ib_srpt: Initial SRP Target merge for v3.3-rc1
[linux-2.6-block.git] / drivers / infiniband / ulp / srpt / ib_srpt.c
CommitLineData
a42d985b
BVA
1/*
2 * Copyright (c) 2006 - 2009 Mellanox Technology Inc. All rights reserved.
3 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 *
33 */
34
35#include <linux/module.h>
36#include <linux/init.h>
37#include <linux/slab.h>
38#include <linux/err.h>
39#include <linux/ctype.h>
40#include <linux/kthread.h>
41#include <linux/string.h>
42#include <linux/delay.h>
43#include <linux/atomic.h>
44#include <scsi/scsi_tcq.h>
45#include <target/configfs_macros.h>
46#include <target/target_core_base.h>
47#include <target/target_core_fabric_configfs.h>
48#include <target/target_core_fabric.h>
49#include <target/target_core_configfs.h>
50#include "ib_srpt.h"
51
52/* Name of this kernel module. */
53#define DRV_NAME "ib_srpt"
54#define DRV_VERSION "2.0.0"
55#define DRV_RELDATE "2011-02-14"
56
57#define SRPT_ID_STRING "Linux SRP target"
58
59#undef pr_fmt
60#define pr_fmt(fmt) DRV_NAME " " fmt
61
62MODULE_AUTHOR("Vu Pham and Bart Van Assche");
63MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target "
64 "v" DRV_VERSION " (" DRV_RELDATE ")");
65MODULE_LICENSE("Dual BSD/GPL");
66
67/*
68 * Global Variables
69 */
70
71static u64 srpt_service_guid;
72static spinlock_t srpt_dev_lock; /* Protects srpt_dev_list. */
73static struct list_head srpt_dev_list; /* List of srpt_device structures. */
74
75static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE;
76module_param(srp_max_req_size, int, 0444);
77MODULE_PARM_DESC(srp_max_req_size,
78 "Maximum size of SRP request messages in bytes.");
79
80static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE;
81module_param(srpt_srq_size, int, 0444);
82MODULE_PARM_DESC(srpt_srq_size,
83 "Shared receive queue (SRQ) size.");
84
85static int srpt_get_u64_x(char *buffer, struct kernel_param *kp)
86{
87 return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg);
88}
89module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid,
90 0444);
91MODULE_PARM_DESC(srpt_service_guid,
92 "Using this value for ioc_guid, id_ext, and cm_listen_id"
93 " instead of using the node_guid of the first HCA.");
94
95static struct ib_client srpt_client;
96static struct target_fabric_configfs *srpt_target;
97static void srpt_release_channel(struct srpt_rdma_ch *ch);
98static int srpt_queue_status(struct se_cmd *cmd);
99
100/**
101 * opposite_dma_dir() - Swap DMA_TO_DEVICE and DMA_FROM_DEVICE.
102 */
103static inline
104enum dma_data_direction opposite_dma_dir(enum dma_data_direction dir)
105{
106 switch (dir) {
107 case DMA_TO_DEVICE: return DMA_FROM_DEVICE;
108 case DMA_FROM_DEVICE: return DMA_TO_DEVICE;
109 default: return dir;
110 }
111}
112
113/**
114 * srpt_sdev_name() - Return the name associated with the HCA.
115 *
116 * Examples are ib0, ib1, ...
117 */
118static inline const char *srpt_sdev_name(struct srpt_device *sdev)
119{
120 return sdev->device->name;
121}
122
123static enum rdma_ch_state srpt_get_ch_state(struct srpt_rdma_ch *ch)
124{
125 unsigned long flags;
126 enum rdma_ch_state state;
127
128 spin_lock_irqsave(&ch->spinlock, flags);
129 state = ch->state;
130 spin_unlock_irqrestore(&ch->spinlock, flags);
131 return state;
132}
133
134static enum rdma_ch_state
135srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new_state)
136{
137 unsigned long flags;
138 enum rdma_ch_state prev;
139
140 spin_lock_irqsave(&ch->spinlock, flags);
141 prev = ch->state;
142 ch->state = new_state;
143 spin_unlock_irqrestore(&ch->spinlock, flags);
144 return prev;
145}
146
147/**
148 * srpt_test_and_set_ch_state() - Test and set the channel state.
149 *
150 * Returns true if and only if the channel state has been set to the new state.
151 */
152static bool
153srpt_test_and_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state old,
154 enum rdma_ch_state new)
155{
156 unsigned long flags;
157 enum rdma_ch_state prev;
158
159 spin_lock_irqsave(&ch->spinlock, flags);
160 prev = ch->state;
161 if (prev == old)
162 ch->state = new;
163 spin_unlock_irqrestore(&ch->spinlock, flags);
164 return prev == old;
165}
166
167/**
168 * srpt_event_handler() - Asynchronous IB event callback function.
169 *
170 * Callback function called by the InfiniBand core when an asynchronous IB
171 * event occurs. This callback may occur in interrupt context. See also
172 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand
173 * Architecture Specification.
174 */
175static void srpt_event_handler(struct ib_event_handler *handler,
176 struct ib_event *event)
177{
178 struct srpt_device *sdev;
179 struct srpt_port *sport;
180
181 sdev = ib_get_client_data(event->device, &srpt_client);
182 if (!sdev || sdev->device != event->device)
183 return;
184
185 pr_debug("ASYNC event= %d on device= %s\n", event->event,
186 srpt_sdev_name(sdev));
187
188 switch (event->event) {
189 case IB_EVENT_PORT_ERR:
190 if (event->element.port_num <= sdev->device->phys_port_cnt) {
191 sport = &sdev->port[event->element.port_num - 1];
192 sport->lid = 0;
193 sport->sm_lid = 0;
194 }
195 break;
196 case IB_EVENT_PORT_ACTIVE:
197 case IB_EVENT_LID_CHANGE:
198 case IB_EVENT_PKEY_CHANGE:
199 case IB_EVENT_SM_CHANGE:
200 case IB_EVENT_CLIENT_REREGISTER:
201 /* Refresh port data asynchronously. */
202 if (event->element.port_num <= sdev->device->phys_port_cnt) {
203 sport = &sdev->port[event->element.port_num - 1];
204 if (!sport->lid && !sport->sm_lid)
205 schedule_work(&sport->work);
206 }
207 break;
208 default:
209 printk(KERN_ERR "received unrecognized IB event %d\n",
210 event->event);
211 break;
212 }
213}
214
215/**
216 * srpt_srq_event() - SRQ event callback function.
217 */
218static void srpt_srq_event(struct ib_event *event, void *ctx)
219{
220 printk(KERN_INFO "SRQ event %d\n", event->event);
221}
222
223/**
224 * srpt_qp_event() - QP event callback function.
225 */
226static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch)
227{
228 pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n",
229 event->event, ch->cm_id, ch->sess_name, srpt_get_ch_state(ch));
230
231 switch (event->event) {
232 case IB_EVENT_COMM_EST:
233 ib_cm_notify(ch->cm_id, event->event);
234 break;
235 case IB_EVENT_QP_LAST_WQE_REACHED:
236 if (srpt_test_and_set_ch_state(ch, CH_DRAINING,
237 CH_RELEASING))
238 srpt_release_channel(ch);
239 else
240 pr_debug("%s: state %d - ignored LAST_WQE.\n",
241 ch->sess_name, srpt_get_ch_state(ch));
242 break;
243 default:
244 printk(KERN_ERR "received unrecognized IB QP event %d\n",
245 event->event);
246 break;
247 }
248}
249
250/**
251 * srpt_set_ioc() - Helper function for initializing an IOUnitInfo structure.
252 *
253 * @slot: one-based slot number.
254 * @value: four-bit value.
255 *
256 * Copies the lowest four bits of value in element slot of the array of four
257 * bit elements called c_list (controller list). The index slot is one-based.
258 */
259static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value)
260{
261 u16 id;
262 u8 tmp;
263
264 id = (slot - 1) / 2;
265 if (slot & 0x1) {
266 tmp = c_list[id] & 0xf;
267 c_list[id] = (value << 4) | tmp;
268 } else {
269 tmp = c_list[id] & 0xf0;
270 c_list[id] = (value & 0xf) | tmp;
271 }
272}
273
274/**
275 * srpt_get_class_port_info() - Copy ClassPortInfo to a management datagram.
276 *
277 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture
278 * Specification.
279 */
280static void srpt_get_class_port_info(struct ib_dm_mad *mad)
281{
282 struct ib_class_port_info *cif;
283
284 cif = (struct ib_class_port_info *)mad->data;
285 memset(cif, 0, sizeof *cif);
286 cif->base_version = 1;
287 cif->class_version = 1;
288 cif->resp_time_value = 20;
289
290 mad->mad_hdr.status = 0;
291}
292
293/**
294 * srpt_get_iou() - Write IOUnitInfo to a management datagram.
295 *
296 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture
297 * Specification. See also section B.7, table B.6 in the SRP r16a document.
298 */
299static void srpt_get_iou(struct ib_dm_mad *mad)
300{
301 struct ib_dm_iou_info *ioui;
302 u8 slot;
303 int i;
304
305 ioui = (struct ib_dm_iou_info *)mad->data;
306 ioui->change_id = __constant_cpu_to_be16(1);
307 ioui->max_controllers = 16;
308
309 /* set present for slot 1 and empty for the rest */
310 srpt_set_ioc(ioui->controller_list, 1, 1);
311 for (i = 1, slot = 2; i < 16; i++, slot++)
312 srpt_set_ioc(ioui->controller_list, slot, 0);
313
314 mad->mad_hdr.status = 0;
315}
316
317/**
318 * srpt_get_ioc() - Write IOControllerprofile to a management datagram.
319 *
320 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand
321 * Architecture Specification. See also section B.7, table B.7 in the SRP
322 * r16a document.
323 */
324static void srpt_get_ioc(struct srpt_port *sport, u32 slot,
325 struct ib_dm_mad *mad)
326{
327 struct srpt_device *sdev = sport->sdev;
328 struct ib_dm_ioc_profile *iocp;
329
330 iocp = (struct ib_dm_ioc_profile *)mad->data;
331
332 if (!slot || slot > 16) {
333 mad->mad_hdr.status
334 = __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
335 return;
336 }
337
338 if (slot > 2) {
339 mad->mad_hdr.status
340 = __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC);
341 return;
342 }
343
344 memset(iocp, 0, sizeof *iocp);
345 strcpy(iocp->id_string, SRPT_ID_STRING);
346 iocp->guid = cpu_to_be64(srpt_service_guid);
347 iocp->vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id);
348 iocp->device_id = cpu_to_be32(sdev->dev_attr.vendor_part_id);
349 iocp->device_version = cpu_to_be16(sdev->dev_attr.hw_ver);
350 iocp->subsys_vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id);
351 iocp->subsys_device_id = 0x0;
352 iocp->io_class = __constant_cpu_to_be16(SRP_REV16A_IB_IO_CLASS);
353 iocp->io_subclass = __constant_cpu_to_be16(SRP_IO_SUBCLASS);
354 iocp->protocol = __constant_cpu_to_be16(SRP_PROTOCOL);
355 iocp->protocol_version = __constant_cpu_to_be16(SRP_PROTOCOL_VERSION);
356 iocp->send_queue_depth = cpu_to_be16(sdev->srq_size);
357 iocp->rdma_read_depth = 4;
358 iocp->send_size = cpu_to_be32(srp_max_req_size);
359 iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size,
360 1U << 24));
361 iocp->num_svc_entries = 1;
362 iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC |
363 SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC;
364
365 mad->mad_hdr.status = 0;
366}
367
368/**
369 * srpt_get_svc_entries() - Write ServiceEntries to a management datagram.
370 *
371 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture
372 * Specification. See also section B.7, table B.8 in the SRP r16a document.
373 */
374static void srpt_get_svc_entries(u64 ioc_guid,
375 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad)
376{
377 struct ib_dm_svc_entries *svc_entries;
378
379 WARN_ON(!ioc_guid);
380
381 if (!slot || slot > 16) {
382 mad->mad_hdr.status
383 = __constant_cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
384 return;
385 }
386
387 if (slot > 2 || lo > hi || hi > 1) {
388 mad->mad_hdr.status
389 = __constant_cpu_to_be16(DM_MAD_STATUS_NO_IOC);
390 return;
391 }
392
393 svc_entries = (struct ib_dm_svc_entries *)mad->data;
394 memset(svc_entries, 0, sizeof *svc_entries);
395 svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid);
396 snprintf(svc_entries->service_entries[0].name,
397 sizeof(svc_entries->service_entries[0].name),
398 "%s%016llx",
399 SRP_SERVICE_NAME_PREFIX,
400 ioc_guid);
401
402 mad->mad_hdr.status = 0;
403}
404
405/**
406 * srpt_mgmt_method_get() - Process a received management datagram.
407 * @sp: source port through which the MAD has been received.
408 * @rq_mad: received MAD.
409 * @rsp_mad: response MAD.
410 */
411static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad,
412 struct ib_dm_mad *rsp_mad)
413{
414 u16 attr_id;
415 u32 slot;
416 u8 hi, lo;
417
418 attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id);
419 switch (attr_id) {
420 case DM_ATTR_CLASS_PORT_INFO:
421 srpt_get_class_port_info(rsp_mad);
422 break;
423 case DM_ATTR_IOU_INFO:
424 srpt_get_iou(rsp_mad);
425 break;
426 case DM_ATTR_IOC_PROFILE:
427 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
428 srpt_get_ioc(sp, slot, rsp_mad);
429 break;
430 case DM_ATTR_SVC_ENTRIES:
431 slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
432 hi = (u8) ((slot >> 8) & 0xff);
433 lo = (u8) (slot & 0xff);
434 slot = (u16) ((slot >> 16) & 0xffff);
435 srpt_get_svc_entries(srpt_service_guid,
436 slot, hi, lo, rsp_mad);
437 break;
438 default:
439 rsp_mad->mad_hdr.status =
440 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
441 break;
442 }
443}
444
445/**
446 * srpt_mad_send_handler() - Post MAD-send callback function.
447 */
448static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent,
449 struct ib_mad_send_wc *mad_wc)
450{
451 ib_destroy_ah(mad_wc->send_buf->ah);
452 ib_free_send_mad(mad_wc->send_buf);
453}
454
455/**
456 * srpt_mad_recv_handler() - MAD reception callback function.
457 */
458static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent,
459 struct ib_mad_recv_wc *mad_wc)
460{
461 struct srpt_port *sport = (struct srpt_port *)mad_agent->context;
462 struct ib_ah *ah;
463 struct ib_mad_send_buf *rsp;
464 struct ib_dm_mad *dm_mad;
465
466 if (!mad_wc || !mad_wc->recv_buf.mad)
467 return;
468
469 ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc,
470 mad_wc->recv_buf.grh, mad_agent->port_num);
471 if (IS_ERR(ah))
472 goto err;
473
474 BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR);
475
476 rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp,
477 mad_wc->wc->pkey_index, 0,
478 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA,
479 GFP_KERNEL);
480 if (IS_ERR(rsp))
481 goto err_rsp;
482
483 rsp->ah = ah;
484
485 dm_mad = rsp->mad;
486 memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof *dm_mad);
487 dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP;
488 dm_mad->mad_hdr.status = 0;
489
490 switch (mad_wc->recv_buf.mad->mad_hdr.method) {
491 case IB_MGMT_METHOD_GET:
492 srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad);
493 break;
494 case IB_MGMT_METHOD_SET:
495 dm_mad->mad_hdr.status =
496 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
497 break;
498 default:
499 dm_mad->mad_hdr.status =
500 __constant_cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD);
501 break;
502 }
503
504 if (!ib_post_send_mad(rsp, NULL)) {
505 ib_free_recv_mad(mad_wc);
506 /* will destroy_ah & free_send_mad in send completion */
507 return;
508 }
509
510 ib_free_send_mad(rsp);
511
512err_rsp:
513 ib_destroy_ah(ah);
514err:
515 ib_free_recv_mad(mad_wc);
516}
517
518/**
519 * srpt_refresh_port() - Configure a HCA port.
520 *
521 * Enable InfiniBand management datagram processing, update the cached sm_lid,
522 * lid and gid values, and register a callback function for processing MADs
523 * on the specified port.
524 *
525 * Note: It is safe to call this function more than once for the same port.
526 */
527static int srpt_refresh_port(struct srpt_port *sport)
528{
529 struct ib_mad_reg_req reg_req;
530 struct ib_port_modify port_modify;
531 struct ib_port_attr port_attr;
532 int ret;
533
534 memset(&port_modify, 0, sizeof port_modify);
535 port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
536 port_modify.clr_port_cap_mask = 0;
537
538 ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
539 if (ret)
540 goto err_mod_port;
541
542 ret = ib_query_port(sport->sdev->device, sport->port, &port_attr);
543 if (ret)
544 goto err_query_port;
545
546 sport->sm_lid = port_attr.sm_lid;
547 sport->lid = port_attr.lid;
548
549 ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid);
550 if (ret)
551 goto err_query_port;
552
553 if (!sport->mad_agent) {
554 memset(&reg_req, 0, sizeof reg_req);
555 reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT;
556 reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION;
557 set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask);
558 set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask);
559
560 sport->mad_agent = ib_register_mad_agent(sport->sdev->device,
561 sport->port,
562 IB_QPT_GSI,
563 &reg_req, 0,
564 srpt_mad_send_handler,
565 srpt_mad_recv_handler,
566 sport);
567 if (IS_ERR(sport->mad_agent)) {
568 ret = PTR_ERR(sport->mad_agent);
569 sport->mad_agent = NULL;
570 goto err_query_port;
571 }
572 }
573
574 return 0;
575
576err_query_port:
577
578 port_modify.set_port_cap_mask = 0;
579 port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
580 ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
581
582err_mod_port:
583
584 return ret;
585}
586
587/**
588 * srpt_unregister_mad_agent() - Unregister MAD callback functions.
589 *
590 * Note: It is safe to call this function more than once for the same device.
