Merge tag 'mfd-fixes-4.7' of git://git.kernel.org/pub/scm/linux/kernel/git/lee/mfd
[linux-2.6-block.git] / drivers / iio / imu / bmi160 / bmi160_core.c
CommitLineData
77c4ad2d
DB
1/*
2 * BMI160 - Bosch IMU (accel, gyro plus external magnetometer)
3 *
4 * Copyright (c) 2016, Intel Corporation.
5 *
6 * This file is subject to the terms and conditions of version 2 of
7 * the GNU General Public License. See the file COPYING in the main
8 * directory of this archive for more details.
9 *
10 * IIO core driver for BMI160, with support for I2C/SPI busses
11 *
12 * TODO: magnetometer, interrupts, hardware FIFO
13 */
14#include <linux/module.h>
15#include <linux/regmap.h>
16#include <linux/acpi.h>
17#include <linux/delay.h>
18
19#include <linux/iio/iio.h>
20#include <linux/iio/triggered_buffer.h>
21#include <linux/iio/trigger_consumer.h>
22#include <linux/iio/buffer.h>
23
24#include "bmi160.h"
25
26#define BMI160_REG_CHIP_ID 0x00
27#define BMI160_CHIP_ID_VAL 0xD1
28
29#define BMI160_REG_PMU_STATUS 0x03
30
31/* X axis data low byte address, the rest can be obtained using axis offset */
32#define BMI160_REG_DATA_MAGN_XOUT_L 0x04
33#define BMI160_REG_DATA_GYRO_XOUT_L 0x0C
34#define BMI160_REG_DATA_ACCEL_XOUT_L 0x12
35
36#define BMI160_REG_ACCEL_CONFIG 0x40
37#define BMI160_ACCEL_CONFIG_ODR_MASK GENMASK(3, 0)
38#define BMI160_ACCEL_CONFIG_BWP_MASK GENMASK(6, 4)
39
40#define BMI160_REG_ACCEL_RANGE 0x41
41#define BMI160_ACCEL_RANGE_2G 0x03
42#define BMI160_ACCEL_RANGE_4G 0x05
43#define BMI160_ACCEL_RANGE_8G 0x08
44#define BMI160_ACCEL_RANGE_16G 0x0C
45
46#define BMI160_REG_GYRO_CONFIG 0x42
47#define BMI160_GYRO_CONFIG_ODR_MASK GENMASK(3, 0)
48#define BMI160_GYRO_CONFIG_BWP_MASK GENMASK(5, 4)
49
50#define BMI160_REG_GYRO_RANGE 0x43
51#define BMI160_GYRO_RANGE_2000DPS 0x00
52#define BMI160_GYRO_RANGE_1000DPS 0x01
53#define BMI160_GYRO_RANGE_500DPS 0x02
54#define BMI160_GYRO_RANGE_250DPS 0x03
55#define BMI160_GYRO_RANGE_125DPS 0x04
56
57#define BMI160_REG_CMD 0x7E
58#define BMI160_CMD_ACCEL_PM_SUSPEND 0x10
59#define BMI160_CMD_ACCEL_PM_NORMAL 0x11
60#define BMI160_CMD_ACCEL_PM_LOW_POWER 0x12
61#define BMI160_CMD_GYRO_PM_SUSPEND 0x14
62#define BMI160_CMD_GYRO_PM_NORMAL 0x15
63#define BMI160_CMD_GYRO_PM_FAST_STARTUP 0x17
64#define BMI160_CMD_SOFTRESET 0xB6
65
66#define BMI160_REG_DUMMY 0x7F
67
68#define BMI160_ACCEL_PMU_MIN_USLEEP 3200
69#define BMI160_ACCEL_PMU_MAX_USLEEP 3800
70#define BMI160_GYRO_PMU_MIN_USLEEP 55000
71#define BMI160_GYRO_PMU_MAX_USLEEP 80000
72#define BMI160_SOFTRESET_USLEEP 1000
73
74#define BMI160_CHANNEL(_type, _axis, _index) { \
75 .type = _type, \
76 .modified = 1, \
77 .channel2 = IIO_MOD_##_axis, \
