blk_end_request: changing cpqarray (take 4)
[linux-2.6-block.git] / drivers / ide / ide-io.c
CommitLineData
1da177e4
LT
1/*
2 * IDE I/O functions
3 *
4 * Basic PIO and command management functionality.
5 *
6 * This code was split off from ide.c. See ide.c for history and original
7 * copyrights.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms of the GNU General Public License as published by the
11 * Free Software Foundation; either version 2, or (at your option) any
12 * later version.
13 *
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
18 *
19 * For the avoidance of doubt the "preferred form" of this code is one which
20 * is in an open non patent encumbered format. Where cryptographic key signing
21 * forms part of the process of creating an executable the information
22 * including keys needed to generate an equivalently functional executable
23 * are deemed to be part of the source code.
24 */
25
26
1da177e4
LT
27#include <linux/module.h>
28#include <linux/types.h>
29#include <linux/string.h>
30#include <linux/kernel.h>
31#include <linux/timer.h>
32#include <linux/mm.h>
33#include <linux/interrupt.h>
34#include <linux/major.h>
35#include <linux/errno.h>
36#include <linux/genhd.h>
37#include <linux/blkpg.h>
38#include <linux/slab.h>
39#include <linux/init.h>
40#include <linux/pci.h>
41#include <linux/delay.h>
42#include <linux/ide.h>
43#include <linux/completion.h>
44#include <linux/reboot.h>
45#include <linux/cdrom.h>
46#include <linux/seq_file.h>
47#include <linux/device.h>
48#include <linux/kmod.h>
49#include <linux/scatterlist.h>
1977f032 50#include <linux/bitops.h>
1da177e4
LT
51
52#include <asm/byteorder.h>
53#include <asm/irq.h>
54#include <asm/uaccess.h>
55#include <asm/io.h>
1da177e4 56
a7ff7d41 57static int __ide_end_request(ide_drive_t *drive, struct request *rq,
bbc615b1 58 int uptodate, unsigned int nr_bytes, int dequeue)
1da177e4
LT
59{
60 int ret = 1;
61
1da177e4
LT
62 /*
63 * if failfast is set on a request, override number of sectors and
64 * complete the whole request right now
65 */
66 if (blk_noretry_request(rq) && end_io_error(uptodate))
41e9d344 67 nr_bytes = rq->hard_nr_sectors << 9;
1da177e4
LT
68
69 if (!blk_fs_request(rq) && end_io_error(uptodate) && !rq->errors)
70 rq->errors = -EIO;
71
72 /*
73 * decide whether to reenable DMA -- 3 is a random magic for now,
74 * if we DMA timeout more than 3 times, just stay in PIO
75 */
76 if (drive->state == DMA_PIO_RETRY && drive->retry_pio <= 3) {
77 drive->state = 0;
4a546e04 78 ide_dma_on(drive);
1da177e4
LT
79 }
80
41e9d344 81 if (!end_that_request_chunk(rq, uptodate, nr_bytes)) {
ba027def 82 add_disk_randomness(rq->rq_disk);
bbc615b1
BZ
83 if (dequeue) {
84 if (!list_empty(&rq->queuelist))
85 blkdev_dequeue_request(rq);
86 HWGROUP(drive)->rq = NULL;
87 }
ba027def 88 end_that_request_last(rq, uptodate);
1da177e4
LT
89 ret = 0;
90 }
8672d571 91
1da177e4
LT
92 return ret;
93}
1da177e4
LT
94
95/**
96 * ide_end_request - complete an IDE I/O
97 * @drive: IDE device for the I/O
98 * @uptodate:
99 * @nr_sectors: number of sectors completed
100 *
101 * This is our end_request wrapper function. We complete the I/O
102 * update random number input and dequeue the request, which if
103 * it was tagged may be out of order.
104 */
105
106int ide_end_request (ide_drive_t *drive, int uptodate, int nr_sectors)
107{
41e9d344 108 unsigned int nr_bytes = nr_sectors << 9;
1da177e4
LT
109 struct request *rq;
110 unsigned long flags;
111 int ret = 1;
112
8672d571
JA
113 /*
114 * room for locking improvements here, the calls below don't
115 * need the queue lock held at all
116 */
1da177e4
LT
117 spin_lock_irqsave(&ide_lock, flags);
118 rq = HWGROUP(drive)->rq;
119
41e9d344
JA
120 if (!nr_bytes) {
121 if (blk_pc_request(rq))
122 nr_bytes = rq->data_len;
123 else
124 nr_bytes = rq->hard_cur_sectors << 9;
125 }
1da177e4 126
bbc615b1 127 ret = __ide_end_request(drive, rq, uptodate, nr_bytes, 1);
1da177e4
LT
128
129 spin_unlock_irqrestore(&ide_lock, flags);
130 return ret;
131}
132EXPORT_SYMBOL(ide_end_request);
133
134/*
135 * Power Management state machine. This one is rather trivial for now,
136 * we should probably add more, like switching back to PIO on suspend
137 * to help some BIOSes, re-do the door locking on resume, etc...
138 */
139
140enum {
141 ide_pm_flush_cache = ide_pm_state_start_suspend,
142 idedisk_pm_standby,
143
8c2c0118
JL
144 idedisk_pm_restore_pio = ide_pm_state_start_resume,
145 idedisk_pm_idle,
1da177e4
LT
146 ide_pm_restore_dma,
147};
148
149static void ide_complete_power_step(ide_drive_t *drive, struct request *rq, u8 stat, u8 error)
150{
c00895ab 151 struct request_pm_state *pm = rq->data;
ad3cadda 152
1da177e4
LT
153 if (drive->media != ide_disk)
154 return;
155
ad3cadda 156 switch (pm->pm_step) {
1da177e4 157 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) complete */
ad3cadda
JA
158 if (pm->pm_state == PM_EVENT_FREEZE)
159 pm->pm_step = ide_pm_state_completed;
1da177e4 160 else
ad3cadda 161 pm->pm_step = idedisk_pm_standby;
1da177e4
LT
162 break;
163 case idedisk_pm_standby: /* Suspend step 2 (standby) complete */
ad3cadda 164 pm->pm_step = ide_pm_state_completed;
1da177e4 165 break;
8c2c0118
JL
166 case idedisk_pm_restore_pio: /* Resume step 1 complete */
167 pm->pm_step = idedisk_pm_idle;
168 break;
169 case idedisk_pm_idle: /* Resume step 2 (idle) complete */
ad3cadda 170 pm->pm_step = ide_pm_restore_dma;
1da177e4
LT
171 break;
172 }
173}
174
175static ide_startstop_t ide_start_power_step(ide_drive_t *drive, struct request *rq)
176{
c00895ab 177 struct request_pm_state *pm = rq->data;
1da177e4
LT
178 ide_task_t *args = rq->special;
179
180 memset(args, 0, sizeof(*args));
181
ad3cadda 182 switch (pm->pm_step) {
1da177e4
LT
183 case ide_pm_flush_cache: /* Suspend step 1 (flush cache) */
184 if (drive->media != ide_disk)
185 break;
186 /* Not supported? Switch to next step now. */
187 if (!drive->wcache || !ide_id_has_flush_cache(drive->id)) {
188 ide_complete_power_step(drive, rq, 0, 0);
189 return ide_stopped;
190 }
191 if (ide_id_has_flush_cache_ext(drive->id))
650d841d 192 args->tf.command = WIN_FLUSH_CACHE_EXT;
1da177e4 193 else
650d841d 194 args->tf.command = WIN_FLUSH_CACHE;
74095a91 195 goto out_do_tf;
1da177e4
LT
196
197 case idedisk_pm_standby: /* Suspend step 2 (standby) */
650d841d 198 args->tf.command = WIN_STANDBYNOW1;
74095a91 199 goto out_do_tf;
1da177e4 200
8c2c0118 201 case idedisk_pm_restore_pio: /* Resume step 1 (restore PIO) */
26bcb879 202 ide_set_max_pio(drive);
317a46a2
BZ
203 /*
204 * skip idedisk_pm_idle for ATAPI devices
205 */
206 if (drive->media != ide_disk)
207 pm->pm_step = ide_pm_restore_dma;
208 else
209 ide_complete_power_step(drive, rq, 0, 0);
8c2c0118
JL
210 return ide_stopped;
211
212 case idedisk_pm_idle: /* Resume step 2 (idle) */
650d841d 213 args->tf.command = WIN_IDLEIMMEDIATE;
74095a91 214 goto out_do_tf;
1da177e4 215
8c2c0118 216 case ide_pm_restore_dma: /* Resume step 3 (restore DMA) */
1da177e4 217 /*
0ae2e178 218 * Right now, all we do is call ide_set_dma(drive),
1da177e4
LT
219 * we could be smarter and check for current xfer_speed
220 * in struct drive etc...
