cleancache: constify cleancache_ops structure
[linux-2.6-block.git] / drivers / iommu / amd_iommu.c
CommitLineData
b6c02715 1/*
5d0d7156 2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
63ce3ae8 3 * Author: Joerg Roedel <jroedel@suse.de>
b6c02715
JR
4 * Leo Duran <leo.duran@amd.com>
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
72e1dcc4 20#include <linux/ratelimit.h>
b6c02715 21#include <linux/pci.h>
cb41ed85 22#include <linux/pci-ats.h>
a66022c4 23#include <linux/bitmap.h>
5a0e3ad6 24#include <linux/slab.h>
7f26508b 25#include <linux/debugfs.h>
b6c02715 26#include <linux/scatterlist.h>
51491367 27#include <linux/dma-mapping.h>
b6c02715 28#include <linux/iommu-helper.h>
c156e347 29#include <linux/iommu.h>
815b33fd 30#include <linux/delay.h>
403f81d8 31#include <linux/amd-iommu.h>
72e1dcc4
JR
32#include <linux/notifier.h>
33#include <linux/export.h>
2b324506
JR
34#include <linux/irq.h>
35#include <linux/msi.h>
3b839a57 36#include <linux/dma-contiguous.h>
7c71d306 37#include <linux/irqdomain.h>
2b324506
JR
38#include <asm/irq_remapping.h>
39#include <asm/io_apic.h>
40#include <asm/apic.h>
41#include <asm/hw_irq.h>
17f5b569 42#include <asm/msidef.h>
b6c02715 43#include <asm/proto.h>
46a7fa27 44#include <asm/iommu.h>
1d9b16d1 45#include <asm/gart.h>
27c2127a 46#include <asm/dma.h>
403f81d8
JR
47
48#include "amd_iommu_proto.h"
49#include "amd_iommu_types.h"
6b474b82 50#include "irq_remapping.h"
b6c02715
JR
51
52#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
53
815b33fd 54#define LOOP_TIMEOUT 100000
136f78a1 55
aa3de9c0
OBC
56/*
57 * This bitmap is used to advertise the page sizes our hardware support
58 * to the IOMMU core, which will then use this information to split
59 * physically contiguous memory regions it is mapping into page sizes
60 * that we support.
61 *
954e3dd8 62 * 512GB Pages are not supported due to a hardware bug
aa3de9c0 63 */
954e3dd8 64#define AMD_IOMMU_PGSIZES ((~0xFFFUL) & ~(2ULL << 38))
aa3de9c0 65
b6c02715
JR
66static DEFINE_RWLOCK(amd_iommu_devtable_lock);
67
8fa5f802
JR
68/* List of all available dev_data structures */
69static LIST_HEAD(dev_data_list);
70static DEFINE_SPINLOCK(dev_data_list_lock);
71
6efed63b
JR
72LIST_HEAD(ioapic_map);
73LIST_HEAD(hpet_map);
74
0feae533
JR
75/*
76 * Domain for untranslated devices - only allocated
77 * if iommu=pt passed on kernel cmd line.
78 */
b22f6434 79static const struct iommu_ops amd_iommu_ops;
26961efe 80
72e1dcc4 81static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
52815b75 82int amd_iommu_max_glx_val = -1;
72e1dcc4 83
ac1534a5
JR
84static struct dma_map_ops amd_iommu_dma_ops;
85
50917e26
JR
86/*
87 * This struct contains device specific data for the IOMMU
88 */
89struct iommu_dev_data {
90 struct list_head list; /* For domain->dev_list */
91 struct list_head dev_data_list; /* For global dev_data_list */
50917e26 92 struct protection_domain *domain; /* Domain the device is bound to */
50917e26
JR
93 u16 devid; /* PCI Device ID */
94 bool iommu_v2; /* Device can make use of IOMMUv2 */
1e6a7b04 95 bool passthrough; /* Device is identity mapped */
50917e26
JR
96 struct {
97 bool enabled;
98 int qdep;
99 } ats; /* ATS state */
100 bool pri_tlp; /* PASID TLB required for
101 PPR completions */
102 u32 errata; /* Bitmap for errata to apply */
103};
104
431b2a20
JR
105/*
106 * general struct to manage commands send to an IOMMU
107 */
d6449536 108struct iommu_cmd {
b6c02715
JR
109 u32 data[4];
110};
111
05152a04
JR
112struct kmem_cache *amd_iommu_irq_cache;
113
04bfdd84 114static void update_domain(struct protection_domain *domain);
7a5a566e 115static int protection_domain_init(struct protection_domain *domain);
c1eee67b 116
15898bbc
JR
117/****************************************************************************
118 *
119 * Helper functions
120 *
121 ****************************************************************************/
122
3f4b87b9
JR
123static struct protection_domain *to_pdomain(struct iommu_domain *dom)
124{
125 return container_of(dom, struct protection_domain, domain);
126}
127
f62dda66 128static struct iommu_dev_data *alloc_dev_data(u16 devid)
8fa5f802
JR
129{
130 struct iommu_dev_data *dev_data;
131 unsigned long flags;
132
133 dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
134 if (!dev_data)
135 return NULL;
136
f62dda66 137 dev_data->devid = devid;
8fa5f802
JR
138
139 spin_lock_irqsave(&dev_data_list_lock, flags);
140 list_add_tail(&dev_data->dev_data_list, &dev_data_list);
141 spin_unlock_irqrestore(&dev_data_list_lock, flags);
142
143 return dev_data;
144}
145
3b03bb74
JR
146static struct iommu_dev_data *search_dev_data(u16 devid)
147{
148 struct iommu_dev_data *dev_data;
149 unsigned long flags;
150
151 spin_lock_irqsave(&dev_data_list_lock, flags);
152 list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
153 if (dev_data->devid == devid)
154 goto out_unlock;
155 }
156
157 dev_data = NULL;
158
159out_unlock:
160 spin_unlock_irqrestore(&dev_data_list_lock, flags);
161
162 return dev_data;
163}
164
165static struct iommu_dev_data *find_dev_data(u16 devid)
166{
167 struct iommu_dev_data *dev_data;
168
169 dev_data = search_dev_data(devid);
170
171 if (dev_data == NULL)
172 dev_data = alloc_dev_data(devid);
173
174 return dev_data;
175}
176
15898bbc
JR
177static inline u16 get_device_id(struct device *dev)
178{
179 struct pci_dev *pdev = to_pci_dev(dev);
180
6f2729ba 181 return PCI_DEVID(pdev->bus->number, pdev->devfn);
15898bbc
JR
182}
183
657cbb6b
JR
184static struct iommu_dev_data *get_dev_data(struct device *dev)
185{
186 return dev->archdata.iommu;
187}
188
5abcdba4
JR
189static bool pci_iommuv2_capable(struct pci_dev *pdev)
190{
191 static const int caps[] = {
192 PCI_EXT_CAP_ID_ATS,
46277b75
JR
193 PCI_EXT_CAP_ID_PRI,
194 PCI_EXT_CAP_ID_PASID,
5abcdba4
JR
195 };
196 int i, pos;
197
198 for (i = 0; i < 3; ++i) {
199 pos = pci_find_ext_capability(pdev, caps[i]);
200 if (pos == 0)
201 return false;
202 }
203
204 return true;
205}
206
6a113ddc
JR
207static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
208{
209 struct iommu_dev_data *dev_data;
210
211 dev_data = get_dev_data(&pdev->dev);
212
213 return dev_data->errata & (1 << erratum) ? true : false;
214}
215
71c70984 216/*
0bb6e243
JR
217 * This function actually applies the mapping to the page table of the
218 * dma_ops domain.
71c70984 219 */
0bb6e243
JR
220static void alloc_unity_mapping(struct dma_ops_domain *dma_dom,
221 struct unity_map_entry *e)
71c70984 222{
0bb6e243 223 u64 addr;
71c70984 224
0bb6e243
JR
225 for (addr = e->address_start; addr < e->address_end;
226 addr += PAGE_SIZE) {
227 if (addr < dma_dom->aperture_size)
228 __set_bit(addr >> PAGE_SHIFT,
229 dma_dom->aperture[0]->bitmap);
71c70984 230 }
0bb6e243 231}
71c70984 232
0bb6e243
JR
233/*
234 * Inits the unity mappings required for a specific device
235 */
236static void init_unity_mappings_for_device(struct device *dev,
237 struct dma_ops_domain *dma_dom)
238{
239 struct unity_map_entry *e;
240 u16 devid;
71c70984 241
0bb6e243 242 devid = get_device_id(dev);
71c70984 243
0bb6e243
JR
244 list_for_each_entry(e, &amd_iommu_unity_map, list) {
245 if (!(devid >= e->devid_start && devid <= e->devid_end))
246 continue;
247 alloc_unity_mapping(dma_dom, e);
248 }
71c70984
JR
249}
250
98fc5a69
JR
251/*
252 * This function checks if the driver got a valid device from the caller to
253 * avoid dereferencing invalid pointers.
254 */
255static bool check_device(struct device *dev)
256{
257 u16 devid;
258
259 if (!dev || !dev->dma_mask)
260 return false;
261
b82a2272
YW
262 /* No PCI device */
263 if (!dev_is_pci(dev))
98fc5a69
JR
264 return false;
265
266 devid = get_device_id(dev);
267
268 /* Out of our scope? */
269 if (devid > amd_iommu_last_bdf)
270 return false;
271
272 if (amd_iommu_rlookup_table[devid] == NULL)
273 return false;
274
275 return true;
276}
277
25b11ce2 278static void init_iommu_group(struct device *dev)
2851db21 279{
0bb6e243
JR
280 struct dma_ops_domain *dma_domain;
281 struct iommu_domain *domain;
2851db21 282 struct iommu_group *group;
2851db21 283
65d5352f 284 group = iommu_group_get_for_dev(dev);
0bb6e243
JR
285 if (IS_ERR(group))
286 return;
287
288 domain = iommu_group_default_domain(group);
289 if (!domain)
290 goto out;
291
292 dma_domain = to_pdomain(domain)->priv;
293
294 init_unity_mappings_for_device(dev, dma_domain);
295out:
296 iommu_group_put(group);
eb9c9527
AW
297}
298
299static int iommu_init_device(struct device *dev)
300{
301 struct pci_dev *pdev = to_pci_dev(dev);
302 struct iommu_dev_data *dev_data;
eb9c9527
AW
303
304 if (dev->archdata.iommu)
305 return 0;
306
307 dev_data = find_dev_data(get_device_id(dev));
308 if (!dev_data)
309 return -ENOMEM;
310
5abcdba4
JR
311 if (pci_iommuv2_capable(pdev)) {
312 struct amd_iommu *iommu;
313
314 iommu = amd_iommu_rlookup_table[dev_data->devid];
315 dev_data->iommu_v2 = iommu->is_iommu_v2;
316 }
317
657cbb6b
JR
318 dev->archdata.iommu = dev_data;
319
066f2e98
AW
320 iommu_device_link(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
321 dev);
322
657cbb6b
JR
323 return 0;
324}
325
26018874
JR
326static void iommu_ignore_device(struct device *dev)
327{
328 u16 devid, alias;
329
330 devid = get_device_id(dev);
331 alias = amd_iommu_alias_table[devid];
332
333 memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
334 memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
335
336 amd_iommu_rlookup_table[devid] = NULL;
337 amd_iommu_rlookup_table[alias] = NULL;
338}
339
657cbb6b
JR
340static void iommu_uninit_device(struct device *dev)
341{
c1931090
AW
342 struct iommu_dev_data *dev_data = search_dev_data(get_device_id(dev));
343
344 if (!dev_data)
345 return;
346
066f2e98
AW
347 iommu_device_unlink(amd_iommu_rlookup_table[dev_data->devid]->iommu_dev,
348 dev);
349
9dcd6130
AW
350 iommu_group_remove_device(dev);
351
aafd8ba0
JR
352 /* Remove dma-ops */
353 dev->archdata.dma_ops = NULL;
354
8fa5f802 355 /*
c1931090
AW
356 * We keep dev_data around for unplugged devices and reuse it when the
357 * device is re-plugged - not doing so would introduce a ton of races.
8fa5f802 358 */
657cbb6b 359}
b7cc9554 360
7f26508b
JR
361#ifdef CONFIG_AMD_IOMMU_STATS
362
363/*
364 * Initialization code for statistics collection
365 */
366
da49f6df 367DECLARE_STATS_COUNTER(compl_wait);
0f2a86f2 368DECLARE_STATS_COUNTER(cnt_map_single);
146a6917 369DECLARE_STATS_COUNTER(cnt_unmap_single);
d03f067a 370DECLARE_STATS_COUNTER(cnt_map_sg);
55877a6b 371DECLARE_STATS_COUNTER(cnt_unmap_sg);
c8f0fb36 372DECLARE_STATS_COUNTER(cnt_alloc_coherent);
5d31ee7e 373DECLARE_STATS_COUNTER(cnt_free_coherent);
c1858976 374DECLARE_STATS_COUNTER(cross_page);
f57d98ae 375DECLARE_STATS_COUNTER(domain_flush_single);
18811f55 376DECLARE_STATS_COUNTER(domain_flush_all);
5774f7c5 377DECLARE_STATS_COUNTER(alloced_io_mem);
8ecaf8f1 378DECLARE_STATS_COUNTER(total_map_requests);
399be2f5
JR
379DECLARE_STATS_COUNTER(complete_ppr);
380DECLARE_STATS_COUNTER(invalidate_iotlb);
381DECLARE_STATS_COUNTER(invalidate_iotlb_all);
382DECLARE_STATS_COUNTER(pri_requests);
383
7f26508b 384static struct dentry *stats_dir;
7f26508b
JR
385static struct dentry *de_fflush;
386
387static void amd_iommu_stats_add(struct __iommu_counter *cnt)
388{
389 if (stats_dir == NULL)
390 return;
391
392 cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
393 &cnt->value);
394}
395
396static void amd_iommu_stats_init(void)
397{
398 stats_dir = debugfs_create_dir("amd-iommu", NULL);
399 if (stats_dir == NULL)
400 return;
401
7f26508b 402 de_fflush = debugfs_create_bool("fullflush", 0444, stats_dir,
3775d481 403 &amd_iommu_unmap_flush);
da49f6df
JR
404
405 amd_iommu_stats_add(&compl_wait);
0f2a86f2 406 amd_iommu_stats_add(&cnt_map_single);
146a6917 407 amd_iommu_stats_add(&cnt_unmap_single);
d03f067a 408 amd_iommu_stats_add(&cnt_map_sg);
55877a6b 409 amd_iommu_stats_add(&cnt_unmap_sg);
c8f0fb36 410 amd_iommu_stats_add(&cnt_alloc_coherent);
5d31ee7e 411 amd_iommu_stats_add(&cnt_free_coherent);
c1858976 412 amd_iommu_stats_add(&cross_page);
f57d98ae 413 amd_iommu_stats_add(&domain_flush_single);
18811f55 414 amd_iommu_stats_add(&domain_flush_all);
5774f7c5 415 amd_iommu_stats_add(&alloced_io_mem);
8ecaf8f1 416 amd_iommu_stats_add(&total_map_requests);
399be2f5
JR
417 amd_iommu_stats_add(&complete_ppr);
418 amd_iommu_stats_add(&invalidate_iotlb);
419 amd_iommu_stats_add(&invalidate_iotlb_all);
420 amd_iommu_stats_add(&pri_requests);
7f26508b
JR
421}
422
423#endif
424
a80dc3e0
JR
425/****************************************************************************
426 *
427 * Interrupt handling functions
428 *
429 ****************************************************************************/
430
e3e59876
JR
431static void dump_dte_entry(u16 devid)
432{
433 int i;
434
ee6c2868
JR
435 for (i = 0; i < 4; ++i)
436 pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
e3e59876
JR
437 amd_iommu_dev_table[devid].data[i]);
438}
439
945b4ac4
JR
440static void dump_command(unsigned long phys_addr)
441{
442 struct iommu_cmd *cmd = phys_to_virt(phys_addr);
443 int i;
444
445 for (i = 0; i < 4; ++i)
446 pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
447}
448
a345b23b 449static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
90008ee4 450{
3d06fca8
JR
451 int type, devid, domid, flags;
452 volatile u32 *event = __evt;
453 int count = 0;
454 u64 address;
455
456retry:
457 type = (event[1] >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
458 devid = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
459 domid = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
460 flags = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
461 address = (u64)(((u64)event[3]) << 32) | event[2];
462
463 if (type == 0) {
464 /* Did we hit the erratum? */
465 if (++count == LOOP_TIMEOUT) {
466 pr_err("AMD-Vi: No event written to event log\n");
467 return;
468 }
469 udelay(1);
470 goto retry;
471 }
90008ee4 472
4c6f40d4 473 printk(KERN_ERR "AMD-Vi: Event logged [");
90008ee4
JR
474
475 switch (type) {
476 case EVENT_TYPE_ILL_DEV:
477 printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
478 "address=0x%016llx flags=0x%04x]\n",
c5081cd7 479 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4 480 address, flags);
e3e59876 481 dump_dte_entry(devid);
90008ee4
JR
482 break;
483 case EVENT_TYPE_IO_FAULT:
484 printk("IO_PAGE_FAULT device=%02x:%02x.%x "
485 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
c5081cd7 486 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
487 domid, address, flags);
488 break;
489 case EVENT_TYPE_DEV_TAB_ERR:
490 printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
491 "address=0x%016llx flags=0x%04x]\n",
c5081cd7 492 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
493 address, flags);
494 break;
495 case EVENT_TYPE_PAGE_TAB_ERR:
496 printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
497 "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
c5081cd7 498 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
499 domid, address, flags);
500 break;
501 case EVENT_TYPE_ILL_CMD:
502 printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
945b4ac4 503 dump_command(address);
90008ee4
JR
504 break;
505 case EVENT_TYPE_CMD_HARD_ERR:
506 printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
507 "flags=0x%04x]\n", address, flags);
508 break;
509 case EVENT_TYPE_IOTLB_INV_TO:
510 printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
511 "address=0x%016llx]\n",
c5081cd7 512 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
513 address);
514 break;
515 case EVENT_TYPE_INV_DEV_REQ:
516 printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
517 "address=0x%016llx flags=0x%04x]\n",
c5081cd7 518 PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
90008ee4
JR
519 address, flags);
520 break;
521 default:
522 printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
523 }
3d06fca8
JR
524
525 memset(__evt, 0, 4 * sizeof(u32));
90008ee4
JR
526}
527
528static void iommu_poll_events(struct amd_iommu *iommu)
529{
530 u32 head, tail;
90008ee4
JR
531
532 head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
533 tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
534
535 while (head != tail) {
a345b23b 536 iommu_print_event(iommu, iommu->evt_buf + head);
deba4bce 537 head = (head + EVENT_ENTRY_SIZE) % EVT_BUFFER_SIZE;
90008ee4
JR
538 }
539
540 writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
90008ee4
JR
541}
542
eee53537 543static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
72e1dcc4
JR
544{
545 struct amd_iommu_fault fault;
72e1dcc4 546
399be2f5
JR
547 INC_STATS_COUNTER(pri_requests);
548
72e1dcc4
JR
549 if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
550 pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
551 return;
552 }
553
554 fault.address = raw[1];
555 fault.pasid = PPR_PASID(raw[0]);
556 fault.device_id = PPR_DEVID(raw[0]);
557 fault.tag = PPR_TAG(raw[0]);
558 fault.flags = PPR_FLAGS(raw[0]);
559
72e1dcc4
JR
560 atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
561}
562
563static void iommu_poll_ppr_log(struct amd_iommu *iommu)
564{
72e1dcc4
JR
565 u32 head, tail;
566
567 if (iommu->ppr_log == NULL)
568 return;
569
72e1dcc4
JR
570 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
571 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
572
573 while (head != tail) {
eee53537
JR
574 volatile u64 *raw;
575 u64 entry[2];
576 int i;
577
578 raw = (u64 *)(iommu->ppr_log + head);
579
580 /*
581 * Hardware bug: Interrupt may arrive before the entry is
582 * written to memory. If this happens we need to wait for the
583 * entry to arrive.
