drm/i915: Remove 10% cdclk guardband on BXT
[linux-2.6-block.git] / drivers / gpu / drm / i915 / intel_display.c
CommitLineData
79e53945
JB
1/*
2 * Copyright © 2006-2007 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 */
26
618563e3 27#include <linux/dmi.h>
c1c7af60
JB
28#include <linux/module.h>
29#include <linux/input.h>
79e53945 30#include <linux/i2c.h>
7662c8bd 31#include <linux/kernel.h>
5a0e3ad6 32#include <linux/slab.h>
9cce37f4 33#include <linux/vgaarb.h>
e0dac65e 34#include <drm/drm_edid.h>
760285e7 35#include <drm/drmP.h>
79e53945 36#include "intel_drv.h"
760285e7 37#include <drm/i915_drm.h>
79e53945 38#include "i915_drv.h"
db18b6a6 39#include "intel_dsi.h"
e5510fac 40#include "i915_trace.h"
319c1d42 41#include <drm/drm_atomic.h>
c196e1d6 42#include <drm/drm_atomic_helper.h>
760285e7
DH
43#include <drm/drm_dp_helper.h>
44#include <drm/drm_crtc_helper.h>
465c120c
MR
45#include <drm/drm_plane_helper.h>
46#include <drm/drm_rect.h>
c0f372b3 47#include <linux/dma_remapping.h>
fd8e058a
AG
48#include <linux/reservation.h>
49#include <linux/dma-buf.h>
79e53945 50
465c120c 51/* Primary plane formats for gen <= 3 */
568db4f2 52static const uint32_t i8xx_primary_formats[] = {
67fe7dc5
DL
53 DRM_FORMAT_C8,
54 DRM_FORMAT_RGB565,
465c120c 55 DRM_FORMAT_XRGB1555,
67fe7dc5 56 DRM_FORMAT_XRGB8888,
465c120c
MR
57};
58
59/* Primary plane formats for gen >= 4 */
568db4f2 60static const uint32_t i965_primary_formats[] = {
6c0fd451
DL
61 DRM_FORMAT_C8,
62 DRM_FORMAT_RGB565,
63 DRM_FORMAT_XRGB8888,
64 DRM_FORMAT_XBGR8888,
65 DRM_FORMAT_XRGB2101010,
66 DRM_FORMAT_XBGR2101010,
67};
68
69static const uint32_t skl_primary_formats[] = {
67fe7dc5
DL
70 DRM_FORMAT_C8,
71 DRM_FORMAT_RGB565,
72 DRM_FORMAT_XRGB8888,
465c120c 73 DRM_FORMAT_XBGR8888,
67fe7dc5 74 DRM_FORMAT_ARGB8888,
465c120c
MR
75 DRM_FORMAT_ABGR8888,
76 DRM_FORMAT_XRGB2101010,
465c120c 77 DRM_FORMAT_XBGR2101010,
ea916ea0
KM
78 DRM_FORMAT_YUYV,
79 DRM_FORMAT_YVYU,
80 DRM_FORMAT_UYVY,
81 DRM_FORMAT_VYUY,
465c120c
MR
82};
83
3d7d6510
MR
84/* Cursor formats */
85static const uint32_t intel_cursor_formats[] = {
86 DRM_FORMAT_ARGB8888,
87};
88
f1f644dc 89static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 90 struct intel_crtc_state *pipe_config);
18442d08 91static void ironlake_pch_clock_get(struct intel_crtc *crtc,
5cec258b 92 struct intel_crtc_state *pipe_config);
f1f644dc 93
eb1bfe80
JB
94static int intel_framebuffer_init(struct drm_device *dev,
95 struct intel_framebuffer *ifb,
96 struct drm_mode_fb_cmd2 *mode_cmd,
97 struct drm_i915_gem_object *obj);
5b18e57c
DV
98static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
99static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
bc58be60 100static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc);
29407aab 101static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
102 struct intel_link_m_n *m_n,
103 struct intel_link_m_n *m2_n2);
29407aab 104static void ironlake_set_pipeconf(struct drm_crtc *crtc);
229fca97 105static void haswell_set_pipeconf(struct drm_crtc *crtc);
391bf048 106static void haswell_set_pipemisc(struct drm_crtc *crtc);
d288f65f 107static void vlv_prepare_pll(struct intel_crtc *crtc,
5cec258b 108 const struct intel_crtc_state *pipe_config);
d288f65f 109static void chv_prepare_pll(struct intel_crtc *crtc,
5cec258b 110 const struct intel_crtc_state *pipe_config);
613d2b27
ML
111static void intel_begin_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
112static void intel_finish_crtc_commit(struct drm_crtc *, struct drm_crtc_state *);
549e2bfb
CK
113static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
114 struct intel_crtc_state *crtc_state);
bfd16b2a
ML
115static void skylake_pfit_enable(struct intel_crtc *crtc);
116static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force);
117static void ironlake_pfit_enable(struct intel_crtc *crtc);
043e9bda 118static void intel_modeset_setup_hw_state(struct drm_device *dev);
2622a081 119static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc);
4e5ca60f 120static int ilk_max_pixel_rate(struct drm_atomic_state *state);
e7457a9a 121
d4906093 122struct intel_limit {
4c5def93
ACO
123 struct {
124 int min, max;
125 } dot, vco, n, m, m1, m2, p, p1;
126
127 struct {
128 int dot_limit;
129 int p2_slow, p2_fast;
130 } p2;
d4906093 131};
79e53945 132
bfa7df01
VS
133/* returns HPLL frequency in kHz */
134static int valleyview_get_vco(struct drm_i915_private *dev_priv)
135{
136 int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
137
138 /* Obtain SKU information */
139 mutex_lock(&dev_priv->sb_lock);
140 hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
141 CCK_FUSE_HPLL_FREQ_MASK;
142 mutex_unlock(&dev_priv->sb_lock);
143
144 return vco_freq[hpll_freq] * 1000;
145}
146
c30fec65
VS
147int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
148 const char *name, u32 reg, int ref_freq)
bfa7df01
VS
149{
150 u32 val;
151 int divider;
152
bfa7df01
VS
153 mutex_lock(&dev_priv->sb_lock);
154 val = vlv_cck_read(dev_priv, reg);
155 mutex_unlock(&dev_priv->sb_lock);
156
157 divider = val & CCK_FREQUENCY_VALUES;
158
159 WARN((val & CCK_FREQUENCY_STATUS) !=
160 (divider << CCK_FREQUENCY_STATUS_SHIFT),
161 "%s change in progress\n", name);
162
c30fec65
VS
163 return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
164}
165
166static int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
167 const char *name, u32 reg)
168{
169 if (dev_priv->hpll_freq == 0)
170 dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
171
172 return vlv_get_cck_clock(dev_priv, name, reg,
173 dev_priv->hpll_freq);
bfa7df01
VS
174}
175
e7dc33f3
VS
176static int
177intel_pch_rawclk(struct drm_i915_private *dev_priv)
d2acd215 178{
e7dc33f3
VS
179 return (I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK) * 1000;
180}
d2acd215 181
e7dc33f3
VS
182static int
183intel_vlv_hrawclk(struct drm_i915_private *dev_priv)
184{
19ab4ed3 185 /* RAWCLK_FREQ_VLV register updated from power well code */
35d38d1f
VS
186 return vlv_get_cck_clock_hpll(dev_priv, "hrawclk",
187 CCK_DISPLAY_REF_CLOCK_CONTROL);
d2acd215
DV
188}
189
e7dc33f3
VS
190static int
191intel_g4x_hrawclk(struct drm_i915_private *dev_priv)
79e50a4f 192{
79e50a4f
JN
193 uint32_t clkcfg;
194
e7dc33f3 195 /* hrawclock is 1/4 the FSB frequency */
79e50a4f
JN
196 clkcfg = I915_READ(CLKCFG);
197 switch (clkcfg & CLKCFG_FSB_MASK) {
198 case CLKCFG_FSB_400:
e7dc33f3 199 return 100000;
79e50a4f 200 case CLKCFG_FSB_533:
e7dc33f3 201 return 133333;
79e50a4f 202 case CLKCFG_FSB_667:
e7dc33f3 203 return 166667;
79e50a4f 204 case CLKCFG_FSB_800:
e7dc33f3 205 return 200000;
79e50a4f 206 case CLKCFG_FSB_1067:
e7dc33f3 207 return 266667;
79e50a4f 208 case CLKCFG_FSB_1333:
e7dc33f3 209 return 333333;
79e50a4f
JN
210 /* these two are just a guess; one of them might be right */
211 case CLKCFG_FSB_1600:
212 case CLKCFG_FSB_1600_ALT:
e7dc33f3 213 return 400000;
79e50a4f 214 default:
e7dc33f3 215 return 133333;
79e50a4f
JN
216 }
217}
218
19ab4ed3 219void intel_update_rawclk(struct drm_i915_private *dev_priv)
e7dc33f3
VS
220{
221 if (HAS_PCH_SPLIT(dev_priv))
222 dev_priv->rawclk_freq = intel_pch_rawclk(dev_priv);
223 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
224 dev_priv->rawclk_freq = intel_vlv_hrawclk(dev_priv);
225 else if (IS_G4X(dev_priv) || IS_PINEVIEW(dev_priv))
226 dev_priv->rawclk_freq = intel_g4x_hrawclk(dev_priv);
227 else
228 return; /* no rawclk on other platforms, or no need to know it */
229
230 DRM_DEBUG_DRIVER("rawclk rate: %d kHz\n", dev_priv->rawclk_freq);
231}
232
bfa7df01
VS
233static void intel_update_czclk(struct drm_i915_private *dev_priv)
234{
666a4537 235 if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
bfa7df01
VS
236 return;
237
238 dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
239 CCK_CZ_CLOCK_CONTROL);
240
241 DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
242}
243
021357ac 244static inline u32 /* units of 100MHz */
21a727b3
VS
245intel_fdi_link_freq(struct drm_i915_private *dev_priv,
246 const struct intel_crtc_state *pipe_config)
021357ac 247{
21a727b3
VS
248 if (HAS_DDI(dev_priv))
249 return pipe_config->port_clock; /* SPLL */
250 else if (IS_GEN5(dev_priv))
251 return ((I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2) * 10000;
e3b247da 252 else
21a727b3 253 return 270000;
021357ac
CW
254}
255
1b6f4958 256static const struct intel_limit intel_limits_i8xx_dac = {
0206e353 257 .dot = { .min = 25000, .max = 350000 },
9c333719 258 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 259 .n = { .min = 2, .max = 16 },
0206e353
AJ
260 .m = { .min = 96, .max = 140 },
261 .m1 = { .min = 18, .max = 26 },
262 .m2 = { .min = 6, .max = 16 },
263 .p = { .min = 4, .max = 128 },
264 .p1 = { .min = 2, .max = 33 },
273e27ca
EA
265 .p2 = { .dot_limit = 165000,
266 .p2_slow = 4, .p2_fast = 2 },
e4b36699
KP
267};
268
1b6f4958 269static const struct intel_limit intel_limits_i8xx_dvo = {
5d536e28 270 .dot = { .min = 25000, .max = 350000 },
9c333719 271 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 272 .n = { .min = 2, .max = 16 },
5d536e28
DV
273 .m = { .min = 96, .max = 140 },
274 .m1 = { .min = 18, .max = 26 },
275 .m2 = { .min = 6, .max = 16 },
276 .p = { .min = 4, .max = 128 },
277 .p1 = { .min = 2, .max = 33 },
278 .p2 = { .dot_limit = 165000,
279 .p2_slow = 4, .p2_fast = 4 },
280};
281
1b6f4958 282static const struct intel_limit intel_limits_i8xx_lvds = {
0206e353 283 .dot = { .min = 25000, .max = 350000 },
9c333719 284 .vco = { .min = 908000, .max = 1512000 },
91dbe5fb 285 .n = { .min = 2, .max = 16 },
0206e353
AJ
286 .m = { .min = 96, .max = 140 },
287 .m1 = { .min = 18, .max = 26 },
288 .m2 = { .min = 6, .max = 16 },
289 .p = { .min = 4, .max = 128 },
290 .p1 = { .min = 1, .max = 6 },
273e27ca
EA
291 .p2 = { .dot_limit = 165000,
292 .p2_slow = 14, .p2_fast = 7 },
e4b36699 293};
273e27ca 294
1b6f4958 295static const struct intel_limit intel_limits_i9xx_sdvo = {
0206e353
AJ
296 .dot = { .min = 20000, .max = 400000 },
297 .vco = { .min = 1400000, .max = 2800000 },
298 .n = { .min = 1, .max = 6 },
299 .m = { .min = 70, .max = 120 },
4f7dfb67
PJ
300 .m1 = { .min = 8, .max = 18 },
301 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
302 .p = { .min = 5, .max = 80 },
303 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
304 .p2 = { .dot_limit = 200000,
305 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
306};
307
1b6f4958 308static const struct intel_limit intel_limits_i9xx_lvds = {
0206e353
AJ
309 .dot = { .min = 20000, .max = 400000 },
310 .vco = { .min = 1400000, .max = 2800000 },
311 .n = { .min = 1, .max = 6 },
312 .m = { .min = 70, .max = 120 },
53a7d2d1
PJ
313 .m1 = { .min = 8, .max = 18 },
314 .m2 = { .min = 3, .max = 7 },
0206e353
AJ
315 .p = { .min = 7, .max = 98 },
316 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
317 .p2 = { .dot_limit = 112000,
318 .p2_slow = 14, .p2_fast = 7 },
e4b36699
KP
319};
320
273e27ca 321
1b6f4958 322static const struct intel_limit intel_limits_g4x_sdvo = {
273e27ca
EA
323 .dot = { .min = 25000, .max = 270000 },
324 .vco = { .min = 1750000, .max = 3500000},
325 .n = { .min = 1, .max = 4 },
326 .m = { .min = 104, .max = 138 },
327 .m1 = { .min = 17, .max = 23 },
328 .m2 = { .min = 5, .max = 11 },
329 .p = { .min = 10, .max = 30 },
330 .p1 = { .min = 1, .max = 3},
331 .p2 = { .dot_limit = 270000,
332 .p2_slow = 10,
333 .p2_fast = 10
044c7c41 334 },
e4b36699
KP
335};
336
1b6f4958 337static const struct intel_limit intel_limits_g4x_hdmi = {
273e27ca
EA
338 .dot = { .min = 22000, .max = 400000 },
339 .vco = { .min = 1750000, .max = 3500000},
340 .n = { .min = 1, .max = 4 },
341 .m = { .min = 104, .max = 138 },
342 .m1 = { .min = 16, .max = 23 },
343 .m2 = { .min = 5, .max = 11 },
344 .p = { .min = 5, .max = 80 },
345 .p1 = { .min = 1, .max = 8},
346 .p2 = { .dot_limit = 165000,
347 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
348};
349
1b6f4958 350static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
273e27ca
EA
351 .dot = { .min = 20000, .max = 115000 },
352 .vco = { .min = 1750000, .max = 3500000 },
353 .n = { .min = 1, .max = 3 },
354 .m = { .min = 104, .max = 138 },
355 .m1 = { .min = 17, .max = 23 },
356 .m2 = { .min = 5, .max = 11 },
357 .p = { .min = 28, .max = 112 },
358 .p1 = { .min = 2, .max = 8 },
359 .p2 = { .dot_limit = 0,
360 .p2_slow = 14, .p2_fast = 14
044c7c41 361 },
e4b36699
KP
362};
363
1b6f4958 364static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
273e27ca
EA
365 .dot = { .min = 80000, .max = 224000 },
366 .vco = { .min = 1750000, .max = 3500000 },
367 .n = { .min = 1, .max = 3 },
368 .m = { .min = 104, .max = 138 },
369 .m1 = { .min = 17, .max = 23 },
370 .m2 = { .min = 5, .max = 11 },
371 .p = { .min = 14, .max = 42 },
372 .p1 = { .min = 2, .max = 6 },
373 .p2 = { .dot_limit = 0,
374 .p2_slow = 7, .p2_fast = 7
044c7c41 375 },
e4b36699
KP
376};
377
1b6f4958 378static const struct intel_limit intel_limits_pineview_sdvo = {
0206e353
AJ
379 .dot = { .min = 20000, .max = 400000},
380 .vco = { .min = 1700000, .max = 3500000 },
273e27ca 381 /* Pineview's Ncounter is a ring counter */
0206e353
AJ
382 .n = { .min = 3, .max = 6 },
383 .m = { .min = 2, .max = 256 },
273e27ca 384 /* Pineview only has one combined m divider, which we treat as m2. */
0206e353
AJ
385 .m1 = { .min = 0, .max = 0 },
386 .m2 = { .min = 0, .max = 254 },
387 .p = { .min = 5, .max = 80 },
388 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
389 .p2 = { .dot_limit = 200000,
390 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
391};
392
1b6f4958 393static const struct intel_limit intel_limits_pineview_lvds = {
0206e353
AJ
394 .dot = { .min = 20000, .max = 400000 },
395 .vco = { .min = 1700000, .max = 3500000 },
396 .n = { .min = 3, .max = 6 },
397 .m = { .min = 2, .max = 256 },
398 .m1 = { .min = 0, .max = 0 },
399 .m2 = { .min = 0, .max = 254 },
400 .p = { .min = 7, .max = 112 },
401 .p1 = { .min = 1, .max = 8 },
273e27ca
EA
402 .p2 = { .dot_limit = 112000,
403 .p2_slow = 14, .p2_fast = 14 },
e4b36699
KP
404};
405
273e27ca
EA
406/* Ironlake / Sandybridge
407 *
408 * We calculate clock using (register_value + 2) for N/M1/M2, so here
409 * the range value for them is (actual_value - 2).
410 */
1b6f4958 411static const struct intel_limit intel_limits_ironlake_dac = {
273e27ca
EA
412 .dot = { .min = 25000, .max = 350000 },
413 .vco = { .min = 1760000, .max = 3510000 },
414 .n = { .min = 1, .max = 5 },
415 .m = { .min = 79, .max = 127 },
416 .m1 = { .min = 12, .max = 22 },
417 .m2 = { .min = 5, .max = 9 },
418 .p = { .min = 5, .max = 80 },
419 .p1 = { .min = 1, .max = 8 },
420 .p2 = { .dot_limit = 225000,
421 .p2_slow = 10, .p2_fast = 5 },
e4b36699
KP
422};
423
1b6f4958 424static const struct intel_limit intel_limits_ironlake_single_lvds = {
273e27ca
EA
425 .dot = { .min = 25000, .max = 350000 },
426 .vco = { .min = 1760000, .max = 3510000 },
427 .n = { .min = 1, .max = 3 },
428 .m = { .min = 79, .max = 118 },
429 .m1 = { .min = 12, .max = 22 },
430 .m2 = { .min = 5, .max = 9 },
431 .p = { .min = 28, .max = 112 },
432 .p1 = { .min = 2, .max = 8 },
433 .p2 = { .dot_limit = 225000,
434 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
435};
436
1b6f4958 437static const struct intel_limit intel_limits_ironlake_dual_lvds = {
273e27ca
EA
438 .dot = { .min = 25000, .max = 350000 },
439 .vco = { .min = 1760000, .max = 3510000 },
440 .n = { .min = 1, .max = 3 },
441 .m = { .min = 79, .max = 127 },
442 .m1 = { .min = 12, .max = 22 },
443 .m2 = { .min = 5, .max = 9 },
444 .p = { .min = 14, .max = 56 },
445 .p1 = { .min = 2, .max = 8 },
446 .p2 = { .dot_limit = 225000,
447 .p2_slow = 7, .p2_fast = 7 },
b91ad0ec
ZW
448};
449
273e27ca 450/* LVDS 100mhz refclk limits. */
1b6f4958 451static const struct intel_limit intel_limits_ironlake_single_lvds_100m = {
273e27ca
EA
452 .dot = { .min = 25000, .max = 350000 },
453 .vco = { .min = 1760000, .max = 3510000 },
454 .n = { .min = 1, .max = 2 },
455 .m = { .min = 79, .max = 126 },
456 .m1 = { .min = 12, .max = 22 },
457 .m2 = { .min = 5, .max = 9 },
458 .p = { .min = 28, .max = 112 },
0206e353 459 .p1 = { .min = 2, .max = 8 },
273e27ca
EA
460 .p2 = { .dot_limit = 225000,
461 .p2_slow = 14, .p2_fast = 14 },
b91ad0ec
ZW
462};
463
1b6f4958 464static const struct intel_limit intel_limits_ironlake_dual_lvds_100m = {
273e27ca
EA
465 .dot = { .min = 25000, .max = 350000 },
466 .vco = { .min = 1760000, .max = 3510000 },
467 .n = { .min = 1, .max = 3 },
468 .m = { .min = 79, .max = 126 },
469 .m1 = { .min = 12, .max = 22 },
470 .m2 = { .min = 5, .max = 9 },
471 .p = { .min = 14, .max = 42 },
0206e353 472 .p1 = { .min = 2, .max = 6 },
273e27ca
EA
473 .p2 = { .dot_limit = 225000,
474 .p2_slow = 7, .p2_fast = 7 },
4547668a
ZY
475};
476
1b6f4958 477static const struct intel_limit intel_limits_vlv = {
f01b7962
VS
478 /*
479 * These are the data rate limits (measured in fast clocks)
480 * since those are the strictest limits we have. The fast
481 * clock and actual rate limits are more relaxed, so checking
482 * them would make no difference.
483 */
484 .dot = { .min = 25000 * 5, .max = 270000 * 5 },
75e53986 485 .vco = { .min = 4000000, .max = 6000000 },
a0c4da24 486 .n = { .min = 1, .max = 7 },
a0c4da24
JB
487 .m1 = { .min = 2, .max = 3 },
488 .m2 = { .min = 11, .max = 156 },
b99ab663 489 .p1 = { .min = 2, .max = 3 },
5fdc9c49 490 .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
a0c4da24
JB
491};
492
1b6f4958 493static const struct intel_limit intel_limits_chv = {
ef9348c8
CML
494 /*
495 * These are the data rate limits (measured in fast clocks)
496 * since those are the strictest limits we have. The fast
497 * clock and actual rate limits are more relaxed, so checking
498 * them would make no difference.
499 */
500 .dot = { .min = 25000 * 5, .max = 540000 * 5},
17fe1021 501 .vco = { .min = 4800000, .max = 6480000 },
ef9348c8
CML
502 .n = { .min = 1, .max = 1 },
503 .m1 = { .min = 2, .max = 2 },
504 .m2 = { .min = 24 << 22, .max = 175 << 22 },
505 .p1 = { .min = 2, .max = 4 },
506 .p2 = { .p2_slow = 1, .p2_fast = 14 },
507};
508
1b6f4958 509static const struct intel_limit intel_limits_bxt = {
5ab7b0b7
ID
510 /* FIXME: find real dot limits */
511 .dot = { .min = 0, .max = INT_MAX },
e6292556 512 .vco = { .min = 4800000, .max = 6700000 },
5ab7b0b7
ID
513 .n = { .min = 1, .max = 1 },
514 .m1 = { .min = 2, .max = 2 },
515 /* FIXME: find real m2 limits */
516 .m2 = { .min = 2 << 22, .max = 255 << 22 },
517 .p1 = { .min = 2, .max = 4 },
518 .p2 = { .p2_slow = 1, .p2_fast = 20 },
519};
520
cdba954e
ACO
521static bool
522needs_modeset(struct drm_crtc_state *state)
523{
fc596660 524 return drm_atomic_crtc_needs_modeset(state);
cdba954e
ACO
525}
526
e0638cdf
PZ
527/**
528 * Returns whether any output on the specified pipe is of the specified type
529 */
4093561b 530bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
e0638cdf 531{
409ee761 532 struct drm_device *dev = crtc->base.dev;
e0638cdf
PZ
533 struct intel_encoder *encoder;
534
409ee761 535 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
e0638cdf
PZ
536 if (encoder->type == type)
537 return true;
538
539 return false;
540}
541
d0737e1d
ACO
542/**
543 * Returns whether any output on the specified pipe will have the specified
544 * type after a staged modeset is complete, i.e., the same as
545 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
546 * encoder->crtc.
547 */
a93e255f
ACO
548static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
549 int type)
d0737e1d 550{
a93e255f 551 struct drm_atomic_state *state = crtc_state->base.state;
da3ced29 552 struct drm_connector *connector;
a93e255f 553 struct drm_connector_state *connector_state;
d0737e1d 554 struct intel_encoder *encoder;
a93e255f
ACO
555 int i, num_connectors = 0;
556
da3ced29 557 for_each_connector_in_state(state, connector, connector_state, i) {
a93e255f
ACO
558 if (connector_state->crtc != crtc_state->base.crtc)
559 continue;
560
561 num_connectors++;
d0737e1d 562
a93e255f
ACO
563 encoder = to_intel_encoder(connector_state->best_encoder);
564 if (encoder->type == type)
d0737e1d 565 return true;
a93e255f
ACO
566 }
567
568 WARN_ON(num_connectors == 0);
d0737e1d
ACO
569
570 return false;
571}
572
dccbea3b
ID
573/*
574 * Platform specific helpers to calculate the port PLL loopback- (clock.m),
575 * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
576 * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
577 * The helpers' return value is the rate of the clock that is fed to the
578 * display engine's pipe which can be the above fast dot clock rate or a
579 * divided-down version of it.
580 */
f2b115e6 581/* m1 is reserved as 0 in Pineview, n is a ring counter */
9e2c8475 582static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
79e53945 583{
2177832f
SL
584 clock->m = clock->m2 + 2;
585 clock->p = clock->p1 * clock->p2;
ed5ca77e 586 if (WARN_ON(clock->n == 0 || clock->p == 0))
dccbea3b 587 return 0;
fb03ac01
VS
588 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
589 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
dccbea3b
ID
590
591 return clock->dot;
2177832f
SL
592}
593
7429e9d4
DV
594static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
595{
596 return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
597}
598
9e2c8475 599static int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
2177832f 600{
7429e9d4 601 clock->m = i9xx_dpll_compute_m(clock);
79e53945 602 clock->p = clock->p1 * clock->p2;
ed5ca77e 603 if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
dccbea3b 604 return 0;
fb03ac01
VS
605 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
606 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
dccbea3b
ID
607
608 return clock->dot;
79e53945
JB
609}
610
9e2c8475 611static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
589eca67
ID
612{
613 clock->m = clock->m1 * clock->m2;
614 clock->p = clock->p1 * clock->p2;
615 if (WARN_ON(clock->n == 0 || clock->p == 0))
dccbea3b 616 return 0;
589eca67
ID
617 clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
618 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
dccbea3b
ID
619
620 return clock->dot / 5;
589eca67
ID
621}
622
9e2c8475 623int chv_calc_dpll_params(int refclk, struct dpll *clock)
ef9348c8
CML
624{
625 clock->m = clock->m1 * clock->m2;
626 clock->p = clock->p1 * clock->p2;
627 if (WARN_ON(clock->n == 0 || clock->p == 0))
dccbea3b 628 return 0;
ef9348c8
CML
629 clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
630 clock->n << 22);
631 clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
dccbea3b
ID
632
633 return clock->dot / 5;
ef9348c8
CML
634}
635
7c04d1d9 636#define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
79e53945
JB
637/**
638 * Returns whether the given set of divisors are valid for a given refclk with
639 * the given connectors.
640 */
641
1b894b59 642static bool intel_PLL_is_valid(struct drm_device *dev,
1b6f4958 643 const struct intel_limit *limit,
9e2c8475 644 const struct dpll *clock)
79e53945 645{
f01b7962
VS
646 if (clock->n < limit->n.min || limit->n.max < clock->n)
647 INTELPllInvalid("n out of range\n");
79e53945 648 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
0206e353 649 INTELPllInvalid("p1 out of range\n");
79e53945 650 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
0206e353 651 INTELPllInvalid("m2 out of range\n");
79e53945 652 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
0206e353 653 INTELPllInvalid("m1 out of range\n");
f01b7962 654
666a4537
WB
655 if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) &&
656 !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev))
f01b7962
VS
657 if (clock->m1 <= clock->m2)
658 INTELPllInvalid("m1 <= m2\n");
659
666a4537 660 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) && !IS_BROXTON(dev)) {
f01b7962
VS
661 if (clock->p < limit->p.min || limit->p.max < clock->p)
662 INTELPllInvalid("p out of range\n");
663 if (clock->m < limit->m.min || limit->m.max < clock->m)
664 INTELPllInvalid("m out of range\n");
665 }
666
79e53945 667 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
0206e353 668 INTELPllInvalid("vco out of range\n");
79e53945
JB
669 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
670 * connector, etc., rather than just a single range.
671 */
672 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
0206e353 673 INTELPllInvalid("dot out of range\n");
79e53945
JB
674
675 return true;
676}
677
3b1429d9 678static int
1b6f4958 679i9xx_select_p2_div(const struct intel_limit *limit,
3b1429d9
VS
680 const struct intel_crtc_state *crtc_state,
681 int target)
79e53945 682{
3b1429d9 683 struct drm_device *dev = crtc_state->base.crtc->dev;
79e53945 684
a93e255f 685 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
79e53945 686 /*
a210b028
DV
687 * For LVDS just rely on its current settings for dual-channel.
688 * We haven't figured out how to reliably set up different
689 * single/dual channel state, if we even can.
79e53945 690 */
1974cad0 691 if (intel_is_dual_link_lvds(dev))
3b1429d9 692 return limit->p2.p2_fast;
79e53945 693 else
3b1429d9 694 return limit->p2.p2_slow;
79e53945
JB
695 } else {
696 if (target < limit->p2.dot_limit)
3b1429d9 697 return limit->p2.p2_slow;
79e53945 698 else
3b1429d9 699 return limit->p2.p2_fast;
79e53945 700 }
3b1429d9
VS
701}
702
70e8aa21
ACO
703/*
704 * Returns a set of divisors for the desired target clock with the given
705 * refclk, or FALSE. The returned values represent the clock equation:
706 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
707 *
708 * Target and reference clocks are specified in kHz.
709 *
710 * If match_clock is provided, then best_clock P divider must match the P
711 * divider from @match_clock used for LVDS downclocking.
712 */
3b1429d9 713static bool
1b6f4958 714i9xx_find_best_dpll(const struct intel_limit *limit,
3b1429d9 715 struct intel_crtc_state *crtc_state,
9e2c8475
ACO
716 int target, int refclk, struct dpll *match_clock,
717 struct dpll *best_clock)
3b1429d9
VS
718{
719 struct drm_device *dev = crtc_state->base.crtc->dev;
9e2c8475 720 struct dpll clock;
3b1429d9 721 int err = target;
79e53945 722
0206e353 723 memset(best_clock, 0, sizeof(*best_clock));
79e53945 724
3b1429d9
VS
725 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
726
42158660
ZY
727 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
728 clock.m1++) {
729 for (clock.m2 = limit->m2.min;
730 clock.m2 <= limit->m2.max; clock.m2++) {
c0efc387 731 if (clock.m2 >= clock.m1)
42158660
ZY
732 break;
733 for (clock.n = limit->n.min;
734 clock.n <= limit->n.max; clock.n++) {
735 for (clock.p1 = limit->p1.min;
736 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
737 int this_err;
738
dccbea3b 739 i9xx_calc_dpll_params(refclk, &clock);
ac58c3f0
DV
740 if (!intel_PLL_is_valid(dev, limit,
741 &clock))
742 continue;
743 if (match_clock &&
744 clock.p != match_clock->p)
745 continue;
746
747 this_err = abs(clock.dot - target);
748 if (this_err < err) {
749 *best_clock = clock;
750 err = this_err;
751 }
752 }
753 }
754 }
755 }
756
757 return (err != target);
758}
759
70e8aa21
ACO
760/*
761 * Returns a set of divisors for the desired target clock with the given
762 * refclk, or FALSE. The returned values represent the clock equation:
763 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
764 *
765 * Target and reference clocks are specified in kHz.
766 *
767 * If match_clock is provided, then best_clock P divider must match the P
768 * divider from @match_clock used for LVDS downclocking.
769 */
ac58c3f0 770static bool
1b6f4958 771pnv_find_best_dpll(const struct intel_limit *limit,
a93e255f 772 struct intel_crtc_state *crtc_state,
9e2c8475
ACO
773 int target, int refclk, struct dpll *match_clock,
774 struct dpll *best_clock)
79e53945 775{
3b1429d9 776 struct drm_device *dev = crtc_state->base.crtc->dev;
9e2c8475 777 struct dpll clock;
79e53945
JB
778 int err = target;
779
0206e353 780 memset(best_clock, 0, sizeof(*best_clock));
79e53945 781
3b1429d9
VS
782 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
783
42158660
ZY
784 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
785 clock.m1++) {
786 for (clock.m2 = limit->m2.min;
787 clock.m2 <= limit->m2.max; clock.m2++) {
42158660
ZY
788 for (clock.n = limit->n.min;
789 clock.n <= limit->n.max; clock.n++) {
790 for (clock.p1 = limit->p1.min;
791 clock.p1 <= limit->p1.max; clock.p1++) {
79e53945
JB
792 int this_err;
793
dccbea3b 794 pnv_calc_dpll_params(refclk, &clock);
1b894b59
CW
795 if (!intel_PLL_is_valid(dev, limit,
796 &clock))
79e53945 797 continue;
cec2f356
SP
798 if (match_clock &&
799 clock.p != match_clock->p)
800 continue;
79e53945
JB
801
802 this_err = abs(clock.dot - target);
803 if (this_err < err) {
804 *best_clock = clock;
805 err = this_err;
806 }
807 }
808 }
809 }
810 }
811
812 return (err != target);
813}
814
997c030c
ACO
815/*
816 * Returns a set of divisors for the desired target clock with the given
817 * refclk, or FALSE. The returned values represent the clock equation:
818 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
70e8aa21
ACO
819 *
820 * Target and reference clocks are specified in kHz.
821 *
822 * If match_clock is provided, then best_clock P divider must match the P
823 * divider from @match_clock used for LVDS downclocking.
997c030c 824 */
d4906093 825static bool
1b6f4958 826g4x_find_best_dpll(const struct intel_limit *limit,
a93e255f 827 struct intel_crtc_state *crtc_state,
9e2c8475
ACO
828 int target, int refclk, struct dpll *match_clock,
829 struct dpll *best_clock)
d4906093 830{
3b1429d9 831 struct drm_device *dev = crtc_state->base.crtc->dev;
9e2c8475 832 struct dpll clock;
d4906093 833 int max_n;
3b1429d9 834 bool found = false;
6ba770dc
AJ
835 /* approximately equals target * 0.00585 */
836 int err_most = (target >> 8) + (target >> 9);
d4906093
ML
837
838 memset(best_clock, 0, sizeof(*best_clock));
3b1429d9
VS
839
840 clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
841
d4906093 842 max_n = limit->n.max;
f77f13e2 843 /* based on hardware requirement, prefer smaller n to precision */
d4906093 844 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
f77f13e2 845 /* based on hardware requirement, prefere larger m1,m2 */
d4906093
ML
846 for (clock.m1 = limit->m1.max;
847 clock.m1 >= limit->m1.min; clock.m1--) {
848 for (clock.m2 = limit->m2.max;
849 clock.m2 >= limit->m2.min; clock.m2--) {
850 for (clock.p1 = limit->p1.max;
851 clock.p1 >= limit->p1.min; clock.p1--) {
852 int this_err;
853
dccbea3b 854 i9xx_calc_dpll_params(refclk, &clock);
1b894b59
CW
855 if (!intel_PLL_is_valid(dev, limit,
856 &clock))
d4906093 857 continue;
1b894b59
CW
858
859 this_err = abs(clock.dot - target);
d4906093
ML
860 if (this_err < err_most) {
861 *best_clock = clock;
862 err_most = this_err;
863 max_n = clock.n;
864 found = true;
865 }
866 }
867 }
868 }
869 }
2c07245f
ZW
870 return found;
871}
872
d5dd62bd
ID
873/*
874 * Check if the calculated PLL configuration is more optimal compared to the
875 * best configuration and error found so far. Return the calculated error.
876 */
877static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
9e2c8475
ACO
878 const struct dpll *calculated_clock,
879 const struct dpll *best_clock,
d5dd62bd
ID
880 unsigned int best_error_ppm,
881 unsigned int *error_ppm)
882{
9ca3ba01
ID
883 /*
884 * For CHV ignore the error and consider only the P value.
885 * Prefer a bigger P value based on HW requirements.
886 */
887 if (IS_CHERRYVIEW(dev)) {
888 *error_ppm = 0;
889
890 return calculated_clock->p > best_clock->p;
891 }
892
24be4e46
ID
893 if (WARN_ON_ONCE(!target_freq))
894 return false;
895
d5dd62bd
ID
896 *error_ppm = div_u64(1000000ULL *
897 abs(target_freq - calculated_clock->dot),
898 target_freq);
899 /*
900 * Prefer a better P value over a better (smaller) error if the error
901 * is small. Ensure this preference for future configurations too by
902 * setting the error to 0.
903 */
904 if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
905 *error_ppm = 0;
906
907 return true;
908 }
909
910 return *error_ppm + 10 < best_error_ppm;
911}
912
65b3d6a9
ACO
913/*
914 * Returns a set of divisors for the desired target clock with the given
915 * refclk, or FALSE. The returned values represent the clock equation:
916 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
917 */
a0c4da24 918static bool
1b6f4958 919vlv_find_best_dpll(const struct intel_limit *limit,
a93e255f 920 struct intel_crtc_state *crtc_state,
9e2c8475
ACO
921 int target, int refclk, struct dpll *match_clock,
922 struct dpll *best_clock)
a0c4da24 923{
a93e255f 924 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
a919ff14 925 struct drm_device *dev = crtc->base.dev;
9e2c8475 926 struct dpll clock;
69e4f900 927 unsigned int bestppm = 1000000;
27e639bf
VS
928 /* min update 19.2 MHz */
929 int max_n = min(limit->n.max, refclk / 19200);
49e497ef 930 bool found = false;
a0c4da24 931
6b4bf1c4
VS
932 target *= 5; /* fast clock */
933
934 memset(best_clock, 0, sizeof(*best_clock));
a0c4da24
JB
935
936 /* based on hardware requirement, prefer smaller n to precision */
27e639bf 937 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
811bbf05 938 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
889059d8 939 for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
c1a9ae43 940 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
6b4bf1c4 941 clock.p = clock.p1 * clock.p2;
a0c4da24 942 /* based on hardware requirement, prefer bigger m1,m2 values */
6b4bf1c4 943 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
d5dd62bd 944 unsigned int ppm;
69e4f900 945
6b4bf1c4
VS
946 clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
947 refclk * clock.m1);
948
dccbea3b 949 vlv_calc_dpll_params(refclk, &clock);
43b0ac53 950
f01b7962
VS
951 if (!intel_PLL_is_valid(dev, limit,
952 &clock))
43b0ac53
VS
953 continue;
954
d5dd62bd
ID
955 if (!vlv_PLL_is_optimal(dev, target,
956 &clock,
957 best_clock,
958 bestppm, &ppm))
959 continue;
6b4bf1c4 960
d5dd62bd
ID
961 *best_clock = clock;
962 bestppm = ppm;
963 found = true;
a0c4da24
JB
964 }
965 }
966 }
967 }
a0c4da24 968
49e497ef 969 return found;
a0c4da24 970}
a4fc5ed6 971
65b3d6a9
ACO
972/*
973 * Returns a set of divisors for the desired target clock with the given
974 * refclk, or FALSE. The returned values represent the clock equation:
975 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
976 */
ef9348c8 977static bool
1b6f4958 978chv_find_best_dpll(const struct intel_limit *limit,
a93e255f 979 struct intel_crtc_state *crtc_state,
9e2c8475
ACO
980 int target, int refclk, struct dpll *match_clock,
981 struct dpll *best_clock)
ef9348c8 982{
a93e255f 983 struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
a919ff14 984 struct drm_device *dev = crtc->base.dev;
9ca3ba01 985 unsigned int best_error_ppm;
9e2c8475 986 struct dpll clock;
ef9348c8
CML
987 uint64_t m2;
988 int found = false;
989
990 memset(best_clock, 0, sizeof(*best_clock));
9ca3ba01 991 best_error_ppm = 1000000;
ef9348c8
CML
992
993 /*
994 * Based on hardware doc, the n always set to 1, and m1 always
995 * set to 2. If requires to support 200Mhz refclk, we need to
996 * revisit this because n may not 1 anymore.
997 */
998 clock.n = 1, clock.m1 = 2;
999 target *= 5; /* fast clock */
1000
1001 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
1002 for (clock.p2 = limit->p2.p2_fast;
1003 clock.p2 >= limit->p2.p2_slow;
1004 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
9ca3ba01 1005 unsigned int error_ppm;
ef9348c8
CML
1006
1007 clock.p = clock.p1 * clock.p2;
1008
1009 m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
1010 clock.n) << 22, refclk * clock.m1);
1011
1012 if (m2 > INT_MAX/clock.m1)
1013 continue;
1014
1015 clock.m2 = m2;
1016
dccbea3b 1017 chv_calc_dpll_params(refclk, &clock);
ef9348c8
CML
1018
1019 if (!intel_PLL_is_valid(dev, limit, &clock))
1020 continue;
1021
9ca3ba01
ID
1022 if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
1023 best_error_ppm, &error_ppm))
1024 continue;
1025
1026 *best_clock = clock;
1027 best_error_ppm = error_ppm;
1028 found = true;
ef9348c8
CML
1029 }
1030 }
1031
1032 return found;
1033}
1034
5ab7b0b7 1035bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
9e2c8475 1036 struct dpll *best_clock)
5ab7b0b7 1037{
65b3d6a9 1038 int refclk = 100000;
1b6f4958 1039 const struct intel_limit *limit = &intel_limits_bxt;
5ab7b0b7 1040
65b3d6a9 1041 return chv_find_best_dpll(limit, crtc_state,
5ab7b0b7
ID
1042 target_clock, refclk, NULL, best_clock);
1043}
1044
20ddf665
VS
1045bool intel_crtc_active(struct drm_crtc *crtc)
1046{
1047 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1048
1049 /* Be paranoid as we can arrive here with only partial
1050 * state retrieved from the hardware during setup.
1051 *
241bfc38 1052 * We can ditch the adjusted_mode.crtc_clock check as soon
20ddf665
VS
1053 * as Haswell has gained clock readout/fastboot support.
1054 *
66e514c1 1055 * We can ditch the crtc->primary->fb check as soon as we can
20ddf665 1056 * properly reconstruct framebuffers.
c3d1f436
MR
1057 *
1058 * FIXME: The intel_crtc->active here should be switched to
1059 * crtc->state->active once we have proper CRTC states wired up
1060 * for atomic.
20ddf665 1061 */
c3d1f436 1062 return intel_crtc->active && crtc->primary->state->fb &&
6e3c9717 1063 intel_crtc->config->base.adjusted_mode.crtc_clock;
20ddf665
VS
1064}
1065
a5c961d1
PZ
1066enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1067 enum pipe pipe)
1068{
1069 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1070 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1071
6e3c9717 1072 return intel_crtc->config->cpu_transcoder;
a5c961d1
PZ
1073}
1074
fbf49ea2
VS
1075static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1076{
1077 struct drm_i915_private *dev_priv = dev->dev_private;
f0f59a00 1078 i915_reg_t reg = PIPEDSL(pipe);
fbf49ea2
VS
1079 u32 line1, line2;
1080 u32 line_mask;
1081
1082 if (IS_GEN2(dev))
1083 line_mask = DSL_LINEMASK_GEN2;
1084 else
1085 line_mask = DSL_LINEMASK_GEN3;
1086
1087 line1 = I915_READ(reg) & line_mask;
6adfb1ef 1088 msleep(5);
fbf49ea2
VS
1089 line2 = I915_READ(reg) & line_mask;
1090
1091 return line1 == line2;
1092}
1093
ab7ad7f6
KP
1094/*
1095 * intel_wait_for_pipe_off - wait for pipe to turn off
575f7ab7 1096 * @crtc: crtc whose pipe to wait for
9d0498a2
JB
1097 *
1098 * After disabling a pipe, we can't wait for vblank in the usual way,
1099 * spinning on the vblank interrupt status bit, since we won't actually
1100 * see an interrupt when the pipe is disabled.
1101 *
ab7ad7f6
KP
1102 * On Gen4 and above:
1103 * wait for the pipe register state bit to turn off
1104 *
1105 * Otherwise:
1106 * wait for the display line value to settle (it usually
1107 * ends up stopping at the start of the next frame).