221 */
15ce926a 222 if (drive->hwif->dma_host_set == NULL)
1da177e4 223 break;
8987d21b
BZ
224 /*
225 * TODO: respect ->using_dma setting
226 */
3608b5d7 227 ide_set_dma(drive);
1da177e4
LT
228 break;
229 }
ad3cadda 230 pm->pm_step = ide_pm_state_completed;
1da177e4 231 return ide_stopped;
74095a91
BZ
232
233out_do_tf:
657cc1a8 234 args->tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE;
ac026ff2 235 args->data_phase = TASKFILE_NO_DATA;
74095a91 236 return do_rw_taskfile(drive, args);
1da177e4
LT
237}
238
dbe217af
AC
239/**
240 * ide_end_dequeued_request - complete an IDE I/O
241 * @drive: IDE device for the I/O
242 * @uptodate:
243 * @nr_sectors: number of sectors completed
244 *
245 * Complete an I/O that is no longer on the request queue. This
246 * typically occurs when we pull the request and issue a REQUEST_SENSE.
247 * We must still finish the old request but we must not tamper with the
248 * queue in the meantime.
249 *
250 * NOTE: This path does not handle barrier, but barrier is not supported
251 * on ide-cd anyway.
252 */
253
254int ide_end_dequeued_request(ide_drive_t *drive, struct request *rq,
255 int uptodate, int nr_sectors)
256{
257 unsigned long flags;
bbc615b1 258 int ret;
dbe217af
AC
259
260 spin_lock_irqsave(&ide_lock, flags);
4aff5e23 261 BUG_ON(!blk_rq_started(rq));
bbc615b1 262 ret = __ide_end_request(drive, rq, uptodate, nr_sectors << 9, 0);
dbe217af 263 spin_unlock_irqrestore(&ide_lock, flags);
bbc615b1 264
dbe217af
AC
265 return ret;
266}
267EXPORT_SYMBOL_GPL(ide_end_dequeued_request);
268
269
1da177e4
LT
270/**
271 * ide_complete_pm_request - end the current Power Management request
272 * @drive: target drive
273 * @rq: request
274 *
275 * This function cleans up the current PM request and stops the queue
276 * if necessary.
277 */
278static void ide_complete_pm_request (ide_drive_t *drive, struct request *rq)
279{
280 unsigned long flags;
281
282#ifdef DEBUG_PM
283 printk("%s: completing PM request, %s\n", drive->name,
284 blk_pm_suspend_request(rq) ? "suspend" : "resume");
285#endif
286 spin_lock_irqsave(&ide_lock, flags);
287 if (blk_pm_suspend_request(rq)) {
288 blk_stop_queue(drive->queue);
289 } else {
290 drive->blocked = 0;
291 blk_start_queue(drive->queue);
292 }
293 blkdev_dequeue_request(rq);
294 HWGROUP(drive)->rq = NULL;
8ffdc655 295 end_that_request_last(rq, 1);
1da177e4
LT
296 spin_unlock_irqrestore(&ide_lock, flags);
297}
298
c2b57cdc
BZ
299void ide_tf_read(ide_drive_t *drive, ide_task_t *task)
300{
301 ide_hwif_t *hwif = drive->hwif;
302 struct ide_taskfile *tf = &task->tf;
303
304 if (task->tf_flags & IDE_TFLAG_IN_DATA) {
305 u16 data = hwif->INW(IDE_DATA_REG);
306
307 tf->data = data & 0xff;
308 tf->hob_data = (data >> 8) & 0xff;
309 }
310
311 /* be sure we're looking at the low order bits */
312 hwif->OUTB(drive->ctl & ~0x80, IDE_CONTROL_REG);
313
314 if (task->tf_flags & IDE_TFLAG_IN_NSECT)
315 tf->nsect = hwif->INB(IDE_NSECTOR_REG);
316 if (task->tf_flags & IDE_TFLAG_IN_LBAL)
317 tf->lbal = hwif->INB(IDE_SECTOR_REG);
318 if (task->tf_flags & IDE_TFLAG_IN_LBAM)
319 tf->lbam = hwif->INB(IDE_LCYL_REG);
320 if (task->tf_flags & IDE_TFLAG_IN_LBAH)
321 tf->lbah = hwif->INB(IDE_HCYL_REG);
322 if (task->tf_flags & IDE_TFLAG_IN_DEVICE)
323 tf->device = hwif->INB(IDE_SELECT_REG);
324
325 if (task->tf_flags & IDE_TFLAG_LBA48) {
326 hwif->OUTB(drive->ctl | 0x80, IDE_CONTROL_REG);
327
328 if (task->tf_flags & IDE_TFLAG_IN_HOB_FEATURE)
329 tf->hob_feature = hwif->INB(IDE_FEATURE_REG);
330 if (task->tf_flags & IDE_TFLAG_IN_HOB_NSECT)
331 tf->hob_nsect = hwif->INB(IDE_NSECTOR_REG);
332 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAL)
333 tf->hob_lbal = hwif->INB(IDE_SECTOR_REG);
334 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAM)
335 tf->hob_lbam = hwif->INB(IDE_LCYL_REG);
336 if (task->tf_flags & IDE_TFLAG_IN_HOB_LBAH)
337 tf->hob_lbah = hwif->INB(IDE_HCYL_REG);
338 }
339}
340
1da177e4
LT
341/**
342 * ide_end_drive_cmd - end an explicit drive command
343 * @drive: command
344 * @stat: status bits
345 * @err: error bits
346 *
347 * Clean up after success/failure of an explicit drive command.
348 * These get thrown onto the queue so they are synchronized with
349 * real I/O operations on the drive.
350 *
351 * In LBA48 mode we have to read the register set twice to get
352 * all the extra information out.
353 */
354
355void ide_end_drive_cmd (ide_drive_t *drive, u8 stat, u8 err)
356{
1da177e4
LT
357 unsigned long flags;
358 struct request *rq;
359
360 spin_lock_irqsave(&ide_lock, flags);
361 rq = HWGROUP(drive)->rq;
362 spin_unlock_irqrestore(&ide_lock, flags);
363
7267c337 364 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE) {
1da177e4
LT
365 ide_task_t *args = (ide_task_t *) rq->special;
366 if (rq->errors == 0)
367 rq->errors = !OK_STAT(stat,READY_STAT,BAD_STAT);
368
369 if (args) {
650d841d
BZ
370 struct ide_taskfile *tf = &args->tf;
371
650d841d 372 tf->error = err;
650d841d 373 tf->status = stat;
1da177e4 374
c2b57cdc 375 ide_tf_read(drive, args);
1da177e4
LT
376 }
377 } else if (blk_pm_request(rq)) {
c00895ab 378 struct request_pm_state *pm = rq->data;
1da177e4
LT
379#ifdef DEBUG_PM
380 printk("%s: complete_power_step(step: %d, stat: %x, err: %x)\n",
381 drive->name, rq->pm->pm_step, stat, err);
382#endif
383 ide_complete_power_step(drive, rq, stat, err);
ad3cadda 384 if (pm->pm_step == ide_pm_state_completed)
1da177e4
LT
385 ide_complete_pm_request(drive, rq);
386 return;
387 }
388
389 spin_lock_irqsave(&ide_lock, flags);
390 blkdev_dequeue_request(rq);
391 HWGROUP(drive)->rq = NULL;
392 rq->errors = err;
8ffdc655 393 end_that_request_last(rq, !rq->errors);
1da177e4
LT
394 spin_unlock_irqrestore(&ide_lock, flags);
395}
396
397EXPORT_SYMBOL(ide_end_drive_cmd);
398
399/**
400 * try_to_flush_leftover_data - flush junk
401 * @drive: drive to flush
402 *
403 * try_to_flush_leftover_data() is invoked in response to a drive
404 * unexpectedly having its DRQ_STAT bit set. As an alternative to
405 * resetting the drive, this routine tries to clear the condition
406 * by read a sector's worth of data from the drive. Of course,
407 * this may not help if the drive is *waiting* for data from *us*.