584 */
585 for (i = 0; i < LOOP_TIMEOUT; ++i) {
586 if (PPR_REQ_TYPE(raw[0]) != 0)
587 break;
588 udelay(1);
589 }
72e1dcc4 590
eee53537
JR
591 /* Avoid memcpy function-call overhead */
592 entry[0] = raw[0];
593 entry[1] = raw[1];
72e1dcc4 594
eee53537
JR
595 /*
596 * To detect the hardware bug we need to clear the entry
597 * back to zero.
598 */
599 raw[0] = raw[1] = 0UL;
600
601 /* Update head pointer of hardware ring-buffer */
72e1dcc4
JR
602 head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
603 writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
eee53537 604
eee53537
JR
605 /* Handle PPR entry */
606 iommu_handle_ppr_entry(iommu, entry);
607
eee53537
JR
608 /* Refresh ring-buffer information */
609 head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
72e1dcc4
JR
610 tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
611 }
72e1dcc4
JR
612}
613
72fe00f0 614irqreturn_t amd_iommu_int_thread(int irq, void *data)
a80dc3e0 615{
3f398bc7
SS
616 struct amd_iommu *iommu = (struct amd_iommu *) data;
617 u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
90008ee4 618
3f398bc7
SS
619 while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) {
620 /* Enable EVT and PPR interrupts again */
621 writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK),
622 iommu->mmio_base + MMIO_STATUS_OFFSET);
90008ee4 623
3f398bc7
SS
624 if (status & MMIO_STATUS_EVT_INT_MASK) {
625 pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
626 iommu_poll_events(iommu);
627 }
90008ee4 628
3f398bc7
SS
629 if (status & MMIO_STATUS_PPR_INT_MASK) {
630 pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
631 iommu_poll_ppr_log(iommu);
632 }
90008ee4 633
3f398bc7
SS
634 /*
635 * Hardware bug: ERBT1312
636 * When re-enabling interrupt (by writing 1
637 * to clear the bit), the hardware might also try to set
638 * the interrupt bit in the event status register.
639 * In this scenario, the bit will be set, and disable
640 * subsequent interrupts.
641 *
642 * Workaround: The IOMMU driver should read back the
643 * status register and check if the interrupt bits are cleared.
644 * If not, driver will need to go through the interrupt handler
645 * again and re-clear the bits
646 */
647 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
648 }
90008ee4 649 return IRQ_HANDLED;
a80dc3e0
JR
650}
651
72fe00f0
JR
652irqreturn_t amd_iommu_int_handler(int irq, void *data)
653{
654 return IRQ_WAKE_THREAD;
655}
656
431b2a20
JR
657/****************************************************************************
658 *
659 * IOMMU command queuing functions
660 *
661 ****************************************************************************/
662
ac0ea6e9
JR
663static int wait_on_sem(volatile u64 *sem)
664{
665 int i = 0;
666
667 while (*sem == 0 && i < LOOP_TIMEOUT) {
668 udelay(1);
669 i += 1;
670 }
671
672 if (i == LOOP_TIMEOUT) {
673 pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
674 return -EIO;
675 }
676
677 return 0;
678}
679
680static void copy_cmd_to_buffer(struct amd_iommu *iommu,
681 struct iommu_cmd *cmd,
682 u32 tail)
a19ae1ec 683{
a19ae1ec
JR
684 u8 *target;
685
8a7c5ef3 686 target = iommu->cmd_buf + tail;
deba4bce 687 tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
ac0ea6e9
JR
688
689 /* Copy command to buffer */
690 memcpy(target, cmd, sizeof(*cmd));
691
692 /* Tell the IOMMU about it */
a19ae1ec 693 writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
ac0ea6e9 694}
a19ae1ec 695
815b33fd 696static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
ded46737 697{
815b33fd
JR
698 WARN_ON(address & 0x7ULL);
699
ded46737 700 memset(cmd, 0, sizeof(*cmd));
815b33fd
JR
701 cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
702 cmd->data[1] = upper_32_bits(__pa(address));
703 cmd->data[2] = 1;
ded46737
JR
704 CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
705}
706
94fe79e2
JR
707static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
708{
709 memset(cmd, 0, sizeof(*cmd));
710 cmd->data[0] = devid;
711 CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
712}
713
11b6402c
JR
714static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
715 size_t size, u16 domid, int pde)
716{
717 u64 pages;
ae0cbbb1 718 bool s;
11b6402c
JR
719
720 pages = iommu_num_pages(address, size, PAGE_SIZE);
ae0cbbb1 721 s = false;
11b6402c
JR
722
723 if (pages > 1) {
724 /*
725 * If we have to flush more than one page, flush all
726 * TLB entries for this domain
727 */
728 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
ae0cbbb1 729 s = true;
11b6402c
JR
730 }
731
732 address &= PAGE_MASK;
733
734 memset(cmd, 0, sizeof(*cmd));
735 cmd->data[1] |= domid;
736 cmd->data[2] = lower_32_bits(address);
737 cmd->data[3] = upper_32_bits(address);
738 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
739 if (s) /* size bit - we flush more than one 4kb page */
740 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
df805abb 741 if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
11b6402c
JR
742 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
743}
744
cb41ed85
JR
745static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
746 u64 address, size_t size)
747{
748 u64 pages;
ae0cbbb1 749 bool s;
cb41ed85
JR
750
751 pages = iommu_num_pages(address, size, PAGE_SIZE);
ae0cbbb1 752 s = false;
cb41ed85
JR
753
754 if (pages > 1) {
755 /*
756 * If we have to flush more than one page, flush all
757 * TLB entries for this domain
758 */
759 address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
ae0cbbb1 760 s = true;
cb41ed85
JR
761 }
762
763 address &= PAGE_MASK;
764
765 memset(cmd, 0, sizeof(*cmd));
766 cmd->data[0] = devid;
767 cmd->data[0] |= (qdep & 0xff) << 24;
768 cmd->data[1] = devid;
769 cmd->data[2] = lower_32_bits(address);
770 cmd->data[3] = upper_32_bits(address);
771 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
772 if (s)
773 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
774}
775
22e266c7
JR
776static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
777 u64 address, bool size)
778{
779 memset(cmd, 0, sizeof(*cmd));
780
781 address &= ~(0xfffULL);
782
a919a018 783 cmd->data[0] = pasid;
22e266c7
JR
784 cmd->data[1] = domid;
785 cmd->data[2] = lower_32_bits(address);
786 cmd->data[3] = upper_32_bits(address);
787 cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
788 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
789 if (size)
790 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
791 CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
792}
793
794static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
795 int qdep, u64 address, bool size)
796{
797 memset(cmd, 0, sizeof(*cmd));
798
799 address &= ~(0xfffULL);
800
801 cmd->data[0] = devid;
e8d2d82d 802 cmd->data[0] |= ((pasid >> 8) & 0xff) << 16;
22e266c7
JR
803 cmd->data[0] |= (qdep & 0xff) << 24;
804 cmd->data[1] = devid;
e8d2d82d 805 cmd->data[1] |= (pasid & 0xff) << 16;
22e266c7
JR
806 cmd->data[2] = lower_32_bits(address);
807 cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
808 cmd->data[3] = upper_32_bits(address);
809 if (size)
810 cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
811 CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
812}
813
c99afa25
JR
814static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
815 int status, int tag, bool gn)
816{
817 memset(cmd, 0, sizeof(*cmd));
818
819 cmd->data[0] = devid;
820 if (gn) {
a919a018 821 cmd->data[1] = pasid;
c99afa25
JR
822 cmd->data[2] = CMD_INV_IOMMU_PAGES_GN_MASK;
823 }
824 cmd->data[3] = tag & 0x1ff;
825 cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
826
827 CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
828}
829
58fc7f14
JR
830static void build_inv_all(struct iommu_cmd *cmd)
831{
832 memset(cmd, 0, sizeof(*cmd));
833 CMD_SET_TYPE(cmd, CMD_INV_ALL);
a19ae1ec
JR
834}
835
7ef2798d
JR
836static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
837{
838 memset(cmd, 0, sizeof(*cmd));
839 cmd->data[0] = devid;
840 CMD_SET_TYPE(cmd, CMD_INV_IRT);
841}
842
431b2a20 843/*
431b2a20 844 * Writes the command to the IOMMUs command buffer and informs the
ac0ea6e9 845 * hardware about the new command.
431b2a20 846 */
f1ca1512
JR
847static int iommu_queue_command_sync(struct amd_iommu *iommu,
848 struct iommu_cmd *cmd,
849 bool sync)
a19ae1ec 850{
ac0ea6e9 851 u32 left, tail, head, next_tail;
a19ae1ec 852 unsigned long flags;
a19ae1ec 853
ac0ea6e9 854again:
a19ae1ec 855 spin_lock_irqsave(&iommu->lock, flags);
a19ae1ec 856
ac0ea6e9
JR
857 head = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
858 tail = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
deba4bce
JR
859 next_tail = (tail + sizeof(*cmd)) % CMD_BUFFER_SIZE;
860 left = (head - next_tail) % CMD_BUFFER_SIZE;
a19ae1ec 861
ac0ea6e9
JR
862 if (left <= 2) {
863 struct iommu_cmd sync_cmd;
864 volatile u64 sem = 0;
865 int ret;
8d201968 866
ac0ea6e9
JR
867 build_completion_wait(&sync_cmd, (u64)&sem);
868 copy_cmd_to_buffer(iommu, &sync_cmd, tail);
da49f6df 869
ac0ea6e9
JR
870 spin_unlock_irqrestore(&iommu->lock, flags);
871
872 if ((ret = wait_on_sem(&sem)) != 0)
873 return ret;
874
875 goto again;
8d201968
JR
876 }
877
ac0ea6e9
JR
878 copy_cmd_to_buffer(iommu, cmd, tail);
879
880 /* We need to sync now to make sure all commands are processed */
f1ca1512 881 iommu->need_sync = sync;
ac0ea6e9 882
a19ae1ec 883 spin_unlock_irqrestore(&iommu->lock, flags);
8d201968 884
815b33fd 885 return 0;
8d201968
JR
886}
887
f1ca1512
JR
888static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
889{
890 return iommu_queue_command_sync(iommu, cmd, true);
891}
892
8d201968
JR
893/*
894 * This function queues a completion wait command into the command
895 * buffer of an IOMMU
896 */
a19ae1ec 897static int iommu_completion_wait(struct amd_iommu *iommu)
8d201968
JR
898{
899 struct iommu_cmd cmd;
815b33fd 900 volatile u64 sem = 0;
ac0ea6e9 901 int ret;
8d201968 902
09ee17eb 903 if (!iommu->need_sync)
815b33fd 904 return 0;
09ee17eb 905
815b33fd 906 build_completion_wait(&cmd, (u64)&sem);
a19ae1ec 907
f1ca1512 908 ret = iommu_queue_command_sync(iommu, &cmd, false);
a19ae1ec 909 if (ret)
815b33fd 910 return ret;
8d201968 911
ac0ea6e9 912 return wait_on_sem(&sem);
8d201968
JR
913}
914
d8c13085 915static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
a19ae1ec 916{
d8c13085 917 struct iommu_cmd cmd;
a19ae1ec 918
d8c13085 919 build_inv_dte(&cmd, devid);
7e4f88da 920
d8c13085
JR
921 return iommu_queue_command(iommu, &cmd);
922}
09ee17eb 923
7d0c5cc5
JR
924static void iommu_flush_dte_all(struct amd_iommu *iommu)
925{
926 u32 devid;
09ee17eb 927
7d0c5cc5
JR
928 for (devid = 0; devid <= 0xffff; ++devid)
929 iommu_flush_dte(iommu, devid);
a19ae1ec 930
7d0c5cc5
JR
931 iommu_completion_wait(iommu);
932}
84df8175 933
7d0c5cc5
JR
934/*
935 * This function uses heavy locking and may disable irqs for some time. But
936 * this is no issue because it is only called during resume.
937 */
938static void iommu_flush_tlb_all(struct amd_iommu *iommu)
939{
940 u32 dom_id;
a19ae1ec 941
7d0c5cc5
JR
942 for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
943 struct iommu_cmd cmd;
944 build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
945 dom_id, 1);
946 iommu_queue_command(iommu, &cmd);
947 }
8eed9833 948
7d0c5cc5 949 iommu_completion_wait(iommu);
a19ae1ec
JR
950}
951
58fc7f14 952static void iommu_flush_all(struct amd_iommu *iommu)
0518a3a4 953{
58fc7f14 954 struct iommu_cmd cmd;
0518a3a4 955
58fc7f14 956 build_inv_all(&cmd);
0518a3a4 957
58fc7f14
JR
958 iommu_queue_command(iommu, &cmd);
959 iommu_completion_wait(iommu);
960}
961
7ef2798d
JR
962static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
963{
964 struct iommu_cmd cmd;
965
966 build_inv_irt(&cmd, devid);
967
968 iommu_queue_command(iommu, &cmd);
969}
970
971static void iommu_flush_irt_all(struct amd_iommu *iommu)
972{
973 u32 devid;
974
975 for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
976 iommu_flush_irt(iommu, devid);
977
978 iommu_completion_wait(iommu);
979}
980
7d0c5cc5
JR
981void iommu_flush_all_caches(struct amd_iommu *iommu)
982{
58fc7f14
JR
983 if (iommu_feature(iommu, FEATURE_IA)) {
984 iommu_flush_all(iommu);
985 } else {
986 iommu_flush_dte_all(iommu);
7ef2798d 987 iommu_flush_irt_all(iommu);
58fc7f14 988 iommu_flush_tlb_all(iommu);
0518a3a4
JR
989 }
990}
991
431b2a20 992/*
cb41ed85 993 * Command send function for flushing on-device TLB
431b2a20 994 */
6c542047
JR
995static int device_flush_iotlb(struct iommu_dev_data *dev_data,
996 u64 address, size_t size)
3fa43655
JR
997{
998 struct amd_iommu *iommu;
b00d3bcf 999 struct iommu_cmd cmd;
cb41ed85 1000 int qdep;
3fa43655 1001
ea61cddb
JR
1002 qdep = dev_data->ats.qdep;
1003 iommu = amd_iommu_rlookup_table[dev_data->devid];
3fa43655 1004
ea61cddb 1005 build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
b00d3bcf
JR
1006
1007 return iommu_queue_command(iommu, &cmd);
3fa43655
JR
1008}
1009
431b2a20 1010/*
431b2a20 1011 * Command send function for invalidating a device table entry
431b2a20 1012 */
6c542047 1013static int device_flush_dte(struct iommu_dev_data *dev_data)
a19ae1ec 1014{
3fa43655 1015 struct amd_iommu *iommu;
e25bfb56 1016 u16 alias;
ee2fa743 1017 int ret;
a19ae1ec 1018
6c542047 1019 iommu = amd_iommu_rlookup_table[dev_data->devid];
e25bfb56 1020 alias = amd_iommu_alias_table[dev_data->devid];
a19ae1ec 1021
f62dda66 1022 ret = iommu_flush_dte(iommu, dev_data->devid);
e25bfb56
JR
1023 if (!ret && alias != dev_data->devid)
1024 ret = iommu_flush_dte(iommu, alias);
cb41ed85
JR
1025 if (ret)
1026 return ret;
1027
ea61cddb 1028 if (dev_data->ats.enabled)
6c542047 1029 ret = device_flush_iotlb(dev_data, 0, ~0UL);
ee2fa743 1030
ee2fa743 1031 return ret;
a19ae1ec
JR
1032}
1033
431b2a20
JR
1034/*
1035 * TLB invalidation function which is called from the mapping functions.
1036 * It invalidates a single PTE if the range to flush is within a single
1037 * page. Otherwise it flushes the whole TLB of the IOMMU.