591 */
592static void srpt_unregister_mad_agent(struct srpt_device *sdev)
593{
594 struct ib_port_modify port_modify = {
595 .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP,
596 };
597 struct srpt_port *sport;
598 int i;
599
600 for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
601 sport = &sdev->port[i - 1];
602 WARN_ON(sport->port != i);
603 if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0)
604 printk(KERN_ERR "disabling MAD processing failed.\n");
605 if (sport->mad_agent) {
606 ib_unregister_mad_agent(sport->mad_agent);
607 sport->mad_agent = NULL;
608 }
609 }
610}
611
612/**
613 * srpt_alloc_ioctx() - Allocate an SRPT I/O context structure.
614 */
615static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev,
616 int ioctx_size, int dma_size,
617 enum dma_data_direction dir)
618{
619 struct srpt_ioctx *ioctx;
620
621 ioctx = kmalloc(ioctx_size, GFP_KERNEL);
622 if (!ioctx)
623 goto err;
624
625 ioctx->buf = kmalloc(dma_size, GFP_KERNEL);
626 if (!ioctx->buf)
627 goto err_free_ioctx;
628
629 ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir);
630 if (ib_dma_mapping_error(sdev->device, ioctx->dma))
631 goto err_free_buf;
632
633 return ioctx;
634
635err_free_buf:
636 kfree(ioctx->buf);
637err_free_ioctx:
638 kfree(ioctx);
639err:
640 return NULL;
641}
642
643/**
644 * srpt_free_ioctx() - Free an SRPT I/O context structure.
645 */
646static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx,
647 int dma_size, enum dma_data_direction dir)
648{
649 if (!ioctx)
650 return;
651
652 ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir);
653 kfree(ioctx->buf);
654 kfree(ioctx);
655}
656
657/**
658 * srpt_alloc_ioctx_ring() - Allocate a ring of SRPT I/O context structures.
659 * @sdev: Device to allocate the I/O context ring for.
660 * @ring_size: Number of elements in the I/O context ring.
661 * @ioctx_size: I/O context size.
662 * @dma_size: DMA buffer size.
663 * @dir: DMA data direction.
664 */
665static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev,
666 int ring_size, int ioctx_size,
667 int dma_size, enum dma_data_direction dir)
668{
669 struct srpt_ioctx **ring;
670 int i;
671
672 WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx)
673 && ioctx_size != sizeof(struct srpt_send_ioctx));
674
675 ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL);
676 if (!ring)
677 goto out;
678 for (i = 0; i < ring_size; ++i) {
679 ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir);
680 if (!ring[i])
681 goto err;
682 ring[i]->index = i;
683 }
684 goto out;
685
686err:
687 while (--i >= 0)
688 srpt_free_ioctx(sdev, ring[i], dma_size, dir);
689 kfree(ring);
690out:
691 return ring;
692}
693
694/**
695 * srpt_free_ioctx_ring() - Free the ring of SRPT I/O context structures.
696 */
697static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring,
698 struct srpt_device *sdev, int ring_size,
699 int dma_size, enum dma_data_direction dir)
700{
701 int i;
702
703 for (i = 0; i < ring_size; ++i)
704 srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir);
705 kfree(ioctx_ring);
706}
707
708/**
709 * srpt_get_cmd_state() - Get the state of a SCSI command.
710 */
711static enum srpt_command_state srpt_get_cmd_state(struct srpt_send_ioctx *ioctx)
712{
713 enum srpt_command_state state;
714 unsigned long flags;
715
716 BUG_ON(!ioctx);
717
718 spin_lock_irqsave(&ioctx->spinlock, flags);
719 state = ioctx->state;
720 spin_unlock_irqrestore(&ioctx->spinlock, flags);
721 return state;
722}
723
724/**
725 * srpt_set_cmd_state() - Set the state of a SCSI command.
726 *
727 * Does not modify the state of aborted commands. Returns the previous command
728 * state.
729 */
730static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx,
731 enum srpt_command_state new)
732{
733 enum srpt_command_state previous;
734 unsigned long flags;
735
736 BUG_ON(!ioctx);
737
738 spin_lock_irqsave(&ioctx->spinlock, flags);
739 previous = ioctx->state;
740 if (previous != SRPT_STATE_DONE)
741 ioctx->state = new;
742 spin_unlock_irqrestore(&ioctx->spinlock, flags);
743
744 return previous;
745}
746
747/**
748 * srpt_test_and_set_cmd_state() - Test and set the state of a command.
749 *
750 * Returns true if and only if the previous command state was equal to 'old'.
751 */
752static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx,
753 enum srpt_command_state old,
754 enum srpt_command_state new)
755{
756 enum srpt_command_state previous;
757 unsigned long flags;
758
759 WARN_ON(!ioctx);
760 WARN_ON(old == SRPT_STATE_DONE);
761 WARN_ON(new == SRPT_STATE_NEW);
762
763 spin_lock_irqsave(&ioctx->spinlock, flags);
764 previous = ioctx->state;
765 if (previous == old)
766 ioctx->state = new;
767 spin_unlock_irqrestore(&ioctx->spinlock, flags);
768 return previous == old;
769}
770
771/**
772 * srpt_post_recv() - Post an IB receive request.
773 */
774static int srpt_post_recv(struct srpt_device *sdev,
775 struct srpt_recv_ioctx *ioctx)
776{
777 struct ib_sge list;
778 struct ib_recv_wr wr, *bad_wr;
779
780 BUG_ON(!sdev);
781 wr.wr_id = encode_wr_id(SRPT_RECV, ioctx->ioctx.index);
782
783 list.addr = ioctx->ioctx.dma;
784 list.length = srp_max_req_size;
785 list.lkey = sdev->mr->lkey;
786
787 wr.next = NULL;
788 wr.sg_list = &list;
789 wr.num_sge = 1;
790
791 return ib_post_srq_recv(sdev->srq, &wr, &bad_wr);
792}
793
794/**
795 * srpt_post_send() - Post an IB send request.
796 *
797 * Returns zero upon success and a non-zero value upon failure.
798 */
799static int srpt_post_send(struct srpt_rdma_ch *ch,
800 struct srpt_send_ioctx *ioctx, int len)
801{
802 struct ib_sge list;
803 struct ib_send_wr wr, *bad_wr;
804 struct srpt_device *sdev = ch->sport->sdev;
805 int ret;
806
807 atomic_inc(&ch->req_lim);
808
809 ret = -ENOMEM;
810 if (unlikely(atomic_dec_return(&ch->sq_wr_avail) < 0)) {
811 printk(KERN_WARNING "IB send queue full (needed 1)\n");
812 goto out;
813 }
814
815 ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, len,
816 DMA_TO_DEVICE);
817
818 list.addr = ioctx->ioctx.dma;
819 list.length = len;
820 list.lkey = sdev->mr->lkey;
821
822 wr.next = NULL;
823 wr.wr_id = encode_wr_id(SRPT_SEND, ioctx->ioctx.index);
824 wr.sg_list = &list;
825 wr.num_sge = 1;
826 wr.opcode = IB_WR_SEND;
827 wr.send_flags = IB_SEND_SIGNALED;
828
829 ret = ib_post_send(ch->qp, &wr, &bad_wr);
830
831out:
832 if (ret < 0) {
833 atomic_inc(&ch->sq_wr_avail);
834 atomic_dec(&ch->req_lim);
835 }
836 return ret;
837}
838
839/**
840 * srpt_get_desc_tbl() - Parse the data descriptors of an SRP_CMD request.
841 * @ioctx: Pointer to the I/O context associated with the request.
842 * @srp_cmd: Pointer to the SRP_CMD request data.
843 * @dir: Pointer to the variable to which the transfer direction will be
844 * written.
845 * @data_len: Pointer to the variable to which the total data length of all
846 * descriptors in the SRP_CMD request will be written.
847 *
848 * This function initializes ioctx->nrbuf and ioctx->r_bufs.
849 *
850 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
851 * -ENOMEM when memory allocation fails and zero upon success.
852 */
853static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx,
854 struct srp_cmd *srp_cmd,
855 enum dma_data_direction *dir, u64 *data_len)
856{
857 struct srp_indirect_buf *idb;
858 struct srp_direct_buf *db;
859 unsigned add_cdb_offset;
860 int ret;
861
862 /*
863 * The pointer computations below will only be compiled correctly
864 * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
865 * whether srp_cmd::add_data has been declared as a byte pointer.
866 */
867 BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0)
868 && !__same_type(srp_cmd->add_data[0], (u8)0));
869
870 BUG_ON(!dir);
871 BUG_ON(!data_len);
872
873 ret = 0;
874 *data_len = 0;
875
876 /*
877 * The lower four bits of the buffer format field contain the DATA-IN
878 * buffer descriptor format, and the highest four bits contain the
879 * DATA-OUT buffer descriptor format.
880 */
881 *dir = DMA_NONE;
882 if (srp_cmd->buf_fmt & 0xf)
883 /* DATA-IN: transfer data from target to initiator (read). */
884 *dir = DMA_FROM_DEVICE;
885 else if (srp_cmd->buf_fmt >> 4)
886 /* DATA-OUT: transfer data from initiator to target (write). */
887 *dir = DMA_TO_DEVICE;
888
889 /*
890 * According to the SRP spec, the lower two bits of the 'ADDITIONAL
891 * CDB LENGTH' field are reserved and the size in bytes of this field
892 * is four times the value specified in bits 3..7. Hence the "& ~3".
893 */
894 add_cdb_offset = srp_cmd->add_cdb_len & ~3;
895 if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) ||
896 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) {
897 ioctx->n_rbuf = 1;
898 ioctx->rbufs = &ioctx->single_rbuf;
899
900 db = (struct srp_direct_buf *)(srp_cmd->add_data
901 + add_cdb_offset);
902 memcpy(ioctx->rbufs, db, sizeof *db);
903 *data_len = be32_to_cpu(db->len);
904 } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) ||
905 ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) {
906 idb = (struct srp_indirect_buf *)(srp_cmd->add_data
907 + add_cdb_offset);
908
909 ioctx->n_rbuf = be32_to_cpu(idb->table_desc.len) / sizeof *db;
910
911 if (ioctx->n_rbuf >
912 (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) {
913 printk(KERN_ERR "received unsupported SRP_CMD request"
914 " type (%u out + %u in != %u / %zu)\n",
915 srp_cmd->data_out_desc_cnt,
916 srp_cmd->data_in_desc_cnt,
917 be32_to_cpu(idb->table_desc.len),
918 sizeof(*db));
919 ioctx->n_rbuf = 0;
920 ret = -EINVAL;
921 goto out;
922 }
923
924 if (ioctx->n_rbuf == 1)
925 ioctx->rbufs = &ioctx->single_rbuf;
926 else {
927 ioctx->rbufs =
928 kmalloc(ioctx->n_rbuf * sizeof *db, GFP_ATOMIC);
929 if (!ioctx->rbufs) {
930 ioctx->n_rbuf = 0;
931 ret = -ENOMEM;
932 goto out;
933 }
934 }
935
936 db = idb->desc_list;
937 memcpy(ioctx->rbufs, db, ioctx->n_rbuf * sizeof *db);
938 *data_len = be32_to_cpu(idb->len);
939 }
940out:
941 return ret;
942}
943
944/**
945 * srpt_init_ch_qp() - Initialize queue pair attributes.
946 *
947 * Initialized the attributes of queue pair 'qp' by allowing local write,
948 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT.
949 */
950static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp)
951{
952 struct ib_qp_attr *attr;
953 int ret;
954
955 attr = kzalloc(sizeof *attr, GFP_KERNEL);
956 if (!attr)
957 return -ENOMEM;
958
959 attr->qp_state = IB_QPS_INIT;
960 attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ |
961 IB_ACCESS_REMOTE_WRITE;
962 attr->port_num = ch->sport->port;
963 attr->pkey_index = 0;
964
965 ret = ib_modify_qp(qp, attr,
966 IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT |
967 IB_QP_PKEY_INDEX);
968
969 kfree(attr);
970 return ret;
971}
972
973/**
974 * srpt_ch_qp_rtr() - Change the state of a channel to 'ready to receive' (RTR).
975 * @ch: channel of the queue pair.
976 * @qp: queue pair to change the state of.
977 *
978 * Returns zero upon success and a negative value upon failure.
979 *
980 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
981 * If this structure ever becomes larger, it might be necessary to allocate
982 * it dynamically instead of on the stack.
983 */
984static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp)
985{
986 struct ib_qp_attr qp_attr;
987 int attr_mask;
988 int ret;
989
990 qp_attr.qp_state = IB_QPS_RTR;
991 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
992 if (ret)
993 goto out;
994
995 qp_attr.max_dest_rd_atomic = 4;
996
997 ret = ib_modify_qp(qp, &qp_attr, attr_mask);
998
999out:
1000 return ret;
1001}
1002
1003/**
1004 * srpt_ch_qp_rts() - Change the state of a channel to 'ready to send' (RTS).
1005 * @ch: channel of the queue pair.
1006 * @qp: queue pair to change the state of.
1007 *
1008 * Returns zero upon success and a negative value upon failure.
1009 *
1010 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1011 * If this structure ever becomes larger, it might be necessary to allocate
1012 * it dynamically instead of on the stack.
1013 */
1014static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1015{
1016 struct ib_qp_attr qp_attr;
1017 int attr_mask;
1018 int ret;
1019
1020 qp_attr.qp_state = IB_QPS_RTS;
1021 ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
1022 if (ret)
1023 goto out;
1024
1025 qp_attr.max_rd_atomic = 4;
1026
1027 ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1028
1029out:
1030 return ret;
1031}
1032
1033/**
1034 * srpt_ch_qp_err() - Set the channel queue pair state to 'error'.
1035 */
1036static int srpt_ch_qp_err(struct srpt_rdma_ch *ch)
1037{
1038 struct ib_qp_attr qp_attr;
1039
1040 qp_attr.qp_state = IB_QPS_ERR;
1041 return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE);
1042}
1043
1044/**
1045 * srpt_unmap_sg_to_ib_sge() - Unmap an IB SGE list.
1046 */
1047static void srpt_unmap_sg_to_ib_sge(struct srpt_rdma_ch *ch,
1048 struct srpt_send_ioctx *ioctx)
1049{
1050 struct scatterlist *sg;
1051 enum dma_data_direction dir;
1052
1053 BUG_ON(!ch);
1054 BUG_ON(!ioctx);
1055 BUG_ON(ioctx->n_rdma && !ioctx->rdma_ius);
1056
1057 while (ioctx->n_rdma)
1058 kfree(ioctx->rdma_ius[--ioctx->n_rdma].sge);
1059
1060 kfree(ioctx->rdma_ius);
1061 ioctx->rdma_ius = NULL;
1062
1063 if (ioctx->mapped_sg_count) {
1064 sg = ioctx->sg;
1065 WARN_ON(!sg);
1066 dir = ioctx->cmd.data_direction;
1067 BUG_ON(dir == DMA_NONE);
1068 ib_dma_unmap_sg(ch->sport->sdev->device, sg, ioctx->sg_cnt,
1069 opposite_dma_dir(dir));
1070 ioctx->mapped_sg_count = 0;
1071 }
1072}
1073
1074/**
1075 * srpt_map_sg_to_ib_sge() - Map an SG list to an IB SGE list.
1076 */
1077static int srpt_map_sg_to_ib_sge(struct srpt_rdma_ch *ch,
1078 struct srpt_send_ioctx *ioctx)
1079{
1080 struct se_cmd *cmd;
1081 struct scatterlist *sg, *sg_orig;
1082 int sg_cnt;
1083 enum dma_data_direction dir;
1084 struct rdma_iu *riu;
1085 struct srp_direct_buf *db;
1086 dma_addr_t dma_addr;
1087 struct ib_sge *sge;
1088 u64 raddr;
1089 u32 rsize;
1090 u32 tsize;
1091 u32 dma_len;
1092 int count, nrdma;
1093 int i, j, k;
1094
1095 BUG_ON(!ch);
1096 BUG_ON(!ioctx);
1097 cmd = &ioctx->cmd;
1098 dir = cmd->data_direction;
1099 BUG_ON(dir == DMA_NONE);
1100
1101 transport_do_task_sg_chain(cmd);
1102 ioctx->sg = sg = sg_orig = cmd->t_tasks_sg_chained;
1103 ioctx->sg_cnt = sg_cnt = cmd->t_tasks_sg_chained_no;
1104
1105 count = ib_dma_map_sg(ch->sport->sdev->device, sg, sg_cnt,
1106 opposite_dma_dir(dir));
1107 if (unlikely(!count))
1108 return -EAGAIN;
1109
1110 ioctx->mapped_sg_count = count;
1111
1112 if (ioctx->rdma_ius && ioctx->n_rdma_ius)
1113 nrdma = ioctx->n_rdma_ius;
1114 else {
1115 nrdma = (count + SRPT_DEF_SG_PER_WQE - 1) / SRPT_DEF_SG_PER_WQE
1116 + ioctx->n_rbuf;
1117
1118 ioctx->rdma_ius = kzalloc(nrdma * sizeof *riu, GFP_KERNEL);
1119 if (!ioctx->rdma_ius)
1120 goto free_mem;
1121
1122 ioctx->n_rdma_ius = nrdma;
1123 }
1124
1125 db = ioctx->rbufs;
1126 tsize = cmd->data_length;
1127 dma_len = sg_dma_len(&sg[0]);
1128 riu = ioctx->rdma_ius;
1129
1130 /*
1131 * For each remote desc - calculate the #ib_sge.