408 */
409static void try_to_flush_leftover_data (ide_drive_t *drive)
410{
411 int i = (drive->mult_count ? drive->mult_count : 1) * SECTOR_WORDS;
412
413 if (drive->media != ide_disk)
414 return;
415 while (i > 0) {
416 u32 buffer[16];
417 u32 wcount = (i > 16) ? 16 : i;
418
419 i -= wcount;
420 HWIF(drive)->ata_input_data(drive, buffer, wcount);
421 }
422}
423
424static void ide_kill_rq(ide_drive_t *drive, struct request *rq)
425{
426 if (rq->rq_disk) {
427 ide_driver_t *drv;
428
429 drv = *(ide_driver_t **)rq->rq_disk->private_data;
430 drv->end_request(drive, 0, 0);
431 } else
432 ide_end_request(drive, 0, 0);
433}
434
435static ide_startstop_t ide_ata_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
436{
437 ide_hwif_t *hwif = drive->hwif;
438
439 if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
440 /* other bits are useless when BUSY */
441 rq->errors |= ERROR_RESET;
442 } else if (stat & ERR_STAT) {
443 /* err has different meaning on cdrom and tape */
444 if (err == ABRT_ERR) {
445 if (drive->select.b.lba &&
446 /* some newer drives don't support WIN_SPECIFY */
447 hwif->INB(IDE_COMMAND_REG) == WIN_SPECIFY)
448 return ide_stopped;
449 } else if ((err & BAD_CRC) == BAD_CRC) {
450 /* UDMA crc error, just retry the operation */
451 drive->crc_count++;
452 } else if (err & (BBD_ERR | ECC_ERR)) {
453 /* retries won't help these */
454 rq->errors = ERROR_MAX;
455 } else if (err & TRK0_ERR) {
456 /* help it find track zero */
457 rq->errors |= ERROR_RECAL;
458 }
459 }
460
ed67b923
BZ
461 if ((stat & DRQ_STAT) && rq_data_dir(rq) == READ &&
462 (hwif->host_flags & IDE_HFLAG_ERROR_STOPS_FIFO) == 0)
1da177e4
LT
463 try_to_flush_leftover_data(drive);
464
513daadd
SS
465 if (rq->errors >= ERROR_MAX || blk_noretry_request(rq)) {
466 ide_kill_rq(drive, rq);
467 return ide_stopped;
468 }
469
1da177e4 470 if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
513daadd 471 rq->errors |= ERROR_RESET;
1da177e4 472
513daadd 473 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
1da177e4 474 ++rq->errors;
513daadd 475 return ide_do_reset(drive);
1da177e4 476 }
513daadd
SS
477
478 if ((rq->errors & ERROR_RECAL) == ERROR_RECAL)
479 drive->special.b.recalibrate = 1;
480
481 ++rq->errors;
482
1da177e4
LT
483 return ide_stopped;
484}
485
486static ide_startstop_t ide_atapi_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
487{
488 ide_hwif_t *hwif = drive->hwif;
489
490 if (stat & BUSY_STAT || ((stat & WRERR_STAT) && !drive->nowerr)) {
491 /* other bits are useless when BUSY */
492 rq->errors |= ERROR_RESET;
493 } else {
494 /* add decoding error stuff */
495 }
496
497 if (hwif->INB(IDE_STATUS_REG) & (BUSY_STAT|DRQ_STAT))
498 /* force an abort */
499 hwif->OUTB(WIN_IDLEIMMEDIATE, IDE_COMMAND_REG);
500
501 if (rq->errors >= ERROR_MAX) {
502 ide_kill_rq(drive, rq);
503 } else {
504 if ((rq->errors & ERROR_RESET) == ERROR_RESET) {
505 ++rq->errors;
506 return ide_do_reset(drive);
507 }
508 ++rq->errors;
509 }
510
511 return ide_stopped;
512}
513
514ide_startstop_t
515__ide_error(ide_drive_t *drive, struct request *rq, u8 stat, u8 err)
516{
517 if (drive->media == ide_disk)
518 return ide_ata_error(drive, rq, stat, err);
519 return ide_atapi_error(drive, rq, stat, err);
520}
521
522EXPORT_SYMBOL_GPL(__ide_error);
523
524/**
525 * ide_error - handle an error on the IDE
526 * @drive: drive the error occurred on
527 * @msg: message to report
528 * @stat: status bits
529 *
530 * ide_error() takes action based on the error returned by the drive.
531 * For normal I/O that may well include retries. We deal with
532 * both new-style (taskfile) and old style command handling here.
533 * In the case of taskfile command handling there is work left to
534 * do
535 */
536
537ide_startstop_t ide_error (ide_drive_t *drive, const char *msg, u8 stat)
538{
539 struct request *rq;
540 u8 err;
541
542 err = ide_dump_status(drive, msg, stat);
543
544 if ((rq = HWGROUP(drive)->rq) == NULL)
545 return ide_stopped;
546
547 /* retry only "normal" I/O: */
4aff5e23 548 if (!blk_fs_request(rq)) {
1da177e4
LT
549 rq->errors = 1;
550 ide_end_drive_cmd(drive, stat, err);
551 return ide_stopped;
552 }
553
554 if (rq->rq_disk) {
555 ide_driver_t *drv;
556
557 drv = *(ide_driver_t **)rq->rq_disk->private_data;
558 return drv->error(drive, rq, stat, err);
559 } else
560 return __ide_error(drive, rq, stat, err);
561}
562
563EXPORT_SYMBOL_GPL(ide_error);
564
565ide_startstop_t __ide_abort(ide_drive_t *drive, struct request *rq)
566{
567 if (drive->media != ide_disk)
568 rq->errors |= ERROR_RESET;
569
570 ide_kill_rq(drive, rq);
571
572 return ide_stopped;
573}
574
575EXPORT_SYMBOL_GPL(__ide_abort);
576
577/**
338cec32 578 * ide_abort - abort pending IDE operations
1da177e4
LT
579 * @drive: drive the error occurred on
580 * @msg: message to report
581 *
582 * ide_abort kills and cleans up when we are about to do a
583 * host initiated reset on active commands. Longer term we
584 * want handlers to have sensible abort handling themselves
585 *
586 * This differs fundamentally from ide_error because in
587 * this case the command is doing just fine when we
588 * blow it away.
589 */
590
591ide_startstop_t ide_abort(ide_drive_t *drive, const char *msg)
592{
593 struct request *rq;
594
595 if (drive == NULL || (rq = HWGROUP(drive)->rq) == NULL)
596 return ide_stopped;
597
598 /* retry only "normal" I/O: */
4aff5e23 599 if (!blk_fs_request(rq)) {
1da177e4
LT
600 rq->errors = 1;
601 ide_end_drive_cmd(drive, BUSY_STAT, 0);
602 return ide_stopped;
603 }
604
605 if (rq->rq_disk) {
606 ide_driver_t *drv;
607
608 drv = *(ide_driver_t **)rq->rq_disk->private_data;
609 return drv->abort(drive, rq);
610 } else
611 return __ide_abort(drive, rq);
612}
613
57d7366b 614static void ide_tf_set_specify_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
1da177e4 615{
57d7366b
BZ
616 tf->nsect = drive->sect;
617 tf->lbal = drive->sect;
618 tf->lbam = drive->cyl;
619 tf->lbah = drive->cyl >> 8;
620 tf->device = ((drive->head - 1) | drive->select.all) & ~ATA_LBA;
621 tf->command = WIN_SPECIFY;
1da177e4
LT
622}
623
57d7366b 624static void ide_tf_set_restore_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
1da177e4 625{
57d7366b
BZ
626 tf->nsect = drive->sect;
627 tf->command = WIN_RESTORE;
1da177e4
LT
628}
629
57d7366b 630static void ide_tf_set_setmult_cmd(ide_drive_t *drive, struct ide_taskfile *tf)
1da177e4 631{
57d7366b
BZ
632 tf->nsect = drive->mult_req;
633 tf->command = WIN_SETMULT;
1da177e4
LT
634}
635
636static ide_startstop_t ide_disk_special(ide_drive_t *drive)
637{
638 special_t *s = &drive->special;
639 ide_task_t args;
640
641 memset(&args, 0, sizeof(ide_task_t));
ac026ff2 642 args.data_phase = TASKFILE_NO_DATA;
1da177e4
LT
643
644 if (s->b.set_geometry) {
645 s->b.set_geometry = 0;
57d7366b 646 ide_tf_set_specify_cmd(drive, &args.tf);
1da177e4
LT
647 } else if (s->b.recalibrate) {
648 s->b.recalibrate = 0;
57d7366b 649 ide_tf_set_restore_cmd(drive, &args.tf);
1da177e4
LT
650 } else if (s->b.set_multmode) {
651 s->b.set_multmode = 0;
652 if (drive->mult_req > drive->id->max_multsect)
653 drive->mult_req = drive->id->max_multsect;
57d7366b 654 ide_tf_set_setmult_cmd(drive, &args.tf);
1da177e4
LT
655 } else if (s->all) {
656 int special = s->all;
657 s->all = 0;
658 printk(KERN_ERR "%s: bad special flag: 0x%02x\n", drive->name, special);
659 return ide_stopped;
660 }
661
657cc1a8 662 args.tf_flags = IDE_TFLAG_TF | IDE_TFLAG_DEVICE |
57d7366b 663 IDE_TFLAG_CUSTOM_HANDLER;
74095a91 664
1da177e4
LT
665 do_rw_taskfile(drive, &args);
666
667 return ide_started;
668}
669
26bcb879
BZ
670/*
671 * handle HDIO_SET_PIO_MODE ioctl abusers here, eventually it will go away
672 */
673static int set_pio_mode_abuse(ide_hwif_t *hwif, u8 req_pio)
674{
675 switch (req_pio) {
676 case 202:
677 case 201:
678 case 200:
679 case 102:
680 case 101:
681 case 100:
682 return (hwif->host_flags & IDE_HFLAG_ABUSE_DMA_MODES) ? 1 : 0;
683 case 9:
684 case 8:
685 return (hwif->host_flags & IDE_HFLAG_ABUSE_PREFETCH) ? 1 : 0;
686 case 7:
687 case 6:
688 return (hwif->host_flags & IDE_HFLAG_ABUSE_FAST_DEVSEL) ? 1 : 0;
689 default:
690 return 0;
691 }
692}
693
1da177e4
LT
694/**
695 * do_special - issue some special commands
696 * @drive: drive the command is for
697 *
698 * do_special() is used to issue WIN_SPECIFY, WIN_RESTORE, and WIN_SETMULT
699 * commands to a drive. It used to do much more, but has been scaled
700 * back.