58e10eb9 1108 *
9d0498a2 1109 */
575f7ab7 1110static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
9d0498a2 1111{
575f7ab7 1112 struct drm_device *dev = crtc->base.dev;
9d0498a2 1113 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 1114 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
575f7ab7 1115 enum pipe pipe = crtc->pipe;
ab7ad7f6
KP
1116
1117 if (INTEL_INFO(dev)->gen >= 4) {
f0f59a00 1118 i915_reg_t reg = PIPECONF(cpu_transcoder);
ab7ad7f6
KP
1119
1120 /* Wait for the Pipe State to go off */
58e10eb9
CW
1121 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1122 100))
284637d9 1123 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1124 } else {
ab7ad7f6 1125 /* Wait for the display line to settle */
fbf49ea2 1126 if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
284637d9 1127 WARN(1, "pipe_off wait timed out\n");
ab7ad7f6 1128 }
79e53945
JB
1129}
1130
b24e7179 1131/* Only for pre-ILK configs */
55607e8a
DV
1132void assert_pll(struct drm_i915_private *dev_priv,
1133 enum pipe pipe, bool state)
b24e7179 1134{
b24e7179
JB
1135 u32 val;
1136 bool cur_state;
1137
649636ef 1138 val = I915_READ(DPLL(pipe));
b24e7179 1139 cur_state = !!(val & DPLL_VCO_ENABLE);
e2c719b7 1140 I915_STATE_WARN(cur_state != state,
b24e7179 1141 "PLL state assertion failure (expected %s, current %s)\n",
87ad3212 1142 onoff(state), onoff(cur_state));
b24e7179 1143}
b24e7179 1144
23538ef1 1145/* XXX: the dsi pll is shared between MIPI DSI ports */
8563b1e8 1146void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
23538ef1
JN
1147{
1148 u32 val;
1149 bool cur_state;
1150
a580516d 1151 mutex_lock(&dev_priv->sb_lock);
23538ef1 1152 val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
a580516d 1153 mutex_unlock(&dev_priv->sb_lock);
23538ef1
JN
1154
1155 cur_state = val & DSI_PLL_VCO_EN;
e2c719b7 1156 I915_STATE_WARN(cur_state != state,
23538ef1 1157 "DSI PLL state assertion failure (expected %s, current %s)\n",
87ad3212 1158 onoff(state), onoff(cur_state));
23538ef1 1159}
23538ef1 1160
040484af
JB
1161static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1162 enum pipe pipe, bool state)
1163{
040484af 1164 bool cur_state;
ad80a810
PZ
1165 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1166 pipe);
040484af 1167
2d1fe073 1168 if (HAS_DDI(dev_priv)) {
affa9354 1169 /* DDI does not have a specific FDI_TX register */
649636ef 1170 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
ad80a810 1171 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
bf507ef7 1172 } else {
649636ef 1173 u32 val = I915_READ(FDI_TX_CTL(pipe));
bf507ef7
ED
1174 cur_state = !!(val & FDI_TX_ENABLE);
1175 }
e2c719b7 1176 I915_STATE_WARN(cur_state != state,
040484af 1177 "FDI TX state assertion failure (expected %s, current %s)\n",
87ad3212 1178 onoff(state), onoff(cur_state));
040484af
JB
1179}
1180#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1181#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1182
1183static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1184 enum pipe pipe, bool state)
1185{
040484af
JB
1186 u32 val;
1187 bool cur_state;
1188
649636ef 1189 val = I915_READ(FDI_RX_CTL(pipe));
d63fa0dc 1190 cur_state = !!(val & FDI_RX_ENABLE);
e2c719b7 1191 I915_STATE_WARN(cur_state != state,
040484af 1192 "FDI RX state assertion failure (expected %s, current %s)\n",
87ad3212 1193 onoff(state), onoff(cur_state));
040484af
JB
1194}
1195#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1196#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1197
1198static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1199 enum pipe pipe)
1200{
040484af
JB
1201 u32 val;
1202
1203 /* ILK FDI PLL is always enabled */
7e22dbbb 1204 if (IS_GEN5(dev_priv))
040484af
JB
1205 return;
1206
bf507ef7 1207 /* On Haswell, DDI ports are responsible for the FDI PLL setup */
2d1fe073 1208 if (HAS_DDI(dev_priv))
bf507ef7
ED
1209 return;
1210
649636ef 1211 val = I915_READ(FDI_TX_CTL(pipe));
e2c719b7 1212 I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
040484af
JB
1213}
1214
55607e8a
DV
1215void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1216 enum pipe pipe, bool state)
040484af 1217{
040484af 1218 u32 val;
55607e8a 1219 bool cur_state;
040484af 1220
649636ef 1221 val = I915_READ(FDI_RX_CTL(pipe));
55607e8a 1222 cur_state = !!(val & FDI_RX_PLL_ENABLE);
e2c719b7 1223 I915_STATE_WARN(cur_state != state,
55607e8a 1224 "FDI RX PLL assertion failure (expected %s, current %s)\n",
87ad3212 1225 onoff(state), onoff(cur_state));
040484af
JB
1226}
1227
b680c37a
DV
1228void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1229 enum pipe pipe)
ea0760cf 1230{
bedd4dba 1231 struct drm_device *dev = dev_priv->dev;
f0f59a00 1232 i915_reg_t pp_reg;
ea0760cf
JB
1233 u32 val;
1234 enum pipe panel_pipe = PIPE_A;
0de3b485 1235 bool locked = true;
ea0760cf 1236
bedd4dba
JN
1237 if (WARN_ON(HAS_DDI(dev)))
1238 return;
1239
1240 if (HAS_PCH_SPLIT(dev)) {
1241 u32 port_sel;
1242
ea0760cf 1243 pp_reg = PCH_PP_CONTROL;
bedd4dba
JN
1244 port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1245
1246 if (port_sel == PANEL_PORT_SELECT_LVDS &&
1247 I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1248 panel_pipe = PIPE_B;
1249 /* XXX: else fix for eDP */
666a4537 1250 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
bedd4dba
JN
1251 /* presumably write lock depends on pipe, not port select */
1252 pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1253 panel_pipe = pipe;
ea0760cf
JB
1254 } else {
1255 pp_reg = PP_CONTROL;
bedd4dba
JN
1256 if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1257 panel_pipe = PIPE_B;
ea0760cf
JB
1258 }
1259
1260 val = I915_READ(pp_reg);
1261 if (!(val & PANEL_POWER_ON) ||
ec49ba2d 1262 ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
ea0760cf
JB
1263 locked = false;
1264
e2c719b7 1265 I915_STATE_WARN(panel_pipe == pipe && locked,
ea0760cf 1266 "panel assertion failure, pipe %c regs locked\n",
9db4a9c7 1267 pipe_name(pipe));
ea0760cf
JB
1268}
1269
93ce0ba6
JN
1270static void assert_cursor(struct drm_i915_private *dev_priv,
1271 enum pipe pipe, bool state)
1272{
1273 struct drm_device *dev = dev_priv->dev;
1274 bool cur_state;
1275
d9d82081 1276 if (IS_845G(dev) || IS_I865G(dev))
0b87c24e 1277 cur_state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
d9d82081 1278 else
5efb3e28 1279 cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
93ce0ba6 1280
e2c719b7 1281 I915_STATE_WARN(cur_state != state,
93ce0ba6 1282 "cursor on pipe %c assertion failure (expected %s, current %s)\n",
87ad3212 1283 pipe_name(pipe), onoff(state), onoff(cur_state));
93ce0ba6
JN
1284}
1285#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1286#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1287
b840d907
JB
1288void assert_pipe(struct drm_i915_private *dev_priv,
1289 enum pipe pipe, bool state)
b24e7179 1290{
63d7bbe9 1291 bool cur_state;
702e7a56
PZ
1292 enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1293 pipe);
4feed0eb 1294 enum intel_display_power_domain power_domain;
b24e7179 1295
b6b5d049
VS
1296 /* if we need the pipe quirk it must be always on */
1297 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1298 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
8e636784
DV
1299 state = true;
1300
4feed0eb
ID
1301 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1302 if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
649636ef 1303 u32 val = I915_READ(PIPECONF(cpu_transcoder));
69310161 1304 cur_state = !!(val & PIPECONF_ENABLE);
4feed0eb
ID
1305
1306 intel_display_power_put(dev_priv, power_domain);
1307 } else {
1308 cur_state = false;
69310161
PZ
1309 }
1310
e2c719b7 1311 I915_STATE_WARN(cur_state != state,
63d7bbe9 1312 "pipe %c assertion failure (expected %s, current %s)\n",
87ad3212 1313 pipe_name(pipe), onoff(state), onoff(cur_state));
b24e7179
JB
1314}
1315
931872fc
CW
1316static void assert_plane(struct drm_i915_private *dev_priv,
1317 enum plane plane, bool state)
b24e7179 1318{
b24e7179 1319 u32 val;
931872fc 1320 bool cur_state;
b24e7179 1321
649636ef 1322 val = I915_READ(DSPCNTR(plane));
931872fc 1323 cur_state = !!(val & DISPLAY_PLANE_ENABLE);
e2c719b7 1324 I915_STATE_WARN(cur_state != state,
931872fc 1325 "plane %c assertion failure (expected %s, current %s)\n",
87ad3212 1326 plane_name(plane), onoff(state), onoff(cur_state));
b24e7179
JB
1327}
1328
931872fc
CW
1329#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1330#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1331
b24e7179
JB
1332static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1333 enum pipe pipe)
1334{
653e1026 1335 struct drm_device *dev = dev_priv->dev;
649636ef 1336 int i;
b24e7179 1337
653e1026
VS
1338 /* Primary planes are fixed to pipes on gen4+ */
1339 if (INTEL_INFO(dev)->gen >= 4) {
649636ef 1340 u32 val = I915_READ(DSPCNTR(pipe));
e2c719b7 1341 I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
28c05794
AJ
1342 "plane %c assertion failure, should be disabled but not\n",
1343 plane_name(pipe));
19ec1358 1344 return;
28c05794 1345 }
19ec1358 1346
b24e7179 1347 /* Need to check both planes against the pipe */
055e393f 1348 for_each_pipe(dev_priv, i) {
649636ef
VS
1349 u32 val = I915_READ(DSPCNTR(i));
1350 enum pipe cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
b24e7179 1351 DISPPLANE_SEL_PIPE_SHIFT;
e2c719b7 1352 I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
9db4a9c7
JB
1353 "plane %c assertion failure, should be off on pipe %c but is still active\n",
1354 plane_name(i), pipe_name(pipe));
b24e7179
JB
1355 }
1356}
1357
19332d7a
JB
1358static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1359 enum pipe pipe)
1360{
20674eef 1361 struct drm_device *dev = dev_priv->dev;
649636ef 1362 int sprite;
19332d7a 1363
7feb8b88 1364 if (INTEL_INFO(dev)->gen >= 9) {
3bdcfc0c 1365 for_each_sprite(dev_priv, pipe, sprite) {
649636ef 1366 u32 val = I915_READ(PLANE_CTL(pipe, sprite));
e2c719b7 1367 I915_STATE_WARN(val & PLANE_CTL_ENABLE,
7feb8b88
DL
1368 "plane %d assertion failure, should be off on pipe %c but is still active\n",
1369 sprite, pipe_name(pipe));
1370 }
666a4537 1371 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
3bdcfc0c 1372 for_each_sprite(dev_priv, pipe, sprite) {
649636ef 1373 u32 val = I915_READ(SPCNTR(pipe, sprite));
e2c719b7 1374 I915_STATE_WARN(val & SP_ENABLE,
20674eef 1375 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1fe47785 1376 sprite_name(pipe, sprite), pipe_name(pipe));
20674eef
VS
1377 }
1378 } else if (INTEL_INFO(dev)->gen >= 7) {
649636ef 1379 u32 val = I915_READ(SPRCTL(pipe));
e2c719b7 1380 I915_STATE_WARN(val & SPRITE_ENABLE,
06da8da2 1381 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef
VS
1382 plane_name(pipe), pipe_name(pipe));
1383 } else if (INTEL_INFO(dev)->gen >= 5) {
649636ef 1384 u32 val = I915_READ(DVSCNTR(pipe));
e2c719b7 1385 I915_STATE_WARN(val & DVS_ENABLE,
06da8da2 1386 "sprite %c assertion failure, should be off on pipe %c but is still active\n",
20674eef 1387 plane_name(pipe), pipe_name(pipe));
19332d7a
JB
1388 }
1389}
1390
08c71e5e
VS
1391static void assert_vblank_disabled(struct drm_crtc *crtc)
1392{
e2c719b7 1393 if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
08c71e5e
VS
1394 drm_crtc_vblank_put(crtc);
1395}
1396
7abd4b35
ACO
1397void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1398 enum pipe pipe)
92f2584a 1399{
92f2584a
JB
1400 u32 val;
1401 bool enabled;
1402
649636ef 1403 val = I915_READ(PCH_TRANSCONF(pipe));
92f2584a 1404 enabled = !!(val & TRANS_ENABLE);
e2c719b7 1405 I915_STATE_WARN(enabled,
9db4a9c7
JB
1406 "transcoder assertion failed, should be off on pipe %c but is still active\n",
1407 pipe_name(pipe));
92f2584a
JB
1408}
1409
4e634389
KP
1410static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1411 enum pipe pipe, u32 port_sel, u32 val)
f0575e92
KP
1412{
1413 if ((val & DP_PORT_EN) == 0)
1414 return false;
1415
2d1fe073 1416 if (HAS_PCH_CPT(dev_priv)) {
f0f59a00 1417 u32 trans_dp_ctl = I915_READ(TRANS_DP_CTL(pipe));
f0575e92
KP
1418 if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1419 return false;
2d1fe073 1420 } else if (IS_CHERRYVIEW(dev_priv)) {
44f37d1f
CML
1421 if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1422 return false;
f0575e92
KP
1423 } else {
1424 if ((val & DP_PIPE_MASK) != (pipe << 30))
1425 return false;
1426 }
1427 return true;
1428}
1429
1519b995
KP
1430static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1431 enum pipe pipe, u32 val)
1432{
dc0fa718 1433 if ((val & SDVO_ENABLE) == 0)
1519b995
KP
1434 return false;
1435
2d1fe073 1436 if (HAS_PCH_CPT(dev_priv)) {
dc0fa718 1437 if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1519b995 1438 return false;
2d1fe073 1439 } else if (IS_CHERRYVIEW(dev_priv)) {
44f37d1f
CML
1440 if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1441 return false;
1519b995 1442 } else {
dc0fa718 1443 if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1519b995
KP
1444 return false;
1445 }
1446 return true;
1447}
1448
1449static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1450 enum pipe pipe, u32 val)
1451{
1452 if ((val & LVDS_PORT_EN) == 0)
1453 return false;
1454
2d1fe073 1455 if (HAS_PCH_CPT(dev_priv)) {
1519b995
KP
1456 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1457 return false;
1458 } else {
1459 if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1460 return false;
1461 }
1462 return true;
1463}
1464
1465static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1466 enum pipe pipe, u32 val)
1467{
1468 if ((val & ADPA_DAC_ENABLE) == 0)
1469 return false;
2d1fe073 1470 if (HAS_PCH_CPT(dev_priv)) {
1519b995
KP
1471 if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1472 return false;
1473 } else {
1474 if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1475 return false;
1476 }
1477 return true;
1478}
1479
291906f1 1480static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
f0f59a00
VS
1481 enum pipe pipe, i915_reg_t reg,
1482 u32 port_sel)
291906f1 1483{
47a05eca 1484 u32 val = I915_READ(reg);
e2c719b7 1485 I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
291906f1 1486 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
f0f59a00 1487 i915_mmio_reg_offset(reg), pipe_name(pipe));
de9a35ab 1488
2d1fe073 1489 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & DP_PORT_EN) == 0
75c5da27 1490 && (val & DP_PIPEB_SELECT),
de9a35ab 1491 "IBX PCH dp port still using transcoder B\n");
291906f1
JB
1492}
1493
1494static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
f0f59a00 1495 enum pipe pipe, i915_reg_t reg)
291906f1 1496{
47a05eca 1497 u32 val = I915_READ(reg);
e2c719b7 1498 I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
23c99e77 1499 "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
f0f59a00 1500 i915_mmio_reg_offset(reg), pipe_name(pipe));
de9a35ab 1501
2d1fe073 1502 I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && (val & SDVO_ENABLE) == 0
75c5da27 1503 && (val & SDVO_PIPE_B_SELECT),
de9a35ab 1504 "IBX PCH hdmi port still using transcoder B\n");
291906f1
JB
1505}
1506
1507static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1508 enum pipe pipe)
1509{
291906f1 1510 u32 val;
291906f1 1511
f0575e92
KP
1512 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1513 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1514 assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
291906f1 1515
649636ef 1516 val = I915_READ(PCH_ADPA);
e2c719b7 1517 I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
291906f1 1518 "PCH VGA enabled on transcoder %c, should be disabled\n",
9db4a9c7 1519 pipe_name(pipe));
291906f1 1520
649636ef 1521 val = I915_READ(PCH_LVDS);
e2c719b7 1522 I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
291906f1 1523 "PCH LVDS enabled on transcoder %c, should be disabled\n",
9db4a9c7 1524 pipe_name(pipe));
291906f1 1525
e2debe91
PZ
1526 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1527 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1528 assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
291906f1
JB
1529}
1530
cd2d34d9
VS
1531static void _vlv_enable_pll(struct intel_crtc *crtc,
1532 const struct intel_crtc_state *pipe_config)
1533{
1534 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1535 enum pipe pipe = crtc->pipe;
1536
1537 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1538 POSTING_READ(DPLL(pipe));
1539 udelay(150);
1540
1541 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1542 DRM_ERROR("DPLL %d failed to lock\n", pipe);
1543}
1544
d288f65f 1545static void vlv_enable_pll(struct intel_crtc *crtc,
5cec258b 1546 const struct intel_crtc_state *pipe_config)
87442f73 1547{
cd2d34d9 1548 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8bd3f301 1549 enum pipe pipe = crtc->pipe;
87442f73 1550
8bd3f301 1551 assert_pipe_disabled(dev_priv, pipe);
87442f73 1552
87442f73 1553 /* PLL is protected by panel, make sure we can write it */
7d1a83cb 1554 assert_panel_unlocked(dev_priv, pipe);
87442f73 1555
cd2d34d9
VS
1556 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1557 _vlv_enable_pll(crtc, pipe_config);
426115cf 1558
8bd3f301
VS
1559 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1560 POSTING_READ(DPLL_MD(pipe));
87442f73
DV
1561}
1562
cd2d34d9
VS
1563
1564static void _chv_enable_pll(struct intel_crtc *crtc,
1565 const struct intel_crtc_state *pipe_config)
9d556c99 1566{
cd2d34d9 1567 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8bd3f301 1568 enum pipe pipe = crtc->pipe;
9d556c99 1569 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9d556c99
CML
1570 u32 tmp;
1571
a580516d 1572 mutex_lock(&dev_priv->sb_lock);
9d556c99
CML
1573
1574 /* Enable back the 10bit clock to display controller */
1575 tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1576 tmp |= DPIO_DCLKP_EN;
1577 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1578
54433e91
VS
1579 mutex_unlock(&dev_priv->sb_lock);
1580
9d556c99
CML
1581 /*
1582 * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1583 */
1584 udelay(1);
1585
1586 /* Enable PLL */
d288f65f 1587 I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
9d556c99
CML
1588
1589 /* Check PLL is locked */
a11b0703 1590 if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
9d556c99 1591 DRM_ERROR("PLL %d failed to lock\n", pipe);
cd2d34d9
VS
1592}
1593
1594static void chv_enable_pll(struct intel_crtc *crtc,
1595 const struct intel_crtc_state *pipe_config)
1596{
1597 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1598 enum pipe pipe = crtc->pipe;
1599
1600 assert_pipe_disabled(dev_priv, pipe);
1601
1602 /* PLL is protected by panel, make sure we can write it */
1603 assert_panel_unlocked(dev_priv, pipe);
1604
1605 if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1606 _chv_enable_pll(crtc, pipe_config);
9d556c99 1607
c231775c
VS
1608 if (pipe != PIPE_A) {
1609 /*
1610 * WaPixelRepeatModeFixForC0:chv
1611 *
1612 * DPLLCMD is AWOL. Use chicken bits to propagate
1613 * the value from DPLLBMD to either pipe B or C.
1614 */
1615 I915_WRITE(CBR4_VLV, pipe == PIPE_B ? CBR_DPLLBMD_PIPE_B : CBR_DPLLBMD_PIPE_C);
1616 I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md);
1617 I915_WRITE(CBR4_VLV, 0);
1618 dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1619
1620 /*
1621 * DPLLB VGA mode also seems to cause problems.
1622 * We should always have it disabled.
1623 */
1624 WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0);
1625 } else {
1626 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1627 POSTING_READ(DPLL_MD(pipe));
1628 }
9d556c99
CML
1629}
1630
1c4e0274
VS
1631static int intel_num_dvo_pipes(struct drm_device *dev)
1632{
1633 struct intel_crtc *crtc;
1634 int count = 0;
1635
1636 for_each_intel_crtc(dev, crtc)
3538b9df 1637 count += crtc->base.state->active &&
409ee761 1638 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1c4e0274
VS
1639
1640 return count;
1641}
1642
66e3d5c0 1643static void i9xx_enable_pll(struct intel_crtc *crtc)
63d7bbe9 1644{
66e3d5c0
DV
1645 struct drm_device *dev = crtc->base.dev;
1646 struct drm_i915_private *dev_priv = dev->dev_private;
f0f59a00 1647 i915_reg_t reg = DPLL(crtc->pipe);
6e3c9717 1648 u32 dpll = crtc->config->dpll_hw_state.dpll;
63d7bbe9 1649
66e3d5c0 1650 assert_pipe_disabled(dev_priv, crtc->pipe);
58c6eaa2 1651
63d7bbe9 1652 /* PLL is protected by panel, make sure we can write it */
66e3d5c0
DV
1653 if (IS_MOBILE(dev) && !IS_I830(dev))
1654 assert_panel_unlocked(dev_priv, crtc->pipe);
63d7bbe9 1655
1c4e0274
VS
1656 /* Enable DVO 2x clock on both PLLs if necessary */
1657 if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1658 /*
1659 * It appears to be important that we don't enable this
1660 * for the current pipe before otherwise configuring the
1661 * PLL. No idea how this should be handled if multiple
1662 * DVO outputs are enabled simultaneosly.
1663 */
1664 dpll |= DPLL_DVO_2X_MODE;
1665 I915_WRITE(DPLL(!crtc->pipe),
1666 I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1667 }
66e3d5c0 1668
c2b63374
VS
1669 /*
1670 * Apparently we need to have VGA mode enabled prior to changing
1671 * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1672 * dividers, even though the register value does change.
1673 */
1674 I915_WRITE(reg, 0);
1675
8e7a65aa
VS
1676 I915_WRITE(reg, dpll);
1677
66e3d5c0
DV
1678 /* Wait for the clocks to stabilize. */
1679 POSTING_READ(reg);
1680 udelay(150);
1681
1682 if (INTEL_INFO(dev)->gen >= 4) {
1683 I915_WRITE(DPLL_MD(crtc->pipe),
6e3c9717 1684 crtc->config->dpll_hw_state.dpll_md);
66e3d5c0
DV
1685 } else {
1686 /* The pixel multiplier can only be updated once the
1687 * DPLL is enabled and the clocks are stable.
1688 *
1689 * So write it again.
1690 */
1691 I915_WRITE(reg, dpll);
1692 }
63d7bbe9
JB
1693
1694 /* We do this three times for luck */
66e3d5c0 1695 I915_WRITE(reg, dpll);
63d7bbe9
JB
1696 POSTING_READ(reg);
1697 udelay(150); /* wait for warmup */
66e3d5c0 1698 I915_WRITE(reg, dpll);
63d7bbe9
JB
1699 POSTING_READ(reg);
1700 udelay(150); /* wait for warmup */
66e3d5c0 1701 I915_WRITE(reg, dpll);
63d7bbe9
JB
1702 POSTING_READ(reg);
1703 udelay(150); /* wait for warmup */
1704}
1705
1706/**
50b44a44 1707 * i9xx_disable_pll - disable a PLL
63d7bbe9
JB
1708 * @dev_priv: i915 private structure
1709 * @pipe: pipe PLL to disable
1710 *
1711 * Disable the PLL for @pipe, making sure the pipe is off first.
1712 *
1713 * Note! This is for pre-ILK only.
1714 */
1c4e0274 1715static void i9xx_disable_pll(struct intel_crtc *crtc)
63d7bbe9 1716{
1c4e0274
VS
1717 struct drm_device *dev = crtc->base.dev;
1718 struct drm_i915_private *dev_priv = dev->dev_private;
1719 enum pipe pipe = crtc->pipe;
1720
1721 /* Disable DVO 2x clock on both PLLs if necessary */
1722 if (IS_I830(dev) &&
409ee761 1723 intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
3538b9df 1724 !intel_num_dvo_pipes(dev)) {
1c4e0274
VS
1725 I915_WRITE(DPLL(PIPE_B),
1726 I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1727 I915_WRITE(DPLL(PIPE_A),
1728 I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1729 }
1730
b6b5d049
VS
1731 /* Don't disable pipe or pipe PLLs if needed */
1732 if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1733 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
63d7bbe9
JB
1734 return;
1735
1736 /* Make sure the pipe isn't still relying on us */
1737 assert_pipe_disabled(dev_priv, pipe);
1738
b8afb911 1739 I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
50b44a44 1740 POSTING_READ(DPLL(pipe));
63d7bbe9
JB
1741}
1742
f6071166
JB
1743static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1744{
b8afb911 1745 u32 val;
f6071166
JB
1746
1747 /* Make sure the pipe isn't still relying on us */
1748 assert_pipe_disabled(dev_priv, pipe);
1749
03ed5cbf
VS
1750 val = DPLL_INTEGRATED_REF_CLK_VLV |
1751 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1752 if (pipe != PIPE_A)
1753 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1754
f6071166
JB
1755 I915_WRITE(DPLL(pipe), val);
1756 POSTING_READ(DPLL(pipe));
076ed3b2
CML
1757}
1758
1759static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1760{
d752048d 1761 enum dpio_channel port = vlv_pipe_to_channel(pipe);
076ed3b2
CML
1762 u32 val;
1763
a11b0703
VS
1764 /* Make sure the pipe isn't still relying on us */
1765 assert_pipe_disabled(dev_priv, pipe);
076ed3b2 1766
60bfe44f
VS
1767 val = DPLL_SSC_REF_CLK_CHV |
1768 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
a11b0703
VS
1769 if (pipe != PIPE_A)
1770 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
03ed5cbf 1771
a11b0703
VS
1772 I915_WRITE(DPLL(pipe), val);
1773 POSTING_READ(DPLL(pipe));
d752048d 1774
a580516d 1775 mutex_lock(&dev_priv->sb_lock);
d752048d
VS
1776
1777 /* Disable 10bit clock to display controller */
1778 val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1779 val &= ~DPIO_DCLKP_EN;
1780 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1781
a580516d 1782 mutex_unlock(&dev_priv->sb_lock);
f6071166
JB
1783}
1784
e4607fcf 1785void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
9b6de0a1
VS
1786 struct intel_digital_port *dport,
1787 unsigned int expected_mask)
89b667f8
JB
1788{
1789 u32 port_mask;
f0f59a00 1790 i915_reg_t dpll_reg;
89b667f8 1791
e4607fcf
CML
1792 switch (dport->port) {
1793 case PORT_B:
89b667f8 1794 port_mask = DPLL_PORTB_READY_MASK;
00fc31b7 1795 dpll_reg = DPLL(0);
e4607fcf
CML
1796 break;
1797 case PORT_C:
89b667f8 1798 port_mask = DPLL_PORTC_READY_MASK;
00fc31b7 1799 dpll_reg = DPLL(0);
9b6de0a1 1800 expected_mask <<= 4;
00fc31b7
CML
1801 break;
1802 case PORT_D:
1803 port_mask = DPLL_PORTD_READY_MASK;
1804 dpll_reg = DPIO_PHY_STATUS;
e4607fcf
CML
1805 break;
1806 default:
1807 BUG();
1808 }
89b667f8 1809
9b6de0a1
VS
1810 if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1811 WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1812 port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
89b667f8
JB
1813}
1814
b8a4f404
PZ
1815static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1816 enum pipe pipe)
040484af 1817{
23670b32 1818 struct drm_device *dev = dev_priv->dev;
7c26e5c6 1819 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
e2b78267 1820 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
f0f59a00
VS
1821 i915_reg_t reg;
1822 uint32_t val, pipeconf_val;
040484af 1823
040484af 1824 /* Make sure PCH DPLL is enabled */
8106ddbd 1825 assert_shared_dpll_enabled(dev_priv, intel_crtc->config->shared_dpll);
040484af
JB
1826
1827 /* FDI must be feeding us bits for PCH ports */
1828 assert_fdi_tx_enabled(dev_priv, pipe);
1829 assert_fdi_rx_enabled(dev_priv, pipe);
1830
23670b32
DV
1831 if (HAS_PCH_CPT(dev)) {
1832 /* Workaround: Set the timing override bit before enabling the
1833 * pch transcoder. */
1834 reg = TRANS_CHICKEN2(pipe);
1835 val = I915_READ(reg);
1836 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1837 I915_WRITE(reg, val);
59c859d6 1838 }
23670b32 1839
ab9412ba 1840 reg = PCH_TRANSCONF(pipe);
040484af 1841 val = I915_READ(reg);
5f7f726d 1842 pipeconf_val = I915_READ(PIPECONF(pipe));
e9bcff5c 1843
2d1fe073 1844 if (HAS_PCH_IBX(dev_priv)) {
e9bcff5c 1845 /*
c5de7c6f
VS
1846 * Make the BPC in transcoder be consistent with
1847 * that in pipeconf reg. For HDMI we must use 8bpc
1848 * here for both 8bpc and 12bpc.
e9bcff5c 1849 */
dfd07d72 1850 val &= ~PIPECONF_BPC_MASK;
c5de7c6f
VS
1851 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_HDMI))
1852 val |= PIPECONF_8BPC;
1853 else
1854 val |= pipeconf_val & PIPECONF_BPC_MASK;
e9bcff5c 1855 }
5f7f726d
PZ
1856
1857 val &= ~TRANS_INTERLACE_MASK;
1858 if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
2d1fe073 1859 if (HAS_PCH_IBX(dev_priv) &&
409ee761 1860 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7c26e5c6
PZ
1861 val |= TRANS_LEGACY_INTERLACED_ILK;
1862 else
1863 val |= TRANS_INTERLACED;
5f7f726d
PZ
1864 else
1865 val |= TRANS_PROGRESSIVE;
1866
040484af
JB
1867 I915_WRITE(reg, val | TRANS_ENABLE);
1868 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
4bb6f1f3 1869 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
040484af
JB
1870}
1871
8fb033d7 1872static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
937bb610 1873 enum transcoder cpu_transcoder)
040484af 1874{
8fb033d7 1875 u32 val, pipeconf_val;
8fb033d7 1876
8fb033d7 1877 /* FDI must be feeding us bits for PCH ports */
1a240d4d 1878 assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
937bb610 1879 assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
8fb033d7 1880
223a6fdf 1881 /* Workaround: set timing override bit. */
36c0d0cf 1882 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
23670b32 1883 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
36c0d0cf 1884 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
223a6fdf 1885
25f3ef11 1886 val = TRANS_ENABLE;
937bb610 1887 pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
8fb033d7 1888
9a76b1c6
PZ
1889 if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1890 PIPECONF_INTERLACED_ILK)
a35f2679 1891 val |= TRANS_INTERLACED;
8fb033d7
PZ
1892 else
1893 val |= TRANS_PROGRESSIVE;
1894
ab9412ba
DV
1895 I915_WRITE(LPT_TRANSCONF, val);
1896 if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
937bb610 1897 DRM_ERROR("Failed to enable PCH transcoder\n");
8fb033d7
PZ
1898}
1899
b8a4f404
PZ
1900static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1901 enum pipe pipe)
040484af 1902{
23670b32 1903 struct drm_device *dev = dev_priv->dev;
f0f59a00
VS
1904 i915_reg_t reg;
1905 uint32_t val;
040484af
JB
1906
1907 /* FDI relies on the transcoder */
1908 assert_fdi_tx_disabled(dev_priv, pipe);
1909 assert_fdi_rx_disabled(dev_priv, pipe);
1910
291906f1
JB
1911 /* Ports must be off as well */
1912 assert_pch_ports_disabled(dev_priv, pipe);
1913
ab9412ba 1914 reg = PCH_TRANSCONF(pipe);
040484af
JB
1915 val = I915_READ(reg);
1916 val &= ~TRANS_ENABLE;
1917 I915_WRITE(reg, val);
1918 /* wait for PCH transcoder off, transcoder state */
1919 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
4bb6f1f3 1920 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
23670b32 1921
c465613b 1922 if (HAS_PCH_CPT(dev)) {
23670b32
DV
1923 /* Workaround: Clear the timing override chicken bit again. */
1924 reg = TRANS_CHICKEN2(pipe);
1925 val = I915_READ(reg);
1926 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1927 I915_WRITE(reg, val);
1928 }
040484af
JB
1929}
1930
ab4d966c 1931static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
8fb033d7 1932{
8fb033d7
PZ
1933 u32 val;
1934
ab9412ba 1935 val = I915_READ(LPT_TRANSCONF);
8fb033d7 1936 val &= ~TRANS_ENABLE;
ab9412ba 1937 I915_WRITE(LPT_TRANSCONF, val);
8fb033d7 1938 /* wait for PCH transcoder off, transcoder state */
ab9412ba 1939 if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
8a52fd9f 1940 DRM_ERROR("Failed to disable PCH transcoder\n");
223a6fdf
PZ
1941
1942 /* Workaround: clear timing override bit. */
36c0d0cf 1943 val = I915_READ(TRANS_CHICKEN2(PIPE_A));
23670b32 1944 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
36c0d0cf 1945 I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
040484af
JB
1946}
1947
b24e7179 1948/**
309cfea8 1949 * intel_enable_pipe - enable a pipe, asserting requirements
0372264a 1950 * @crtc: crtc responsible for the pipe
b24e7179 1951 *
0372264a 1952 * Enable @crtc's pipe, making sure that various hardware specific requirements
b24e7179 1953 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
b24e7179 1954 */
e1fdc473 1955static void intel_enable_pipe(struct intel_crtc *crtc)
b24e7179 1956{
0372264a
PZ
1957 struct drm_device *dev = crtc->base.dev;
1958 struct drm_i915_private *dev_priv = dev->dev_private;
1959 enum pipe pipe = crtc->pipe;
1a70a728 1960 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1a240d4d 1961 enum pipe pch_transcoder;
f0f59a00 1962 i915_reg_t reg;
b24e7179
JB
1963 u32 val;
1964
9e2ee2dd
VS
1965 DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
1966
58c6eaa2 1967 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 1968 assert_cursor_disabled(dev_priv, pipe);
58c6eaa2
DV
1969 assert_sprites_disabled(dev_priv, pipe);
1970
2d1fe073 1971 if (HAS_PCH_LPT(dev_priv))
cc391bbb
PZ
1972 pch_transcoder = TRANSCODER_A;
1973 else
1974 pch_transcoder = pipe;
1975
b24e7179
JB
1976 /*
1977 * A pipe without a PLL won't actually be able to drive bits from
1978 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1979 * need the check.
1980 */
2d1fe073 1981 if (HAS_GMCH_DISPLAY(dev_priv))
a65347ba 1982 if (crtc->config->has_dsi_encoder)
23538ef1
JN
1983 assert_dsi_pll_enabled(dev_priv);
1984 else
1985 assert_pll_enabled(dev_priv, pipe);
040484af 1986 else {
6e3c9717 1987 if (crtc->config->has_pch_encoder) {
040484af 1988 /* if driving the PCH, we need FDI enabled */
cc391bbb 1989 assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
1a240d4d
DV
1990 assert_fdi_tx_pll_enabled(dev_priv,
1991 (enum pipe) cpu_transcoder);
040484af
JB
1992 }
1993 /* FIXME: assert CPU port conditions for SNB+ */
1994 }
b24e7179 1995
702e7a56 1996 reg = PIPECONF(cpu_transcoder);
b24e7179 1997 val = I915_READ(reg);
7ad25d48 1998 if (val & PIPECONF_ENABLE) {
b6b5d049
VS
1999 WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2000 (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
00d70b15 2001 return;
7ad25d48 2002 }
00d70b15
CW
2003
2004 I915_WRITE(reg, val | PIPECONF_ENABLE);
851855d8 2005 POSTING_READ(reg);
b7792d8b
VS
2006
2007 /*
2008 * Until the pipe starts DSL will read as 0, which would cause
2009 * an apparent vblank timestamp jump, which messes up also the
2010 * frame count when it's derived from the timestamps. So let's
2011 * wait for the pipe to start properly before we call
2012 * drm_crtc_vblank_on()
2013 */
2014 if (dev->max_vblank_count == 0 &&
2015 wait_for(intel_get_crtc_scanline(crtc) != crtc->scanline_offset, 50))
2016 DRM_ERROR("pipe %c didn't start\n", pipe_name(pipe));
b24e7179
JB
2017}
2018
2019/**
309cfea8 2020 * intel_disable_pipe - disable a pipe, asserting requirements
575f7ab7 2021 * @crtc: crtc whose pipes is to be disabled
b24e7179 2022 *
575f7ab7
VS
2023 * Disable the pipe of @crtc, making sure that various hardware
2024 * specific requirements are met, if applicable, e.g. plane
2025 * disabled, panel fitter off, etc.
b24e7179
JB
2026 *
2027 * Will wait until the pipe has shut down before returning.
2028 */
575f7ab7 2029static void intel_disable_pipe(struct intel_crtc *crtc)
b24e7179 2030{
575f7ab7 2031 struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
6e3c9717 2032 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
575f7ab7 2033 enum pipe pipe = crtc->pipe;
f0f59a00 2034 i915_reg_t reg;
b24e7179
JB
2035 u32 val;
2036
9e2ee2dd
VS
2037 DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
2038
b24e7179
JB
2039 /*
2040 * Make sure planes won't keep trying to pump pixels to us,
2041 * or we might hang the display.
2042 */
2043 assert_planes_disabled(dev_priv, pipe);
93ce0ba6 2044 assert_cursor_disabled(dev_priv, pipe);
19332d7a 2045 assert_sprites_disabled(dev_priv, pipe);
b24e7179 2046
702e7a56 2047 reg = PIPECONF(cpu_transcoder);
b24e7179 2048 val = I915_READ(reg);
00d70b15
CW
2049 if ((val & PIPECONF_ENABLE) == 0)
2050 return;
2051
67adc644
VS
2052 /*
2053 * Double wide has implications for planes
2054 * so best keep it disabled when not needed.
2055 */
6e3c9717 2056 if (crtc->config->double_wide)
67adc644
VS
2057 val &= ~PIPECONF_DOUBLE_WIDE;
2058
2059 /* Don't disable pipe or pipe PLLs if needed */
b6b5d049
VS
2060 if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2061 !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
67adc644
VS
2062 val &= ~PIPECONF_ENABLE;
2063
2064 I915_WRITE(reg, val);
2065 if ((val & PIPECONF_ENABLE) == 0)
2066 intel_wait_for_pipe_off(crtc);
b24e7179
JB
2067}
2068
693db184
CW
2069static bool need_vtd_wa(struct drm_device *dev)
2070{
2071#ifdef CONFIG_INTEL_IOMMU
2072 if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2073 return true;
2074#endif
2075 return false;
2076}
2077
832be82f
VS
2078static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
2079{
2080 return IS_GEN2(dev_priv) ? 2048 : 4096;
2081}
2082
27ba3910
VS
2083static unsigned int intel_tile_width_bytes(const struct drm_i915_private *dev_priv,
2084 uint64_t fb_modifier, unsigned int cpp)
7b49f948
VS
2085{
2086 switch (fb_modifier) {
2087 case DRM_FORMAT_MOD_NONE:
2088 return cpp;
2089 case I915_FORMAT_MOD_X_TILED:
2090 if (IS_GEN2(dev_priv))
2091 return 128;
2092 else
2093 return 512;
2094 case I915_FORMAT_MOD_Y_TILED:
2095 if (IS_GEN2(dev_priv) || HAS_128_BYTE_Y_TILING(dev_priv))
2096 return 128;
2097 else
2098 return 512;
2099 case I915_FORMAT_MOD_Yf_TILED:
2100 switch (cpp) {
2101 case 1:
2102 return 64;
2103 case 2:
2104 case 4:
2105 return 128;
2106 case 8:
2107 case 16:
2108 return 256;
2109 default:
2110 MISSING_CASE(cpp);
2111 return cpp;
2112 }
2113 break;
2114 default:
2115 MISSING_CASE(fb_modifier);
2116 return cpp;
2117 }
2118}
2119
832be82f
VS
2120unsigned int intel_tile_height(const struct drm_i915_private *dev_priv,
2121 uint64_t fb_modifier, unsigned int cpp)
a57ce0b2 2122{
832be82f
VS
2123 if (fb_modifier == DRM_FORMAT_MOD_NONE)
2124 return 1;
2125 else
2126 return intel_tile_size(dev_priv) /
27ba3910 2127 intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
6761dd31
TU
2128}
2129
8d0deca8
VS
2130/* Return the tile dimensions in pixel units */
2131static void intel_tile_dims(const struct drm_i915_private *dev_priv,
2132 unsigned int *tile_width,
2133 unsigned int *tile_height,
2134 uint64_t fb_modifier,
2135 unsigned int cpp)
2136{
2137 unsigned int tile_width_bytes =
2138 intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
2139
2140 *tile_width = tile_width_bytes / cpp;
2141 *tile_height = intel_tile_size(dev_priv) / tile_width_bytes;
2142}
2143
6761dd31
TU
2144unsigned int
2145intel_fb_align_height(struct drm_device *dev, unsigned int height,
832be82f 2146 uint32_t pixel_format, uint64_t fb_modifier)
6761dd31 2147{
832be82f
VS
2148 unsigned int cpp = drm_format_plane_cpp(pixel_format, 0);
2149 unsigned int tile_height = intel_tile_height(to_i915(dev), fb_modifier, cpp);
2150
2151 return ALIGN(height, tile_height);
a57ce0b2
JB
2152}
2153
1663b9d6
VS
2154unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
2155{
2156 unsigned int size = 0;
2157 int i;
2158
2159 for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2160 size += rot_info->plane[i].width * rot_info->plane[i].height;
2161
2162 return size;
2163}
2164
75c82a53 2165static void
3465c580
VS
2166intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2167 const struct drm_framebuffer *fb,
2168 unsigned int rotation)
f64b98cd 2169{
2d7a215f
VS
2170 if (intel_rotation_90_or_270(rotation)) {
2171 *view = i915_ggtt_view_rotated;
2172 view->params.rotated = to_intel_framebuffer(fb)->rot_info;
2173 } else {
2174 *view = i915_ggtt_view_normal;
2175 }
2176}
50470bb0 2177
2d7a215f
VS
2178static void
2179intel_fill_fb_info(struct drm_i915_private *dev_priv,
2180 struct drm_framebuffer *fb)
2181{
2182 struct intel_rotation_info *info = &to_intel_framebuffer(fb)->rot_info;
2183 unsigned int tile_size, tile_width, tile_height, cpp;
50470bb0 2184
d9b3288e
VS
2185 tile_size = intel_tile_size(dev_priv);
2186
2187 cpp = drm_format_plane_cpp(fb->pixel_format, 0);
8d0deca8
VS
2188 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2189 fb->modifier[0], cpp);
d9b3288e 2190
1663b9d6
VS
2191 info->plane[0].width = DIV_ROUND_UP(fb->pitches[0], tile_width * cpp);
2192 info->plane[0].height = DIV_ROUND_UP(fb->height, tile_height);
84fe03f7 2193
89e3e142 2194 if (info->pixel_format == DRM_FORMAT_NV12) {
832be82f 2195 cpp = drm_format_plane_cpp(fb->pixel_format, 1);
8d0deca8
VS
2196 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2197 fb->modifier[1], cpp);
d9b3288e 2198
2d7a215f 2199 info->uv_offset = fb->offsets[1];
1663b9d6
VS
2200 info->plane[1].width = DIV_ROUND_UP(fb->pitches[1], tile_width * cpp);
2201 info->plane[1].height = DIV_ROUND_UP(fb->height / 2, tile_height);
89e3e142 2202 }
f64b98cd
TU
2203}
2204
603525d7 2205static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
4e9a86b6
VS
2206{
2207 if (INTEL_INFO(dev_priv)->gen >= 9)
2208 return 256 * 1024;
985b8bb4 2209 else if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv) ||
666a4537 2210 IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4e9a86b6
VS
2211 return 128 * 1024;
2212 else if (INTEL_INFO(dev_priv)->gen >= 4)
2213 return 4 * 1024;
2214 else
44c5905e 2215 return 0;
4e9a86b6
VS
2216}
2217
603525d7
VS
2218static unsigned int intel_surf_alignment(const struct drm_i915_private *dev_priv,
2219 uint64_t fb_modifier)
2220{
2221 switch (fb_modifier) {
2222 case DRM_FORMAT_MOD_NONE:
2223 return intel_linear_alignment(dev_priv);
2224 case I915_FORMAT_MOD_X_TILED:
2225 if (INTEL_INFO(dev_priv)->gen >= 9)
2226 return 256 * 1024;
2227 return 0;
2228 case I915_FORMAT_MOD_Y_TILED:
2229 case I915_FORMAT_MOD_Yf_TILED:
2230 return 1 * 1024 * 1024;
2231 default:
2232 MISSING_CASE(fb_modifier);
2233 return 0;
2234 }
2235}
2236
127bd2ac 2237int
3465c580
VS
2238intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb,
2239 unsigned int rotation)
6b95a207 2240{
850c4cdc 2241 struct drm_device *dev = fb->dev;
ce453d81 2242 struct drm_i915_private *dev_priv = dev->dev_private;
850c4cdc 2243 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
f64b98cd 2244 struct i915_ggtt_view view;
6b95a207
KH
2245 u32 alignment;
2246 int ret;
2247
ebcdd39e
MR
2248 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2249
603525d7 2250 alignment = intel_surf_alignment(dev_priv, fb->modifier[0]);
6b95a207 2251
3465c580 2252 intel_fill_fb_ggtt_view(&view, fb, rotation);
f64b98cd 2253
693db184
CW
2254 /* Note that the w/a also requires 64 PTE of padding following the
2255 * bo. We currently fill all unused PTE with the shadow page and so
2256 * we should always have valid PTE following the scanout preventing
2257 * the VT-d warning.
2258 */
2259 if (need_vtd_wa(dev) && alignment < 256 * 1024)
2260 alignment = 256 * 1024;
2261
d6dd6843
PZ
2262 /*
2263 * Global gtt pte registers are special registers which actually forward
2264 * writes to a chunk of system memory. Which means that there is no risk
2265 * that the register values disappear as soon as we call
2266 * intel_runtime_pm_put(), so it is correct to wrap only the
2267 * pin/unpin/fence and not more.
2268 */
2269 intel_runtime_pm_get(dev_priv);
2270
7580d774
ML
2271 ret = i915_gem_object_pin_to_display_plane(obj, alignment,
2272 &view);
48b956c5 2273 if (ret)
b26a6b35 2274 goto err_pm;
6b95a207
KH
2275
2276 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2277 * fence, whereas 965+ only requires a fence if using
2278 * framebuffer compression. For simplicity, we always install
2279 * a fence as the cost is not that onerous.
2280 */
9807216f
VK
2281 if (view.type == I915_GGTT_VIEW_NORMAL) {
2282 ret = i915_gem_object_get_fence(obj);
2283 if (ret == -EDEADLK) {
2284 /*
2285 * -EDEADLK means there are no free fences
2286 * no pending flips.
2287 *
2288 * This is propagated to atomic, but it uses
2289 * -EDEADLK to force a locking recovery, so
2290 * change the returned error to -EBUSY.
2291 */
2292 ret = -EBUSY;
2293 goto err_unpin;
2294 } else if (ret)
2295 goto err_unpin;
1690e1eb 2296
9807216f
VK
2297 i915_gem_object_pin_fence(obj);
2298 }
6b95a207 2299
d6dd6843 2300 intel_runtime_pm_put(dev_priv);
6b95a207 2301 return 0;
48b956c5
CW
2302
2303err_unpin:
f64b98cd 2304 i915_gem_object_unpin_from_display_plane(obj, &view);
b26a6b35 2305err_pm:
d6dd6843 2306 intel_runtime_pm_put(dev_priv);
48b956c5 2307 return ret;
6b95a207
KH
2308}
2309
fb4b8ce1 2310void intel_unpin_fb_obj(struct drm_framebuffer *fb, unsigned int rotation)
1690e1eb 2311{
82bc3b2d 2312 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
f64b98cd 2313 struct i915_ggtt_view view;
82bc3b2d 2314
ebcdd39e
MR
2315 WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2316
3465c580 2317 intel_fill_fb_ggtt_view(&view, fb, rotation);
f64b98cd 2318
9807216f
VK
2319 if (view.type == I915_GGTT_VIEW_NORMAL)
2320 i915_gem_object_unpin_fence(obj);
2321
f64b98cd 2322 i915_gem_object_unpin_from_display_plane(obj, &view);
1690e1eb
CW
2323}
2324
29cf9491
VS
2325/*
2326 * Adjust the tile offset by moving the difference into
2327 * the x/y offsets.
2328 *
2329 * Input tile dimensions and pitch must already be
2330 * rotated to match x and y, and in pixel units.
2331 */
2332static u32 intel_adjust_tile_offset(int *x, int *y,
2333 unsigned int tile_width,
2334 unsigned int tile_height,
2335 unsigned int tile_size,
2336 unsigned int pitch_tiles,
2337 u32 old_offset,
2338 u32 new_offset)
2339{
2340 unsigned int tiles;
2341
2342 WARN_ON(old_offset & (tile_size - 1));
2343 WARN_ON(new_offset & (tile_size - 1));
2344 WARN_ON(new_offset > old_offset);
2345
2346 tiles = (old_offset - new_offset) / tile_size;
2347
2348 *y += tiles / pitch_tiles * tile_height;
2349 *x += tiles % pitch_tiles * tile_width;
2350
2351 return new_offset;
2352}
2353
8d0deca8
VS
2354/*
2355 * Computes the linear offset to the base tile and adjusts
2356 * x, y. bytes per pixel is assumed to be a power-of-two.