1132 * If #ib_sge < SRPT_DEF_SG_PER_WQE per rdma operation then
1133 * each remote desc rdma_iu is required a rdma wr;
1134 * else
1135 * we need to allocate extra rdma_iu to carry extra #ib_sge in
1136 * another rdma wr
1137 */
1138 for (i = 0, j = 0;
1139 j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
1140 rsize = be32_to_cpu(db->len);
1141 raddr = be64_to_cpu(db->va);
1142 riu->raddr = raddr;
1143 riu->rkey = be32_to_cpu(db->key);
1144 riu->sge_cnt = 0;
1145
1146 /* calculate how many sge required for this remote_buf */
1147 while (rsize > 0 && tsize > 0) {
1148
1149 if (rsize >= dma_len) {
1150 tsize -= dma_len;
1151 rsize -= dma_len;
1152 raddr += dma_len;
1153
1154 if (tsize > 0) {
1155 ++j;
1156 if (j < count) {
1157 sg = sg_next(sg);
1158 dma_len = sg_dma_len(sg);
1159 }
1160 }
1161 } else {
1162 tsize -= rsize;
1163 dma_len -= rsize;
1164 rsize = 0;
1165 }
1166
1167 ++riu->sge_cnt;
1168
1169 if (rsize > 0 && riu->sge_cnt == SRPT_DEF_SG_PER_WQE) {
1170 ++ioctx->n_rdma;
1171 riu->sge =
1172 kmalloc(riu->sge_cnt * sizeof *riu->sge,
1173 GFP_KERNEL);
1174 if (!riu->sge)
1175 goto free_mem;
1176
1177 ++riu;
1178 riu->sge_cnt = 0;
1179 riu->raddr = raddr;
1180 riu->rkey = be32_to_cpu(db->key);
1181 }
1182 }
1183
1184 ++ioctx->n_rdma;
1185 riu->sge = kmalloc(riu->sge_cnt * sizeof *riu->sge,
1186 GFP_KERNEL);
1187 if (!riu->sge)
1188 goto free_mem;
1189 }
1190
1191 db = ioctx->rbufs;
1192 tsize = cmd->data_length;
1193 riu = ioctx->rdma_ius;
1194 sg = sg_orig;
1195 dma_len = sg_dma_len(&sg[0]);
1196 dma_addr = sg_dma_address(&sg[0]);
1197
1198 /* this second loop is really mapped sg_addres to rdma_iu->ib_sge */
1199 for (i = 0, j = 0;
1200 j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
1201 rsize = be32_to_cpu(db->len);
1202 sge = riu->sge;
1203 k = 0;
1204
1205 while (rsize > 0 && tsize > 0) {
1206 sge->addr = dma_addr;
1207 sge->lkey = ch->sport->sdev->mr->lkey;
1208
1209 if (rsize >= dma_len) {
1210 sge->length =
1211 (tsize < dma_len) ? tsize : dma_len;
1212 tsize -= dma_len;
1213 rsize -= dma_len;
1214
1215 if (tsize > 0) {
1216 ++j;
1217 if (j < count) {
1218 sg = sg_next(sg);
1219 dma_len = sg_dma_len(sg);
1220 dma_addr = sg_dma_address(sg);
1221 }
1222 }
1223 } else {
1224 sge->length = (tsize < rsize) ? tsize : rsize;
1225 tsize -= rsize;
1226 dma_len -= rsize;
1227 dma_addr += rsize;
1228 rsize = 0;
1229 }
1230
1231 ++k;
1232 if (k == riu->sge_cnt && rsize > 0 && tsize > 0) {
1233 ++riu;
1234 sge = riu->sge;
1235 k = 0;
1236 } else if (rsize > 0 && tsize > 0)
1237 ++sge;
1238 }
1239 }
1240
1241 return 0;
1242
1243free_mem:
1244 srpt_unmap_sg_to_ib_sge(ch, ioctx);
1245
1246 return -ENOMEM;
1247}
1248
1249/**
1250 * srpt_get_send_ioctx() - Obtain an I/O context for sending to the initiator.
1251 */
1252static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch)
1253{
1254 struct srpt_send_ioctx *ioctx;
1255 unsigned long flags;
1256
1257 BUG_ON(!ch);
1258
1259 ioctx = NULL;
1260 spin_lock_irqsave(&ch->spinlock, flags);
1261 if (!list_empty(&ch->free_list)) {
1262 ioctx = list_first_entry(&ch->free_list,
1263 struct srpt_send_ioctx, free_list);
1264 list_del(&ioctx->free_list);
1265 }
1266 spin_unlock_irqrestore(&ch->spinlock, flags);
1267
1268 if (!ioctx)
1269 return ioctx;
1270
1271 BUG_ON(ioctx->ch != ch);
1272 kref_init(&ioctx->kref);
1273 spin_lock_init(&ioctx->spinlock);
1274 ioctx->state = SRPT_STATE_NEW;
1275 ioctx->n_rbuf = 0;
1276 ioctx->rbufs = NULL;
1277 ioctx->n_rdma = 0;
1278 ioctx->n_rdma_ius = 0;
1279 ioctx->rdma_ius = NULL;
1280 ioctx->mapped_sg_count = 0;
1281 init_completion(&ioctx->tx_done);
1282 ioctx->queue_status_only = false;
1283 /*
1284 * transport_init_se_cmd() does not initialize all fields, so do it
1285 * here.
1286 */
1287 memset(&ioctx->cmd, 0, sizeof(ioctx->cmd));
1288 memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data));
1289
1290 return ioctx;
1291}
1292
1293/**
1294 * srpt_put_send_ioctx() - Free up resources.
1295 */
1296static void srpt_put_send_ioctx(struct srpt_send_ioctx *ioctx)
1297{
1298 struct srpt_rdma_ch *ch;
1299 unsigned long flags;
1300
1301 BUG_ON(!ioctx);
1302 ch = ioctx->ch;
1303 BUG_ON(!ch);
1304
1305 WARN_ON(srpt_get_cmd_state(ioctx) != SRPT_STATE_DONE);
1306
1307 srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx);
1308 transport_generic_free_cmd(&ioctx->cmd, 0);
1309
1310 if (ioctx->n_rbuf > 1) {
1311 kfree(ioctx->rbufs);
1312 ioctx->rbufs = NULL;
1313 ioctx->n_rbuf = 0;
1314 }
1315
1316 spin_lock_irqsave(&ch->spinlock, flags);
1317 list_add(&ioctx->free_list, &ch->free_list);
1318 spin_unlock_irqrestore(&ch->spinlock, flags);
1319}
1320
1321static void srpt_put_send_ioctx_kref(struct kref *kref)
1322{
1323 srpt_put_send_ioctx(container_of(kref, struct srpt_send_ioctx, kref));
1324}
1325
1326/**
1327 * srpt_abort_cmd() - Abort a SCSI command.
1328 * @ioctx: I/O context associated with the SCSI command.
1329 * @context: Preferred execution context.
1330 */
1331static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx)
1332{
1333 enum srpt_command_state state;
1334 unsigned long flags;
1335
1336 BUG_ON(!ioctx);
1337
1338 /*
1339 * If the command is in a state where the target core is waiting for
1340 * the ib_srpt driver, change the state to the next state. Changing
1341 * the state of the command from SRPT_STATE_NEED_DATA to
1342 * SRPT_STATE_DATA_IN ensures that srpt_xmit_response() will call this
1343 * function a second time.
1344 */
1345
1346 spin_lock_irqsave(&ioctx->spinlock, flags);
1347 state = ioctx->state;
1348 switch (state) {
1349 case SRPT_STATE_NEED_DATA:
1350 ioctx->state = SRPT_STATE_DATA_IN;
1351 break;
1352 case SRPT_STATE_DATA_IN:
1353 case SRPT_STATE_CMD_RSP_SENT:
1354 case SRPT_STATE_MGMT_RSP_SENT:
1355 ioctx->state = SRPT_STATE_DONE;
1356 break;
1357 default:
1358 break;
1359 }
1360 spin_unlock_irqrestore(&ioctx->spinlock, flags);
1361
1362 if (state == SRPT_STATE_DONE)
1363 goto out;
1364
1365 pr_debug("Aborting cmd with state %d and tag %lld\n", state,
1366 ioctx->tag);
1367
1368 switch (state) {
1369 case SRPT_STATE_NEW:
1370 case SRPT_STATE_DATA_IN:
1371 case SRPT_STATE_MGMT:
1372 /*
1373 * Do nothing - defer abort processing until
1374 * srpt_queue_response() is invoked.
1375 */
1376 WARN_ON(!transport_check_aborted_status(&ioctx->cmd, false));
1377 break;
1378 case SRPT_STATE_NEED_DATA:
1379 /* DMA_TO_DEVICE (write) - RDMA read error. */
1380 atomic_set(&ioctx->cmd.transport_lun_stop, 1);
1381 transport_generic_handle_data(&ioctx->cmd);
1382 break;
1383 case SRPT_STATE_CMD_RSP_SENT:
1384 /*
1385 * SRP_RSP sending failed or the SRP_RSP send completion has
1386 * not been received in time.
1387 */
1388 srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx);
1389 atomic_set(&ioctx->cmd.transport_lun_stop, 1);
1390 kref_put(&ioctx->kref, srpt_put_send_ioctx_kref);
1391 break;
1392 case SRPT_STATE_MGMT_RSP_SENT:
1393 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1394 kref_put(&ioctx->kref, srpt_put_send_ioctx_kref);
1395 break;
1396 default:
1397 WARN_ON("ERROR: unexpected command state");
1398 break;
1399 }
1400
1401out:
1402 return state;
1403}
1404
1405/**
1406 * srpt_handle_send_err_comp() - Process an IB_WC_SEND error completion.
1407 */
1408static void srpt_handle_send_err_comp(struct srpt_rdma_ch *ch, u64 wr_id)
1409{
1410 struct srpt_send_ioctx *ioctx;
1411 enum srpt_command_state state;
1412 struct se_cmd *cmd;
1413 u32 index;
1414
1415 atomic_inc(&ch->sq_wr_avail);
1416
1417 index = idx_from_wr_id(wr_id);
1418 ioctx = ch->ioctx_ring[index];
1419 state = srpt_get_cmd_state(ioctx);
1420 cmd = &ioctx->cmd;
1421
1422 WARN_ON(state != SRPT_STATE_CMD_RSP_SENT
1423 && state != SRPT_STATE_MGMT_RSP_SENT
1424 && state != SRPT_STATE_NEED_DATA
1425 && state != SRPT_STATE_DONE);
1426
1427 /* If SRP_RSP sending failed, undo the ch->req_lim change. */
1428 if (state == SRPT_STATE_CMD_RSP_SENT
1429 || state == SRPT_STATE_MGMT_RSP_SENT)
1430 atomic_dec(&ch->req_lim);
1431
1432 srpt_abort_cmd(ioctx);
1433}
1434
1435/**
1436 * srpt_handle_send_comp() - Process an IB send completion notification.
1437 */
1438static void srpt_handle_send_comp(struct srpt_rdma_ch *ch,
1439 struct srpt_send_ioctx *ioctx)
1440{
1441 enum srpt_command_state state;
1442
1443 atomic_inc(&ch->sq_wr_avail);
1444
1445 state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1446
1447 if (WARN_ON(state != SRPT_STATE_CMD_RSP_SENT
1448 && state != SRPT_STATE_MGMT_RSP_SENT
1449 && state != SRPT_STATE_DONE))
1450 pr_debug("state = %d\n", state);
1451
1452 if (state != SRPT_STATE_DONE)
1453 kref_put(&ioctx->kref, srpt_put_send_ioctx_kref);
1454 else
1455 printk(KERN_ERR "IB completion has been received too late for"
1456 " wr_id = %u.\n", ioctx->ioctx.index);
1457}
1458
1459/**
1460 * srpt_handle_rdma_comp() - Process an IB RDMA completion notification.
1461 *
1462 * Note: transport_generic_handle_data() is asynchronous so unmapping the
1463 * data that has been transferred via IB RDMA must be postponed until the
1464 * check_stop_free() callback.
1465 */
1466static void srpt_handle_rdma_comp(struct srpt_rdma_ch *ch,
1467 struct srpt_send_ioctx *ioctx,
1468 enum srpt_opcode opcode)
1469{
1470 WARN_ON(ioctx->n_rdma <= 0);
1471 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1472
1473 if (opcode == SRPT_RDMA_READ_LAST) {
1474 if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA,
1475 SRPT_STATE_DATA_IN))
1476 transport_generic_handle_data(&ioctx->cmd);
1477 else
1478 printk(KERN_ERR "%s[%d]: wrong state = %d\n", __func__,
1479 __LINE__, srpt_get_cmd_state(ioctx));
1480 } else if (opcode == SRPT_RDMA_ABORT) {
1481 ioctx->rdma_aborted = true;
1482 } else {
1483 WARN(true, "unexpected opcode %d\n", opcode);
1484 }
1485}
1486
1487/**
1488 * srpt_handle_rdma_err_comp() - Process an IB RDMA error completion.
1489 */
1490static void srpt_handle_rdma_err_comp(struct srpt_rdma_ch *ch,
1491 struct srpt_send_ioctx *ioctx,
1492 enum srpt_opcode opcode)
1493{
1494 struct se_cmd *cmd;
1495 enum srpt_command_state state;
1496
1497 cmd = &ioctx->cmd;
1498 state = srpt_get_cmd_state(ioctx);
1499 switch (opcode) {
1500 case SRPT_RDMA_READ_LAST:
1501 if (ioctx->n_rdma <= 0) {
1502 printk(KERN_ERR "Received invalid RDMA read"
1503 " error completion with idx %d\n",
1504 ioctx->ioctx.index);
1505 break;
1506 }
1507 atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1508 if (state == SRPT_STATE_NEED_DATA)
1509 srpt_abort_cmd(ioctx);
1510 else
1511 printk(KERN_ERR "%s[%d]: wrong state = %d\n",
1512 __func__, __LINE__, state);
1513 break;
1514 case SRPT_RDMA_WRITE_LAST:
1515 atomic_set(&ioctx->cmd.transport_lun_stop, 1);
1516 break;
1517 default:
1518 printk(KERN_ERR "%s[%d]: opcode = %u\n", __func__,
1519 __LINE__, opcode);
1520 break;
1521 }
1522}
1523
1524/**
1525 * srpt_build_cmd_rsp() - Build an SRP_RSP response.
1526 * @ch: RDMA channel through which the request has been received.
1527 * @ioctx: I/O context associated with the SRP_CMD request. The response will
1528 * be built in the buffer ioctx->buf points at and hence this function will
1529 * overwrite the request data.
1530 * @tag: tag of the request for which this response is being generated.
1531 * @status: value for the STATUS field of the SRP_RSP information unit.
1532 *
1533 * Returns the size in bytes of the SRP_RSP response.
1534 *
1535 * An SRP_RSP response contains a SCSI status or service response. See also
1536 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1537 * response. See also SPC-2 for more information about sense data.
1538 */
1539static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch,
1540 struct srpt_send_ioctx *ioctx, u64 tag,
1541 int status)
1542{
1543 struct srp_rsp *srp_rsp;
1544 const u8 *sense_data;
1545 int sense_data_len, max_sense_len;
1546
1547 /*
1548 * The lowest bit of all SAM-3 status codes is zero (see also
1549 * paragraph 5.3 in SAM-3).
1550 */
1551 WARN_ON(status & 1);
1552
1553 srp_rsp = ioctx->ioctx.buf;
1554 BUG_ON(!srp_rsp);
1555
1556 sense_data = ioctx->sense_data;
1557 sense_data_len = ioctx->cmd.scsi_sense_length;
1558 WARN_ON(sense_data_len > sizeof(ioctx->sense_data));
1559
1560 memset(srp_rsp, 0, sizeof *srp_rsp);
1561 srp_rsp->opcode = SRP_RSP;
1562 srp_rsp->req_lim_delta =
1563 __constant_cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1564 srp_rsp->tag = tag;
1565 srp_rsp->status = status;
1566
1567 if (sense_data_len) {
1568 BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp));
1569 max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp);
1570 if (sense_data_len > max_sense_len) {
1571 printk(KERN_WARNING "truncated sense data from %d to %d"
1572 " bytes\n", sense_data_len, max_sense_len);
1573 sense_data_len = max_sense_len;
1574 }
1575
1576 srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID;
1577 srp_rsp->sense_data_len = cpu_to_be32(sense_data_len);
1578 memcpy(srp_rsp + 1, sense_data, sense_data_len);
1579 }
1580
1581 return sizeof(*srp_rsp) + sense_data_len;
1582}
1583
1584/**
1585 * srpt_build_tskmgmt_rsp() - Build a task management response.
1586 * @ch: RDMA channel through which the request has been received.
1587 * @ioctx: I/O context in which the SRP_RSP response will be built.
1588 * @rsp_code: RSP_CODE that will be stored in the response.
1589 * @tag: Tag of the request for which this response is being generated.
1590 *
1591 * Returns the size in bytes of the SRP_RSP response.
1592 *
1593 * An SRP_RSP response contains a SCSI status or service response. See also
1594 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1595 * response.
1596 */
1597static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch,
1598 struct srpt_send_ioctx *ioctx,
1599 u8 rsp_code, u64 tag)
1600{
1601 struct srp_rsp *srp_rsp;
1602 int resp_data_len;
1603 int resp_len;
1604
1605 resp_data_len = (rsp_code == SRP_TSK_MGMT_SUCCESS) ? 0 : 4;
1606 resp_len = sizeof(*srp_rsp) + resp_data_len;
1607
1608 srp_rsp = ioctx->ioctx.buf;
1609 BUG_ON(!srp_rsp);
1610 memset(srp_rsp, 0, sizeof *srp_rsp);
1611
1612 srp_rsp->opcode = SRP_RSP;
1613 srp_rsp->req_lim_delta = __constant_cpu_to_be32(1
1614 + atomic_xchg(&ch->req_lim_delta, 0));
1615 srp_rsp->tag = tag;
1616
1617 if (rsp_code != SRP_TSK_MGMT_SUCCESS) {
1618 srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID;
1619 srp_rsp->resp_data_len = cpu_to_be32(resp_data_len);
1620 srp_rsp->data[3] = rsp_code;
1621 }
1622
1623 return resp_len;
1624}
1625
1626#define NO_SUCH_LUN ((uint64_t)-1LL)
1627
1628/*
1629 * SCSI LUN addressing method. See also SAM-2 and the section about
1630 * eight byte LUNs.