1038 */
17b124bf
JR
1039static void __domain_flush_pages(struct protection_domain *domain,
1040 u64 address, size_t size, int pde)
a19ae1ec 1041{
cb41ed85 1042 struct iommu_dev_data *dev_data;
11b6402c
JR
1043 struct iommu_cmd cmd;
1044 int ret = 0, i;
a19ae1ec 1045
11b6402c 1046 build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
999ba417 1047
6de8ad9b
JR
1048 for (i = 0; i < amd_iommus_present; ++i) {
1049 if (!domain->dev_iommu[i])
1050 continue;
1051
1052 /*
1053 * Devices of this domain are behind this IOMMU
1054 * We need a TLB flush
1055 */
11b6402c 1056 ret |= iommu_queue_command(amd_iommus[i], &cmd);
6de8ad9b
JR
1057 }
1058
cb41ed85 1059 list_for_each_entry(dev_data, &domain->dev_list, list) {
cb41ed85 1060
ea61cddb 1061 if (!dev_data->ats.enabled)
cb41ed85
JR
1062 continue;
1063
6c542047 1064 ret |= device_flush_iotlb(dev_data, address, size);
cb41ed85
JR
1065 }
1066
11b6402c 1067 WARN_ON(ret);
6de8ad9b
JR
1068}
1069
17b124bf
JR
1070static void domain_flush_pages(struct protection_domain *domain,
1071 u64 address, size_t size)
6de8ad9b 1072{
17b124bf 1073 __domain_flush_pages(domain, address, size, 0);
a19ae1ec 1074}
b6c02715 1075
1c655773 1076/* Flush the whole IO/TLB for a given protection domain */
17b124bf 1077static void domain_flush_tlb(struct protection_domain *domain)
1c655773 1078{
17b124bf 1079 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1c655773
JR
1080}
1081
42a49f96 1082/* Flush the whole IO/TLB for a given protection domain - including PDE */
17b124bf 1083static void domain_flush_tlb_pde(struct protection_domain *domain)
42a49f96 1084{
17b124bf 1085 __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
42a49f96
CW
1086}
1087
17b124bf 1088static void domain_flush_complete(struct protection_domain *domain)
b00d3bcf 1089{
17b124bf 1090 int i;
18811f55 1091
17b124bf
JR
1092 for (i = 0; i < amd_iommus_present; ++i) {
1093 if (!domain->dev_iommu[i])
1094 continue;
bfd1be18 1095
17b124bf
JR
1096 /*
1097 * Devices of this domain are behind this IOMMU
1098 * We need to wait for completion of all commands.
1099 */
1100 iommu_completion_wait(amd_iommus[i]);
bfd1be18 1101 }
e394d72a
JR
1102}
1103
b00d3bcf 1104
09b42804 1105/*
b00d3bcf 1106 * This function flushes the DTEs for all devices in domain
09b42804 1107 */
17b124bf 1108static void domain_flush_devices(struct protection_domain *domain)
e394d72a 1109{
b00d3bcf 1110 struct iommu_dev_data *dev_data;
b26e81b8 1111
b00d3bcf 1112 list_for_each_entry(dev_data, &domain->dev_list, list)
6c542047 1113 device_flush_dte(dev_data);
a345b23b
JR
1114}
1115
431b2a20
JR
1116/****************************************************************************
1117 *
1118 * The functions below are used the create the page table mappings for
1119 * unity mapped regions.
1120 *
1121 ****************************************************************************/
1122
308973d3
JR
1123/*
1124 * This function is used to add another level to an IO page table. Adding
1125 * another level increases the size of the address space by 9 bits to a size up
1126 * to 64 bits.
1127 */
1128static bool increase_address_space(struct protection_domain *domain,
1129 gfp_t gfp)
1130{
1131 u64 *pte;
1132
1133 if (domain->mode == PAGE_MODE_6_LEVEL)
1134 /* address space already 64 bit large */
1135 return false;
1136
1137 pte = (void *)get_zeroed_page(gfp);
1138 if (!pte)
1139 return false;
1140
1141 *pte = PM_LEVEL_PDE(domain->mode,
1142 virt_to_phys(domain->pt_root));
1143 domain->pt_root = pte;
1144 domain->mode += 1;
1145 domain->updated = true;
1146
1147 return true;
1148}
1149
1150static u64 *alloc_pte(struct protection_domain *domain,
1151 unsigned long address,
cbb9d729 1152 unsigned long page_size,
308973d3
JR
1153 u64 **pte_page,
1154 gfp_t gfp)
1155{
cbb9d729 1156 int level, end_lvl;
308973d3 1157 u64 *pte, *page;
cbb9d729
JR
1158
1159 BUG_ON(!is_power_of_2(page_size));
308973d3
JR
1160
1161 while (address > PM_LEVEL_SIZE(domain->mode))
1162 increase_address_space(domain, gfp);
1163
cbb9d729
JR
1164 level = domain->mode - 1;
1165 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1166 address = PAGE_SIZE_ALIGN(address, page_size);
1167 end_lvl = PAGE_SIZE_LEVEL(page_size);
308973d3
JR
1168
1169 while (level > end_lvl) {
1170 if (!IOMMU_PTE_PRESENT(*pte)) {
1171 page = (u64 *)get_zeroed_page(gfp);
1172 if (!page)
1173 return NULL;
1174 *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
1175 }
1176
cbb9d729
JR
1177 /* No level skipping support yet */
1178 if (PM_PTE_LEVEL(*pte) != level)
1179 return NULL;
1180
308973d3
JR
1181 level -= 1;
1182
1183 pte = IOMMU_PTE_PAGE(*pte);
1184
1185 if (pte_page && level == end_lvl)
1186 *pte_page = pte;
1187
1188 pte = &pte[PM_LEVEL_INDEX(level, address)];
1189 }
1190
1191 return pte;
1192}
1193
1194/*
1195 * This function checks if there is a PTE for a given dma address. If
1196 * there is one, it returns the pointer to it.
1197 */
3039ca1b
JR
1198static u64 *fetch_pte(struct protection_domain *domain,
1199 unsigned long address,
1200 unsigned long *page_size)
308973d3
JR
1201{
1202 int level;
1203 u64 *pte;
1204
24cd7723
JR
1205 if (address > PM_LEVEL_SIZE(domain->mode))
1206 return NULL;
1207
3039ca1b
JR
1208 level = domain->mode - 1;
1209 pte = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1210 *page_size = PTE_LEVEL_PAGE_SIZE(level);
308973d3 1211
24cd7723
JR
1212 while (level > 0) {
1213
1214 /* Not Present */
308973d3
JR
1215 if (!IOMMU_PTE_PRESENT(*pte))
1216 return NULL;
1217
24cd7723 1218 /* Large PTE */
3039ca1b
JR
1219 if (PM_PTE_LEVEL(*pte) == 7 ||
1220 PM_PTE_LEVEL(*pte) == 0)
1221 break;
24cd7723
JR
1222
1223 /* No level skipping support yet */
1224 if (PM_PTE_LEVEL(*pte) != level)
1225 return NULL;
1226
308973d3
JR
1227 level -= 1;
1228
24cd7723 1229 /* Walk to the next level */
3039ca1b
JR
1230 pte = IOMMU_PTE_PAGE(*pte);
1231 pte = &pte[PM_LEVEL_INDEX(level, address)];
1232 *page_size = PTE_LEVEL_PAGE_SIZE(level);
1233 }
1234
1235 if (PM_PTE_LEVEL(*pte) == 0x07) {
1236 unsigned long pte_mask;
1237
1238 /*
1239 * If we have a series of large PTEs, make
1240 * sure to return a pointer to the first one.
1241 */
1242 *page_size = pte_mask = PTE_PAGE_SIZE(*pte);
1243 pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
1244 pte = (u64 *)(((unsigned long)pte) & pte_mask);
308973d3
JR
1245 }
1246
1247 return pte;
1248}
1249
431b2a20
JR
1250/*
1251 * Generic mapping functions. It maps a physical address into a DMA
1252 * address space. It allocates the page table pages if necessary.
1253 * In the future it can be extended to a generic mapping function
1254 * supporting all features of AMD IOMMU page tables like level skipping
1255 * and full 64 bit address spaces.
1256 */
38e817fe
JR
1257static int iommu_map_page(struct protection_domain *dom,
1258 unsigned long bus_addr,
1259 unsigned long phys_addr,
abdc5eb3 1260 int prot,
cbb9d729 1261 unsigned long page_size)
bd0e5211 1262{
8bda3092 1263 u64 __pte, *pte;
cbb9d729 1264 int i, count;
abdc5eb3 1265
d4b03664
JR
1266 BUG_ON(!IS_ALIGNED(bus_addr, page_size));
1267 BUG_ON(!IS_ALIGNED(phys_addr, page_size));
1268
bad1cac2 1269 if (!(prot & IOMMU_PROT_MASK))
bd0e5211
JR
1270 return -EINVAL;
1271
d4b03664
JR
1272 count = PAGE_SIZE_PTE_COUNT(page_size);
1273 pte = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
cbb9d729 1274
63eaa75e
ML
1275 if (!pte)
1276 return -ENOMEM;
1277
cbb9d729
JR
1278 for (i = 0; i < count; ++i)
1279 if (IOMMU_PTE_PRESENT(pte[i]))
1280 return -EBUSY;
bd0e5211 1281
d4b03664 1282 if (count > 1) {
cbb9d729
JR
1283 __pte = PAGE_SIZE_PTE(phys_addr, page_size);
1284 __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
1285 } else
1286 __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
bd0e5211 1287
bd0e5211
JR
1288 if (prot & IOMMU_PROT_IR)
1289 __pte |= IOMMU_PTE_IR;
1290 if (prot & IOMMU_PROT_IW)
1291 __pte |= IOMMU_PTE_IW;
1292
cbb9d729
JR
1293 for (i = 0; i < count; ++i)
1294 pte[i] = __pte;
bd0e5211 1295
04bfdd84
JR
1296 update_domain(dom);
1297
bd0e5211
JR
1298 return 0;
1299}
1300
24cd7723
JR
1301static unsigned long iommu_unmap_page(struct protection_domain *dom,
1302 unsigned long bus_addr,
1303 unsigned long page_size)
eb74ff6c 1304{
71b390e9
JR
1305 unsigned long long unmapped;
1306 unsigned long unmap_size;
24cd7723
JR
1307 u64 *pte;
1308
1309 BUG_ON(!is_power_of_2(page_size));
1310
1311 unmapped = 0;
eb74ff6c 1312
24cd7723
JR
1313 while (unmapped < page_size) {
1314
71b390e9
JR
1315 pte = fetch_pte(dom, bus_addr, &unmap_size);
1316
1317 if (pte) {
1318 int i, count;
1319
1320 count = PAGE_SIZE_PTE_COUNT(unmap_size);
24cd7723
JR
1321 for (i = 0; i < count; i++)
1322 pte[i] = 0ULL;
1323 }
1324
1325 bus_addr = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1326 unmapped += unmap_size;
1327 }
1328
60d0ca3c 1329 BUG_ON(unmapped && !is_power_of_2(unmapped));
eb74ff6c 1330
24cd7723 1331 return unmapped;
eb74ff6c 1332}
eb74ff6c 1333
431b2a20
JR
1334/****************************************************************************
1335 *
1336 * The next functions belong to the address allocator for the dma_ops
1337 * interface functions. They work like the allocators in the other IOMMU
1338 * drivers. Its basically a bitmap which marks the allocated pages in
1339 * the aperture. Maybe it could be enhanced in the future to a more
1340 * efficient allocator.
1341 *
1342 ****************************************************************************/
d3086444 1343
431b2a20 1344/*
384de729 1345 * The address allocator core functions.
431b2a20
JR
1346 *
1347 * called with domain->lock held
1348 */
384de729 1349
171e7b37
JR
1350/*
1351 * Used to reserve address ranges in the aperture (e.g. for exclusion
1352 * ranges.
1353 */
1354static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1355 unsigned long start_page,
1356 unsigned int pages)
1357{
1358 unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1359
1360 if (start_page + pages > last_page)
1361 pages = last_page - start_page;
1362
1363 for (i = start_page; i < start_page + pages; ++i) {
1364 int index = i / APERTURE_RANGE_PAGES;
1365 int page = i % APERTURE_RANGE_PAGES;
1366 __set_bit(page, dom->aperture[index]->bitmap);
1367 }
1368}
1369
9cabe89b
JR
1370/*
1371 * This function is used to add a new aperture range to an existing
1372 * aperture in case of dma_ops domain allocation or address allocation
1373 * failure.
1374 */
576175c2 1375static int alloc_new_range(struct dma_ops_domain *dma_dom,
9cabe89b
JR
1376 bool populate, gfp_t gfp)
1377{
1378 int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
576175c2 1379 struct amd_iommu *iommu;
5d7c94c3 1380 unsigned long i, old_size, pte_pgsize;
9cabe89b 1381
f5e9705c
JR
1382#ifdef CONFIG_IOMMU_STRESS
1383 populate = false;
1384#endif
1385
9cabe89b
JR
1386 if (index >= APERTURE_MAX_RANGES)
1387 return -ENOMEM;
1388
1389 dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
1390 if (!dma_dom->aperture[index])
1391 return -ENOMEM;
1392
1393 dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
1394 if (!dma_dom->aperture[index]->bitmap)
1395 goto out_free;
1396
1397 dma_dom->aperture[index]->offset = dma_dom->aperture_size;
1398
1399 if (populate) {
1400 unsigned long address = dma_dom->aperture_size;
1401 int i, num_ptes = APERTURE_RANGE_PAGES / 512;
1402 u64 *pte, *pte_page;
1403
1404 for (i = 0; i < num_ptes; ++i) {
cbb9d729 1405 pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
9cabe89b
JR
1406 &pte_page, gfp);
1407 if (!pte)
1408 goto out_free;
1409
1410 dma_dom->aperture[index]->pte_pages[i] = pte_page;
1411
1412 address += APERTURE_RANGE_SIZE / 64;
1413 }
1414 }
1415
17f5b569 1416 old_size = dma_dom->aperture_size;
9cabe89b
JR
1417 dma_dom->aperture_size += APERTURE_RANGE_SIZE;
1418
17f5b569
JR
1419 /* Reserve address range used for MSI messages */
1420 if (old_size < MSI_ADDR_BASE_LO &&
1421 dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
1422 unsigned long spage;
1423 int pages;
1424
1425 pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
1426 spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;
1427
1428 dma_ops_reserve_addresses(dma_dom, spage, pages);
1429 }
1430
b595076a 1431 /* Initialize the exclusion range if necessary */
576175c2
JR
1432 for_each_iommu(iommu) {
1433 if (iommu->exclusion_start &&
1434 iommu->exclusion_start >= dma_dom->aperture[index]->offset
1435 && iommu->exclusion_start < dma_dom->aperture_size) {
1436 unsigned long startpage;
1437 int pages = iommu_num_pages(iommu->exclusion_start,
1438 iommu->exclusion_length,
1439 PAGE_SIZE);
1440 startpage = iommu->exclusion_start >> PAGE_SHIFT;
1441 dma_ops_reserve_addresses(dma_dom, startpage, pages);
1442 }
00cd122a
JR
1443 }
1444
1445 /*
1446 * Check for areas already mapped as present in the new aperture
1447 * range and mark those pages as reserved in the allocator. Such
1448 * mappings may already exist as a result of requested unity
1449 * mappings for devices.
1450 */
1451 for (i = dma_dom->aperture[index]->offset;
1452 i < dma_dom->aperture_size;
5d7c94c3 1453 i += pte_pgsize) {
3039ca1b 1454 u64 *pte = fetch_pte(&dma_dom->domain, i, &pte_pgsize);
00cd122a
JR
1455 if (!pte || !IOMMU_PTE_PRESENT(*pte))
1456 continue;
1457
5d7c94c3
JR
1458 dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT,
1459 pte_pgsize >> 12);
00cd122a
JR
1460 }
1461
04bfdd84
JR
1462 update_domain(&dma_dom->domain);
1463
9cabe89b
JR
1464 return 0;
1465
1466out_free:
04bfdd84
JR
1467 update_domain(&dma_dom->domain);
1468
9cabe89b
JR
1469 free_page((unsigned long)dma_dom->aperture[index]->bitmap);
1470
1471 kfree(dma_dom->aperture[index]);
1472 dma_dom->aperture[index] = NULL;
1473
1474 return -ENOMEM;
1475}
1476
384de729
JR
1477static unsigned long dma_ops_area_alloc(struct device *dev,
1478 struct dma_ops_domain *dom,
1479 unsigned int pages,
1480 unsigned long align_mask,
1481 u64 dma_mask,
1482 unsigned long start)
1483{
803b8cb4 1484 unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
384de729
JR
1485 int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
1486 int i = start >> APERTURE_RANGE_SHIFT;
e6aabee0 1487 unsigned long boundary_size, mask;
384de729
JR
1488 unsigned long address = -1;
1489 unsigned long limit;
1490
803b8cb4
JR
1491 next_bit >>= PAGE_SHIFT;
1492
e6aabee0
JR
1493 mask = dma_get_seg_boundary(dev);
1494
1495 boundary_size = mask + 1 ? ALIGN(mask + 1, PAGE_SIZE) >> PAGE_SHIFT :
1496 1UL << (BITS_PER_LONG - PAGE_SHIFT);
384de729
JR
1497
1498 for (;i < max_index; ++i) {
1499 unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
1500
1501 if (dom->aperture[i]->offset >= dma_mask)
1502 break;
1503
1504 limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1505 dma_mask >> PAGE_SHIFT);
1506
1507 address = iommu_area_alloc(dom->aperture[i]->bitmap,
1508 limit, next_bit, pages, 0,
1509 boundary_size, align_mask);
1510 if (address != -1) {
1511 address = dom->aperture[i]->offset +
1512 (address << PAGE_SHIFT);
803b8cb4 1513 dom->next_address = address + (pages << PAGE_SHIFT);
384de729
JR
1514 break;
1515 }
1516
1517 next_bit = 0;
1518 }
1519
1520 return address;
1521}
1522
d3086444
JR
1523static unsigned long dma_ops_alloc_addresses(struct device *dev,
1524 struct dma_ops_domain *dom,
6d4f343f 1525 unsigned int pages,
832a90c3
JR
1526 unsigned long align_mask,
1527 u64 dma_mask)
d3086444 1528{
d3086444 1529 unsigned long address;
d3086444 1530
fe16f088
JR
1531#ifdef CONFIG_IOMMU_STRESS
1532 dom->next_address = 0;
1533 dom->need_flush = true;
1534#endif
d3086444 1535
384de729 1536 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
803b8cb4 1537 dma_mask, dom->next_address);
d3086444 1538
1c655773 1539 if (address == -1) {
803b8cb4 1540 dom->next_address = 0;
384de729
JR
1541 address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1542 dma_mask, 0);
1c655773
JR
1543 dom->need_flush = true;
1544 }
d3086444 1545
384de729 1546 if (unlikely(address == -1))
8fd524b3 1547 address = DMA_ERROR_CODE;
d3086444
JR
1548
1549 WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
1550
1551 return address;
1552}
1553
431b2a20
JR
1554/*
1555 * The address free function.