78 .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \
79 .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \
80 BIT(IIO_CHAN_INFO_SAMP_FREQ), \
81 .scan_index = _index, \
82 .scan_type = { \
83 .sign = 's', \
84 .realbits = 16, \
85 .storagebits = 16, \
86 .endianness = IIO_LE, \
87 }, \
88}
89
90/* scan indexes follow DATA register order */
91enum bmi160_scan_axis {
92 BMI160_SCAN_EXT_MAGN_X = 0,
93 BMI160_SCAN_EXT_MAGN_Y,
94 BMI160_SCAN_EXT_MAGN_Z,
95 BMI160_SCAN_RHALL,
96 BMI160_SCAN_GYRO_X,
97 BMI160_SCAN_GYRO_Y,
98 BMI160_SCAN_GYRO_Z,
99 BMI160_SCAN_ACCEL_X,
100 BMI160_SCAN_ACCEL_Y,
101 BMI160_SCAN_ACCEL_Z,
102 BMI160_SCAN_TIMESTAMP,
103};
104
105enum bmi160_sensor_type {
106 BMI160_ACCEL = 0,
107 BMI160_GYRO,
108 BMI160_EXT_MAGN,
109 BMI160_NUM_SENSORS /* must be last */
110};
111
112struct bmi160_data {
113 struct regmap *regmap;
114};
115
116const struct regmap_config bmi160_regmap_config = {
117 .reg_bits = 8,
118 .val_bits = 8,
119};
120EXPORT_SYMBOL(bmi160_regmap_config);
121
122struct bmi160_regs {
123 u8 data; /* LSB byte register for X-axis */
124 u8 config;
125 u8 config_odr_mask;
126 u8 config_bwp_mask;
127 u8 range;
128 u8 pmu_cmd_normal;
129 u8 pmu_cmd_suspend;
130};
131
132static struct bmi160_regs bmi160_regs[] = {
133 [BMI160_ACCEL] = {
134 .data = BMI160_REG_DATA_ACCEL_XOUT_L,
135 .config = BMI160_REG_ACCEL_CONFIG,
136 .config_odr_mask = BMI160_ACCEL_CONFIG_ODR_MASK,
137 .config_bwp_mask = BMI160_ACCEL_CONFIG_BWP_MASK,
138 .range = BMI160_REG_ACCEL_RANGE,
139 .pmu_cmd_normal = BMI160_CMD_ACCEL_PM_NORMAL,
140 .pmu_cmd_suspend = BMI160_CMD_ACCEL_PM_SUSPEND,
141 },
142 [BMI160_GYRO] = {
143 .data = BMI160_REG_DATA_GYRO_XOUT_L,
144 .config = BMI160_REG_GYRO_CONFIG,
145 .config_odr_mask = BMI160_GYRO_CONFIG_ODR_MASK,
146 .config_bwp_mask = BMI160_GYRO_CONFIG_BWP_MASK,
147 .range = BMI160_REG_GYRO_RANGE,
148 .pmu_cmd_normal = BMI160_CMD_GYRO_PM_NORMAL,
149 .pmu_cmd_suspend = BMI160_CMD_GYRO_PM_SUSPEND,
150 },
151};
152
153struct bmi160_pmu_time {
154 unsigned long min;
155 unsigned long max;
156};
157
158static struct bmi160_pmu_time bmi160_pmu_time[] = {
159 [BMI160_ACCEL] = {
160 .min = BMI160_ACCEL_PMU_MIN_USLEEP,
161 .max = BMI160_ACCEL_PMU_MAX_USLEEP
162 },
163 [BMI160_GYRO] = {
164 .min = BMI160_GYRO_PMU_MIN_USLEEP,
165 .max = BMI160_GYRO_PMU_MIN_USLEEP,
166 },
167};
168
169struct bmi160_scale {
170 u8 bits;
171 int uscale;
172};
173
174struct bmi160_odr {
175 u8 bits;
176 int odr;
177 int uodr;
178};
179
180static const struct bmi160_scale bmi160_accel_scale[] = {
181 { BMI160_ACCEL_RANGE_2G, 598},
182 { BMI160_ACCEL_RANGE_4G, 1197},
183 { BMI160_ACCEL_RANGE_8G, 2394},