2357 *
2358 * In the 90/270 rotated case, x and y are assumed
2359 * to be already rotated to match the rotated GTT view, and
2360 * pitch is the tile_height aligned framebuffer height.
2361 */
4f2d9934
VS
2362u32 intel_compute_tile_offset(int *x, int *y,
2363 const struct drm_framebuffer *fb, int plane,
8d0deca8
VS
2364 unsigned int pitch,
2365 unsigned int rotation)
c2c75131 2366{
4f2d9934
VS
2367 const struct drm_i915_private *dev_priv = to_i915(fb->dev);
2368 uint64_t fb_modifier = fb->modifier[plane];
2369 unsigned int cpp = drm_format_plane_cpp(fb->pixel_format, plane);
29cf9491
VS
2370 u32 offset, offset_aligned, alignment;
2371
2372 alignment = intel_surf_alignment(dev_priv, fb_modifier);
2373 if (alignment)
2374 alignment--;
2375
b5c65338 2376 if (fb_modifier != DRM_FORMAT_MOD_NONE) {
8d0deca8
VS
2377 unsigned int tile_size, tile_width, tile_height;
2378 unsigned int tile_rows, tiles, pitch_tiles;
c2c75131 2379
d843310d 2380 tile_size = intel_tile_size(dev_priv);
8d0deca8
VS
2381 intel_tile_dims(dev_priv, &tile_width, &tile_height,
2382 fb_modifier, cpp);
2383
2384 if (intel_rotation_90_or_270(rotation)) {
2385 pitch_tiles = pitch / tile_height;
2386 swap(tile_width, tile_height);
2387 } else {
2388 pitch_tiles = pitch / (tile_width * cpp);
2389 }
d843310d
VS
2390
2391 tile_rows = *y / tile_height;
2392 *y %= tile_height;
c2c75131 2393
8d0deca8
VS
2394 tiles = *x / tile_width;
2395 *x %= tile_width;
bc752862 2396
29cf9491
VS
2397 offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2398 offset_aligned = offset & ~alignment;
bc752862 2399
29cf9491
VS
2400 intel_adjust_tile_offset(x, y, tile_width, tile_height,
2401 tile_size, pitch_tiles,
2402 offset, offset_aligned);
2403 } else {
bc752862 2404 offset = *y * pitch + *x * cpp;
29cf9491
VS
2405 offset_aligned = offset & ~alignment;
2406
4e9a86b6
VS
2407 *y = (offset & alignment) / pitch;
2408 *x = ((offset & alignment) - *y * pitch) / cpp;
bc752862 2409 }
29cf9491
VS
2410
2411 return offset_aligned;
c2c75131
DV
2412}
2413
b35d63fa 2414static int i9xx_format_to_fourcc(int format)
46f297fb
JB
2415{
2416 switch (format) {
2417 case DISPPLANE_8BPP:
2418 return DRM_FORMAT_C8;
2419 case DISPPLANE_BGRX555:
2420 return DRM_FORMAT_XRGB1555;
2421 case DISPPLANE_BGRX565:
2422 return DRM_FORMAT_RGB565;
2423 default:
2424 case DISPPLANE_BGRX888:
2425 return DRM_FORMAT_XRGB8888;
2426 case DISPPLANE_RGBX888:
2427 return DRM_FORMAT_XBGR8888;
2428 case DISPPLANE_BGRX101010:
2429 return DRM_FORMAT_XRGB2101010;
2430 case DISPPLANE_RGBX101010:
2431 return DRM_FORMAT_XBGR2101010;
2432 }
2433}
2434
bc8d7dff
DL
2435static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2436{
2437 switch (format) {
2438 case PLANE_CTL_FORMAT_RGB_565:
2439 return DRM_FORMAT_RGB565;
2440 default:
2441 case PLANE_CTL_FORMAT_XRGB_8888:
2442 if (rgb_order) {
2443 if (alpha)
2444 return DRM_FORMAT_ABGR8888;
2445 else
2446 return DRM_FORMAT_XBGR8888;
2447 } else {
2448 if (alpha)
2449 return DRM_FORMAT_ARGB8888;
2450 else
2451 return DRM_FORMAT_XRGB8888;
2452 }
2453 case PLANE_CTL_FORMAT_XRGB_2101010:
2454 if (rgb_order)
2455 return DRM_FORMAT_XBGR2101010;
2456 else
2457 return DRM_FORMAT_XRGB2101010;
2458 }
2459}
2460
5724dbd1 2461static bool
f6936e29
DV
2462intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2463 struct intel_initial_plane_config *plane_config)
46f297fb
JB
2464{
2465 struct drm_device *dev = crtc->base.dev;
3badb49f 2466 struct drm_i915_private *dev_priv = to_i915(dev);
72e96d64 2467 struct i915_ggtt *ggtt = &dev_priv->ggtt;
46f297fb
JB
2468 struct drm_i915_gem_object *obj = NULL;
2469 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2d14030b 2470 struct drm_framebuffer *fb = &plane_config->fb->base;
f37b5c2b
DV
2471 u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2472 u32 size_aligned = round_up(plane_config->base + plane_config->size,
2473 PAGE_SIZE);
2474
2475 size_aligned -= base_aligned;
46f297fb 2476
ff2652ea
CW
2477 if (plane_config->size == 0)
2478 return false;
2479
3badb49f
PZ
2480 /* If the FB is too big, just don't use it since fbdev is not very
2481 * important and we should probably use that space with FBC or other
2482 * features. */
72e96d64 2483 if (size_aligned * 2 > ggtt->stolen_usable_size)
3badb49f
PZ
2484 return false;
2485
12c83d99
TU
2486 mutex_lock(&dev->struct_mutex);
2487
f37b5c2b
DV
2488 obj = i915_gem_object_create_stolen_for_preallocated(dev,
2489 base_aligned,
2490 base_aligned,
2491 size_aligned);
12c83d99
TU
2492 if (!obj) {
2493 mutex_unlock(&dev->struct_mutex);
484b41dd 2494 return false;
12c83d99 2495 }
46f297fb 2496
49af449b
DL
2497 obj->tiling_mode = plane_config->tiling;
2498 if (obj->tiling_mode == I915_TILING_X)
6bf129df 2499 obj->stride = fb->pitches[0];
46f297fb 2500
6bf129df
DL
2501 mode_cmd.pixel_format = fb->pixel_format;
2502 mode_cmd.width = fb->width;
2503 mode_cmd.height = fb->height;
2504 mode_cmd.pitches[0] = fb->pitches[0];
18c5247e
DV
2505 mode_cmd.modifier[0] = fb->modifier[0];
2506 mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
46f297fb 2507
6bf129df 2508 if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
484b41dd 2509 &mode_cmd, obj)) {
46f297fb
JB
2510 DRM_DEBUG_KMS("intel fb init failed\n");
2511 goto out_unref_obj;
2512 }
12c83d99 2513
46f297fb 2514 mutex_unlock(&dev->struct_mutex);
484b41dd 2515
f6936e29 2516 DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
484b41dd 2517 return true;
46f297fb
JB
2518
2519out_unref_obj:
2520 drm_gem_object_unreference(&obj->base);
2521 mutex_unlock(&dev->struct_mutex);
484b41dd
JB
2522 return false;
2523}
2524
afd65eb4
MR
2525/* Update plane->state->fb to match plane->fb after driver-internal updates */
2526static void
2527update_state_fb(struct drm_plane *plane)
2528{
2529 if (plane->fb == plane->state->fb)
2530 return;
2531
2532 if (plane->state->fb)
2533 drm_framebuffer_unreference(plane->state->fb);
2534 plane->state->fb = plane->fb;
2535 if (plane->state->fb)
2536 drm_framebuffer_reference(plane->state->fb);
2537}
2538
5724dbd1 2539static void
f6936e29
DV
2540intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2541 struct intel_initial_plane_config *plane_config)
484b41dd
JB
2542{
2543 struct drm_device *dev = intel_crtc->base.dev;
d9ceb816 2544 struct drm_i915_private *dev_priv = dev->dev_private;
484b41dd
JB
2545 struct drm_crtc *c;
2546 struct intel_crtc *i;
2ff8fde1 2547 struct drm_i915_gem_object *obj;
88595ac9 2548 struct drm_plane *primary = intel_crtc->base.primary;
be5651f2 2549 struct drm_plane_state *plane_state = primary->state;
200757f5
MR
2550 struct drm_crtc_state *crtc_state = intel_crtc->base.state;
2551 struct intel_plane *intel_plane = to_intel_plane(primary);
0a8d8a86
MR
2552 struct intel_plane_state *intel_state =
2553 to_intel_plane_state(plane_state);
88595ac9 2554 struct drm_framebuffer *fb;
484b41dd 2555
2d14030b 2556 if (!plane_config->fb)
484b41dd
JB
2557 return;
2558
f6936e29 2559 if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
88595ac9
DV
2560 fb = &plane_config->fb->base;
2561 goto valid_fb;
f55548b5 2562 }
484b41dd 2563
2d14030b 2564 kfree(plane_config->fb);
484b41dd
JB
2565
2566 /*
2567 * Failed to alloc the obj, check to see if we should share
2568 * an fb with another CRTC instead
2569 */
70e1e0ec 2570 for_each_crtc(dev, c) {
484b41dd
JB
2571 i = to_intel_crtc(c);
2572
2573 if (c == &intel_crtc->base)
2574 continue;
2575
2ff8fde1
MR
2576 if (!i->active)
2577 continue;
2578
88595ac9
DV
2579 fb = c->primary->fb;
2580 if (!fb)
484b41dd
JB
2581 continue;
2582
88595ac9 2583 obj = intel_fb_obj(fb);
2ff8fde1 2584 if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
88595ac9
DV
2585 drm_framebuffer_reference(fb);
2586 goto valid_fb;
484b41dd
JB
2587 }
2588 }
88595ac9 2589
200757f5
MR
2590 /*
2591 * We've failed to reconstruct the BIOS FB. Current display state
2592 * indicates that the primary plane is visible, but has a NULL FB,
2593 * which will lead to problems later if we don't fix it up. The
2594 * simplest solution is to just disable the primary plane now and
2595 * pretend the BIOS never had it enabled.
2596 */
2597 to_intel_plane_state(plane_state)->visible = false;
2598 crtc_state->plane_mask &= ~(1 << drm_plane_index(primary));
2622a081 2599 intel_pre_disable_primary_noatomic(&intel_crtc->base);
200757f5
MR
2600 intel_plane->disable_plane(primary, &intel_crtc->base);
2601
88595ac9
DV
2602 return;
2603
2604valid_fb:
f44e2659
VS
2605 plane_state->src_x = 0;
2606 plane_state->src_y = 0;
be5651f2
ML
2607 plane_state->src_w = fb->width << 16;
2608 plane_state->src_h = fb->height << 16;
2609
f44e2659
VS
2610 plane_state->crtc_x = 0;
2611 plane_state->crtc_y = 0;
be5651f2
ML
2612 plane_state->crtc_w = fb->width;
2613 plane_state->crtc_h = fb->height;
2614
0a8d8a86
MR
2615 intel_state->src.x1 = plane_state->src_x;
2616 intel_state->src.y1 = plane_state->src_y;
2617 intel_state->src.x2 = plane_state->src_x + plane_state->src_w;
2618 intel_state->src.y2 = plane_state->src_y + plane_state->src_h;
2619 intel_state->dst.x1 = plane_state->crtc_x;
2620 intel_state->dst.y1 = plane_state->crtc_y;
2621 intel_state->dst.x2 = plane_state->crtc_x + plane_state->crtc_w;
2622 intel_state->dst.y2 = plane_state->crtc_y + plane_state->crtc_h;
2623
88595ac9
DV
2624 obj = intel_fb_obj(fb);
2625 if (obj->tiling_mode != I915_TILING_NONE)
2626 dev_priv->preserve_bios_swizzle = true;
2627
be5651f2
ML
2628 drm_framebuffer_reference(fb);
2629 primary->fb = primary->state->fb = fb;
36750f28 2630 primary->crtc = primary->state->crtc = &intel_crtc->base;
36750f28 2631 intel_crtc->base.state->plane_mask |= (1 << drm_plane_index(primary));
a9ff8714 2632 obj->frontbuffer_bits |= to_intel_plane(primary)->frontbuffer_bit;
46f297fb
JB
2633}
2634
a8d201af
ML
2635static void i9xx_update_primary_plane(struct drm_plane *primary,
2636 const struct intel_crtc_state *crtc_state,
2637 const struct intel_plane_state *plane_state)
81255565 2638{
a8d201af 2639 struct drm_device *dev = primary->dev;
81255565 2640 struct drm_i915_private *dev_priv = dev->dev_private;
a8d201af
ML
2641 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2642 struct drm_framebuffer *fb = plane_state->base.fb;
2643 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
81255565 2644 int plane = intel_crtc->plane;
54ea9da8 2645 u32 linear_offset;
81255565 2646 u32 dspcntr;
f0f59a00 2647 i915_reg_t reg = DSPCNTR(plane);
8d0deca8 2648 unsigned int rotation = plane_state->base.rotation;
ac484963 2649 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
54ea9da8
VS
2650 int x = plane_state->src.x1 >> 16;
2651 int y = plane_state->src.y1 >> 16;
c9ba6fad 2652
f45651ba
VS
2653 dspcntr = DISPPLANE_GAMMA_ENABLE;
2654
fdd508a6 2655 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2656
2657 if (INTEL_INFO(dev)->gen < 4) {
2658 if (intel_crtc->pipe == PIPE_B)
2659 dspcntr |= DISPPLANE_SEL_PIPE_B;
2660
2661 /* pipesrc and dspsize control the size that is scaled from,
2662 * which should always be the user's requested size.
2663 */
2664 I915_WRITE(DSPSIZE(plane),
a8d201af
ML
2665 ((crtc_state->pipe_src_h - 1) << 16) |
2666 (crtc_state->pipe_src_w - 1));
f45651ba 2667 I915_WRITE(DSPPOS(plane), 0);
c14b0485
VS
2668 } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2669 I915_WRITE(PRIMSIZE(plane),
a8d201af
ML
2670 ((crtc_state->pipe_src_h - 1) << 16) |
2671 (crtc_state->pipe_src_w - 1));
c14b0485
VS
2672 I915_WRITE(PRIMPOS(plane), 0);
2673 I915_WRITE(PRIMCNSTALPHA(plane), 0);
f45651ba 2674 }
81255565 2675
57779d06
VS
2676 switch (fb->pixel_format) {
2677 case DRM_FORMAT_C8:
81255565
JB
2678 dspcntr |= DISPPLANE_8BPP;
2679 break;
57779d06 2680 case DRM_FORMAT_XRGB1555:
57779d06 2681 dspcntr |= DISPPLANE_BGRX555;
81255565 2682 break;
57779d06
VS
2683 case DRM_FORMAT_RGB565:
2684 dspcntr |= DISPPLANE_BGRX565;
2685 break;
2686 case DRM_FORMAT_XRGB8888:
57779d06
VS
2687 dspcntr |= DISPPLANE_BGRX888;
2688 break;
2689 case DRM_FORMAT_XBGR8888:
57779d06
VS
2690 dspcntr |= DISPPLANE_RGBX888;
2691 break;
2692 case DRM_FORMAT_XRGB2101010:
57779d06
VS
2693 dspcntr |= DISPPLANE_BGRX101010;
2694 break;
2695 case DRM_FORMAT_XBGR2101010:
57779d06 2696 dspcntr |= DISPPLANE_RGBX101010;
81255565
JB
2697 break;
2698 default:
baba133a 2699 BUG();
81255565 2700 }
57779d06 2701
f45651ba
VS
2702 if (INTEL_INFO(dev)->gen >= 4 &&
2703 obj->tiling_mode != I915_TILING_NONE)
2704 dspcntr |= DISPPLANE_TILED;
81255565 2705
de1aa629
VS
2706 if (IS_G4X(dev))
2707 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2708
ac484963 2709 linear_offset = y * fb->pitches[0] + x * cpp;
81255565 2710
c2c75131
DV
2711 if (INTEL_INFO(dev)->gen >= 4) {
2712 intel_crtc->dspaddr_offset =
4f2d9934 2713 intel_compute_tile_offset(&x, &y, fb, 0,
8d0deca8 2714 fb->pitches[0], rotation);
c2c75131
DV
2715 linear_offset -= intel_crtc->dspaddr_offset;
2716 } else {
e506a0c6 2717 intel_crtc->dspaddr_offset = linear_offset;
c2c75131 2718 }
e506a0c6 2719
8d0deca8 2720 if (rotation == BIT(DRM_ROTATE_180)) {
48404c1e
SJ
2721 dspcntr |= DISPPLANE_ROTATE_180;
2722
a8d201af
ML
2723 x += (crtc_state->pipe_src_w - 1);
2724 y += (crtc_state->pipe_src_h - 1);
48404c1e
SJ
2725
2726 /* Finding the last pixel of the last line of the display
2727 data and adding to linear_offset*/
2728 linear_offset +=
a8d201af 2729 (crtc_state->pipe_src_h - 1) * fb->pitches[0] +
ac484963 2730 (crtc_state->pipe_src_w - 1) * cpp;
48404c1e
SJ
2731 }
2732
2db3366b
PZ
2733 intel_crtc->adjusted_x = x;
2734 intel_crtc->adjusted_y = y;
2735
48404c1e
SJ
2736 I915_WRITE(reg, dspcntr);
2737
01f2c773 2738 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
a6c45cf0 2739 if (INTEL_INFO(dev)->gen >= 4) {
85ba7b7d
DV
2740 I915_WRITE(DSPSURF(plane),
2741 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
5eddb70b 2742 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
e506a0c6 2743 I915_WRITE(DSPLINOFF(plane), linear_offset);
5eddb70b 2744 } else
f343c5f6 2745 I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
5eddb70b 2746 POSTING_READ(reg);
17638cd6
JB
2747}
2748
a8d201af
ML
2749static void i9xx_disable_primary_plane(struct drm_plane *primary,
2750 struct drm_crtc *crtc)
17638cd6
JB
2751{
2752 struct drm_device *dev = crtc->dev;
2753 struct drm_i915_private *dev_priv = dev->dev_private;
2754 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
17638cd6 2755 int plane = intel_crtc->plane;
f45651ba 2756
a8d201af
ML
2757 I915_WRITE(DSPCNTR(plane), 0);
2758 if (INTEL_INFO(dev_priv)->gen >= 4)
fdd508a6 2759 I915_WRITE(DSPSURF(plane), 0);
a8d201af
ML
2760 else
2761 I915_WRITE(DSPADDR(plane), 0);
2762 POSTING_READ(DSPCNTR(plane));
2763}
c9ba6fad 2764
a8d201af
ML
2765static void ironlake_update_primary_plane(struct drm_plane *primary,
2766 const struct intel_crtc_state *crtc_state,
2767 const struct intel_plane_state *plane_state)
2768{
2769 struct drm_device *dev = primary->dev;
2770 struct drm_i915_private *dev_priv = dev->dev_private;
2771 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
2772 struct drm_framebuffer *fb = plane_state->base.fb;
2773 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2774 int plane = intel_crtc->plane;
54ea9da8 2775 u32 linear_offset;
a8d201af
ML
2776 u32 dspcntr;
2777 i915_reg_t reg = DSPCNTR(plane);
8d0deca8 2778 unsigned int rotation = plane_state->base.rotation;
ac484963 2779 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
a8d201af
ML
2780 int x = plane_state->src.x1 >> 16;
2781 int y = plane_state->src.y1 >> 16;
c9ba6fad 2782
f45651ba 2783 dspcntr = DISPPLANE_GAMMA_ENABLE;
fdd508a6 2784 dspcntr |= DISPLAY_PLANE_ENABLE;
f45651ba
VS
2785
2786 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2787 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
17638cd6 2788
57779d06
VS
2789 switch (fb->pixel_format) {
2790 case DRM_FORMAT_C8:
17638cd6
JB
2791 dspcntr |= DISPPLANE_8BPP;
2792 break;
57779d06
VS
2793 case DRM_FORMAT_RGB565:
2794 dspcntr |= DISPPLANE_BGRX565;
17638cd6 2795 break;
57779d06 2796 case DRM_FORMAT_XRGB8888:
57779d06
VS
2797 dspcntr |= DISPPLANE_BGRX888;
2798 break;
2799 case DRM_FORMAT_XBGR8888:
57779d06
VS
2800 dspcntr |= DISPPLANE_RGBX888;
2801 break;
2802 case DRM_FORMAT_XRGB2101010:
57779d06
VS
2803 dspcntr |= DISPPLANE_BGRX101010;
2804 break;
2805 case DRM_FORMAT_XBGR2101010:
57779d06 2806 dspcntr |= DISPPLANE_RGBX101010;
17638cd6
JB
2807 break;
2808 default:
baba133a 2809 BUG();
17638cd6
JB
2810 }
2811
2812 if (obj->tiling_mode != I915_TILING_NONE)
2813 dspcntr |= DISPPLANE_TILED;
17638cd6 2814
f45651ba 2815 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
1f5d76db 2816 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
17638cd6 2817
ac484963 2818 linear_offset = y * fb->pitches[0] + x * cpp;
c2c75131 2819 intel_crtc->dspaddr_offset =
4f2d9934 2820 intel_compute_tile_offset(&x, &y, fb, 0,
8d0deca8 2821 fb->pitches[0], rotation);
c2c75131 2822 linear_offset -= intel_crtc->dspaddr_offset;
8d0deca8 2823 if (rotation == BIT(DRM_ROTATE_180)) {
48404c1e
SJ
2824 dspcntr |= DISPPLANE_ROTATE_180;
2825
2826 if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
a8d201af
ML
2827 x += (crtc_state->pipe_src_w - 1);
2828 y += (crtc_state->pipe_src_h - 1);
48404c1e
SJ
2829
2830 /* Finding the last pixel of the last line of the display
2831 data and adding to linear_offset*/
2832 linear_offset +=
a8d201af 2833 (crtc_state->pipe_src_h - 1) * fb->pitches[0] +
ac484963 2834 (crtc_state->pipe_src_w - 1) * cpp;
48404c1e
SJ
2835 }
2836 }
2837
2db3366b
PZ
2838 intel_crtc->adjusted_x = x;
2839 intel_crtc->adjusted_y = y;
2840
48404c1e 2841 I915_WRITE(reg, dspcntr);
17638cd6 2842
01f2c773 2843 I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
85ba7b7d
DV
2844 I915_WRITE(DSPSURF(plane),
2845 i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
b3dc685e 2846 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
bc1c91eb
DL
2847 I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2848 } else {
2849 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2850 I915_WRITE(DSPLINOFF(plane), linear_offset);
2851 }
17638cd6 2852 POSTING_READ(reg);
17638cd6
JB
2853}
2854
7b49f948
VS
2855u32 intel_fb_stride_alignment(const struct drm_i915_private *dev_priv,
2856 uint64_t fb_modifier, uint32_t pixel_format)
b321803d 2857{
7b49f948 2858 if (fb_modifier == DRM_FORMAT_MOD_NONE) {
b321803d 2859 return 64;
7b49f948
VS
2860 } else {
2861 int cpp = drm_format_plane_cpp(pixel_format, 0);
2862
27ba3910 2863 return intel_tile_width_bytes(dev_priv, fb_modifier, cpp);
b321803d
DL
2864 }
2865}
2866
44eb0cb9
MK
2867u32 intel_plane_obj_offset(struct intel_plane *intel_plane,
2868 struct drm_i915_gem_object *obj,
2869 unsigned int plane)
121920fa 2870{
ce7f1728 2871 struct i915_ggtt_view view;
dedf278c 2872 struct i915_vma *vma;
44eb0cb9 2873 u64 offset;
121920fa 2874
e7941294 2875 intel_fill_fb_ggtt_view(&view, intel_plane->base.state->fb,
3465c580 2876 intel_plane->base.state->rotation);
121920fa 2877
ce7f1728 2878 vma = i915_gem_obj_to_ggtt_view(obj, &view);
dedf278c 2879 if (WARN(!vma, "ggtt vma for display object not found! (view=%u)\n",
ce7f1728 2880 view.type))
dedf278c
TU
2881 return -1;
2882
44eb0cb9 2883 offset = vma->node.start;
dedf278c
TU
2884
2885 if (plane == 1) {
7723f47d 2886 offset += vma->ggtt_view.params.rotated.uv_start_page *
dedf278c
TU
2887 PAGE_SIZE;
2888 }
2889
44eb0cb9
MK
2890 WARN_ON(upper_32_bits(offset));
2891
2892 return lower_32_bits(offset);
121920fa
TU
2893}
2894
e435d6e5
ML
2895static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
2896{
2897 struct drm_device *dev = intel_crtc->base.dev;
2898 struct drm_i915_private *dev_priv = dev->dev_private;
2899
2900 I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
2901 I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
2902 I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
e435d6e5
ML
2903}
2904
a1b2278e
CK
2905/*
2906 * This function detaches (aka. unbinds) unused scalers in hardware
2907 */
0583236e 2908static void skl_detach_scalers(struct intel_crtc *intel_crtc)
a1b2278e 2909{
a1b2278e
CK
2910 struct intel_crtc_scaler_state *scaler_state;
2911 int i;
2912
a1b2278e
CK
2913 scaler_state = &intel_crtc->config->scaler_state;
2914
2915 /* loop through and disable scalers that aren't in use */
2916 for (i = 0; i < intel_crtc->num_scalers; i++) {
e435d6e5
ML
2917 if (!scaler_state->scalers[i].in_use)
2918 skl_detach_scaler(intel_crtc, i);
a1b2278e
CK
2919 }
2920}
2921
6156a456 2922u32 skl_plane_ctl_format(uint32_t pixel_format)
70d21f0e 2923{
6156a456 2924 switch (pixel_format) {
d161cf7a 2925 case DRM_FORMAT_C8:
c34ce3d1 2926 return PLANE_CTL_FORMAT_INDEXED;
70d21f0e 2927 case DRM_FORMAT_RGB565:
c34ce3d1 2928 return PLANE_CTL_FORMAT_RGB_565;
70d21f0e 2929 case DRM_FORMAT_XBGR8888:
c34ce3d1 2930 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
6156a456 2931 case DRM_FORMAT_XRGB8888:
c34ce3d1 2932 return PLANE_CTL_FORMAT_XRGB_8888;
6156a456
CK
2933 /*
2934 * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
2935 * to be already pre-multiplied. We need to add a knob (or a different
2936 * DRM_FORMAT) for user-space to configure that.
2937 */
f75fb42a 2938 case DRM_FORMAT_ABGR8888:
c34ce3d1 2939 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
6156a456 2940 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
6156a456 2941 case DRM_FORMAT_ARGB8888:
c34ce3d1 2942 return PLANE_CTL_FORMAT_XRGB_8888 |
6156a456 2943 PLANE_CTL_ALPHA_SW_PREMULTIPLY;
70d21f0e 2944 case DRM_FORMAT_XRGB2101010:
c34ce3d1 2945 return PLANE_CTL_FORMAT_XRGB_2101010;
70d21f0e 2946 case DRM_FORMAT_XBGR2101010:
c34ce3d1 2947 return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
6156a456 2948 case DRM_FORMAT_YUYV:
c34ce3d1 2949 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
6156a456 2950 case DRM_FORMAT_YVYU:
c34ce3d1 2951 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
6156a456 2952 case DRM_FORMAT_UYVY:
c34ce3d1 2953 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
6156a456 2954 case DRM_FORMAT_VYUY:
c34ce3d1 2955 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
70d21f0e 2956 default:
4249eeef 2957 MISSING_CASE(pixel_format);
70d21f0e 2958 }
8cfcba41 2959
c34ce3d1 2960 return 0;
6156a456 2961}
70d21f0e 2962
6156a456
CK
2963u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
2964{
6156a456 2965 switch (fb_modifier) {
30af77c4 2966 case DRM_FORMAT_MOD_NONE:
70d21f0e 2967 break;
30af77c4 2968 case I915_FORMAT_MOD_X_TILED:
c34ce3d1 2969 return PLANE_CTL_TILED_X;
b321803d 2970 case I915_FORMAT_MOD_Y_TILED:
c34ce3d1 2971 return PLANE_CTL_TILED_Y;
b321803d 2972 case I915_FORMAT_MOD_Yf_TILED:
c34ce3d1 2973 return PLANE_CTL_TILED_YF;
70d21f0e 2974 default:
6156a456 2975 MISSING_CASE(fb_modifier);
70d21f0e 2976 }
8cfcba41 2977
c34ce3d1 2978 return 0;
6156a456 2979}
70d21f0e 2980
6156a456
CK
2981u32 skl_plane_ctl_rotation(unsigned int rotation)
2982{
3b7a5119 2983 switch (rotation) {
6156a456
CK
2984 case BIT(DRM_ROTATE_0):
2985 break;
1e8df167
SJ
2986 /*
2987 * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
2988 * while i915 HW rotation is clockwise, thats why this swapping.
2989 */
3b7a5119 2990 case BIT(DRM_ROTATE_90):
1e8df167 2991 return PLANE_CTL_ROTATE_270;
3b7a5119 2992 case BIT(DRM_ROTATE_180):
c34ce3d1 2993 return PLANE_CTL_ROTATE_180;
3b7a5119 2994 case BIT(DRM_ROTATE_270):
1e8df167 2995 return PLANE_CTL_ROTATE_90;
6156a456
CK
2996 default:
2997 MISSING_CASE(rotation);
2998 }
2999
c34ce3d1 3000 return 0;
6156a456
CK
3001}
3002
a8d201af
ML
3003static void skylake_update_primary_plane(struct drm_plane *plane,
3004 const struct intel_crtc_state *crtc_state,
3005 const struct intel_plane_state *plane_state)
6156a456 3006{
a8d201af 3007 struct drm_device *dev = plane->dev;
6156a456 3008 struct drm_i915_private *dev_priv = dev->dev_private;
a8d201af
ML
3009 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
3010 struct drm_framebuffer *fb = plane_state->base.fb;
3011 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
6156a456
CK
3012 int pipe = intel_crtc->pipe;
3013 u32 plane_ctl, stride_div, stride;
3014 u32 tile_height, plane_offset, plane_size;
a8d201af 3015 unsigned int rotation = plane_state->base.rotation;
6156a456 3016 int x_offset, y_offset;
44eb0cb9 3017 u32 surf_addr;
a8d201af
ML
3018 int scaler_id = plane_state->scaler_id;
3019 int src_x = plane_state->src.x1 >> 16;
3020 int src_y = plane_state->src.y1 >> 16;
3021 int src_w = drm_rect_width(&plane_state->src) >> 16;
3022 int src_h = drm_rect_height(&plane_state->src) >> 16;
3023 int dst_x = plane_state->dst.x1;
3024 int dst_y = plane_state->dst.y1;
3025 int dst_w = drm_rect_width(&plane_state->dst);
3026 int dst_h = drm_rect_height(&plane_state->dst);
70d21f0e 3027
6156a456
CK
3028 plane_ctl = PLANE_CTL_ENABLE |
3029 PLANE_CTL_PIPE_GAMMA_ENABLE |
3030 PLANE_CTL_PIPE_CSC_ENABLE;
3031
3032 plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3033 plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3034 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
6156a456
CK
3035 plane_ctl |= skl_plane_ctl_rotation(rotation);
3036
7b49f948 3037 stride_div = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
b321803d 3038 fb->pixel_format);
dedf278c 3039 surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj, 0);
3b7a5119 3040
a42e5a23
PZ
3041 WARN_ON(drm_rect_width(&plane_state->src) == 0);
3042
3b7a5119 3043 if (intel_rotation_90_or_270(rotation)) {
832be82f
VS
3044 int cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3045
3b7a5119 3046 /* stride = Surface height in tiles */
832be82f 3047 tile_height = intel_tile_height(dev_priv, fb->modifier[0], cpp);
3b7a5119 3048 stride = DIV_ROUND_UP(fb->height, tile_height);
a8d201af
ML
3049 x_offset = stride * tile_height - src_y - src_h;
3050 y_offset = src_x;
6156a456 3051 plane_size = (src_w - 1) << 16 | (src_h - 1);
3b7a5119
SJ
3052 } else {
3053 stride = fb->pitches[0] / stride_div;
a8d201af
ML
3054 x_offset = src_x;
3055 y_offset = src_y;
6156a456 3056 plane_size = (src_h - 1) << 16 | (src_w - 1);
3b7a5119
SJ
3057 }
3058 plane_offset = y_offset << 16 | x_offset;
b321803d 3059
2db3366b
PZ
3060 intel_crtc->adjusted_x = x_offset;
3061 intel_crtc->adjusted_y = y_offset;
3062
70d21f0e 3063 I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3b7a5119
SJ
3064 I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3065 I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3066 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
6156a456
CK
3067
3068 if (scaler_id >= 0) {
3069 uint32_t ps_ctrl = 0;
3070
3071 WARN_ON(!dst_w || !dst_h);
3072 ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3073 crtc_state->scaler_state.scalers[scaler_id].mode;
3074 I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3075 I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3076 I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3077 I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3078 I915_WRITE(PLANE_POS(pipe, 0), 0);
3079 } else {
3080 I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3081 }
3082
121920fa 3083 I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
70d21f0e
DL
3084
3085 POSTING_READ(PLANE_SURF(pipe, 0));
3086}
3087
a8d201af
ML
3088static void skylake_disable_primary_plane(struct drm_plane *primary,
3089 struct drm_crtc *crtc)
17638cd6
JB
3090{
3091 struct drm_device *dev = crtc->dev;
3092 struct drm_i915_private *dev_priv = dev->dev_private;
a8d201af 3093 int pipe = to_intel_crtc(crtc)->pipe;
17638cd6 3094
a8d201af
ML
3095 I915_WRITE(PLANE_CTL(pipe, 0), 0);
3096 I915_WRITE(PLANE_SURF(pipe, 0), 0);
3097 POSTING_READ(PLANE_SURF(pipe, 0));
3098}
29b9bde6 3099
a8d201af
ML
3100/* Assume fb object is pinned & idle & fenced and just update base pointers */
3101static int
3102intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3103 int x, int y, enum mode_set_atomic state)
3104{
3105 /* Support for kgdboc is disabled, this needs a major rework. */
3106 DRM_ERROR("legacy panic handler not supported any more.\n");
3107
3108 return -ENODEV;
81255565
JB
3109}
3110
91d14251 3111static void intel_complete_page_flips(struct drm_i915_private *dev_priv)
96a02917 3112{
96a02917
VS
3113 struct drm_crtc *crtc;
3114
91d14251 3115 for_each_crtc(dev_priv->dev, crtc) {
96a02917
VS
3116 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3117 enum plane plane = intel_crtc->plane;
3118
91d14251
TU
3119 intel_prepare_page_flip(dev_priv, plane);
3120 intel_finish_page_flip_plane(dev_priv, plane);
96a02917 3121 }
7514747d
VS
3122}
3123
3124static void intel_update_primary_planes(struct drm_device *dev)
3125{
7514747d 3126 struct drm_crtc *crtc;
96a02917 3127
70e1e0ec 3128 for_each_crtc(dev, crtc) {
11c22da6
ML
3129 struct intel_plane *plane = to_intel_plane(crtc->primary);
3130 struct intel_plane_state *plane_state;
96a02917 3131
11c22da6 3132 drm_modeset_lock_crtc(crtc, &plane->base);
11c22da6
ML
3133 plane_state = to_intel_plane_state(plane->base.state);
3134
a8d201af
ML
3135 if (plane_state->visible)
3136 plane->update_plane(&plane->base,
3137 to_intel_crtc_state(crtc->state),
3138 plane_state);
11c22da6
ML
3139
3140 drm_modeset_unlock_crtc(crtc);
96a02917
VS
3141 }
3142}
3143
c033666a 3144void intel_prepare_reset(struct drm_i915_private *dev_priv)
7514747d
VS
3145{
3146 /* no reset support for gen2 */
c033666a 3147 if (IS_GEN2(dev_priv))
7514747d
VS
3148 return;
3149
3150 /* reset doesn't touch the display */
c033666a 3151 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
7514747d
VS
3152 return;
3153
c033666a 3154 drm_modeset_lock_all(dev_priv->dev);
f98ce92f
VS
3155 /*
3156 * Disabling the crtcs gracefully seems nicer. Also the
3157 * g33 docs say we should at least disable all the planes.
3158 */
c033666a 3159 intel_display_suspend(dev_priv->dev);
7514747d
VS
3160}
3161
c033666a 3162void intel_finish_reset(struct drm_i915_private *dev_priv)
7514747d 3163{
7514747d
VS
3164 /*
3165 * Flips in the rings will be nuked by the reset,
3166 * so complete all pending flips so that user space
3167 * will get its events and not get stuck.
3168 */
91d14251 3169 intel_complete_page_flips(dev_priv);
7514747d
VS
3170
3171 /* no reset support for gen2 */
c033666a 3172 if (IS_GEN2(dev_priv))
7514747d
VS
3173 return;
3174
3175 /* reset doesn't touch the display */
c033666a 3176 if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv)) {
7514747d
VS
3177 /*
3178 * Flips in the rings have been nuked by the reset,
3179 * so update the base address of all primary
3180 * planes to the the last fb to make sure we're
3181 * showing the correct fb after a reset.
11c22da6
ML
3182 *
3183 * FIXME: Atomic will make this obsolete since we won't schedule
3184 * CS-based flips (which might get lost in gpu resets) any more.
7514747d 3185 */
c033666a 3186 intel_update_primary_planes(dev_priv->dev);
7514747d
VS
3187 return;
3188 }
3189
3190 /*
3191 * The display has been reset as well,
3192 * so need a full re-initialization.
3193 */
3194 intel_runtime_pm_disable_interrupts(dev_priv);
3195 intel_runtime_pm_enable_interrupts(dev_priv);
3196
c033666a 3197 intel_modeset_init_hw(dev_priv->dev);
7514747d
VS
3198
3199 spin_lock_irq(&dev_priv->irq_lock);
3200 if (dev_priv->display.hpd_irq_setup)
91d14251 3201 dev_priv->display.hpd_irq_setup(dev_priv);
7514747d
VS
3202 spin_unlock_irq(&dev_priv->irq_lock);
3203
c033666a 3204 intel_display_resume(dev_priv->dev);
7514747d
VS
3205
3206 intel_hpd_init(dev_priv);
3207
c033666a 3208 drm_modeset_unlock_all(dev_priv->dev);
7514747d
VS
3209}
3210
7d5e3799
CW
3211static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3212{
3213 struct drm_device *dev = crtc->dev;
7d5e3799 3214 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
c19ae989 3215 unsigned reset_counter;
7d5e3799
CW
3216 bool pending;
3217
7f1847eb
CW
3218 reset_counter = i915_reset_counter(&to_i915(dev)->gpu_error);
3219 if (intel_crtc->reset_counter != reset_counter)
7d5e3799
CW
3220 return false;
3221
5e2d7afc 3222 spin_lock_irq(&dev->event_lock);
7d5e3799 3223 pending = to_intel_crtc(crtc)->unpin_work != NULL;
5e2d7afc 3224 spin_unlock_irq(&dev->event_lock);
7d5e3799
CW
3225
3226 return pending;
3227}
3228
bfd16b2a
ML
3229static void intel_update_pipe_config(struct intel_crtc *crtc,
3230 struct intel_crtc_state *old_crtc_state)
e30e8f75
GP
3231{
3232 struct drm_device *dev = crtc->base.dev;
3233 struct drm_i915_private *dev_priv = dev->dev_private;
bfd16b2a
ML
3234 struct intel_crtc_state *pipe_config =
3235 to_intel_crtc_state(crtc->base.state);
e30e8f75 3236
bfd16b2a
ML
3237 /* drm_atomic_helper_update_legacy_modeset_state might not be called. */
3238 crtc->base.mode = crtc->base.state->mode;
3239
3240 DRM_DEBUG_KMS("Updating pipe size %ix%i -> %ix%i\n",
3241 old_crtc_state->pipe_src_w, old_crtc_state->pipe_src_h,
3242 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
e30e8f75
GP
3243
3244 /*
3245 * Update pipe size and adjust fitter if needed: the reason for this is
3246 * that in compute_mode_changes we check the native mode (not the pfit
3247 * mode) to see if we can flip rather than do a full mode set. In the
3248 * fastboot case, we'll flip, but if we don't update the pipesrc and
3249 * pfit state, we'll end up with a big fb scanned out into the wrong
3250 * sized surface.