1556 *
1557 * called with domain->lock held
1558 */
d3086444
JR
1559static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1560 unsigned long address,
1561 unsigned int pages)
1562{
384de729
JR
1563 unsigned i = address >> APERTURE_RANGE_SHIFT;
1564 struct aperture_range *range = dom->aperture[i];
80be308d 1565
384de729
JR
1566 BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1567
47bccd6b
JR
1568#ifdef CONFIG_IOMMU_STRESS
1569 if (i < 4)
1570 return;
1571#endif
80be308d 1572
803b8cb4 1573 if (address >= dom->next_address)
80be308d 1574 dom->need_flush = true;
384de729
JR
1575
1576 address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
803b8cb4 1577
a66022c4 1578 bitmap_clear(range->bitmap, address, pages);
384de729 1579
d3086444
JR
1580}
1581
431b2a20
JR
1582/****************************************************************************
1583 *
1584 * The next functions belong to the domain allocation. A domain is
1585 * allocated for every IOMMU as the default domain. If device isolation
1586 * is enabled, every device get its own domain. The most important thing
1587 * about domains is the page table mapping the DMA address space they
1588 * contain.
1589 *
1590 ****************************************************************************/
1591
aeb26f55
JR
1592/*
1593 * This function adds a protection domain to the global protection domain list
1594 */
1595static void add_domain_to_list(struct protection_domain *domain)
1596{
1597 unsigned long flags;
1598
1599 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1600 list_add(&domain->list, &amd_iommu_pd_list);
1601 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1602}
1603
1604/*
1605 * This function removes a protection domain to the global
1606 * protection domain list
1607 */
1608static void del_domain_from_list(struct protection_domain *domain)
1609{
1610 unsigned long flags;
1611
1612 spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1613 list_del(&domain->list);
1614 spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1615}
1616
ec487d1a
JR
1617static u16 domain_id_alloc(void)
1618{
1619 unsigned long flags;
1620 int id;
1621
1622 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1623 id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1624 BUG_ON(id == 0);
1625 if (id > 0 && id < MAX_DOMAIN_ID)
1626 __set_bit(id, amd_iommu_pd_alloc_bitmap);
1627 else
1628 id = 0;
1629 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1630
1631 return id;
1632}
1633
a2acfb75
JR
1634static void domain_id_free(int id)
1635{
1636 unsigned long flags;
1637
1638 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1639 if (id > 0 && id < MAX_DOMAIN_ID)
1640 __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1641 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1642}
a2acfb75 1643
5c34c403
JR
1644#define DEFINE_FREE_PT_FN(LVL, FN) \
1645static void free_pt_##LVL (unsigned long __pt) \
1646{ \
1647 unsigned long p; \
1648 u64 *pt; \
1649 int i; \
1650 \
1651 pt = (u64 *)__pt; \
1652 \
1653 for (i = 0; i < 512; ++i) { \
0b3fff54 1654 /* PTE present? */ \
5c34c403
JR
1655 if (!IOMMU_PTE_PRESENT(pt[i])) \
1656 continue; \
1657 \
0b3fff54
JR
1658 /* Large PTE? */ \
1659 if (PM_PTE_LEVEL(pt[i]) == 0 || \
1660 PM_PTE_LEVEL(pt[i]) == 7) \
1661 continue; \
1662 \
5c34c403
JR
1663 p = (unsigned long)IOMMU_PTE_PAGE(pt[i]); \
1664 FN(p); \
1665 } \
1666 free_page((unsigned long)pt); \
1667}
1668
1669DEFINE_FREE_PT_FN(l2, free_page)
1670DEFINE_FREE_PT_FN(l3, free_pt_l2)
1671DEFINE_FREE_PT_FN(l4, free_pt_l3)
1672DEFINE_FREE_PT_FN(l5, free_pt_l4)
1673DEFINE_FREE_PT_FN(l6, free_pt_l5)
1674
86db2e5d 1675static void free_pagetable(struct protection_domain *domain)
ec487d1a 1676{
5c34c403 1677 unsigned long root = (unsigned long)domain->pt_root;
ec487d1a 1678
5c34c403
JR
1679 switch (domain->mode) {
1680 case PAGE_MODE_NONE:
1681 break;
1682 case PAGE_MODE_1_LEVEL:
1683 free_page(root);
1684 break;
1685 case PAGE_MODE_2_LEVEL:
1686 free_pt_l2(root);
1687 break;
1688 case PAGE_MODE_3_LEVEL:
1689 free_pt_l3(root);
1690 break;
1691 case PAGE_MODE_4_LEVEL:
1692 free_pt_l4(root);
1693 break;
1694 case PAGE_MODE_5_LEVEL:
1695 free_pt_l5(root);
1696 break;
1697 case PAGE_MODE_6_LEVEL:
1698 free_pt_l6(root);
1699 break;
1700 default:
1701 BUG();
ec487d1a 1702 }
ec487d1a
JR
1703}
1704
b16137b1
JR
1705static void free_gcr3_tbl_level1(u64 *tbl)
1706{
1707 u64 *ptr;
1708 int i;
1709
1710 for (i = 0; i < 512; ++i) {
1711 if (!(tbl[i] & GCR3_VALID))
1712 continue;
1713
1714 ptr = __va(tbl[i] & PAGE_MASK);
1715
1716 free_page((unsigned long)ptr);
1717 }
1718}
1719
1720static void free_gcr3_tbl_level2(u64 *tbl)
1721{
1722 u64 *ptr;
1723 int i;
1724
1725 for (i = 0; i < 512; ++i) {
1726 if (!(tbl[i] & GCR3_VALID))
1727 continue;
1728
1729 ptr = __va(tbl[i] & PAGE_MASK);
1730
1731 free_gcr3_tbl_level1(ptr);
1732 }
1733}
1734
52815b75
JR
1735static void free_gcr3_table(struct protection_domain *domain)
1736{
b16137b1
JR
1737 if (domain->glx == 2)
1738 free_gcr3_tbl_level2(domain->gcr3_tbl);
1739 else if (domain->glx == 1)
1740 free_gcr3_tbl_level1(domain->gcr3_tbl);
23d3a98c
JR
1741 else
1742 BUG_ON(domain->glx != 0);
b16137b1 1743
52815b75
JR
1744 free_page((unsigned long)domain->gcr3_tbl);
1745}
1746
431b2a20
JR
1747/*
1748 * Free a domain, only used if something went wrong in the
1749 * allocation path and we need to free an already allocated page table
1750 */
ec487d1a
JR
1751static void dma_ops_domain_free(struct dma_ops_domain *dom)
1752{
384de729
JR
1753 int i;
1754
ec487d1a
JR
1755 if (!dom)
1756 return;
1757
aeb26f55
JR
1758 del_domain_from_list(&dom->domain);
1759
86db2e5d 1760 free_pagetable(&dom->domain);
ec487d1a 1761
384de729
JR
1762 for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1763 if (!dom->aperture[i])
1764 continue;
1765 free_page((unsigned long)dom->aperture[i]->bitmap);
1766 kfree(dom->aperture[i]);
1767 }
ec487d1a
JR
1768
1769 kfree(dom);
1770}
1771
431b2a20
JR
1772/*
1773 * Allocates a new protection domain usable for the dma_ops functions.
b595076a 1774 * It also initializes the page table and the address allocator data
431b2a20
JR
1775 * structures required for the dma_ops interface
1776 */
87a64d52 1777static struct dma_ops_domain *dma_ops_domain_alloc(void)
ec487d1a
JR
1778{
1779 struct dma_ops_domain *dma_dom;
ec487d1a
JR
1780
1781 dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
1782 if (!dma_dom)
1783 return NULL;
1784
7a5a566e 1785 if (protection_domain_init(&dma_dom->domain))
ec487d1a 1786 goto free_dma_dom;
7a5a566e 1787
8f7a017c 1788 dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
ec487d1a 1789 dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
9fdb19d6 1790 dma_dom->domain.flags = PD_DMA_OPS_MASK;
ec487d1a
JR
1791 dma_dom->domain.priv = dma_dom;
1792 if (!dma_dom->domain.pt_root)
1793 goto free_dma_dom;
ec487d1a 1794
1c655773
JR
1795 dma_dom->need_flush = false;
1796
aeb26f55
JR
1797 add_domain_to_list(&dma_dom->domain);
1798
576175c2 1799 if (alloc_new_range(dma_dom, true, GFP_KERNEL))
ec487d1a 1800 goto free_dma_dom;
ec487d1a 1801
431b2a20 1802 /*
ec487d1a
JR
1803 * mark the first page as allocated so we never return 0 as
1804 * a valid dma-address. So we can use 0 as error value
431b2a20 1805 */
384de729 1806 dma_dom->aperture[0]->bitmap[0] = 1;
803b8cb4 1807 dma_dom->next_address = 0;
ec487d1a 1808
ec487d1a
JR
1809
1810 return dma_dom;
1811
1812free_dma_dom:
1813 dma_ops_domain_free(dma_dom);
1814
1815 return NULL;
1816}
1817
5b28df6f
JR
1818/*
1819 * little helper function to check whether a given protection domain is a
1820 * dma_ops domain
1821 */
1822static bool dma_ops_domain(struct protection_domain *domain)
1823{
1824 return domain->flags & PD_DMA_OPS_MASK;
1825}
1826
fd7b5535 1827static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
b20ac0d4 1828{
132bd68f 1829 u64 pte_root = 0;
ee6c2868 1830 u64 flags = 0;
863c74eb 1831
132bd68f
JR
1832 if (domain->mode != PAGE_MODE_NONE)
1833 pte_root = virt_to_phys(domain->pt_root);
1834
38ddf41b
JR
1835 pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
1836 << DEV_ENTRY_MODE_SHIFT;
1837 pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
b20ac0d4 1838
ee6c2868
JR
1839 flags = amd_iommu_dev_table[devid].data[1];
1840
fd7b5535
JR
1841 if (ats)
1842 flags |= DTE_FLAG_IOTLB;
1843
52815b75
JR
1844 if (domain->flags & PD_IOMMUV2_MASK) {
1845 u64 gcr3 = __pa(domain->gcr3_tbl);
1846 u64 glx = domain->glx;
1847 u64 tmp;
1848
1849 pte_root |= DTE_FLAG_GV;
1850 pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
1851
1852 /* First mask out possible old values for GCR3 table */
1853 tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
1854 flags &= ~tmp;
1855
1856 tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
1857 flags &= ~tmp;
1858
1859 /* Encode GCR3 table into DTE */
1860 tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
1861 pte_root |= tmp;
1862
1863 tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
1864 flags |= tmp;
1865
1866 tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
1867 flags |= tmp;
1868 }
1869
ee6c2868
JR
1870 flags &= ~(0xffffUL);
1871 flags |= domain->id;
1872
1873 amd_iommu_dev_table[devid].data[1] = flags;
1874 amd_iommu_dev_table[devid].data[0] = pte_root;
15898bbc
JR
1875}
1876
1877static void clear_dte_entry(u16 devid)
1878{
15898bbc 1879 /* remove entry from the device table seen by the hardware */
cbf3ccd0
JR
1880 amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
1881 amd_iommu_dev_table[devid].data[1] &= DTE_FLAG_MASK;
15898bbc
JR
1882
1883 amd_iommu_apply_erratum_63(devid);
7f760ddd
JR
1884}
1885
ec9e79ef
JR
1886static void do_attach(struct iommu_dev_data *dev_data,
1887 struct protection_domain *domain)
7f760ddd 1888{
7f760ddd 1889 struct amd_iommu *iommu;
e25bfb56 1890 u16 alias;
ec9e79ef 1891 bool ats;
fd7b5535 1892
ec9e79ef 1893 iommu = amd_iommu_rlookup_table[dev_data->devid];
e25bfb56 1894 alias = amd_iommu_alias_table[dev_data->devid];
ec9e79ef 1895 ats = dev_data->ats.enabled;
7f760ddd
JR
1896
1897 /* Update data structures */
1898 dev_data->domain = domain;
1899 list_add(&dev_data->list, &domain->dev_list);
7f760ddd
JR
1900
1901 /* Do reference counting */
1902 domain->dev_iommu[iommu->index] += 1;
1903 domain->dev_cnt += 1;
1904
e25bfb56
JR
1905 /* Update device table */
1906 set_dte_entry(dev_data->devid, domain, ats);
1907 if (alias != dev_data->devid)
1908 set_dte_entry(dev_data->devid, domain, ats);
1909
6c542047 1910 device_flush_dte(dev_data);
7f760ddd
JR
1911}
1912
ec9e79ef 1913static void do_detach(struct iommu_dev_data *dev_data)
7f760ddd 1914{
7f760ddd 1915 struct amd_iommu *iommu;
e25bfb56 1916 u16 alias;
7f760ddd 1917
5adad991
JR
1918 /*
1919 * First check if the device is still attached. It might already
1920 * be detached from its domain because the generic
1921 * iommu_detach_group code detached it and we try again here in
1922 * our alias handling.
1923 */
1924 if (!dev_data->domain)
1925 return;
1926
ec9e79ef 1927 iommu = amd_iommu_rlookup_table[dev_data->devid];
e25bfb56 1928 alias = amd_iommu_alias_table[dev_data->devid];
15898bbc
JR
1929
1930 /* decrease reference counters */
7f760ddd
JR
1931 dev_data->domain->dev_iommu[iommu->index] -= 1;
1932 dev_data->domain->dev_cnt -= 1;
1933
1934 /* Update data structures */
1935 dev_data->domain = NULL;
1936 list_del(&dev_data->list);
f62dda66 1937 clear_dte_entry(dev_data->devid);
e25bfb56
JR
1938 if (alias != dev_data->devid)
1939 clear_dte_entry(alias);
15898bbc 1940
7f760ddd 1941 /* Flush the DTE entry */
6c542047 1942 device_flush_dte(dev_data);
2b681faf
JR
1943}
1944
1945/*
1946 * If a device is not yet associated with a domain, this function does
1947 * assigns it visible for the hardware
1948 */
ec9e79ef 1949static int __attach_device(struct iommu_dev_data *dev_data,
15898bbc 1950 struct protection_domain *domain)
2b681faf 1951{
84fe6c19 1952 int ret;
657cbb6b 1953
272e4f99
JR
1954 /*
1955 * Must be called with IRQs disabled. Warn here to detect early
1956 * when its not.
1957 */
1958 WARN_ON(!irqs_disabled());
1959
2b681faf
JR
1960 /* lock domain */
1961 spin_lock(&domain->lock);
1962
397111ab 1963 ret = -EBUSY;
150952f9 1964 if (dev_data->domain != NULL)
397111ab 1965 goto out_unlock;
15898bbc 1966
397111ab 1967 /* Attach alias group root */
150952f9 1968 do_attach(dev_data, domain);
24100055 1969
84fe6c19
JL
1970 ret = 0;
1971
1972out_unlock:
1973
eba6ac60
JR
1974 /* ready */
1975 spin_unlock(&domain->lock);
15898bbc 1976
84fe6c19 1977 return ret;
0feae533 1978}
b20ac0d4 1979
52815b75
JR
1980
1981static void pdev_iommuv2_disable(struct pci_dev *pdev)
1982{
1983 pci_disable_ats(pdev);
1984 pci_disable_pri(pdev);
1985 pci_disable_pasid(pdev);
1986}
1987
6a113ddc
JR
1988/* FIXME: Change generic reset-function to do the same */
1989static int pri_reset_while_enabled(struct pci_dev *pdev)
1990{
1991 u16 control;
1992 int pos;
1993
46277b75 1994 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
6a113ddc
JR
1995 if (!pos)
1996 return -EINVAL;
1997
46277b75
JR
1998 pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
1999 control |= PCI_PRI_CTRL_RESET;
2000 pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
6a113ddc
JR
2001
2002 return 0;
2003}
2004
52815b75
JR
2005static int pdev_iommuv2_enable(struct pci_dev *pdev)
2006{
6a113ddc
JR
2007 bool reset_enable;
2008 int reqs, ret;
2009
2010 /* FIXME: Hardcode number of outstanding requests for now */
2011 reqs = 32;
2012 if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
2013 reqs = 1;
2014 reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
52815b75
JR
2015
2016 /* Only allow access to user-accessible pages */
2017 ret = pci_enable_pasid(pdev, 0);
2018 if (ret)
2019 goto out_err;
2020
2021 /* First reset the PRI state of the device */
2022 ret = pci_reset_pri(pdev);
2023 if (ret)
2024 goto out_err;
2025
6a113ddc
JR
2026 /* Enable PRI */
2027 ret = pci_enable_pri(pdev, reqs);
52815b75
JR
2028 if (ret)
2029 goto out_err;
2030
6a113ddc
JR
2031 if (reset_enable) {
2032 ret = pri_reset_while_enabled(pdev);
2033 if (ret)
2034 goto out_err;
2035 }
2036
52815b75
JR
2037 ret = pci_enable_ats(pdev, PAGE_SHIFT);
2038 if (ret)
2039 goto out_err;
2040
2041 return 0;
2042
2043out_err:
2044 pci_disable_pri(pdev);
2045 pci_disable_pasid(pdev);
2046
2047 return ret;
2048}
2049
c99afa25 2050/* FIXME: Move this to PCI code */
a3b93121 2051#define PCI_PRI_TLP_OFF (1 << 15)
c99afa25 2052
98f1ad25 2053static bool pci_pri_tlp_required(struct pci_dev *pdev)
c99afa25 2054{
a3b93121 2055 u16 status;
c99afa25
JR
2056 int pos;
2057
46277b75 2058 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
c99afa25
JR
2059 if (!pos)
2060 return false;
2061
a3b93121 2062 pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
c99afa25 2063
a3b93121 2064 return (status & PCI_PRI_TLP_OFF) ? true : false;
c99afa25
JR
2065}
2066
407d733e 2067/*
df805abb 2068 * If a device is not yet associated with a domain, this function
407d733e
JR
2069 * assigns it visible for the hardware
2070 */
15898bbc
JR
2071static int attach_device(struct device *dev,
2072 struct protection_domain *domain)
0feae533 2073{
fd7b5535 2074 struct pci_dev *pdev = to_pci_dev(dev);
ea61cddb 2075 struct iommu_dev_data *dev_data;
eba6ac60 2076 unsigned long flags;
15898bbc 2077 int ret;
eba6ac60 2078
ea61cddb
JR
2079 dev_data = get_dev_data(dev);
2080
52815b75 2081 if (domain->flags & PD_IOMMUV2_MASK) {
02ca2021 2082 if (!dev_data->passthrough)
52815b75
JR
2083 return -EINVAL;
2084
02ca2021
JR
2085 if (dev_data->iommu_v2) {
2086 if (pdev_iommuv2_enable(pdev) != 0)
2087 return -EINVAL;
52815b75 2088
02ca2021
JR
2089 dev_data->ats.enabled = true;
2090 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2091 dev_data->pri_tlp = pci_pri_tlp_required(pdev);
2092 }
52815b75
JR
2093 } else if (amd_iommu_iotlb_sup &&
2094 pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
ea61cddb
JR
2095 dev_data->ats.enabled = true;
2096 dev_data->ats.qdep = pci_ats_queue_depth(pdev);
2097 }
fd7b5535 2098
eba6ac60 2099 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
ec9e79ef 2100 ret = __attach_device(dev_data, domain);
b20ac0d4
JR
2101 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2102
0feae533
JR
2103 /*
2104 * We might boot into a crash-kernel here. The crashed kernel
2105 * left the caches in the IOMMU dirty. So we have to flush
2106 * here to evict all dirty stuff.