701 */
702
703static ide_startstop_t do_special (ide_drive_t *drive)
704{
705 special_t *s = &drive->special;
706
707#ifdef DEBUG
708 printk("%s: do_special: 0x%02x\n", drive->name, s->all);
709#endif
710 if (s->b.set_tune) {
26bcb879
BZ
711 ide_hwif_t *hwif = drive->hwif;
712 u8 req_pio = drive->tune_req;
713
1da177e4 714 s->b.set_tune = 0;
26bcb879
BZ
715
716 if (set_pio_mode_abuse(drive->hwif, req_pio)) {
d393aa03
BZ
717
718 if (hwif->set_pio_mode == NULL)
719 return ide_stopped;
720
721 /*
722 * take ide_lock for drive->[no_]unmask/[no_]io_32bit
723 */
724 if (req_pio == 8 || req_pio == 9) {
725 unsigned long flags;
726
727 spin_lock_irqsave(&ide_lock, flags);
728 hwif->set_pio_mode(drive, req_pio);
729 spin_unlock_irqrestore(&ide_lock, flags);
730 } else
26bcb879 731 hwif->set_pio_mode(drive, req_pio);
aedea591
BZ
732 } else {
733 int keep_dma = drive->using_dma;
734
26bcb879
BZ
735 ide_set_pio(drive, req_pio);
736
aedea591
BZ
737 if (hwif->host_flags & IDE_HFLAG_SET_PIO_MODE_KEEP_DMA) {
738 if (keep_dma)
4a546e04 739 ide_dma_on(drive);
aedea591
BZ
740 }
741 }
742
1da177e4
LT
743 return ide_stopped;
744 } else {
745 if (drive->media == ide_disk)
746 return ide_disk_special(drive);
747
748 s->all = 0;
749 drive->mult_req = 0;
750 return ide_stopped;
751 }
752}
753
754void ide_map_sg(ide_drive_t *drive, struct request *rq)
755{
756 ide_hwif_t *hwif = drive->hwif;
757 struct scatterlist *sg = hwif->sg_table;
758
759 if (hwif->sg_mapped) /* needed by ide-scsi */
760 return;
761
4aff5e23 762 if (rq->cmd_type != REQ_TYPE_ATA_TASKFILE) {
1da177e4
LT
763 hwif->sg_nents = blk_rq_map_sg(drive->queue, rq, sg);
764 } else {
765 sg_init_one(sg, rq->buffer, rq->nr_sectors * SECTOR_SIZE);
766 hwif->sg_nents = 1;
767 }
768}
769
770EXPORT_SYMBOL_GPL(ide_map_sg);
771
772void ide_init_sg_cmd(ide_drive_t *drive, struct request *rq)
773{
774 ide_hwif_t *hwif = drive->hwif;
775
776 hwif->nsect = hwif->nleft = rq->nr_sectors;
55c16a70
JA
777 hwif->cursg_ofs = 0;
778 hwif->cursg = NULL;
1da177e4
LT
779}
780
781EXPORT_SYMBOL_GPL(ide_init_sg_cmd);
782
783/**
784 * execute_drive_command - issue special drive command
338cec32 785 * @drive: the drive to issue the command on
1da177e4
LT
786 * @rq: the request structure holding the command
787 *
788 * execute_drive_cmd() issues a special drive command, usually
789 * initiated by ioctl() from the external hdparm program. The
790 * command can be a drive command, drive task or taskfile
791 * operation. Weirdly you can call it with NULL to wait for
792 * all commands to finish. Don't do this as that is due to change
793 */
794
795static ide_startstop_t execute_drive_cmd (ide_drive_t *drive,
796 struct request *rq)
797{
798 ide_hwif_t *hwif = HWIF(drive);
7267c337 799 ide_task_t *task = rq->special;
1da177e4 800
7267c337 801 if (task) {
21d535c9 802 hwif->data_phase = task->data_phase;
1da177e4
LT
803
804 switch (hwif->data_phase) {
805 case TASKFILE_MULTI_OUT:
806 case TASKFILE_OUT:
807 case TASKFILE_MULTI_IN:
808 case TASKFILE_IN:
809 ide_init_sg_cmd(drive, rq);
810 ide_map_sg(drive, rq);
811 default:
812 break;
813 }
74095a91 814
21d535c9
BZ
815 return do_rw_taskfile(drive, task);
816 }
817
1da177e4
LT
818 /*
819 * NULL is actually a valid way of waiting for
820 * all current requests to be flushed from the queue.
821 */
822#ifdef DEBUG
823 printk("%s: DRIVE_CMD (null)\n", drive->name);
824#endif
825 ide_end_drive_cmd(drive,
826 hwif->INB(IDE_STATUS_REG),
827 hwif->INB(IDE_ERROR_REG));
828 return ide_stopped;
829}
830
ad3cadda
JA
831static void ide_check_pm_state(ide_drive_t *drive, struct request *rq)
832{
c00895ab 833 struct request_pm_state *pm = rq->data;
ad3cadda
JA
834
835 if (blk_pm_suspend_request(rq) &&
836 pm->pm_step == ide_pm_state_start_suspend)
837 /* Mark drive blocked when starting the suspend sequence. */
838 drive->blocked = 1;
839 else if (blk_pm_resume_request(rq) &&
840 pm->pm_step == ide_pm_state_start_resume) {
841 /*
842 * The first thing we do on wakeup is to wait for BSY bit to
843 * go away (with a looong timeout) as a drive on this hwif may
844 * just be POSTing itself.
845 * We do that before even selecting as the "other" device on
846 * the bus may be broken enough to walk on our toes at this
847 * point.