e30e8f75
GP
3251 */
3252
e30e8f75 3253 I915_WRITE(PIPESRC(crtc->pipe),
bfd16b2a
ML
3254 ((pipe_config->pipe_src_w - 1) << 16) |
3255 (pipe_config->pipe_src_h - 1));
3256
3257 /* on skylake this is done by detaching scalers */
3258 if (INTEL_INFO(dev)->gen >= 9) {
3259 skl_detach_scalers(crtc);
3260
3261 if (pipe_config->pch_pfit.enabled)
3262 skylake_pfit_enable(crtc);
3263 } else if (HAS_PCH_SPLIT(dev)) {
3264 if (pipe_config->pch_pfit.enabled)
3265 ironlake_pfit_enable(crtc);
3266 else if (old_crtc_state->pch_pfit.enabled)
3267 ironlake_pfit_disable(crtc, true);
e30e8f75 3268 }
e30e8f75
GP
3269}
3270
5e84e1a4
ZW
3271static void intel_fdi_normal_train(struct drm_crtc *crtc)
3272{
3273 struct drm_device *dev = crtc->dev;
3274 struct drm_i915_private *dev_priv = dev->dev_private;
3275 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3276 int pipe = intel_crtc->pipe;
f0f59a00
VS
3277 i915_reg_t reg;
3278 u32 temp;
5e84e1a4
ZW
3279
3280 /* enable normal train */
3281 reg = FDI_TX_CTL(pipe);
3282 temp = I915_READ(reg);
61e499bf 3283 if (IS_IVYBRIDGE(dev)) {
357555c0
JB
3284 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3285 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
61e499bf
KP
3286 } else {
3287 temp &= ~FDI_LINK_TRAIN_NONE;
3288 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
357555c0 3289 }
5e84e1a4
ZW
3290 I915_WRITE(reg, temp);
3291
3292 reg = FDI_RX_CTL(pipe);
3293 temp = I915_READ(reg);
3294 if (HAS_PCH_CPT(dev)) {
3295 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3296 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3297 } else {
3298 temp &= ~FDI_LINK_TRAIN_NONE;
3299 temp |= FDI_LINK_TRAIN_NONE;
3300 }
3301 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3302
3303 /* wait one idle pattern time */
3304 POSTING_READ(reg);
3305 udelay(1000);
357555c0
JB
3306
3307 /* IVB wants error correction enabled */
3308 if (IS_IVYBRIDGE(dev))
3309 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3310 FDI_FE_ERRC_ENABLE);
5e84e1a4
ZW
3311}
3312
8db9d77b
ZW
3313/* The FDI link training functions for ILK/Ibexpeak. */
3314static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3315{
3316 struct drm_device *dev = crtc->dev;
3317 struct drm_i915_private *dev_priv = dev->dev_private;
3318 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3319 int pipe = intel_crtc->pipe;
f0f59a00
VS
3320 i915_reg_t reg;
3321 u32 temp, tries;
8db9d77b 3322
1c8562f6 3323 /* FDI needs bits from pipe first */
0fc932b8 3324 assert_pipe_enabled(dev_priv, pipe);
0fc932b8 3325
e1a44743
AJ
3326 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3327 for train result */
5eddb70b
CW
3328 reg = FDI_RX_IMR(pipe);
3329 temp = I915_READ(reg);
e1a44743
AJ
3330 temp &= ~FDI_RX_SYMBOL_LOCK;
3331 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3332 I915_WRITE(reg, temp);
3333 I915_READ(reg);
e1a44743
AJ
3334 udelay(150);
3335
8db9d77b 3336 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3337 reg = FDI_TX_CTL(pipe);
3338 temp = I915_READ(reg);
627eb5a3 3339 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3340 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
8db9d77b
ZW
3341 temp &= ~FDI_LINK_TRAIN_NONE;
3342 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b 3343 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3344
5eddb70b
CW
3345 reg = FDI_RX_CTL(pipe);
3346 temp = I915_READ(reg);
8db9d77b
ZW
3347 temp &= ~FDI_LINK_TRAIN_NONE;
3348 temp |= FDI_LINK_TRAIN_PATTERN_1;
5eddb70b
CW
3349 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3350
3351 POSTING_READ(reg);
8db9d77b
ZW
3352 udelay(150);
3353
5b2adf89 3354 /* Ironlake workaround, enable clock pointer after FDI enable*/
8f5718a6
DV
3355 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3356 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3357 FDI_RX_PHASE_SYNC_POINTER_EN);
5b2adf89 3358
5eddb70b 3359 reg = FDI_RX_IIR(pipe);
e1a44743 3360 for (tries = 0; tries < 5; tries++) {
5eddb70b 3361 temp = I915_READ(reg);
8db9d77b
ZW
3362 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3363
3364 if ((temp & FDI_RX_BIT_LOCK)) {
3365 DRM_DEBUG_KMS("FDI train 1 done.\n");
5eddb70b 3366 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
8db9d77b
ZW
3367 break;
3368 }
8db9d77b 3369 }
e1a44743 3370 if (tries == 5)
5eddb70b 3371 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3372
3373 /* Train 2 */
5eddb70b
CW
3374 reg = FDI_TX_CTL(pipe);
3375 temp = I915_READ(reg);
8db9d77b
ZW
3376 temp &= ~FDI_LINK_TRAIN_NONE;
3377 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3378 I915_WRITE(reg, temp);
8db9d77b 3379
5eddb70b
CW
3380 reg = FDI_RX_CTL(pipe);
3381 temp = I915_READ(reg);
8db9d77b
ZW
3382 temp &= ~FDI_LINK_TRAIN_NONE;
3383 temp |= FDI_LINK_TRAIN_PATTERN_2;
5eddb70b 3384 I915_WRITE(reg, temp);
8db9d77b 3385
5eddb70b
CW
3386 POSTING_READ(reg);
3387 udelay(150);
8db9d77b 3388
5eddb70b 3389 reg = FDI_RX_IIR(pipe);
e1a44743 3390 for (tries = 0; tries < 5; tries++) {
5eddb70b 3391 temp = I915_READ(reg);
8db9d77b
ZW
3392 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3393
3394 if (temp & FDI_RX_SYMBOL_LOCK) {
5eddb70b 3395 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
8db9d77b
ZW
3396 DRM_DEBUG_KMS("FDI train 2 done.\n");
3397 break;
3398 }
8db9d77b 3399 }
e1a44743 3400 if (tries == 5)
5eddb70b 3401 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3402
3403 DRM_DEBUG_KMS("FDI train done\n");
5c5313c8 3404
8db9d77b
ZW
3405}
3406
0206e353 3407static const int snb_b_fdi_train_param[] = {
8db9d77b
ZW
3408 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3409 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3410 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3411 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3412};
3413
3414/* The FDI link training functions for SNB/Cougarpoint. */
3415static void gen6_fdi_link_train(struct drm_crtc *crtc)
3416{
3417 struct drm_device *dev = crtc->dev;
3418 struct drm_i915_private *dev_priv = dev->dev_private;
3419 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3420 int pipe = intel_crtc->pipe;
f0f59a00
VS
3421 i915_reg_t reg;
3422 u32 temp, i, retry;
8db9d77b 3423
e1a44743
AJ
3424 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3425 for train result */
5eddb70b
CW
3426 reg = FDI_RX_IMR(pipe);
3427 temp = I915_READ(reg);
e1a44743
AJ
3428 temp &= ~FDI_RX_SYMBOL_LOCK;
3429 temp &= ~FDI_RX_BIT_LOCK;
5eddb70b
CW
3430 I915_WRITE(reg, temp);
3431
3432 POSTING_READ(reg);
e1a44743
AJ
3433 udelay(150);
3434
8db9d77b 3435 /* enable CPU FDI TX and PCH FDI RX */
5eddb70b
CW
3436 reg = FDI_TX_CTL(pipe);
3437 temp = I915_READ(reg);
627eb5a3 3438 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3439 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
8db9d77b
ZW
3440 temp &= ~FDI_LINK_TRAIN_NONE;
3441 temp |= FDI_LINK_TRAIN_PATTERN_1;
3442 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3443 /* SNB-B */
3444 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
5eddb70b 3445 I915_WRITE(reg, temp | FDI_TX_ENABLE);
8db9d77b 3446
d74cf324
DV
3447 I915_WRITE(FDI_RX_MISC(pipe),
3448 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3449
5eddb70b
CW
3450 reg = FDI_RX_CTL(pipe);
3451 temp = I915_READ(reg);
8db9d77b
ZW
3452 if (HAS_PCH_CPT(dev)) {
3453 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3454 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3455 } else {
3456 temp &= ~FDI_LINK_TRAIN_NONE;
3457 temp |= FDI_LINK_TRAIN_PATTERN_1;
3458 }
5eddb70b
CW
3459 I915_WRITE(reg, temp | FDI_RX_ENABLE);
3460
3461 POSTING_READ(reg);
8db9d77b
ZW
3462 udelay(150);
3463
0206e353 3464 for (i = 0; i < 4; i++) {
5eddb70b
CW
3465 reg = FDI_TX_CTL(pipe);
3466 temp = I915_READ(reg);
8db9d77b
ZW
3467 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3468 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3469 I915_WRITE(reg, temp);
3470
3471 POSTING_READ(reg);
8db9d77b
ZW
3472 udelay(500);
3473
fa37d39e
SP
3474 for (retry = 0; retry < 5; retry++) {
3475 reg = FDI_RX_IIR(pipe);
3476 temp = I915_READ(reg);
3477 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3478 if (temp & FDI_RX_BIT_LOCK) {
3479 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3480 DRM_DEBUG_KMS("FDI train 1 done.\n");
3481 break;
3482 }
3483 udelay(50);
8db9d77b 3484 }
fa37d39e
SP
3485 if (retry < 5)
3486 break;
8db9d77b
ZW
3487 }
3488 if (i == 4)
5eddb70b 3489 DRM_ERROR("FDI train 1 fail!\n");
8db9d77b
ZW
3490
3491 /* Train 2 */
5eddb70b
CW
3492 reg = FDI_TX_CTL(pipe);
3493 temp = I915_READ(reg);
8db9d77b
ZW
3494 temp &= ~FDI_LINK_TRAIN_NONE;
3495 temp |= FDI_LINK_TRAIN_PATTERN_2;
3496 if (IS_GEN6(dev)) {
3497 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3498 /* SNB-B */
3499 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3500 }
5eddb70b 3501 I915_WRITE(reg, temp);
8db9d77b 3502
5eddb70b
CW
3503 reg = FDI_RX_CTL(pipe);
3504 temp = I915_READ(reg);
8db9d77b
ZW
3505 if (HAS_PCH_CPT(dev)) {
3506 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3507 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3508 } else {
3509 temp &= ~FDI_LINK_TRAIN_NONE;
3510 temp |= FDI_LINK_TRAIN_PATTERN_2;
3511 }
5eddb70b
CW
3512 I915_WRITE(reg, temp);
3513
3514 POSTING_READ(reg);
8db9d77b
ZW
3515 udelay(150);
3516
0206e353 3517 for (i = 0; i < 4; i++) {
5eddb70b
CW
3518 reg = FDI_TX_CTL(pipe);
3519 temp = I915_READ(reg);
8db9d77b
ZW
3520 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3521 temp |= snb_b_fdi_train_param[i];
5eddb70b
CW
3522 I915_WRITE(reg, temp);
3523
3524 POSTING_READ(reg);
8db9d77b
ZW
3525 udelay(500);
3526
fa37d39e
SP
3527 for (retry = 0; retry < 5; retry++) {
3528 reg = FDI_RX_IIR(pipe);
3529 temp = I915_READ(reg);
3530 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3531 if (temp & FDI_RX_SYMBOL_LOCK) {
3532 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3533 DRM_DEBUG_KMS("FDI train 2 done.\n");
3534 break;
3535 }
3536 udelay(50);
8db9d77b 3537 }
fa37d39e
SP
3538 if (retry < 5)
3539 break;
8db9d77b
ZW
3540 }
3541 if (i == 4)
5eddb70b 3542 DRM_ERROR("FDI train 2 fail!\n");
8db9d77b
ZW
3543
3544 DRM_DEBUG_KMS("FDI train done.\n");
3545}
3546
357555c0
JB
3547/* Manual link training for Ivy Bridge A0 parts */
3548static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3549{
3550 struct drm_device *dev = crtc->dev;
3551 struct drm_i915_private *dev_priv = dev->dev_private;
3552 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3553 int pipe = intel_crtc->pipe;
f0f59a00
VS
3554 i915_reg_t reg;
3555 u32 temp, i, j;
357555c0
JB
3556
3557 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3558 for train result */
3559 reg = FDI_RX_IMR(pipe);
3560 temp = I915_READ(reg);
3561 temp &= ~FDI_RX_SYMBOL_LOCK;
3562 temp &= ~FDI_RX_BIT_LOCK;
3563 I915_WRITE(reg, temp);
3564
3565 POSTING_READ(reg);
3566 udelay(150);
3567
01a415fd
DV
3568 DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3569 I915_READ(FDI_RX_IIR(pipe)));
3570
139ccd3f
JB
3571 /* Try each vswing and preemphasis setting twice before moving on */
3572 for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3573 /* disable first in case we need to retry */
3574 reg = FDI_TX_CTL(pipe);
3575 temp = I915_READ(reg);
3576 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3577 temp &= ~FDI_TX_ENABLE;
3578 I915_WRITE(reg, temp);
357555c0 3579
139ccd3f
JB
3580 reg = FDI_RX_CTL(pipe);
3581 temp = I915_READ(reg);
3582 temp &= ~FDI_LINK_TRAIN_AUTO;
3583 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3584 temp &= ~FDI_RX_ENABLE;
3585 I915_WRITE(reg, temp);
357555c0 3586
139ccd3f 3587 /* enable CPU FDI TX and PCH FDI RX */
357555c0
JB
3588 reg = FDI_TX_CTL(pipe);
3589 temp = I915_READ(reg);
139ccd3f 3590 temp &= ~FDI_DP_PORT_WIDTH_MASK;
6e3c9717 3591 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
139ccd3f 3592 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
357555c0 3593 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
139ccd3f
JB
3594 temp |= snb_b_fdi_train_param[j/2];
3595 temp |= FDI_COMPOSITE_SYNC;
3596 I915_WRITE(reg, temp | FDI_TX_ENABLE);
357555c0 3597
139ccd3f
JB
3598 I915_WRITE(FDI_RX_MISC(pipe),
3599 FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
357555c0 3600
139ccd3f 3601 reg = FDI_RX_CTL(pipe);
357555c0 3602 temp = I915_READ(reg);
139ccd3f
JB
3603 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3604 temp |= FDI_COMPOSITE_SYNC;
3605 I915_WRITE(reg, temp | FDI_RX_ENABLE);
357555c0 3606
139ccd3f
JB
3607 POSTING_READ(reg);
3608 udelay(1); /* should be 0.5us */
357555c0 3609
139ccd3f
JB
3610 for (i = 0; i < 4; i++) {
3611 reg = FDI_RX_IIR(pipe);
3612 temp = I915_READ(reg);
3613 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3614
139ccd3f
JB
3615 if (temp & FDI_RX_BIT_LOCK ||
3616 (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3617 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3618 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3619 i);
3620 break;
3621 }
3622 udelay(1); /* should be 0.5us */
3623 }
3624 if (i == 4) {
3625 DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3626 continue;
3627 }
357555c0 3628
139ccd3f 3629 /* Train 2 */
357555c0
JB
3630 reg = FDI_TX_CTL(pipe);
3631 temp = I915_READ(reg);
139ccd3f
JB
3632 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3633 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3634 I915_WRITE(reg, temp);
3635
3636 reg = FDI_RX_CTL(pipe);
3637 temp = I915_READ(reg);
3638 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3639 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
357555c0
JB
3640 I915_WRITE(reg, temp);
3641
3642 POSTING_READ(reg);
139ccd3f 3643 udelay(2); /* should be 1.5us */
357555c0 3644
139ccd3f
JB
3645 for (i = 0; i < 4; i++) {
3646 reg = FDI_RX_IIR(pipe);
3647 temp = I915_READ(reg);
3648 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
357555c0 3649
139ccd3f
JB
3650 if (temp & FDI_RX_SYMBOL_LOCK ||
3651 (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3652 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3653 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3654 i);
3655 goto train_done;
3656 }
3657 udelay(2); /* should be 1.5us */
357555c0 3658 }
139ccd3f
JB
3659 if (i == 4)
3660 DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
357555c0 3661 }
357555c0 3662
139ccd3f 3663train_done:
357555c0
JB
3664 DRM_DEBUG_KMS("FDI train done.\n");
3665}
3666
88cefb6c 3667static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
2c07245f 3668{
88cefb6c 3669 struct drm_device *dev = intel_crtc->base.dev;
2c07245f 3670 struct drm_i915_private *dev_priv = dev->dev_private;
2c07245f 3671 int pipe = intel_crtc->pipe;
f0f59a00
VS
3672 i915_reg_t reg;
3673 u32 temp;
c64e311e 3674
c98e9dcf 3675 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
5eddb70b
CW
3676 reg = FDI_RX_CTL(pipe);
3677 temp = I915_READ(reg);
627eb5a3 3678 temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
6e3c9717 3679 temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
dfd07d72 3680 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5eddb70b
CW
3681 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3682
3683 POSTING_READ(reg);
c98e9dcf
JB
3684 udelay(200);
3685
3686 /* Switch from Rawclk to PCDclk */
5eddb70b
CW
3687 temp = I915_READ(reg);
3688 I915_WRITE(reg, temp | FDI_PCDCLK);
3689
3690 POSTING_READ(reg);
c98e9dcf
JB
3691 udelay(200);
3692
20749730
PZ
3693 /* Enable CPU FDI TX PLL, always on for Ironlake */
3694 reg = FDI_TX_CTL(pipe);
3695 temp = I915_READ(reg);
3696 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3697 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
5eddb70b 3698
20749730
PZ
3699 POSTING_READ(reg);
3700 udelay(100);
6be4a607 3701 }
0e23b99d
JB
3702}
3703
88cefb6c
DV
3704static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3705{
3706 struct drm_device *dev = intel_crtc->base.dev;
3707 struct drm_i915_private *dev_priv = dev->dev_private;
3708 int pipe = intel_crtc->pipe;
f0f59a00
VS
3709 i915_reg_t reg;
3710 u32 temp;
88cefb6c
DV
3711
3712 /* Switch from PCDclk to Rawclk */
3713 reg = FDI_RX_CTL(pipe);
3714 temp = I915_READ(reg);
3715 I915_WRITE(reg, temp & ~FDI_PCDCLK);
3716
3717 /* Disable CPU FDI TX PLL */
3718 reg = FDI_TX_CTL(pipe);
3719 temp = I915_READ(reg);
3720 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3721
3722 POSTING_READ(reg);
3723 udelay(100);
3724
3725 reg = FDI_RX_CTL(pipe);
3726 temp = I915_READ(reg);
3727 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3728
3729 /* Wait for the clocks to turn off. */
3730 POSTING_READ(reg);
3731 udelay(100);
3732}
3733
0fc932b8
JB
3734static void ironlake_fdi_disable(struct drm_crtc *crtc)
3735{
3736 struct drm_device *dev = crtc->dev;
3737 struct drm_i915_private *dev_priv = dev->dev_private;
3738 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3739 int pipe = intel_crtc->pipe;
f0f59a00
VS
3740 i915_reg_t reg;
3741 u32 temp;
0fc932b8
JB
3742
3743 /* disable CPU FDI tx and PCH FDI rx */
3744 reg = FDI_TX_CTL(pipe);
3745 temp = I915_READ(reg);
3746 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3747 POSTING_READ(reg);
3748
3749 reg = FDI_RX_CTL(pipe);
3750 temp = I915_READ(reg);
3751 temp &= ~(0x7 << 16);
dfd07d72 3752 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3753 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3754
3755 POSTING_READ(reg);
3756 udelay(100);
3757
3758 /* Ironlake workaround, disable clock pointer after downing FDI */
eba905b2 3759 if (HAS_PCH_IBX(dev))
6f06ce18 3760 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
0fc932b8
JB
3761
3762 /* still set train pattern 1 */
3763 reg = FDI_TX_CTL(pipe);
3764 temp = I915_READ(reg);
3765 temp &= ~FDI_LINK_TRAIN_NONE;
3766 temp |= FDI_LINK_TRAIN_PATTERN_1;
3767 I915_WRITE(reg, temp);
3768
3769 reg = FDI_RX_CTL(pipe);
3770 temp = I915_READ(reg);
3771 if (HAS_PCH_CPT(dev)) {
3772 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3773 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3774 } else {
3775 temp &= ~FDI_LINK_TRAIN_NONE;
3776 temp |= FDI_LINK_TRAIN_PATTERN_1;
3777 }
3778 /* BPC in FDI rx is consistent with that in PIPECONF */
3779 temp &= ~(0x07 << 16);
dfd07d72 3780 temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
0fc932b8
JB
3781 I915_WRITE(reg, temp);
3782
3783 POSTING_READ(reg);
3784 udelay(100);
3785}
3786
5dce5b93
CW
3787bool intel_has_pending_fb_unpin(struct drm_device *dev)
3788{
3789 struct intel_crtc *crtc;
3790
3791 /* Note that we don't need to be called with mode_config.lock here
3792 * as our list of CRTC objects is static for the lifetime of the
3793 * device and so cannot disappear as we iterate. Similarly, we can
3794 * happily treat the predicates as racy, atomic checks as userspace
3795 * cannot claim and pin a new fb without at least acquring the
3796 * struct_mutex and so serialising with us.
3797 */
d3fcc808 3798 for_each_intel_crtc(dev, crtc) {
5dce5b93
CW
3799 if (atomic_read(&crtc->unpin_work_count) == 0)
3800 continue;
3801
3802 if (crtc->unpin_work)
3803 intel_wait_for_vblank(dev, crtc->pipe);
3804
3805 return true;
3806 }
3807
3808 return false;
3809}
3810
d6bbafa1
CW
3811static void page_flip_completed(struct intel_crtc *intel_crtc)
3812{
3813 struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3814 struct intel_unpin_work *work = intel_crtc->unpin_work;
3815
3816 /* ensure that the unpin work is consistent wrt ->pending. */
3817 smp_rmb();
3818 intel_crtc->unpin_work = NULL;
3819
3820 if (work->event)
560ce1dc 3821 drm_crtc_send_vblank_event(&intel_crtc->base, work->event);
d6bbafa1
CW
3822
3823 drm_crtc_vblank_put(&intel_crtc->base);
3824
3825 wake_up_all(&dev_priv->pending_flip_queue);
3826 queue_work(dev_priv->wq, &work->work);
3827
3828 trace_i915_flip_complete(intel_crtc->plane,
3829 work->pending_flip_obj);
3830}
3831
5008e874 3832static int intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
e6c3a2a6 3833{
0f91128d 3834 struct drm_device *dev = crtc->dev;
5bb61643 3835 struct drm_i915_private *dev_priv = dev->dev_private;
5008e874 3836 long ret;
e6c3a2a6 3837
2c10d571 3838 WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
5008e874
ML
3839
3840 ret = wait_event_interruptible_timeout(
3841 dev_priv->pending_flip_queue,
3842 !intel_crtc_has_pending_flip(crtc),
3843 60*HZ);
3844
3845 if (ret < 0)
3846 return ret;
3847
3848 if (ret == 0) {
9c787942 3849 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2c10d571 3850
5e2d7afc 3851 spin_lock_irq(&dev->event_lock);
9c787942
CW
3852 if (intel_crtc->unpin_work) {
3853 WARN_ONCE(1, "Removing stuck page flip\n");
3854 page_flip_completed(intel_crtc);
3855 }
5e2d7afc 3856 spin_unlock_irq(&dev->event_lock);
9c787942 3857 }
5bb61643 3858
5008e874 3859 return 0;
e6c3a2a6
CW
3860}
3861
060f02d8
VS
3862static void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
3863{
3864 u32 temp;
3865
3866 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3867
3868 mutex_lock(&dev_priv->sb_lock);
3869
3870 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3871 temp |= SBI_SSCCTL_DISABLE;
3872 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
3873
3874 mutex_unlock(&dev_priv->sb_lock);
3875}
3876
e615efe4
ED
3877/* Program iCLKIP clock to the desired frequency */
3878static void lpt_program_iclkip(struct drm_crtc *crtc)
3879{
64b46a06 3880 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6e3c9717 3881 int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
e615efe4
ED
3882 u32 divsel, phaseinc, auxdiv, phasedir = 0;
3883 u32 temp;
3884
060f02d8 3885 lpt_disable_iclkip(dev_priv);
e615efe4 3886
64b46a06
VS
3887 /* The iCLK virtual clock root frequency is in MHz,
3888 * but the adjusted_mode->crtc_clock in in KHz. To get the
3889 * divisors, it is necessary to divide one by another, so we
3890 * convert the virtual clock precision to KHz here for higher
3891 * precision.
3892 */
3893 for (auxdiv = 0; auxdiv < 2; auxdiv++) {
e615efe4
ED
3894 u32 iclk_virtual_root_freq = 172800 * 1000;
3895 u32 iclk_pi_range = 64;
64b46a06 3896 u32 desired_divisor;
e615efe4 3897
64b46a06
VS
3898 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
3899 clock << auxdiv);
3900 divsel = (desired_divisor / iclk_pi_range) - 2;
3901 phaseinc = desired_divisor % iclk_pi_range;
e615efe4 3902
64b46a06
VS
3903 /*
3904 * Near 20MHz is a corner case which is
3905 * out of range for the 7-bit divisor
3906 */
3907 if (divsel <= 0x7f)
3908 break;
e615efe4
ED
3909 }
3910
3911 /* This should not happen with any sane values */
3912 WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3913 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3914 WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3915 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3916
3917 DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
12d7ceed 3918 clock,
e615efe4
ED
3919 auxdiv,
3920 divsel,
3921 phasedir,
3922 phaseinc);
3923
060f02d8
VS
3924 mutex_lock(&dev_priv->sb_lock);
3925
e615efe4 3926 /* Program SSCDIVINTPHASE6 */
988d6ee8 3927 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
e615efe4
ED
3928 temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3929 temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3930 temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3931 temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
3932 temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
3933 temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
988d6ee8 3934 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
e615efe4
ED
3935
3936 /* Program SSCAUXDIV */
988d6ee8 3937 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
e615efe4
ED
3938 temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
3939 temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
988d6ee8 3940 intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
e615efe4
ED
3941
3942 /* Enable modulator and associated divider */
988d6ee8 3943 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
e615efe4 3944 temp &= ~SBI_SSCCTL_DISABLE;
988d6ee8 3945 intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
e615efe4 3946
060f02d8
VS
3947 mutex_unlock(&dev_priv->sb_lock);
3948
e615efe4
ED
3949 /* Wait for initialization time */
3950 udelay(24);
3951
3952 I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
3953}
3954
8802e5b6
VS
3955int lpt_get_iclkip(struct drm_i915_private *dev_priv)
3956{
3957 u32 divsel, phaseinc, auxdiv;
3958 u32 iclk_virtual_root_freq = 172800 * 1000;
3959 u32 iclk_pi_range = 64;
3960 u32 desired_divisor;
3961 u32 temp;
3962
3963 if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
3964 return 0;
3965
3966 mutex_lock(&dev_priv->sb_lock);
3967
3968 temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
3969 if (temp & SBI_SSCCTL_DISABLE) {
3970 mutex_unlock(&dev_priv->sb_lock);
3971 return 0;
3972 }
3973
3974 temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3975 divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
3976 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
3977 phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
3978 SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
3979
3980 temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
3981 auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
3982 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
3983
3984 mutex_unlock(&dev_priv->sb_lock);
3985
3986 desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
3987
3988 return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
3989 desired_divisor << auxdiv);
3990}
3991
275f01b2
DV
3992static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
3993 enum pipe pch_transcoder)
3994{
3995 struct drm_device *dev = crtc->base.dev;
3996 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 3997 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
275f01b2
DV
3998
3999 I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4000 I915_READ(HTOTAL(cpu_transcoder)));
4001 I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4002 I915_READ(HBLANK(cpu_transcoder)));
4003 I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4004 I915_READ(HSYNC(cpu_transcoder)));
4005
4006 I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4007 I915_READ(VTOTAL(cpu_transcoder)));
4008 I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4009 I915_READ(VBLANK(cpu_transcoder)));
4010 I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4011 I915_READ(VSYNC(cpu_transcoder)));
4012 I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4013 I915_READ(VSYNCSHIFT(cpu_transcoder)));
4014}
4015
003632d9 4016static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
1fbc0d78
DV
4017{
4018 struct drm_i915_private *dev_priv = dev->dev_private;
4019 uint32_t temp;
4020
4021 temp = I915_READ(SOUTH_CHICKEN1);
003632d9 4022 if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
1fbc0d78
DV
4023 return;
4024
4025 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4026 WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4027
003632d9
ACO
4028 temp &= ~FDI_BC_BIFURCATION_SELECT;
4029 if (enable)
4030 temp |= FDI_BC_BIFURCATION_SELECT;
4031
4032 DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
1fbc0d78
DV
4033 I915_WRITE(SOUTH_CHICKEN1, temp);
4034 POSTING_READ(SOUTH_CHICKEN1);
4035}
4036
4037static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4038{
4039 struct drm_device *dev = intel_crtc->base.dev;
1fbc0d78
DV
4040
4041 switch (intel_crtc->pipe) {
4042 case PIPE_A:
4043 break;
4044 case PIPE_B:
6e3c9717 4045 if (intel_crtc->config->fdi_lanes > 2)
003632d9 4046 cpt_set_fdi_bc_bifurcation(dev, false);
1fbc0d78 4047 else
003632d9 4048 cpt_set_fdi_bc_bifurcation(dev, true);
1fbc0d78
DV
4049
4050 break;
4051 case PIPE_C:
003632d9 4052 cpt_set_fdi_bc_bifurcation(dev, true);
1fbc0d78
DV
4053
4054 break;
4055 default:
4056 BUG();
4057 }
4058}
4059
c48b5305
VS
4060/* Return which DP Port should be selected for Transcoder DP control */
4061static enum port
4062intel_trans_dp_port_sel(struct drm_crtc *crtc)
4063{
4064 struct drm_device *dev = crtc->dev;
4065 struct intel_encoder *encoder;
4066
4067 for_each_encoder_on_crtc(dev, crtc, encoder) {
4068 if (encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
4069 encoder->type == INTEL_OUTPUT_EDP)
4070 return enc_to_dig_port(&encoder->base)->port;
4071 }
4072
4073 return -1;
4074}
4075
f67a559d
JB
4076/*
4077 * Enable PCH resources required for PCH ports:
4078 * - PCH PLLs
4079 * - FDI training & RX/TX
4080 * - update transcoder timings
4081 * - DP transcoding bits
4082 * - transcoder
4083 */
4084static void ironlake_pch_enable(struct drm_crtc *crtc)
0e23b99d
JB
4085{
4086 struct drm_device *dev = crtc->dev;
4087 struct drm_i915_private *dev_priv = dev->dev_private;
4088 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4089 int pipe = intel_crtc->pipe;
f0f59a00 4090 u32 temp;
2c07245f 4091
ab9412ba 4092 assert_pch_transcoder_disabled(dev_priv, pipe);
e7e164db 4093
1fbc0d78
DV
4094 if (IS_IVYBRIDGE(dev))
4095 ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4096
cd986abb
DV
4097 /* Write the TU size bits before fdi link training, so that error
4098 * detection works. */
4099 I915_WRITE(FDI_RX_TUSIZE1(pipe),
4100 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4101
c98e9dcf 4102 /* For PCH output, training FDI link */
674cf967 4103 dev_priv->display.fdi_link_train(crtc);
2c07245f 4104
3ad8a208
DV
4105 /* We need to program the right clock selection before writing the pixel
4106 * mutliplier into the DPLL. */
303b81e0 4107 if (HAS_PCH_CPT(dev)) {
ee7b9f93 4108 u32 sel;
4b645f14 4109
c98e9dcf 4110 temp = I915_READ(PCH_DPLL_SEL);
11887397
DV
4111 temp |= TRANS_DPLL_ENABLE(pipe);
4112 sel = TRANS_DPLLB_SEL(pipe);
8106ddbd
ACO
4113 if (intel_crtc->config->shared_dpll ==
4114 intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
ee7b9f93
JB
4115 temp |= sel;
4116 else
4117 temp &= ~sel;
c98e9dcf 4118 I915_WRITE(PCH_DPLL_SEL, temp);
c98e9dcf 4119 }
5eddb70b 4120
3ad8a208
DV
4121 /* XXX: pch pll's can be enabled any time before we enable the PCH
4122 * transcoder, and we actually should do this to not upset any PCH
4123 * transcoder that already use the clock when we share it.
4124 *
4125 * Note that enable_shared_dpll tries to do the right thing, but
4126 * get_shared_dpll unconditionally resets the pll - we need that to have
4127 * the right LVDS enable sequence. */
85b3894f 4128 intel_enable_shared_dpll(intel_crtc);
3ad8a208 4129
d9b6cb56
JB
4130 /* set transcoder timing, panel must allow it */
4131 assert_panel_unlocked(dev_priv, pipe);
275f01b2 4132 ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
8db9d77b 4133
303b81e0 4134 intel_fdi_normal_train(crtc);
5e84e1a4 4135
c98e9dcf 4136 /* For PCH DP, enable TRANS_DP_CTL */
6e3c9717 4137 if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
9c4edaee
VS
4138 const struct drm_display_mode *adjusted_mode =
4139 &intel_crtc->config->base.adjusted_mode;
dfd07d72 4140 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
f0f59a00 4141 i915_reg_t reg = TRANS_DP_CTL(pipe);
5eddb70b
CW
4142 temp = I915_READ(reg);
4143 temp &= ~(TRANS_DP_PORT_SEL_MASK |
220cad3c
EA
4144 TRANS_DP_SYNC_MASK |
4145 TRANS_DP_BPC_MASK);
e3ef4479 4146 temp |= TRANS_DP_OUTPUT_ENABLE;
9325c9f0 4147 temp |= bpc << 9; /* same format but at 11:9 */
c98e9dcf 4148
9c4edaee 4149 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
5eddb70b 4150 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
9c4edaee 4151 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
5eddb70b 4152 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
c98e9dcf
JB
4153
4154 switch (intel_trans_dp_port_sel(crtc)) {
c48b5305 4155 case PORT_B:
5eddb70b 4156 temp |= TRANS_DP_PORT_SEL_B;
c98e9dcf 4157 break;
c48b5305 4158 case PORT_C:
5eddb70b 4159 temp |= TRANS_DP_PORT_SEL_C;
c98e9dcf 4160 break;
c48b5305 4161 case PORT_D:
5eddb70b 4162 temp |= TRANS_DP_PORT_SEL_D;
c98e9dcf
JB
4163 break;
4164 default:
e95d41e1 4165 BUG();
32f9d658 4166 }
2c07245f 4167
5eddb70b 4168 I915_WRITE(reg, temp);
6be4a607 4169 }
b52eb4dc 4170
b8a4f404 4171 ironlake_enable_pch_transcoder(dev_priv, pipe);
f67a559d
JB
4172}
4173
1507e5bd
PZ
4174static void lpt_pch_enable(struct drm_crtc *crtc)
4175{
4176 struct drm_device *dev = crtc->dev;
4177 struct drm_i915_private *dev_priv = dev->dev_private;
4178 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6e3c9717 4179 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
1507e5bd 4180
ab9412ba 4181 assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
1507e5bd 4182
8c52b5e8 4183 lpt_program_iclkip(crtc);
1507e5bd 4184
0540e488 4185 /* Set transcoder timing. */
275f01b2 4186 ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
1507e5bd 4187
937bb610 4188 lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
f67a559d
JB
4189}
4190
a1520318 4191static void cpt_verify_modeset(struct drm_device *dev, int pipe)
d4270e57
JB
4192{
4193 struct drm_i915_private *dev_priv = dev->dev_private;
f0f59a00 4194 i915_reg_t dslreg = PIPEDSL(pipe);
d4270e57
JB
4195 u32 temp;
4196
4197 temp = I915_READ(dslreg);
4198 udelay(500);
4199 if (wait_for(I915_READ(dslreg) != temp, 5)) {
d4270e57 4200 if (wait_for(I915_READ(dslreg) != temp, 5))
84f44ce7 4201 DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
d4270e57
JB
4202 }
4203}
4204
86adf9d7
ML
4205static int
4206skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
4207 unsigned scaler_user, int *scaler_id, unsigned int rotation,
4208 int src_w, int src_h, int dst_w, int dst_h)
a1b2278e 4209{
86adf9d7
ML
4210 struct intel_crtc_scaler_state *scaler_state =
4211 &crtc_state->scaler_state;
4212 struct intel_crtc *intel_crtc =
4213 to_intel_crtc(crtc_state->base.crtc);
a1b2278e 4214 int need_scaling;
6156a456
CK
4215
4216 need_scaling = intel_rotation_90_or_270(rotation) ?
4217 (src_h != dst_w || src_w != dst_h):
4218 (src_w != dst_w || src_h != dst_h);
a1b2278e
CK
4219
4220 /*
4221 * if plane is being disabled or scaler is no more required or force detach
4222 * - free scaler binded to this plane/crtc
4223 * - in order to do this, update crtc->scaler_usage
4224 *
4225 * Here scaler state in crtc_state is set free so that
4226 * scaler can be assigned to other user. Actual register
4227 * update to free the scaler is done in plane/panel-fit programming.
4228 * For this purpose crtc/plane_state->scaler_id isn't reset here.
4229 */
86adf9d7 4230 if (force_detach || !need_scaling) {
a1b2278e 4231 if (*scaler_id >= 0) {
86adf9d7 4232 scaler_state->scaler_users &= ~(1 << scaler_user);
a1b2278e
CK
4233 scaler_state->scalers[*scaler_id].in_use = 0;
4234
86adf9d7
ML
4235 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4236 "Staged freeing scaler id %d scaler_users = 0x%x\n",
4237 intel_crtc->pipe, scaler_user, *scaler_id,
a1b2278e
CK
4238 scaler_state->scaler_users);
4239 *scaler_id = -1;
4240 }
4241 return 0;
4242 }
4243
4244 /* range checks */
4245 if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4246 dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4247
4248 src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4249 dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
86adf9d7 4250 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
a1b2278e 4251 "size is out of scaler range\n",
86adf9d7 4252 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
a1b2278e
CK
4253 return -EINVAL;
4254 }
4255
86adf9d7
ML
4256 /* mark this plane as a scaler user in crtc_state */
4257 scaler_state->scaler_users |= (1 << scaler_user);
4258 DRM_DEBUG_KMS("scaler_user index %u.%u: "
4259 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
4260 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
4261 scaler_state->scaler_users);
4262
4263 return 0;
4264}
4265
4266/**
4267 * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
4268 *
4269 * @state: crtc's scaler state
86adf9d7
ML
4270 *
4271 * Return
4272 * 0 - scaler_usage updated successfully
4273 * error - requested scaling cannot be supported or other error condition
4274 */
e435d6e5 4275int skl_update_scaler_crtc(struct intel_crtc_state *state)
86adf9d7
ML
4276{
4277 struct intel_crtc *intel_crtc = to_intel_crtc(state->base.crtc);
7c5f93b0 4278 const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
86adf9d7
ML
4279
4280 DRM_DEBUG_KMS("Updating scaler for [CRTC:%i] scaler_user index %u.%u\n",
4281 intel_crtc->base.base.id, intel_crtc->pipe, SKL_CRTC_INDEX);
4282
e435d6e5 4283 return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
fa5a7970 4284 &state->scaler_state.scaler_id, BIT(DRM_ROTATE_0),
86adf9d7 4285 state->pipe_src_w, state->pipe_src_h,
aad941d5 4286 adjusted_mode->crtc_hdisplay, adjusted_mode->crtc_vdisplay);
86adf9d7
ML
4287}
4288
4289/**
4290 * skl_update_scaler_plane - Stages update to scaler state for a given plane.
4291 *
4292 * @state: crtc's scaler state
86adf9d7
ML
4293 * @plane_state: atomic plane state to update
4294 *
4295 * Return
4296 * 0 - scaler_usage updated successfully
4297 * error - requested scaling cannot be supported or other error condition
4298 */
da20eabd
ML
4299static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
4300 struct intel_plane_state *plane_state)
86adf9d7
ML
4301{
4302
4303 struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
da20eabd
ML
4304 struct intel_plane *intel_plane =
4305 to_intel_plane(plane_state->base.plane);
86adf9d7
ML
4306 struct drm_framebuffer *fb = plane_state->base.fb;
4307 int ret;
4308
4309 bool force_detach = !fb || !plane_state->visible;
4310
4311 DRM_DEBUG_KMS("Updating scaler for [PLANE:%d] scaler_user index %u.%u\n",
4312 intel_plane->base.base.id, intel_crtc->pipe,
4313 drm_plane_index(&intel_plane->base));
4314
4315 ret = skl_update_scaler(crtc_state, force_detach,
4316 drm_plane_index(&intel_plane->base),
4317 &plane_state->scaler_id,
4318 plane_state->base.rotation,
4319 drm_rect_width(&plane_state->src) >> 16,
4320 drm_rect_height(&plane_state->src) >> 16,
4321 drm_rect_width(&plane_state->dst),
4322 drm_rect_height(&plane_state->dst));
4323
4324 if (ret || plane_state->scaler_id < 0)
4325 return ret;
4326
a1b2278e 4327 /* check colorkey */
818ed961 4328 if (plane_state->ckey.flags != I915_SET_COLORKEY_NONE) {
86adf9d7 4329 DRM_DEBUG_KMS("[PLANE:%d] scaling with color key not allowed",
818ed961 4330 intel_plane->base.base.id);
a1b2278e
CK
4331 return -EINVAL;
4332 }
4333
4334 /* Check src format */
86adf9d7
ML
4335 switch (fb->pixel_format) {
4336 case DRM_FORMAT_RGB565:
4337 case DRM_FORMAT_XBGR8888:
4338 case DRM_FORMAT_XRGB8888:
4339 case DRM_FORMAT_ABGR8888:
4340 case DRM_FORMAT_ARGB8888:
4341 case DRM_FORMAT_XRGB2101010:
4342 case DRM_FORMAT_XBGR2101010:
4343 case DRM_FORMAT_YUYV:
4344 case DRM_FORMAT_YVYU:
4345 case DRM_FORMAT_UYVY:
4346 case DRM_FORMAT_VYUY:
4347 break;
4348 default:
4349 DRM_DEBUG_KMS("[PLANE:%d] FB:%d unsupported scaling format 0x%x\n",
4350 intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4351 return -EINVAL;
a1b2278e
CK
4352 }
4353
a1b2278e
CK
4354 return 0;
4355}
4356
e435d6e5
ML
4357static void skylake_scaler_disable(struct intel_crtc *crtc)
4358{
4359 int i;
4360
4361 for (i = 0; i < crtc->num_scalers; i++)
4362 skl_detach_scaler(crtc, i);
4363}
4364
4365static void skylake_pfit_enable(struct intel_crtc *crtc)
bd2e244f
JB
4366{
4367 struct drm_device *dev = crtc->base.dev;
4368 struct drm_i915_private *dev_priv = dev->dev_private;
4369 int pipe = crtc->pipe;
a1b2278e
CK
4370 struct intel_crtc_scaler_state *scaler_state =
4371 &crtc->config->scaler_state;
4372
4373 DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4374
6e3c9717 4375 if (crtc->config->pch_pfit.enabled) {
a1b2278e
CK
4376 int id;
4377
4378 if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4379 DRM_ERROR("Requesting pfit without getting a scaler first\n");
4380 return;
4381 }
4382
4383 id = scaler_state->scaler_id;
4384 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4385 PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4386 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4387 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4388
4389 DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
bd2e244f
JB
4390 }
4391}
4392
b074cec8
JB
4393static void ironlake_pfit_enable(struct intel_crtc *crtc)
4394{
4395 struct drm_device *dev = crtc->base.dev;
4396 struct drm_i915_private *dev_priv = dev->dev_private;
4397 int pipe = crtc->pipe;
4398
6e3c9717 4399 if (crtc->config->pch_pfit.enabled) {
b074cec8
JB
4400 /* Force use of hard-coded filter coefficients
4401 * as some pre-programmed values are broken,
4402 * e.g. x201.
4403 */
4404 if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4405 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4406 PF_PIPE_SEL_IVB(pipe));
4407 else
4408 I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
6e3c9717
ACO
4409 I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4410 I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
d4270e57
JB
4411 }
4412}
4413
20bc8673 4414void hsw_enable_ips(struct intel_crtc *crtc)
d77e4531 4415{
cea165c3
VS
4416 struct drm_device *dev = crtc->base.dev;
4417 struct drm_i915_private *dev_priv = dev->dev_private;
d77e4531 4418
6e3c9717 4419 if (!crtc->config->ips_enabled)
d77e4531
PZ
4420 return;
4421
307e4498
ML
4422 /*
4423 * We can only enable IPS after we enable a plane and wait for a vblank
4424 * This function is called from post_plane_update, which is run after
4425 * a vblank wait.
4426 */
cea165c3 4427
d77e4531 4428 assert_plane_enabled(dev_priv, crtc->plane);
cea165c3 4429 if (IS_BROADWELL(dev)) {
2a114cc1
BW
4430 mutex_lock(&dev_priv->rps.hw_lock);
4431 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4432 mutex_unlock(&dev_priv->rps.hw_lock);
4433 /* Quoting Art Runyan: "its not safe to expect any particular
4434 * value in IPS_CTL bit 31 after enabling IPS through the
e59150dc
JB
4435 * mailbox." Moreover, the mailbox may return a bogus state,
4436 * so we need to just enable it and continue on.
2a114cc1
BW
4437 */
4438 } else {
4439 I915_WRITE(IPS_CTL, IPS_ENABLE);
4440 /* The bit only becomes 1 in the next vblank, so this wait here
4441 * is essentially intel_wait_for_vblank. If we don't have this
4442 * and don't wait for vblanks until the end of crtc_enable, then
4443 * the HW state readout code will complain that the expected
4444 * IPS_CTL value is not the one we read. */
4445 if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4446 DRM_ERROR("Timed out waiting for IPS enable\n");
4447 }
d77e4531
PZ
4448}
4449
20bc8673 4450void hsw_disable_ips(struct intel_crtc *crtc)
d77e4531
PZ
4451{
4452 struct drm_device *dev = crtc->base.dev;
4453 struct drm_i915_private *dev_priv = dev->dev_private;
4454
6e3c9717 4455 if (!crtc->config->ips_enabled)
d77e4531
PZ
4456 return;
4457
4458 assert_plane_enabled(dev_priv, crtc->plane);
23d0b130 4459 if (IS_BROADWELL(dev)) {
2a114cc1
BW
4460 mutex_lock(&dev_priv->rps.hw_lock);
4461 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4462 mutex_unlock(&dev_priv->rps.hw_lock);
23d0b130
BW
4463 /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4464 if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4465 DRM_ERROR("Timed out waiting for IPS disable\n");
e59150dc 4466 } else {
2a114cc1 4467 I915_WRITE(IPS_CTL, 0);
e59150dc
JB
4468 POSTING_READ(IPS_CTL);
4469 }
d77e4531
PZ
4470
4471 /* We need to wait for a vblank before we can disable the plane. */
4472 intel_wait_for_vblank(dev, crtc->pipe);
4473}
4474
7cac945f 4475static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
d3eedb1a 4476{
7cac945f 4477 if (intel_crtc->overlay) {
d3eedb1a
VS
4478 struct drm_device *dev = intel_crtc->base.dev;
4479 struct drm_i915_private *dev_priv = dev->dev_private;
4480
4481 mutex_lock(&dev->struct_mutex);
4482 dev_priv->mm.interruptible = false;
4483 (void) intel_overlay_switch_off(intel_crtc->overlay);
4484 dev_priv->mm.interruptible = true;
4485 mutex_unlock(&dev->struct_mutex);
4486 }
4487
4488 /* Let userspace switch the overlay on again. In most cases userspace
4489 * has to recompute where to put it anyway.
4490 */
4491}
4492
87d4300a
ML
4493/**
4494 * intel_post_enable_primary - Perform operations after enabling primary plane
4495 * @crtc: the CRTC whose primary plane was just enabled
4496 *
4497 * Performs potentially sleeping operations that must be done after the primary
4498 * plane is enabled, such as updating FBC and IPS. Note that this may be
4499 * called due to an explicit primary plane update, or due to an implicit
4500 * re-enable that is caused when a sprite plane is updated to no longer
4501 * completely hide the primary plane.
4502 */
4503static void
4504intel_post_enable_primary(struct drm_crtc *crtc)
a5c4d7bc
VS
4505{
4506 struct drm_device *dev = crtc->dev;
87d4300a 4507 struct drm_i915_private *dev_priv = dev->dev_private;
a5c4d7bc
VS
4508 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4509 int pipe = intel_crtc->pipe;
a5c4d7bc 4510
87d4300a
ML
4511 /*
4512 * FIXME IPS should be fine as long as one plane is
4513 * enabled, but in practice it seems to have problems
4514 * when going from primary only to sprite only and vice
4515 * versa.
4516 */
a5c4d7bc
VS
4517 hsw_enable_ips(intel_crtc);
4518
f99d7069 4519 /*
87d4300a
ML
4520 * Gen2 reports pipe underruns whenever all planes are disabled.
4521 * So don't enable underrun reporting before at least some planes
4522 * are enabled.
4523 * FIXME: Need to fix the logic to work when we turn off all planes
4524 * but leave the pipe running.
f99d7069 4525 */
87d4300a
ML
4526 if (IS_GEN2(dev))
4527 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4528
aca7b684
VS
4529 /* Underruns don't always raise interrupts, so check manually. */
4530 intel_check_cpu_fifo_underruns(dev_priv);
4531 intel_check_pch_fifo_underruns(dev_priv);
a5c4d7bc
VS
4532}
4533
2622a081 4534/* FIXME move all this to pre_plane_update() with proper state tracking */
87d4300a
ML
4535static void
4536intel_pre_disable_primary(struct drm_crtc *crtc)
a5c4d7bc
VS
4537{
4538 struct drm_device *dev = crtc->dev;
4539 struct drm_i915_private *dev_priv = dev->dev_private;
4540 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4541 int pipe = intel_crtc->pipe;
a5c4d7bc 4542
87d4300a
ML
4543 /*
4544 * Gen2 reports pipe underruns whenever all planes are disabled.
4545 * So diasble underrun reporting before all the planes get disabled.
4546 * FIXME: Need to fix the logic to work when we turn off all planes
4547 * but leave the pipe running.
4548 */
4549 if (IS_GEN2(dev))
4550 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
a5c4d7bc 4551
2622a081
VS
4552 /*
4553 * FIXME IPS should be fine as long as one plane is
4554 * enabled, but in practice it seems to have problems
4555 * when going from primary only to sprite only and vice
4556 * versa.
4557 */
4558 hsw_disable_ips(intel_crtc);
4559}
4560
4561/* FIXME get rid of this and use pre_plane_update */
4562static void
4563intel_pre_disable_primary_noatomic(struct drm_crtc *crtc)
4564{
4565 struct drm_device *dev = crtc->dev;
4566 struct drm_i915_private *dev_priv = dev->dev_private;
4567 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4568 int pipe = intel_crtc->pipe;
4569
4570 intel_pre_disable_primary(crtc);
4571
87d4300a
ML
4572 /*
4573 * Vblank time updates from the shadow to live plane control register
4574 * are blocked if the memory self-refresh mode is active at that
4575 * moment. So to make sure the plane gets truly disabled, disable
4576 * first the self-refresh mode. The self-refresh enable bit in turn
4577 * will be checked/applied by the HW only at the next frame start
4578 * event which is after the vblank start event, so we need to have a
4579 * wait-for-vblank between disabling the plane and the pipe.
4580 */
262cd2e1 4581 if (HAS_GMCH_DISPLAY(dev)) {
87d4300a 4582 intel_set_memory_cxsr(dev_priv, false);
262cd2e1
VS
4583 dev_priv->wm.vlv.cxsr = false;
4584 intel_wait_for_vblank(dev, pipe);
4585 }
87d4300a
ML
4586}
4587
cd202f69 4588static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state)
ac21b225 4589{
cd202f69
ML
4590 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4591 struct drm_atomic_state *old_state = old_crtc_state->base.state;
92826fcd
ML
4592 struct intel_crtc_state *pipe_config =
4593 to_intel_crtc_state(crtc->base.state);
ac21b225 4594 struct drm_device *dev = crtc->base.dev;
cd202f69
ML
4595 struct drm_plane *primary = crtc->base.primary;
4596 struct drm_plane_state *old_pri_state =
4597 drm_atomic_get_existing_plane_state(old_state, primary);
ac21b225 4598
cd202f69 4599 intel_frontbuffer_flip(dev, pipe_config->fb_bits);
ac21b225 4600
ab1d3a0e 4601 crtc->wm.cxsr_allowed = true;
852eb00d 4602
caed361d 4603 if (pipe_config->update_wm_post && pipe_config->base.active)
f015c551
VS
4604 intel_update_watermarks(&crtc->base);
4605
cd202f69
ML
4606 if (old_pri_state) {
4607 struct intel_plane_state *primary_state =
4608 to_intel_plane_state(primary->state);
4609 struct intel_plane_state *old_primary_state =
4610 to_intel_plane_state(old_pri_state);
4611
31ae71fc
ML
4612 intel_fbc_post_update(crtc);
4613
cd202f69
ML
4614 if (primary_state->visible &&
4615 (needs_modeset(&pipe_config->base) ||
4616 !old_primary_state->visible))
4617 intel_post_enable_primary(&crtc->base);
4618 }
ac21b225
ML
4619}
4620
5c74cd73 4621static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state)
ac21b225 4622{
5c74cd73 4623 struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
ac21b225 4624 struct drm_device *dev = crtc->base.dev;
eddfcbcd 4625 struct drm_i915_private *dev_priv = dev->dev_private;
ab1d3a0e
ML
4626 struct intel_crtc_state *pipe_config =
4627 to_intel_crtc_state(crtc->base.state);
5c74cd73
ML
4628 struct drm_atomic_state *old_state = old_crtc_state->base.state;
4629 struct drm_plane *primary = crtc->base.primary;
4630 struct drm_plane_state *old_pri_state =
4631 drm_atomic_get_existing_plane_state(old_state, primary);
4632 bool modeset = needs_modeset(&pipe_config->base);
ac21b225 4633
5c74cd73
ML
4634 if (old_pri_state) {
4635 struct intel_plane_state *primary_state =
4636 to_intel_plane_state(primary->state);
4637 struct intel_plane_state *old_primary_state =
4638 to_intel_plane_state(old_pri_state);
4639
31ae71fc
ML
4640 intel_fbc_pre_update(crtc);
4641
5c74cd73
ML
4642 if (old_primary_state->visible &&
4643 (modeset || !primary_state->visible))
4644 intel_pre_disable_primary(&crtc->base);
4645 }
852eb00d 4646
ab1d3a0e 4647 if (pipe_config->disable_cxsr) {
852eb00d 4648 crtc->wm.cxsr_allowed = false;
2dfd178d 4649
2622a081
VS
4650 /*
4651 * Vblank time updates from the shadow to live plane control register
4652 * are blocked if the memory self-refresh mode is active at that
4653 * moment. So to make sure the plane gets truly disabled, disable
4654 * first the self-refresh mode. The self-refresh enable bit in turn
4655 * will be checked/applied by the HW only at the next frame start
4656 * event which is after the vblank start event, so we need to have a
4657 * wait-for-vblank between disabling the plane and the pipe.