1631 */
1632enum scsi_lun_addr_method {
1633 SCSI_LUN_ADDR_METHOD_PERIPHERAL = 0,
1634 SCSI_LUN_ADDR_METHOD_FLAT = 1,
1635 SCSI_LUN_ADDR_METHOD_LUN = 2,
1636 SCSI_LUN_ADDR_METHOD_EXTENDED_LUN = 3,
1637};
1638
1639/*
1640 * srpt_unpack_lun() - Convert from network LUN to linear LUN.
1641 *
1642 * Convert an 2-byte, 4-byte, 6-byte or 8-byte LUN structure in network byte
1643 * order (big endian) to a linear LUN. Supports three LUN addressing methods:
1644 * peripheral, flat and logical unit. See also SAM-2, section 4.9.4 (page 40).
1645 */
1646static uint64_t srpt_unpack_lun(const uint8_t *lun, int len)
1647{
1648 uint64_t res = NO_SUCH_LUN;
1649 int addressing_method;
1650
1651 if (unlikely(len < 2)) {
1652 printk(KERN_ERR "Illegal LUN length %d, expected 2 bytes or "
1653 "more", len);
1654 goto out;
1655 }
1656
1657 switch (len) {
1658 case 8:
1659 if ((*((__be64 *)lun) &
1660 __constant_cpu_to_be64(0x0000FFFFFFFFFFFFLL)) != 0)
1661 goto out_err;
1662 break;
1663 case 4:
1664 if (*((__be16 *)&lun[2]) != 0)
1665 goto out_err;
1666 break;
1667 case 6:
1668 if (*((__be32 *)&lun[2]) != 0)
1669 goto out_err;
1670 break;
1671 case 2:
1672 break;
1673 default:
1674 goto out_err;
1675 }
1676
1677 addressing_method = (*lun) >> 6; /* highest two bits of byte 0 */
1678 switch (addressing_method) {
1679 case SCSI_LUN_ADDR_METHOD_PERIPHERAL:
1680 case SCSI_LUN_ADDR_METHOD_FLAT:
1681 case SCSI_LUN_ADDR_METHOD_LUN:
1682 res = *(lun + 1) | (((*lun) & 0x3f) << 8);
1683 break;
1684
1685 case SCSI_LUN_ADDR_METHOD_EXTENDED_LUN:
1686 default:
1687 printk(KERN_ERR "Unimplemented LUN addressing method %u",
1688 addressing_method);
1689 break;
1690 }
1691
1692out:
1693 return res;
1694
1695out_err:
1696 printk(KERN_ERR "Support for multi-level LUNs has not yet been"
1697 " implemented");
1698 goto out;
1699}
1700
1701static int srpt_check_stop_free(struct se_cmd *cmd)
1702{
1703 struct srpt_send_ioctx *ioctx;
1704
1705 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
1706 return kref_put(&ioctx->kref, srpt_put_send_ioctx_kref);
1707}
1708
1709/**
1710 * srpt_handle_cmd() - Process SRP_CMD.
1711 */
1712static int srpt_handle_cmd(struct srpt_rdma_ch *ch,
1713 struct srpt_recv_ioctx *recv_ioctx,
1714 struct srpt_send_ioctx *send_ioctx)
1715{
1716 struct se_cmd *cmd;
1717 struct srp_cmd *srp_cmd;
1718 uint64_t unpacked_lun;
1719 u64 data_len;
1720 enum dma_data_direction dir;
1721 int ret;
1722
1723 BUG_ON(!send_ioctx);
1724
1725 srp_cmd = recv_ioctx->ioctx.buf;
1726 kref_get(&send_ioctx->kref);
1727 cmd = &send_ioctx->cmd;
1728 send_ioctx->tag = srp_cmd->tag;
1729
1730 switch (srp_cmd->task_attr) {
1731 case SRP_CMD_SIMPLE_Q:
1732 cmd->sam_task_attr = MSG_SIMPLE_TAG;
1733 break;
1734 case SRP_CMD_ORDERED_Q:
1735 default:
1736 cmd->sam_task_attr = MSG_ORDERED_TAG;
1737 break;
1738 case SRP_CMD_HEAD_OF_Q:
1739 cmd->sam_task_attr = MSG_HEAD_TAG;
1740 break;
1741 case SRP_CMD_ACA:
1742 cmd->sam_task_attr = MSG_ACA_TAG;
1743 break;
1744 }
1745
1746 ret = srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &data_len);
1747 if (ret) {
1748 printk(KERN_ERR "0x%llx: parsing SRP descriptor table failed.\n",
1749 srp_cmd->tag);
1750 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1751 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1752 goto send_sense;
1753 }
1754
1755 cmd->data_length = data_len;
1756 cmd->data_direction = dir;
1757 unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_cmd->lun,
1758 sizeof(srp_cmd->lun));
1759 if (transport_lookup_cmd_lun(cmd, unpacked_lun) < 0)
1760 goto send_sense;
1761 ret = transport_generic_allocate_tasks(cmd, srp_cmd->cdb);
1762 if (cmd->se_cmd_flags & SCF_SCSI_RESERVATION_CONFLICT)
1763 srpt_queue_status(cmd);
1764 else if (cmd->se_cmd_flags & SCF_SCSI_CDB_EXCEPTION)
1765 goto send_sense;
1766 else
1767 WARN_ON_ONCE(ret);
1768
1769 transport_handle_cdb_direct(cmd);
1770 return 0;
1771
1772send_sense:
1773 transport_send_check_condition_and_sense(cmd, cmd->scsi_sense_reason,
1774 0);
1775 return -1;
1776}
1777
1778/**
1779 * srpt_rx_mgmt_fn_tag() - Process a task management function by tag.
1780 * @ch: RDMA channel of the task management request.
1781 * @fn: Task management function to perform.
1782 * @req_tag: Tag of the SRP task management request.
1783 * @mgmt_ioctx: I/O context of the task management request.
1784 *
1785 * Returns zero if the target core will process the task management
1786 * request asynchronously.
1787 *
1788 * Note: It is assumed that the initiator serializes tag-based task management
1789 * requests.
1790 */
1791static int srpt_rx_mgmt_fn_tag(struct srpt_send_ioctx *ioctx, u64 tag)
1792{
1793 struct srpt_device *sdev;
1794 struct srpt_rdma_ch *ch;
1795 struct srpt_send_ioctx *target;
1796 int ret, i;
1797
1798 ret = -EINVAL;
1799 ch = ioctx->ch;
1800 BUG_ON(!ch);
1801 BUG_ON(!ch->sport);
1802 sdev = ch->sport->sdev;
1803 BUG_ON(!sdev);
1804 spin_lock_irq(&sdev->spinlock);
1805 for (i = 0; i < ch->rq_size; ++i) {
1806 target = ch->ioctx_ring[i];
1807 if (target->cmd.se_lun == ioctx->cmd.se_lun &&
1808 target->tag == tag &&
1809 srpt_get_cmd_state(target) != SRPT_STATE_DONE) {
1810 ret = 0;
1811 /* now let the target core abort &target->cmd; */
1812 break;
1813 }
1814 }
1815 spin_unlock_irq(&sdev->spinlock);
1816 return ret;
1817}
1818
1819static int srp_tmr_to_tcm(int fn)
1820{
1821 switch (fn) {
1822 case SRP_TSK_ABORT_TASK:
1823 return TMR_ABORT_TASK;
1824 case SRP_TSK_ABORT_TASK_SET:
1825 return TMR_ABORT_TASK_SET;
1826 case SRP_TSK_CLEAR_TASK_SET:
1827 return TMR_CLEAR_TASK_SET;
1828 case SRP_TSK_LUN_RESET:
1829 return TMR_LUN_RESET;
1830 case SRP_TSK_CLEAR_ACA:
1831 return TMR_CLEAR_ACA;
1832 default:
1833 return -1;
1834 }
1835}
1836
1837/**
1838 * srpt_handle_tsk_mgmt() - Process an SRP_TSK_MGMT information unit.
1839 *
1840 * Returns 0 if and only if the request will be processed by the target core.
1841 *
1842 * For more information about SRP_TSK_MGMT information units, see also section
1843 * 6.7 in the SRP r16a document.
1844 */
1845static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch,
1846 struct srpt_recv_ioctx *recv_ioctx,
1847 struct srpt_send_ioctx *send_ioctx)
1848{
1849 struct srp_tsk_mgmt *srp_tsk;
1850 struct se_cmd *cmd;
1851 uint64_t unpacked_lun;
1852 int tcm_tmr;
1853 int res;
1854
1855 BUG_ON(!send_ioctx);
1856
1857 srp_tsk = recv_ioctx->ioctx.buf;
1858 cmd = &send_ioctx->cmd;
1859
1860 pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld"
1861 " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func,
1862 srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess);
1863
1864 srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT);
1865 send_ioctx->tag = srp_tsk->tag;
1866 tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func);
1867 if (tcm_tmr < 0) {
1868 send_ioctx->cmd.se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1869 send_ioctx->cmd.se_tmr_req->response =
1870 TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
1871 goto process_tmr;
1872 }
1873 cmd->se_tmr_req = core_tmr_alloc_req(cmd, NULL, tcm_tmr, GFP_KERNEL);
1874 if (!cmd->se_tmr_req) {
1875 send_ioctx->cmd.se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1876 send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED;
1877 goto process_tmr;
1878 }
1879
1880 unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_tsk->lun,
1881 sizeof(srp_tsk->lun));
1882 res = transport_lookup_tmr_lun(&send_ioctx->cmd, unpacked_lun);
1883 if (res) {
1884 pr_debug("rejecting TMR for LUN %lld\n", unpacked_lun);
1885 send_ioctx->cmd.se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1886 send_ioctx->cmd.se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1887 goto process_tmr;
1888 }
1889
1890 if (srp_tsk->tsk_mgmt_func == SRP_TSK_ABORT_TASK)
1891 srpt_rx_mgmt_fn_tag(send_ioctx, srp_tsk->task_tag);
1892
1893process_tmr:
1894 kref_get(&send_ioctx->kref);
1895 if (!(send_ioctx->cmd.se_cmd_flags & SCF_SCSI_CDB_EXCEPTION))
1896 transport_generic_handle_tmr(&send_ioctx->cmd);
1897 else
1898 transport_send_check_condition_and_sense(cmd,
1899 cmd->scsi_sense_reason, 0);
1900
1901}
1902
1903/**
1904 * srpt_handle_new_iu() - Process a newly received information unit.
1905 * @ch: RDMA channel through which the information unit has been received.
1906 * @ioctx: SRPT I/O context associated with the information unit.
1907 */
1908static void srpt_handle_new_iu(struct srpt_rdma_ch *ch,
1909 struct srpt_recv_ioctx *recv_ioctx,
1910 struct srpt_send_ioctx *send_ioctx)
1911{
1912 struct srp_cmd *srp_cmd;
1913 enum rdma_ch_state ch_state;
1914
1915 BUG_ON(!ch);
1916 BUG_ON(!recv_ioctx);
1917
1918 ib_dma_sync_single_for_cpu(ch->sport->sdev->device,
1919 recv_ioctx->ioctx.dma, srp_max_req_size,
1920 DMA_FROM_DEVICE);
1921
1922 ch_state = srpt_get_ch_state(ch);
1923 if (unlikely(ch_state == CH_CONNECTING)) {
1924 list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list);
1925 goto out;
1926 }
1927
1928 if (unlikely(ch_state != CH_LIVE))
1929 goto out;
1930
1931 srp_cmd = recv_ioctx->ioctx.buf;
1932 if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) {
1933 if (!send_ioctx)
1934 send_ioctx = srpt_get_send_ioctx(ch);
1935 if (unlikely(!send_ioctx)) {
1936 list_add_tail(&recv_ioctx->wait_list,
1937 &ch->cmd_wait_list);
1938 goto out;
1939 }
1940 }
1941
1942 transport_init_se_cmd(&send_ioctx->cmd, &srpt_target->tf_ops, ch->sess,
1943 0, DMA_NONE, MSG_SIMPLE_TAG,
1944 send_ioctx->sense_data);
1945
1946 switch (srp_cmd->opcode) {
1947 case SRP_CMD:
1948 srpt_handle_cmd(ch, recv_ioctx, send_ioctx);
1949 break;
1950 case SRP_TSK_MGMT:
1951 srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx);
1952 break;
1953 case SRP_I_LOGOUT:
1954 printk(KERN_ERR "Not yet implemented: SRP_I_LOGOUT\n");
1955 break;
1956 case SRP_CRED_RSP:
1957 pr_debug("received SRP_CRED_RSP\n");
1958 break;
1959 case SRP_AER_RSP:
1960 pr_debug("received SRP_AER_RSP\n");
1961 break;
1962 case SRP_RSP:
1963 printk(KERN_ERR "Received SRP_RSP\n");
1964 break;
1965 default:
1966 printk(KERN_ERR "received IU with unknown opcode 0x%x\n",
1967 srp_cmd->opcode);
1968 break;
1969 }
1970
1971 srpt_post_recv(ch->sport->sdev, recv_ioctx);
1972out:
1973 return;
1974}
1975
1976static void srpt_process_rcv_completion(struct ib_cq *cq,
1977 struct srpt_rdma_ch *ch,
1978 struct ib_wc *wc)
1979{
1980 struct srpt_device *sdev = ch->sport->sdev;
1981 struct srpt_recv_ioctx *ioctx;
1982 u32 index;
1983
1984 index = idx_from_wr_id(wc->wr_id);
1985 if (wc->status == IB_WC_SUCCESS) {
1986 int req_lim;
1987
1988 req_lim = atomic_dec_return(&ch->req_lim);
1989 if (unlikely(req_lim < 0))
1990 printk(KERN_ERR "req_lim = %d < 0\n", req_lim);
1991 ioctx = sdev->ioctx_ring[index];
1992 srpt_handle_new_iu(ch, ioctx, NULL);
1993 } else {
1994 printk(KERN_INFO "receiving failed for idx %u with status %d\n",
1995 index, wc->status);
1996 }
1997}
1998
1999/**
2000 * srpt_process_send_completion() - Process an IB send completion.
2001 *
2002 * Note: Although this has not yet been observed during tests, at least in
2003 * theory it is possible that the srpt_get_send_ioctx() call invoked by
2004 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta
2005 * value in each response is set to one, and it is possible that this response
2006 * makes the initiator send a new request before the send completion for that
2007 * response has been processed. This could e.g. happen if the call to
2008 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or
2009 * if IB retransmission causes generation of the send completion to be
2010 * delayed. Incoming information units for which srpt_get_send_ioctx() fails
2011 * are queued on cmd_wait_list. The code below processes these delayed
2012 * requests one at a time.
2013 */
2014static void srpt_process_send_completion(struct ib_cq *cq,
2015 struct srpt_rdma_ch *ch,
2016 struct ib_wc *wc)
2017{
2018 struct srpt_send_ioctx *send_ioctx;
2019 uint32_t index;
2020 enum srpt_opcode opcode;
2021
2022 index = idx_from_wr_id(wc->wr_id);
2023 opcode = opcode_from_wr_id(wc->wr_id);
2024 send_ioctx = ch->ioctx_ring[index];
2025 if (wc->status == IB_WC_SUCCESS) {
2026 if (opcode == SRPT_SEND)
2027 srpt_handle_send_comp(ch, send_ioctx);
2028 else {
2029 WARN_ON(opcode != SRPT_RDMA_ABORT &&
2030 wc->opcode != IB_WC_RDMA_READ);
2031 srpt_handle_rdma_comp(ch, send_ioctx, opcode);
2032 }
2033 } else {
2034 if (opcode == SRPT_SEND) {
2035 printk(KERN_INFO "sending response for idx %u failed"
2036 " with status %d\n", index, wc->status);
2037 srpt_handle_send_err_comp(ch, wc->wr_id);
2038 } else if (opcode != SRPT_RDMA_MID) {
2039 printk(KERN_INFO "RDMA t %d for idx %u failed with"
2040 " status %d", opcode, index, wc->status);
2041 srpt_handle_rdma_err_comp(ch, send_ioctx, opcode);
2042 }
2043 }
2044
2045 while (unlikely(opcode == SRPT_SEND
2046 && !list_empty(&ch->cmd_wait_list)
2047 && srpt_get_ch_state(ch) == CH_LIVE
2048 && (send_ioctx = srpt_get_send_ioctx(ch)) != NULL)) {
2049 struct srpt_recv_ioctx *recv_ioctx;
2050
2051 recv_ioctx = list_first_entry(&ch->cmd_wait_list,
2052 struct srpt_recv_ioctx,
2053 wait_list);
2054 list_del(&recv_ioctx->wait_list);
2055 srpt_handle_new_iu(ch, recv_ioctx, send_ioctx);
2056 }
2057}
2058
2059static void srpt_process_completion(struct ib_cq *cq, struct srpt_rdma_ch *ch)
2060{
2061 struct ib_wc *const wc = ch->wc;
2062 int i, n;
2063
2064 WARN_ON(cq != ch->cq);
2065
2066 ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
2067 while ((n = ib_poll_cq(cq, ARRAY_SIZE(ch->wc), wc)) > 0) {
2068 for (i = 0; i < n; i++) {
2069 if (opcode_from_wr_id(wc[i].wr_id) == SRPT_RECV)
2070 srpt_process_rcv_completion(cq, ch, &wc[i]);
2071 else
2072 srpt_process_send_completion(cq, ch, &wc[i]);
2073 }
2074 }
2075}
2076
2077/**
2078 * srpt_completion() - IB completion queue callback function.
2079 *
2080 * Notes:
2081 * - It is guaranteed that a completion handler will never be invoked
2082 * concurrently on two different CPUs for the same completion queue. See also
2083 * Documentation/infiniband/core_locking.txt and the implementation of
2084 * handle_edge_irq() in kernel/irq/chip.c.
2085 * - When threaded IRQs are enabled, completion handlers are invoked in thread
2086 * context instead of interrupt context.