848 */
849 int rc;
850#ifdef DEBUG_PM
851 printk("%s: Wakeup request inited, waiting for !BSY...\n", drive->name);
852#endif
853 rc = ide_wait_not_busy(HWIF(drive), 35000);
854 if (rc)
855 printk(KERN_WARNING "%s: bus not ready on wakeup\n", drive->name);
856 SELECT_DRIVE(drive);
81ca6919 857 ide_set_irq(drive, 1);
178184b6 858 rc = ide_wait_not_busy(HWIF(drive), 100000);
ad3cadda
JA
859 if (rc)
860 printk(KERN_WARNING "%s: drive not ready on wakeup\n", drive->name);
861 }
862}
863
1da177e4
LT
864/**
865 * start_request - start of I/O and command issuing for IDE
866 *
867 * start_request() initiates handling of a new I/O request. It
868 * accepts commands and I/O (read/write) requests. It also does
869 * the final remapping for weird stuff like EZDrive. Once
870 * device mapper can work sector level the EZDrive stuff can go away
871 *
872 * FIXME: this function needs a rename
873 */
874
875static ide_startstop_t start_request (ide_drive_t *drive, struct request *rq)
876{
877 ide_startstop_t startstop;
878 sector_t block;
879
4aff5e23 880 BUG_ON(!blk_rq_started(rq));
1da177e4
LT
881
882#ifdef DEBUG
883 printk("%s: start_request: current=0x%08lx\n",
884 HWIF(drive)->name, (unsigned long) rq);
885#endif
886
887 /* bail early if we've exceeded max_failures */
888 if (drive->max_failures && (drive->failures > drive->max_failures)) {
b5e1a4e2 889 rq->cmd_flags |= REQ_FAILED;
1da177e4
LT
890 goto kill_rq;
891 }
892
893 block = rq->sector;
894 if (blk_fs_request(rq) &&
895 (drive->media == ide_disk || drive->media == ide_floppy)) {
896 block += drive->sect0;
897 }
898 /* Yecch - this will shift the entire interval,
899 possibly killing some innocent following sector */
900 if (block == 0 && drive->remap_0_to_1 == 1)
901 block = 1; /* redirect MBR access to EZ-Drive partn table */
902
ad3cadda
JA
903 if (blk_pm_request(rq))
904 ide_check_pm_state(drive, rq);
1da177e4
LT
905
906 SELECT_DRIVE(drive);
907 if (ide_wait_stat(&startstop, drive, drive->ready_stat, BUSY_STAT|DRQ_STAT, WAIT_READY)) {
908 printk(KERN_ERR "%s: drive not ready for command\n", drive->name);
909 return startstop;
910 }
911 if (!drive->special.all) {
912 ide_driver_t *drv;
913
513daadd
SS
914 /*
915 * We reset the drive so we need to issue a SETFEATURES.
916 * Do it _after_ do_special() restored device parameters.
917 */
918 if (drive->current_speed == 0xff)
919 ide_config_drive_speed(drive, drive->desired_speed);
920
7267c337 921 if (rq->cmd_type == REQ_TYPE_ATA_TASKFILE)
1da177e4
LT
922 return execute_drive_cmd(drive, rq);
923 else if (blk_pm_request(rq)) {
c00895ab 924 struct request_pm_state *pm = rq->data;
1da177e4
LT
925#ifdef DEBUG_PM
926 printk("%s: start_power_step(step: %d)\n",
927 drive->name, rq->pm->pm_step);
928#endif
929 startstop = ide_start_power_step(drive, rq);
930 if (startstop == ide_stopped &&
ad3cadda 931 pm->pm_step == ide_pm_state_completed)
1da177e4
LT
932 ide_complete_pm_request(drive, rq);
933 return startstop;
934 }
935
936 drv = *(ide_driver_t **)rq->rq_disk->private_data;
937 return drv->do_request(drive, rq, block);
938 }
939 return do_special(drive);
940kill_rq:
941 ide_kill_rq(drive, rq);
942 return ide_stopped;
943}
944
945/**
946 * ide_stall_queue - pause an IDE device
947 * @drive: drive to stall
948 * @timeout: time to stall for (jiffies)
949 *
950 * ide_stall_queue() can be used by a drive to give excess bandwidth back
951 * to the hwgroup by sleeping for timeout jiffies.
952 */
953
954void ide_stall_queue (ide_drive_t *drive, unsigned long timeout)
955{
956 if (timeout > WAIT_WORSTCASE)
957 timeout = WAIT_WORSTCASE;
958 drive->sleep = timeout + jiffies;
959 drive->sleeping = 1;
960}
961
962EXPORT_SYMBOL(ide_stall_queue);
963
964#define WAKEUP(drive) ((drive)->service_start + 2 * (drive)->service_time)
965
966/**
967 * choose_drive - select a drive to service
968 * @hwgroup: hardware group to select on
969 *
970 * choose_drive() selects the next drive which will be serviced.
971 * This is necessary because the IDE layer can't issue commands
972 * to both drives on the same cable, unlike SCSI.
973 */
974
975static inline ide_drive_t *choose_drive (ide_hwgroup_t *hwgroup)
976{
977 ide_drive_t *drive, *best;
978
979repeat:
980 best = NULL;
981 drive = hwgroup->drive;
982
983 /*
984 * drive is doing pre-flush, ordered write, post-flush sequence. even
985 * though that is 3 requests, it must be seen as a single transaction.
986 * we must not preempt this drive until that is complete
987 */
988 if (blk_queue_flushing(drive->queue)) {
989 /*
990 * small race where queue could get replugged during
991 * the 3-request flush cycle, just yank the plug since
992 * we want it to finish asap
993 */
994 blk_remove_plug(drive->queue);
995 return drive;
996 }
997
998 do {
999 if ((!drive->sleeping || time_after_eq(jiffies, drive->sleep))
1000 && !elv_queue_empty(drive->queue)) {
1001 if (!best
1002 || (drive->sleeping && (!best->sleeping || time_before(drive->sleep, best->sleep)))
1003 || (!best->sleeping && time_before(WAKEUP(drive), WAKEUP(best))))
1004 {
1005 if (!blk_queue_plugged(drive->queue))
1006 best = drive;
1007 }
1008 }
1009 } while ((drive = drive->next) != hwgroup->drive);
1010 if (best && best->nice1 && !best->sleeping && best != hwgroup->drive && best->service_time > WAIT_MIN_SLEEP) {
1011 long t = (signed long)(WAKEUP(best) - jiffies);
1012 if (t >= WAIT_MIN_SLEEP) {
1013 /*
1014 * We *may* have some time to spare, but first let's see if
1015 * someone can potentially benefit from our nice mood today..
1016 */
1017 drive = best->next;
1018 do {
1019 if (!drive->sleeping
1020 && time_before(jiffies - best->service_time, WAKEUP(drive))
1021 && time_before(WAKEUP(drive), jiffies + t))
1022 {
1023 ide_stall_queue(best, min_t(long, t, 10 * WAIT_MIN_SLEEP));
1024 goto repeat;
1025 }
1026 } while ((drive = drive->next) != best);
1027 }
1028 }
1029 return best;
1030}
1031
1032/*
1033 * Issue a new request to a drive from hwgroup
1034 * Caller must have already done spin_lock_irqsave(&ide_lock, ..);
1035 *
1036 * A hwgroup is a serialized group of IDE interfaces. Usually there is
1037 * exactly one hwif (interface) per hwgroup, but buggy controllers (eg. CMD640)
1038 * may have both interfaces in a single hwgroup to "serialize" access.
1039 * Or possibly multiple ISA interfaces can share a common IRQ by being grouped
1040 * together into one hwgroup for serialized access.
1041 *
1042 * Note also that several hwgroups can end up sharing a single IRQ,
1043 * possibly along with many other devices. This is especially common in
1044 * PCI-based systems with off-board IDE controller cards.
1045 *
1046 * The IDE driver uses the single global ide_lock spinlock to protect
1047 * access to the request queues, and to protect the hwgroup->busy flag.
1048 *
1049 * The first thread into the driver for a particular hwgroup sets the
1050 * hwgroup->busy flag to indicate that this hwgroup is now active,
1051 * and then initiates processing of the top request from the request queue.
1052 *
1053 * Other threads attempting entry notice the busy setting, and will simply
1054 * queue their new requests and exit immediately. Note that hwgroup->busy
1055 * remains set even when the driver is merely awaiting the next interrupt.
1056 * Thus, the meaning is "this hwgroup is busy processing a request".
1057 *
1058 * When processing of a request completes, the completing thread or IRQ-handler
1059 * will start the next request from the queue. If no more work remains,
1060 * the driver will clear the hwgroup->busy flag and exit.
1061 *
1062 * The ide_lock (spinlock) is used to protect all access to the
1063 * hwgroup->busy flag, but is otherwise not needed for most processing in
1064 * the driver. This makes the driver much more friendlier to shared IRQs
1065 * than previous designs, while remaining 100% (?) SMP safe and capable.