4658 */
4659 if (old_crtc_state->base.active) {
2dfd178d 4660 intel_set_memory_cxsr(dev_priv, false);
2622a081
VS
4661 dev_priv->wm.vlv.cxsr = false;
4662 intel_wait_for_vblank(dev, crtc->pipe);
4663 }
852eb00d 4664 }
92826fcd 4665
ed4a6a7c
MR
4666 /*
4667 * IVB workaround: must disable low power watermarks for at least
4668 * one frame before enabling scaling. LP watermarks can be re-enabled
4669 * when scaling is disabled.
4670 *
4671 * WaCxSRDisabledForSpriteScaling:ivb
4672 */
4673 if (pipe_config->disable_lp_wm) {
4674 ilk_disable_lp_wm(dev);
4675 intel_wait_for_vblank(dev, crtc->pipe);
4676 }
4677
4678 /*
4679 * If we're doing a modeset, we're done. No need to do any pre-vblank
4680 * watermark programming here.
4681 */
4682 if (needs_modeset(&pipe_config->base))
4683 return;
4684
4685 /*
4686 * For platforms that support atomic watermarks, program the
4687 * 'intermediate' watermarks immediately. On pre-gen9 platforms, these
4688 * will be the intermediate values that are safe for both pre- and
4689 * post- vblank; when vblank happens, the 'active' values will be set
4690 * to the final 'target' values and we'll do this again to get the
4691 * optimal watermarks. For gen9+ platforms, the values we program here
4692 * will be the final target values which will get automatically latched
4693 * at vblank time; no further programming will be necessary.
4694 *
4695 * If a platform hasn't been transitioned to atomic watermarks yet,
4696 * we'll continue to update watermarks the old way, if flags tell
4697 * us to.
4698 */
4699 if (dev_priv->display.initial_watermarks != NULL)
4700 dev_priv->display.initial_watermarks(pipe_config);
caed361d 4701 else if (pipe_config->update_wm_pre)
92826fcd 4702 intel_update_watermarks(&crtc->base);
ac21b225
ML
4703}
4704
d032ffa0 4705static void intel_crtc_disable_planes(struct drm_crtc *crtc, unsigned plane_mask)
87d4300a
ML
4706{
4707 struct drm_device *dev = crtc->dev;
4708 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
d032ffa0 4709 struct drm_plane *p;
87d4300a
ML
4710 int pipe = intel_crtc->pipe;
4711
7cac945f 4712 intel_crtc_dpms_overlay_disable(intel_crtc);
27321ae8 4713
d032ffa0
ML
4714 drm_for_each_plane_mask(p, dev, plane_mask)
4715 to_intel_plane(p)->disable_plane(p, crtc);
f98551ae 4716
f99d7069
DV
4717 /*
4718 * FIXME: Once we grow proper nuclear flip support out of this we need
4719 * to compute the mask of flip planes precisely. For the time being
4720 * consider this a flip to a NULL plane.
4721 */
4722 intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
a5c4d7bc
VS
4723}
4724
f67a559d
JB
4725static void ironlake_crtc_enable(struct drm_crtc *crtc)
4726{
4727 struct drm_device *dev = crtc->dev;
4728 struct drm_i915_private *dev_priv = dev->dev_private;
4729 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4730 struct intel_encoder *encoder;
f67a559d 4731 int pipe = intel_crtc->pipe;
b95c5321
ML
4732 struct intel_crtc_state *pipe_config =
4733 to_intel_crtc_state(crtc->state);
f67a559d 4734
53d9f4e9 4735 if (WARN_ON(intel_crtc->active))
f67a559d
JB
4736 return;
4737
b2c0593a
VS
4738 /*
4739 * Sometimes spurious CPU pipe underruns happen during FDI
4740 * training, at least with VGA+HDMI cloning. Suppress them.
4741 *
4742 * On ILK we get an occasional spurious CPU pipe underruns
4743 * between eDP port A enable and vdd enable. Also PCH port
4744 * enable seems to result in the occasional CPU pipe underrun.
4745 *
4746 * Spurious PCH underruns also occur during PCH enabling.
4747 */
4748 if (intel_crtc->config->has_pch_encoder || IS_GEN5(dev_priv))
4749 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
81b088ca
VS
4750 if (intel_crtc->config->has_pch_encoder)
4751 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
4752
6e3c9717 4753 if (intel_crtc->config->has_pch_encoder)
b14b1055
DV
4754 intel_prepare_shared_dpll(intel_crtc);
4755
6e3c9717 4756 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 4757 intel_dp_set_m_n(intel_crtc, M1_N1);
29407aab
DV
4758
4759 intel_set_pipe_timings(intel_crtc);
bc58be60 4760 intel_set_pipe_src_size(intel_crtc);
29407aab 4761
6e3c9717 4762 if (intel_crtc->config->has_pch_encoder) {
29407aab 4763 intel_cpu_transcoder_set_m_n(intel_crtc,
6e3c9717 4764 &intel_crtc->config->fdi_m_n, NULL);
29407aab
DV
4765 }
4766
4767 ironlake_set_pipeconf(crtc);
4768
f67a559d 4769 intel_crtc->active = true;
8664281b 4770
f6736a1a 4771 for_each_encoder_on_crtc(dev, crtc, encoder)
952735ee
DV
4772 if (encoder->pre_enable)
4773 encoder->pre_enable(encoder);
f67a559d 4774
6e3c9717 4775 if (intel_crtc->config->has_pch_encoder) {
fff367c7
DV
4776 /* Note: FDI PLL enabling _must_ be done before we enable the
4777 * cpu pipes, hence this is separate from all the other fdi/pch
4778 * enabling. */
88cefb6c 4779 ironlake_fdi_pll_enable(intel_crtc);
46b6f814
DV
4780 } else {
4781 assert_fdi_tx_disabled(dev_priv, pipe);
4782 assert_fdi_rx_disabled(dev_priv, pipe);
4783 }
f67a559d 4784
b074cec8 4785 ironlake_pfit_enable(intel_crtc);
f67a559d 4786
9c54c0dd
JB
4787 /*
4788 * On ILK+ LUT must be loaded before the pipe is running but with
4789 * clocks enabled
4790 */
b95c5321 4791 intel_color_load_luts(&pipe_config->base);
9c54c0dd 4792
1d5bf5d9
ID
4793 if (dev_priv->display.initial_watermarks != NULL)
4794 dev_priv->display.initial_watermarks(intel_crtc->config);
e1fdc473 4795 intel_enable_pipe(intel_crtc);
f67a559d 4796
6e3c9717 4797 if (intel_crtc->config->has_pch_encoder)
f67a559d 4798 ironlake_pch_enable(crtc);
c98e9dcf 4799
f9b61ff6
DV
4800 assert_vblank_disabled(crtc);
4801 drm_crtc_vblank_on(crtc);
4802
fa5c73b1
DV
4803 for_each_encoder_on_crtc(dev, crtc, encoder)
4804 encoder->enable(encoder);
61b77ddd
DV
4805
4806 if (HAS_PCH_CPT(dev))
a1520318 4807 cpt_verify_modeset(dev, intel_crtc->pipe);
37ca8d4c
VS
4808
4809 /* Must wait for vblank to avoid spurious PCH FIFO underruns */
4810 if (intel_crtc->config->has_pch_encoder)
4811 intel_wait_for_vblank(dev, pipe);
b2c0593a 4812 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
37ca8d4c 4813 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
6be4a607
JB
4814}
4815
42db64ef
PZ
4816/* IPS only exists on ULT machines and is tied to pipe A. */
4817static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4818{
f5adf94e 4819 return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
42db64ef
PZ
4820}
4821
4f771f10
PZ
4822static void haswell_crtc_enable(struct drm_crtc *crtc)
4823{
4824 struct drm_device *dev = crtc->dev;
4825 struct drm_i915_private *dev_priv = dev->dev_private;
4826 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4827 struct intel_encoder *encoder;
99d736a2 4828 int pipe = intel_crtc->pipe, hsw_workaround_pipe;
4d1de975 4829 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
99d736a2
ML
4830 struct intel_crtc_state *pipe_config =
4831 to_intel_crtc_state(crtc->state);
4f771f10 4832
53d9f4e9 4833 if (WARN_ON(intel_crtc->active))
4f771f10
PZ
4834 return;
4835
81b088ca
VS
4836 if (intel_crtc->config->has_pch_encoder)
4837 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4838 false);
4839
8106ddbd 4840 if (intel_crtc->config->shared_dpll)
df8ad70c
DV
4841 intel_enable_shared_dpll(intel_crtc);
4842
6e3c9717 4843 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 4844 intel_dp_set_m_n(intel_crtc, M1_N1);
229fca97 4845
4d1de975
JN
4846 if (!intel_crtc->config->has_dsi_encoder)
4847 intel_set_pipe_timings(intel_crtc);
4848
bc58be60 4849 intel_set_pipe_src_size(intel_crtc);
229fca97 4850
4d1de975
JN
4851 if (cpu_transcoder != TRANSCODER_EDP &&
4852 !transcoder_is_dsi(cpu_transcoder)) {
4853 I915_WRITE(PIPE_MULT(cpu_transcoder),
6e3c9717 4854 intel_crtc->config->pixel_multiplier - 1);
ebb69c95
CT
4855 }
4856
6e3c9717 4857 if (intel_crtc->config->has_pch_encoder) {
229fca97 4858 intel_cpu_transcoder_set_m_n(intel_crtc,
6e3c9717 4859 &intel_crtc->config->fdi_m_n, NULL);
229fca97
DV
4860 }
4861
4d1de975
JN
4862 if (!intel_crtc->config->has_dsi_encoder)
4863 haswell_set_pipeconf(crtc);
4864
391bf048 4865 haswell_set_pipemisc(crtc);
229fca97 4866
b95c5321 4867 intel_color_set_csc(&pipe_config->base);
229fca97 4868
4f771f10 4869 intel_crtc->active = true;
8664281b 4870
6b698516
DV
4871 if (intel_crtc->config->has_pch_encoder)
4872 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4873 else
4874 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4875
7d4aefd0 4876 for_each_encoder_on_crtc(dev, crtc, encoder) {
4f771f10
PZ
4877 if (encoder->pre_enable)
4878 encoder->pre_enable(encoder);
7d4aefd0 4879 }
4f771f10 4880
d2d65408 4881 if (intel_crtc->config->has_pch_encoder)
4fe9467d 4882 dev_priv->display.fdi_link_train(crtc);
4fe9467d 4883
a65347ba 4884 if (!intel_crtc->config->has_dsi_encoder)
7d4aefd0 4885 intel_ddi_enable_pipe_clock(intel_crtc);
4f771f10 4886
1c132b44 4887 if (INTEL_INFO(dev)->gen >= 9)
e435d6e5 4888 skylake_pfit_enable(intel_crtc);
ff6d9f55 4889 else
1c132b44 4890 ironlake_pfit_enable(intel_crtc);
4f771f10
PZ
4891
4892 /*
4893 * On ILK+ LUT must be loaded before the pipe is running but with
4894 * clocks enabled
4895 */
b95c5321 4896 intel_color_load_luts(&pipe_config->base);
4f771f10 4897
1f544388 4898 intel_ddi_set_pipe_settings(crtc);
a65347ba 4899 if (!intel_crtc->config->has_dsi_encoder)
7d4aefd0 4900 intel_ddi_enable_transcoder_func(crtc);
4f771f10 4901
1d5bf5d9
ID
4902 if (dev_priv->display.initial_watermarks != NULL)
4903 dev_priv->display.initial_watermarks(pipe_config);
4904 else
4905 intel_update_watermarks(crtc);
4d1de975
JN
4906
4907 /* XXX: Do the pipe assertions at the right place for BXT DSI. */
4908 if (!intel_crtc->config->has_dsi_encoder)
4909 intel_enable_pipe(intel_crtc);
42db64ef 4910
6e3c9717 4911 if (intel_crtc->config->has_pch_encoder)
1507e5bd 4912 lpt_pch_enable(crtc);
4f771f10 4913
a65347ba 4914 if (intel_crtc->config->dp_encoder_is_mst)
0e32b39c
DA
4915 intel_ddi_set_vc_payload_alloc(crtc, true);
4916
f9b61ff6
DV
4917 assert_vblank_disabled(crtc);
4918 drm_crtc_vblank_on(crtc);
4919
8807e55b 4920 for_each_encoder_on_crtc(dev, crtc, encoder) {
4f771f10 4921 encoder->enable(encoder);
8807e55b
JN
4922 intel_opregion_notify_encoder(encoder, true);
4923 }
4f771f10 4924
6b698516
DV
4925 if (intel_crtc->config->has_pch_encoder) {
4926 intel_wait_for_vblank(dev, pipe);
4927 intel_wait_for_vblank(dev, pipe);
4928 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
d2d65408
VS
4929 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
4930 true);
6b698516 4931 }
d2d65408 4932
e4916946
PZ
4933 /* If we change the relative order between pipe/planes enabling, we need
4934 * to change the workaround. */
99d736a2
ML
4935 hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
4936 if (IS_HASWELL(dev) && hsw_workaround_pipe != INVALID_PIPE) {
4937 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4938 intel_wait_for_vblank(dev, hsw_workaround_pipe);
4939 }
4f771f10
PZ
4940}
4941
bfd16b2a 4942static void ironlake_pfit_disable(struct intel_crtc *crtc, bool force)
3f8dce3a
DV
4943{
4944 struct drm_device *dev = crtc->base.dev;
4945 struct drm_i915_private *dev_priv = dev->dev_private;
4946 int pipe = crtc->pipe;
4947
4948 /* To avoid upsetting the power well on haswell only disable the pfit if
4949 * it's in use. The hw state code will make sure we get this right. */
bfd16b2a 4950 if (force || crtc->config->pch_pfit.enabled) {
3f8dce3a
DV
4951 I915_WRITE(PF_CTL(pipe), 0);
4952 I915_WRITE(PF_WIN_POS(pipe), 0);
4953 I915_WRITE(PF_WIN_SZ(pipe), 0);
4954 }
4955}
4956
6be4a607
JB
4957static void ironlake_crtc_disable(struct drm_crtc *crtc)
4958{
4959 struct drm_device *dev = crtc->dev;
4960 struct drm_i915_private *dev_priv = dev->dev_private;
4961 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 4962 struct intel_encoder *encoder;
6be4a607 4963 int pipe = intel_crtc->pipe;
b52eb4dc 4964
b2c0593a
VS
4965 /*
4966 * Sometimes spurious CPU pipe underruns happen when the
4967 * pipe is already disabled, but FDI RX/TX is still enabled.
4968 * Happens at least with VGA+HDMI cloning. Suppress them.
4969 */
4970 if (intel_crtc->config->has_pch_encoder) {
4971 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
37ca8d4c 4972 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
b2c0593a 4973 }
37ca8d4c 4974
ea9d758d
DV
4975 for_each_encoder_on_crtc(dev, crtc, encoder)
4976 encoder->disable(encoder);
4977
f9b61ff6
DV
4978 drm_crtc_vblank_off(crtc);
4979 assert_vblank_disabled(crtc);
4980
575f7ab7 4981 intel_disable_pipe(intel_crtc);
32f9d658 4982
bfd16b2a 4983 ironlake_pfit_disable(intel_crtc, false);
2c07245f 4984
b2c0593a 4985 if (intel_crtc->config->has_pch_encoder)
5a74f70a
VS
4986 ironlake_fdi_disable(crtc);
4987
bf49ec8c
DV
4988 for_each_encoder_on_crtc(dev, crtc, encoder)
4989 if (encoder->post_disable)
4990 encoder->post_disable(encoder);
2c07245f 4991
6e3c9717 4992 if (intel_crtc->config->has_pch_encoder) {
d925c59a 4993 ironlake_disable_pch_transcoder(dev_priv, pipe);
6be4a607 4994
d925c59a 4995 if (HAS_PCH_CPT(dev)) {
f0f59a00
VS
4996 i915_reg_t reg;
4997 u32 temp;
4998
d925c59a
DV
4999 /* disable TRANS_DP_CTL */
5000 reg = TRANS_DP_CTL(pipe);
5001 temp = I915_READ(reg);
5002 temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5003 TRANS_DP_PORT_SEL_MASK);
5004 temp |= TRANS_DP_PORT_SEL_NONE;
5005 I915_WRITE(reg, temp);
5006
5007 /* disable DPLL_SEL */
5008 temp = I915_READ(PCH_DPLL_SEL);
11887397 5009 temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
d925c59a 5010 I915_WRITE(PCH_DPLL_SEL, temp);
9db4a9c7 5011 }
e3421a18 5012
d925c59a
DV
5013 ironlake_fdi_pll_disable(intel_crtc);
5014 }
81b088ca 5015
b2c0593a 5016 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
81b088ca 5017 intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
6be4a607 5018}
1b3c7a47 5019
4f771f10 5020static void haswell_crtc_disable(struct drm_crtc *crtc)
ee7b9f93 5021{
4f771f10
PZ
5022 struct drm_device *dev = crtc->dev;
5023 struct drm_i915_private *dev_priv = dev->dev_private;
ee7b9f93 5024 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4f771f10 5025 struct intel_encoder *encoder;
6e3c9717 5026 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
ee7b9f93 5027
d2d65408
VS
5028 if (intel_crtc->config->has_pch_encoder)
5029 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5030 false);
5031
8807e55b
JN
5032 for_each_encoder_on_crtc(dev, crtc, encoder) {
5033 intel_opregion_notify_encoder(encoder, false);
4f771f10 5034 encoder->disable(encoder);
8807e55b 5035 }
4f771f10 5036
f9b61ff6
DV
5037 drm_crtc_vblank_off(crtc);
5038 assert_vblank_disabled(crtc);
5039
4d1de975
JN
5040 /* XXX: Do the pipe assertions at the right place for BXT DSI. */
5041 if (!intel_crtc->config->has_dsi_encoder)
5042 intel_disable_pipe(intel_crtc);
4f771f10 5043
6e3c9717 5044 if (intel_crtc->config->dp_encoder_is_mst)
a4bf214f
VS
5045 intel_ddi_set_vc_payload_alloc(crtc, false);
5046
a65347ba 5047 if (!intel_crtc->config->has_dsi_encoder)
7d4aefd0 5048 intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
4f771f10 5049
1c132b44 5050 if (INTEL_INFO(dev)->gen >= 9)
e435d6e5 5051 skylake_scaler_disable(intel_crtc);
ff6d9f55 5052 else
bfd16b2a 5053 ironlake_pfit_disable(intel_crtc, false);
4f771f10 5054
a65347ba 5055 if (!intel_crtc->config->has_dsi_encoder)
7d4aefd0 5056 intel_ddi_disable_pipe_clock(intel_crtc);
4f771f10 5057
97b040aa
ID
5058 for_each_encoder_on_crtc(dev, crtc, encoder)
5059 if (encoder->post_disable)
5060 encoder->post_disable(encoder);
81b088ca 5061
92966a37
VS
5062 if (intel_crtc->config->has_pch_encoder) {
5063 lpt_disable_pch_transcoder(dev_priv);
503a74e9 5064 lpt_disable_iclkip(dev_priv);
92966a37
VS
5065 intel_ddi_fdi_disable(crtc);
5066
81b088ca
VS
5067 intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5068 true);
92966a37 5069 }
4f771f10
PZ
5070}
5071
2dd24552
JB
5072static void i9xx_pfit_enable(struct intel_crtc *crtc)
5073{
5074 struct drm_device *dev = crtc->base.dev;
5075 struct drm_i915_private *dev_priv = dev->dev_private;
6e3c9717 5076 struct intel_crtc_state *pipe_config = crtc->config;
2dd24552 5077
681a8504 5078 if (!pipe_config->gmch_pfit.control)
2dd24552
JB
5079 return;
5080
2dd24552 5081 /*
c0b03411
DV
5082 * The panel fitter should only be adjusted whilst the pipe is disabled,
5083 * according to register description and PRM.
2dd24552 5084 */
c0b03411
DV
5085 WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5086 assert_pipe_disabled(dev_priv, crtc->pipe);
2dd24552 5087
b074cec8
JB
5088 I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5089 I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5a80c45c
DV
5090
5091 /* Border color in case we don't scale up to the full screen. Black by
5092 * default, change to something else for debugging. */
5093 I915_WRITE(BCLRPAT(crtc->pipe), 0);
2dd24552
JB
5094}
5095
d05410f9
DA
5096static enum intel_display_power_domain port_to_power_domain(enum port port)
5097{
5098 switch (port) {
5099 case PORT_A:
6331a704 5100 return POWER_DOMAIN_PORT_DDI_A_LANES;
d05410f9 5101 case PORT_B:
6331a704 5102 return POWER_DOMAIN_PORT_DDI_B_LANES;
d05410f9 5103 case PORT_C:
6331a704 5104 return POWER_DOMAIN_PORT_DDI_C_LANES;
d05410f9 5105 case PORT_D:
6331a704 5106 return POWER_DOMAIN_PORT_DDI_D_LANES;
d8e19f99 5107 case PORT_E:
6331a704 5108 return POWER_DOMAIN_PORT_DDI_E_LANES;
d05410f9 5109 default:
b9fec167 5110 MISSING_CASE(port);
d05410f9
DA
5111 return POWER_DOMAIN_PORT_OTHER;
5112 }
5113}
5114
25f78f58
VS
5115static enum intel_display_power_domain port_to_aux_power_domain(enum port port)
5116{
5117 switch (port) {
5118 case PORT_A:
5119 return POWER_DOMAIN_AUX_A;
5120 case PORT_B:
5121 return POWER_DOMAIN_AUX_B;
5122 case PORT_C:
5123 return POWER_DOMAIN_AUX_C;
5124 case PORT_D:
5125 return POWER_DOMAIN_AUX_D;
5126 case PORT_E:
5127 /* FIXME: Check VBT for actual wiring of PORT E */
5128 return POWER_DOMAIN_AUX_D;
5129 default:
b9fec167 5130 MISSING_CASE(port);
25f78f58
VS
5131 return POWER_DOMAIN_AUX_A;
5132 }
5133}
5134
319be8ae
ID
5135enum intel_display_power_domain
5136intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5137{
5138 struct drm_device *dev = intel_encoder->base.dev;
5139 struct intel_digital_port *intel_dig_port;
5140
5141 switch (intel_encoder->type) {
5142 case INTEL_OUTPUT_UNKNOWN:
5143 /* Only DDI platforms should ever use this output type */
5144 WARN_ON_ONCE(!HAS_DDI(dev));
5145 case INTEL_OUTPUT_DISPLAYPORT:
5146 case INTEL_OUTPUT_HDMI:
5147 case INTEL_OUTPUT_EDP:
5148 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
d05410f9 5149 return port_to_power_domain(intel_dig_port->port);
0e32b39c
DA
5150 case INTEL_OUTPUT_DP_MST:
5151 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5152 return port_to_power_domain(intel_dig_port->port);
319be8ae
ID
5153 case INTEL_OUTPUT_ANALOG:
5154 return POWER_DOMAIN_PORT_CRT;
5155 case INTEL_OUTPUT_DSI:
5156 return POWER_DOMAIN_PORT_DSI;
5157 default:
5158 return POWER_DOMAIN_PORT_OTHER;
5159 }
5160}
5161
25f78f58
VS
5162enum intel_display_power_domain
5163intel_display_port_aux_power_domain(struct intel_encoder *intel_encoder)
5164{
5165 struct drm_device *dev = intel_encoder->base.dev;
5166 struct intel_digital_port *intel_dig_port;
5167
5168 switch (intel_encoder->type) {
5169 case INTEL_OUTPUT_UNKNOWN:
651174a4
ID
5170 case INTEL_OUTPUT_HDMI:
5171 /*
5172 * Only DDI platforms should ever use these output types.
5173 * We can get here after the HDMI detect code has already set
5174 * the type of the shared encoder. Since we can't be sure
5175 * what's the status of the given connectors, play safe and
5176 * run the DP detection too.
5177 */
25f78f58
VS
5178 WARN_ON_ONCE(!HAS_DDI(dev));
5179 case INTEL_OUTPUT_DISPLAYPORT:
5180 case INTEL_OUTPUT_EDP:
5181 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5182 return port_to_aux_power_domain(intel_dig_port->port);
5183 case INTEL_OUTPUT_DP_MST:
5184 intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5185 return port_to_aux_power_domain(intel_dig_port->port);
5186 default:
b9fec167 5187 MISSING_CASE(intel_encoder->type);
25f78f58
VS
5188 return POWER_DOMAIN_AUX_A;
5189 }
5190}
5191
74bff5f9
ML
5192static unsigned long get_crtc_power_domains(struct drm_crtc *crtc,
5193 struct intel_crtc_state *crtc_state)
77d22dca 5194{
319be8ae 5195 struct drm_device *dev = crtc->dev;
74bff5f9 5196 struct drm_encoder *encoder;
319be8ae
ID
5197 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5198 enum pipe pipe = intel_crtc->pipe;
77d22dca 5199 unsigned long mask;
74bff5f9 5200 enum transcoder transcoder = crtc_state->cpu_transcoder;
77d22dca 5201
74bff5f9 5202 if (!crtc_state->base.active)
292b990e
ML
5203 return 0;
5204
77d22dca
ID
5205 mask = BIT(POWER_DOMAIN_PIPE(pipe));
5206 mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
74bff5f9
ML
5207 if (crtc_state->pch_pfit.enabled ||
5208 crtc_state->pch_pfit.force_thru)
77d22dca
ID
5209 mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5210
74bff5f9
ML
5211 drm_for_each_encoder_mask(encoder, dev, crtc_state->base.encoder_mask) {
5212 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
5213
319be8ae 5214 mask |= BIT(intel_display_port_power_domain(intel_encoder));
74bff5f9 5215 }
319be8ae 5216
15e7ec29
ML
5217 if (crtc_state->shared_dpll)
5218 mask |= BIT(POWER_DOMAIN_PLLS);
5219
77d22dca
ID
5220 return mask;
5221}
5222
74bff5f9
ML
5223static unsigned long
5224modeset_get_crtc_power_domains(struct drm_crtc *crtc,
5225 struct intel_crtc_state *crtc_state)
77d22dca 5226{
292b990e
ML
5227 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
5228 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5229 enum intel_display_power_domain domain;
5230 unsigned long domains, new_domains, old_domains;
77d22dca 5231
292b990e 5232 old_domains = intel_crtc->enabled_power_domains;
74bff5f9
ML
5233 intel_crtc->enabled_power_domains = new_domains =
5234 get_crtc_power_domains(crtc, crtc_state);
77d22dca 5235
292b990e
ML
5236 domains = new_domains & ~old_domains;
5237
5238 for_each_power_domain(domain, domains)
5239 intel_display_power_get(dev_priv, domain);
5240
5241 return old_domains & ~new_domains;
5242}
5243
5244static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
5245 unsigned long domains)
5246{
5247 enum intel_display_power_domain domain;
5248
5249 for_each_power_domain(domain, domains)
5250 intel_display_power_put(dev_priv, domain);
5251}
77d22dca 5252
adafdc6f
MK
5253static int intel_compute_max_dotclk(struct drm_i915_private *dev_priv)
5254{
5255 int max_cdclk_freq = dev_priv->max_cdclk_freq;
5256
5257 if (INTEL_INFO(dev_priv)->gen >= 9 ||
5258 IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
5259 return max_cdclk_freq;
5260 else if (IS_CHERRYVIEW(dev_priv))
5261 return max_cdclk_freq*95/100;
5262 else if (INTEL_INFO(dev_priv)->gen < 4)
5263 return 2*max_cdclk_freq*90/100;
5264 else
5265 return max_cdclk_freq*90/100;
5266}
5267
560a7ae4
DL
5268static void intel_update_max_cdclk(struct drm_device *dev)
5269{
5270 struct drm_i915_private *dev_priv = dev->dev_private;
5271
ef11bdb3 5272 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
560a7ae4
DL
5273 u32 limit = I915_READ(SKL_DFSM) & SKL_DFSM_CDCLK_LIMIT_MASK;
5274
5275 if (limit == SKL_DFSM_CDCLK_LIMIT_675)
5276 dev_priv->max_cdclk_freq = 675000;
5277 else if (limit == SKL_DFSM_CDCLK_LIMIT_540)
5278 dev_priv->max_cdclk_freq = 540000;
5279 else if (limit == SKL_DFSM_CDCLK_LIMIT_450)
5280 dev_priv->max_cdclk_freq = 450000;
5281 else
5282 dev_priv->max_cdclk_freq = 337500;
281c114f
MR
5283 } else if (IS_BROXTON(dev)) {
5284 dev_priv->max_cdclk_freq = 624000;
560a7ae4
DL
5285 } else if (IS_BROADWELL(dev)) {
5286 /*
5287 * FIXME with extra cooling we can allow
5288 * 540 MHz for ULX and 675 Mhz for ULT.
5289 * How can we know if extra cooling is
5290 * available? PCI ID, VTB, something else?
5291 */
5292 if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
5293 dev_priv->max_cdclk_freq = 450000;
5294 else if (IS_BDW_ULX(dev))
5295 dev_priv->max_cdclk_freq = 450000;
5296 else if (IS_BDW_ULT(dev))
5297 dev_priv->max_cdclk_freq = 540000;
5298 else
5299 dev_priv->max_cdclk_freq = 675000;
0904deaf
MK
5300 } else if (IS_CHERRYVIEW(dev)) {
5301 dev_priv->max_cdclk_freq = 320000;
560a7ae4
DL
5302 } else if (IS_VALLEYVIEW(dev)) {
5303 dev_priv->max_cdclk_freq = 400000;
5304 } else {
5305 /* otherwise assume cdclk is fixed */
5306 dev_priv->max_cdclk_freq = dev_priv->cdclk_freq;
5307 }
5308
adafdc6f
MK
5309 dev_priv->max_dotclk_freq = intel_compute_max_dotclk(dev_priv);
5310
560a7ae4
DL
5311 DRM_DEBUG_DRIVER("Max CD clock rate: %d kHz\n",
5312 dev_priv->max_cdclk_freq);
adafdc6f
MK
5313
5314 DRM_DEBUG_DRIVER("Max dotclock rate: %d kHz\n",
5315 dev_priv->max_dotclk_freq);
560a7ae4
DL
5316}
5317
5318static void intel_update_cdclk(struct drm_device *dev)
5319{
5320 struct drm_i915_private *dev_priv = dev->dev_private;
5321
5322 dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5323 DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5324 dev_priv->cdclk_freq);
5325
5326 /*
b5d99ff9
VS
5327 * 9:0 CMBUS [sic] CDCLK frequency (cdfreq):
5328 * Programmng [sic] note: bit[9:2] should be programmed to the number
5329 * of cdclk that generates 4MHz reference clock freq which is used to
5330 * generate GMBus clock. This will vary with the cdclk freq.
560a7ae4 5331 */
b5d99ff9 5332 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
560a7ae4 5333 I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
560a7ae4
DL
5334
5335 if (dev_priv->max_cdclk_freq == 0)
5336 intel_update_max_cdclk(dev);
5337}
5338
92891e45
VS
5339/* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5340static int skl_cdclk_decimal(int cdclk)
5341{
5342 return DIV_ROUND_CLOSEST(cdclk - 1000, 500);
5343}
5344
c6c4696f 5345static void broxton_set_cdclk(struct drm_i915_private *dev_priv, int frequency)
f8437dd1 5346{
f8437dd1
VK
5347 uint32_t divider;
5348 uint32_t ratio;
5349 uint32_t current_freq;
5350 int ret;
5351
5352 /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5353 switch (frequency) {
5354 case 144000:
5355 divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5356 ratio = BXT_DE_PLL_RATIO(60);
5357 break;
5358 case 288000:
5359 divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5360 ratio = BXT_DE_PLL_RATIO(60);
5361 break;
5362 case 384000:
5363 divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5364 ratio = BXT_DE_PLL_RATIO(60);
5365 break;
5366 case 576000:
5367 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5368 ratio = BXT_DE_PLL_RATIO(60);
5369 break;
5370 case 624000:
5371 divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5372 ratio = BXT_DE_PLL_RATIO(65);
5373 break;
5374 case 19200:
5375 /*
5376 * Bypass frequency with DE PLL disabled. Init ratio, divider
5377 * to suppress GCC warning.
5378 */
5379 ratio = 0;
5380 divider = 0;
5381 break;
5382 default:
5383 DRM_ERROR("unsupported CDCLK freq %d", frequency);
5384
5385 return;
5386 }
5387
5388 mutex_lock(&dev_priv->rps.hw_lock);
5389 /* Inform power controller of upcoming frequency change */
5390 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5391 0x80000000);
5392 mutex_unlock(&dev_priv->rps.hw_lock);
5393
5394 if (ret) {
5395 DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5396 ret, frequency);
5397 return;
5398 }
5399
5400 current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5401 /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5402 current_freq = current_freq * 500 + 1000;
5403
5404 /*
5405 * DE PLL has to be disabled when
5406 * - setting to 19.2MHz (bypass, PLL isn't used)
5407 * - before setting to 624MHz (PLL needs toggling)
5408 * - before setting to any frequency from 624MHz (PLL needs toggling)
5409 */
5410 if (frequency == 19200 || frequency == 624000 ||
5411 current_freq == 624000) {
5412 I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5413 /* Timeout 200us */
5414 if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5415 1))
5416 DRM_ERROR("timout waiting for DE PLL unlock\n");
5417 }
5418
5419 if (frequency != 19200) {
5420 uint32_t val;
5421
5422 val = I915_READ(BXT_DE_PLL_CTL);
5423 val &= ~BXT_DE_PLL_RATIO_MASK;
5424 val |= ratio;
5425 I915_WRITE(BXT_DE_PLL_CTL, val);
5426
5427 I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5428 /* Timeout 200us */
5429 if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5430 DRM_ERROR("timeout waiting for DE PLL lock\n");
5431
5432 val = I915_READ(CDCLK_CTL);
5433 val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5434 val |= divider;
5435 /*
5436 * Disable SSA Precharge when CD clock frequency < 500 MHz,
5437 * enable otherwise.
5438 */
5439 val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5440 if (frequency >= 500000)
5441 val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5442
5443 val &= ~CDCLK_FREQ_DECIMAL_MASK;
92891e45 5444 val |= skl_cdclk_decimal(frequency);
f8437dd1
VK
5445 I915_WRITE(CDCLK_CTL, val);
5446 }
5447
5448 mutex_lock(&dev_priv->rps.hw_lock);
5449 ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5450 DIV_ROUND_UP(frequency, 25000));
5451 mutex_unlock(&dev_priv->rps.hw_lock);
5452
5453 if (ret) {
5454 DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5455 ret, frequency);
5456 return;
5457 }
5458
c6c4696f 5459 intel_update_cdclk(dev_priv->dev);
f8437dd1
VK
5460}
5461
c2e001ef
ID
5462static bool broxton_cdclk_is_enabled(struct drm_i915_private *dev_priv)
5463{
5464 if (!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE))
5465 return false;
5466
5467 /* TODO: Check for a valid CDCLK rate */
5468
5469 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_REQUEST)) {
5470 DRM_DEBUG_DRIVER("CDCLK enabled, but DBUF power not requested\n");
5471
5472 return false;
5473 }
5474
5475 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE)) {
5476 DRM_DEBUG_DRIVER("CDCLK enabled, but DBUF power hasn't settled\n");
5477
5478 return false;
5479 }
5480
5481 return true;
5482}
5483
adc7f04b
ID
5484bool broxton_cdclk_verify_state(struct drm_i915_private *dev_priv)
5485{
5486 return broxton_cdclk_is_enabled(dev_priv);
5487}
5488
c6c4696f 5489void broxton_init_cdclk(struct drm_i915_private *dev_priv)
f8437dd1 5490{
f8437dd1 5491 /* check if cd clock is enabled */
c2e001ef
ID
5492 if (broxton_cdclk_is_enabled(dev_priv)) {
5493 DRM_DEBUG_KMS("CDCLK already enabled, won't reprogram it\n");
f8437dd1
VK
5494 return;
5495 }
5496
c2e001ef
ID
5497 DRM_DEBUG_KMS("CDCLK not enabled, enabling it\n");
5498
f8437dd1
VK
5499 /*
5500 * FIXME:
5501 * - The initial CDCLK needs to be read from VBT.
5502 * Need to make this change after VBT has changes for BXT.
5503 * - check if setting the max (or any) cdclk freq is really necessary
5504 * here, it belongs to modeset time
5505 */
c6c4696f 5506 broxton_set_cdclk(dev_priv, 624000);
f8437dd1
VK
5507
5508 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
22e02c0b
VS
5509 POSTING_READ(DBUF_CTL);
5510
f8437dd1
VK
5511 udelay(10);
5512
5513 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5514 DRM_ERROR("DBuf power enable timeout!\n");
5515}
5516
c6c4696f 5517void broxton_uninit_cdclk(struct drm_i915_private *dev_priv)
f8437dd1 5518{
f8437dd1 5519 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
22e02c0b
VS
5520 POSTING_READ(DBUF_CTL);
5521
f8437dd1
VK
5522 udelay(10);
5523
5524 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5525 DRM_ERROR("DBuf power disable timeout!\n");
5526
5527 /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
c6c4696f 5528 broxton_set_cdclk(dev_priv, 19200);
f8437dd1
VK
5529}
5530
5d96d8af
DL
5531static const struct skl_cdclk_entry {
5532 unsigned int freq;
5533 unsigned int vco;
5534} skl_cdclk_frequencies[] = {
5535 { .freq = 308570, .vco = 8640 },
5536 { .freq = 337500, .vco = 8100 },
5537 { .freq = 432000, .vco = 8640 },
5538 { .freq = 450000, .vco = 8100 },
5539 { .freq = 540000, .vco = 8100 },
5540 { .freq = 617140, .vco = 8640 },
5541 { .freq = 675000, .vco = 8100 },
5542};
5543
5d96d8af
DL
5544static unsigned int skl_cdclk_get_vco(unsigned int freq)
5545{
5546 unsigned int i;
5547
5548 for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
5549 const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
5550
5551 if (e->freq == freq)
5552 return e->vco;
5553 }
5554
5555 return 8100;
5556}
5557
5558static void
5559skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
5560{
5561 unsigned int min_freq;
5562 u32 val;
5563
5564 /* select the minimum CDCLK before enabling DPLL 0 */
5565 val = I915_READ(CDCLK_CTL);
5566 val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
5567 val |= CDCLK_FREQ_337_308;
5568
5569 if (required_vco == 8640)
5570 min_freq = 308570;
5571 else
5572 min_freq = 337500;
5573
5574 val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
5575
5576 I915_WRITE(CDCLK_CTL, val);
5577 POSTING_READ(CDCLK_CTL);
5578
5579 /*
5580 * We always enable DPLL0 with the lowest link rate possible, but still
5581 * taking into account the VCO required to operate the eDP panel at the
5582 * desired frequency. The usual DP link rates operate with a VCO of
5583 * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5584 * The modeset code is responsible for the selection of the exact link
5585 * rate later on, with the constraint of choosing a frequency that
5586 * works with required_vco.
5587 */
5588 val = I915_READ(DPLL_CTRL1);
5589
5590 val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5591 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5592 val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5593 if (required_vco == 8640)
5594 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5595 SKL_DPLL0);
5596 else
5597 val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5598 SKL_DPLL0);
5599
5600 I915_WRITE(DPLL_CTRL1, val);
5601 POSTING_READ(DPLL_CTRL1);
5602
5603 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5604
5605 if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5606 DRM_ERROR("DPLL0 not locked\n");
5607}
5608
5609static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5610{
5611 int ret;
5612 u32 val;
5613
5614 /* inform PCU we want to change CDCLK */
5615 val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5616 mutex_lock(&dev_priv->rps.hw_lock);
5617 ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5618 mutex_unlock(&dev_priv->rps.hw_lock);
5619
5620 return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5621}
5622
5623static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5624{
5625 unsigned int i;
5626
5627 for (i = 0; i < 15; i++) {
5628 if (skl_cdclk_pcu_ready(dev_priv))
5629 return true;
5630 udelay(10);
5631 }
5632
5633 return false;
5634}
5635
5636static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
5637{
560a7ae4 5638 struct drm_device *dev = dev_priv->dev;
5d96d8af
DL
5639 u32 freq_select, pcu_ack;
5640
5641 DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
5642
5643 if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5644 DRM_ERROR("failed to inform PCU about cdclk change\n");
5645 return;
5646 }
5647
5648 /* set CDCLK_CTL */
5649 switch(freq) {
5650 case 450000:
5651 case 432000:
5652 freq_select = CDCLK_FREQ_450_432;
5653 pcu_ack = 1;
5654 break;
5655 case 540000:
5656 freq_select = CDCLK_FREQ_540;
5657 pcu_ack = 2;
5658 break;
5659 case 308570:
5660 case 337500:
5661 default:
5662 freq_select = CDCLK_FREQ_337_308;
5663 pcu_ack = 0;
5664 break;
5665 case 617140:
5666 case 675000:
5667 freq_select = CDCLK_FREQ_675_617;
5668 pcu_ack = 3;
5669 break;
5670 }
5671
5672 I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
5673 POSTING_READ(CDCLK_CTL);
5674
5675 /* inform PCU of the change */
5676 mutex_lock(&dev_priv->rps.hw_lock);
5677 sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5678 mutex_unlock(&dev_priv->rps.hw_lock);
560a7ae4
DL
5679
5680 intel_update_cdclk(dev);
5d96d8af
DL
5681}
5682
5683void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5684{
5685 /* disable DBUF power */
5686 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5687 POSTING_READ(DBUF_CTL);
5688
5689 udelay(10);
5690
5691 if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5692 DRM_ERROR("DBuf power disable timeout\n");
5693
ab96c1ee
ID
5694 /* disable DPLL0 */
5695 I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
5696 if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5697 DRM_ERROR("Couldn't disable DPLL0\n");
5d96d8af
DL
5698}
5699
5700void skl_init_cdclk(struct drm_i915_private *dev_priv)
5701{
5d96d8af
DL
5702 unsigned int required_vco;
5703
39d9b85a
GW
5704 /* DPLL0 not enabled (happens on early BIOS versions) */
5705 if (!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE)) {
5706 /* enable DPLL0 */
5707 required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
5708 skl_dpll0_enable(dev_priv, required_vco);
5d96d8af
DL
5709 }
5710
5d96d8af
DL
5711 /* set CDCLK to the frequency the BIOS chose */
5712 skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
5713
5714 /* enable DBUF power */
5715 I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5716 POSTING_READ(DBUF_CTL);
5717
5718 udelay(10);
5719
5720 if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5721 DRM_ERROR("DBuf power enable timeout\n");
5722}
5723
c73666f3
SK
5724int skl_sanitize_cdclk(struct drm_i915_private *dev_priv)
5725{
5726 uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
5727 uint32_t cdctl = I915_READ(CDCLK_CTL);
5728 int freq = dev_priv->skl_boot_cdclk;
5729
f1b391a5
SK
5730 /*
5731 * check if the pre-os intialized the display
5732 * There is SWF18 scratchpad register defined which is set by the
5733 * pre-os which can be used by the OS drivers to check the status
5734 */
5735 if ((I915_READ(SWF_ILK(0x18)) & 0x00FFFFFF) == 0)
5736 goto sanitize;
5737
c73666f3
SK
5738 /* Is PLL enabled and locked ? */
5739 if (!((lcpll1 & LCPLL_PLL_ENABLE) && (lcpll1 & LCPLL_PLL_LOCK)))
5740 goto sanitize;
5741
5742 /* DPLL okay; verify the cdclock
5743 *
5744 * Noticed in some instances that the freq selection is correct but
5745 * decimal part is programmed wrong from BIOS where pre-os does not
5746 * enable display. Verify the same as well.
5747 */
5748 if (cdctl == ((cdctl & CDCLK_FREQ_SEL_MASK) | skl_cdclk_decimal(freq)))
5749 /* All well; nothing to sanitize */
5750 return false;
5751sanitize:
5752 /*
5753 * As of now initialize with max cdclk till
5754 * we get dynamic cdclk support
5755 * */
5756 dev_priv->skl_boot_cdclk = dev_priv->max_cdclk_freq;
5757 skl_init_cdclk(dev_priv);
5758
5759 /* we did have to sanitize */
5760 return true;
5761}
5762
30a970c6
JB
5763/* Adjust CDclk dividers to allow high res or save power if possible */
5764static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5765{
5766 struct drm_i915_private *dev_priv = dev->dev_private;
5767 u32 val, cmd;
5768
164dfd28
VK
5769 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5770 != dev_priv->cdclk_freq);
d60c4473 5771
dfcab17e 5772 if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
30a970c6 5773 cmd = 2;
dfcab17e 5774 else if (cdclk == 266667)
30a970c6
JB
5775 cmd = 1;
5776 else
5777 cmd = 0;
5778
5779 mutex_lock(&dev_priv->rps.hw_lock);
5780 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5781 val &= ~DSPFREQGUAR_MASK;
5782 val |= (cmd << DSPFREQGUAR_SHIFT);
5783 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5784 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5785 DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5786 50)) {
5787 DRM_ERROR("timed out waiting for CDclk change\n");
5788 }
5789 mutex_unlock(&dev_priv->rps.hw_lock);
5790
54433e91
VS
5791 mutex_lock(&dev_priv->sb_lock);
5792
dfcab17e 5793 if (cdclk == 400000) {
6bcda4f0 5794 u32 divider;
30a970c6 5795
6bcda4f0 5796 divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
30a970c6 5797
30a970c6
JB
5798 /* adjust cdclk divider */
5799 val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
87d5d259 5800 val &= ~CCK_FREQUENCY_VALUES;
30a970c6
JB
5801 val |= divider;
5802 vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
a877e801
VS
5803
5804 if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
87d5d259 5805 CCK_FREQUENCY_STATUS) == (divider << CCK_FREQUENCY_STATUS_SHIFT),
a877e801
VS
5806 50))
5807 DRM_ERROR("timed out waiting for CDclk change\n");
30a970c6
JB
5808 }
5809
30a970c6
JB
5810 /* adjust self-refresh exit latency value */
5811 val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5812 val &= ~0x7f;
5813
5814 /*
5815 * For high bandwidth configs, we set a higher latency in the bunit
5816 * so that the core display fetch happens in time to avoid underruns.