184 { BMI160_ACCEL_RANGE_16G, 4788},
185};
186
187static const struct bmi160_scale bmi160_gyro_scale[] = {
188 { BMI160_GYRO_RANGE_2000DPS, 1065},
189 { BMI160_GYRO_RANGE_1000DPS, 532},
190 { BMI160_GYRO_RANGE_500DPS, 266},
191 { BMI160_GYRO_RANGE_250DPS, 133},
192 { BMI160_GYRO_RANGE_125DPS, 66},
193};
194
195struct bmi160_scale_item {
196 const struct bmi160_scale *tbl;
197 int num;
198};
199
200static const struct bmi160_scale_item bmi160_scale_table[] = {
201 [BMI160_ACCEL] = {
202 .tbl = bmi160_accel_scale,
203 .num = ARRAY_SIZE(bmi160_accel_scale),
204 },
205 [BMI160_GYRO] = {
206 .tbl = bmi160_gyro_scale,
207 .num = ARRAY_SIZE(bmi160_gyro_scale),
208 },
209};
210
211static const struct bmi160_odr bmi160_accel_odr[] = {
5ec97ba0
DB
212 {0x01, 0, 781250},
213 {0x02, 1, 562500},
214 {0x03, 3, 125000},
215 {0x04, 6, 250000},
216 {0x05, 12, 500000},
77c4ad2d
DB
217 {0x06, 25, 0},
218 {0x07, 50, 0},
219 {0x08, 100, 0},
220 {0x09, 200, 0},
221 {0x0A, 400, 0},
222 {0x0B, 800, 0},
223 {0x0C, 1600, 0},
224};
225
226static const struct bmi160_odr bmi160_gyro_odr[] = {
227 {0x06, 25, 0},
228 {0x07, 50, 0},
229 {0x08, 100, 0},
230 {0x09, 200, 0},
231 {0x0A, 400, 0},
5ec97ba0 232 {0x0B, 800, 0},
77c4ad2d
DB
233 {0x0C, 1600, 0},
234 {0x0D, 3200, 0},
235};
236
237struct bmi160_odr_item {
238 const struct bmi160_odr *tbl;
239 int num;
240};
241
242static const struct bmi160_odr_item bmi160_odr_table[] = {
243 [BMI160_ACCEL] = {
244 .tbl = bmi160_accel_odr,
245 .num = ARRAY_SIZE(bmi160_accel_odr),
246 },
247 [BMI160_GYRO] = {
248 .tbl = bmi160_gyro_odr,
249 .num = ARRAY_SIZE(bmi160_gyro_odr),
250 },
251};
252
253static const struct iio_chan_spec bmi160_channels[] = {
254 BMI160_CHANNEL(IIO_ACCEL, X, BMI160_SCAN_ACCEL_X),
255 BMI160_CHANNEL(IIO_ACCEL, Y, BMI160_SCAN_ACCEL_Y),
256 BMI160_CHANNEL(IIO_ACCEL, Z, BMI160_SCAN_ACCEL_Z),
257 BMI160_CHANNEL(IIO_ANGL_VEL, X, BMI160_SCAN_GYRO_X),
258 BMI160_CHANNEL(IIO_ANGL_VEL, Y, BMI160_SCAN_GYRO_Y),
259 BMI160_CHANNEL(IIO_ANGL_VEL, Z, BMI160_SCAN_GYRO_Z),
260 IIO_CHAN_SOFT_TIMESTAMP(BMI160_SCAN_TIMESTAMP),
261};
262
263static enum bmi160_sensor_type bmi160_to_sensor(enum iio_chan_type iio_type)
264{
265 switch (iio_type) {
266 case IIO_ACCEL:
267 return BMI160_ACCEL;
268 case IIO_ANGL_VEL:
269 return BMI160_GYRO;
270 default:
271 return -EINVAL;
272 }
273}
274
275static
276int bmi160_set_mode(struct bmi160_data *data, enum bmi160_sensor_type t,
277 bool mode)
278{
279 int ret;
280 u8 cmd;
281
282 if (mode)
283 cmd = bmi160_regs[t].pmu_cmd_normal;
284 else
285 cmd = bmi160_regs[t].pmu_cmd_suspend;
286
287 ret = regmap_write(data->regmap, BMI160_REG_CMD, cmd);
288 if (ret < 0)