2087 */
2088static void srpt_completion(struct ib_cq *cq, void *ctx)
2089{
2090 struct srpt_rdma_ch *ch = ctx;
2091
2092 wake_up_interruptible(&ch->wait_queue);
2093}
2094
2095static int srpt_compl_thread(void *arg)
2096{
2097 struct srpt_rdma_ch *ch;
2098
2099 /* Hibernation / freezing of the SRPT kernel thread is not supported. */
2100 current->flags |= PF_NOFREEZE;
2101
2102 ch = arg;
2103 BUG_ON(!ch);
2104 printk(KERN_INFO "Session %s: kernel thread %s (PID %d) started\n",
2105 ch->sess_name, ch->thread->comm, current->pid);
2106 while (!kthread_should_stop()) {
2107 wait_event_interruptible(ch->wait_queue,
2108 (srpt_process_completion(ch->cq, ch),
2109 kthread_should_stop()));
2110 }
2111 printk(KERN_INFO "Session %s: kernel thread %s (PID %d) stopped\n",
2112 ch->sess_name, ch->thread->comm, current->pid);
2113 return 0;
2114}
2115
2116/**
2117 * srpt_create_ch_ib() - Create receive and send completion queues.
2118 */
2119static int srpt_create_ch_ib(struct srpt_rdma_ch *ch)
2120{
2121 struct ib_qp_init_attr *qp_init;
2122 struct srpt_port *sport = ch->sport;
2123 struct srpt_device *sdev = sport->sdev;
2124 u32 srp_sq_size = sport->port_attrib.srp_sq_size;
2125 int ret;
2126
2127 WARN_ON(ch->rq_size < 1);
2128
2129 ret = -ENOMEM;
2130 qp_init = kzalloc(sizeof *qp_init, GFP_KERNEL);
2131 if (!qp_init)
2132 goto out;
2133
2134 ch->cq = ib_create_cq(sdev->device, srpt_completion, NULL, ch,
2135 ch->rq_size + srp_sq_size, 0);
2136 if (IS_ERR(ch->cq)) {
2137 ret = PTR_ERR(ch->cq);
2138 printk(KERN_ERR "failed to create CQ cqe= %d ret= %d\n",
2139 ch->rq_size + srp_sq_size, ret);
2140 goto out;
2141 }
2142
2143 qp_init->qp_context = (void *)ch;
2144 qp_init->event_handler
2145 = (void(*)(struct ib_event *, void*))srpt_qp_event;
2146 qp_init->send_cq = ch->cq;
2147 qp_init->recv_cq = ch->cq;
2148 qp_init->srq = sdev->srq;
2149 qp_init->sq_sig_type = IB_SIGNAL_REQ_WR;
2150 qp_init->qp_type = IB_QPT_RC;
2151 qp_init->cap.max_send_wr = srp_sq_size;
2152 qp_init->cap.max_send_sge = SRPT_DEF_SG_PER_WQE;
2153
2154 ch->qp = ib_create_qp(sdev->pd, qp_init);
2155 if (IS_ERR(ch->qp)) {
2156 ret = PTR_ERR(ch->qp);
2157 printk(KERN_ERR "failed to create_qp ret= %d\n", ret);
2158 goto err_destroy_cq;
2159 }
2160
2161 atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr);
2162
2163 pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
2164 __func__, ch->cq->cqe, qp_init->cap.max_send_sge,
2165 qp_init->cap.max_send_wr, ch->cm_id);
2166
2167 ret = srpt_init_ch_qp(ch, ch->qp);
2168 if (ret)
2169 goto err_destroy_qp;
2170
2171 init_waitqueue_head(&ch->wait_queue);
2172
2173 pr_debug("creating thread for session %s\n", ch->sess_name);
2174
2175 ch->thread = kthread_run(srpt_compl_thread, ch, "ib_srpt_compl");
2176 if (IS_ERR(ch->thread)) {
2177 printk(KERN_ERR "failed to create kernel thread %ld\n",
2178 PTR_ERR(ch->thread));
2179 ch->thread = NULL;
2180 goto err_destroy_qp;
2181 }
2182
2183out:
2184 kfree(qp_init);
2185 return ret;
2186
2187err_destroy_qp:
2188 ib_destroy_qp(ch->qp);
2189err_destroy_cq:
2190 ib_destroy_cq(ch->cq);
2191 goto out;
2192}
2193
2194static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch)
2195{
2196 if (ch->thread)
2197 kthread_stop(ch->thread);
2198
2199 ib_destroy_qp(ch->qp);
2200 ib_destroy_cq(ch->cq);
2201}
2202
2203/**
2204 * __srpt_close_ch() - Close an RDMA channel by setting the QP error state.
2205 *
2206 * Reset the QP and make sure all resources associated with the channel will
2207 * be deallocated at an appropriate time.
2208 *
2209 * Note: The caller must hold ch->sport->sdev->spinlock.
2210 */
2211static void __srpt_close_ch(struct srpt_rdma_ch *ch)
2212{
2213 struct srpt_device *sdev;
2214 enum rdma_ch_state prev_state;
2215 unsigned long flags;
2216
2217 sdev = ch->sport->sdev;
2218
2219 spin_lock_irqsave(&ch->spinlock, flags);
2220 prev_state = ch->state;
2221 switch (prev_state) {
2222 case CH_CONNECTING:
2223 case CH_LIVE:
2224 ch->state = CH_DISCONNECTING;
2225 break;
2226 default:
2227 break;
2228 }
2229 spin_unlock_irqrestore(&ch->spinlock, flags);
2230
2231 switch (prev_state) {
2232 case CH_CONNECTING:
2233 ib_send_cm_rej(ch->cm_id, IB_CM_REJ_NO_RESOURCES, NULL, 0,
2234 NULL, 0);
2235 /* fall through */
2236 case CH_LIVE:
2237 if (ib_send_cm_dreq(ch->cm_id, NULL, 0) < 0)
2238 printk(KERN_ERR "sending CM DREQ failed.\n");
2239 break;
2240 case CH_DISCONNECTING:
2241 break;
2242 case CH_DRAINING:
2243 case CH_RELEASING:
2244 break;
2245 }
2246}
2247
2248/**
2249 * srpt_close_ch() - Close an RDMA channel.
2250 */
2251static void srpt_close_ch(struct srpt_rdma_ch *ch)
2252{
2253 struct srpt_device *sdev;
2254
2255 sdev = ch->sport->sdev;
2256 spin_lock_irq(&sdev->spinlock);
2257 __srpt_close_ch(ch);
2258 spin_unlock_irq(&sdev->spinlock);
2259}
2260
2261/**
2262 * srpt_drain_channel() - Drain a channel by resetting the IB queue pair.
2263 * @cm_id: Pointer to the CM ID of the channel to be drained.
2264 *
2265 * Note: Must be called from inside srpt_cm_handler to avoid a race between
2266 * accessing sdev->spinlock and the call to kfree(sdev) in srpt_remove_one()
2267 * (the caller of srpt_cm_handler holds the cm_id spinlock; srpt_remove_one()
2268 * waits until all target sessions for the associated IB device have been
2269 * unregistered and target session registration involves a call to
2270 * ib_destroy_cm_id(), which locks the cm_id spinlock and hence waits until
2271 * this function has finished).
2272 */
2273static void srpt_drain_channel(struct ib_cm_id *cm_id)
2274{
2275 struct srpt_device *sdev;
2276 struct srpt_rdma_ch *ch;
2277 int ret;
2278 bool do_reset = false;
2279
2280 WARN_ON_ONCE(irqs_disabled());
2281
2282 sdev = cm_id->context;
2283 BUG_ON(!sdev);
2284 spin_lock_irq(&sdev->spinlock);
2285 list_for_each_entry(ch, &sdev->rch_list, list) {
2286 if (ch->cm_id == cm_id) {
2287 do_reset = srpt_test_and_set_ch_state(ch,
2288 CH_CONNECTING, CH_DRAINING) ||
2289 srpt_test_and_set_ch_state(ch,
2290 CH_LIVE, CH_DRAINING) ||
2291 srpt_test_and_set_ch_state(ch,
2292 CH_DISCONNECTING, CH_DRAINING);
2293 break;
2294 }
2295 }
2296 spin_unlock_irq(&sdev->spinlock);
2297
2298 if (do_reset) {
2299 ret = srpt_ch_qp_err(ch);
2300 if (ret < 0)
2301 printk(KERN_ERR "Setting queue pair in error state"
2302 " failed: %d\n", ret);
2303 }
2304}
2305
2306/**
2307 * srpt_find_channel() - Look up an RDMA channel.
2308 * @cm_id: Pointer to the CM ID of the channel to be looked up.
2309 *
2310 * Return NULL if no matching RDMA channel has been found.
2311 */
2312static struct srpt_rdma_ch *srpt_find_channel(struct srpt_device *sdev,
2313 struct ib_cm_id *cm_id)
2314{
2315 struct srpt_rdma_ch *ch;
2316 bool found;
2317
2318 WARN_ON_ONCE(irqs_disabled());
2319 BUG_ON(!sdev);
2320
2321 found = false;
2322 spin_lock_irq(&sdev->spinlock);
2323 list_for_each_entry(ch, &sdev->rch_list, list) {
2324 if (ch->cm_id == cm_id) {
2325 found = true;
2326 break;
2327 }
2328 }
2329 spin_unlock_irq(&sdev->spinlock);
2330
2331 return found ? ch : NULL;
2332}
2333
2334/**
2335 * srpt_release_channel() - Release channel resources.
2336 *
2337 * Schedules the actual release because:
2338 * - Calling the ib_destroy_cm_id() call from inside an IB CM callback would
2339 * trigger a deadlock.
2340 * - It is not safe to call TCM transport_* functions from interrupt context.
2341 */
2342static void srpt_release_channel(struct srpt_rdma_ch *ch)
2343{
2344 schedule_work(&ch->release_work);
2345}
2346
2347static void srpt_release_channel_work(struct work_struct *w)
2348{
2349 struct srpt_rdma_ch *ch;
2350 struct srpt_device *sdev;
2351
2352 ch = container_of(w, struct srpt_rdma_ch, release_work);
2353 pr_debug("ch = %p; ch->sess = %p; release_done = %p\n", ch, ch->sess,
2354 ch->release_done);
2355
2356 sdev = ch->sport->sdev;
2357 BUG_ON(!sdev);
2358
2359 transport_deregister_session_configfs(ch->sess);
2360 transport_deregister_session(ch->sess);
2361 ch->sess = NULL;
2362
2363 srpt_destroy_ch_ib(ch);
2364
2365 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2366 ch->sport->sdev, ch->rq_size,
2367 ch->rsp_size, DMA_TO_DEVICE);
2368
2369 spin_lock_irq(&sdev->spinlock);
2370 list_del(&ch->list);
2371 spin_unlock_irq(&sdev->spinlock);
2372
2373 ib_destroy_cm_id(ch->cm_id);
2374
2375 if (ch->release_done)
2376 complete(ch->release_done);
2377
2378 wake_up(&sdev->ch_releaseQ);
2379
2380 kfree(ch);
2381}
2382
2383static struct srpt_node_acl *__srpt_lookup_acl(struct srpt_port *sport,
2384 u8 i_port_id[16])
2385{
2386 struct srpt_node_acl *nacl;
2387
2388 list_for_each_entry(nacl, &sport->port_acl_list, list)
2389 if (memcmp(nacl->i_port_id, i_port_id,
2390 sizeof(nacl->i_port_id)) == 0)
2391 return nacl;
2392
2393 return NULL;
2394}
2395
2396static struct srpt_node_acl *srpt_lookup_acl(struct srpt_port *sport,
2397 u8 i_port_id[16])
2398{
2399 struct srpt_node_acl *nacl;
2400
2401 spin_lock_irq(&sport->port_acl_lock);
2402 nacl = __srpt_lookup_acl(sport, i_port_id);
2403 spin_unlock_irq(&sport->port_acl_lock);
2404
2405 return nacl;
2406}
2407
2408/**
2409 * srpt_cm_req_recv() - Process the event IB_CM_REQ_RECEIVED.
2410 *
2411 * Ownership of the cm_id is transferred to the target session if this
2412 * functions returns zero. Otherwise the caller remains the owner of cm_id.
2413 */
2414static int srpt_cm_req_recv(struct ib_cm_id *cm_id,
2415 struct ib_cm_req_event_param *param,
2416 void *private_data)
2417{
2418 struct srpt_device *sdev = cm_id->context;
2419 struct srpt_port *sport = &sdev->port[param->port - 1];
2420 struct srp_login_req *req;
2421 struct srp_login_rsp *rsp;
2422 struct srp_login_rej *rej;
2423 struct ib_cm_rep_param *rep_param;
2424 struct srpt_rdma_ch *ch, *tmp_ch;
2425 struct srpt_node_acl *nacl;
2426 u32 it_iu_len;
2427 int i;
2428 int ret = 0;
2429
2430 WARN_ON_ONCE(irqs_disabled());
2431
2432 if (WARN_ON(!sdev || !private_data))
2433 return -EINVAL;
2434
2435 req = (struct srp_login_req *)private_data;
2436
2437 it_iu_len = be32_to_cpu(req->req_it_iu_len);
2438
2439 printk(KERN_INFO "Received SRP_LOGIN_REQ with i_port_id 0x%llx:0x%llx,"
2440 " t_port_id 0x%llx:0x%llx and it_iu_len %d on port %d"
2441 " (guid=0x%llx:0x%llx)\n",
2442 be64_to_cpu(*(__be64 *)&req->initiator_port_id[0]),
2443 be64_to_cpu(*(__be64 *)&req->initiator_port_id[8]),
2444 be64_to_cpu(*(__be64 *)&req->target_port_id[0]),
2445 be64_to_cpu(*(__be64 *)&req->target_port_id[8]),
2446 it_iu_len,
2447 param->port,
2448 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[0]),
2449 be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[8]));
2450
2451 rsp = kzalloc(sizeof *rsp, GFP_KERNEL);
2452 rej = kzalloc(sizeof *rej, GFP_KERNEL);
2453 rep_param = kzalloc(sizeof *rep_param, GFP_KERNEL);
2454
2455 if (!rsp || !rej || !rep_param) {
2456 ret = -ENOMEM;
2457 goto out;
2458 }
2459
2460 if (it_iu_len > srp_max_req_size || it_iu_len < 64) {
2461 rej->reason = __constant_cpu_to_be32(
2462 SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE);
2463 ret = -EINVAL;
2464 printk(KERN_ERR "rejected SRP_LOGIN_REQ because its"
2465 " length (%d bytes) is out of range (%d .. %d)\n",
2466 it_iu_len, 64, srp_max_req_size);
2467 goto reject;
2468 }
2469
2470 if (!sport->enabled) {
2471 rej->reason = __constant_cpu_to_be32(
2472 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2473 ret = -EINVAL;
2474 printk(KERN_ERR "rejected SRP_LOGIN_REQ because the target port"
2475 " has not yet been enabled\n");
2476 goto reject;
2477 }
2478
2479 if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) {
2480 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN;
2481
2482 spin_lock_irq(&sdev->spinlock);
2483
2484 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) {
2485 if (!memcmp(ch->i_port_id, req->initiator_port_id, 16)
2486 && !memcmp(ch->t_port_id, req->target_port_id, 16)
2487 && param->port == ch->sport->port
2488 && param->listen_id == ch->sport->sdev->cm_id
2489 && ch->cm_id) {
2490 enum rdma_ch_state ch_state;
2491
2492 ch_state = srpt_get_ch_state(ch);
2493 if (ch_state != CH_CONNECTING
2494 && ch_state != CH_LIVE)
2495 continue;
2496
2497 /* found an existing channel */
2498 pr_debug("Found existing channel %s"
2499 " cm_id= %p state= %d\n",
2500 ch->sess_name, ch->cm_id, ch_state);
2501
2502 __srpt_close_ch(ch);
2503
2504 rsp->rsp_flags =
2505 SRP_LOGIN_RSP_MULTICHAN_TERMINATED;
2506 }
2507 }
2508
2509 spin_unlock_irq(&sdev->spinlock);
2510
2511 } else
2512 rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED;
2513
2514 if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid)
2515 || *(__be64 *)(req->target_port_id + 8) !=
2516 cpu_to_be64(srpt_service_guid)) {
2517 rej->reason = __constant_cpu_to_be32(
2518 SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL);
2519 ret = -ENOMEM;
2520 printk(KERN_ERR "rejected SRP_LOGIN_REQ because it"
2521 " has an invalid target port identifier.\n");
2522 goto reject;
2523 }
2524
2525 ch = kzalloc(sizeof *ch, GFP_KERNEL);
2526 if (!ch) {
2527 rej->reason = __constant_cpu_to_be32(
2528 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2529 printk(KERN_ERR "rejected SRP_LOGIN_REQ because no memory.\n");
2530 ret = -ENOMEM;
2531 goto reject;
2532 }
2533
2534 INIT_WORK(&ch->release_work, srpt_release_channel_work);
2535 memcpy(ch->i_port_id, req->initiator_port_id, 16);
2536 memcpy(ch->t_port_id, req->target_port_id, 16);
2537 ch->sport = &sdev->port[param->port - 1];
2538 ch->cm_id = cm_id;
2539 /*
2540 * Avoid QUEUE_FULL conditions by limiting the number of buffers used
2541 * for the SRP protocol to the command queue size.
2542 */
2543 ch->rq_size = SRPT_RQ_SIZE;
2544 spin_lock_init(&ch->spinlock);
2545 ch->state = CH_CONNECTING;
2546 INIT_LIST_HEAD(&ch->cmd_wait_list);
2547 ch->rsp_size = ch->sport->port_attrib.srp_max_rsp_size;
2548
2549 ch->ioctx_ring = (struct srpt_send_ioctx **)
2550 srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
2551 sizeof(*ch->ioctx_ring[0]),
2552 ch->rsp_size, DMA_TO_DEVICE);
2553 if (!ch->ioctx_ring)
2554 goto free_ch;
2555
2556 INIT_LIST_HEAD(&ch->free_list);
2557 for (i = 0; i < ch->rq_size; i++) {
2558 ch->ioctx_ring[i]->ch = ch;
2559 list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list);
2560 }
2561
2562 ret = srpt_create_ch_ib(ch);
2563 if (ret) {
2564 rej->reason = __constant_cpu_to_be32(
2565 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2566 printk(KERN_ERR "rejected SRP_LOGIN_REQ because creating"
2567 " a new RDMA channel failed.\n");
2568 goto free_ring;
2569 }
2570
2571 ret = srpt_ch_qp_rtr(ch, ch->qp);
2572 if (ret) {
2573 rej->reason = __constant_cpu_to_be32(
2574 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2575 printk(KERN_ERR "rejected SRP_LOGIN_REQ because enabling"
2576 " RTR failed (error code = %d)\n", ret);
2577 goto destroy_ib;
2578 }
2579 /*
2580 * Use the initator port identifier as the session name.