2107 */
17b124bf 2108 domain_flush_tlb_pde(domain);
15898bbc
JR
2109
2110 return ret;
b20ac0d4
JR
2111}
2112
355bf553
JR
2113/*
2114 * Removes a device from a protection domain (unlocked)
2115 */
ec9e79ef 2116static void __detach_device(struct iommu_dev_data *dev_data)
355bf553 2117{
2ca76279 2118 struct protection_domain *domain;
c4596114 2119
272e4f99
JR
2120 /*
2121 * Must be called with IRQs disabled. Warn here to detect early
2122 * when its not.
2123 */
2124 WARN_ON(!irqs_disabled());
2ca76279 2125
f34c73f5
JR
2126 if (WARN_ON(!dev_data->domain))
2127 return;
24100055 2128
2ca76279 2129 domain = dev_data->domain;
71f77580 2130
f1dd0a8b 2131 spin_lock(&domain->lock);
24100055 2132
150952f9 2133 do_detach(dev_data);
7f760ddd 2134
f1dd0a8b 2135 spin_unlock(&domain->lock);
355bf553
JR
2136}
2137
2138/*
2139 * Removes a device from a protection domain (with devtable_lock held)
2140 */
15898bbc 2141static void detach_device(struct device *dev)
355bf553 2142{
52815b75 2143 struct protection_domain *domain;
ea61cddb 2144 struct iommu_dev_data *dev_data;
355bf553
JR
2145 unsigned long flags;
2146
ec9e79ef 2147 dev_data = get_dev_data(dev);
52815b75 2148 domain = dev_data->domain;
ec9e79ef 2149
355bf553
JR
2150 /* lock device table */
2151 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
ec9e79ef 2152 __detach_device(dev_data);
355bf553 2153 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
fd7b5535 2154
02ca2021 2155 if (domain->flags & PD_IOMMUV2_MASK && dev_data->iommu_v2)
52815b75
JR
2156 pdev_iommuv2_disable(to_pci_dev(dev));
2157 else if (dev_data->ats.enabled)
ea61cddb 2158 pci_disable_ats(to_pci_dev(dev));
52815b75
JR
2159
2160 dev_data->ats.enabled = false;
355bf553 2161}
e275a2a0 2162
aafd8ba0 2163static int amd_iommu_add_device(struct device *dev)
e275a2a0 2164{
5abcdba4 2165 struct iommu_dev_data *dev_data;
07ee8694 2166 struct iommu_domain *domain;
e275a2a0 2167 struct amd_iommu *iommu;
5abcdba4 2168 u16 devid;
aafd8ba0 2169 int ret;
e275a2a0 2170
aafd8ba0 2171 if (!check_device(dev) || get_dev_data(dev))
98fc5a69 2172 return 0;
e275a2a0 2173
aafd8ba0
JR
2174 devid = get_device_id(dev);
2175 iommu = amd_iommu_rlookup_table[devid];
657cbb6b 2176
aafd8ba0 2177 ret = iommu_init_device(dev);
4d58b8a6
JR
2178 if (ret) {
2179 if (ret != -ENOTSUPP)
2180 pr_err("Failed to initialize device %s - trying to proceed anyway\n",
2181 dev_name(dev));
657cbb6b 2182
aafd8ba0 2183 iommu_ignore_device(dev);
343e9cac 2184 dev->archdata.dma_ops = &nommu_dma_ops;
aafd8ba0
JR
2185 goto out;
2186 }
2187 init_iommu_group(dev);
2c9195e9 2188
07ee8694 2189 dev_data = get_dev_data(dev);
2c9195e9 2190
4d58b8a6 2191 BUG_ON(!dev_data);
657cbb6b 2192
1e6a7b04 2193 if (iommu_pass_through || dev_data->iommu_v2)
07ee8694 2194 iommu_request_dm_for_dev(dev);
ac1534a5 2195
07ee8694
JR
2196 /* Domains are initialized for this device - have a look what we ended up with */
2197 domain = iommu_get_domain_for_dev(dev);
32302324 2198 if (domain->type == IOMMU_DOMAIN_IDENTITY)
07ee8694 2199 dev_data->passthrough = true;
32302324 2200 else
2c9195e9 2201 dev->archdata.dma_ops = &amd_iommu_dma_ops;
e275a2a0 2202
aafd8ba0 2203out:
e275a2a0
JR
2204 iommu_completion_wait(iommu);
2205
e275a2a0
JR
2206 return 0;
2207}
2208
aafd8ba0 2209static void amd_iommu_remove_device(struct device *dev)
8638c491 2210{
aafd8ba0
JR
2211 struct amd_iommu *iommu;
2212 u16 devid;
2213
2214 if (!check_device(dev))
2215 return;
2216
2217 devid = get_device_id(dev);
2218 iommu = amd_iommu_rlookup_table[devid];
2219
2220 iommu_uninit_device(dev);
2221 iommu_completion_wait(iommu);
8638c491
JR
2222}
2223
431b2a20
JR
2224/*****************************************************************************
2225 *
2226 * The next functions belong to the dma_ops mapping/unmapping code.
2227 *
2228 *****************************************************************************/
2229
2230/*
2231 * In the dma_ops path we only have the struct device. This function
2232 * finds the corresponding IOMMU, the protection domain and the
2233 * requestor id for a given device.
2234 * If the device is not yet associated with a domain this is also done
2235 * in this function.
2236 */
94f6d190 2237static struct protection_domain *get_domain(struct device *dev)
b20ac0d4 2238{
94f6d190 2239 struct protection_domain *domain;
063071df 2240 struct iommu_domain *io_domain;
b20ac0d4 2241
f99c0f1c 2242 if (!check_device(dev))
94f6d190 2243 return ERR_PTR(-EINVAL);
b20ac0d4 2244
063071df 2245 io_domain = iommu_get_domain_for_dev(dev);
0bb6e243
JR
2246 if (!io_domain)
2247 return NULL;
b20ac0d4 2248
0bb6e243
JR
2249 domain = to_pdomain(io_domain);
2250 if (!dma_ops_domain(domain))
94f6d190 2251 return ERR_PTR(-EBUSY);
f91ba190 2252
0bb6e243 2253 return domain;
b20ac0d4
JR
2254}
2255
04bfdd84
JR
2256static void update_device_table(struct protection_domain *domain)
2257{
492667da 2258 struct iommu_dev_data *dev_data;
04bfdd84 2259
ea61cddb
JR
2260 list_for_each_entry(dev_data, &domain->dev_list, list)
2261 set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
04bfdd84
JR
2262}
2263
2264static void update_domain(struct protection_domain *domain)
2265{
2266 if (!domain->updated)
2267 return;
2268
2269 update_device_table(domain);
17b124bf
JR
2270
2271 domain_flush_devices(domain);
2272 domain_flush_tlb_pde(domain);
04bfdd84
JR
2273
2274 domain->updated = false;
2275}
2276
8bda3092
JR
2277/*
2278 * This function fetches the PTE for a given address in the aperture
2279 */
2280static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
2281 unsigned long address)
2282{
384de729 2283 struct aperture_range *aperture;
8bda3092
JR
2284 u64 *pte, *pte_page;
2285
384de729
JR
2286 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2287 if (!aperture)
2288 return NULL;
2289
2290 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
8bda3092 2291 if (!pte) {
cbb9d729 2292 pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
abdc5eb3 2293 GFP_ATOMIC);
384de729
JR
2294 aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
2295 } else
8c8c143c 2296 pte += PM_LEVEL_INDEX(0, address);
8bda3092 2297
04bfdd84 2298 update_domain(&dom->domain);
8bda3092
JR
2299
2300 return pte;
2301}
2302
431b2a20
JR
2303/*
2304 * This is the generic map function. It maps one 4kb page at paddr to
2305 * the given address in the DMA address space for the domain.
2306 */
680525e0 2307static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
cb76c322
JR
2308 unsigned long address,
2309 phys_addr_t paddr,
2310 int direction)
2311{
2312 u64 *pte, __pte;
2313
2314 WARN_ON(address > dom->aperture_size);
2315
2316 paddr &= PAGE_MASK;
2317
8bda3092 2318 pte = dma_ops_get_pte(dom, address);
53812c11 2319 if (!pte)
8fd524b3 2320 return DMA_ERROR_CODE;
cb76c322
JR
2321
2322 __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
2323
2324 if (direction == DMA_TO_DEVICE)
2325 __pte |= IOMMU_PTE_IR;
2326 else if (direction == DMA_FROM_DEVICE)
2327 __pte |= IOMMU_PTE_IW;
2328 else if (direction == DMA_BIDIRECTIONAL)
2329 __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
2330
2331 WARN_ON(*pte);
2332
2333 *pte = __pte;
2334
2335 return (dma_addr_t)address;
2336}
2337
431b2a20
JR
2338/*
2339 * The generic unmapping function for on page in the DMA address space.
2340 */
680525e0 2341static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
cb76c322
JR
2342 unsigned long address)
2343{
384de729 2344 struct aperture_range *aperture;
cb76c322
JR
2345 u64 *pte;
2346
2347 if (address >= dom->aperture_size)
2348 return;
2349
384de729
JR
2350 aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2351 if (!aperture)
2352 return;
2353
2354 pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2355 if (!pte)
2356 return;
cb76c322 2357
8c8c143c 2358 pte += PM_LEVEL_INDEX(0, address);
cb76c322
JR
2359
2360 WARN_ON(!*pte);
2361
2362 *pte = 0ULL;
2363}
2364
431b2a20
JR
2365/*
2366 * This function contains common code for mapping of a physically
24f81160
JR
2367 * contiguous memory region into DMA address space. It is used by all
2368 * mapping functions provided with this IOMMU driver.
431b2a20
JR
2369 * Must be called with the domain lock held.
2370 */
cb76c322 2371static dma_addr_t __map_single(struct device *dev,
cb76c322
JR
2372 struct dma_ops_domain *dma_dom,
2373 phys_addr_t paddr,
2374 size_t size,
6d4f343f 2375 int dir,
832a90c3
JR
2376 bool align,
2377 u64 dma_mask)
cb76c322
JR
2378{
2379 dma_addr_t offset = paddr & ~PAGE_MASK;
53812c11 2380 dma_addr_t address, start, ret;
cb76c322 2381 unsigned int pages;
6d4f343f 2382 unsigned long align_mask = 0;
cb76c322
JR
2383 int i;
2384
e3c449f5 2385 pages = iommu_num_pages(paddr, size, PAGE_SIZE);
cb76c322
JR
2386 paddr &= PAGE_MASK;
2387
8ecaf8f1
JR
2388 INC_STATS_COUNTER(total_map_requests);
2389
c1858976
JR
2390 if (pages > 1)
2391 INC_STATS_COUNTER(cross_page);
2392
6d4f343f
JR
2393 if (align)
2394 align_mask = (1UL << get_order(size)) - 1;
2395
11b83888 2396retry:
832a90c3
JR
2397 address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
2398 dma_mask);
8fd524b3 2399 if (unlikely(address == DMA_ERROR_CODE)) {
11b83888
JR
2400 /*
2401 * setting next_address here will let the address
2402 * allocator only scan the new allocated range in the
2403 * first run. This is a small optimization.
2404 */
2405 dma_dom->next_address = dma_dom->aperture_size;
2406
576175c2 2407 if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
11b83888
JR
2408 goto out;
2409
2410 /*
af901ca1 2411 * aperture was successfully enlarged by 128 MB, try
11b83888
JR
2412 * allocation again
2413 */
2414 goto retry;
2415 }
cb76c322
JR
2416
2417 start = address;
2418 for (i = 0; i < pages; ++i) {
680525e0 2419 ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
8fd524b3 2420 if (ret == DMA_ERROR_CODE)
53812c11
JR
2421 goto out_unmap;
2422
cb76c322
JR
2423 paddr += PAGE_SIZE;
2424 start += PAGE_SIZE;
2425 }
2426 address += offset;
2427
5774f7c5
JR
2428 ADD_STATS_COUNTER(alloced_io_mem, size);
2429
afa9fdc2 2430 if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
17b124bf 2431 domain_flush_tlb(&dma_dom->domain);
1c655773 2432 dma_dom->need_flush = false;
318afd41 2433 } else if (unlikely(amd_iommu_np_cache))
17b124bf 2434 domain_flush_pages(&dma_dom->domain, address, size);
270cab24 2435
cb76c322
JR
2436out:
2437 return address;
53812c11
JR
2438
2439out_unmap:
2440
2441 for (--i; i >= 0; --i) {
2442 start -= PAGE_SIZE;
680525e0 2443 dma_ops_domain_unmap(dma_dom, start);
53812c11
JR
2444 }
2445
2446 dma_ops_free_addresses(dma_dom, address, pages);
2447
8fd524b3 2448 return DMA_ERROR_CODE;
cb76c322
JR
2449}
2450
431b2a20
JR
2451/*
2452 * Does the reverse of the __map_single function. Must be called with
2453 * the domain lock held too
2454 */
cd8c82e8 2455static void __unmap_single(struct dma_ops_domain *dma_dom,
cb76c322
JR
2456 dma_addr_t dma_addr,
2457 size_t size,
2458 int dir)
2459{
04e0463e 2460 dma_addr_t flush_addr;
cb76c322
JR
2461 dma_addr_t i, start;
2462 unsigned int pages;
2463
8fd524b3 2464 if ((dma_addr == DMA_ERROR_CODE) ||
b8d9905d 2465 (dma_addr + size > dma_dom->aperture_size))
cb76c322
JR
2466 return;
2467
04e0463e 2468 flush_addr = dma_addr;
e3c449f5 2469 pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
cb76c322
JR
2470 dma_addr &= PAGE_MASK;
2471 start = dma_addr;
2472
2473 for (i = 0; i < pages; ++i) {
680525e0 2474 dma_ops_domain_unmap(dma_dom, start);
cb76c322
JR
2475 start += PAGE_SIZE;
2476 }
2477
5774f7c5
JR
2478 SUB_STATS_COUNTER(alloced_io_mem, size);
2479
cb76c322 2480 dma_ops_free_addresses(dma_dom, dma_addr, pages);
270cab24 2481
80be308d 2482 if (amd_iommu_unmap_flush || dma_dom->need_flush) {
17b124bf 2483 domain_flush_pages(&dma_dom->domain, flush_addr, size);
80be308d
JR
2484 dma_dom->need_flush = false;
2485 }
cb76c322
JR
2486}
2487
431b2a20
JR
2488/*
2489 * The exported map_single function for dma_ops.
2490 */
51491367
FT
2491static dma_addr_t map_page(struct device *dev, struct page *page,
2492 unsigned long offset, size_t size,
2493 enum dma_data_direction dir,
2494 struct dma_attrs *attrs)
4da70b9e
JR
2495{
2496 unsigned long flags;
4da70b9e 2497 struct protection_domain *domain;
4da70b9e 2498 dma_addr_t addr;
832a90c3 2499 u64 dma_mask;
51491367 2500 phys_addr_t paddr = page_to_phys(page) + offset;
4da70b9e 2501
0f2a86f2
JR
2502 INC_STATS_COUNTER(cnt_map_single);
2503
94f6d190
JR
2504 domain = get_domain(dev);
2505 if (PTR_ERR(domain) == -EINVAL)
4da70b9e 2506 return (dma_addr_t)paddr;
94f6d190
JR
2507 else if (IS_ERR(domain))
2508 return DMA_ERROR_CODE;
4da70b9e 2509
f99c0f1c
JR
2510 dma_mask = *dev->dma_mask;
2511
4da70b9e 2512 spin_lock_irqsave(&domain->lock, flags);
94f6d190 2513
cd8c82e8 2514 addr = __map_single(dev, domain->priv, paddr, size, dir, false,
832a90c3 2515 dma_mask);
8fd524b3 2516 if (addr == DMA_ERROR_CODE)
4da70b9e
JR
2517 goto out;
2518
17b124bf 2519 domain_flush_complete(domain);
4da70b9e
JR
2520
2521out:
2522 spin_unlock_irqrestore(&domain->lock, flags);
2523
2524 return addr;
2525}
2526
431b2a20
JR
2527/*
2528 * The exported unmap_single function for dma_ops.