289 return ret;
290
291 usleep_range(bmi160_pmu_time[t].min, bmi160_pmu_time[t].max);
292
293 return 0;
294}
295
296static
297int bmi160_set_scale(struct bmi160_data *data, enum bmi160_sensor_type t,
298 int uscale)
299{
300 int i;
301
302 for (i = 0; i < bmi160_scale_table[t].num; i++)
303 if (bmi160_scale_table[t].tbl[i].uscale == uscale)
304 break;
305
306 if (i == bmi160_scale_table[t].num)
307 return -EINVAL;
308
309 return regmap_write(data->regmap, bmi160_regs[t].range,
310 bmi160_scale_table[t].tbl[i].bits);
311}
312
313static
314int bmi160_get_scale(struct bmi160_data *data, enum bmi160_sensor_type t,
315 int *uscale)
316{
317 int i, ret, val;
318
319 ret = regmap_read(data->regmap, bmi160_regs[t].range, &val);
320 if (ret < 0)
321 return ret;
322
323 for (i = 0; i < bmi160_scale_table[t].num; i++)
324 if (bmi160_scale_table[t].tbl[i].bits == val) {
325 *uscale = bmi160_scale_table[t].tbl[i].uscale;
326 return 0;
327 }
328
329 return -EINVAL;
330}
331
332static int bmi160_get_data(struct bmi160_data *data, int chan_type,
333 int axis, int *val)
334{
335 u8 reg;
336 int ret;
337 __le16 sample;
338 enum bmi160_sensor_type t = bmi160_to_sensor(chan_type);
339
340 reg = bmi160_regs[t].data + (axis - IIO_MOD_X) * sizeof(__le16);
341
342 ret = regmap_bulk_read(data->regmap, reg, &sample, sizeof(__le16));
343 if (ret < 0)
344 return ret;
345
346 *val = sign_extend32(le16_to_cpu(sample), 15);
347
348 return 0;
349}
350
351static
352int bmi160_set_odr(struct bmi160_data *data, enum bmi160_sensor_type t,
353 int odr, int uodr)
354{
355 int i;
356
357 for (i = 0; i < bmi160_odr_table[t].num; i++)
358 if (bmi160_odr_table[t].tbl[i].odr == odr &&
359 bmi160_odr_table[t].tbl[i].uodr == uodr)
360 break;
361
362 if (i >= bmi160_odr_table[t].num)
363 return -EINVAL;
364
365 return regmap_update_bits(data->regmap,
366 bmi160_regs[t].config,
c25d3f37
DB
367 bmi160_regs[t].config_odr_mask,
368 bmi160_odr_table[t].tbl[i].bits);
77c4ad2d
DB
369}
370
371static int bmi160_get_odr(struct bmi160_data *data, enum bmi160_sensor_type t,
372 int *odr, int *uodr)
373{
374 int i, val, ret;
375
376 ret = regmap_read(data->regmap, bmi160_regs[t].config, &val);
377 if (ret < 0)
378 return ret;
379
380 val &= bmi160_regs[t].config_odr_mask;
381
382 for (i = 0; i < bmi160_odr_table[t].num; i++)
383 if (val == bmi160_odr_table[t].tbl[i].bits)
384 break;
385
386 if (i >= bmi160_odr_table[t].num)
387 return -EINVAL;
388
389 *odr = bmi160_odr_table[t].tbl[i].odr;
390 *uodr = bmi160_odr_table[t].tbl[i].uodr;
391
392 return 0;
393}
394
395static irqreturn_t bmi160_trigger_handler(int irq, void *p)
396{
397 struct iio_poll_func *pf = p;