2581 */
2582 snprintf(ch->sess_name, sizeof(ch->sess_name), "0x%016llx%016llx",
2583 be64_to_cpu(*(__be64 *)ch->i_port_id),
2584 be64_to_cpu(*(__be64 *)(ch->i_port_id + 8)));
2585
2586 pr_debug("registering session %s\n", ch->sess_name);
2587
2588 nacl = srpt_lookup_acl(sport, ch->i_port_id);
2589 if (!nacl) {
2590 printk(KERN_INFO "Rejected login because no ACL has been"
2591 " configured yet for initiator %s.\n", ch->sess_name);
2592 rej->reason = __constant_cpu_to_be32(
2593 SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED);
2594 goto destroy_ib;
2595 }
2596
2597 ch->sess = transport_init_session();
2598 if (!ch->sess) {
2599 rej->reason = __constant_cpu_to_be32(
2600 SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2601 pr_debug("Failed to create session\n");
2602 goto deregister_session;
2603 }
2604 ch->sess->se_node_acl = &nacl->nacl;
2605 transport_register_session(&sport->port_tpg_1, &nacl->nacl, ch->sess, ch);
2606
2607 pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess,
2608 ch->sess_name, ch->cm_id);
2609
2610 /* create srp_login_response */
2611 rsp->opcode = SRP_LOGIN_RSP;
2612 rsp->tag = req->tag;
2613 rsp->max_it_iu_len = req->req_it_iu_len;
2614 rsp->max_ti_iu_len = req->req_it_iu_len;
2615 ch->max_ti_iu_len = it_iu_len;
2616 rsp->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2617 | SRP_BUF_FORMAT_INDIRECT);
2618 rsp->req_lim_delta = cpu_to_be32(ch->rq_size);
2619 atomic_set(&ch->req_lim, ch->rq_size);
2620 atomic_set(&ch->req_lim_delta, 0);
2621
2622 /* create cm reply */
2623 rep_param->qp_num = ch->qp->qp_num;
2624 rep_param->private_data = (void *)rsp;
2625 rep_param->private_data_len = sizeof *rsp;
2626 rep_param->rnr_retry_count = 7;
2627 rep_param->flow_control = 1;
2628 rep_param->failover_accepted = 0;
2629 rep_param->srq = 1;
2630 rep_param->responder_resources = 4;
2631 rep_param->initiator_depth = 4;
2632
2633 ret = ib_send_cm_rep(cm_id, rep_param);
2634 if (ret) {
2635 printk(KERN_ERR "sending SRP_LOGIN_REQ response failed"
2636 " (error code = %d)\n", ret);
2637 goto release_channel;
2638 }
2639
2640 spin_lock_irq(&sdev->spinlock);
2641 list_add_tail(&ch->list, &sdev->rch_list);
2642 spin_unlock_irq(&sdev->spinlock);
2643
2644 goto out;
2645
2646release_channel:
2647 srpt_set_ch_state(ch, CH_RELEASING);
2648 transport_deregister_session_configfs(ch->sess);
2649
2650deregister_session:
2651 transport_deregister_session(ch->sess);
2652 ch->sess = NULL;
2653
2654destroy_ib:
2655 srpt_destroy_ch_ib(ch);
2656
2657free_ring:
2658 srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2659 ch->sport->sdev, ch->rq_size,
2660 ch->rsp_size, DMA_TO_DEVICE);
2661free_ch:
2662 kfree(ch);
2663
2664reject:
2665 rej->opcode = SRP_LOGIN_REJ;
2666 rej->tag = req->tag;
2667 rej->buf_fmt = __constant_cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2668 | SRP_BUF_FORMAT_INDIRECT);
2669
2670 ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0,
2671 (void *)rej, sizeof *rej);
2672
2673out:
2674 kfree(rep_param);
2675 kfree(rsp);
2676 kfree(rej);
2677
2678 return ret;
2679}
2680
2681static void srpt_cm_rej_recv(struct ib_cm_id *cm_id)
2682{
2683 printk(KERN_INFO "Received IB REJ for cm_id %p.\n", cm_id);
2684 srpt_drain_channel(cm_id);
2685}
2686
2687/**
2688 * srpt_cm_rtu_recv() - Process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event.
2689 *
2690 * An IB_CM_RTU_RECEIVED message indicates that the connection is established
2691 * and that the recipient may begin transmitting (RTU = ready to use).
2692 */
2693static void srpt_cm_rtu_recv(struct ib_cm_id *cm_id)
2694{
2695 struct srpt_rdma_ch *ch;
2696 int ret;
2697
2698 ch = srpt_find_channel(cm_id->context, cm_id);
2699 BUG_ON(!ch);
2700
2701 if (srpt_test_and_set_ch_state(ch, CH_CONNECTING, CH_LIVE)) {
2702 struct srpt_recv_ioctx *ioctx, *ioctx_tmp;
2703
2704 ret = srpt_ch_qp_rts(ch, ch->qp);
2705
2706 list_for_each_entry_safe(ioctx, ioctx_tmp, &ch->cmd_wait_list,
2707 wait_list) {
2708 list_del(&ioctx->wait_list);
2709 srpt_handle_new_iu(ch, ioctx, NULL);
2710 }
2711 if (ret)
2712 srpt_close_ch(ch);
2713 }
2714}
2715
2716static void srpt_cm_timewait_exit(struct ib_cm_id *cm_id)
2717{
2718 printk(KERN_INFO "Received IB TimeWait exit for cm_id %p.\n", cm_id);
2719 srpt_drain_channel(cm_id);
2720}
2721
2722static void srpt_cm_rep_error(struct ib_cm_id *cm_id)
2723{
2724 printk(KERN_INFO "Received IB REP error for cm_id %p.\n", cm_id);
2725 srpt_drain_channel(cm_id);
2726}
2727
2728/**
2729 * srpt_cm_dreq_recv() - Process reception of a DREQ message.
2730 */
2731static void srpt_cm_dreq_recv(struct ib_cm_id *cm_id)
2732{
2733 struct srpt_rdma_ch *ch;
2734 unsigned long flags;
2735 bool send_drep = false;
2736
2737 ch = srpt_find_channel(cm_id->context, cm_id);
2738 BUG_ON(!ch);
2739
2740 pr_debug("cm_id= %p ch->state= %d\n", cm_id, srpt_get_ch_state(ch));
2741
2742 spin_lock_irqsave(&ch->spinlock, flags);
2743 switch (ch->state) {
2744 case CH_CONNECTING:
2745 case CH_LIVE:
2746 send_drep = true;
2747 ch->state = CH_DISCONNECTING;
2748 break;
2749 case CH_DISCONNECTING:
2750 case CH_DRAINING:
2751 case CH_RELEASING:
2752 WARN(true, "unexpected channel state %d\n", ch->state);
2753 break;
2754 }
2755 spin_unlock_irqrestore(&ch->spinlock, flags);
2756
2757 if (send_drep) {
2758 if (ib_send_cm_drep(ch->cm_id, NULL, 0) < 0)
2759 printk(KERN_ERR "Sending IB DREP failed.\n");
2760 printk(KERN_INFO "Received DREQ and sent DREP for session %s.\n",
2761 ch->sess_name);
2762 }
2763}
2764
2765/**
2766 * srpt_cm_drep_recv() - Process reception of a DREP message.
2767 */
2768static void srpt_cm_drep_recv(struct ib_cm_id *cm_id)
2769{
2770 printk(KERN_INFO "Received InfiniBand DREP message for cm_id %p.\n",
2771 cm_id);
2772 srpt_drain_channel(cm_id);
2773}
2774
2775/**
2776 * srpt_cm_handler() - IB connection manager callback function.
2777 *
2778 * A non-zero return value will cause the caller destroy the CM ID.
2779 *
2780 * Note: srpt_cm_handler() must only return a non-zero value when transferring
2781 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning
2782 * a non-zero value in any other case will trigger a race with the
2783 * ib_destroy_cm_id() call in srpt_release_channel().
2784 */
2785static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
2786{
2787 int ret;
2788
2789 ret = 0;
2790 switch (event->event) {
2791 case IB_CM_REQ_RECEIVED:
2792 ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd,
2793 event->private_data);
2794 break;
2795 case IB_CM_REJ_RECEIVED:
2796 srpt_cm_rej_recv(cm_id);
2797 break;
2798 case IB_CM_RTU_RECEIVED:
2799 case IB_CM_USER_ESTABLISHED:
2800 srpt_cm_rtu_recv(cm_id);
2801 break;
2802 case IB_CM_DREQ_RECEIVED:
2803 srpt_cm_dreq_recv(cm_id);
2804 break;
2805 case IB_CM_DREP_RECEIVED:
2806 srpt_cm_drep_recv(cm_id);
2807 break;
2808 case IB_CM_TIMEWAIT_EXIT:
2809 srpt_cm_timewait_exit(cm_id);
2810 break;
2811 case IB_CM_REP_ERROR:
2812 srpt_cm_rep_error(cm_id);
2813 break;
2814 case IB_CM_DREQ_ERROR:
2815 printk(KERN_INFO "Received IB DREQ ERROR event.\n");
2816 break;
2817 case IB_CM_MRA_RECEIVED:
2818 printk(KERN_INFO "Received IB MRA event\n");
2819 break;
2820 default:
2821 printk(KERN_ERR "received unrecognized IB CM event %d\n",
2822 event->event);
2823 break;
2824 }
2825
2826 return ret;
2827}
2828
2829/**
2830 * srpt_perform_rdmas() - Perform IB RDMA.
2831 *
2832 * Returns zero upon success or a negative number upon failure.
2833 */
2834static int srpt_perform_rdmas(struct srpt_rdma_ch *ch,
2835 struct srpt_send_ioctx *ioctx)
2836{
2837 struct ib_send_wr wr;
2838 struct ib_send_wr *bad_wr;
2839 struct rdma_iu *riu;
2840 int i;
2841 int ret;
2842 int sq_wr_avail;
2843 enum dma_data_direction dir;
2844 const int n_rdma = ioctx->n_rdma;
2845
2846 dir = ioctx->cmd.data_direction;
2847 if (dir == DMA_TO_DEVICE) {
2848 /* write */
2849 ret = -ENOMEM;
2850 sq_wr_avail = atomic_sub_return(n_rdma, &ch->sq_wr_avail);
2851 if (sq_wr_avail < 0) {
2852 printk(KERN_WARNING "IB send queue full (needed %d)\n",
2853 n_rdma);
2854 goto out;
2855 }
2856 }
2857
2858 ioctx->rdma_aborted = false;
2859 ret = 0;
2860 riu = ioctx->rdma_ius;
2861 memset(&wr, 0, sizeof wr);
2862
2863 for (i = 0; i < n_rdma; ++i, ++riu) {
2864 if (dir == DMA_FROM_DEVICE) {
2865 wr.opcode = IB_WR_RDMA_WRITE;
2866 wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
2867 SRPT_RDMA_WRITE_LAST :
2868 SRPT_RDMA_MID,
2869 ioctx->ioctx.index);
2870 } else {
2871 wr.opcode = IB_WR_RDMA_READ;
2872 wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
2873 SRPT_RDMA_READ_LAST :
2874 SRPT_RDMA_MID,
2875 ioctx->ioctx.index);
2876 }
2877 wr.next = NULL;
2878 wr.wr.rdma.remote_addr = riu->raddr;
2879 wr.wr.rdma.rkey = riu->rkey;
2880 wr.num_sge = riu->sge_cnt;
2881 wr.sg_list = riu->sge;
2882
2883 /* only get completion event for the last rdma write */
2884 if (i == (n_rdma - 1) && dir == DMA_TO_DEVICE)
2885 wr.send_flags = IB_SEND_SIGNALED;
2886
2887 ret = ib_post_send(ch->qp, &wr, &bad_wr);
2888 if (ret)
2889 break;
2890 }
2891
2892 if (ret)
2893 printk(KERN_ERR "%s[%d]: ib_post_send() returned %d for %d/%d",
2894 __func__, __LINE__, ret, i, n_rdma);
2895 if (ret && i > 0) {
2896 wr.num_sge = 0;
2897 wr.wr_id = encode_wr_id(SRPT_RDMA_ABORT, ioctx->ioctx.index);
2898 wr.send_flags = IB_SEND_SIGNALED;
2899 while (ch->state == CH_LIVE &&
2900 ib_post_send(ch->qp, &wr, &bad_wr) != 0) {
2901 printk(KERN_INFO "Trying to abort failed RDMA transfer [%d]",
2902 ioctx->ioctx.index);
2903 msleep(1000);
2904 }
2905 while (ch->state != CH_RELEASING && !ioctx->rdma_aborted) {
2906 printk(KERN_INFO "Waiting until RDMA abort finished [%d]",
2907 ioctx->ioctx.index);
2908 msleep(1000);
2909 }
2910 }
2911out:
2912 if (unlikely(dir == DMA_TO_DEVICE && ret < 0))
2913 atomic_add(n_rdma, &ch->sq_wr_avail);
2914 return ret;
2915}
2916
2917/**
2918 * srpt_xfer_data() - Start data transfer from initiator to target.
2919 */
2920static int srpt_xfer_data(struct srpt_rdma_ch *ch,
2921 struct srpt_send_ioctx *ioctx)
2922{
2923 int ret;
2924
2925 ret = srpt_map_sg_to_ib_sge(ch, ioctx);
2926 if (ret) {
2927 printk(KERN_ERR "%s[%d] ret=%d\n", __func__, __LINE__, ret);
2928 goto out;
2929 }
2930
2931 ret = srpt_perform_rdmas(ch, ioctx);
2932 if (ret) {
2933 if (ret == -EAGAIN || ret == -ENOMEM)
2934 printk(KERN_INFO "%s[%d] queue full -- ret=%d\n",
2935 __func__, __LINE__, ret);
2936 else
2937 printk(KERN_ERR "%s[%d] fatal error -- ret=%d\n",
2938 __func__, __LINE__, ret);
2939 goto out_unmap;
2940 }
2941
2942out:
2943 return ret;
2944out_unmap:
2945 srpt_unmap_sg_to_ib_sge(ch, ioctx);
2946 goto out;
2947}
2948
2949static int srpt_write_pending_status(struct se_cmd *se_cmd)
2950{
2951 struct srpt_send_ioctx *ioctx;
2952
2953 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2954 return srpt_get_cmd_state(ioctx) == SRPT_STATE_NEED_DATA;
2955}
2956
2957/*
2958 * srpt_write_pending() - Start data transfer from initiator to target (write).
2959 */
2960static int srpt_write_pending(struct se_cmd *se_cmd)
2961{
2962 struct srpt_rdma_ch *ch;
2963 struct srpt_send_ioctx *ioctx;
2964 enum srpt_command_state new_state;
2965 enum rdma_ch_state ch_state;
2966 int ret;
2967
2968 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2969
2970 new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA);
2971 WARN_ON(new_state == SRPT_STATE_DONE);
2972
2973 ch = ioctx->ch;
2974 BUG_ON(!ch);
2975
2976 ch_state = srpt_get_ch_state(ch);
2977 switch (ch_state) {
2978 case CH_CONNECTING:
2979 WARN(true, "unexpected channel state %d\n", ch_state);
2980 ret = -EINVAL;
2981 goto out;
2982 case CH_LIVE:
2983 break;
2984 case CH_DISCONNECTING:
2985 case CH_DRAINING:
2986 case CH_RELEASING:
2987 pr_debug("cmd with tag %lld: channel disconnecting\n",
2988 ioctx->tag);
2989 srpt_set_cmd_state(ioctx, SRPT_STATE_DATA_IN);
2990 ret = -EINVAL;
2991 goto out;
2992 }
2993 ret = srpt_xfer_data(ch, ioctx);
2994
2995out:
2996 return ret;
2997}
2998
2999static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)
3000{
3001 switch (tcm_mgmt_status) {
3002 case TMR_FUNCTION_COMPLETE:
3003 return SRP_TSK_MGMT_SUCCESS;
3004 case TMR_FUNCTION_REJECTED:
3005 return SRP_TSK_MGMT_FUNC_NOT_SUPP;
3006 }
3007 return SRP_TSK_MGMT_FAILED;
3008}
3009
3010/**
3011 * srpt_queue_response() - Transmits the response to a SCSI command.
3012 *
3013 * Callback function called by the TCM core. Must not block since it can be
3014 * invoked on the context of the IB completion handler.