1066 */
1067static void ide_do_request (ide_hwgroup_t *hwgroup, int masked_irq)
1068{
1069 ide_drive_t *drive;
1070 ide_hwif_t *hwif;
1071 struct request *rq;
1072 ide_startstop_t startstop;
867f8b4e 1073 int loops = 0;
1da177e4
LT
1074
1075 /* for atari only: POSSIBLY BROKEN HERE(?) */
1076 ide_get_lock(ide_intr, hwgroup);
1077
1078 /* caller must own ide_lock */
1079 BUG_ON(!irqs_disabled());
1080
1081 while (!hwgroup->busy) {
1082 hwgroup->busy = 1;
1083 drive = choose_drive(hwgroup);
1084 if (drive == NULL) {
1085 int sleeping = 0;
1086 unsigned long sleep = 0; /* shut up, gcc */
1087 hwgroup->rq = NULL;
1088 drive = hwgroup->drive;
1089 do {
1090 if (drive->sleeping && (!sleeping || time_before(drive->sleep, sleep))) {
1091 sleeping = 1;
1092 sleep = drive->sleep;
1093 }
1094 } while ((drive = drive->next) != hwgroup->drive);
1095 if (sleeping) {
1096 /*
1097 * Take a short snooze, and then wake up this hwgroup again.
1098 * This gives other hwgroups on the same a chance to
1099 * play fairly with us, just in case there are big differences
1100 * in relative throughputs.. don't want to hog the cpu too much.
1101 */
1102 if (time_before(sleep, jiffies + WAIT_MIN_SLEEP))
1103 sleep = jiffies + WAIT_MIN_SLEEP;
1104#if 1
1105 if (timer_pending(&hwgroup->timer))
1106 printk(KERN_CRIT "ide_set_handler: timer already active\n");
1107#endif
1108 /* so that ide_timer_expiry knows what to do */
1109 hwgroup->sleeping = 1;
23450319 1110 hwgroup->req_gen_timer = hwgroup->req_gen;
1da177e4
LT
1111 mod_timer(&hwgroup->timer, sleep);
1112 /* we purposely leave hwgroup->busy==1
1113 * while sleeping */
1114 } else {
1115 /* Ugly, but how can we sleep for the lock
1116 * otherwise? perhaps from tq_disk?
1117 */
1118
1119 /* for atari only */
1120 ide_release_lock();
1121 hwgroup->busy = 0;
1122 }
1123
1124 /* no more work for this hwgroup (for now) */
1125 return;
1126 }
867f8b4e 1127 again:
1da177e4 1128 hwif = HWIF(drive);
81ca6919 1129 if (hwgroup->hwif->sharing_irq && hwif != hwgroup->hwif) {
7299a391
BZ
1130 /*
1131 * set nIEN for previous hwif, drives in the
1132 * quirk_list may not like intr setups/cleanups
1133 */
1134 if (drive->quirk_list != 1)
81ca6919 1135 ide_set_irq(drive, 0);
1da177e4
LT
1136 }
1137 hwgroup->hwif = hwif;
1138 hwgroup->drive = drive;
1139 drive->sleeping = 0;
1140 drive->service_start = jiffies;
1141
1142 if (blk_queue_plugged(drive->queue)) {
1143 printk(KERN_ERR "ide: huh? queue was plugged!\n");
1144 break;
1145 }
1146
1147 /*
1148 * we know that the queue isn't empty, but this can happen
1149 * if the q->prep_rq_fn() decides to kill a request
1150 */
1151 rq = elv_next_request(drive->queue);
1152 if (!rq) {
1153 hwgroup->busy = 0;
1154 break;
1155 }
1156
1157 /*
1158 * Sanity: don't accept a request that isn't a PM request
1159 * if we are currently power managed. This is very important as
1160 * blk_stop_queue() doesn't prevent the elv_next_request()
1161 * above to return us whatever is in the queue. Since we call
1162 * ide_do_request() ourselves, we end up taking requests while
1163 * the queue is blocked...
1164 *
1165 * We let requests forced at head of queue with ide-preempt
1166 * though. I hope that doesn't happen too much, hopefully not
1167 * unless the subdriver triggers such a thing in its own PM
1168 * state machine.
867f8b4e
BH
1169 *
1170 * We count how many times we loop here to make sure we service
1171 * all drives in the hwgroup without looping for ever
1da177e4 1172 */
4aff5e23 1173 if (drive->blocked && !blk_pm_request(rq) && !(rq->cmd_flags & REQ_PREEMPT)) {
867f8b4e
BH
1174 drive = drive->next ? drive->next : hwgroup->drive;
1175 if (loops++ < 4 && !blk_queue_plugged(drive->queue))
1176 goto again;
1da177e4
LT
1177 /* We clear busy, there should be no pending ATA command at this point. */
1178 hwgroup->busy = 0;
1179 break;
1180 }
1181
1182 hwgroup->rq = rq;
1183
1184 /*
1185 * Some systems have trouble with IDE IRQs arriving while
1186 * the driver is still setting things up. So, here we disable
1187 * the IRQ used by this interface while the request is being started.
1188 * This may look bad at first, but pretty much the same thing
1189 * happens anyway when any interrupt comes in, IDE or otherwise
1190 * -- the kernel masks the IRQ while it is being handled.
1191 */
1192 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1193 disable_irq_nosync(hwif->irq);
1194 spin_unlock(&ide_lock);
366c7f55 1195 local_irq_enable_in_hardirq();
1da177e4
LT
1196 /* allow other IRQs while we start this request */
1197 startstop = start_request(drive, rq);
1198 spin_lock_irq(&ide_lock);
1199 if (masked_irq != IDE_NO_IRQ && hwif->irq != masked_irq)
1200 enable_irq(hwif->irq);
1201 if (startstop == ide_stopped)
1202 hwgroup->busy = 0;
1203 }
1204}
1205
1206/*
1207 * Passes the stuff to ide_do_request
1208 */
165125e1 1209void do_ide_request(struct request_queue *q)
1da177e4
LT
1210{
1211 ide_drive_t *drive = q->queuedata;
1212
1213 ide_do_request(HWGROUP(drive), IDE_NO_IRQ);
1214}
1215
1216/*
1217 * un-busy the hwgroup etc, and clear any pending DMA status. we want to
1218 * retry the current request in pio mode instead of risking tossing it
1219 * all away
1220 */
1221static ide_startstop_t ide_dma_timeout_retry(ide_drive_t *drive, int error)
1222{
1223 ide_hwif_t *hwif = HWIF(drive);
1224 struct request *rq;
1225 ide_startstop_t ret = ide_stopped;
1226
1227 /*
1228 * end current dma transaction
1229 */
1230
1231 if (error < 0) {
1232 printk(KERN_WARNING "%s: DMA timeout error\n", drive->name);
1233 (void)HWIF(drive)->ide_dma_end(drive);
1234 ret = ide_error(drive, "dma timeout error",
1235 hwif->INB(IDE_STATUS_REG));
1236 } else {
1237 printk(KERN_WARNING "%s: DMA timeout retry\n", drive->name);
c283f5db 1238 hwif->dma_timeout(drive);
1da177e4
LT
1239 }
1240
1241 /*
1242 * disable dma for now, but remember that we did so because of
1243 * a timeout -- we'll reenable after we finish this next request
1244 * (or rather the first chunk of it) in pio.
1245 */
1246 drive->retry_pio++;
1247 drive->state = DMA_PIO_RETRY;
4a546e04 1248 ide_dma_off_quietly(drive);
1da177e4
LT
1249
1250 /*
1251 * un-busy drive etc (hwgroup->busy is cleared on return) and
1252 * make sure request is sane
1253 */
1254 rq = HWGROUP(drive)->rq;
ce42f191
HZ
1255
1256 if (!rq)
1257 goto out;
1258
1da177e4
LT
1259 HWGROUP(drive)->rq = NULL;
1260
1261 rq->errors = 0;
1262
1263 if (!rq->bio)
1264 goto out;
1265
1266 rq->sector = rq->bio->bi_sector;
1267 rq->current_nr_sectors = bio_iovec(rq->bio)->bv_len >> 9;
1268 rq->hard_cur_sectors = rq->current_nr_sectors;
1269 rq->buffer = bio_data(rq->bio);
1270out:
1271 return ret;
1272}
1273
1274/**
1275 * ide_timer_expiry - handle lack of an IDE interrupt
1276 * @data: timer callback magic (hwgroup)
1277 *
1278 * An IDE command has timed out before the expected drive return
1279 * occurred. At this point we attempt to clean up the current
1280 * mess. If the current handler includes an expiry handler then
1281 * we invoke the expiry handler, and providing it is happy the
1282 * work is done. If that fails we apply generic recovery rules
1283 * invoking the handler and checking the drive DMA status. We
1284 * have an excessively incestuous relationship with the DMA
1285 * logic that wants cleaning up.