398 struct iio_dev *indio_dev = pf->indio_dev;
399 struct bmi160_data *data = iio_priv(indio_dev);
400 s16 buf[16]; /* 3 sens x 3 axis x s16 + 3 x s16 pad + 4 x s16 tstamp */
401 int i, ret, j = 0, base = BMI160_REG_DATA_MAGN_XOUT_L;
402 __le16 sample;
403
404 for_each_set_bit(i, indio_dev->active_scan_mask,
405 indio_dev->masklength) {
406 ret = regmap_bulk_read(data->regmap, base + i * sizeof(__le16),
407 &sample, sizeof(__le16));
408 if (ret < 0)
409 goto done;
410 buf[j++] = sample;
411 }
412
413 iio_push_to_buffers_with_timestamp(indio_dev, buf, iio_get_time_ns());
414done:
415 iio_trigger_notify_done(indio_dev->trig);
416 return IRQ_HANDLED;
417}
418
419static int bmi160_read_raw(struct iio_dev *indio_dev,
420 struct iio_chan_spec const *chan,
421 int *val, int *val2, long mask)
422{
423 int ret;
424 struct bmi160_data *data = iio_priv(indio_dev);
425
426 switch (mask) {
427 case IIO_CHAN_INFO_RAW:
428 ret = bmi160_get_data(data, chan->type, chan->channel2, val);
429 if (ret < 0)
430 return ret;
431 return IIO_VAL_INT;
432 case IIO_CHAN_INFO_SCALE:
433 *val = 0;
434 ret = bmi160_get_scale(data,
435 bmi160_to_sensor(chan->type), val2);
436 return ret < 0 ? ret : IIO_VAL_INT_PLUS_MICRO;
437 case IIO_CHAN_INFO_SAMP_FREQ:
438 ret = bmi160_get_odr(data, bmi160_to_sensor(chan->type),
439 val, val2);
440 return ret < 0 ? ret : IIO_VAL_INT_PLUS_MICRO;
441 default:
442 return -EINVAL;
443 }
444
445 return 0;
446}
447
448static int bmi160_write_raw(struct iio_dev *indio_dev,
449 struct iio_chan_spec const *chan,
450 int val, int val2, long mask)
451{
452 struct bmi160_data *data = iio_priv(indio_dev);
453
454 switch (mask) {
455 case IIO_CHAN_INFO_SCALE:
456 return bmi160_set_scale(data,
457 bmi160_to_sensor(chan->type), val2);
458 break;
459 case IIO_CHAN_INFO_SAMP_FREQ:
460 return bmi160_set_odr(data, bmi160_to_sensor(chan->type),
461 val, val2);
462 default:
463 return -EINVAL;
464 }
465
466 return 0;
467}
468
469static const struct iio_info bmi160_info = {
470 .driver_module = THIS_MODULE,
471 .read_raw = bmi160_read_raw,
472 .write_raw = bmi160_write_raw,
473};
474
475static const char *bmi160_match_acpi_device(struct device *dev)
476{
477 const struct acpi_device_id *id;
478
479 id = acpi_match_device(dev->driver->acpi_match_table, dev);
480 if (!id)
481 return NULL;
482
483 return dev_name(dev);
484}
485
486static int bmi160_chip_init(struct bmi160_data *data, bool use_spi)
487{
488 int ret;
489 unsigned int val;
490 struct device *dev = regmap_get_device(data->regmap);
491
492 ret = regmap_write(data->regmap, BMI160_REG_CMD, BMI160_CMD_SOFTRESET);
493 if (ret < 0)
494 return ret;
495