3015 */
3016static int srpt_queue_response(struct se_cmd *cmd)
3017{
3018 struct srpt_rdma_ch *ch;
3019 struct srpt_send_ioctx *ioctx;
3020 enum srpt_command_state state;
3021 unsigned long flags;
3022 int ret;
3023 enum dma_data_direction dir;
3024 int resp_len;
3025 u8 srp_tm_status;
3026
3027 ret = 0;
3028
3029 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
3030 ch = ioctx->ch;
3031 BUG_ON(!ch);
3032
3033 spin_lock_irqsave(&ioctx->spinlock, flags);
3034 state = ioctx->state;
3035 switch (state) {
3036 case SRPT_STATE_NEW:
3037 case SRPT_STATE_DATA_IN:
3038 ioctx->state = SRPT_STATE_CMD_RSP_SENT;
3039 break;
3040 case SRPT_STATE_MGMT:
3041 ioctx->state = SRPT_STATE_MGMT_RSP_SENT;
3042 break;
3043 default:
3044 WARN(true, "ch %p; cmd %d: unexpected command state %d\n",
3045 ch, ioctx->ioctx.index, ioctx->state);
3046 break;
3047 }
3048 spin_unlock_irqrestore(&ioctx->spinlock, flags);
3049
3050 if (unlikely(transport_check_aborted_status(&ioctx->cmd, false)
3051 || WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))) {
3052 atomic_inc(&ch->req_lim_delta);
3053 srpt_abort_cmd(ioctx);
3054 goto out;
3055 }
3056
3057 dir = ioctx->cmd.data_direction;
3058
3059 /* For read commands, transfer the data to the initiator. */
3060 if (dir == DMA_FROM_DEVICE && ioctx->cmd.data_length &&
3061 !ioctx->queue_status_only) {
3062 ret = srpt_xfer_data(ch, ioctx);
3063 if (ret) {
3064 printk(KERN_ERR "xfer_data failed for tag %llu\n",
3065 ioctx->tag);
3066 goto out;
3067 }
3068 }
3069
3070 if (state != SRPT_STATE_MGMT)
3071 resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->tag,
3072 cmd->scsi_status);
3073 else {
3074 srp_tm_status
3075 = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response);
3076 resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status,
3077 ioctx->tag);
3078 }
3079 ret = srpt_post_send(ch, ioctx, resp_len);
3080 if (ret) {
3081 printk(KERN_ERR "sending cmd response failed for tag %llu\n",
3082 ioctx->tag);
3083 srpt_unmap_sg_to_ib_sge(ch, ioctx);
3084 srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
3085 kref_put(&ioctx->kref, srpt_put_send_ioctx_kref);
3086 }
3087
3088out:
3089 return ret;
3090}
3091
3092static int srpt_queue_status(struct se_cmd *cmd)
3093{
3094 struct srpt_send_ioctx *ioctx;
3095
3096 ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
3097 BUG_ON(ioctx->sense_data != cmd->sense_buffer);
3098 if (cmd->se_cmd_flags &
3099 (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE))
3100 WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION);
3101 ioctx->queue_status_only = true;
3102 return srpt_queue_response(cmd);
3103}
3104
3105static void srpt_refresh_port_work(struct work_struct *work)
3106{
3107 struct srpt_port *sport = container_of(work, struct srpt_port, work);
3108
3109 srpt_refresh_port(sport);
3110}
3111
3112static int srpt_ch_list_empty(struct srpt_device *sdev)
3113{
3114 int res;
3115
3116 spin_lock_irq(&sdev->spinlock);
3117 res = list_empty(&sdev->rch_list);
3118 spin_unlock_irq(&sdev->spinlock);
3119
3120 return res;
3121}
3122
3123/**
3124 * srpt_release_sdev() - Free the channel resources associated with a target.
3125 */
3126static int srpt_release_sdev(struct srpt_device *sdev)
3127{
3128 struct srpt_rdma_ch *ch, *tmp_ch;
3129 int res;
3130
3131 WARN_ON_ONCE(irqs_disabled());
3132
3133 BUG_ON(!sdev);
3134
3135 spin_lock_irq(&sdev->spinlock);
3136 list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list)
3137 __srpt_close_ch(ch);
3138 spin_unlock_irq(&sdev->spinlock);
3139
3140 res = wait_event_interruptible(sdev->ch_releaseQ,
3141 srpt_ch_list_empty(sdev));
3142 if (res)
3143 printk(KERN_ERR "%s: interrupted.\n", __func__);
3144
3145 return 0;
3146}
3147
3148static struct srpt_port *__srpt_lookup_port(const char *name)
3149{
3150 struct ib_device *dev;
3151 struct srpt_device *sdev;
3152 struct srpt_port *sport;
3153 int i;
3154
3155 list_for_each_entry(sdev, &srpt_dev_list, list) {
3156 dev = sdev->device;
3157 if (!dev)
3158 continue;
3159
3160 for (i = 0; i < dev->phys_port_cnt; i++) {
3161 sport = &sdev->port[i];
3162
3163 if (!strcmp(sport->port_guid, name))
3164 return sport;
3165 }
3166 }
3167
3168 return NULL;
3169}
3170
3171static struct srpt_port *srpt_lookup_port(const char *name)
3172{
3173 struct srpt_port *sport;
3174
3175 spin_lock(&srpt_dev_lock);
3176 sport = __srpt_lookup_port(name);
3177 spin_unlock(&srpt_dev_lock);
3178
3179 return sport;
3180}
3181
3182/**
3183 * srpt_add_one() - Infiniband device addition callback function.
3184 */
3185static void srpt_add_one(struct ib_device *device)
3186{
3187 struct srpt_device *sdev;
3188 struct srpt_port *sport;
3189 struct ib_srq_init_attr srq_attr;
3190 int i;
3191
3192 pr_debug("device = %p, device->dma_ops = %p\n", device,
3193 device->dma_ops);
3194
3195 sdev = kzalloc(sizeof *sdev, GFP_KERNEL);
3196 if (!sdev)
3197 goto err;
3198
3199 sdev->device = device;
3200 INIT_LIST_HEAD(&sdev->rch_list);
3201 init_waitqueue_head(&sdev->ch_releaseQ);
3202 spin_lock_init(&sdev->spinlock);
3203
3204 if (ib_query_device(device, &sdev->dev_attr))
3205 goto free_dev;
3206
3207 sdev->pd = ib_alloc_pd(device);
3208 if (IS_ERR(sdev->pd))
3209 goto free_dev;
3210
3211 sdev->mr = ib_get_dma_mr(sdev->pd, IB_ACCESS_LOCAL_WRITE);
3212 if (IS_ERR(sdev->mr))
3213 goto err_pd;
3214
3215 sdev->srq_size = min(srpt_srq_size, sdev->dev_attr.max_srq_wr);
3216
3217 srq_attr.event_handler = srpt_srq_event;
3218 srq_attr.srq_context = (void *)sdev;
3219 srq_attr.attr.max_wr = sdev->srq_size;
3220 srq_attr.attr.max_sge = 1;
3221 srq_attr.attr.srq_limit = 0;
3222
3223 sdev->srq = ib_create_srq(sdev->pd, &srq_attr);
3224 if (IS_ERR(sdev->srq))
3225 goto err_mr;
3226
3227 pr_debug("%s: create SRQ #wr= %d max_allow=%d dev= %s\n",
3228 __func__, sdev->srq_size, sdev->dev_attr.max_srq_wr,
3229 device->name);
3230
3231 if (!srpt_service_guid)
3232 srpt_service_guid = be64_to_cpu(device->node_guid);
3233
3234 sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev);
3235 if (IS_ERR(sdev->cm_id))
3236 goto err_srq;
3237
3238 /* print out target login information */
3239 pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,"
3240 "pkey=ffff,service_id=%016llx\n", srpt_service_guid,
3241 srpt_service_guid, srpt_service_guid);
3242
3243 /*
3244 * We do not have a consistent service_id (ie. also id_ext of target_id)
3245 * to identify this target. We currently use the guid of the first HCA
3246 * in the system as service_id; therefore, the target_id will change
3247 * if this HCA is gone bad and replaced by different HCA
3248 */
3249 if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0, NULL))
3250 goto err_cm;
3251
3252 INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device,
3253 srpt_event_handler);
3254 if (ib_register_event_handler(&sdev->event_handler))
3255 goto err_cm;
3256
3257 sdev->ioctx_ring = (struct srpt_recv_ioctx **)
3258 srpt_alloc_ioctx_ring(sdev, sdev->srq_size,
3259 sizeof(*sdev->ioctx_ring[0]),
3260 srp_max_req_size, DMA_FROM_DEVICE);
3261 if (!sdev->ioctx_ring)
3262 goto err_event;
3263
3264 for (i = 0; i < sdev->srq_size; ++i)
3265 srpt_post_recv(sdev, sdev->ioctx_ring[i]);
3266
3267 WARN_ON(sdev->device->phys_port_cnt
3268 > sizeof(sdev->port)/sizeof(sdev->port[0]));
3269
3270 for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
3271 sport = &sdev->port[i - 1];
3272 sport->sdev = sdev;
3273 sport->port = i;
3274 sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE;
3275 sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE;
3276 sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE;
3277 INIT_WORK(&sport->work, srpt_refresh_port_work);
3278 INIT_LIST_HEAD(&sport->port_acl_list);
3279 spin_lock_init(&sport->port_acl_lock);
3280
3281 if (srpt_refresh_port(sport)) {
3282 printk(KERN_ERR "MAD registration failed for %s-%d.\n",
3283 srpt_sdev_name(sdev), i);
3284 goto err_ring;
3285 }
3286 snprintf(sport->port_guid, sizeof(sport->port_guid),
3287 "0x%016llx%016llx",
3288 be64_to_cpu(sport->gid.global.subnet_prefix),
3289 be64_to_cpu(sport->gid.global.interface_id));
3290 }
3291
3292 spin_lock(&srpt_dev_lock);
3293 list_add_tail(&sdev->list, &srpt_dev_list);
3294 spin_unlock(&srpt_dev_lock);
3295
3296out:
3297 ib_set_client_data(device, &srpt_client, sdev);
3298 pr_debug("added %s.\n", device->name);
3299 return;
3300
3301err_ring:
3302 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3303 sdev->srq_size, srp_max_req_size,
3304 DMA_FROM_DEVICE);
3305err_event:
3306 ib_unregister_event_handler(&sdev->event_handler);
3307err_cm:
3308 ib_destroy_cm_id(sdev->cm_id);
3309err_srq:
3310 ib_destroy_srq(sdev->srq);
3311err_mr:
3312 ib_dereg_mr(sdev->mr);
3313err_pd:
3314 ib_dealloc_pd(sdev->pd);
3315free_dev:
3316 kfree(sdev);
3317err:
3318 sdev = NULL;
3319 printk(KERN_INFO "%s(%s) failed.\n", __func__, device->name);
3320 goto out;
3321}
3322
3323/**
3324 * srpt_remove_one() - InfiniBand device removal callback function.
3325 */
3326static void srpt_remove_one(struct ib_device *device)
3327{
3328 struct srpt_device *sdev;
3329 int i;
3330
3331 sdev = ib_get_client_data(device, &srpt_client);
3332 if (!sdev) {
3333 printk(KERN_INFO "%s(%s): nothing to do.\n", __func__,
3334 device->name);
3335 return;
3336 }
3337
3338 srpt_unregister_mad_agent(sdev);
3339
3340 ib_unregister_event_handler(&sdev->event_handler);
3341
3342 /* Cancel any work queued by the just unregistered IB event handler. */
3343 for (i = 0; i < sdev->device->phys_port_cnt; i++)
3344 cancel_work_sync(&sdev->port[i].work);
3345
3346 ib_destroy_cm_id(sdev->cm_id);
3347
3348 /*
3349 * Unregistering a target must happen after destroying sdev->cm_id
3350 * such that no new SRP_LOGIN_REQ information units can arrive while
3351 * destroying the target.
3352 */
3353 spin_lock(&srpt_dev_lock);
3354 list_del(&sdev->list);
3355 spin_unlock(&srpt_dev_lock);
3356 srpt_release_sdev(sdev);
3357
3358 ib_destroy_srq(sdev->srq);
3359 ib_dereg_mr(sdev->mr);
3360 ib_dealloc_pd(sdev->pd);
3361
3362 srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3363 sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE);
3364 sdev->ioctx_ring = NULL;
3365 kfree(sdev);
3366}
3367
3368static struct ib_client srpt_client = {
3369 .name = DRV_NAME,
3370 .add = srpt_add_one,
3371 .remove = srpt_remove_one
3372};
3373
3374static int srpt_check_true(struct se_portal_group *se_tpg)
3375{
3376 return 1;
3377}
3378
3379static int srpt_check_false(struct se_portal_group *se_tpg)
3380{
3381 return 0;
3382}
3383
3384static char *srpt_get_fabric_name(void)
3385{
3386 return "srpt";
3387}
3388
3389static u8 srpt_get_fabric_proto_ident(struct se_portal_group *se_tpg)
3390{
3391 return SCSI_TRANSPORTID_PROTOCOLID_SRP;
3392}
3393
3394static char *srpt_get_fabric_wwn(struct se_portal_group *tpg)
3395{
3396 struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1);
3397
3398 return sport->port_guid;
3399}
3400
3401static u16 srpt_get_tag(struct se_portal_group *tpg)
3402{
3403 return 1;
3404}
3405
3406static u32 srpt_get_default_depth(struct se_portal_group *se_tpg)
3407{
3408 return 1;
3409}
3410
3411static u32 srpt_get_pr_transport_id(struct se_portal_group *se_tpg,
3412 struct se_node_acl *se_nacl,
3413 struct t10_pr_registration *pr_reg,
3414 int *format_code, unsigned char *buf)
3415{
3416 struct srpt_node_acl *nacl;
3417 struct spc_rdma_transport_id *tr_id;
3418
3419 nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3420 tr_id = (void *)buf;
3421 tr_id->protocol_identifier = SCSI_TRANSPORTID_PROTOCOLID_SRP;
3422 memcpy(tr_id->i_port_id, nacl->i_port_id, sizeof(tr_id->i_port_id));
3423 return sizeof(*tr_id);
3424}
3425
3426static u32 srpt_get_pr_transport_id_len(struct se_portal_group *se_tpg,
3427 struct se_node_acl *se_nacl,
3428 struct t10_pr_registration *pr_reg,
3429 int *format_code)
3430{
3431 *format_code = 0;
3432 return sizeof(struct spc_rdma_transport_id);
3433}
3434
3435static char *srpt_parse_pr_out_transport_id(struct se_portal_group *se_tpg,
3436 const char *buf, u32 *out_tid_len,
3437 char **port_nexus_ptr)
3438{
3439 struct spc_rdma_transport_id *tr_id;
3440
3441 *port_nexus_ptr = NULL;
3442 *out_tid_len = sizeof(struct spc_rdma_transport_id);
3443 tr_id = (void *)buf;
3444 return (char *)tr_id->i_port_id;
3445}
3446
3447static struct se_node_acl *srpt_alloc_fabric_acl(struct se_portal_group *se_tpg)
3448{
3449 struct srpt_node_acl *nacl;
3450
3451 nacl = kzalloc(sizeof(struct srpt_node_acl), GFP_KERNEL);
3452 if (!nacl) {
3453 printk(KERN_ERR "Unable to alocate struct srpt_node_acl\n");
3454 return NULL;
3455 }
3456
3457 return &nacl->nacl;
3458}
3459
3460static void srpt_release_fabric_acl(struct se_portal_group *se_tpg,
3461 struct se_node_acl *se_nacl)
3462{
3463 struct srpt_node_acl *nacl;
3464
3465 nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3466 kfree(nacl);
3467}
3468
3469static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg)
3470{
3471 return 1;
3472}
3473
3474static void srpt_release_cmd(struct se_cmd *se_cmd)
3475{
3476}
3477
3478/**
3479 * srpt_shutdown_session() - Whether or not a session may be shut down.
3480 */
3481static int srpt_shutdown_session(struct se_session *se_sess)
3482{
3483 return true;
3484}
3485
3486/**
3487 * srpt_close_session() - Forcibly close a session.
3488 *
3489 * Callback function invoked by the TCM core to clean up sessions associated
3490 * with a node ACL when the user invokes
3491 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3492 */
3493static void srpt_close_session(struct se_session *se_sess)
3494{
3495 DECLARE_COMPLETION_ONSTACK(release_done);
3496 struct srpt_rdma_ch *ch;
3497 struct srpt_device *sdev;
3498 int res;
3499
3500 ch = se_sess->fabric_sess_ptr;
3501 WARN_ON(ch->sess != se_sess);
3502
3503 pr_debug("ch %p state %d\n", ch, srpt_get_ch_state(ch));
3504
3505 sdev = ch->sport->sdev;
3506 spin_lock_irq(&sdev->spinlock);
3507 BUG_ON(ch->release_done);
3508 ch->release_done = &release_done;
3509 __srpt_close_ch(ch);
3510 spin_unlock_irq(&sdev->spinlock);
3511
3512 res = wait_for_completion_timeout(&release_done, 60 * HZ);
3513 WARN_ON(res <= 0);
3514}
3515
3516/**
3517 * To do: Find out whether stop_session() has a meaning for transports
3518 * other than iSCSI.
3519 */
3520static void srpt_stop_session(struct se_session *se_sess, int sess_sleep,
3521 int conn_sleep)
3522{
3523}
3524
3525static void srpt_reset_nexus(struct se_session *sess)
3526{
3527 printk(KERN_ERR "This is the SRP protocol, not iSCSI\n");
3528}
3529
3530static int srpt_sess_logged_in(struct se_session *se_sess)
3531{
3532 return true;
3533}
3534
3535/**
3536 * srpt_sess_get_index() - Return the value of scsiAttIntrPortIndex (SCSI-MIB).
3537 *
3538 * A quote from RFC 4455 (SCSI-MIB) about this MIB object:
3539 * This object represents an arbitrary integer used to uniquely identify a
3540 * particular attached remote initiator port to a particular SCSI target port
3541 * within a particular SCSI target device within a particular SCSI instance.
3542 */
3543static u32 srpt_sess_get_index(struct se_session *se_sess)
3544{
3545 return 0;
3546}
3547
3548static void srpt_set_default_node_attrs(struct se_node_acl *nacl)
3549{
3550}
3551
3552static u32 srpt_get_task_tag(struct se_cmd *se_cmd)
3553{
3554 struct srpt_send_ioctx *ioctx;
3555
3556 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3557 return ioctx->tag;
3558}
3559
3560/* Note: only used from inside debug printk's by the TCM core. */
3561static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd)
3562{
3563 struct srpt_send_ioctx *ioctx;
3564
3565 ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3566 return srpt_get_cmd_state(ioctx);
3567}
3568
3569static u16 srpt_set_fabric_sense_len(struct se_cmd *cmd, u32 sense_length)
3570{
3571 return 0;
3572}
3573
3574static u16 srpt_get_fabric_sense_len(void)
3575{
3576 return 0;
3577}
3578
3579static int srpt_is_state_remove(struct se_cmd *se_cmd)
3580{
3581 return 0;
3582}
3583
3584/**
3585 * srpt_parse_i_port_id() - Parse an initiator port ID.