5817 */
dfcab17e 5818 if (cdclk == 400000)
30a970c6
JB
5819 val |= 4500 / 250; /* 4.5 usec */
5820 else
5821 val |= 3000 / 250; /* 3.0 usec */
5822 vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
54433e91 5823
a580516d 5824 mutex_unlock(&dev_priv->sb_lock);
30a970c6 5825
b6283055 5826 intel_update_cdclk(dev);
30a970c6
JB
5827}
5828
383c5a6a
VS
5829static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5830{
5831 struct drm_i915_private *dev_priv = dev->dev_private;
5832 u32 val, cmd;
5833
164dfd28
VK
5834 WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5835 != dev_priv->cdclk_freq);
383c5a6a
VS
5836
5837 switch (cdclk) {
383c5a6a
VS
5838 case 333333:
5839 case 320000:
383c5a6a 5840 case 266667:
383c5a6a 5841 case 200000:
383c5a6a
VS
5842 break;
5843 default:
5f77eeb0 5844 MISSING_CASE(cdclk);
383c5a6a
VS
5845 return;
5846 }
5847
9d0d3fda
VS
5848 /*
5849 * Specs are full of misinformation, but testing on actual
5850 * hardware has shown that we just need to write the desired
5851 * CCK divider into the Punit register.
5852 */
5853 cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5854
383c5a6a
VS
5855 mutex_lock(&dev_priv->rps.hw_lock);
5856 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5857 val &= ~DSPFREQGUAR_MASK_CHV;
5858 val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5859 vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5860 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5861 DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5862 50)) {
5863 DRM_ERROR("timed out waiting for CDclk change\n");
5864 }
5865 mutex_unlock(&dev_priv->rps.hw_lock);
5866
b6283055 5867 intel_update_cdclk(dev);
383c5a6a
VS
5868}
5869
30a970c6
JB
5870static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5871 int max_pixclk)
5872{
6bcda4f0 5873 int freq_320 = (dev_priv->hpll_freq << 1) % 320000 != 0 ? 333333 : 320000;
6cca3195 5874 int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
29dc7ef3 5875
30a970c6
JB
5876 /*
5877 * Really only a few cases to deal with, as only 4 CDclks are supported:
5878 * 200MHz
5879 * 267MHz
29dc7ef3 5880 * 320/333MHz (depends on HPLL freq)
6cca3195
VS
5881 * 400MHz (VLV only)
5882 * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5883 * of the lower bin and adjust if needed.
e37c67a1
VS
5884 *
5885 * We seem to get an unstable or solid color picture at 200MHz.
5886 * Not sure what's wrong. For now use 200MHz only when all pipes
5887 * are off.
30a970c6 5888 */
6cca3195
VS
5889 if (!IS_CHERRYVIEW(dev_priv) &&
5890 max_pixclk > freq_320*limit/100)
dfcab17e 5891 return 400000;
6cca3195 5892 else if (max_pixclk > 266667*limit/100)
29dc7ef3 5893 return freq_320;
e37c67a1 5894 else if (max_pixclk > 0)
dfcab17e 5895 return 266667;
e37c67a1
VS
5896 else
5897 return 200000;
30a970c6
JB
5898}
5899
c44deb6c 5900static int broxton_calc_cdclk(int max_pixclk)
f8437dd1
VK
5901{
5902 /*
5903 * FIXME:
f8437dd1
VK
5904 * - set 19.2MHz bypass frequency if there are no active pipes
5905 */
760e1477 5906 if (max_pixclk > 576000)
f8437dd1 5907 return 624000;
760e1477 5908 else if (max_pixclk > 384000)
f8437dd1 5909 return 576000;
760e1477 5910 else if (max_pixclk > 288000)
f8437dd1 5911 return 384000;
760e1477 5912 else if (max_pixclk > 144000)
f8437dd1
VK
5913 return 288000;
5914 else
5915 return 144000;
5916}
5917
e8788cbc 5918/* Compute the max pixel clock for new configuration. */
a821fc46
ACO
5919static int intel_mode_max_pixclk(struct drm_device *dev,
5920 struct drm_atomic_state *state)
30a970c6 5921{
565602d7
ML
5922 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
5923 struct drm_i915_private *dev_priv = dev->dev_private;
5924 struct drm_crtc *crtc;
5925 struct drm_crtc_state *crtc_state;
5926 unsigned max_pixclk = 0, i;
5927 enum pipe pipe;
30a970c6 5928
565602d7
ML
5929 memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
5930 sizeof(intel_state->min_pixclk));
304603f4 5931
565602d7
ML
5932 for_each_crtc_in_state(state, crtc, crtc_state, i) {
5933 int pixclk = 0;
5934
5935 if (crtc_state->enable)
5936 pixclk = crtc_state->adjusted_mode.crtc_clock;
304603f4 5937
565602d7 5938 intel_state->min_pixclk[i] = pixclk;
30a970c6
JB
5939 }
5940
565602d7
ML
5941 for_each_pipe(dev_priv, pipe)
5942 max_pixclk = max(intel_state->min_pixclk[pipe], max_pixclk);
5943
30a970c6
JB
5944 return max_pixclk;
5945}
5946
27c329ed 5947static int valleyview_modeset_calc_cdclk(struct drm_atomic_state *state)
30a970c6 5948{
27c329ed
ML
5949 struct drm_device *dev = state->dev;
5950 struct drm_i915_private *dev_priv = dev->dev_private;
5951 int max_pixclk = intel_mode_max_pixclk(dev, state);
1a617b77
ML
5952 struct intel_atomic_state *intel_state =
5953 to_intel_atomic_state(state);
30a970c6 5954
1a617b77 5955 intel_state->cdclk = intel_state->dev_cdclk =
27c329ed 5956 valleyview_calc_cdclk(dev_priv, max_pixclk);
0a9ab303 5957
1a617b77
ML
5958 if (!intel_state->active_crtcs)
5959 intel_state->dev_cdclk = valleyview_calc_cdclk(dev_priv, 0);
5960
27c329ed
ML
5961 return 0;
5962}
304603f4 5963
27c329ed
ML
5964static int broxton_modeset_calc_cdclk(struct drm_atomic_state *state)
5965{
4e5ca60f 5966 int max_pixclk = ilk_max_pixel_rate(state);
1a617b77
ML
5967 struct intel_atomic_state *intel_state =
5968 to_intel_atomic_state(state);
85a96e7a 5969
1a617b77 5970 intel_state->cdclk = intel_state->dev_cdclk =
c44deb6c 5971 broxton_calc_cdclk(max_pixclk);
85a96e7a 5972
1a617b77 5973 if (!intel_state->active_crtcs)
c44deb6c 5974 intel_state->dev_cdclk = broxton_calc_cdclk(0);
1a617b77 5975
27c329ed 5976 return 0;
30a970c6
JB
5977}
5978
1e69cd74
VS
5979static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
5980{
5981 unsigned int credits, default_credits;
5982
5983 if (IS_CHERRYVIEW(dev_priv))
5984 default_credits = PFI_CREDIT(12);
5985 else
5986 default_credits = PFI_CREDIT(8);
5987
bfa7df01 5988 if (dev_priv->cdclk_freq >= dev_priv->czclk_freq) {
1e69cd74
VS
5989 /* CHV suggested value is 31 or 63 */
5990 if (IS_CHERRYVIEW(dev_priv))
fcc0008f 5991 credits = PFI_CREDIT_63;
1e69cd74
VS
5992 else
5993 credits = PFI_CREDIT(15);
5994 } else {
5995 credits = default_credits;
5996 }
5997
5998 /*
5999 * WA - write default credits before re-programming
6000 * FIXME: should we also set the resend bit here?
6001 */
6002 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6003 default_credits);
6004
6005 I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6006 credits | PFI_CREDIT_RESEND);
6007
6008 /*
6009 * FIXME is this guaranteed to clear
6010 * immediately or should we poll for it?
6011 */
6012 WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6013}
6014
27c329ed 6015static void valleyview_modeset_commit_cdclk(struct drm_atomic_state *old_state)
30a970c6 6016{
a821fc46 6017 struct drm_device *dev = old_state->dev;
30a970c6 6018 struct drm_i915_private *dev_priv = dev->dev_private;
1a617b77
ML
6019 struct intel_atomic_state *old_intel_state =
6020 to_intel_atomic_state(old_state);
6021 unsigned req_cdclk = old_intel_state->dev_cdclk;
30a970c6 6022
27c329ed
ML
6023 /*
6024 * FIXME: We can end up here with all power domains off, yet
6025 * with a CDCLK frequency other than the minimum. To account
6026 * for this take the PIPE-A power domain, which covers the HW
6027 * blocks needed for the following programming. This can be
6028 * removed once it's guaranteed that we get here either with
6029 * the minimum CDCLK set, or the required power domains
6030 * enabled.
6031 */
6032 intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
738c05c0 6033
27c329ed
ML
6034 if (IS_CHERRYVIEW(dev))
6035 cherryview_set_cdclk(dev, req_cdclk);
6036 else
6037 valleyview_set_cdclk(dev, req_cdclk);
738c05c0 6038
27c329ed 6039 vlv_program_pfi_credits(dev_priv);
1e69cd74 6040
27c329ed 6041 intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
30a970c6
JB
6042}
6043
89b667f8
JB
6044static void valleyview_crtc_enable(struct drm_crtc *crtc)
6045{
6046 struct drm_device *dev = crtc->dev;
a72e4c9f 6047 struct drm_i915_private *dev_priv = to_i915(dev);
89b667f8
JB
6048 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6049 struct intel_encoder *encoder;
b95c5321
ML
6050 struct intel_crtc_state *pipe_config =
6051 to_intel_crtc_state(crtc->state);
89b667f8 6052 int pipe = intel_crtc->pipe;
89b667f8 6053
53d9f4e9 6054 if (WARN_ON(intel_crtc->active))
89b667f8
JB
6055 return;
6056
6e3c9717 6057 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 6058 intel_dp_set_m_n(intel_crtc, M1_N1);
5b18e57c
DV
6059
6060 intel_set_pipe_timings(intel_crtc);
bc58be60 6061 intel_set_pipe_src_size(intel_crtc);
5b18e57c 6062
c14b0485
VS
6063 if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6064 struct drm_i915_private *dev_priv = dev->dev_private;
6065
6066 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6067 I915_WRITE(CHV_CANVAS(pipe), 0);
6068 }
6069
5b18e57c
DV
6070 i9xx_set_pipeconf(intel_crtc);
6071
89b667f8 6072 intel_crtc->active = true;
89b667f8 6073
a72e4c9f 6074 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 6075
89b667f8
JB
6076 for_each_encoder_on_crtc(dev, crtc, encoder)
6077 if (encoder->pre_pll_enable)
6078 encoder->pre_pll_enable(encoder);
6079
cd2d34d9
VS
6080 if (IS_CHERRYVIEW(dev)) {
6081 chv_prepare_pll(intel_crtc, intel_crtc->config);
6082 chv_enable_pll(intel_crtc, intel_crtc->config);
6083 } else {
6084 vlv_prepare_pll(intel_crtc, intel_crtc->config);
6085 vlv_enable_pll(intel_crtc, intel_crtc->config);
9d556c99 6086 }
89b667f8
JB
6087
6088 for_each_encoder_on_crtc(dev, crtc, encoder)
6089 if (encoder->pre_enable)
6090 encoder->pre_enable(encoder);
6091
2dd24552
JB
6092 i9xx_pfit_enable(intel_crtc);
6093
b95c5321 6094 intel_color_load_luts(&pipe_config->base);
63cbb074 6095
caed361d 6096 intel_update_watermarks(crtc);
e1fdc473 6097 intel_enable_pipe(intel_crtc);
be6a6f8e 6098
4b3a9526
VS
6099 assert_vblank_disabled(crtc);
6100 drm_crtc_vblank_on(crtc);
6101
f9b61ff6
DV
6102 for_each_encoder_on_crtc(dev, crtc, encoder)
6103 encoder->enable(encoder);
89b667f8
JB
6104}
6105
f13c2ef3
DV
6106static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6107{
6108 struct drm_device *dev = crtc->base.dev;
6109 struct drm_i915_private *dev_priv = dev->dev_private;
6110
6e3c9717
ACO
6111 I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6112 I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
f13c2ef3
DV
6113}
6114
0b8765c6 6115static void i9xx_crtc_enable(struct drm_crtc *crtc)
79e53945
JB
6116{
6117 struct drm_device *dev = crtc->dev;
a72e4c9f 6118 struct drm_i915_private *dev_priv = to_i915(dev);
79e53945 6119 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 6120 struct intel_encoder *encoder;
b95c5321
ML
6121 struct intel_crtc_state *pipe_config =
6122 to_intel_crtc_state(crtc->state);
cd2d34d9 6123 enum pipe pipe = intel_crtc->pipe;
79e53945 6124
53d9f4e9 6125 if (WARN_ON(intel_crtc->active))
f7abfe8b
CW
6126 return;
6127
f13c2ef3
DV
6128 i9xx_set_pll_dividers(intel_crtc);
6129
6e3c9717 6130 if (intel_crtc->config->has_dp_encoder)
fe3cd48d 6131 intel_dp_set_m_n(intel_crtc, M1_N1);
5b18e57c
DV
6132
6133 intel_set_pipe_timings(intel_crtc);
bc58be60 6134 intel_set_pipe_src_size(intel_crtc);
5b18e57c 6135
5b18e57c
DV
6136 i9xx_set_pipeconf(intel_crtc);
6137
f7abfe8b 6138 intel_crtc->active = true;
6b383a7f 6139
4a3436e8 6140 if (!IS_GEN2(dev))
a72e4c9f 6141 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4a3436e8 6142
9d6d9f19
MK
6143 for_each_encoder_on_crtc(dev, crtc, encoder)
6144 if (encoder->pre_enable)
6145 encoder->pre_enable(encoder);
6146
f6736a1a
DV
6147 i9xx_enable_pll(intel_crtc);
6148
2dd24552
JB
6149 i9xx_pfit_enable(intel_crtc);
6150
b95c5321 6151 intel_color_load_luts(&pipe_config->base);
63cbb074 6152
f37fcc2a 6153 intel_update_watermarks(crtc);
e1fdc473 6154 intel_enable_pipe(intel_crtc);
be6a6f8e 6155
4b3a9526
VS
6156 assert_vblank_disabled(crtc);
6157 drm_crtc_vblank_on(crtc);
6158
f9b61ff6
DV
6159 for_each_encoder_on_crtc(dev, crtc, encoder)
6160 encoder->enable(encoder);
0b8765c6 6161}
79e53945 6162
87476d63
DV
6163static void i9xx_pfit_disable(struct intel_crtc *crtc)
6164{
6165 struct drm_device *dev = crtc->base.dev;
6166 struct drm_i915_private *dev_priv = dev->dev_private;
87476d63 6167
6e3c9717 6168 if (!crtc->config->gmch_pfit.control)
328d8e82 6169 return;
87476d63 6170
328d8e82 6171 assert_pipe_disabled(dev_priv, crtc->pipe);
87476d63 6172
328d8e82
DV
6173 DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6174 I915_READ(PFIT_CONTROL));
6175 I915_WRITE(PFIT_CONTROL, 0);
87476d63
DV
6176}
6177
0b8765c6
JB
6178static void i9xx_crtc_disable(struct drm_crtc *crtc)
6179{
6180 struct drm_device *dev = crtc->dev;
6181 struct drm_i915_private *dev_priv = dev->dev_private;
6182 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ef9c3aee 6183 struct intel_encoder *encoder;
0b8765c6 6184 int pipe = intel_crtc->pipe;
ef9c3aee 6185
6304cd91
VS
6186 /*
6187 * On gen2 planes are double buffered but the pipe isn't, so we must
6188 * wait for planes to fully turn off before disabling the pipe.
6189 */
90e83e53
ACO
6190 if (IS_GEN2(dev))
6191 intel_wait_for_vblank(dev, pipe);
6304cd91 6192
4b3a9526
VS
6193 for_each_encoder_on_crtc(dev, crtc, encoder)
6194 encoder->disable(encoder);
6195
f9b61ff6
DV
6196 drm_crtc_vblank_off(crtc);
6197 assert_vblank_disabled(crtc);
6198
575f7ab7 6199 intel_disable_pipe(intel_crtc);
24a1f16d 6200
87476d63 6201 i9xx_pfit_disable(intel_crtc);
24a1f16d 6202
89b667f8
JB
6203 for_each_encoder_on_crtc(dev, crtc, encoder)
6204 if (encoder->post_disable)
6205 encoder->post_disable(encoder);
6206
a65347ba 6207 if (!intel_crtc->config->has_dsi_encoder) {
076ed3b2
CML
6208 if (IS_CHERRYVIEW(dev))
6209 chv_disable_pll(dev_priv, pipe);
6210 else if (IS_VALLEYVIEW(dev))
6211 vlv_disable_pll(dev_priv, pipe);
6212 else
1c4e0274 6213 i9xx_disable_pll(intel_crtc);
076ed3b2 6214 }
0b8765c6 6215
d6db995f
VS
6216 for_each_encoder_on_crtc(dev, crtc, encoder)
6217 if (encoder->post_pll_disable)
6218 encoder->post_pll_disable(encoder);
6219
4a3436e8 6220 if (!IS_GEN2(dev))
a72e4c9f 6221 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
0b8765c6
JB
6222}
6223
b17d48e2
ML
6224static void intel_crtc_disable_noatomic(struct drm_crtc *crtc)
6225{
842e0307 6226 struct intel_encoder *encoder;
b17d48e2
ML
6227 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6228 struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6229 enum intel_display_power_domain domain;
6230 unsigned long domains;
6231
6232 if (!intel_crtc->active)
6233 return;
6234
a539205a 6235 if (to_intel_plane_state(crtc->primary->state)->visible) {
fc32b1fd
ML
6236 WARN_ON(intel_crtc->unpin_work);
6237
2622a081 6238 intel_pre_disable_primary_noatomic(crtc);
54a41961
ML
6239
6240 intel_crtc_disable_planes(crtc, 1 << drm_plane_index(crtc->primary));
6241 to_intel_plane_state(crtc->primary->state)->visible = false;
a539205a
ML
6242 }
6243
b17d48e2 6244 dev_priv->display.crtc_disable(crtc);
842e0307
ML
6245
6246 DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was enabled, now disabled\n",
6247 crtc->base.id);
6248
6249 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0);
6250 crtc->state->active = false;
37d9078b 6251 intel_crtc->active = false;
842e0307
ML
6252 crtc->enabled = false;
6253 crtc->state->connector_mask = 0;
6254 crtc->state->encoder_mask = 0;
6255
6256 for_each_encoder_on_crtc(crtc->dev, crtc, encoder)
6257 encoder->base.crtc = NULL;
6258
58f9c0bc 6259 intel_fbc_disable(intel_crtc);
37d9078b 6260 intel_update_watermarks(crtc);
1f7457b1 6261 intel_disable_shared_dpll(intel_crtc);
b17d48e2
ML
6262
6263 domains = intel_crtc->enabled_power_domains;
6264 for_each_power_domain(domain, domains)
6265 intel_display_power_put(dev_priv, domain);
6266 intel_crtc->enabled_power_domains = 0;
565602d7
ML
6267
6268 dev_priv->active_crtcs &= ~(1 << intel_crtc->pipe);
6269 dev_priv->min_pixclk[intel_crtc->pipe] = 0;
b17d48e2
ML
6270}
6271
6b72d486
ML
6272/*
6273 * turn all crtc's off, but do not adjust state
6274 * This has to be paired with a call to intel_modeset_setup_hw_state.
6275 */
70e0bd74 6276int intel_display_suspend(struct drm_device *dev)
ee7b9f93 6277{
e2c8b870 6278 struct drm_i915_private *dev_priv = to_i915(dev);
70e0bd74 6279 struct drm_atomic_state *state;
e2c8b870 6280 int ret;
70e0bd74 6281
e2c8b870
ML
6282 state = drm_atomic_helper_suspend(dev);
6283 ret = PTR_ERR_OR_ZERO(state);
70e0bd74
ML
6284 if (ret)
6285 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
e2c8b870
ML
6286 else
6287 dev_priv->modeset_restore_state = state;
70e0bd74 6288 return ret;
ee7b9f93
JB
6289}
6290
ea5b213a 6291void intel_encoder_destroy(struct drm_encoder *encoder)
7e7d76c3 6292{
4ef69c7a 6293 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
ea5b213a 6294
ea5b213a
CW
6295 drm_encoder_cleanup(encoder);
6296 kfree(intel_encoder);
7e7d76c3
JB
6297}
6298
0a91ca29
DV
6299/* Cross check the actual hw state with our own modeset state tracking (and it's
6300 * internal consistency). */
c0ead703 6301static void intel_connector_verify_state(struct intel_connector *connector)
79e53945 6302{
35dd3c64
ML
6303 struct drm_crtc *crtc = connector->base.state->crtc;
6304
6305 DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6306 connector->base.base.id,
6307 connector->base.name);
6308
0a91ca29 6309 if (connector->get_hw_state(connector)) {
e85376cb 6310 struct intel_encoder *encoder = connector->encoder;
35dd3c64 6311 struct drm_connector_state *conn_state = connector->base.state;
0a91ca29 6312
35dd3c64
ML
6313 I915_STATE_WARN(!crtc,
6314 "connector enabled without attached crtc\n");
0a91ca29 6315
35dd3c64
ML
6316 if (!crtc)
6317 return;
6318
6319 I915_STATE_WARN(!crtc->state->active,
6320 "connector is active, but attached crtc isn't\n");
6321
e85376cb 6322 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
35dd3c64
ML
6323 return;
6324
e85376cb 6325 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
35dd3c64
ML
6326 "atomic encoder doesn't match attached encoder\n");
6327
e85376cb 6328 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
35dd3c64
ML
6329 "attached encoder crtc differs from connector crtc\n");
6330 } else {
4d688a2a
ML
6331 I915_STATE_WARN(crtc && crtc->state->active,
6332 "attached crtc is active, but connector isn't\n");
35dd3c64
ML
6333 I915_STATE_WARN(!crtc && connector->base.state->best_encoder,
6334 "best encoder set without crtc!\n");
0a91ca29 6335 }
79e53945
JB
6336}
6337
08d9bc92
ACO
6338int intel_connector_init(struct intel_connector *connector)
6339{
5350a031 6340 drm_atomic_helper_connector_reset(&connector->base);
08d9bc92 6341
5350a031 6342 if (!connector->base.state)
08d9bc92
ACO
6343 return -ENOMEM;
6344
08d9bc92
ACO
6345 return 0;
6346}
6347
6348struct intel_connector *intel_connector_alloc(void)
6349{
6350 struct intel_connector *connector;
6351
6352 connector = kzalloc(sizeof *connector, GFP_KERNEL);
6353 if (!connector)
6354 return NULL;
6355
6356 if (intel_connector_init(connector) < 0) {
6357 kfree(connector);
6358 return NULL;
6359 }
6360
6361 return connector;
6362}
6363
f0947c37
DV
6364/* Simple connector->get_hw_state implementation for encoders that support only
6365 * one connector and no cloning and hence the encoder state determines the state
6366 * of the connector. */
6367bool intel_connector_get_hw_state(struct intel_connector *connector)
ea5b213a 6368{
24929352 6369 enum pipe pipe = 0;
f0947c37 6370 struct intel_encoder *encoder = connector->encoder;
ea5b213a 6371
f0947c37 6372 return encoder->get_hw_state(encoder, &pipe);
ea5b213a
CW
6373}
6374
6d293983 6375static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
d272ddfa 6376{
6d293983
ACO
6377 if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6378 return crtc_state->fdi_lanes;
d272ddfa
VS
6379
6380 return 0;
6381}
6382
6d293983 6383static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
5cec258b 6384 struct intel_crtc_state *pipe_config)
1857e1da 6385{
6d293983
ACO
6386 struct drm_atomic_state *state = pipe_config->base.state;
6387 struct intel_crtc *other_crtc;
6388 struct intel_crtc_state *other_crtc_state;
6389
1857e1da
DV
6390 DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6391 pipe_name(pipe), pipe_config->fdi_lanes);
6392 if (pipe_config->fdi_lanes > 4) {
6393 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6394 pipe_name(pipe), pipe_config->fdi_lanes);
6d293983 6395 return -EINVAL;
1857e1da
DV
6396 }
6397
bafb6553 6398 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
1857e1da
DV
6399 if (pipe_config->fdi_lanes > 2) {
6400 DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6401 pipe_config->fdi_lanes);
6d293983 6402 return -EINVAL;
1857e1da 6403 } else {
6d293983 6404 return 0;
1857e1da
DV
6405 }
6406 }
6407
6408 if (INTEL_INFO(dev)->num_pipes == 2)
6d293983 6409 return 0;
1857e1da
DV
6410
6411 /* Ivybridge 3 pipe is really complicated */
6412 switch (pipe) {
6413 case PIPE_A:
6d293983 6414 return 0;
1857e1da 6415 case PIPE_B:
6d293983
ACO
6416 if (pipe_config->fdi_lanes <= 2)
6417 return 0;
6418
6419 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6420 other_crtc_state =
6421 intel_atomic_get_crtc_state(state, other_crtc);
6422 if (IS_ERR(other_crtc_state))
6423 return PTR_ERR(other_crtc_state);
6424
6425 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
1857e1da
DV
6426 DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6427 pipe_name(pipe), pipe_config->fdi_lanes);
6d293983 6428 return -EINVAL;
1857e1da 6429 }
6d293983 6430 return 0;
1857e1da 6431 case PIPE_C:
251cc67c
VS
6432 if (pipe_config->fdi_lanes > 2) {
6433 DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6434 pipe_name(pipe), pipe_config->fdi_lanes);
6d293983 6435 return -EINVAL;
251cc67c 6436 }
6d293983
ACO
6437
6438 other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6439 other_crtc_state =
6440 intel_atomic_get_crtc_state(state, other_crtc);
6441 if (IS_ERR(other_crtc_state))
6442 return PTR_ERR(other_crtc_state);
6443
6444 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
1857e1da 6445 DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6d293983 6446 return -EINVAL;
1857e1da 6447 }
6d293983 6448 return 0;
1857e1da
DV
6449 default:
6450 BUG();
6451 }
6452}
6453
e29c22c0
DV
6454#define RETRY 1
6455static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
5cec258b 6456 struct intel_crtc_state *pipe_config)
877d48d5 6457{
1857e1da 6458 struct drm_device *dev = intel_crtc->base.dev;
7c5f93b0 6459 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6d293983
ACO
6460 int lane, link_bw, fdi_dotclock, ret;
6461 bool needs_recompute = false;
877d48d5 6462
e29c22c0 6463retry:
877d48d5
DV
6464 /* FDI is a binary signal running at ~2.7GHz, encoding
6465 * each output octet as 10 bits. The actual frequency
6466 * is stored as a divider into a 100MHz clock, and the
6467 * mode pixel clock is stored in units of 1KHz.
6468 * Hence the bw of each lane in terms of the mode signal
6469 * is:
6470 */
21a727b3 6471 link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
877d48d5 6472
241bfc38 6473 fdi_dotclock = adjusted_mode->crtc_clock;
877d48d5 6474
2bd89a07 6475 lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
877d48d5
DV
6476 pipe_config->pipe_bpp);
6477
6478 pipe_config->fdi_lanes = lane;
6479
2bd89a07 6480 intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
877d48d5 6481 link_bw, &pipe_config->fdi_m_n);
1857e1da 6482
e3b247da 6483 ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
6d293983 6484 if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
e29c22c0
DV
6485 pipe_config->pipe_bpp -= 2*3;
6486 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6487 pipe_config->pipe_bpp);
6488 needs_recompute = true;
6489 pipe_config->bw_constrained = true;
6490
6491 goto retry;
6492 }
6493
6494 if (needs_recompute)
6495 return RETRY;
6496
6d293983 6497 return ret;
877d48d5
DV
6498}
6499
8cfb3407
VS
6500static bool pipe_config_supports_ips(struct drm_i915_private *dev_priv,
6501 struct intel_crtc_state *pipe_config)
6502{
6503 if (pipe_config->pipe_bpp > 24)
6504 return false;
6505
6506 /* HSW can handle pixel rate up to cdclk? */
2d1fe073 6507 if (IS_HASWELL(dev_priv))
8cfb3407
VS
6508 return true;
6509
6510 /*
b432e5cf
VS
6511 * We compare against max which means we must take
6512 * the increased cdclk requirement into account when
6513 * calculating the new cdclk.
6514 *
6515 * Should measure whether using a lower cdclk w/o IPS
8cfb3407
VS
6516 */
6517 return ilk_pipe_pixel_rate(pipe_config) <=
6518 dev_priv->max_cdclk_freq * 95 / 100;
6519}
6520
42db64ef 6521static void hsw_compute_ips_config(struct intel_crtc *crtc,
5cec258b 6522 struct intel_crtc_state *pipe_config)
42db64ef 6523{
8cfb3407
VS
6524 struct drm_device *dev = crtc->base.dev;
6525 struct drm_i915_private *dev_priv = dev->dev_private;
6526
d330a953 6527 pipe_config->ips_enabled = i915.enable_ips &&
8cfb3407
VS
6528 hsw_crtc_supports_ips(crtc) &&
6529 pipe_config_supports_ips(dev_priv, pipe_config);
42db64ef
PZ
6530}
6531
39acb4aa
VS
6532static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
6533{
6534 const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6535
6536 /* GDG double wide on either pipe, otherwise pipe A only */
6537 return INTEL_INFO(dev_priv)->gen < 4 &&
6538 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
6539}
6540
a43f6e0f 6541static int intel_crtc_compute_config(struct intel_crtc *crtc,
5cec258b 6542 struct intel_crtc_state *pipe_config)
79e53945 6543{
a43f6e0f 6544 struct drm_device *dev = crtc->base.dev;
8bd31e67 6545 struct drm_i915_private *dev_priv = dev->dev_private;
7c5f93b0 6546 const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
89749350 6547
ad3a4479 6548 /* FIXME should check pixel clock limits on all platforms */
cf532bb2 6549 if (INTEL_INFO(dev)->gen < 4) {
39acb4aa 6550 int clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
cf532bb2
VS
6551
6552 /*
39acb4aa 6553 * Enable double wide mode when the dot clock
cf532bb2 6554 * is > 90% of the (display) core speed.
cf532bb2 6555 */
39acb4aa
VS
6556 if (intel_crtc_supports_double_wide(crtc) &&
6557 adjusted_mode->crtc_clock > clock_limit) {
ad3a4479 6558 clock_limit *= 2;
cf532bb2 6559 pipe_config->double_wide = true;
ad3a4479
VS
6560 }
6561
39acb4aa
VS
6562 if (adjusted_mode->crtc_clock > clock_limit) {
6563 DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
6564 adjusted_mode->crtc_clock, clock_limit,
6565 yesno(pipe_config->double_wide));
e29c22c0 6566 return -EINVAL;
39acb4aa 6567 }
2c07245f 6568 }
89749350 6569
1d1d0e27
VS
6570 /*
6571 * Pipe horizontal size must be even in:
6572 * - DVO ganged mode
6573 * - LVDS dual channel mode
6574 * - Double wide pipe
6575 */
a93e255f 6576 if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
1d1d0e27
VS
6577 intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6578 pipe_config->pipe_src_w &= ~1;
6579
8693a824
DL
6580 /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6581 * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
44f46b42
CW
6582 */
6583 if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
aad941d5 6584 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
e29c22c0 6585 return -EINVAL;
44f46b42 6586
f5adf94e 6587 if (HAS_IPS(dev))
a43f6e0f
DV
6588 hsw_compute_ips_config(crtc, pipe_config);
6589
877d48d5 6590 if (pipe_config->has_pch_encoder)
a43f6e0f 6591 return ironlake_fdi_compute_config(crtc, pipe_config);
877d48d5 6592
cf5a15be 6593 return 0;
79e53945
JB
6594}
6595
1652d19e
VS
6596static int skylake_get_display_clock_speed(struct drm_device *dev)
6597{
6598 struct drm_i915_private *dev_priv = to_i915(dev);
6599 uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6600 uint32_t cdctl = I915_READ(CDCLK_CTL);
6601 uint32_t linkrate;
6602
414355a7 6603 if (!(lcpll1 & LCPLL_PLL_ENABLE))
1652d19e 6604 return 24000; /* 24MHz is the cd freq with NSSC ref */
1652d19e
VS
6605
6606 if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6607 return 540000;
6608
6609 linkrate = (I915_READ(DPLL_CTRL1) &
71cd8423 6610 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
1652d19e 6611
71cd8423
DL
6612 if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6613 linkrate == DPLL_CTRL1_LINK_RATE_1080) {
1652d19e
VS
6614 /* vco 8640 */
6615 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6616 case CDCLK_FREQ_450_432:
6617 return 432000;
6618 case CDCLK_FREQ_337_308:
6619 return 308570;
6620 case CDCLK_FREQ_675_617:
6621 return 617140;
6622 default:
6623 WARN(1, "Unknown cd freq selection\n");
6624 }
6625 } else {
6626 /* vco 8100 */
6627 switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6628 case CDCLK_FREQ_450_432:
6629 return 450000;
6630 case CDCLK_FREQ_337_308:
6631 return 337500;
6632 case CDCLK_FREQ_675_617:
6633 return 675000;
6634 default:
6635 WARN(1, "Unknown cd freq selection\n");
6636 }
6637 }
6638
6639 /* error case, do as if DPLL0 isn't enabled */
6640 return 24000;
6641}
6642
acd3f3d3
BP
6643static int broxton_get_display_clock_speed(struct drm_device *dev)
6644{
6645 struct drm_i915_private *dev_priv = to_i915(dev);
6646 uint32_t cdctl = I915_READ(CDCLK_CTL);
6647 uint32_t pll_ratio = I915_READ(BXT_DE_PLL_CTL) & BXT_DE_PLL_RATIO_MASK;
6648 uint32_t pll_enab = I915_READ(BXT_DE_PLL_ENABLE);
6649 int cdclk;
6650
6651 if (!(pll_enab & BXT_DE_PLL_PLL_ENABLE))
6652 return 19200;
6653
6654 cdclk = 19200 * pll_ratio / 2;
6655
6656 switch (cdctl & BXT_CDCLK_CD2X_DIV_SEL_MASK) {
6657 case BXT_CDCLK_CD2X_DIV_SEL_1:
6658 return cdclk; /* 576MHz or 624MHz */
6659 case BXT_CDCLK_CD2X_DIV_SEL_1_5:
6660 return cdclk * 2 / 3; /* 384MHz */
6661 case BXT_CDCLK_CD2X_DIV_SEL_2:
6662 return cdclk / 2; /* 288MHz */
6663 case BXT_CDCLK_CD2X_DIV_SEL_4:
6664 return cdclk / 4; /* 144MHz */
6665 }
6666
6667 /* error case, do as if DE PLL isn't enabled */
6668 return 19200;
6669}
6670
1652d19e
VS
6671static int broadwell_get_display_clock_speed(struct drm_device *dev)
6672{
6673 struct drm_i915_private *dev_priv = dev->dev_private;
6674 uint32_t lcpll = I915_READ(LCPLL_CTL);
6675 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6676
6677 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6678 return 800000;
6679 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6680 return 450000;
6681 else if (freq == LCPLL_CLK_FREQ_450)
6682 return 450000;
6683 else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6684 return 540000;
6685 else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6686 return 337500;
6687 else
6688 return 675000;
6689}
6690
6691static int haswell_get_display_clock_speed(struct drm_device *dev)
6692{
6693 struct drm_i915_private *dev_priv = dev->dev_private;
6694 uint32_t lcpll = I915_READ(LCPLL_CTL);
6695 uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6696
6697 if (lcpll & LCPLL_CD_SOURCE_FCLK)
6698 return 800000;
6699 else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6700 return 450000;
6701 else if (freq == LCPLL_CLK_FREQ_450)
6702 return 450000;
6703 else if (IS_HSW_ULT(dev))
6704 return 337500;
6705 else
6706 return 540000;
79e53945
JB
6707}
6708
25eb05fc
JB
6709static int valleyview_get_display_clock_speed(struct drm_device *dev)
6710{
bfa7df01
VS
6711 return vlv_get_cck_clock_hpll(to_i915(dev), "cdclk",
6712 CCK_DISPLAY_CLOCK_CONTROL);
25eb05fc
JB
6713}
6714
b37a6434
VS
6715static int ilk_get_display_clock_speed(struct drm_device *dev)
6716{
6717 return 450000;
6718}
6719
e70236a8
JB
6720static int i945_get_display_clock_speed(struct drm_device *dev)
6721{
6722 return 400000;
6723}
79e53945 6724
e70236a8 6725static int i915_get_display_clock_speed(struct drm_device *dev)
79e53945 6726{
e907f170 6727 return 333333;
e70236a8 6728}
79e53945 6729
e70236a8
JB
6730static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6731{
6732 return 200000;
6733}
79e53945 6734
257a7ffc
DV
6735static int pnv_get_display_clock_speed(struct drm_device *dev)
6736{
6737 u16 gcfgc = 0;
6738
6739 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6740
6741 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6742 case GC_DISPLAY_CLOCK_267_MHZ_PNV:
e907f170 6743 return 266667;
257a7ffc 6744 case GC_DISPLAY_CLOCK_333_MHZ_PNV:
e907f170 6745 return 333333;
257a7ffc 6746 case GC_DISPLAY_CLOCK_444_MHZ_PNV:
e907f170 6747 return 444444;
257a7ffc
DV
6748 case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6749 return 200000;
6750 default:
6751 DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6752 case GC_DISPLAY_CLOCK_133_MHZ_PNV:
e907f170 6753 return 133333;
257a7ffc 6754 case GC_DISPLAY_CLOCK_167_MHZ_PNV:
e907f170 6755 return 166667;
257a7ffc
DV
6756 }
6757}
6758
e70236a8
JB
6759static int i915gm_get_display_clock_speed(struct drm_device *dev)
6760{
6761 u16 gcfgc = 0;
79e53945 6762
e70236a8
JB
6763 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6764
6765 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
e907f170 6766 return 133333;
e70236a8
JB
6767 else {
6768 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6769 case GC_DISPLAY_CLOCK_333_MHZ:
e907f170 6770 return 333333;
e70236a8
JB
6771 default:
6772 case GC_DISPLAY_CLOCK_190_200_MHZ:
6773 return 190000;
79e53945 6774 }
e70236a8
JB
6775 }
6776}
6777
6778static int i865_get_display_clock_speed(struct drm_device *dev)
6779{
e907f170 6780 return 266667;
e70236a8
JB
6781}
6782
1b1d2716 6783static int i85x_get_display_clock_speed(struct drm_device *dev)
e70236a8
JB
6784{
6785 u16 hpllcc = 0;
1b1d2716 6786
65cd2b3f
VS
6787 /*
6788 * 852GM/852GMV only supports 133 MHz and the HPLLCC
6789 * encoding is different :(
6790 * FIXME is this the right way to detect 852GM/852GMV?
6791 */
6792 if (dev->pdev->revision == 0x1)
6793 return 133333;
6794
1b1d2716
VS
6795 pci_bus_read_config_word(dev->pdev->bus,
6796 PCI_DEVFN(0, 3), HPLLCC, &hpllcc);
6797
e70236a8
JB
6798 /* Assume that the hardware is in the high speed state. This
6799 * should be the default.
6800 */
6801 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6802 case GC_CLOCK_133_200:
1b1d2716 6803 case GC_CLOCK_133_200_2:
e70236a8
JB
6804 case GC_CLOCK_100_200:
6805 return 200000;
6806 case GC_CLOCK_166_250:
6807 return 250000;
6808 case GC_CLOCK_100_133:
e907f170 6809 return 133333;
1b1d2716
VS
6810 case GC_CLOCK_133_266:
6811 case GC_CLOCK_133_266_2:
6812 case GC_CLOCK_166_266:
6813 return 266667;
e70236a8 6814 }
79e53945 6815
e70236a8
JB
6816 /* Shouldn't happen */
6817 return 0;
6818}
79e53945 6819
e70236a8
JB
6820static int i830_get_display_clock_speed(struct drm_device *dev)
6821{
e907f170 6822 return 133333;
79e53945
JB
6823}
6824
34edce2f
VS
6825static unsigned int intel_hpll_vco(struct drm_device *dev)
6826{
6827 struct drm_i915_private *dev_priv = dev->dev_private;
6828 static const unsigned int blb_vco[8] = {
6829 [0] = 3200000,
6830 [1] = 4000000,
6831 [2] = 5333333,
6832 [3] = 4800000,
6833 [4] = 6400000,
6834 };
6835 static const unsigned int pnv_vco[8] = {
6836 [0] = 3200000,
6837 [1] = 4000000,
6838 [2] = 5333333,
6839 [3] = 4800000,
6840 [4] = 2666667,
6841 };
6842 static const unsigned int cl_vco[8] = {
6843 [0] = 3200000,
6844 [1] = 4000000,
6845 [2] = 5333333,
6846 [3] = 6400000,
6847 [4] = 3333333,
6848 [5] = 3566667,
6849 [6] = 4266667,
6850 };
6851 static const unsigned int elk_vco[8] = {
6852 [0] = 3200000,
6853 [1] = 4000000,
6854 [2] = 5333333,
6855 [3] = 4800000,
6856 };
6857 static const unsigned int ctg_vco[8] = {
6858 [0] = 3200000,
6859 [1] = 4000000,
6860 [2] = 5333333,
6861 [3] = 6400000,
6862 [4] = 2666667,
6863 [5] = 4266667,
6864 };
6865 const unsigned int *vco_table;
6866 unsigned int vco;
6867 uint8_t tmp = 0;
6868
6869 /* FIXME other chipsets? */
6870 if (IS_GM45(dev))
6871 vco_table = ctg_vco;
6872 else if (IS_G4X(dev))
6873 vco_table = elk_vco;
6874 else if (IS_CRESTLINE(dev))
6875 vco_table = cl_vco;
6876 else if (IS_PINEVIEW(dev))
6877 vco_table = pnv_vco;
6878 else if (IS_G33(dev))
6879 vco_table = blb_vco;
6880 else
6881 return 0;
6882
6883 tmp = I915_READ(IS_MOBILE(dev) ? HPLLVCO_MOBILE : HPLLVCO);
6884
6885 vco = vco_table[tmp & 0x7];
6886 if (vco == 0)
6887 DRM_ERROR("Bad HPLL VCO (HPLLVCO=0x%02x)\n", tmp);
6888 else
6889 DRM_DEBUG_KMS("HPLL VCO %u kHz\n", vco);
6890
6891 return vco;
6892}
6893
6894static int gm45_get_display_clock_speed(struct drm_device *dev)
6895{
6896 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6897 uint16_t tmp = 0;
6898
6899 pci_read_config_word(dev->pdev, GCFGC, &tmp);
6900
6901 cdclk_sel = (tmp >> 12) & 0x1;
6902
6903 switch (vco) {
6904 case 2666667:
6905 case 4000000:
6906 case 5333333:
6907 return cdclk_sel ? 333333 : 222222;
6908 case 3200000:
6909 return cdclk_sel ? 320000 : 228571;
6910 default:
6911 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u, CFGC=0x%04x\n", vco, tmp);
6912 return 222222;
6913 }
6914}
6915
6916static int i965gm_get_display_clock_speed(struct drm_device *dev)
6917{
6918 static const uint8_t div_3200[] = { 16, 10, 8 };
6919 static const uint8_t div_4000[] = { 20, 12, 10 };
6920 static const uint8_t div_5333[] = { 24, 16, 14 };
6921 const uint8_t *div_table;
6922 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6923 uint16_t tmp = 0;
6924
6925 pci_read_config_word(dev->pdev, GCFGC, &tmp);
6926
6927 cdclk_sel = ((tmp >> 8) & 0x1f) - 1;
6928
6929 if (cdclk_sel >= ARRAY_SIZE(div_3200))
6930 goto fail;
6931
6932 switch (vco) {
6933 case 3200000:
6934 div_table = div_3200;
6935 break;
6936 case 4000000:
6937 div_table = div_4000;
6938 break;
6939 case 5333333:
6940 div_table = div_5333;
6941 break;
6942 default:
6943 goto fail;
6944 }
6945
6946 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
6947
caf4e252 6948fail:
34edce2f
VS
6949 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%04x\n", vco, tmp);
6950 return 200000;
6951}
6952
6953static int g33_get_display_clock_speed(struct drm_device *dev)
6954{
6955 static const uint8_t div_3200[] = { 12, 10, 8, 7, 5, 16 };
6956 static const uint8_t div_4000[] = { 14, 12, 10, 8, 6, 20 };
6957 static const uint8_t div_4800[] = { 20, 14, 12, 10, 8, 24 };
6958 static const uint8_t div_5333[] = { 20, 16, 12, 12, 8, 28 };
6959 const uint8_t *div_table;
6960 unsigned int cdclk_sel, vco = intel_hpll_vco(dev);
6961 uint16_t tmp = 0;
6962
6963 pci_read_config_word(dev->pdev, GCFGC, &tmp);
6964
6965 cdclk_sel = (tmp >> 4) & 0x7;
6966
6967 if (cdclk_sel >= ARRAY_SIZE(div_3200))
6968 goto fail;
6969
6970 switch (vco) {
6971 case 3200000:
6972 div_table = div_3200;
6973 break;
6974 case 4000000:
6975 div_table = div_4000;
6976 break;
6977 case 4800000:
6978 div_table = div_4800;
6979 break;
6980 case 5333333:
6981 div_table = div_5333;
6982 break;
6983 default:
6984 goto fail;
6985 }
6986
6987 return DIV_ROUND_CLOSEST(vco, div_table[cdclk_sel]);
6988
caf4e252 6989fail:
34edce2f
VS
6990 DRM_ERROR("Unable to determine CDCLK. HPLL VCO=%u kHz, CFGC=0x%08x\n", vco, tmp);
6991 return 190476;
6992}
6993
2c07245f 6994static void
a65851af 6995intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
2c07245f 6996{
a65851af
VS
6997 while (*num > DATA_LINK_M_N_MASK ||
6998 *den > DATA_LINK_M_N_MASK) {
2c07245f
ZW
6999 *num >>= 1;
7000 *den >>= 1;
7001 }
7002}
7003
a65851af
VS
7004static void compute_m_n(unsigned int m, unsigned int n,
7005 uint32_t *ret_m, uint32_t *ret_n)
7006{
7007 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7008 *ret_m = div_u64((uint64_t) m * *ret_n, n);
7009 intel_reduce_m_n_ratio(ret_m, ret_n);
7010}
7011
e69d0bc1
DV
7012void
7013intel_link_compute_m_n(int bits_per_pixel, int nlanes,
7014 int pixel_clock, int link_clock,
7015 struct intel_link_m_n *m_n)
2c07245f 7016{
e69d0bc1 7017 m_n->tu = 64;
a65851af
VS
7018
7019 compute_m_n(bits_per_pixel * pixel_clock,
7020 link_clock * nlanes * 8,
7021 &m_n->gmch_m, &m_n->gmch_n);
7022
7023 compute_m_n(pixel_clock, link_clock,
7024 &m_n->link_m, &m_n->link_n);
2c07245f
ZW
7025}
7026
a7615030
CW
7027static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7028{
d330a953
JN
7029 if (i915.panel_use_ssc >= 0)
7030 return i915.panel_use_ssc != 0;
41aa3448 7031 return dev_priv->vbt.lvds_use_ssc
435793df 7032 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
a7615030
CW
7033}
7034
7429e9d4 7035static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
c65d77d8 7036{
7df00d7a 7037 return (1 << dpll->n) << 16 | dpll->m2;
7429e9d4 7038}
f47709a9 7039
7429e9d4
DV
7040static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
7041{
7042 return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
c65d77d8
JB
7043}
7044
f47709a9 7045static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
190f68c5 7046 struct intel_crtc_state *crtc_state,
9e2c8475 7047 struct dpll *reduced_clock)
a7516a05 7048{
f47709a9 7049 struct drm_device *dev = crtc->base.dev;
a7516a05
JB
7050 u32 fp, fp2 = 0;
7051
7052 if (IS_PINEVIEW(dev)) {
190f68c5 7053 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
a7516a05 7054 if (reduced_clock)
7429e9d4 7055 fp2 = pnv_dpll_compute_fp(reduced_clock);
a7516a05 7056 } else {
190f68c5 7057 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
a7516a05 7058 if (reduced_clock)
7429e9d4 7059 fp2 = i9xx_dpll_compute_fp(reduced_clock);
a7516a05
JB
7060 }
7061
190f68c5 7062 crtc_state->dpll_hw_state.fp0 = fp;
a7516a05 7063
f47709a9 7064 crtc->lowfreq_avail = false;
a93e255f 7065 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
ab585dea 7066 reduced_clock) {
190f68c5 7067 crtc_state->dpll_hw_state.fp1 = fp2;
f47709a9 7068 crtc->lowfreq_avail = true;
a7516a05 7069 } else {
190f68c5 7070 crtc_state->dpll_hw_state.fp1 = fp;
a7516a05
JB
7071 }
7072}
7073
5e69f97f
CML
7074static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7075 pipe)
89b667f8
JB
7076{
7077 u32 reg_val;
7078
7079 /*
7080 * PLLB opamp always calibrates to max value of 0x3f, force enable it
7081 * and set it to a reasonable value instead.