496 usleep_range(BMI160_SOFTRESET_USLEEP, BMI160_SOFTRESET_USLEEP + 1);
497
498 /*
499 * CS rising edge is needed before starting SPI, so do a dummy read
500 * See Section 3.2.1, page 86 of the datasheet
501 */
502 if (use_spi) {
503 ret = regmap_read(data->regmap, BMI160_REG_DUMMY, &val);
504 if (ret < 0)
505 return ret;
506 }
507
508 ret = regmap_read(data->regmap, BMI160_REG_CHIP_ID, &val);
509 if (ret < 0) {
510 dev_err(dev, "Error reading chip id\n");
511 return ret;
512 }
513 if (val != BMI160_CHIP_ID_VAL) {
514 dev_err(dev, "Wrong chip id, got %x expected %x\n",
515 val, BMI160_CHIP_ID_VAL);
516 return -ENODEV;
517 }
518
519 ret = bmi160_set_mode(data, BMI160_ACCEL, true);
520 if (ret < 0)
521 return ret;
522
523 ret = bmi160_set_mode(data, BMI160_GYRO, true);
524 if (ret < 0)
525 return ret;
526
527 return 0;
528}
529
530static void bmi160_chip_uninit(struct bmi160_data *data)
531{
532 bmi160_set_mode(data, BMI160_GYRO, false);
533 bmi160_set_mode(data, BMI160_ACCEL, false);
534}
535
536int bmi160_core_probe(struct device *dev, struct regmap *regmap,
537 const char *name, bool use_spi)
538{
539 struct iio_dev *indio_dev;
540 struct bmi160_data *data;
541 int ret;
542
543 indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
544 if (!indio_dev)
545 return -ENOMEM;
546
547 data = iio_priv(indio_dev);
548 dev_set_drvdata(dev, indio_dev);
549 data->regmap = regmap;
550
551 ret = bmi160_chip_init(data, use_spi);
552 if (ret < 0)
553 return ret;
554
555 if (!name && ACPI_HANDLE(dev))
556 name = bmi160_match_acpi_device(dev);
557
558 indio_dev->dev.parent = dev;
559 indio_dev->channels = bmi160_channels;
560 indio_dev->num_channels = ARRAY_SIZE(bmi160_channels);
561 indio_dev->name = name;
562 indio_dev->modes = INDIO_DIRECT_MODE;
563 indio_dev->info = &bmi160_info;
564
565 ret = iio_triggered_buffer_setup(indio_dev, NULL,
566 bmi160_trigger_handler, NULL);
567 if (ret < 0)
568 goto uninit;
569
570 ret = iio_device_register(indio_dev);
571 if (ret < 0)
572 goto buffer_cleanup;
573
574 return 0;
575buffer_cleanup:
576 iio_triggered_buffer_cleanup(indio_dev);
577uninit:
578 bmi160_chip_uninit(data);
579 return ret;
580}
581EXPORT_SYMBOL_GPL(bmi160_core_probe);
582
583void bmi160_core_remove(struct device *dev)
584{
585 struct iio_dev *indio_dev = dev_get_drvdata(dev);
586 struct bmi160_data *data = iio_priv(indio_dev);
587
588 iio_device_unregister(indio_dev);
589 iio_triggered_buffer_cleanup(indio_dev);
590 bmi160_chip_uninit(data);
591}
592EXPORT_SYMBOL_GPL(bmi160_core_remove);
593
594MODULE_AUTHOR("Daniel Baluta <daniel.baluta@intel.com");
595MODULE_DESCRIPTION("Bosch BMI160 driver");
596MODULE_LICENSE("GPL v2");