3586 * @name: ASCII representation of a 128-bit initiator port ID.
3587 * @i_port_id: Binary 128-bit port ID.
3588 */
3589static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name)
3590{
3591 const char *p;
3592 unsigned len, count, leading_zero_bytes;
3593 int ret, rc;
3594
3595 p = name;
3596 if (strnicmp(p, "0x", 2) == 0)
3597 p += 2;
3598 ret = -EINVAL;
3599 len = strlen(p);
3600 if (len % 2)
3601 goto out;
3602 count = min(len / 2, 16U);
3603 leading_zero_bytes = 16 - count;
3604 memset(i_port_id, 0, leading_zero_bytes);
3605 rc = hex2bin(i_port_id + leading_zero_bytes, p, count);
3606 if (rc < 0)
3607 pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", rc);
3608 ret = 0;
3609out:
3610 return ret;
3611}
3612
3613/*
3614 * configfs callback function invoked for
3615 * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3616 */
3617static struct se_node_acl *srpt_make_nodeacl(struct se_portal_group *tpg,
3618 struct config_group *group,
3619 const char *name)
3620{
3621 struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1);
3622 struct se_node_acl *se_nacl, *se_nacl_new;
3623 struct srpt_node_acl *nacl;
3624 int ret = 0;
3625 u32 nexus_depth = 1;
3626 u8 i_port_id[16];
3627
3628 if (srpt_parse_i_port_id(i_port_id, name) < 0) {
3629 printk(KERN_ERR "invalid initiator port ID %s\n", name);
3630 ret = -EINVAL;
3631 goto err;
3632 }
3633
3634 se_nacl_new = srpt_alloc_fabric_acl(tpg);
3635 if (!se_nacl_new) {
3636 ret = -ENOMEM;
3637 goto err;
3638 }
3639 /*
3640 * nacl_new may be released by core_tpg_add_initiator_node_acl()
3641 * when converting a node ACL from demo mode to explict
3642 */
3643 se_nacl = core_tpg_add_initiator_node_acl(tpg, se_nacl_new, name,
3644 nexus_depth);
3645 if (IS_ERR(se_nacl)) {
3646 ret = PTR_ERR(se_nacl);
3647 goto err;
3648 }
3649 /* Locate our struct srpt_node_acl and set sdev and i_port_id. */
3650 nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3651 memcpy(&nacl->i_port_id[0], &i_port_id[0], 16);
3652 nacl->sport = sport;
3653
3654 spin_lock_irq(&sport->port_acl_lock);
3655 list_add_tail(&nacl->list, &sport->port_acl_list);
3656 spin_unlock_irq(&sport->port_acl_lock);
3657
3658 return se_nacl;
3659err:
3660 return ERR_PTR(ret);
3661}
3662
3663/*
3664 * configfs callback function invoked for
3665 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3666 */
3667static void srpt_drop_nodeacl(struct se_node_acl *se_nacl)
3668{
3669 struct srpt_node_acl *nacl;
3670 struct srpt_device *sdev;
3671 struct srpt_port *sport;
3672
3673 nacl = container_of(se_nacl, struct srpt_node_acl, nacl);
3674 sport = nacl->sport;
3675 sdev = sport->sdev;
3676 spin_lock_irq(&sport->port_acl_lock);
3677 list_del(&nacl->list);
3678 spin_unlock_irq(&sport->port_acl_lock);
3679 core_tpg_del_initiator_node_acl(&sport->port_tpg_1, se_nacl, 1);
3680 srpt_release_fabric_acl(NULL, se_nacl);
3681}
3682
3683static ssize_t srpt_tpg_attrib_show_srp_max_rdma_size(
3684 struct se_portal_group *se_tpg,
3685 char *page)
3686{
3687 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3688
3689 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size);
3690}
3691
3692static ssize_t srpt_tpg_attrib_store_srp_max_rdma_size(
3693 struct se_portal_group *se_tpg,
3694 const char *page,
3695 size_t count)
3696{
3697 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3698 unsigned long val;
3699 int ret;
3700
3701 ret = strict_strtoul(page, 0, &val);
3702 if (ret < 0) {
3703 pr_err("strict_strtoul() failed with ret: %d\n", ret);
3704 return -EINVAL;
3705 }
3706 if (val > MAX_SRPT_RDMA_SIZE) {
3707 pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val,
3708 MAX_SRPT_RDMA_SIZE);
3709 return -EINVAL;
3710 }
3711 if (val < DEFAULT_MAX_RDMA_SIZE) {
3712 pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n",
3713 val, DEFAULT_MAX_RDMA_SIZE);
3714 return -EINVAL;
3715 }
3716 sport->port_attrib.srp_max_rdma_size = val;
3717
3718 return count;
3719}
3720
3721TF_TPG_ATTRIB_ATTR(srpt, srp_max_rdma_size, S_IRUGO | S_IWUSR);
3722
3723static ssize_t srpt_tpg_attrib_show_srp_max_rsp_size(
3724 struct se_portal_group *se_tpg,
3725 char *page)
3726{
3727 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3728
3729 return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size);
3730}
3731
3732static ssize_t srpt_tpg_attrib_store_srp_max_rsp_size(
3733 struct se_portal_group *se_tpg,
3734 const char *page,
3735 size_t count)
3736{
3737 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3738 unsigned long val;
3739 int ret;
3740
3741 ret = strict_strtoul(page, 0, &val);
3742 if (ret < 0) {
3743 pr_err("strict_strtoul() failed with ret: %d\n", ret);
3744 return -EINVAL;
3745 }
3746 if (val > MAX_SRPT_RSP_SIZE) {
3747 pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val,
3748 MAX_SRPT_RSP_SIZE);
3749 return -EINVAL;
3750 }
3751 if (val < MIN_MAX_RSP_SIZE) {
3752 pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val,
3753 MIN_MAX_RSP_SIZE);
3754 return -EINVAL;
3755 }
3756 sport->port_attrib.srp_max_rsp_size = val;
3757
3758 return count;
3759}
3760
3761TF_TPG_ATTRIB_ATTR(srpt, srp_max_rsp_size, S_IRUGO | S_IWUSR);
3762
3763static ssize_t srpt_tpg_attrib_show_srp_sq_size(
3764 struct se_portal_group *se_tpg,
3765 char *page)
3766{
3767 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3768
3769 return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size);
3770}
3771
3772static ssize_t srpt_tpg_attrib_store_srp_sq_size(
3773 struct se_portal_group *se_tpg,
3774 const char *page,
3775 size_t count)
3776{
3777 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3778 unsigned long val;
3779 int ret;
3780
3781 ret = strict_strtoul(page, 0, &val);
3782 if (ret < 0) {
3783 pr_err("strict_strtoul() failed with ret: %d\n", ret);
3784 return -EINVAL;
3785 }
3786 if (val > MAX_SRPT_SRQ_SIZE) {
3787 pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val,
3788 MAX_SRPT_SRQ_SIZE);
3789 return -EINVAL;
3790 }
3791 if (val < MIN_SRPT_SRQ_SIZE) {
3792 pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val,
3793 MIN_SRPT_SRQ_SIZE);
3794 return -EINVAL;
3795 }
3796 sport->port_attrib.srp_sq_size = val;
3797
3798 return count;
3799}
3800
3801TF_TPG_ATTRIB_ATTR(srpt, srp_sq_size, S_IRUGO | S_IWUSR);
3802
3803static struct configfs_attribute *srpt_tpg_attrib_attrs[] = {
3804 &srpt_tpg_attrib_srp_max_rdma_size.attr,
3805 &srpt_tpg_attrib_srp_max_rsp_size.attr,
3806 &srpt_tpg_attrib_srp_sq_size.attr,
3807 NULL,
3808};
3809
3810static ssize_t srpt_tpg_show_enable(
3811 struct se_portal_group *se_tpg,
3812 char *page)
3813{
3814 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3815
3816 return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0);
3817}
3818
3819static ssize_t srpt_tpg_store_enable(
3820 struct se_portal_group *se_tpg,
3821 const char *page,
3822 size_t count)
3823{
3824 struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3825 unsigned long tmp;
3826 int ret;
3827
3828 ret = strict_strtoul(page, 0, &tmp);
3829 if (ret < 0) {
3830 printk(KERN_ERR "Unable to extract srpt_tpg_store_enable\n");
3831 return -EINVAL;
3832 }
3833
3834 if ((tmp != 0) && (tmp != 1)) {
3835 printk(KERN_ERR "Illegal value for srpt_tpg_store_enable: %lu\n", tmp);
3836 return -EINVAL;
3837 }
3838 if (tmp == 1)
3839 sport->enabled = true;
3840 else
3841 sport->enabled = false;
3842
3843 return count;
3844}
3845
3846TF_TPG_BASE_ATTR(srpt, enable, S_IRUGO | S_IWUSR);
3847
3848static struct configfs_attribute *srpt_tpg_attrs[] = {
3849 &srpt_tpg_enable.attr,
3850 NULL,
3851};
3852
3853/**
3854 * configfs callback invoked for
3855 * mkdir /sys/kernel/config/target/$driver/$port/$tpg
3856 */
3857static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn,
3858 struct config_group *group,
3859 const char *name)
3860{
3861 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
3862 int res;
3863
3864 /* Initialize sport->port_wwn and sport->port_tpg_1 */
3865 res = core_tpg_register(&srpt_target->tf_ops, &sport->port_wwn,
3866 &sport->port_tpg_1, sport, TRANSPORT_TPG_TYPE_NORMAL);
3867 if (res)
3868 return ERR_PTR(res);
3869
3870 return &sport->port_tpg_1;
3871}
3872
3873/**
3874 * configfs callback invoked for
3875 * rmdir /sys/kernel/config/target/$driver/$port/$tpg
3876 */
3877static void srpt_drop_tpg(struct se_portal_group *tpg)
3878{
3879 struct srpt_port *sport = container_of(tpg,
3880 struct srpt_port, port_tpg_1);
3881
3882 sport->enabled = false;
3883 core_tpg_deregister(&sport->port_tpg_1);
3884}
3885
3886/**
3887 * configfs callback invoked for
3888 * mkdir /sys/kernel/config/target/$driver/$port
3889 */
3890static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf,
3891 struct config_group *group,
3892 const char *name)
3893{
3894 struct srpt_port *sport;
3895 int ret;
3896
3897 sport = srpt_lookup_port(name);
3898 pr_debug("make_tport(%s)\n", name);
3899 ret = -EINVAL;
3900 if (!sport)
3901 goto err;
3902
3903 return &sport->port_wwn;
3904
3905err:
3906 return ERR_PTR(ret);
3907}
3908
3909/**
3910 * configfs callback invoked for
3911 * rmdir /sys/kernel/config/target/$driver/$port
3912 */
3913static void srpt_drop_tport(struct se_wwn *wwn)
3914{
3915 struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
3916
3917 pr_debug("drop_tport(%s\n", config_item_name(&sport->port_wwn.wwn_group.cg_item));
3918}
3919
3920static ssize_t srpt_wwn_show_attr_version(struct target_fabric_configfs *tf,
3921 char *buf)
3922{
3923 return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION);
3924}
3925
3926TF_WWN_ATTR_RO(srpt, version);
3927
3928static struct configfs_attribute *srpt_wwn_attrs[] = {
3929 &srpt_wwn_version.attr,
3930 NULL,
3931};
3932
3933static struct target_core_fabric_ops srpt_template = {
3934 .get_fabric_name = srpt_get_fabric_name,
3935 .get_fabric_proto_ident = srpt_get_fabric_proto_ident,
3936 .tpg_get_wwn = srpt_get_fabric_wwn,
3937 .tpg_get_tag = srpt_get_tag,
3938 .tpg_get_default_depth = srpt_get_default_depth,
3939 .tpg_get_pr_transport_id = srpt_get_pr_transport_id,
3940 .tpg_get_pr_transport_id_len = srpt_get_pr_transport_id_len,
3941 .tpg_parse_pr_out_transport_id = srpt_parse_pr_out_transport_id,
3942 .tpg_check_demo_mode = srpt_check_false,
3943 .tpg_check_demo_mode_cache = srpt_check_true,
3944 .tpg_check_demo_mode_write_protect = srpt_check_true,
3945 .tpg_check_prod_mode_write_protect = srpt_check_false,
3946 .tpg_alloc_fabric_acl = srpt_alloc_fabric_acl,
3947 .tpg_release_fabric_acl = srpt_release_fabric_acl,
3948 .tpg_get_inst_index = srpt_tpg_get_inst_index,
3949 .release_cmd = srpt_release_cmd,
3950 .check_stop_free = srpt_check_stop_free,
3951 .shutdown_session = srpt_shutdown_session,
3952 .close_session = srpt_close_session,
3953 .stop_session = srpt_stop_session,
3954 .fall_back_to_erl0 = srpt_reset_nexus,
3955 .sess_logged_in = srpt_sess_logged_in,
3956 .sess_get_index = srpt_sess_get_index,
3957 .sess_get_initiator_sid = NULL,
3958 .write_pending = srpt_write_pending,
3959 .write_pending_status = srpt_write_pending_status,
3960 .set_default_node_attributes = srpt_set_default_node_attrs,
3961 .get_task_tag = srpt_get_task_tag,
3962 .get_cmd_state = srpt_get_tcm_cmd_state,
3963 .queue_data_in = srpt_queue_response,
3964 .queue_status = srpt_queue_status,
3965 .queue_tm_rsp = srpt_queue_response,
3966 .get_fabric_sense_len = srpt_get_fabric_sense_len,
3967 .set_fabric_sense_len = srpt_set_fabric_sense_len,
3968 .is_state_remove = srpt_is_state_remove,
3969 /*
3970 * Setup function pointers for generic logic in
3971 * target_core_fabric_configfs.c
3972 */
3973 .fabric_make_wwn = srpt_make_tport,
3974 .fabric_drop_wwn = srpt_drop_tport,
3975 .fabric_make_tpg = srpt_make_tpg,
3976 .fabric_drop_tpg = srpt_drop_tpg,
3977 .fabric_post_link = NULL,
3978 .fabric_pre_unlink = NULL,
3979 .fabric_make_np = NULL,
3980 .fabric_drop_np = NULL,
3981 .fabric_make_nodeacl = srpt_make_nodeacl,
3982 .fabric_drop_nodeacl = srpt_drop_nodeacl,
3983};
3984
3985/**
3986 * srpt_init_module() - Kernel module initialization.
3987 *
3988 * Note: Since ib_register_client() registers callback functions, and since at
3989 * least one of these callback functions (srpt_add_one()) calls target core
3990 * functions, this driver must be registered with the target core before
3991 * ib_register_client() is called.
3992 */
3993static int __init srpt_init_module(void)
3994{
3995 int ret;
3996
3997 ret = -EINVAL;
3998 if (srp_max_req_size < MIN_MAX_REQ_SIZE) {
3999 printk(KERN_ERR "invalid value %d for kernel module parameter"
4000 " srp_max_req_size -- must be at least %d.\n",
4001 srp_max_req_size, MIN_MAX_REQ_SIZE);
4002 goto out;
4003 }
4004
4005 if (srpt_srq_size < MIN_SRPT_SRQ_SIZE
4006 || srpt_srq_size > MAX_SRPT_SRQ_SIZE) {
4007 printk(KERN_ERR "invalid value %d for kernel module parameter"
4008 " srpt_srq_size -- must be in the range [%d..%d].\n",
4009 srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE);
4010 goto out;
4011 }
4012
4013 spin_lock_init(&srpt_dev_lock);
4014 INIT_LIST_HEAD(&srpt_dev_list);
4015
4016 ret = -ENODEV;
4017 srpt_target = target_fabric_configfs_init(THIS_MODULE, "srpt");
4018 if (!srpt_target) {
4019 printk(KERN_ERR "couldn't register\n");
4020 goto out;
4021 }
4022
4023 srpt_target->tf_ops = srpt_template;
4024
4025 /* Enable SG chaining */
4026 srpt_target->tf_ops.task_sg_chaining = true;
4027
4028 /*
4029 * Set up default attribute lists.
4030 */
4031 srpt_target->tf_cit_tmpl.tfc_wwn_cit.ct_attrs = srpt_wwn_attrs;
4032 srpt_target->tf_cit_tmpl.tfc_tpg_base_cit.ct_attrs = srpt_tpg_attrs;
4033 srpt_target->tf_cit_tmpl.tfc_tpg_attrib_cit.ct_attrs = srpt_tpg_attrib_attrs;
4034 srpt_target->tf_cit_tmpl.tfc_tpg_param_cit.ct_attrs = NULL;
4035 srpt_target->tf_cit_tmpl.tfc_tpg_np_base_cit.ct_attrs = NULL;
4036 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_base_cit.ct_attrs = NULL;
4037 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_attrib_cit.ct_attrs = NULL;
4038 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_auth_cit.ct_attrs = NULL;
4039 srpt_target->tf_cit_tmpl.tfc_tpg_nacl_param_cit.ct_attrs = NULL;
4040
4041 ret = target_fabric_configfs_register(srpt_target);
4042 if (ret < 0) {
4043 printk(KERN_ERR "couldn't register\n");
4044 goto out_free_target;
4045 }
4046
4047 ret = ib_register_client(&srpt_client);
4048 if (ret) {
4049 printk(KERN_ERR "couldn't register IB client\n");
4050 goto out_unregister_target;
4051 }
4052
4053 return 0;
4054
4055out_unregister_target:
4056 target_fabric_configfs_deregister(srpt_target);
4057 srpt_target = NULL;
4058out_free_target:
4059 if (srpt_target)
4060 target_fabric_configfs_free(srpt_target);
4061out:
4062 return ret;
4063}
4064
4065static void __exit srpt_cleanup_module(void)
4066{
4067 ib_unregister_client(&srpt_client);
4068 target_fabric_configfs_deregister(srpt_target);
4069 srpt_target = NULL;
4070}
4071
4072module_init(srpt_init_module);
4073module_exit(srpt_cleanup_module);