2529 */
51491367
FT
2530static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2531 enum dma_data_direction dir, struct dma_attrs *attrs)
4da70b9e
JR
2532{
2533 unsigned long flags;
4da70b9e 2534 struct protection_domain *domain;
4da70b9e 2535
146a6917
JR
2536 INC_STATS_COUNTER(cnt_unmap_single);
2537
94f6d190
JR
2538 domain = get_domain(dev);
2539 if (IS_ERR(domain))
5b28df6f
JR
2540 return;
2541
4da70b9e
JR
2542 spin_lock_irqsave(&domain->lock, flags);
2543
cd8c82e8 2544 __unmap_single(domain->priv, dma_addr, size, dir);
4da70b9e 2545
17b124bf 2546 domain_flush_complete(domain);
4da70b9e
JR
2547
2548 spin_unlock_irqrestore(&domain->lock, flags);
2549}
2550
431b2a20
JR
2551/*
2552 * The exported map_sg function for dma_ops (handles scatter-gather
2553 * lists).
2554 */
65b050ad 2555static int map_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
2556 int nelems, enum dma_data_direction dir,
2557 struct dma_attrs *attrs)
65b050ad
JR
2558{
2559 unsigned long flags;
65b050ad 2560 struct protection_domain *domain;
65b050ad
JR
2561 int i;
2562 struct scatterlist *s;
2563 phys_addr_t paddr;
2564 int mapped_elems = 0;
832a90c3 2565 u64 dma_mask;
65b050ad 2566
d03f067a
JR
2567 INC_STATS_COUNTER(cnt_map_sg);
2568
94f6d190 2569 domain = get_domain(dev);
a0e191b2 2570 if (IS_ERR(domain))
94f6d190 2571 return 0;
dbcc112e 2572
832a90c3 2573 dma_mask = *dev->dma_mask;
65b050ad 2574
65b050ad
JR
2575 spin_lock_irqsave(&domain->lock, flags);
2576
2577 for_each_sg(sglist, s, nelems, i) {
2578 paddr = sg_phys(s);
2579
cd8c82e8 2580 s->dma_address = __map_single(dev, domain->priv,
832a90c3
JR
2581 paddr, s->length, dir, false,
2582 dma_mask);
65b050ad
JR
2583
2584 if (s->dma_address) {
2585 s->dma_length = s->length;
2586 mapped_elems++;
2587 } else
2588 goto unmap;
65b050ad
JR
2589 }
2590
17b124bf 2591 domain_flush_complete(domain);
65b050ad
JR
2592
2593out:
2594 spin_unlock_irqrestore(&domain->lock, flags);
2595
2596 return mapped_elems;
2597unmap:
2598 for_each_sg(sglist, s, mapped_elems, i) {
2599 if (s->dma_address)
cd8c82e8 2600 __unmap_single(domain->priv, s->dma_address,
65b050ad
JR
2601 s->dma_length, dir);
2602 s->dma_address = s->dma_length = 0;
2603 }
2604
2605 mapped_elems = 0;
2606
2607 goto out;
2608}
2609
431b2a20
JR
2610/*
2611 * The exported map_sg function for dma_ops (handles scatter-gather
2612 * lists).
2613 */
65b050ad 2614static void unmap_sg(struct device *dev, struct scatterlist *sglist,
160c1d8e
FT
2615 int nelems, enum dma_data_direction dir,
2616 struct dma_attrs *attrs)
65b050ad
JR
2617{
2618 unsigned long flags;
65b050ad
JR
2619 struct protection_domain *domain;
2620 struct scatterlist *s;
65b050ad
JR
2621 int i;
2622
55877a6b
JR
2623 INC_STATS_COUNTER(cnt_unmap_sg);
2624
94f6d190
JR
2625 domain = get_domain(dev);
2626 if (IS_ERR(domain))
5b28df6f
JR
2627 return;
2628
65b050ad
JR
2629 spin_lock_irqsave(&domain->lock, flags);
2630
2631 for_each_sg(sglist, s, nelems, i) {
cd8c82e8 2632 __unmap_single(domain->priv, s->dma_address,
65b050ad 2633 s->dma_length, dir);
65b050ad
JR
2634 s->dma_address = s->dma_length = 0;
2635 }
2636
17b124bf 2637 domain_flush_complete(domain);
65b050ad
JR
2638
2639 spin_unlock_irqrestore(&domain->lock, flags);
2640}
2641
431b2a20
JR
2642/*
2643 * The exported alloc_coherent function for dma_ops.
2644 */
5d8b53cf 2645static void *alloc_coherent(struct device *dev, size_t size,
baa676fc
AP
2646 dma_addr_t *dma_addr, gfp_t flag,
2647 struct dma_attrs *attrs)
5d8b53cf 2648{
832a90c3 2649 u64 dma_mask = dev->coherent_dma_mask;
3b839a57
JR
2650 struct protection_domain *domain;
2651 unsigned long flags;
2652 struct page *page;
5d8b53cf 2653
c8f0fb36
JR
2654 INC_STATS_COUNTER(cnt_alloc_coherent);
2655
94f6d190
JR
2656 domain = get_domain(dev);
2657 if (PTR_ERR(domain) == -EINVAL) {
3b839a57
JR
2658 page = alloc_pages(flag, get_order(size));
2659 *dma_addr = page_to_phys(page);
2660 return page_address(page);
94f6d190
JR
2661 } else if (IS_ERR(domain))
2662 return NULL;
5d8b53cf 2663
3b839a57 2664 size = PAGE_ALIGN(size);
f99c0f1c
JR
2665 dma_mask = dev->coherent_dma_mask;
2666 flag &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2d0ec7a1 2667 flag |= __GFP_ZERO;
5d8b53cf 2668
3b839a57
JR
2669 page = alloc_pages(flag | __GFP_NOWARN, get_order(size));
2670 if (!page) {
d0164adc 2671 if (!gfpflags_allow_blocking(flag))
3b839a57 2672 return NULL;
5d8b53cf 2673
3b839a57
JR
2674 page = dma_alloc_from_contiguous(dev, size >> PAGE_SHIFT,
2675 get_order(size));
2676 if (!page)
2677 return NULL;
2678 }
5d8b53cf 2679
832a90c3
JR
2680 if (!dma_mask)
2681 dma_mask = *dev->dma_mask;
2682
5d8b53cf
JR
2683 spin_lock_irqsave(&domain->lock, flags);
2684
3b839a57 2685 *dma_addr = __map_single(dev, domain->priv, page_to_phys(page),
832a90c3 2686 size, DMA_BIDIRECTIONAL, true, dma_mask);
5d8b53cf 2687
8fd524b3 2688 if (*dma_addr == DMA_ERROR_CODE) {
367d04c4 2689 spin_unlock_irqrestore(&domain->lock, flags);
5b28df6f 2690 goto out_free;
367d04c4 2691 }
5d8b53cf 2692
17b124bf 2693 domain_flush_complete(domain);
5d8b53cf 2694
5d8b53cf
JR
2695 spin_unlock_irqrestore(&domain->lock, flags);
2696
3b839a57 2697 return page_address(page);
5b28df6f
JR
2698
2699out_free:
2700
3b839a57
JR
2701 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2702 __free_pages(page, get_order(size));
5b28df6f
JR
2703
2704 return NULL;
5d8b53cf
JR
2705}
2706
431b2a20
JR
2707/*
2708 * The exported free_coherent function for dma_ops.
431b2a20 2709 */
5d8b53cf 2710static void free_coherent(struct device *dev, size_t size,
baa676fc
AP
2711 void *virt_addr, dma_addr_t dma_addr,
2712 struct dma_attrs *attrs)
5d8b53cf 2713{
5d8b53cf 2714 struct protection_domain *domain;
3b839a57
JR
2715 unsigned long flags;
2716 struct page *page;
5d8b53cf 2717
5d31ee7e
JR
2718 INC_STATS_COUNTER(cnt_free_coherent);
2719
3b839a57
JR
2720 page = virt_to_page(virt_addr);
2721 size = PAGE_ALIGN(size);
2722
94f6d190
JR
2723 domain = get_domain(dev);
2724 if (IS_ERR(domain))
5b28df6f
JR
2725 goto free_mem;
2726
5d8b53cf
JR
2727 spin_lock_irqsave(&domain->lock, flags);
2728
cd8c82e8 2729 __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
5d8b53cf 2730
17b124bf 2731 domain_flush_complete(domain);
5d8b53cf
JR
2732
2733 spin_unlock_irqrestore(&domain->lock, flags);
2734
2735free_mem:
3b839a57
JR
2736 if (!dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT))
2737 __free_pages(page, get_order(size));
5d8b53cf
JR
2738}
2739
b39ba6ad
JR
2740/*
2741 * This function is called by the DMA layer to find out if we can handle a
2742 * particular device. It is part of the dma_ops.
2743 */
2744static int amd_iommu_dma_supported(struct device *dev, u64 mask)
2745{
420aef8a 2746 return check_device(dev);
b39ba6ad
JR
2747}
2748
160c1d8e 2749static struct dma_map_ops amd_iommu_dma_ops = {
baa676fc
AP
2750 .alloc = alloc_coherent,
2751 .free = free_coherent,
51491367
FT
2752 .map_page = map_page,
2753 .unmap_page = unmap_page,
6631ee9d
JR
2754 .map_sg = map_sg,
2755 .unmap_sg = unmap_sg,
b39ba6ad 2756 .dma_supported = amd_iommu_dma_supported,
6631ee9d
JR
2757};
2758
3a18404c 2759int __init amd_iommu_init_api(void)
27c2127a 2760{
3a18404c 2761 return bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
f5325094
JR
2762}
2763
6631ee9d
JR
2764int __init amd_iommu_init_dma_ops(void)
2765{
32302324 2766 swiotlb = iommu_pass_through ? 1 : 0;
6631ee9d 2767 iommu_detected = 1;
6631ee9d 2768
52717828
JR
2769 /*
2770 * In case we don't initialize SWIOTLB (actually the common case
2771 * when AMD IOMMU is enabled), make sure there are global
2772 * dma_ops set as a fall-back for devices not handled by this
2773 * driver (for example non-PCI devices).
2774 */
2775 if (!swiotlb)
2776 dma_ops = &nommu_dma_ops;
2777
7f26508b
JR
2778 amd_iommu_stats_init();
2779
62410eeb
JR
2780 if (amd_iommu_unmap_flush)
2781 pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
2782 else
2783 pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
2784
6631ee9d 2785 return 0;
6631ee9d 2786}
6d98cd80
JR
2787
2788/*****************************************************************************
2789 *
2790 * The following functions belong to the exported interface of AMD IOMMU
2791 *
2792 * This interface allows access to lower level functions of the IOMMU
2793 * like protection domain handling and assignement of devices to domains
2794 * which is not possible with the dma_ops interface.
2795 *
2796 *****************************************************************************/
2797
6d98cd80
JR
2798static void cleanup_domain(struct protection_domain *domain)
2799{
9b29d3c6 2800 struct iommu_dev_data *entry;
6d98cd80 2801 unsigned long flags;
6d98cd80
JR
2802
2803 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2804
9b29d3c6
JR
2805 while (!list_empty(&domain->dev_list)) {
2806 entry = list_first_entry(&domain->dev_list,
2807 struct iommu_dev_data, list);
2808 __detach_device(entry);
492667da 2809 }
6d98cd80
JR
2810
2811 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2812}
2813
2650815f
JR
2814static void protection_domain_free(struct protection_domain *domain)
2815{
2816 if (!domain)
2817 return;
2818
aeb26f55
JR
2819 del_domain_from_list(domain);
2820
2650815f
JR
2821 if (domain->id)
2822 domain_id_free(domain->id);
2823
2824 kfree(domain);
2825}
2826
7a5a566e
JR
2827static int protection_domain_init(struct protection_domain *domain)
2828{
2829 spin_lock_init(&domain->lock);
2830 mutex_init(&domain->api_lock);
2831 domain->id = domain_id_alloc();
2832 if (!domain->id)
2833 return -ENOMEM;
2834 INIT_LIST_HEAD(&domain->dev_list);
2835
2836 return 0;
2837}
2838
2650815f 2839static struct protection_domain *protection_domain_alloc(void)
c156e347
JR
2840{
2841 struct protection_domain *domain;
2842
2843 domain = kzalloc(sizeof(*domain), GFP_KERNEL);
2844 if (!domain)
2650815f 2845 return NULL;
c156e347 2846
7a5a566e 2847 if (protection_domain_init(domain))
2650815f
JR
2848 goto out_err;
2849
aeb26f55
JR
2850 add_domain_to_list(domain);
2851
2650815f
JR
2852 return domain;
2853
2854out_err:
2855 kfree(domain);
2856
2857 return NULL;
2858}
2859
3f4b87b9 2860static struct iommu_domain *amd_iommu_domain_alloc(unsigned type)
2650815f 2861{
3f4b87b9 2862 struct protection_domain *pdomain;
0bb6e243 2863 struct dma_ops_domain *dma_domain;
2650815f 2864
0bb6e243
JR
2865 switch (type) {
2866 case IOMMU_DOMAIN_UNMANAGED:
2867 pdomain = protection_domain_alloc();
2868 if (!pdomain)
2869 return NULL;
c156e347 2870
0bb6e243
JR
2871 pdomain->mode = PAGE_MODE_3_LEVEL;
2872 pdomain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2873 if (!pdomain->pt_root) {
2874 protection_domain_free(pdomain);
2875 return NULL;
2876 }
c156e347 2877
0bb6e243
JR
2878 pdomain->domain.geometry.aperture_start = 0;
2879 pdomain->domain.geometry.aperture_end = ~0ULL;
2880 pdomain->domain.geometry.force_aperture = true;
0ff64f80 2881
0bb6e243
JR
2882 break;
2883 case IOMMU_DOMAIN_DMA:
2884 dma_domain = dma_ops_domain_alloc();
2885 if (!dma_domain) {
2886 pr_err("AMD-Vi: Failed to allocate\n");
2887 return NULL;
2888 }
2889 pdomain = &dma_domain->domain;
2890 break;
07f643a3
JR
2891 case IOMMU_DOMAIN_IDENTITY:
2892 pdomain = protection_domain_alloc();
2893 if (!pdomain)
2894 return NULL;
c156e347 2895
07f643a3
JR
2896 pdomain->mode = PAGE_MODE_NONE;
2897 break;
0bb6e243
JR
2898 default:
2899 return NULL;
2900 }
c156e347 2901
3f4b87b9 2902 return &pdomain->domain;
c156e347
JR
2903}
2904
3f4b87b9 2905static void amd_iommu_domain_free(struct iommu_domain *dom)
98383fc3 2906{
3f4b87b9 2907 struct protection_domain *domain;
98383fc3 2908
3f4b87b9 2909 if (!dom)
98383fc3
JR
2910 return;
2911
3f4b87b9
JR
2912 domain = to_pdomain(dom);
2913
98383fc3
JR
2914 if (domain->dev_cnt > 0)
2915 cleanup_domain(domain);
2916
2917 BUG_ON(domain->dev_cnt != 0);
2918
132bd68f
JR
2919 if (domain->mode != PAGE_MODE_NONE)
2920 free_pagetable(domain);
98383fc3 2921
52815b75
JR
2922 if (domain->flags & PD_IOMMUV2_MASK)
2923 free_gcr3_table(domain);
2924
8b408fe4 2925 protection_domain_free(domain);
98383fc3
JR
2926}
2927
684f2888
JR
2928static void amd_iommu_detach_device(struct iommu_domain *dom,
2929 struct device *dev)
2930{
657cbb6b 2931 struct iommu_dev_data *dev_data = dev->archdata.iommu;
684f2888 2932 struct amd_iommu *iommu;
684f2888
JR
2933 u16 devid;
2934
98fc5a69 2935 if (!check_device(dev))
684f2888
JR
2936 return;
2937
98fc5a69 2938 devid = get_device_id(dev);
684f2888 2939
657cbb6b 2940 if (dev_data->domain != NULL)
15898bbc 2941 detach_device(dev);
684f2888
JR
2942
2943 iommu = amd_iommu_rlookup_table[devid];
2944 if (!iommu)
2945 return;
2946
684f2888
JR
2947 iommu_completion_wait(iommu);
2948}
2949
01106066
JR
2950static int amd_iommu_attach_device(struct iommu_domain *dom,
2951 struct device *dev)
2952{
3f4b87b9 2953 struct protection_domain *domain = to_pdomain(dom);
657cbb6b 2954 struct iommu_dev_data *dev_data;
01106066 2955 struct amd_iommu *iommu;
15898bbc 2956 int ret;
01106066 2957
98fc5a69 2958 if (!check_device(dev))
01106066
JR
2959 return -EINVAL;
2960
657cbb6b
JR
2961 dev_data = dev->archdata.iommu;
2962
f62dda66 2963 iommu = amd_iommu_rlookup_table[dev_data->devid];
01106066
JR
2964 if (!iommu)
2965 return -EINVAL;
2966
657cbb6b 2967 if (dev_data->domain)
15898bbc 2968 detach_device(dev);
01106066 2969
15898bbc 2970 ret = attach_device(dev, domain);
01106066
JR
2971
2972 iommu_completion_wait(iommu);
2973
15898bbc 2974 return ret;
01106066
JR
2975}
2976
468e2366 2977static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
5009065d 2978 phys_addr_t paddr, size_t page_size, int iommu_prot)
c6229ca6 2979{
3f4b87b9 2980 struct protection_domain *domain = to_pdomain(dom);
c6229ca6
JR
2981 int prot = 0;
2982 int ret;
2983
132bd68f
JR
2984 if (domain->mode == PAGE_MODE_NONE)
2985 return -EINVAL;
2986
c6229ca6
JR
2987 if (iommu_prot & IOMMU_READ)
2988 prot |= IOMMU_PROT_IR;
2989 if (iommu_prot & IOMMU_WRITE)
2990 prot |= IOMMU_PROT_IW;
2991
5d214fe6 2992 mutex_lock(&domain->api_lock);
795e74f7 2993 ret = iommu_map_page(domain, iova, paddr, prot, page_size);
5d214fe6
JR
2994 mutex_unlock(&domain->api_lock);
2995
795e74f7 2996 return ret;
c6229ca6
JR
2997}
2998
5009065d
OBC
2999static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
3000 size_t page_size)
eb74ff6c 3001{
3f4b87b9 3002 struct protection_domain *domain = to_pdomain(dom);
5009065d 3003 size_t unmap_size;
eb74ff6c 3004
132bd68f
JR
3005 if (domain->mode == PAGE_MODE_NONE)
3006 return -EINVAL;
3007
5d214fe6 3008 mutex_lock(&domain->api_lock);
468e2366 3009 unmap_size = iommu_unmap_page(domain, iova, page_size);
795e74f7 3010 mutex_unlock(&domain->api_lock);
eb74ff6c 3011
17b124bf 3012 domain_flush_tlb_pde(domain);
5d214fe6 3013
5009065d 3014 return unmap_size;
eb74ff6c
JR
3015}
3016
645c4c8d 3017static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
bb5547ac 3018 dma_addr_t iova)
645c4c8d 3019{
3f4b87b9 3020 struct protection_domain *domain = to_pdomain(dom);
3039ca1b 3021 unsigned long offset_mask, pte_pgsize;
f03152bb 3022 u64 *pte, __pte;
645c4c8d 3023
132bd68f
JR
3024 if (domain->mode == PAGE_MODE_NONE)
3025 return iova;
3026
3039ca1b 3027 pte = fetch_pte(domain, iova, &pte_pgsize);
645c4c8d 3028
a6d41a40 3029 if (!pte || !IOMMU_PTE_PRESENT(*pte))
645c4c8d
JR
3030 return 0;
3031
b24b1b63
JR
3032 offset_mask = pte_pgsize - 1;
3033 __pte = *pte & PM_ADDR_MASK;
645c4c8d 3034
b24b1b63 3035 return (__pte & ~offset_mask) | (iova & offset_mask);
645c4c8d
JR
3036}
3037
ab636481 3038static bool amd_iommu_capable(enum iommu_cap cap)
dbb9fd86 3039{
80a506b8
JR
3040 switch (cap) {
3041 case IOMMU_CAP_CACHE_COHERENCY:
ab636481 3042 return true;
bdddadcb 3043 case IOMMU_CAP_INTR_REMAP:
ab636481 3044 return (irq_remapping_enabled == 1);
cfdeec22
WD
3045 case IOMMU_CAP_NOEXEC:
3046 return false;
80a506b8
JR
3047 }
3048
ab636481 3049 return false;
dbb9fd86
SY
3050}
3051
35cf248f
JR
3052static void amd_iommu_get_dm_regions(struct device *dev,
3053 struct list_head *head)
3054{
3055 struct unity_map_entry *entry;
3056 u16 devid;
3057
3058 devid = get_device_id(dev);
3059
3060 list_for_each_entry(entry, &amd_iommu_unity_map, list) {
3061 struct iommu_dm_region *region;
3062
3063 if (devid < entry->devid_start || devid > entry->devid_end)
3064 continue;
3065
3066 region = kzalloc(sizeof(*region), GFP_KERNEL);
3067 if (!region) {
3068 pr_err("Out of memory allocating dm-regions for %s\n",
3069 dev_name(dev));
3070 return;
3071 }
3072
3073 region->start = entry->address_start;
3074 region->length = entry->address_end - entry->address_start;
3075 if (entry->prot & IOMMU_PROT_IR)
3076 region->prot |= IOMMU_READ;
3077 if (entry->prot & IOMMU_PROT_IW)
3078 region->prot |= IOMMU_WRITE;
3079
3080 list_add_tail(&region->list, head);
3081 }
3082}
3083
3084static void amd_iommu_put_dm_regions(struct device *dev,
3085 struct list_head *head)
3086{
3087 struct iommu_dm_region *entry, *next;
3088
3089 list_for_each_entry_safe(entry, next, head, list)
3090 kfree(entry);
3091}
3092
b22f6434 3093static const struct iommu_ops amd_iommu_ops = {
ab636481 3094 .capable = amd_iommu_capable,
3f4b87b9
JR
3095 .domain_alloc = amd_iommu_domain_alloc,
3096 .domain_free = amd_iommu_domain_free,
26961efe
JR
3097 .attach_dev = amd_iommu_attach_device,
3098 .detach_dev = amd_iommu_detach_device,
468e2366
JR
3099 .map = amd_iommu_map,
3100 .unmap = amd_iommu_unmap,
315786eb 3101 .map_sg = default_iommu_map_sg,
26961efe 3102 .iova_to_phys = amd_iommu_iova_to_phys,
aafd8ba0
JR
3103 .add_device = amd_iommu_add_device,
3104 .remove_device = amd_iommu_remove_device,
a960fadb 3105 .device_group = pci_device_group,
35cf248f
JR
3106 .get_dm_regions = amd_iommu_get_dm_regions,
3107 .put_dm_regions = amd_iommu_put_dm_regions,
aa3de9c0 3108 .pgsize_bitmap = AMD_IOMMU_PGSIZES,
26961efe
JR
3109};
3110
0feae533
JR
3111/*****************************************************************************
3112 *
3113 * The next functions do a basic initialization of IOMMU for pass through
3114 * mode
3115 *
3116 * In passthrough mode the IOMMU is initialized and enabled but not used for
3117 * DMA-API translation.
