45ae7cff
WD
2056 bus_set_iommu(&platform_bus_type, &arm_smmu_ops);
2057
d123cf82 2058#ifdef CONFIG_ARM_AMBA
6614ee77 2059 if (!iommu_present(&amba_bustype))
45ae7cff 2060 bus_set_iommu(&amba_bustype, &arm_smmu_ops);
d123cf82 2061#endif
45ae7cff 2062
a9a1b0b5
WD
2063#ifdef CONFIG_PCI
2064 if (!iommu_present(&pci_bus_type))
2065 bus_set_iommu(&pci_bus_type, &arm_smmu_ops);
2066#endif
2067
45ae7cff
WD
2068 return 0;
2069}
2070
2071static void __exit arm_smmu_exit(void)
2072{
2073 return platform_driver_unregister(&arm_smmu_driver);
2074}
2075
b1950b27 2076subsys_initcall(arm_smmu_init);
45ae7cff
WD
2077module_exit(arm_smmu_exit);
2078
2079MODULE_DESCRIPTION("IOMMU API for ARM architected SMMU implementations");
2080MODULE_AUTHOR("Will Deacon <will.deacon@arm.com>");
2081MODULE_LICENSE("GPL v2");