1286 */
1287
1288void ide_timer_expiry (unsigned long data)
1289{
1290 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *) data;
1291 ide_handler_t *handler;
1292 ide_expiry_t *expiry;
1293 unsigned long flags;
1294 unsigned long wait = -1;
1295
1296 spin_lock_irqsave(&ide_lock, flags);
1297
23450319
SS
1298 if (((handler = hwgroup->handler) == NULL) ||
1299 (hwgroup->req_gen != hwgroup->req_gen_timer)) {
1da177e4
LT
1300 /*
1301 * Either a marginal timeout occurred
1302 * (got the interrupt just as timer expired),
1303 * or we were "sleeping" to give other devices a chance.
1304 * Either way, we don't really want to complain about anything.
1305 */
1306 if (hwgroup->sleeping) {
1307 hwgroup->sleeping = 0;
1308 hwgroup->busy = 0;
1309 }
1310 } else {
1311 ide_drive_t *drive = hwgroup->drive;
1312 if (!drive) {
1313 printk(KERN_ERR "ide_timer_expiry: hwgroup->drive was NULL\n");
1314 hwgroup->handler = NULL;
1315 } else {
1316 ide_hwif_t *hwif;
1317 ide_startstop_t startstop = ide_stopped;
1318 if (!hwgroup->busy) {
1319 hwgroup->busy = 1; /* paranoia */
1320 printk(KERN_ERR "%s: ide_timer_expiry: hwgroup->busy was 0 ??\n", drive->name);
1321 }
1322 if ((expiry = hwgroup->expiry) != NULL) {
1323 /* continue */
1324 if ((wait = expiry(drive)) > 0) {
1325 /* reset timer */
1326 hwgroup->timer.expires = jiffies + wait;
23450319 1327 hwgroup->req_gen_timer = hwgroup->req_gen;
1da177e4
LT
1328 add_timer(&hwgroup->timer);
1329 spin_unlock_irqrestore(&ide_lock, flags);
1330 return;
1331 }
1332 }
1333 hwgroup->handler = NULL;
1334 /*
1335 * We need to simulate a real interrupt when invoking
1336 * the handler() function, which means we need to
1337 * globally mask the specific IRQ:
1338 */
1339 spin_unlock(&ide_lock);
1340 hwif = HWIF(drive);
1da177e4
LT
1341 /* disable_irq_nosync ?? */
1342 disable_irq(hwif->irq);
1da177e4
LT
1343 /* local CPU only,
1344 * as if we were handling an interrupt */
1345 local_irq_disable();
1346 if (hwgroup->polling) {
1347 startstop = handler(drive);
1348 } else if (drive_is_ready(drive)) {
1349 if (drive->waiting_for_dma)
841d2a9b 1350 hwgroup->hwif->dma_lost_irq(drive);
1da177e4
LT
1351 (void)ide_ack_intr(hwif);
1352 printk(KERN_WARNING "%s: lost interrupt\n", drive->name);
1353 startstop = handler(drive);
1354 } else {
1355 if (drive->waiting_for_dma) {
1356 startstop = ide_dma_timeout_retry(drive, wait);
1357 } else
1358 startstop =
1359 ide_error(drive, "irq timeout", hwif->INB(IDE_STATUS_REG));
1360 }
1361 drive->service_time = jiffies - drive->service_start;
1362 spin_lock_irq(&ide_lock);
1363 enable_irq(hwif->irq);
1364 if (startstop == ide_stopped)
1365 hwgroup->busy = 0;
1366 }
1367 }
1368 ide_do_request(hwgroup, IDE_NO_IRQ);
1369 spin_unlock_irqrestore(&ide_lock, flags);
1370}
1371
1372/**
1373 * unexpected_intr - handle an unexpected IDE interrupt
1374 * @irq: interrupt line
1375 * @hwgroup: hwgroup being processed
1376 *
1377 * There's nothing really useful we can do with an unexpected interrupt,
1378 * other than reading the status register (to clear it), and logging it.
1379 * There should be no way that an irq can happen before we're ready for it,
1380 * so we needn't worry much about losing an "important" interrupt here.
1381 *
1382 * On laptops (and "green" PCs), an unexpected interrupt occurs whenever
1383 * the drive enters "idle", "standby", or "sleep" mode, so if the status
1384 * looks "good", we just ignore the interrupt completely.
1385 *
1386 * This routine assumes __cli() is in effect when called.
1387 *
1388 * If an unexpected interrupt happens on irq15 while we are handling irq14
1389 * and if the two interfaces are "serialized" (CMD640), then it looks like
1390 * we could screw up by interfering with a new request being set up for
1391 * irq15.
1392 *
1393 * In reality, this is a non-issue. The new command is not sent unless
1394 * the drive is ready to accept one, in which case we know the drive is
1395 * not trying to interrupt us. And ide_set_handler() is always invoked
1396 * before completing the issuance of any new drive command, so we will not
1397 * be accidentally invoked as a result of any valid command completion
1398 * interrupt.
1399 *
1400 * Note that we must walk the entire hwgroup here. We know which hwif
1401 * is doing the current command, but we don't know which hwif burped
1402 * mysteriously.
1403 */
1404
1405static void unexpected_intr (int irq, ide_hwgroup_t *hwgroup)
1406{
1407 u8 stat;
1408 ide_hwif_t *hwif = hwgroup->hwif;
1409
1410 /*
1411 * handle the unexpected interrupt
1412 */
1413 do {
1414 if (hwif->irq == irq) {
1415 stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1416 if (!OK_STAT(stat, READY_STAT, BAD_STAT)) {
1417 /* Try to not flood the console with msgs */
1418 static unsigned long last_msgtime, count;
1419 ++count;
1420 if (time_after(jiffies, last_msgtime + HZ)) {
1421 last_msgtime = jiffies;
1422 printk(KERN_ERR "%s%s: unexpected interrupt, "
1423 "status=0x%02x, count=%ld\n",
1424 hwif->name,
1425 (hwif->next==hwgroup->hwif) ? "" : "(?)", stat, count);
1426 }
1427 }
1428 }
1429 } while ((hwif = hwif->next) != hwgroup->hwif);
1430}
1431
1432/**
1433 * ide_intr - default IDE interrupt handler
1434 * @irq: interrupt number
1435 * @dev_id: hwif group
1436 * @regs: unused weirdness from the kernel irq layer
1437 *
1438 * This is the default IRQ handler for the IDE layer. You should
1439 * not need to override it. If you do be aware it is subtle in
1440 * places
1441 *
1442 * hwgroup->hwif is the interface in the group currently performing
1443 * a command. hwgroup->drive is the drive and hwgroup->handler is
1444 * the IRQ handler to call. As we issue a command the handlers
1445 * step through multiple states, reassigning the handler to the
1446 * next step in the process. Unlike a smart SCSI controller IDE
1447 * expects the main processor to sequence the various transfer
1448 * stages. We also manage a poll timer to catch up with most
1449 * timeout situations. There are still a few where the handlers
1450 * don't ever decide to give up.
1451 *
1452 * The handler eventually returns ide_stopped to indicate the
1453 * request completed. At this point we issue the next request
1454 * on the hwgroup and the process begins again.
1455 */
1456
7d12e780 1457irqreturn_t ide_intr (int irq, void *dev_id)
1da177e4
LT
1458{
1459 unsigned long flags;
1460 ide_hwgroup_t *hwgroup = (ide_hwgroup_t *)dev_id;
1461 ide_hwif_t *hwif;
1462 ide_drive_t *drive;
1463 ide_handler_t *handler;
1464 ide_startstop_t startstop;
1465
1466 spin_lock_irqsave(&ide_lock, flags);
1467 hwif = hwgroup->hwif;
1468
1469 if (!ide_ack_intr(hwif)) {
1470 spin_unlock_irqrestore(&ide_lock, flags);
1471 return IRQ_NONE;
1472 }
1473
1474 if ((handler = hwgroup->handler) == NULL || hwgroup->polling) {
1475 /*
1476 * Not expecting an interrupt from this drive.
1477 * That means this could be:
1478 * (1) an interrupt from another PCI device
1479 * sharing the same PCI INT# as us.
1480 * or (2) a drive just entered sleep or standby mode,
1481 * and is interrupting to let us know.