3118 *
3119 *****************************************************************************/
3120
72e1dcc4
JR
3121/* IOMMUv2 specific functions */
3122int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
3123{
3124 return atomic_notifier_chain_register(&ppr_notifier, nb);
3125}
3126EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
3127
3128int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
3129{
3130 return atomic_notifier_chain_unregister(&ppr_notifier, nb);
3131}
3132EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
132bd68f
JR
3133
3134void amd_iommu_domain_direct_map(struct iommu_domain *dom)
3135{
3f4b87b9 3136 struct protection_domain *domain = to_pdomain(dom);
132bd68f
JR
3137 unsigned long flags;
3138
3139 spin_lock_irqsave(&domain->lock, flags);
3140
3141 /* Update data structure */
3142 domain->mode = PAGE_MODE_NONE;
3143 domain->updated = true;
3144
3145 /* Make changes visible to IOMMUs */
3146 update_domain(domain);
3147
3148 /* Page-table is not visible to IOMMU anymore, so free it */
3149 free_pagetable(domain);
3150
3151 spin_unlock_irqrestore(&domain->lock, flags);
3152}
3153EXPORT_SYMBOL(amd_iommu_domain_direct_map);
52815b75
JR
3154
3155int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
3156{
3f4b87b9 3157 struct protection_domain *domain = to_pdomain(dom);
52815b75
JR
3158 unsigned long flags;
3159 int levels, ret;
3160
3161 if (pasids <= 0 || pasids > (PASID_MASK + 1))
3162 return -EINVAL;
3163
3164 /* Number of GCR3 table levels required */
3165 for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
3166 levels += 1;
3167
3168 if (levels > amd_iommu_max_glx_val)
3169 return -EINVAL;
3170
3171 spin_lock_irqsave(&domain->lock, flags);
3172
3173 /*
3174 * Save us all sanity checks whether devices already in the
3175 * domain support IOMMUv2. Just force that the domain has no
3176 * devices attached when it is switched into IOMMUv2 mode.
3177 */
3178 ret = -EBUSY;
3179 if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
3180 goto out;
3181
3182 ret = -ENOMEM;
3183 domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
3184 if (domain->gcr3_tbl == NULL)
3185 goto out;
3186
3187 domain->glx = levels;
3188 domain->flags |= PD_IOMMUV2_MASK;
3189 domain->updated = true;
3190
3191 update_domain(domain);
3192
3193 ret = 0;
3194
3195out:
3196 spin_unlock_irqrestore(&domain->lock, flags);
3197
3198 return ret;
3199}
3200EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
22e266c7
JR
3201
3202static int __flush_pasid(struct protection_domain *domain, int pasid,
3203 u64 address, bool size)
3204{
3205 struct iommu_dev_data *dev_data;
3206 struct iommu_cmd cmd;
3207 int i, ret;
3208
3209 if (!(domain->flags & PD_IOMMUV2_MASK))
3210 return -EINVAL;
3211
3212 build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
3213
3214 /*
3215 * IOMMU TLB needs to be flushed before Device TLB to
3216 * prevent device TLB refill from IOMMU TLB
3217 */
3218 for (i = 0; i < amd_iommus_present; ++i) {
3219 if (domain->dev_iommu[i] == 0)
3220 continue;
3221
3222 ret = iommu_queue_command(amd_iommus[i], &cmd);
3223 if (ret != 0)
3224 goto out;
3225 }
3226
3227 /* Wait until IOMMU TLB flushes are complete */
3228 domain_flush_complete(domain);
3229
3230 /* Now flush device TLBs */
3231 list_for_each_entry(dev_data, &domain->dev_list, list) {
3232 struct amd_iommu *iommu;
3233 int qdep;
3234
1c1cc454
JR
3235 /*
3236 There might be non-IOMMUv2 capable devices in an IOMMUv2
3237 * domain.
3238 */
3239 if (!dev_data->ats.enabled)
3240 continue;
22e266c7
JR
3241
3242 qdep = dev_data->ats.qdep;
3243 iommu = amd_iommu_rlookup_table[dev_data->devid];
3244
3245 build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
3246 qdep, address, size);
3247
3248 ret = iommu_queue_command(iommu, &cmd);
3249 if (ret != 0)
3250 goto out;
3251 }
3252
3253 /* Wait until all device TLBs are flushed */
3254 domain_flush_complete(domain);
3255
3256 ret = 0;
3257
3258out:
3259
3260 return ret;
3261}
3262
3263static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
3264 u64 address)
3265{
399be2f5
JR
3266 INC_STATS_COUNTER(invalidate_iotlb);
3267
22e266c7
JR
3268 return __flush_pasid(domain, pasid, address, false);
3269}
3270
3271int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
3272 u64 address)
3273{
3f4b87b9 3274 struct protection_domain *domain = to_pdomain(dom);
22e266c7
JR
3275 unsigned long flags;
3276 int ret;
3277
3278 spin_lock_irqsave(&domain->lock, flags);
3279 ret = __amd_iommu_flush_page(domain, pasid, address);
3280 spin_unlock_irqrestore(&domain->lock, flags);
3281
3282 return ret;
3283}
3284EXPORT_SYMBOL(amd_iommu_flush_page);
3285
3286static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
3287{
399be2f5
JR
3288 INC_STATS_COUNTER(invalidate_iotlb_all);
3289
22e266c7
JR
3290 return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
3291 true);
3292}
3293
3294int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
3295{
3f4b87b9 3296 struct protection_domain *domain = to_pdomain(dom);
22e266c7
JR
3297 unsigned long flags;
3298 int ret;
3299
3300 spin_lock_irqsave(&domain->lock, flags);
3301 ret = __amd_iommu_flush_tlb(domain, pasid);
3302 spin_unlock_irqrestore(&domain->lock, flags);
3303
3304 return ret;
3305}
3306EXPORT_SYMBOL(amd_iommu_flush_tlb);
3307
b16137b1
JR
3308static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
3309{
3310 int index;
3311 u64 *pte;
3312
3313 while (true) {
3314
3315 index = (pasid >> (9 * level)) & 0x1ff;
3316 pte = &root[index];
3317
3318 if (level == 0)
3319 break;
3320
3321 if (!(*pte & GCR3_VALID)) {
3322 if (!alloc)
3323 return NULL;
3324
3325 root = (void *)get_zeroed_page(GFP_ATOMIC);
3326 if (root == NULL)
3327 return NULL;
3328
3329 *pte = __pa(root) | GCR3_VALID;
3330 }
3331
3332 root = __va(*pte & PAGE_MASK);
3333
3334 level -= 1;
3335 }
3336
3337 return pte;
3338}
3339
3340static int __set_gcr3(struct protection_domain *domain, int pasid,
3341 unsigned long cr3)
3342{
3343 u64 *pte;
3344
3345 if (domain->mode != PAGE_MODE_NONE)
3346 return -EINVAL;
3347
3348 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3349 if (pte == NULL)
3350 return -ENOMEM;
3351
3352 *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3353
3354 return __amd_iommu_flush_tlb(domain, pasid);
3355}
3356
3357static int __clear_gcr3(struct protection_domain *domain, int pasid)
3358{
3359 u64 *pte;
3360
3361 if (domain->mode != PAGE_MODE_NONE)
3362 return -EINVAL;
3363
3364 pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3365 if (pte == NULL)
3366 return 0;
3367
3368 *pte = 0;
3369
3370 return __amd_iommu_flush_tlb(domain, pasid);
3371}
3372
3373int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
3374 unsigned long cr3)
3375{
3f4b87b9 3376 struct protection_domain *domain = to_pdomain(dom);
b16137b1
JR
3377 unsigned long flags;
3378 int ret;
3379
3380 spin_lock_irqsave(&domain->lock, flags);
3381 ret = __set_gcr3(domain, pasid, cr3);
3382 spin_unlock_irqrestore(&domain->lock, flags);
3383
3384 return ret;
3385}
3386EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
3387
3388int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
3389{
3f4b87b9 3390 struct protection_domain *domain = to_pdomain(dom);
b16137b1
JR
3391 unsigned long flags;
3392 int ret;
3393
3394 spin_lock_irqsave(&domain->lock, flags);
3395 ret = __clear_gcr3(domain, pasid);
3396 spin_unlock_irqrestore(&domain->lock, flags);
3397
3398 return ret;
3399}
3400EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
c99afa25
JR
3401
3402int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
3403 int status, int tag)
3404{
3405 struct iommu_dev_data *dev_data;
3406 struct amd_iommu *iommu;
3407 struct iommu_cmd cmd;
3408
399be2f5
JR
3409 INC_STATS_COUNTER(complete_ppr);
3410
c99afa25
JR
3411 dev_data = get_dev_data(&pdev->dev);
3412 iommu = amd_iommu_rlookup_table[dev_data->devid];
3413
3414 build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3415 tag, dev_data->pri_tlp);
3416
3417 return iommu_queue_command(iommu, &cmd);
3418}
3419EXPORT_SYMBOL(amd_iommu_complete_ppr);
f3572db8
JR
3420
3421struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3422{
3f4b87b9 3423 struct protection_domain *pdomain;
f3572db8 3424
3f4b87b9
JR
3425 pdomain = get_domain(&pdev->dev);
3426 if (IS_ERR(pdomain))
f3572db8
JR
3427 return NULL;
3428
3429 /* Only return IOMMUv2 domains */
3f4b87b9 3430 if (!(pdomain->flags & PD_IOMMUV2_MASK))
f3572db8
JR
3431 return NULL;
3432
3f4b87b9 3433 return &pdomain->domain;
f3572db8
JR
3434}
3435EXPORT_SYMBOL(amd_iommu_get_v2_domain);
6a113ddc
JR
3436
3437void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3438{
3439 struct iommu_dev_data *dev_data;
3440
3441 if (!amd_iommu_v2_supported())
3442 return;
3443
3444 dev_data = get_dev_data(&pdev->dev);
3445 dev_data->errata |= (1 << erratum);
3446}
3447EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
52efdb89
JR
3448
3449int amd_iommu_device_info(struct pci_dev *pdev,
3450 struct amd_iommu_device_info *info)
3451{
3452 int max_pasids;
3453 int pos;
3454
3455 if (pdev == NULL || info == NULL)
3456 return -EINVAL;
3457
3458 if (!amd_iommu_v2_supported())
3459 return -EINVAL;
3460
3461 memset(info, 0, sizeof(*info));
3462
3463 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
3464 if (pos)
3465 info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3466
3467 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3468 if (pos)
3469 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3470
3471 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3472 if (pos) {
3473 int features;
3474
3475 max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3476 max_pasids = min(max_pasids, (1 << 20));
3477
3478 info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3479 info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3480
3481 features = pci_pasid_features(pdev);
3482 if (features & PCI_PASID_CAP_EXEC)
3483 info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3484 if (features & PCI_PASID_CAP_PRIV)
3485 info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3486 }
3487
3488 return 0;
3489}
3490EXPORT_SYMBOL(amd_iommu_device_info);
2b324506
JR
3491
3492#ifdef CONFIG_IRQ_REMAP
3493
3494/*****************************************************************************
3495 *
3496 * Interrupt Remapping Implementation
3497 *
3498 *****************************************************************************/
3499
3500union irte {
3501 u32 val;
3502 struct {
3503 u32 valid : 1,
3504 no_fault : 1,
3505 int_type : 3,
3506 rq_eoi : 1,
3507 dm : 1,
3508 rsvd_1 : 1,
3509 destination : 8,
3510 vector : 8,
3511 rsvd_2 : 8;
3512 } fields;
3513};
3514
9c724966
JL
3515struct irq_2_irte {
3516 u16 devid; /* Device ID for IRTE table */
3517 u16 index; /* Index into IRTE table*/
3518};
3519
7c71d306
JL
3520struct amd_ir_data {
3521 struct irq_2_irte irq_2_irte;
3522 union irte irte_entry;
3523 union {
3524 struct msi_msg msi_entry;
3525 };
3526};
3527
3528static struct irq_chip amd_ir_chip;
3529
2b324506
JR
3530#define DTE_IRQ_PHYS_ADDR_MASK (((1ULL << 45)-1) << 6)
3531#define DTE_IRQ_REMAP_INTCTL (2ULL << 60)
3532#define DTE_IRQ_TABLE_LEN (8ULL << 1)
3533#define DTE_IRQ_REMAP_ENABLE 1ULL
3534
3535static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
3536{
3537 u64 dte;
3538
3539 dte = amd_iommu_dev_table[devid].data[2];
3540 dte &= ~DTE_IRQ_PHYS_ADDR_MASK;
3541 dte |= virt_to_phys(table->table);
3542 dte |= DTE_IRQ_REMAP_INTCTL;
3543 dte |= DTE_IRQ_TABLE_LEN;
3544 dte |= DTE_IRQ_REMAP_ENABLE;
3545
3546 amd_iommu_dev_table[devid].data[2] = dte;
3547}
3548
3549#define IRTE_ALLOCATED (~1U)
3550
3551static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
3552{
3553 struct irq_remap_table *table = NULL;
3554 struct amd_iommu *iommu;
3555 unsigned long flags;
3556 u16 alias;
3557
3558 write_lock_irqsave(&amd_iommu_devtable_lock, flags);
3559
3560 iommu = amd_iommu_rlookup_table[devid];
3561 if (!iommu)
3562 goto out_unlock;
3563
3564 table = irq_lookup_table[devid];
3565 if (table)
3566 goto out;
3567
3568 alias = amd_iommu_alias_table[devid];
3569 table = irq_lookup_table[alias];
3570 if (table) {
3571 irq_lookup_table[devid] = table;
3572 set_dte_irq_entry(devid, table);
3573 iommu_flush_dte(iommu, devid);
3574 goto out;
3575 }
3576
3577 /* Nothing there yet, allocate new irq remapping table */
3578 table = kzalloc(sizeof(*table), GFP_ATOMIC);
3579 if (!table)
3580 goto out;
3581
197887f0
JR
3582 /* Initialize table spin-lock */
3583 spin_lock_init(&table->lock);
3584
2b324506
JR
3585 if (ioapic)
3586 /* Keep the first 32 indexes free for IOAPIC interrupts */