7082 */
ab3c759a 7083 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8
JB
7084 reg_val &= 0xffffff00;
7085 reg_val |= 0x00000030;
ab3c759a 7086 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 7087
ab3c759a 7088 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
7089 reg_val &= 0x8cffffff;
7090 reg_val = 0x8c000000;
ab3c759a 7091 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8 7092
ab3c759a 7093 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
89b667f8 7094 reg_val &= 0xffffff00;
ab3c759a 7095 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
89b667f8 7096
ab3c759a 7097 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
89b667f8
JB
7098 reg_val &= 0x00ffffff;
7099 reg_val |= 0xb0000000;
ab3c759a 7100 vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
89b667f8
JB
7101}
7102
b551842d
DV
7103static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
7104 struct intel_link_m_n *m_n)
7105{
7106 struct drm_device *dev = crtc->base.dev;
7107 struct drm_i915_private *dev_priv = dev->dev_private;
7108 int pipe = crtc->pipe;
7109
e3b95f1e
DV
7110 I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7111 I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7112 I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7113 I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
b551842d
DV
7114}
7115
7116static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
f769cd24
VK
7117 struct intel_link_m_n *m_n,
7118 struct intel_link_m_n *m2_n2)
b551842d
DV
7119{
7120 struct drm_device *dev = crtc->base.dev;
7121 struct drm_i915_private *dev_priv = dev->dev_private;
7122 int pipe = crtc->pipe;
6e3c9717 7123 enum transcoder transcoder = crtc->config->cpu_transcoder;
b551842d
DV
7124
7125 if (INTEL_INFO(dev)->gen >= 5) {
7126 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7127 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7128 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7129 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
f769cd24
VK
7130 /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7131 * for gen < 8) and if DRRS is supported (to make sure the
7132 * registers are not unnecessarily accessed).
7133 */
44395bfe 7134 if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
6e3c9717 7135 crtc->config->has_drrs) {
f769cd24
VK
7136 I915_WRITE(PIPE_DATA_M2(transcoder),
7137 TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7138 I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7139 I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7140 I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7141 }
b551842d 7142 } else {
e3b95f1e
DV
7143 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7144 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7145 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7146 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
b551842d
DV
7147 }
7148}
7149
fe3cd48d 7150void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
03afc4a2 7151{
fe3cd48d
R
7152 struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7153
7154 if (m_n == M1_N1) {
7155 dp_m_n = &crtc->config->dp_m_n;
7156 dp_m2_n2 = &crtc->config->dp_m2_n2;
7157 } else if (m_n == M2_N2) {
7158
7159 /*
7160 * M2_N2 registers are not supported. Hence m2_n2 divider value
7161 * needs to be programmed into M1_N1.
7162 */
7163 dp_m_n = &crtc->config->dp_m2_n2;
7164 } else {
7165 DRM_ERROR("Unsupported divider value\n");
7166 return;
7167 }
7168
6e3c9717
ACO
7169 if (crtc->config->has_pch_encoder)
7170 intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
03afc4a2 7171 else
fe3cd48d 7172 intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
03afc4a2
DV
7173}
7174
251ac862
DV
7175static void vlv_compute_dpll(struct intel_crtc *crtc,
7176 struct intel_crtc_state *pipe_config)
bdd4b6a6 7177{
03ed5cbf 7178 pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
cd2d34d9 7179 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
03ed5cbf
VS
7180 if (crtc->pipe != PIPE_A)
7181 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
bdd4b6a6 7182
cd2d34d9 7183 /* DPLL not used with DSI, but still need the rest set up */
187a1c07 7184 if (!pipe_config->has_dsi_encoder)
cd2d34d9
VS
7185 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
7186 DPLL_EXT_BUFFER_ENABLE_VLV;
7187
03ed5cbf
VS
7188 pipe_config->dpll_hw_state.dpll_md =
7189 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7190}
bdd4b6a6 7191
03ed5cbf
VS
7192static void chv_compute_dpll(struct intel_crtc *crtc,
7193 struct intel_crtc_state *pipe_config)
7194{
7195 pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
cd2d34d9 7196 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
03ed5cbf
VS
7197 if (crtc->pipe != PIPE_A)
7198 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7199
cd2d34d9 7200 /* DPLL not used with DSI, but still need the rest set up */
187a1c07 7201 if (!pipe_config->has_dsi_encoder)
cd2d34d9
VS
7202 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
7203
03ed5cbf
VS
7204 pipe_config->dpll_hw_state.dpll_md =
7205 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
bdd4b6a6
DV
7206}
7207
d288f65f 7208static void vlv_prepare_pll(struct intel_crtc *crtc,
5cec258b 7209 const struct intel_crtc_state *pipe_config)
a0c4da24 7210{
f47709a9 7211 struct drm_device *dev = crtc->base.dev;
a0c4da24 7212 struct drm_i915_private *dev_priv = dev->dev_private;
cd2d34d9 7213 enum pipe pipe = crtc->pipe;
bdd4b6a6 7214 u32 mdiv;
a0c4da24 7215 u32 bestn, bestm1, bestm2, bestp1, bestp2;
bdd4b6a6 7216 u32 coreclk, reg_val;
a0c4da24 7217
cd2d34d9
VS
7218 /* Enable Refclk */
7219 I915_WRITE(DPLL(pipe),
7220 pipe_config->dpll_hw_state.dpll &
7221 ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
7222
7223 /* No need to actually set up the DPLL with DSI */
7224 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7225 return;
7226
a580516d 7227 mutex_lock(&dev_priv->sb_lock);
09153000 7228
d288f65f
VS
7229 bestn = pipe_config->dpll.n;
7230 bestm1 = pipe_config->dpll.m1;
7231 bestm2 = pipe_config->dpll.m2;
7232 bestp1 = pipe_config->dpll.p1;
7233 bestp2 = pipe_config->dpll.p2;
a0c4da24 7234
89b667f8
JB
7235 /* See eDP HDMI DPIO driver vbios notes doc */
7236
7237 /* PLL B needs special handling */
bdd4b6a6 7238 if (pipe == PIPE_B)
5e69f97f 7239 vlv_pllb_recal_opamp(dev_priv, pipe);
89b667f8
JB
7240
7241 /* Set up Tx target for periodic Rcomp update */
ab3c759a 7242 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
89b667f8
JB
7243
7244 /* Disable target IRef on PLL */
ab3c759a 7245 reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
89b667f8 7246 reg_val &= 0x00ffffff;
ab3c759a 7247 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
89b667f8
JB
7248
7249 /* Disable fast lock */
ab3c759a 7250 vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
89b667f8
JB
7251
7252 /* Set idtafcrecal before PLL is enabled */
a0c4da24
JB
7253 mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7254 mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7255 mdiv |= ((bestn << DPIO_N_SHIFT));
a0c4da24 7256 mdiv |= (1 << DPIO_K_SHIFT);
7df5080b
JB
7257
7258 /*
7259 * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7260 * but we don't support that).
7261 * Note: don't use the DAC post divider as it seems unstable.
7262 */
7263 mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
ab3c759a 7264 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 7265
a0c4da24 7266 mdiv |= DPIO_ENABLE_CALIBRATION;
ab3c759a 7267 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
a0c4da24 7268
89b667f8 7269 /* Set HBR and RBR LPF coefficients */
d288f65f 7270 if (pipe_config->port_clock == 162000 ||
409ee761
ACO
7271 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7272 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
ab3c759a 7273 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
885b0120 7274 0x009f0003);
89b667f8 7275 else
ab3c759a 7276 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
89b667f8
JB
7277 0x00d0000f);
7278
681a8504 7279 if (pipe_config->has_dp_encoder) {
89b667f8 7280 /* Use SSC source */
bdd4b6a6 7281 if (pipe == PIPE_A)
ab3c759a 7282 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
7283 0x0df40000);
7284 else
ab3c759a 7285 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
7286 0x0df70000);
7287 } else { /* HDMI or VGA */
7288 /* Use bend source */
bdd4b6a6 7289 if (pipe == PIPE_A)
ab3c759a 7290 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
7291 0x0df70000);
7292 else
ab3c759a 7293 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
89b667f8
JB
7294 0x0df40000);
7295 }
a0c4da24 7296
ab3c759a 7297 coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
89b667f8 7298 coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
409ee761
ACO
7299 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7300 intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
89b667f8 7301 coreclk |= 0x01000000;
ab3c759a 7302 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
a0c4da24 7303
ab3c759a 7304 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
a580516d 7305 mutex_unlock(&dev_priv->sb_lock);
a0c4da24
JB
7306}
7307
d288f65f 7308static void chv_prepare_pll(struct intel_crtc *crtc,
5cec258b 7309 const struct intel_crtc_state *pipe_config)
9d556c99
CML
7310{
7311 struct drm_device *dev = crtc->base.dev;
7312 struct drm_i915_private *dev_priv = dev->dev_private;
cd2d34d9 7313 enum pipe pipe = crtc->pipe;
9d556c99 7314 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9cbe40c1 7315 u32 loopfilter, tribuf_calcntr;
9d556c99 7316 u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
a945ce7e 7317 u32 dpio_val;
9cbe40c1 7318 int vco;
9d556c99 7319
cd2d34d9
VS
7320 /* Enable Refclk and SSC */
7321 I915_WRITE(DPLL(pipe),
7322 pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7323
7324 /* No need to actually set up the DPLL with DSI */
7325 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7326 return;
7327
d288f65f
VS
7328 bestn = pipe_config->dpll.n;
7329 bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7330 bestm1 = pipe_config->dpll.m1;
7331 bestm2 = pipe_config->dpll.m2 >> 22;
7332 bestp1 = pipe_config->dpll.p1;
7333 bestp2 = pipe_config->dpll.p2;
9cbe40c1 7334 vco = pipe_config->dpll.vco;
a945ce7e 7335 dpio_val = 0;
9cbe40c1 7336 loopfilter = 0;
9d556c99 7337
a580516d 7338 mutex_lock(&dev_priv->sb_lock);
9d556c99 7339
9d556c99
CML
7340 /* p1 and p2 divider */
7341 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7342 5 << DPIO_CHV_S1_DIV_SHIFT |
7343 bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7344 bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7345 1 << DPIO_CHV_K_DIV_SHIFT);
7346
7347 /* Feedback post-divider - m2 */
7348 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7349
7350 /* Feedback refclk divider - n and m1 */
7351 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7352 DPIO_CHV_M1_DIV_BY_2 |
7353 1 << DPIO_CHV_N_DIV_SHIFT);
7354
7355 /* M2 fraction division */
25a25dfc 7356 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
9d556c99
CML
7357
7358 /* M2 fraction division enable */
a945ce7e
VP
7359 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7360 dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7361 dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7362 if (bestm2_frac)
7363 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7364 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
9d556c99 7365
de3a0fde
VP
7366 /* Program digital lock detect threshold */
7367 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7368 dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7369 DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7370 dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7371 if (!bestm2_frac)
7372 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7373 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7374
9d556c99 7375 /* Loop filter */
9cbe40c1
VP
7376 if (vco == 5400000) {
7377 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7378 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7379 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7380 tribuf_calcntr = 0x9;
7381 } else if (vco <= 6200000) {
7382 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7383 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7384 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7385 tribuf_calcntr = 0x9;
7386 } else if (vco <= 6480000) {
7387 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7388 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7389 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7390 tribuf_calcntr = 0x8;
7391 } else {
7392 /* Not supported. Apply the same limits as in the max case */
7393 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7394 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7395 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7396 tribuf_calcntr = 0;
7397 }
9d556c99
CML
7398 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7399
968040b2 7400 dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
9cbe40c1
VP
7401 dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7402 dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7403 vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7404
9d556c99
CML
7405 /* AFC Recal */
7406 vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7407 vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7408 DPIO_AFC_RECAL);
7409
a580516d 7410 mutex_unlock(&dev_priv->sb_lock);
9d556c99
CML
7411}
7412
d288f65f
VS
7413/**
7414 * vlv_force_pll_on - forcibly enable just the PLL
7415 * @dev_priv: i915 private structure
7416 * @pipe: pipe PLL to enable
7417 * @dpll: PLL configuration
7418 *
7419 * Enable the PLL for @pipe using the supplied @dpll config. To be used
7420 * in cases where we need the PLL enabled even when @pipe is not going to
7421 * be enabled.
7422 */
3f36b937
TU
7423int vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7424 const struct dpll *dpll)
d288f65f
VS
7425{
7426 struct intel_crtc *crtc =
7427 to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
3f36b937
TU
7428 struct intel_crtc_state *pipe_config;
7429
7430 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
7431 if (!pipe_config)
7432 return -ENOMEM;
7433
7434 pipe_config->base.crtc = &crtc->base;
7435 pipe_config->pixel_multiplier = 1;
7436 pipe_config->dpll = *dpll;
d288f65f
VS
7437
7438 if (IS_CHERRYVIEW(dev)) {
3f36b937
TU
7439 chv_compute_dpll(crtc, pipe_config);
7440 chv_prepare_pll(crtc, pipe_config);
7441 chv_enable_pll(crtc, pipe_config);
d288f65f 7442 } else {
3f36b937
TU
7443 vlv_compute_dpll(crtc, pipe_config);
7444 vlv_prepare_pll(crtc, pipe_config);
7445 vlv_enable_pll(crtc, pipe_config);
d288f65f 7446 }
3f36b937
TU
7447
7448 kfree(pipe_config);
7449
7450 return 0;
d288f65f
VS
7451}
7452
7453/**
7454 * vlv_force_pll_off - forcibly disable just the PLL
7455 * @dev_priv: i915 private structure
7456 * @pipe: pipe PLL to disable
7457 *
7458 * Disable the PLL for @pipe. To be used in cases where we need
7459 * the PLL enabled even when @pipe is not going to be enabled.
7460 */
7461void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7462{
7463 if (IS_CHERRYVIEW(dev))
7464 chv_disable_pll(to_i915(dev), pipe);
7465 else
7466 vlv_disable_pll(to_i915(dev), pipe);
7467}
7468
251ac862
DV
7469static void i9xx_compute_dpll(struct intel_crtc *crtc,
7470 struct intel_crtc_state *crtc_state,
9e2c8475 7471 struct dpll *reduced_clock)
eb1cbe48 7472{
f47709a9 7473 struct drm_device *dev = crtc->base.dev;
eb1cbe48 7474 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48
DV
7475 u32 dpll;
7476 bool is_sdvo;
190f68c5 7477 struct dpll *clock = &crtc_state->dpll;
eb1cbe48 7478
190f68c5 7479 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
2a8f64ca 7480
a93e255f
ACO
7481 is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7482 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
eb1cbe48
DV
7483
7484 dpll = DPLL_VGA_MODE_DIS;
7485
a93e255f 7486 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
eb1cbe48
DV
7487 dpll |= DPLLB_MODE_LVDS;
7488 else
7489 dpll |= DPLLB_MODE_DAC_SERIAL;
6cc5f341 7490
ef1b460d 7491 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
190f68c5 7492 dpll |= (crtc_state->pixel_multiplier - 1)
198a037f 7493 << SDVO_MULTIPLIER_SHIFT_HIRES;
eb1cbe48 7494 }
198a037f
DV
7495
7496 if (is_sdvo)
4a33e48d 7497 dpll |= DPLL_SDVO_HIGH_SPEED;
198a037f 7498
190f68c5 7499 if (crtc_state->has_dp_encoder)
4a33e48d 7500 dpll |= DPLL_SDVO_HIGH_SPEED;
eb1cbe48
DV
7501
7502 /* compute bitmask from p1 value */
7503 if (IS_PINEVIEW(dev))
7504 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7505 else {
7506 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7507 if (IS_G4X(dev) && reduced_clock)
7508 dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7509 }
7510 switch (clock->p2) {
7511 case 5:
7512 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7513 break;
7514 case 7:
7515 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7516 break;
7517 case 10:
7518 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7519 break;
7520 case 14:
7521 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7522 break;
7523 }
7524 if (INTEL_INFO(dev)->gen >= 4)
7525 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7526
190f68c5 7527 if (crtc_state->sdvo_tv_clock)
eb1cbe48 7528 dpll |= PLL_REF_INPUT_TVCLKINBC;
a93e255f 7529 else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
ceb41007 7530 intel_panel_use_ssc(dev_priv))
eb1cbe48
DV
7531 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7532 else
7533 dpll |= PLL_REF_INPUT_DREFCLK;
7534
7535 dpll |= DPLL_VCO_ENABLE;
190f68c5 7536 crtc_state->dpll_hw_state.dpll = dpll;
8bcc2795 7537
eb1cbe48 7538 if (INTEL_INFO(dev)->gen >= 4) {
190f68c5 7539 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
ef1b460d 7540 << DPLL_MD_UDI_MULTIPLIER_SHIFT;
190f68c5 7541 crtc_state->dpll_hw_state.dpll_md = dpll_md;
eb1cbe48
DV
7542 }
7543}
7544
251ac862
DV
7545static void i8xx_compute_dpll(struct intel_crtc *crtc,
7546 struct intel_crtc_state *crtc_state,
9e2c8475 7547 struct dpll *reduced_clock)
eb1cbe48 7548{
f47709a9 7549 struct drm_device *dev = crtc->base.dev;
eb1cbe48 7550 struct drm_i915_private *dev_priv = dev->dev_private;
eb1cbe48 7551 u32 dpll;
190f68c5 7552 struct dpll *clock = &crtc_state->dpll;
eb1cbe48 7553
190f68c5 7554 i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
2a8f64ca 7555
eb1cbe48
DV
7556 dpll = DPLL_VGA_MODE_DIS;
7557
a93e255f 7558 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
eb1cbe48
DV
7559 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7560 } else {
7561 if (clock->p1 == 2)
7562 dpll |= PLL_P1_DIVIDE_BY_TWO;
7563 else
7564 dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7565 if (clock->p2 == 4)
7566 dpll |= PLL_P2_DIVIDE_BY_4;
7567 }
7568
a93e255f 7569 if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
4a33e48d
DV
7570 dpll |= DPLL_DVO_2X_MODE;
7571
a93e255f 7572 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
ceb41007 7573 intel_panel_use_ssc(dev_priv))
eb1cbe48
DV
7574 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7575 else
7576 dpll |= PLL_REF_INPUT_DREFCLK;
7577
7578 dpll |= DPLL_VCO_ENABLE;
190f68c5 7579 crtc_state->dpll_hw_state.dpll = dpll;
eb1cbe48
DV
7580}
7581
8a654f3b 7582static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
b0e77b9c
PZ
7583{
7584 struct drm_device *dev = intel_crtc->base.dev;
7585 struct drm_i915_private *dev_priv = dev->dev_private;
7586 enum pipe pipe = intel_crtc->pipe;
6e3c9717 7587 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7c5f93b0 7588 const struct drm_display_mode *adjusted_mode = &intel_crtc->config->base.adjusted_mode;
1caea6e9
VS
7589 uint32_t crtc_vtotal, crtc_vblank_end;
7590 int vsyncshift = 0;
4d8a62ea
DV
7591
7592 /* We need to be careful not to changed the adjusted mode, for otherwise
7593 * the hw state checker will get angry at the mismatch. */
7594 crtc_vtotal = adjusted_mode->crtc_vtotal;
7595 crtc_vblank_end = adjusted_mode->crtc_vblank_end;
b0e77b9c 7596
609aeaca 7597 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
b0e77b9c 7598 /* the chip adds 2 halflines automatically */
4d8a62ea
DV
7599 crtc_vtotal -= 1;
7600 crtc_vblank_end -= 1;
609aeaca 7601
409ee761 7602 if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
609aeaca
VS
7603 vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7604 else
7605 vsyncshift = adjusted_mode->crtc_hsync_start -
7606 adjusted_mode->crtc_htotal / 2;
1caea6e9
VS
7607 if (vsyncshift < 0)
7608 vsyncshift += adjusted_mode->crtc_htotal;
b0e77b9c
PZ
7609 }
7610
7611 if (INTEL_INFO(dev)->gen > 3)
fe2b8f9d 7612 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
b0e77b9c 7613
fe2b8f9d 7614 I915_WRITE(HTOTAL(cpu_transcoder),
b0e77b9c
PZ
7615 (adjusted_mode->crtc_hdisplay - 1) |
7616 ((adjusted_mode->crtc_htotal - 1) << 16));
fe2b8f9d 7617 I915_WRITE(HBLANK(cpu_transcoder),
b0e77b9c
PZ
7618 (adjusted_mode->crtc_hblank_start - 1) |
7619 ((adjusted_mode->crtc_hblank_end - 1) << 16));
fe2b8f9d 7620 I915_WRITE(HSYNC(cpu_transcoder),
b0e77b9c
PZ
7621 (adjusted_mode->crtc_hsync_start - 1) |
7622 ((adjusted_mode->crtc_hsync_end - 1) << 16));
7623
fe2b8f9d 7624 I915_WRITE(VTOTAL(cpu_transcoder),
b0e77b9c 7625 (adjusted_mode->crtc_vdisplay - 1) |
4d8a62ea 7626 ((crtc_vtotal - 1) << 16));
fe2b8f9d 7627 I915_WRITE(VBLANK(cpu_transcoder),
b0e77b9c 7628 (adjusted_mode->crtc_vblank_start - 1) |
4d8a62ea 7629 ((crtc_vblank_end - 1) << 16));
fe2b8f9d 7630 I915_WRITE(VSYNC(cpu_transcoder),
b0e77b9c
PZ
7631 (adjusted_mode->crtc_vsync_start - 1) |
7632 ((adjusted_mode->crtc_vsync_end - 1) << 16));
7633
b5e508d4
PZ
7634 /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7635 * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7636 * documented on the DDI_FUNC_CTL register description, EDP Input Select
7637 * bits. */
7638 if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7639 (pipe == PIPE_B || pipe == PIPE_C))
7640 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7641
bc58be60
JN
7642}
7643
7644static void intel_set_pipe_src_size(struct intel_crtc *intel_crtc)
7645{
7646 struct drm_device *dev = intel_crtc->base.dev;
7647 struct drm_i915_private *dev_priv = dev->dev_private;
7648 enum pipe pipe = intel_crtc->pipe;
7649
b0e77b9c
PZ
7650 /* pipesrc controls the size that is scaled from, which should
7651 * always be the user's requested size.
7652 */
7653 I915_WRITE(PIPESRC(pipe),
6e3c9717
ACO
7654 ((intel_crtc->config->pipe_src_w - 1) << 16) |
7655 (intel_crtc->config->pipe_src_h - 1));
b0e77b9c
PZ
7656}
7657
1bd1bd80 7658static void intel_get_pipe_timings(struct intel_crtc *crtc,
5cec258b 7659 struct intel_crtc_state *pipe_config)
1bd1bd80
DV
7660{
7661 struct drm_device *dev = crtc->base.dev;
7662 struct drm_i915_private *dev_priv = dev->dev_private;
7663 enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7664 uint32_t tmp;
7665
7666 tmp = I915_READ(HTOTAL(cpu_transcoder));
2d112de7
ACO
7667 pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7668 pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 7669 tmp = I915_READ(HBLANK(cpu_transcoder));
2d112de7
ACO
7670 pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7671 pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 7672 tmp = I915_READ(HSYNC(cpu_transcoder));
2d112de7
ACO
7673 pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7674 pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80
DV
7675
7676 tmp = I915_READ(VTOTAL(cpu_transcoder));
2d112de7
ACO
7677 pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7678 pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 7679 tmp = I915_READ(VBLANK(cpu_transcoder));
2d112de7
ACO
7680 pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7681 pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80 7682 tmp = I915_READ(VSYNC(cpu_transcoder));
2d112de7
ACO
7683 pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7684 pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
1bd1bd80
DV
7685
7686 if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
2d112de7
ACO
7687 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7688 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7689 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
1bd1bd80 7690 }
bc58be60
JN
7691}
7692
7693static void intel_get_pipe_src_size(struct intel_crtc *crtc,
7694 struct intel_crtc_state *pipe_config)
7695{
7696 struct drm_device *dev = crtc->base.dev;
7697 struct drm_i915_private *dev_priv = dev->dev_private;
7698 u32 tmp;
1bd1bd80
DV
7699
7700 tmp = I915_READ(PIPESRC(crtc->pipe));
37327abd
VS
7701 pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7702 pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7703
2d112de7
ACO
7704 pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7705 pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
1bd1bd80
DV
7706}
7707
f6a83288 7708void intel_mode_from_pipe_config(struct drm_display_mode *mode,
5cec258b 7709 struct intel_crtc_state *pipe_config)
babea61d 7710{
2d112de7
ACO
7711 mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7712 mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7713 mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7714 mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
babea61d 7715
2d112de7
ACO
7716 mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7717 mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7718 mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7719 mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
babea61d 7720
2d112de7 7721 mode->flags = pipe_config->base.adjusted_mode.flags;
cd13f5ab 7722 mode->type = DRM_MODE_TYPE_DRIVER;
babea61d 7723
2d112de7
ACO
7724 mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7725 mode->flags |= pipe_config->base.adjusted_mode.flags;
cd13f5ab
ML
7726
7727 mode->hsync = drm_mode_hsync(mode);
7728 mode->vrefresh = drm_mode_vrefresh(mode);
7729 drm_mode_set_name(mode);
babea61d
JB
7730}
7731
84b046f3
DV
7732static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7733{
7734 struct drm_device *dev = intel_crtc->base.dev;
7735 struct drm_i915_private *dev_priv = dev->dev_private;
7736 uint32_t pipeconf;
7737
9f11a9e4 7738 pipeconf = 0;
84b046f3 7739
b6b5d049
VS
7740 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7741 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7742 pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
67c72a12 7743
6e3c9717 7744 if (intel_crtc->config->double_wide)
cf532bb2 7745 pipeconf |= PIPECONF_DOUBLE_WIDE;
84b046f3 7746
ff9ce46e 7747 /* only g4x and later have fancy bpc/dither controls */
666a4537 7748 if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
ff9ce46e 7749 /* Bspec claims that we can't use dithering for 30bpp pipes. */
6e3c9717 7750 if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
ff9ce46e 7751 pipeconf |= PIPECONF_DITHER_EN |
84b046f3 7752 PIPECONF_DITHER_TYPE_SP;
84b046f3 7753
6e3c9717 7754 switch (intel_crtc->config->pipe_bpp) {
ff9ce46e
DV
7755 case 18:
7756 pipeconf |= PIPECONF_6BPC;
7757 break;
7758 case 24:
7759 pipeconf |= PIPECONF_8BPC;
7760 break;
7761 case 30:
7762 pipeconf |= PIPECONF_10BPC;
7763 break;
7764 default:
7765 /* Case prevented by intel_choose_pipe_bpp_dither. */
7766 BUG();
84b046f3
DV
7767 }
7768 }
7769
7770 if (HAS_PIPE_CXSR(dev)) {
7771 if (intel_crtc->lowfreq_avail) {
7772 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7773 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7774 } else {
7775 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
84b046f3
DV
7776 }
7777 }
7778
6e3c9717 7779 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
efc2cfff 7780 if (INTEL_INFO(dev)->gen < 4 ||
409ee761 7781 intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
efc2cfff
VS
7782 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7783 else
7784 pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7785 } else
84b046f3
DV
7786 pipeconf |= PIPECONF_PROGRESSIVE;
7787
666a4537
WB
7788 if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
7789 intel_crtc->config->limited_color_range)
9f11a9e4 7790 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
9c8e09b7 7791
84b046f3
DV
7792 I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7793 POSTING_READ(PIPECONF(intel_crtc->pipe));
7794}
7795
81c97f52
ACO
7796static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
7797 struct intel_crtc_state *crtc_state)
7798{
7799 struct drm_device *dev = crtc->base.dev;
7800 struct drm_i915_private *dev_priv = dev->dev_private;
1b6f4958 7801 const struct intel_limit *limit;
81c97f52
ACO
7802 int refclk = 48000;
7803
7804 memset(&crtc_state->dpll_hw_state, 0,
7805 sizeof(crtc_state->dpll_hw_state));
7806
7807 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7808 if (intel_panel_use_ssc(dev_priv)) {
7809 refclk = dev_priv->vbt.lvds_ssc_freq;
7810 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7811 }
7812
7813 limit = &intel_limits_i8xx_lvds;
7814 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO)) {
7815 limit = &intel_limits_i8xx_dvo;
7816 } else {
7817 limit = &intel_limits_i8xx_dac;
7818 }
7819
7820 if (!crtc_state->clock_set &&
7821 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7822 refclk, NULL, &crtc_state->dpll)) {
7823 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7824 return -EINVAL;
7825 }
7826
7827 i8xx_compute_dpll(crtc, crtc_state, NULL);
7828
7829 return 0;
7830}
7831
19ec6693
ACO
7832static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
7833 struct intel_crtc_state *crtc_state)
7834{
7835 struct drm_device *dev = crtc->base.dev;
7836 struct drm_i915_private *dev_priv = dev->dev_private;
1b6f4958 7837 const struct intel_limit *limit;
19ec6693
ACO
7838 int refclk = 96000;
7839
7840 memset(&crtc_state->dpll_hw_state, 0,
7841 sizeof(crtc_state->dpll_hw_state));
7842
7843 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7844 if (intel_panel_use_ssc(dev_priv)) {
7845 refclk = dev_priv->vbt.lvds_ssc_freq;
7846 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7847 }
7848
7849 if (intel_is_dual_link_lvds(dev))
7850 limit = &intel_limits_g4x_dual_channel_lvds;
7851 else
7852 limit = &intel_limits_g4x_single_channel_lvds;
7853 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
7854 intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
7855 limit = &intel_limits_g4x_hdmi;
7856 } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
7857 limit = &intel_limits_g4x_sdvo;
7858 } else {
7859 /* The option is for other outputs */
7860 limit = &intel_limits_i9xx_sdvo;
7861 }
7862
7863 if (!crtc_state->clock_set &&
7864 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7865 refclk, NULL, &crtc_state->dpll)) {
7866 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7867 return -EINVAL;
7868 }
7869
7870 i9xx_compute_dpll(crtc, crtc_state, NULL);
7871
7872 return 0;
7873}
7874
70e8aa21
ACO
7875static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
7876 struct intel_crtc_state *crtc_state)
7877{
7878 struct drm_device *dev = crtc->base.dev;
7879 struct drm_i915_private *dev_priv = dev->dev_private;
1b6f4958 7880 const struct intel_limit *limit;
70e8aa21
ACO
7881 int refclk = 96000;
7882
7883 memset(&crtc_state->dpll_hw_state, 0,
7884 sizeof(crtc_state->dpll_hw_state));
7885
7886 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7887 if (intel_panel_use_ssc(dev_priv)) {
7888 refclk = dev_priv->vbt.lvds_ssc_freq;
7889 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7890 }
7891
7892 limit = &intel_limits_pineview_lvds;
7893 } else {
7894 limit = &intel_limits_pineview_sdvo;
7895 }
7896
7897 if (!crtc_state->clock_set &&
7898 !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7899 refclk, NULL, &crtc_state->dpll)) {
7900 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7901 return -EINVAL;
7902 }
7903
7904 i9xx_compute_dpll(crtc, crtc_state, NULL);
7905
7906 return 0;
7907}
7908
190f68c5
ACO
7909static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7910 struct intel_crtc_state *crtc_state)
79e53945 7911{
c7653199 7912 struct drm_device *dev = crtc->base.dev;
79e53945 7913 struct drm_i915_private *dev_priv = dev->dev_private;
1b6f4958 7914 const struct intel_limit *limit;
81c97f52 7915 int refclk = 96000;
79e53945 7916
dd3cd74a
ACO
7917 memset(&crtc_state->dpll_hw_state, 0,
7918 sizeof(crtc_state->dpll_hw_state));
7919
70e8aa21
ACO
7920 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7921 if (intel_panel_use_ssc(dev_priv)) {
7922 refclk = dev_priv->vbt.lvds_ssc_freq;
7923 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
7924 }
43565a06 7925
70e8aa21
ACO
7926 limit = &intel_limits_i9xx_lvds;
7927 } else {
7928 limit = &intel_limits_i9xx_sdvo;
81c97f52 7929 }
79e53945 7930
70e8aa21
ACO
7931 if (!crtc_state->clock_set &&
7932 !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7933 refclk, NULL, &crtc_state->dpll)) {
7934 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7935 return -EINVAL;
f47709a9 7936 }
7026d4ac 7937
81c97f52 7938 i9xx_compute_dpll(crtc, crtc_state, NULL);
79e53945 7939
c8f7a0db 7940 return 0;
f564048e
EA
7941}
7942
65b3d6a9
ACO
7943static int chv_crtc_compute_clock(struct intel_crtc *crtc,
7944 struct intel_crtc_state *crtc_state)
7945{
7946 int refclk = 100000;
1b6f4958 7947 const struct intel_limit *limit = &intel_limits_chv;
65b3d6a9
ACO
7948
7949 memset(&crtc_state->dpll_hw_state, 0,
7950 sizeof(crtc_state->dpll_hw_state));
7951
65b3d6a9
ACO
7952 if (!crtc_state->clock_set &&
7953 !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7954 refclk, NULL, &crtc_state->dpll)) {
7955 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7956 return -EINVAL;
7957 }
7958
7959 chv_compute_dpll(crtc, crtc_state);
7960
7961 return 0;
7962}
7963
7964static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
7965 struct intel_crtc_state *crtc_state)
7966{
7967 int refclk = 100000;
1b6f4958 7968 const struct intel_limit *limit = &intel_limits_vlv;
65b3d6a9
ACO
7969
7970 memset(&crtc_state->dpll_hw_state, 0,
7971 sizeof(crtc_state->dpll_hw_state));
7972
65b3d6a9
ACO
7973 if (!crtc_state->clock_set &&
7974 !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
7975 refclk, NULL, &crtc_state->dpll)) {
7976 DRM_ERROR("Couldn't find PLL settings for mode!\n");
7977 return -EINVAL;
7978 }
7979
7980 vlv_compute_dpll(crtc, crtc_state);
7981
7982 return 0;
7983}
7984
2fa2fe9a 7985static void i9xx_get_pfit_config(struct intel_crtc *crtc,
5cec258b 7986 struct intel_crtc_state *pipe_config)
2fa2fe9a
DV
7987{
7988 struct drm_device *dev = crtc->base.dev;
7989 struct drm_i915_private *dev_priv = dev->dev_private;
7990 uint32_t tmp;
7991
dc9e7dec
VS
7992 if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
7993 return;
7994
2fa2fe9a 7995 tmp = I915_READ(PFIT_CONTROL);
06922821
DV
7996 if (!(tmp & PFIT_ENABLE))
7997 return;
2fa2fe9a 7998
06922821 7999 /* Check whether the pfit is attached to our pipe. */
2fa2fe9a
DV
8000 if (INTEL_INFO(dev)->gen < 4) {
8001 if (crtc->pipe != PIPE_B)
8002 return;
2fa2fe9a
DV
8003 } else {
8004 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
8005 return;
8006 }
8007
06922821 8008 pipe_config->gmch_pfit.control = tmp;
2fa2fe9a 8009 pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
2fa2fe9a
DV
8010}
8011
acbec814 8012static void vlv_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 8013 struct intel_crtc_state *pipe_config)
acbec814
JB
8014{
8015 struct drm_device *dev = crtc->base.dev;
8016 struct drm_i915_private *dev_priv = dev->dev_private;
8017 int pipe = pipe_config->cpu_transcoder;
9e2c8475 8018 struct dpll clock;
acbec814 8019 u32 mdiv;
662c6ecb 8020 int refclk = 100000;
acbec814 8021
b521973b
VS
8022 /* In case of DSI, DPLL will not be used */
8023 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
f573de5a
SK
8024 return;
8025
a580516d 8026 mutex_lock(&dev_priv->sb_lock);
ab3c759a 8027 mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
a580516d 8028 mutex_unlock(&dev_priv->sb_lock);
acbec814
JB
8029
8030 clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8031 clock.m2 = mdiv & DPIO_M2DIV_MASK;
8032 clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8033 clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8034 clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8035
dccbea3b 8036 pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
acbec814
JB
8037}
8038
5724dbd1
DL
8039static void
8040i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8041 struct intel_initial_plane_config *plane_config)
1ad292b5
JB
8042{
8043 struct drm_device *dev = crtc->base.dev;
8044 struct drm_i915_private *dev_priv = dev->dev_private;
8045 u32 val, base, offset;
8046 int pipe = crtc->pipe, plane = crtc->plane;
8047 int fourcc, pixel_format;
6761dd31 8048 unsigned int aligned_height;
b113d5ee 8049 struct drm_framebuffer *fb;
1b842c89 8050 struct intel_framebuffer *intel_fb;
1ad292b5 8051
42a7b088
DL
8052 val = I915_READ(DSPCNTR(plane));
8053 if (!(val & DISPLAY_PLANE_ENABLE))
8054 return;
8055
d9806c9f 8056 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 8057 if (!intel_fb) {
1ad292b5
JB
8058 DRM_DEBUG_KMS("failed to alloc fb\n");
8059 return;
8060 }
8061
1b842c89
DL
8062 fb = &intel_fb->base;
8063
18c5247e
DV
8064 if (INTEL_INFO(dev)->gen >= 4) {
8065 if (val & DISPPLANE_TILED) {
49af449b 8066 plane_config->tiling = I915_TILING_X;
18c5247e
DV
8067 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8068 }
8069 }
1ad292b5
JB
8070
8071 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
b35d63fa 8072 fourcc = i9xx_format_to_fourcc(pixel_format);
b113d5ee
DL
8073 fb->pixel_format = fourcc;
8074 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
1ad292b5
JB
8075
8076 if (INTEL_INFO(dev)->gen >= 4) {
49af449b 8077 if (plane_config->tiling)
1ad292b5
JB
8078 offset = I915_READ(DSPTILEOFF(plane));
8079 else
8080 offset = I915_READ(DSPLINOFF(plane));
8081 base = I915_READ(DSPSURF(plane)) & 0xfffff000;
8082 } else {
8083 base = I915_READ(DSPADDR(plane));
8084 }
8085 plane_config->base = base;
8086
8087 val = I915_READ(PIPESRC(pipe));
b113d5ee
DL
8088 fb->width = ((val >> 16) & 0xfff) + 1;
8089 fb->height = ((val >> 0) & 0xfff) + 1;
1ad292b5
JB
8090
8091 val = I915_READ(DSPSTRIDE(pipe));
b113d5ee 8092 fb->pitches[0] = val & 0xffffffc0;
1ad292b5 8093
b113d5ee 8094 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
8095 fb->pixel_format,
8096 fb->modifier[0]);
1ad292b5 8097
f37b5c2b 8098 plane_config->size = fb->pitches[0] * aligned_height;
1ad292b5 8099
2844a921
DL
8100 DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8101 pipe_name(pipe), plane, fb->width, fb->height,
8102 fb->bits_per_pixel, base, fb->pitches[0],
8103 plane_config->size);
1ad292b5 8104
2d14030b 8105 plane_config->fb = intel_fb;
1ad292b5
JB
8106}
8107
70b23a98 8108static void chv_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 8109 struct intel_crtc_state *pipe_config)
70b23a98
VS
8110{
8111 struct drm_device *dev = crtc->base.dev;
8112 struct drm_i915_private *dev_priv = dev->dev_private;
8113 int pipe = pipe_config->cpu_transcoder;
8114 enum dpio_channel port = vlv_pipe_to_channel(pipe);
9e2c8475 8115 struct dpll clock;
0d7b6b11 8116 u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
70b23a98
VS
8117 int refclk = 100000;
8118
b521973b
VS
8119 /* In case of DSI, DPLL will not be used */
8120 if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8121 return;
8122
a580516d 8123 mutex_lock(&dev_priv->sb_lock);
70b23a98
VS
8124 cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8125 pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8126 pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8127 pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
0d7b6b11 8128 pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
a580516d 8129 mutex_unlock(&dev_priv->sb_lock);
70b23a98
VS
8130
8131 clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
0d7b6b11
ID
8132 clock.m2 = (pll_dw0 & 0xff) << 22;
8133 if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8134 clock.m2 |= pll_dw2 & 0x3fffff;
70b23a98
VS
8135 clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8136 clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8137 clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8138
dccbea3b 8139 pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
70b23a98
VS
8140}
8141
0e8ffe1b 8142static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
5cec258b 8143 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
8144{
8145 struct drm_device *dev = crtc->base.dev;
8146 struct drm_i915_private *dev_priv = dev->dev_private;
1729050e 8147 enum intel_display_power_domain power_domain;
0e8ffe1b 8148 uint32_t tmp;
1729050e 8149 bool ret;
0e8ffe1b 8150
1729050e
ID
8151 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
8152 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
b5482bd0
ID
8153 return false;
8154
e143a21c 8155 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8106ddbd 8156 pipe_config->shared_dpll = NULL;
eccb140b 8157
1729050e
ID
8158 ret = false;
8159
0e8ffe1b
DV
8160 tmp = I915_READ(PIPECONF(crtc->pipe));
8161 if (!(tmp & PIPECONF_ENABLE))
1729050e 8162 goto out;
0e8ffe1b 8163
666a4537 8164 if (IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
42571aef
VS
8165 switch (tmp & PIPECONF_BPC_MASK) {
8166 case PIPECONF_6BPC:
8167 pipe_config->pipe_bpp = 18;
8168 break;
8169 case PIPECONF_8BPC:
8170 pipe_config->pipe_bpp = 24;
8171 break;
8172 case PIPECONF_10BPC:
8173 pipe_config->pipe_bpp = 30;
8174 break;
8175 default:
8176 break;
8177 }
8178 }
8179
666a4537
WB
8180 if ((IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) &&
8181 (tmp & PIPECONF_COLOR_RANGE_SELECT))
b5a9fa09
DV
8182 pipe_config->limited_color_range = true;
8183
282740f7
VS
8184 if (INTEL_INFO(dev)->gen < 4)
8185 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8186
1bd1bd80 8187 intel_get_pipe_timings(crtc, pipe_config);
bc58be60 8188 intel_get_pipe_src_size(crtc, pipe_config);
1bd1bd80 8189
2fa2fe9a
DV
8190 i9xx_get_pfit_config(crtc, pipe_config);
8191
6c49f241 8192 if (INTEL_INFO(dev)->gen >= 4) {
c231775c
VS
8193 /* No way to read it out on pipes B and C */
8194 if (IS_CHERRYVIEW(dev) && crtc->pipe != PIPE_A)
8195 tmp = dev_priv->chv_dpll_md[crtc->pipe];
8196 else
8197 tmp = I915_READ(DPLL_MD(crtc->pipe));
6c49f241
DV
8198 pipe_config->pixel_multiplier =
8199 ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8200 >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8bcc2795 8201 pipe_config->dpll_hw_state.dpll_md = tmp;
6c49f241
DV
8202 } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
8203 tmp = I915_READ(DPLL(crtc->pipe));
8204 pipe_config->pixel_multiplier =
8205 ((tmp & SDVO_MULTIPLIER_MASK)
8206 >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8207 } else {
8208 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8209 * port and will be fixed up in the encoder->get_config
8210 * function. */
8211 pipe_config->pixel_multiplier = 1;
8212 }
8bcc2795 8213 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
666a4537 8214 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
1c4e0274
VS
8215 /*
8216 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
8217 * on 830. Filter it out here so that we don't
8218 * report errors due to that.
8219 */
8220 if (IS_I830(dev))
8221 pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
8222
8bcc2795
DV
8223 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8224 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
165e901c
VS
8225 } else {
8226 /* Mask out read-only status bits. */
8227 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8228 DPLL_PORTC_READY_MASK |
8229 DPLL_PORTB_READY_MASK);
8bcc2795 8230 }
6c49f241 8231
70b23a98
VS
8232 if (IS_CHERRYVIEW(dev))
8233 chv_crtc_clock_get(crtc, pipe_config);
8234 else if (IS_VALLEYVIEW(dev))
acbec814
JB
8235 vlv_crtc_clock_get(crtc, pipe_config);
8236 else
8237 i9xx_crtc_clock_get(crtc, pipe_config);
18442d08 8238
0f64614d
VS
8239 /*
8240 * Normally the dotclock is filled in by the encoder .get_config()
8241 * but in case the pipe is enabled w/o any ports we need a sane
8242 * default.