1482 * or (3) a spurious interrupt of unknown origin.
1483 *
1484 * For PCI, we cannot tell the difference,
1485 * so in that case we just ignore it and hope it goes away.
1486 *
1487 * FIXME: unexpected_intr should be hwif-> then we can
1488 * remove all the ifdef PCI crap
1489 */
1490#ifdef CONFIG_BLK_DEV_IDEPCI
1491 if (hwif->pci_dev && !hwif->pci_dev->vendor)
1492#endif /* CONFIG_BLK_DEV_IDEPCI */
1493 {
1494 /*
1495 * Probably not a shared PCI interrupt,
1496 * so we can safely try to do something about it:
1497 */
1498 unexpected_intr(irq, hwgroup);
1499#ifdef CONFIG_BLK_DEV_IDEPCI
1500 } else {
1501 /*
1502 * Whack the status register, just in case
1503 * we have a leftover pending IRQ.
1504 */
1505 (void) hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]);
1506#endif /* CONFIG_BLK_DEV_IDEPCI */
1507 }
1508 spin_unlock_irqrestore(&ide_lock, flags);
1509 return IRQ_NONE;
1510 }
1511 drive = hwgroup->drive;
1512 if (!drive) {
1513 /*
1514 * This should NEVER happen, and there isn't much
1515 * we could do about it here.
1516 *
1517 * [Note - this can occur if the drive is hot unplugged]
1518 */
1519 spin_unlock_irqrestore(&ide_lock, flags);
1520 return IRQ_HANDLED;
1521 }
1522 if (!drive_is_ready(drive)) {
1523 /*
1524 * This happens regularly when we share a PCI IRQ with
1525 * another device. Unfortunately, it can also happen
1526 * with some buggy drives that trigger the IRQ before
1527 * their status register is up to date. Hopefully we have
1528 * enough advance overhead that the latter isn't a problem.
1529 */
1530 spin_unlock_irqrestore(&ide_lock, flags);
1531 return IRQ_NONE;
1532 }
1533 if (!hwgroup->busy) {
1534 hwgroup->busy = 1; /* paranoia */
1535 printk(KERN_ERR "%s: ide_intr: hwgroup->busy was 0 ??\n", drive->name);
1536 }
1537 hwgroup->handler = NULL;
23450319 1538 hwgroup->req_gen++;
1da177e4
LT
1539 del_timer(&hwgroup->timer);
1540 spin_unlock(&ide_lock);
1541
f0dd8712
AL
1542 /* Some controllers might set DMA INTR no matter DMA or PIO;
1543 * bmdma status might need to be cleared even for
1544 * PIO interrupts to prevent spurious/lost irq.
1545 */
1546 if (hwif->ide_dma_clear_irq && !(drive->waiting_for_dma))
1547 /* ide_dma_end() needs bmdma status for error checking.
1548 * So, skip clearing bmdma status here and leave it
1549 * to ide_dma_end() if this is dma interrupt.
1550 */
1551 hwif->ide_dma_clear_irq(drive);
1552
1da177e4 1553 if (drive->unmask)
366c7f55 1554 local_irq_enable_in_hardirq();
1da177e4
LT
1555 /* service this interrupt, may set handler for next interrupt */
1556 startstop = handler(drive);
1557 spin_lock_irq(&ide_lock);
1558
1559 /*
1560 * Note that handler() may have set things up for another
1561 * interrupt to occur soon, but it cannot happen until
1562 * we exit from this routine, because it will be the
1563 * same irq as is currently being serviced here, and Linux
1564 * won't allow another of the same (on any CPU) until we return.
1565 */
1566 drive->service_time = jiffies - drive->service_start;
1567 if (startstop == ide_stopped) {
1568 if (hwgroup->handler == NULL) { /* paranoia */
1569 hwgroup->busy = 0;
1570 ide_do_request(hwgroup, hwif->irq);
1571 } else {
1572 printk(KERN_ERR "%s: ide_intr: huh? expected NULL handler "
1573 "on exit\n", drive->name);
1574 }
1575 }
1576 spin_unlock_irqrestore(&ide_lock, flags);
1577 return IRQ_HANDLED;
1578}
1579
1580/**
1581 * ide_init_drive_cmd - initialize a drive command request
1582 * @rq: request object
1583 *
1584 * Initialize a request before we fill it in and send it down to
1585 * ide_do_drive_cmd. Commands must be set up by this function. Right
1586 * now it doesn't do a lot, but if that changes abusers will have a
d6e05edc 1587 * nasty surprise.
1da177e4
LT
1588 */
1589
1590void ide_init_drive_cmd (struct request *rq)
1591{
1592 memset(rq, 0, sizeof(*rq));
1da177e4
LT
1593 rq->ref_count = 1;
1594}
1595
1596EXPORT_SYMBOL(ide_init_drive_cmd);
1597
1598/**
1599 * ide_do_drive_cmd - issue IDE special command
1600 * @drive: device to issue command
1601 * @rq: request to issue
1602 * @action: action for processing
1603 *
1604 * This function issues a special IDE device request
1605 * onto the request queue.
1606 *
1607 * If action is ide_wait, then the rq is queued at the end of the
1608 * request queue, and the function sleeps until it has been processed.
1609 * This is for use when invoked from an ioctl handler.
1610 *
1611 * If action is ide_preempt, then the rq is queued at the head of
1612 * the request queue, displacing the currently-being-processed
1613 * request and this function returns immediately without waiting
1614 * for the new rq to be completed. This is VERY DANGEROUS, and is
1615 * intended for careful use by the ATAPI tape/cdrom driver code.
1616 *
1da177e4
LT
1617 * If action is ide_end, then the rq is queued at the end of the
1618 * request queue, and the function returns immediately without waiting
1619 * for the new rq to be completed. This is again intended for careful
1620 * use by the ATAPI tape/cdrom driver code.
1621 */
1622
1623int ide_do_drive_cmd (ide_drive_t *drive, struct request *rq, ide_action_t action)
1624{
1625 unsigned long flags;
1626 ide_hwgroup_t *hwgroup = HWGROUP(drive);
60be6b9a 1627 DECLARE_COMPLETION_ONSTACK(wait);
1da177e4
LT
1628 int where = ELEVATOR_INSERT_BACK, err;
1629 int must_wait = (action == ide_wait || action == ide_head_wait);
1630
1631 rq->errors = 0;
1da177e4
LT
1632
1633 /*
1634 * we need to hold an extra reference to request for safe inspection
1635 * after completion
1636 */
1637 if (must_wait) {
1638 rq->ref_count++;
c00895ab 1639 rq->end_io_data = &wait;
1da177e4
LT
1640 rq->end_io = blk_end_sync_rq;
1641 }
1642
1643 spin_lock_irqsave(&ide_lock, flags);
1644 if (action == ide_preempt)
1645 hwgroup->rq = NULL;
1646 if (action == ide_preempt || action == ide_head_wait) {
1647 where = ELEVATOR_INSERT_FRONT;
4aff5e23 1648 rq->cmd_flags |= REQ_PREEMPT;
1da177e4
LT
1649 }
1650 __elv_add_request(drive->queue, rq, where, 0);
1651 ide_do_request(hwgroup, IDE_NO_IRQ);
1652 spin_unlock_irqrestore(&ide_lock, flags);
1653
1654 err = 0;
1655 if (must_wait) {
1656 wait_for_completion(&wait);
1da177e4
LT
1657 if (rq->errors)
1658 err = -EIO;
1659
1660 blk_put_request(rq);
1661 }
1662
1663 return err;
1664}
1665
1666EXPORT_SYMBOL(ide_do_drive_cmd);
2fc57388
BZ
1667
1668void ide_pktcmd_tf_load(ide_drive_t *drive, u32 tf_flags, u16 bcount, u8 dma)
1669{
1670 ide_task_t task;
1671
1672 memset(&task, 0, sizeof(task));
1673 task.tf_flags = IDE_TFLAG_OUT_LBAH | IDE_TFLAG_OUT_LBAM |
1674 IDE_TFLAG_OUT_FEATURE | tf_flags;
1675 task.tf.feature = dma; /* Use PIO/DMA */
1676 task.tf.lbam = bcount & 0xff;
1677 task.tf.lbah = (bcount >> 8) & 0xff;
1678
1679 ide_tf_load(drive, &task);
1680}
1681
1682EXPORT_SYMBOL_GPL(ide_pktcmd_tf_load);