3587 table->min_index = 32;
3588
3589 table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
3590 if (!table->table) {
3591 kfree(table);
821f0f68 3592 table = NULL;
2b324506
JR
3593 goto out;
3594 }
3595
3596 memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));
3597
3598 if (ioapic) {
3599 int i;
3600
3601 for (i = 0; i < 32; ++i)
3602 table->table[i] = IRTE_ALLOCATED;
3603 }
3604
3605 irq_lookup_table[devid] = table;
3606 set_dte_irq_entry(devid, table);
3607 iommu_flush_dte(iommu, devid);
3608 if (devid != alias) {
3609 irq_lookup_table[alias] = table;
e028a9e6 3610 set_dte_irq_entry(alias, table);
2b324506
JR
3611 iommu_flush_dte(iommu, alias);
3612 }
3613
3614out:
3615 iommu_completion_wait(iommu);
3616
3617out_unlock:
3618 write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
3619
3620 return table;
3621}
3622
3c3d4f90 3623static int alloc_irq_index(u16 devid, int count)
2b324506
JR
3624{
3625 struct irq_remap_table *table;
3626 unsigned long flags;
3627 int index, c;
3628
3629 table = get_irq_table(devid, false);
3630 if (!table)
3631 return -ENODEV;
3632
3633 spin_lock_irqsave(&table->lock, flags);
3634
3635 /* Scan table for free entries */
3636 for (c = 0, index = table->min_index;
3637 index < MAX_IRQS_PER_TABLE;
3638 ++index) {
3639 if (table->table[index] == 0)
3640 c += 1;
3641 else
3642 c = 0;
3643
3644 if (c == count) {
2b324506
JR
3645 for (; c != 0; --c)
3646 table->table[index - c + 1] = IRTE_ALLOCATED;
3647
3648 index -= count - 1;
2b324506
JR
3649 goto out;
3650 }
3651 }
3652
3653 index = -ENOSPC;
3654
3655out:
3656 spin_unlock_irqrestore(&table->lock, flags);
3657
3658 return index;
3659}
3660
2b324506
JR
3661static int modify_irte(u16 devid, int index, union irte irte)
3662{
3663 struct irq_remap_table *table;
3664 struct amd_iommu *iommu;
3665 unsigned long flags;
3666
3667 iommu = amd_iommu_rlookup_table[devid];
3668 if (iommu == NULL)
3669 return -EINVAL;
3670
3671 table = get_irq_table(devid, false);
3672 if (!table)
3673 return -ENOMEM;
3674
3675 spin_lock_irqsave(&table->lock, flags);
3676 table->table[index] = irte.val;
3677 spin_unlock_irqrestore(&table->lock, flags);
3678
3679 iommu_flush_irt(iommu, devid);
3680 iommu_completion_wait(iommu);
3681
3682 return 0;
3683}
3684
3685static void free_irte(u16 devid, int index)
3686{
3687 struct irq_remap_table *table;
3688 struct amd_iommu *iommu;
3689 unsigned long flags;
3690
3691 iommu = amd_iommu_rlookup_table[devid];
3692 if (iommu == NULL)
3693 return;
3694
3695 table = get_irq_table(devid, false);
3696 if (!table)
3697 return;
3698
3699 spin_lock_irqsave(&table->lock, flags);
3700 table->table[index] = 0;
3701 spin_unlock_irqrestore(&table->lock, flags);
3702
3703 iommu_flush_irt(iommu, devid);
3704 iommu_completion_wait(iommu);
3705}
3706
7c71d306 3707static int get_devid(struct irq_alloc_info *info)
5527de74 3708{
7c71d306 3709 int devid = -1;
5527de74 3710
7c71d306
JL
3711 switch (info->type) {
3712 case X86_IRQ_ALLOC_TYPE_IOAPIC:
3713 devid = get_ioapic_devid(info->ioapic_id);
3714 break;
3715 case X86_IRQ_ALLOC_TYPE_HPET:
3716 devid = get_hpet_devid(info->hpet_id);
3717 break;
3718 case X86_IRQ_ALLOC_TYPE_MSI:
3719 case X86_IRQ_ALLOC_TYPE_MSIX:
3720 devid = get_device_id(&info->msi_dev->dev);
3721 break;
3722 default:
3723 BUG_ON(1);
3724 break;
3725 }
5527de74 3726
7c71d306
JL
3727 return devid;
3728}
5527de74 3729
7c71d306
JL
3730static struct irq_domain *get_ir_irq_domain(struct irq_alloc_info *info)
3731{
3732 struct amd_iommu *iommu;
3733 int devid;
5527de74 3734
7c71d306
JL
3735 if (!info)
3736 return NULL;
5527de74 3737
7c71d306
JL
3738 devid = get_devid(info);
3739 if (devid >= 0) {
3740 iommu = amd_iommu_rlookup_table[devid];
3741 if (iommu)
3742 return iommu->ir_domain;
3743 }
5527de74 3744
7c71d306 3745 return NULL;
5527de74
JR
3746}
3747
7c71d306 3748static struct irq_domain *get_irq_domain(struct irq_alloc_info *info)
5527de74 3749{
7c71d306
JL
3750 struct amd_iommu *iommu;
3751 int devid;
5527de74 3752
7c71d306
JL
3753 if (!info)
3754 return NULL;
5527de74 3755
7c71d306
JL
3756 switch (info->type) {
3757 case X86_IRQ_ALLOC_TYPE_MSI:
3758 case X86_IRQ_ALLOC_TYPE_MSIX:
3759 devid = get_device_id(&info->msi_dev->dev);
3760 if (devid >= 0) {
3761 iommu = amd_iommu_rlookup_table[devid];
3762 if (iommu)
3763 return iommu->msi_domain;
3764 }
3765 break;
3766 default:
3767 break;
3768 }
5527de74 3769
7c71d306
JL
3770 return NULL;
3771}
5527de74 3772
6b474b82 3773struct irq_remap_ops amd_iommu_irq_ops = {
6b474b82
JR
3774 .prepare = amd_iommu_prepare,
3775 .enable = amd_iommu_enable,
3776 .disable = amd_iommu_disable,
3777 .reenable = amd_iommu_reenable,
3778 .enable_faulting = amd_iommu_enable_faulting,
7c71d306
JL
3779 .get_ir_irq_domain = get_ir_irq_domain,
3780 .get_irq_domain = get_irq_domain,
3781};
5527de74 3782
7c71d306
JL
3783static void irq_remapping_prepare_irte(struct amd_ir_data *data,
3784 struct irq_cfg *irq_cfg,
3785 struct irq_alloc_info *info,
3786 int devid, int index, int sub_handle)
3787{
3788 struct irq_2_irte *irte_info = &data->irq_2_irte;
3789 struct msi_msg *msg = &data->msi_entry;
3790 union irte *irte = &data->irte_entry;
3791 struct IO_APIC_route_entry *entry;
5527de74 3792
7c71d306
JL
3793 data->irq_2_irte.devid = devid;
3794 data->irq_2_irte.index = index + sub_handle;
5527de74 3795
7c71d306
JL
3796 /* Setup IRTE for IOMMU */
3797 irte->val = 0;
3798 irte->fields.vector = irq_cfg->vector;
3799 irte->fields.int_type = apic->irq_delivery_mode;
3800 irte->fields.destination = irq_cfg->dest_apicid;
3801 irte->fields.dm = apic->irq_dest_mode;
3802 irte->fields.valid = 1;
3803
3804 switch (info->type) {
3805 case X86_IRQ_ALLOC_TYPE_IOAPIC:
3806 /* Setup IOAPIC entry */
3807 entry = info->ioapic_entry;
3808 info->ioapic_entry = NULL;
3809 memset(entry, 0, sizeof(*entry));
3810 entry->vector = index;
3811 entry->mask = 0;
3812 entry->trigger = info->ioapic_trigger;
3813 entry->polarity = info->ioapic_polarity;
3814 /* Mask level triggered irqs. */
3815 if (info->ioapic_trigger)
3816 entry->mask = 1;
3817 break;
5527de74 3818
7c71d306
JL
3819 case X86_IRQ_ALLOC_TYPE_HPET:
3820 case X86_IRQ_ALLOC_TYPE_MSI:
3821 case X86_IRQ_ALLOC_TYPE_MSIX:
3822 msg->address_hi = MSI_ADDR_BASE_HI;
3823 msg->address_lo = MSI_ADDR_BASE_LO;
3824 msg->data = irte_info->index;
3825 break;
5527de74 3826
7c71d306
JL
3827 default:
3828 BUG_ON(1);
3829 break;
3830 }
5527de74
JR
3831}
3832
7c71d306
JL
3833static int irq_remapping_alloc(struct irq_domain *domain, unsigned int virq,
3834 unsigned int nr_irqs, void *arg)
5527de74 3835{
7c71d306
JL
3836 struct irq_alloc_info *info = arg;
3837 struct irq_data *irq_data;
3838 struct amd_ir_data *data;
5527de74 3839 struct irq_cfg *cfg;
7c71d306
JL
3840 int i, ret, devid;
3841 int index = -1;
5527de74 3842
7c71d306
JL
3843 if (!info)
3844 return -EINVAL;
3845 if (nr_irqs > 1 && info->type != X86_IRQ_ALLOC_TYPE_MSI &&
3846 info->type != X86_IRQ_ALLOC_TYPE_MSIX)
5527de74
JR
3847 return -EINVAL;
3848
7c71d306
JL
3849 /*
3850 * With IRQ remapping enabled, don't need contiguous CPU vectors
3851 * to support multiple MSI interrupts.
3852 */
3853 if (info->type == X86_IRQ_ALLOC_TYPE_MSI)
3854 info->flags &= ~X86_IRQ_ALLOC_CONTIGUOUS_VECTORS;
5527de74 3855
7c71d306
JL
3856 devid = get_devid(info);
3857 if (devid < 0)
3858 return -EINVAL;
5527de74 3859
7c71d306
JL
3860 ret = irq_domain_alloc_irqs_parent(domain, virq, nr_irqs, arg);
3861 if (ret < 0)
3862 return ret;
0b4d48cb 3863
7c71d306
JL
3864 if (info->type == X86_IRQ_ALLOC_TYPE_IOAPIC) {
3865 if (get_irq_table(devid, true))
3866 index = info->ioapic_pin;
3867 else
3868 ret = -ENOMEM;
3869 } else {
3c3d4f90 3870 index = alloc_irq_index(devid, nr_irqs);
7c71d306
JL
3871 }
3872 if (index < 0) {
3873 pr_warn("Failed to allocate IRTE\n");
7c71d306
JL
3874 goto out_free_parent;
3875 }
0b4d48cb 3876
7c71d306
JL
3877 for (i = 0; i < nr_irqs; i++) {
3878 irq_data = irq_domain_get_irq_data(domain, virq + i);
3879 cfg = irqd_cfg(irq_data);
3880 if (!irq_data || !cfg) {
3881 ret = -EINVAL;
3882 goto out_free_data;
3883 }
0b4d48cb 3884
a130e69f
JR
3885 ret = -ENOMEM;
3886 data = kzalloc(sizeof(*data), GFP_KERNEL);
3887 if (!data)
3888 goto out_free_data;
3889
7c71d306
JL
3890 irq_data->hwirq = (devid << 16) + i;
3891 irq_data->chip_data = data;
3892 irq_data->chip = &amd_ir_chip;
3893 irq_remapping_prepare_irte(data, cfg, info, devid, index, i);
3894 irq_set_status_flags(virq + i, IRQ_MOVE_PCNTXT);
3895 }
a130e69f 3896
7c71d306 3897 return 0;
0b4d48cb 3898
7c71d306
JL
3899out_free_data:
3900 for (i--; i >= 0; i--) {
3901 irq_data = irq_domain_get_irq_data(domain, virq + i);
3902 if (irq_data)
3903 kfree(irq_data->chip_data);
3904 }
3905 for (i = 0; i < nr_irqs; i++)
3906 free_irte(devid, index + i);
3907out_free_parent:
3908 irq_domain_free_irqs_common(domain, virq, nr_irqs);
3909 return ret;
0b4d48cb
JR
3910}
3911
7c71d306
JL
3912static void irq_remapping_free(struct irq_domain *domain, unsigned int virq,
3913 unsigned int nr_irqs)
0b4d48cb 3914{
7c71d306
JL
3915 struct irq_2_irte *irte_info;
3916 struct irq_data *irq_data;
3917 struct amd_ir_data *data;
3918 int i;
0b4d48cb 3919
7c71d306
JL
3920 for (i = 0; i < nr_irqs; i++) {
3921 irq_data = irq_domain_get_irq_data(domain, virq + i);
3922 if (irq_data && irq_data->chip_data) {
3923 data = irq_data->chip_data;
3924 irte_info = &data->irq_2_irte;
3925 free_irte(irte_info->devid, irte_info->index);
3926 kfree(data);
3927 }
3928 }
3929 irq_domain_free_irqs_common(domain, virq, nr_irqs);
3930}
0b4d48cb 3931
7c71d306
JL
3932static void irq_remapping_activate(struct irq_domain *domain,
3933 struct irq_data *irq_data)
3934{
3935 struct amd_ir_data *data = irq_data->chip_data;
3936 struct irq_2_irte *irte_info = &data->irq_2_irte;
0b4d48cb 3937
7c71d306 3938 modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
0b4d48cb
JR
3939}
3940
7c71d306
JL
3941static void irq_remapping_deactivate(struct irq_domain *domain,
3942 struct irq_data *irq_data)
0b4d48cb 3943{
7c71d306
JL
3944 struct amd_ir_data *data = irq_data->chip_data;
3945 struct irq_2_irte *irte_info = &data->irq_2_irte;
3946 union irte entry;
0b4d48cb 3947
7c71d306
JL
3948 entry.val = 0;
3949 modify_irte(irte_info->devid, irte_info->index, data->irte_entry);
3950}
0b4d48cb 3951
7c71d306
JL
3952static struct irq_domain_ops amd_ir_domain_ops = {
3953 .alloc = irq_remapping_alloc,
3954 .free = irq_remapping_free,
3955 .activate = irq_remapping_activate,
3956 .deactivate = irq_remapping_deactivate,
6b474b82 3957};
0b4d48cb 3958
7c71d306
JL
3959static int amd_ir_set_affinity(struct irq_data *data,
3960 const struct cpumask *mask, bool force)
3961{
3962 struct amd_ir_data *ir_data = data->chip_data;
3963 struct irq_2_irte *irte_info = &ir_data->irq_2_irte;
3964 struct irq_cfg *cfg = irqd_cfg(data);
3965 struct irq_data *parent = data->parent_data;
3966 int ret;
0b4d48cb 3967
7c71d306
JL
3968 ret = parent->chip->irq_set_affinity(parent, mask, force);
3969 if (ret < 0 || ret == IRQ_SET_MASK_OK_DONE)
3970 return ret;
0b4d48cb 3971
7c71d306
JL
3972 /*
3973 * Atomically updates the IRTE with the new destination, vector
3974 * and flushes the interrupt entry cache.
3975 */
3976 ir_data->irte_entry.fields.vector = cfg->vector;
3977 ir_data->irte_entry.fields.destination = cfg->dest_apicid;
3978 modify_irte(irte_info->devid, irte_info->index, ir_data->irte_entry);
0b4d48cb 3979
7c71d306
JL
3980 /*
3981 * After this point, all the interrupts will start arriving
3982 * at the new destination. So, time to cleanup the previous
3983 * vector allocation.
3984 */
c6c2002b 3985 send_cleanup_vector(cfg);
7c71d306
JL
3986
3987 return IRQ_SET_MASK_OK_DONE;
0b4d48cb
JR
3988}
3989
7c71d306 3990static void ir_compose_msi_msg(struct irq_data *irq_data, struct msi_msg *msg)
d976195c 3991{
7c71d306 3992 struct amd_ir_data *ir_data = irq_data->chip_data;
d976195c 3993
7c71d306
JL
3994 *msg = ir_data->msi_entry;
3995}
d976195c 3996
7c71d306
JL
3997static struct irq_chip amd_ir_chip = {
3998 .irq_ack = ir_ack_apic_edge,
3999 .irq_set_affinity = amd_ir_set_affinity,
4000 .irq_compose_msi_msg = ir_compose_msi_msg,
4001};
d976195c 4002
7c71d306
JL
4003int amd_iommu_create_irq_domain(struct amd_iommu *iommu)
4004{
4005 iommu->ir_domain = irq_domain_add_tree(NULL, &amd_ir_domain_ops, iommu);
4006 if (!iommu->ir_domain)
4007 return -ENOMEM;
d976195c 4008
7c71d306
JL
4009 iommu->ir_domain->parent = arch_get_ir_parent_domain();
4010 iommu->msi_domain = arch_create_msi_irq_domain(iommu->ir_domain);
d976195c
JR
4011
4012 return 0;
4013}
2b324506 4014#endif