8243 */
8244 pipe_config->base.adjusted_mode.crtc_clock =
8245 pipe_config->port_clock / pipe_config->pixel_multiplier;
8246
1729050e
ID
8247 ret = true;
8248
8249out:
8250 intel_display_power_put(dev_priv, power_domain);
8251
8252 return ret;
0e8ffe1b
DV
8253}
8254
dde86e2d 8255static void ironlake_init_pch_refclk(struct drm_device *dev)
13d83a67
JB
8256{
8257 struct drm_i915_private *dev_priv = dev->dev_private;
13d83a67 8258 struct intel_encoder *encoder;
74cfd7ac 8259 u32 val, final;
13d83a67 8260 bool has_lvds = false;
199e5d79 8261 bool has_cpu_edp = false;
199e5d79 8262 bool has_panel = false;
99eb6a01
KP
8263 bool has_ck505 = false;
8264 bool can_ssc = false;
13d83a67
JB
8265
8266 /* We need to take the global config into account */
b2784e15 8267 for_each_intel_encoder(dev, encoder) {
199e5d79
KP
8268 switch (encoder->type) {
8269 case INTEL_OUTPUT_LVDS:
8270 has_panel = true;
8271 has_lvds = true;
8272 break;
8273 case INTEL_OUTPUT_EDP:
8274 has_panel = true;
2de6905f 8275 if (enc_to_dig_port(&encoder->base)->port == PORT_A)
199e5d79
KP
8276 has_cpu_edp = true;
8277 break;
6847d71b
PZ
8278 default:
8279 break;
13d83a67
JB
8280 }
8281 }
8282
99eb6a01 8283 if (HAS_PCH_IBX(dev)) {
41aa3448 8284 has_ck505 = dev_priv->vbt.display_clock_mode;
99eb6a01
KP
8285 can_ssc = has_ck505;
8286 } else {
8287 has_ck505 = false;
8288 can_ssc = true;
8289 }
8290
2de6905f
ID
8291 DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
8292 has_panel, has_lvds, has_ck505);
13d83a67
JB
8293
8294 /* Ironlake: try to setup display ref clock before DPLL
8295 * enabling. This is only under driver's control after
8296 * PCH B stepping, previous chipset stepping should be
8297 * ignoring this setting.
8298 */
74cfd7ac
CW
8299 val = I915_READ(PCH_DREF_CONTROL);
8300
8301 /* As we must carefully and slowly disable/enable each source in turn,
8302 * compute the final state we want first and check if we need to
8303 * make any changes at all.
8304 */
8305 final = val;
8306 final &= ~DREF_NONSPREAD_SOURCE_MASK;
8307 if (has_ck505)
8308 final |= DREF_NONSPREAD_CK505_ENABLE;
8309 else
8310 final |= DREF_NONSPREAD_SOURCE_ENABLE;
8311
8312 final &= ~DREF_SSC_SOURCE_MASK;
8313 final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8314 final &= ~DREF_SSC1_ENABLE;
8315
8316 if (has_panel) {
8317 final |= DREF_SSC_SOURCE_ENABLE;
8318
8319 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8320 final |= DREF_SSC1_ENABLE;
8321
8322 if (has_cpu_edp) {
8323 if (intel_panel_use_ssc(dev_priv) && can_ssc)
8324 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8325 else
8326 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8327 } else
8328 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8329 } else {
8330 final |= DREF_SSC_SOURCE_DISABLE;
8331 final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8332 }
8333
8334 if (final == val)
8335 return;
8336
13d83a67 8337 /* Always enable nonspread source */
74cfd7ac 8338 val &= ~DREF_NONSPREAD_SOURCE_MASK;
13d83a67 8339
99eb6a01 8340 if (has_ck505)
74cfd7ac 8341 val |= DREF_NONSPREAD_CK505_ENABLE;
99eb6a01 8342 else
74cfd7ac 8343 val |= DREF_NONSPREAD_SOURCE_ENABLE;
13d83a67 8344
199e5d79 8345 if (has_panel) {
74cfd7ac
CW
8346 val &= ~DREF_SSC_SOURCE_MASK;
8347 val |= DREF_SSC_SOURCE_ENABLE;
13d83a67 8348
199e5d79 8349 /* SSC must be turned on before enabling the CPU output */
99eb6a01 8350 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 8351 DRM_DEBUG_KMS("Using SSC on panel\n");
74cfd7ac 8352 val |= DREF_SSC1_ENABLE;
e77166b5 8353 } else
74cfd7ac 8354 val &= ~DREF_SSC1_ENABLE;
199e5d79
KP
8355
8356 /* Get SSC going before enabling the outputs */
74cfd7ac 8357 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
8358 POSTING_READ(PCH_DREF_CONTROL);
8359 udelay(200);
8360
74cfd7ac 8361 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
13d83a67
JB
8362
8363 /* Enable CPU source on CPU attached eDP */
199e5d79 8364 if (has_cpu_edp) {
99eb6a01 8365 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
199e5d79 8366 DRM_DEBUG_KMS("Using SSC on eDP\n");
74cfd7ac 8367 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
eba905b2 8368 } else
74cfd7ac 8369 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
199e5d79 8370 } else
74cfd7ac 8371 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 8372
74cfd7ac 8373 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
8374 POSTING_READ(PCH_DREF_CONTROL);
8375 udelay(200);
8376 } else {
8377 DRM_DEBUG_KMS("Disabling SSC entirely\n");
8378
74cfd7ac 8379 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
199e5d79
KP
8380
8381 /* Turn off CPU output */
74cfd7ac 8382 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
199e5d79 8383
74cfd7ac 8384 I915_WRITE(PCH_DREF_CONTROL, val);
199e5d79
KP
8385 POSTING_READ(PCH_DREF_CONTROL);
8386 udelay(200);
8387
8388 /* Turn off the SSC source */
74cfd7ac
CW
8389 val &= ~DREF_SSC_SOURCE_MASK;
8390 val |= DREF_SSC_SOURCE_DISABLE;
199e5d79
KP
8391
8392 /* Turn off SSC1 */
74cfd7ac 8393 val &= ~DREF_SSC1_ENABLE;
199e5d79 8394
74cfd7ac 8395 I915_WRITE(PCH_DREF_CONTROL, val);
13d83a67
JB
8396 POSTING_READ(PCH_DREF_CONTROL);
8397 udelay(200);
8398 }
74cfd7ac
CW
8399
8400 BUG_ON(val != final);
13d83a67
JB
8401}
8402
f31f2d55 8403static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
dde86e2d 8404{
f31f2d55 8405 uint32_t tmp;
dde86e2d 8406
0ff066a9
PZ
8407 tmp = I915_READ(SOUTH_CHICKEN2);
8408 tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8409 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 8410
0ff066a9
PZ
8411 if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
8412 FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8413 DRM_ERROR("FDI mPHY reset assert timeout\n");
dde86e2d 8414
0ff066a9
PZ
8415 tmp = I915_READ(SOUTH_CHICKEN2);
8416 tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8417 I915_WRITE(SOUTH_CHICKEN2, tmp);
dde86e2d 8418
0ff066a9
PZ
8419 if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
8420 FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8421 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
f31f2d55
PZ
8422}
8423
8424/* WaMPhyProgramming:hsw */
8425static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8426{
8427 uint32_t tmp;
dde86e2d
PZ
8428
8429 tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8430 tmp &= ~(0xFF << 24);
8431 tmp |= (0x12 << 24);
8432 intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8433
dde86e2d
PZ
8434 tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8435 tmp |= (1 << 11);
8436 intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8437
8438 tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8439 tmp |= (1 << 11);
8440 intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8441
dde86e2d
PZ
8442 tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8443 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8444 intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8445
8446 tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8447 tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8448 intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8449
0ff066a9
PZ
8450 tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8451 tmp &= ~(7 << 13);
8452 tmp |= (5 << 13);
8453 intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
dde86e2d 8454
0ff066a9
PZ
8455 tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8456 tmp &= ~(7 << 13);
8457 tmp |= (5 << 13);
8458 intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
dde86e2d
PZ
8459
8460 tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8461 tmp &= ~0xFF;
8462 tmp |= 0x1C;
8463 intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8464
8465 tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8466 tmp &= ~0xFF;
8467 tmp |= 0x1C;
8468 intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8469
8470 tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8471 tmp &= ~(0xFF << 16);
8472 tmp |= (0x1C << 16);
8473 intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8474
8475 tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8476 tmp &= ~(0xFF << 16);
8477 tmp |= (0x1C << 16);
8478 intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8479
0ff066a9
PZ
8480 tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8481 tmp |= (1 << 27);
8482 intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
dde86e2d 8483
0ff066a9
PZ
8484 tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8485 tmp |= (1 << 27);
8486 intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
dde86e2d 8487
0ff066a9
PZ
8488 tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8489 tmp &= ~(0xF << 28);
8490 tmp |= (4 << 28);
8491 intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
dde86e2d 8492
0ff066a9
PZ
8493 tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8494 tmp &= ~(0xF << 28);
8495 tmp |= (4 << 28);
8496 intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
f31f2d55
PZ
8497}
8498
2fa86a1f
PZ
8499/* Implements 3 different sequences from BSpec chapter "Display iCLK
8500 * Programming" based on the parameters passed:
8501 * - Sequence to enable CLKOUT_DP
8502 * - Sequence to enable CLKOUT_DP without spread
8503 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8504 */
8505static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8506 bool with_fdi)
f31f2d55
PZ
8507{
8508 struct drm_i915_private *dev_priv = dev->dev_private;
2fa86a1f
PZ
8509 uint32_t reg, tmp;
8510
8511 if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8512 with_spread = true;
c2699524 8513 if (WARN(HAS_PCH_LPT_LP(dev) && with_fdi, "LP PCH doesn't have FDI\n"))
2fa86a1f 8514 with_fdi = false;
f31f2d55 8515
a580516d 8516 mutex_lock(&dev_priv->sb_lock);
f31f2d55
PZ
8517
8518 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8519 tmp &= ~SBI_SSCCTL_DISABLE;
8520 tmp |= SBI_SSCCTL_PATHALT;
8521 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8522
8523 udelay(24);
8524
2fa86a1f
PZ
8525 if (with_spread) {
8526 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8527 tmp &= ~SBI_SSCCTL_PATHALT;
8528 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
f31f2d55 8529
2fa86a1f
PZ
8530 if (with_fdi) {
8531 lpt_reset_fdi_mphy(dev_priv);
8532 lpt_program_fdi_mphy(dev_priv);
8533 }
8534 }
dde86e2d 8535
c2699524 8536 reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
2fa86a1f
PZ
8537 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8538 tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8539 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
c00db246 8540
a580516d 8541 mutex_unlock(&dev_priv->sb_lock);
dde86e2d
PZ
8542}
8543
47701c3b
PZ
8544/* Sequence to disable CLKOUT_DP */
8545static void lpt_disable_clkout_dp(struct drm_device *dev)
8546{
8547 struct drm_i915_private *dev_priv = dev->dev_private;
8548 uint32_t reg, tmp;
8549
a580516d 8550 mutex_lock(&dev_priv->sb_lock);
47701c3b 8551
c2699524 8552 reg = HAS_PCH_LPT_LP(dev) ? SBI_GEN0 : SBI_DBUFF0;
47701c3b
PZ
8553 tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8554 tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8555 intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8556
8557 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8558 if (!(tmp & SBI_SSCCTL_DISABLE)) {
8559 if (!(tmp & SBI_SSCCTL_PATHALT)) {
8560 tmp |= SBI_SSCCTL_PATHALT;
8561 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8562 udelay(32);
8563 }
8564 tmp |= SBI_SSCCTL_DISABLE;
8565 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8566 }
8567
a580516d 8568 mutex_unlock(&dev_priv->sb_lock);
47701c3b
PZ
8569}
8570
f7be2c21
VS
8571#define BEND_IDX(steps) ((50 + (steps)) / 5)
8572
8573static const uint16_t sscdivintphase[] = {
8574 [BEND_IDX( 50)] = 0x3B23,
8575 [BEND_IDX( 45)] = 0x3B23,
8576 [BEND_IDX( 40)] = 0x3C23,
8577 [BEND_IDX( 35)] = 0x3C23,
8578 [BEND_IDX( 30)] = 0x3D23,
8579 [BEND_IDX( 25)] = 0x3D23,
8580 [BEND_IDX( 20)] = 0x3E23,
8581 [BEND_IDX( 15)] = 0x3E23,
8582 [BEND_IDX( 10)] = 0x3F23,
8583 [BEND_IDX( 5)] = 0x3F23,
8584 [BEND_IDX( 0)] = 0x0025,
8585 [BEND_IDX( -5)] = 0x0025,
8586 [BEND_IDX(-10)] = 0x0125,
8587 [BEND_IDX(-15)] = 0x0125,
8588 [BEND_IDX(-20)] = 0x0225,
8589 [BEND_IDX(-25)] = 0x0225,
8590 [BEND_IDX(-30)] = 0x0325,
8591 [BEND_IDX(-35)] = 0x0325,
8592 [BEND_IDX(-40)] = 0x0425,
8593 [BEND_IDX(-45)] = 0x0425,
8594 [BEND_IDX(-50)] = 0x0525,
8595};
8596
8597/*
8598 * Bend CLKOUT_DP
8599 * steps -50 to 50 inclusive, in steps of 5
8600 * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
8601 * change in clock period = -(steps / 10) * 5.787 ps
8602 */
8603static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
8604{
8605 uint32_t tmp;
8606 int idx = BEND_IDX(steps);
8607
8608 if (WARN_ON(steps % 5 != 0))
8609 return;
8610
8611 if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
8612 return;
8613
8614 mutex_lock(&dev_priv->sb_lock);
8615
8616 if (steps % 10 != 0)
8617 tmp = 0xAAAAAAAB;
8618 else
8619 tmp = 0x00000000;
8620 intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
8621
8622 tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
8623 tmp &= 0xffff0000;
8624 tmp |= sscdivintphase[idx];
8625 intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
8626
8627 mutex_unlock(&dev_priv->sb_lock);
8628}
8629
8630#undef BEND_IDX
8631
bf8fa3d3
PZ
8632static void lpt_init_pch_refclk(struct drm_device *dev)
8633{
bf8fa3d3
PZ
8634 struct intel_encoder *encoder;
8635 bool has_vga = false;
8636
b2784e15 8637 for_each_intel_encoder(dev, encoder) {
bf8fa3d3
PZ
8638 switch (encoder->type) {
8639 case INTEL_OUTPUT_ANALOG:
8640 has_vga = true;
8641 break;
6847d71b
PZ
8642 default:
8643 break;
bf8fa3d3
PZ
8644 }
8645 }
8646
f7be2c21
VS
8647 if (has_vga) {
8648 lpt_bend_clkout_dp(to_i915(dev), 0);
47701c3b 8649 lpt_enable_clkout_dp(dev, true, true);
f7be2c21 8650 } else {
47701c3b 8651 lpt_disable_clkout_dp(dev);
f7be2c21 8652 }
bf8fa3d3
PZ
8653}
8654
dde86e2d
PZ
8655/*
8656 * Initialize reference clocks when the driver loads
8657 */
8658void intel_init_pch_refclk(struct drm_device *dev)
8659{
8660 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8661 ironlake_init_pch_refclk(dev);
8662 else if (HAS_PCH_LPT(dev))
8663 lpt_init_pch_refclk(dev);
8664}
8665
6ff93609 8666static void ironlake_set_pipeconf(struct drm_crtc *crtc)
79e53945 8667{
c8203565 8668 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
79e53945
JB
8669 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8670 int pipe = intel_crtc->pipe;
c8203565
PZ
8671 uint32_t val;
8672
78114071 8673 val = 0;
c8203565 8674
6e3c9717 8675 switch (intel_crtc->config->pipe_bpp) {
c8203565 8676 case 18:
dfd07d72 8677 val |= PIPECONF_6BPC;
c8203565
PZ
8678 break;
8679 case 24:
dfd07d72 8680 val |= PIPECONF_8BPC;
c8203565
PZ
8681 break;
8682 case 30:
dfd07d72 8683 val |= PIPECONF_10BPC;
c8203565
PZ
8684 break;
8685 case 36:
dfd07d72 8686 val |= PIPECONF_12BPC;
c8203565
PZ
8687 break;
8688 default:
cc769b62
PZ
8689 /* Case prevented by intel_choose_pipe_bpp_dither. */
8690 BUG();
c8203565
PZ
8691 }
8692
6e3c9717 8693 if (intel_crtc->config->dither)
c8203565
PZ
8694 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8695
6e3c9717 8696 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
c8203565
PZ
8697 val |= PIPECONF_INTERLACED_ILK;
8698 else
8699 val |= PIPECONF_PROGRESSIVE;
8700
6e3c9717 8701 if (intel_crtc->config->limited_color_range)
3685a8f3 8702 val |= PIPECONF_COLOR_RANGE_SELECT;
3685a8f3 8703
c8203565
PZ
8704 I915_WRITE(PIPECONF(pipe), val);
8705 POSTING_READ(PIPECONF(pipe));
8706}
8707
6ff93609 8708static void haswell_set_pipeconf(struct drm_crtc *crtc)
ee2b0b38 8709{
391bf048 8710 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
ee2b0b38 8711 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6e3c9717 8712 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
391bf048 8713 u32 val = 0;
ee2b0b38 8714
391bf048 8715 if (IS_HASWELL(dev_priv) && intel_crtc->config->dither)
ee2b0b38
PZ
8716 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8717
6e3c9717 8718 if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
ee2b0b38
PZ
8719 val |= PIPECONF_INTERLACED_ILK;
8720 else
8721 val |= PIPECONF_PROGRESSIVE;
8722
702e7a56
PZ
8723 I915_WRITE(PIPECONF(cpu_transcoder), val);
8724 POSTING_READ(PIPECONF(cpu_transcoder));
391bf048
JN
8725}
8726
391bf048
JN
8727static void haswell_set_pipemisc(struct drm_crtc *crtc)
8728{
8729 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8730 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
756f85cf 8731
391bf048
JN
8732 if (IS_BROADWELL(dev_priv) || INTEL_INFO(dev_priv)->gen >= 9) {
8733 u32 val = 0;
756f85cf 8734
6e3c9717 8735 switch (intel_crtc->config->pipe_bpp) {
756f85cf
PZ
8736 case 18:
8737 val |= PIPEMISC_DITHER_6_BPC;
8738 break;
8739 case 24:
8740 val |= PIPEMISC_DITHER_8_BPC;
8741 break;
8742 case 30:
8743 val |= PIPEMISC_DITHER_10_BPC;
8744 break;
8745 case 36:
8746 val |= PIPEMISC_DITHER_12_BPC;
8747 break;
8748 default:
8749 /* Case prevented by pipe_config_set_bpp. */
8750 BUG();
8751 }
8752
6e3c9717 8753 if (intel_crtc->config->dither)
756f85cf
PZ
8754 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8755
391bf048 8756 I915_WRITE(PIPEMISC(intel_crtc->pipe), val);
756f85cf 8757 }
ee2b0b38
PZ
8758}
8759
d4b1931c
PZ
8760int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8761{
8762 /*
8763 * Account for spread spectrum to avoid
8764 * oversubscribing the link. Max center spread
8765 * is 2.5%; use 5% for safety's sake.
8766 */
8767 u32 bps = target_clock * bpp * 21 / 20;
619d4d04 8768 return DIV_ROUND_UP(bps, link_bw * 8);
d4b1931c
PZ
8769}
8770
7429e9d4 8771static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
6cf86a5e 8772{
7429e9d4 8773 return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
f48d8f23
PZ
8774}
8775
b75ca6f6
ACO
8776static void ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8777 struct intel_crtc_state *crtc_state,
9e2c8475 8778 struct dpll *reduced_clock)
79e53945 8779{
de13a2e3 8780 struct drm_crtc *crtc = &intel_crtc->base;
79e53945
JB
8781 struct drm_device *dev = crtc->dev;
8782 struct drm_i915_private *dev_priv = dev->dev_private;
55bb9992 8783 struct drm_atomic_state *state = crtc_state->base.state;
da3ced29 8784 struct drm_connector *connector;
55bb9992
ACO
8785 struct drm_connector_state *connector_state;
8786 struct intel_encoder *encoder;
b75ca6f6 8787 u32 dpll, fp, fp2;
ceb41007 8788 int factor, i;
09ede541 8789 bool is_lvds = false, is_sdvo = false;
79e53945 8790
da3ced29 8791 for_each_connector_in_state(state, connector, connector_state, i) {
55bb9992
ACO
8792 if (connector_state->crtc != crtc_state->base.crtc)
8793 continue;
8794
8795 encoder = to_intel_encoder(connector_state->best_encoder);
8796
8797 switch (encoder->type) {
79e53945
JB
8798 case INTEL_OUTPUT_LVDS:
8799 is_lvds = true;
8800 break;
8801 case INTEL_OUTPUT_SDVO:
7d57382e 8802 case INTEL_OUTPUT_HDMI:
79e53945 8803 is_sdvo = true;
79e53945 8804 break;
6847d71b
PZ
8805 default:
8806 break;
79e53945
JB
8807 }
8808 }
79e53945 8809
c1858123 8810 /* Enable autotuning of the PLL clock (if permissible) */
8febb297
EA
8811 factor = 21;
8812 if (is_lvds) {
8813 if ((intel_panel_use_ssc(dev_priv) &&
e91e941b 8814 dev_priv->vbt.lvds_ssc_freq == 100000) ||
f0b44056 8815 (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8febb297 8816 factor = 25;
190f68c5 8817 } else if (crtc_state->sdvo_tv_clock)
8febb297 8818 factor = 20;
c1858123 8819
b75ca6f6
ACO
8820 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8821
190f68c5 8822 if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
b75ca6f6
ACO
8823 fp |= FP_CB_TUNE;
8824
8825 if (reduced_clock) {
8826 fp2 = i9xx_dpll_compute_fp(reduced_clock);
2c07245f 8827
b75ca6f6
ACO
8828 if (reduced_clock->m < factor * reduced_clock->n)
8829 fp2 |= FP_CB_TUNE;
8830 } else {
8831 fp2 = fp;
8832 }
9a7c7890 8833
5eddb70b 8834 dpll = 0;
2c07245f 8835
a07d6787
EA
8836 if (is_lvds)
8837 dpll |= DPLLB_MODE_LVDS;
8838 else
8839 dpll |= DPLLB_MODE_DAC_SERIAL;
198a037f 8840
190f68c5 8841 dpll |= (crtc_state->pixel_multiplier - 1)
ef1b460d 8842 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
198a037f
DV
8843
8844 if (is_sdvo)
4a33e48d 8845 dpll |= DPLL_SDVO_HIGH_SPEED;
190f68c5 8846 if (crtc_state->has_dp_encoder)
4a33e48d 8847 dpll |= DPLL_SDVO_HIGH_SPEED;
79e53945 8848
a07d6787 8849 /* compute bitmask from p1 value */
190f68c5 8850 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
a07d6787 8851 /* also FPA1 */
190f68c5 8852 dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
a07d6787 8853
190f68c5 8854 switch (crtc_state->dpll.p2) {
a07d6787
EA
8855 case 5:
8856 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8857 break;
8858 case 7:
8859 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8860 break;
8861 case 10:
8862 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8863 break;
8864 case 14:
8865 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8866 break;
79e53945
JB
8867 }
8868
ceb41007 8869 if (is_lvds && intel_panel_use_ssc(dev_priv))
43565a06 8870 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
79e53945
JB
8871 else
8872 dpll |= PLL_REF_INPUT_DREFCLK;
8873
b75ca6f6
ACO
8874 dpll |= DPLL_VCO_ENABLE;
8875
8876 crtc_state->dpll_hw_state.dpll = dpll;
8877 crtc_state->dpll_hw_state.fp0 = fp;
8878 crtc_state->dpll_hw_state.fp1 = fp2;
de13a2e3
PZ
8879}
8880
190f68c5
ACO
8881static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8882 struct intel_crtc_state *crtc_state)
de13a2e3 8883{
997c030c
ACO
8884 struct drm_device *dev = crtc->base.dev;
8885 struct drm_i915_private *dev_priv = dev->dev_private;
9e2c8475 8886 struct dpll reduced_clock;
7ed9f894 8887 bool has_reduced_clock = false;
e2b78267 8888 struct intel_shared_dpll *pll;
1b6f4958 8889 const struct intel_limit *limit;
997c030c 8890 int refclk = 120000;
de13a2e3 8891
dd3cd74a
ACO
8892 memset(&crtc_state->dpll_hw_state, 0,
8893 sizeof(crtc_state->dpll_hw_state));
8894
ded220e2
ACO
8895 crtc->lowfreq_avail = false;
8896
8897 /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8898 if (!crtc_state->has_pch_encoder)
8899 return 0;
79e53945 8900
997c030c
ACO
8901 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8902 if (intel_panel_use_ssc(dev_priv)) {
8903 DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8904 dev_priv->vbt.lvds_ssc_freq);
8905 refclk = dev_priv->vbt.lvds_ssc_freq;
8906 }
8907
8908 if (intel_is_dual_link_lvds(dev)) {
8909 if (refclk == 100000)
8910 limit = &intel_limits_ironlake_dual_lvds_100m;
8911 else
8912 limit = &intel_limits_ironlake_dual_lvds;
8913 } else {
8914 if (refclk == 100000)
8915 limit = &intel_limits_ironlake_single_lvds_100m;
8916 else
8917 limit = &intel_limits_ironlake_single_lvds;
8918 }
8919 } else {
8920 limit = &intel_limits_ironlake_dac;
8921 }
8922
364ee29d 8923 if (!crtc_state->clock_set &&
997c030c
ACO
8924 !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8925 refclk, NULL, &crtc_state->dpll)) {
364ee29d
ACO
8926 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8927 return -EINVAL;
f47709a9 8928 }
79e53945 8929
b75ca6f6
ACO
8930 ironlake_compute_dpll(crtc, crtc_state,
8931 has_reduced_clock ? &reduced_clock : NULL);
66e985c0 8932
ded220e2
ACO
8933 pll = intel_get_shared_dpll(crtc, crtc_state, NULL);
8934 if (pll == NULL) {
8935 DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8936 pipe_name(crtc->pipe));
8937 return -EINVAL;
3fb37703 8938 }
79e53945 8939
ded220e2
ACO
8940 if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8941 has_reduced_clock)
c7653199 8942 crtc->lowfreq_avail = true;
e2b78267 8943
c8f7a0db 8944 return 0;
79e53945
JB
8945}
8946
eb14cb74
VS
8947static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8948 struct intel_link_m_n *m_n)
8949{
8950 struct drm_device *dev = crtc->base.dev;
8951 struct drm_i915_private *dev_priv = dev->dev_private;
8952 enum pipe pipe = crtc->pipe;
8953
8954 m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8955 m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8956 m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8957 & ~TU_SIZE_MASK;
8958 m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8959 m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8960 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8961}
8962
8963static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
8964 enum transcoder transcoder,
b95af8be
VK
8965 struct intel_link_m_n *m_n,
8966 struct intel_link_m_n *m2_n2)
72419203
DV
8967{
8968 struct drm_device *dev = crtc->base.dev;
8969 struct drm_i915_private *dev_priv = dev->dev_private;
eb14cb74 8970 enum pipe pipe = crtc->pipe;
72419203 8971
eb14cb74
VS
8972 if (INTEL_INFO(dev)->gen >= 5) {
8973 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
8974 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
8975 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
8976 & ~TU_SIZE_MASK;
8977 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
8978 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
8979 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
b95af8be
VK
8980 /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
8981 * gen < 8) and if DRRS is supported (to make sure the
8982 * registers are not unnecessarily read).
8983 */
8984 if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
6e3c9717 8985 crtc->config->has_drrs) {
b95af8be
VK
8986 m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
8987 m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
8988 m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
8989 & ~TU_SIZE_MASK;
8990 m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
8991 m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
8992 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8993 }
eb14cb74
VS
8994 } else {
8995 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
8996 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
8997 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
8998 & ~TU_SIZE_MASK;
8999 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9000 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9001 & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9002 }
9003}
9004
9005void intel_dp_get_m_n(struct intel_crtc *crtc,
5cec258b 9006 struct intel_crtc_state *pipe_config)
eb14cb74 9007{
681a8504 9008 if (pipe_config->has_pch_encoder)
eb14cb74
VS
9009 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9010 else
9011 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be
VK
9012 &pipe_config->dp_m_n,
9013 &pipe_config->dp_m2_n2);
eb14cb74 9014}
72419203 9015
eb14cb74 9016static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
5cec258b 9017 struct intel_crtc_state *pipe_config)
eb14cb74
VS
9018{
9019 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
b95af8be 9020 &pipe_config->fdi_m_n, NULL);
72419203
DV
9021}
9022
bd2e244f 9023static void skylake_get_pfit_config(struct intel_crtc *crtc,
5cec258b 9024 struct intel_crtc_state *pipe_config)
bd2e244f
JB
9025{
9026 struct drm_device *dev = crtc->base.dev;
9027 struct drm_i915_private *dev_priv = dev->dev_private;
a1b2278e
CK
9028 struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9029 uint32_t ps_ctrl = 0;
9030 int id = -1;
9031 int i;
bd2e244f 9032
a1b2278e
CK
9033 /* find scaler attached to this pipe */
9034 for (i = 0; i < crtc->num_scalers; i++) {
9035 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9036 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9037 id = i;
9038 pipe_config->pch_pfit.enabled = true;
9039 pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9040 pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9041 break;
9042 }
9043 }
bd2e244f 9044
a1b2278e
CK
9045 scaler_state->scaler_id = id;
9046 if (id >= 0) {
9047 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9048 } else {
9049 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
bd2e244f
JB
9050 }
9051}
9052
5724dbd1
DL
9053static void
9054skylake_get_initial_plane_config(struct intel_crtc *crtc,
9055 struct intel_initial_plane_config *plane_config)
bc8d7dff
DL
9056{
9057 struct drm_device *dev = crtc->base.dev;
9058 struct drm_i915_private *dev_priv = dev->dev_private;
40f46283 9059 u32 val, base, offset, stride_mult, tiling;
bc8d7dff
DL
9060 int pipe = crtc->pipe;
9061 int fourcc, pixel_format;
6761dd31 9062 unsigned int aligned_height;
bc8d7dff 9063 struct drm_framebuffer *fb;
1b842c89 9064 struct intel_framebuffer *intel_fb;
bc8d7dff 9065
d9806c9f 9066 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 9067 if (!intel_fb) {
bc8d7dff
DL
9068 DRM_DEBUG_KMS("failed to alloc fb\n");
9069 return;
9070 }
9071
1b842c89
DL
9072 fb = &intel_fb->base;
9073
bc8d7dff 9074 val = I915_READ(PLANE_CTL(pipe, 0));
42a7b088
DL
9075 if (!(val & PLANE_CTL_ENABLE))
9076 goto error;
9077
bc8d7dff
DL
9078 pixel_format = val & PLANE_CTL_FORMAT_MASK;
9079 fourcc = skl_format_to_fourcc(pixel_format,
9080 val & PLANE_CTL_ORDER_RGBX,
9081 val & PLANE_CTL_ALPHA_MASK);
9082 fb->pixel_format = fourcc;
9083 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9084
40f46283
DL
9085 tiling = val & PLANE_CTL_TILED_MASK;
9086 switch (tiling) {
9087 case PLANE_CTL_TILED_LINEAR:
9088 fb->modifier[0] = DRM_FORMAT_MOD_NONE;
9089 break;
9090 case PLANE_CTL_TILED_X:
9091 plane_config->tiling = I915_TILING_X;
9092 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9093 break;
9094 case PLANE_CTL_TILED_Y:
9095 fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
9096 break;
9097 case PLANE_CTL_TILED_YF:
9098 fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
9099 break;
9100 default:
9101 MISSING_CASE(tiling);
9102 goto error;
9103 }
9104
bc8d7dff
DL
9105 base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
9106 plane_config->base = base;
9107
9108 offset = I915_READ(PLANE_OFFSET(pipe, 0));
9109
9110 val = I915_READ(PLANE_SIZE(pipe, 0));
9111 fb->height = ((val >> 16) & 0xfff) + 1;
9112 fb->width = ((val >> 0) & 0x1fff) + 1;
9113
9114 val = I915_READ(PLANE_STRIDE(pipe, 0));
7b49f948 9115 stride_mult = intel_fb_stride_alignment(dev_priv, fb->modifier[0],
40f46283 9116 fb->pixel_format);
bc8d7dff
DL
9117 fb->pitches[0] = (val & 0x3ff) * stride_mult;
9118
9119 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
9120 fb->pixel_format,
9121 fb->modifier[0]);
bc8d7dff 9122
f37b5c2b 9123 plane_config->size = fb->pitches[0] * aligned_height;
bc8d7dff
DL
9124
9125 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9126 pipe_name(pipe), fb->width, fb->height,
9127 fb->bits_per_pixel, base, fb->pitches[0],
9128 plane_config->size);
9129
2d14030b 9130 plane_config->fb = intel_fb;
bc8d7dff
DL
9131 return;
9132
9133error:
9134 kfree(fb);
9135}
9136
2fa2fe9a 9137static void ironlake_get_pfit_config(struct intel_crtc *crtc,
5cec258b 9138 struct intel_crtc_state *pipe_config)
2fa2fe9a
DV
9139{
9140 struct drm_device *dev = crtc->base.dev;
9141 struct drm_i915_private *dev_priv = dev->dev_private;
9142 uint32_t tmp;
9143
9144 tmp = I915_READ(PF_CTL(crtc->pipe));
9145
9146 if (tmp & PF_ENABLE) {
fd4daa9c 9147 pipe_config->pch_pfit.enabled = true;
2fa2fe9a
DV
9148 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
9149 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
cb8b2a30
DV
9150
9151 /* We currently do not free assignements of panel fitters on
9152 * ivb/hsw (since we don't use the higher upscaling modes which
9153 * differentiates them) so just WARN about this case for now. */
9154 if (IS_GEN7(dev)) {
9155 WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
9156 PF_PIPE_SEL_IVB(crtc->pipe));
9157 }
2fa2fe9a 9158 }
79e53945
JB
9159}
9160
5724dbd1
DL
9161static void
9162ironlake_get_initial_plane_config(struct intel_crtc *crtc,
9163 struct intel_initial_plane_config *plane_config)
4c6baa59
JB
9164{
9165 struct drm_device *dev = crtc->base.dev;
9166 struct drm_i915_private *dev_priv = dev->dev_private;
9167 u32 val, base, offset;
aeee5a49 9168 int pipe = crtc->pipe;
4c6baa59 9169 int fourcc, pixel_format;
6761dd31 9170 unsigned int aligned_height;
b113d5ee 9171 struct drm_framebuffer *fb;
1b842c89 9172 struct intel_framebuffer *intel_fb;
4c6baa59 9173
42a7b088
DL
9174 val = I915_READ(DSPCNTR(pipe));
9175 if (!(val & DISPLAY_PLANE_ENABLE))
9176 return;
9177
d9806c9f 9178 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
1b842c89 9179 if (!intel_fb) {
4c6baa59
JB
9180 DRM_DEBUG_KMS("failed to alloc fb\n");
9181 return;
9182 }
9183
1b842c89
DL
9184 fb = &intel_fb->base;
9185
18c5247e
DV
9186 if (INTEL_INFO(dev)->gen >= 4) {
9187 if (val & DISPPLANE_TILED) {
49af449b 9188 plane_config->tiling = I915_TILING_X;
18c5247e
DV
9189 fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9190 }
9191 }
4c6baa59
JB
9192
9193 pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
b35d63fa 9194 fourcc = i9xx_format_to_fourcc(pixel_format);
b113d5ee
DL
9195 fb->pixel_format = fourcc;
9196 fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
4c6baa59 9197
aeee5a49 9198 base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
4c6baa59 9199 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
aeee5a49 9200 offset = I915_READ(DSPOFFSET(pipe));
4c6baa59 9201 } else {
49af449b 9202 if (plane_config->tiling)
aeee5a49 9203 offset = I915_READ(DSPTILEOFF(pipe));
4c6baa59 9204 else
aeee5a49 9205 offset = I915_READ(DSPLINOFF(pipe));
4c6baa59
JB
9206 }
9207 plane_config->base = base;
9208
9209 val = I915_READ(PIPESRC(pipe));
b113d5ee
DL
9210 fb->width = ((val >> 16) & 0xfff) + 1;
9211 fb->height = ((val >> 0) & 0xfff) + 1;
4c6baa59
JB
9212
9213 val = I915_READ(DSPSTRIDE(pipe));
b113d5ee 9214 fb->pitches[0] = val & 0xffffffc0;
4c6baa59 9215
b113d5ee 9216 aligned_height = intel_fb_align_height(dev, fb->height,
091df6cb
DV
9217 fb->pixel_format,
9218 fb->modifier[0]);
4c6baa59 9219
f37b5c2b 9220 plane_config->size = fb->pitches[0] * aligned_height;
4c6baa59 9221
2844a921
DL
9222 DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9223 pipe_name(pipe), fb->width, fb->height,
9224 fb->bits_per_pixel, base, fb->pitches[0],
9225 plane_config->size);
b113d5ee 9226
2d14030b 9227 plane_config->fb = intel_fb;
4c6baa59
JB
9228}
9229
0e8ffe1b 9230static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
5cec258b 9231 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
9232{
9233 struct drm_device *dev = crtc->base.dev;
9234 struct drm_i915_private *dev_priv = dev->dev_private;
1729050e 9235 enum intel_display_power_domain power_domain;
0e8ffe1b 9236 uint32_t tmp;
1729050e 9237 bool ret;
0e8ffe1b 9238
1729050e
ID
9239 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9240 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
930e8c9e
PZ
9241 return false;
9242
e143a21c 9243 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8106ddbd 9244 pipe_config->shared_dpll = NULL;
eccb140b 9245
1729050e 9246 ret = false;
0e8ffe1b
DV
9247 tmp = I915_READ(PIPECONF(crtc->pipe));
9248 if (!(tmp & PIPECONF_ENABLE))
1729050e 9249 goto out;
0e8ffe1b 9250
42571aef
VS
9251 switch (tmp & PIPECONF_BPC_MASK) {
9252 case PIPECONF_6BPC:
9253 pipe_config->pipe_bpp = 18;
9254 break;
9255 case PIPECONF_8BPC:
9256 pipe_config->pipe_bpp = 24;
9257 break;
9258 case PIPECONF_10BPC:
9259 pipe_config->pipe_bpp = 30;
9260 break;
9261 case PIPECONF_12BPC:
9262 pipe_config->pipe_bpp = 36;
9263 break;
9264 default:
9265 break;
9266 }
9267
b5a9fa09
DV
9268 if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9269 pipe_config->limited_color_range = true;
9270
ab9412ba 9271 if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
66e985c0 9272 struct intel_shared_dpll *pll;
8106ddbd 9273 enum intel_dpll_id pll_id;
66e985c0 9274
88adfff1
DV
9275 pipe_config->has_pch_encoder = true;
9276
627eb5a3
DV
9277 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9278 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9279 FDI_DP_PORT_WIDTH_SHIFT) + 1;
72419203
DV
9280
9281 ironlake_get_fdi_m_n_config(crtc, pipe_config);
6c49f241 9282
2d1fe073 9283 if (HAS_PCH_IBX(dev_priv)) {
d9a7bc67
ID
9284 /*
9285 * The pipe->pch transcoder and pch transcoder->pll
9286 * mapping is fixed.
9287 */
8106ddbd 9288 pll_id = (enum intel_dpll_id) crtc->pipe;
c0d43d62
DV
9289 } else {
9290 tmp = I915_READ(PCH_DPLL_SEL);
9291 if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
8106ddbd 9292 pll_id = DPLL_ID_PCH_PLL_B;
c0d43d62 9293 else
8106ddbd 9294 pll_id= DPLL_ID_PCH_PLL_A;
c0d43d62 9295 }
66e985c0 9296
8106ddbd
ACO
9297 pipe_config->shared_dpll =
9298 intel_get_shared_dpll_by_id(dev_priv, pll_id);
9299 pll = pipe_config->shared_dpll;
66e985c0 9300
2edd6443
ACO
9301 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9302 &pipe_config->dpll_hw_state));
c93f54cf
DV
9303
9304 tmp = pipe_config->dpll_hw_state.dpll;
9305 pipe_config->pixel_multiplier =
9306 ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9307 >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
18442d08
VS
9308
9309 ironlake_pch_clock_get(crtc, pipe_config);
6c49f241
DV
9310 } else {
9311 pipe_config->pixel_multiplier = 1;
627eb5a3
DV
9312 }
9313
1bd1bd80 9314 intel_get_pipe_timings(crtc, pipe_config);
bc58be60 9315 intel_get_pipe_src_size(crtc, pipe_config);
1bd1bd80 9316
2fa2fe9a
DV
9317 ironlake_get_pfit_config(crtc, pipe_config);
9318
1729050e
ID
9319 ret = true;
9320
9321out:
9322 intel_display_power_put(dev_priv, power_domain);
9323
9324 return ret;
0e8ffe1b
DV
9325}
9326
be256dc7
PZ
9327static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9328{
9329 struct drm_device *dev = dev_priv->dev;
be256dc7 9330 struct intel_crtc *crtc;
be256dc7 9331
d3fcc808 9332 for_each_intel_crtc(dev, crtc)
e2c719b7 9333 I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
be256dc7
PZ
9334 pipe_name(crtc->pipe));
9335
e2c719b7
RC
9336 I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9337 I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
01403de3
VS
9338 I915_STATE_WARN(I915_READ(WRPLL_CTL(0)) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9339 I915_STATE_WARN(I915_READ(WRPLL_CTL(1)) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
e2c719b7
RC
9340 I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9341 I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
be256dc7 9342 "CPU PWM1 enabled\n");
c5107b87 9343 if (IS_HASWELL(dev))
e2c719b7 9344 I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
c5107b87 9345 "CPU PWM2 enabled\n");
e2c719b7 9346 I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
be256dc7 9347 "PCH PWM1 enabled\n");
e2c719b7 9348 I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
be256dc7 9349 "Utility pin enabled\n");
e2c719b7 9350 I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
be256dc7 9351
9926ada1
PZ
9352 /*
9353 * In theory we can still leave IRQs enabled, as long as only the HPD
9354 * interrupts remain enabled. We used to check for that, but since it's
9355 * gen-specific and since we only disable LCPLL after we fully disable
9356 * the interrupts, the check below should be enough.
9357 */
e2c719b7 9358 I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
be256dc7
PZ
9359}
9360
9ccd5aeb
PZ
9361static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9362{
9363 struct drm_device *dev = dev_priv->dev;
9364
9365 if (IS_HASWELL(dev))
9366 return I915_READ(D_COMP_HSW);
9367 else
9368 return I915_READ(D_COMP_BDW);
9369}
9370
3c4c9b81
PZ
9371static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9372{
9373 struct drm_device *dev = dev_priv->dev;
9374
9375 if (IS_HASWELL(dev)) {
9376 mutex_lock(&dev_priv->rps.hw_lock);
9377 if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9378 val))
f475dadf 9379 DRM_ERROR("Failed to write to D_COMP\n");
3c4c9b81
PZ
9380 mutex_unlock(&dev_priv->rps.hw_lock);
9381 } else {
9ccd5aeb
PZ
9382 I915_WRITE(D_COMP_BDW, val);
9383 POSTING_READ(D_COMP_BDW);
3c4c9b81 9384 }
be256dc7
PZ
9385}
9386
9387/*
9388 * This function implements pieces of two sequences from BSpec:
9389 * - Sequence for display software to disable LCPLL
9390 * - Sequence for display software to allow package C8+
9391 * The steps implemented here are just the steps that actually touch the LCPLL
9392 * register. Callers should take care of disabling all the display engine
9393 * functions, doing the mode unset, fixing interrupts, etc.
9394 */
6ff58d53
PZ
9395static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9396 bool switch_to_fclk, bool allow_power_down)
be256dc7
PZ
9397{
9398 uint32_t val;
9399
9400 assert_can_disable_lcpll(dev_priv);
9401
9402 val = I915_READ(LCPLL_CTL);
9403
9404 if (switch_to_fclk) {
9405 val |= LCPLL_CD_SOURCE_FCLK;
9406 I915_WRITE(LCPLL_CTL, val);
9407
9408 if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9409 LCPLL_CD_SOURCE_FCLK_DONE, 1))
9410 DRM_ERROR("Switching to FCLK failed\n");
9411
9412 val = I915_READ(LCPLL_CTL);
9413 }
9414
9415 val |= LCPLL_PLL_DISABLE;
9416 I915_WRITE(LCPLL_CTL, val);
9417 POSTING_READ(LCPLL_CTL);
9418
9419 if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9420 DRM_ERROR("LCPLL still locked\n");
9421
9ccd5aeb 9422 val = hsw_read_dcomp(dev_priv);
be256dc7 9423 val |= D_COMP_COMP_DISABLE;
3c4c9b81 9424 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
9425 ndelay(100);
9426
9ccd5aeb
PZ
9427 if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9428 1))
be256dc7
PZ
9429 DRM_ERROR("D_COMP RCOMP still in progress\n");
9430
9431 if (allow_power_down) {
9432 val = I915_READ(LCPLL_CTL);
9433 val |= LCPLL_POWER_DOWN_ALLOW;
9434 I915_WRITE(LCPLL_CTL, val);
9435 POSTING_READ(LCPLL_CTL);
9436 }
9437}
9438
9439/*
9440 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9441 * source.
9442 */
6ff58d53 9443static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
be256dc7
PZ
9444{
9445 uint32_t val;
9446
9447 val = I915_READ(LCPLL_CTL);
9448
9449 if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9450 LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9451 return;
9452
a8a8bd54
PZ
9453 /*
9454 * Make sure we're not on PC8 state before disabling PC8, otherwise
9455 * we'll hang the machine. To prevent PC8 state, just enable force_wake.
a8a8bd54 9456 */
59bad947 9457 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
215733fa 9458
be256dc7
PZ
9459 if (val & LCPLL_POWER_DOWN_ALLOW) {
9460 val &= ~LCPLL_POWER_DOWN_ALLOW;
9461 I915_WRITE(LCPLL_CTL, val);
35d8f2eb 9462 POSTING_READ(LCPLL_CTL);
be256dc7
PZ
9463 }
9464
9ccd5aeb 9465 val = hsw_read_dcomp(dev_priv);
be256dc7
PZ
9466 val |= D_COMP_COMP_FORCE;
9467 val &= ~D_COMP_COMP_DISABLE;
3c4c9b81 9468 hsw_write_dcomp(dev_priv, val);
be256dc7
PZ
9469
9470 val = I915_READ(LCPLL_CTL);
9471 val &= ~LCPLL_PLL_DISABLE;
9472 I915_WRITE(LCPLL_CTL, val);
9473
9474 if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9475 DRM_ERROR("LCPLL not locked yet\n");
9476
9477 if (val & LCPLL_CD_SOURCE_FCLK) {
9478 val = I915_READ(LCPLL_CTL);
9479 val &= ~LCPLL_CD_SOURCE_FCLK;
9480 I915_WRITE(LCPLL_CTL, val);
9481
9482 if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9483 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9484 DRM_ERROR("Switching back to LCPLL failed\n");
9485 }
215733fa 9486
59bad947 9487 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
b6283055 9488 intel_update_cdclk(dev_priv->dev);
be256dc7
PZ
9489}
9490
765dab67
PZ
9491/*
9492 * Package states C8 and deeper are really deep PC states that can only be
9493 * reached when all the devices on the system allow it, so even if the graphics
9494 * device allows PC8+, it doesn't mean the system will actually get to these
9495 * states. Our driver only allows PC8+ when going into runtime PM.
9496 *
9497 * The requirements for PC8+ are that all the outputs are disabled, the power
9498 * well is disabled and most interrupts are disabled, and these are also
9499 * requirements for runtime PM. When these conditions are met, we manually do
9500 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9501 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9502 * hang the machine.
9503 *
9504 * When we really reach PC8 or deeper states (not just when we allow it) we lose
9505 * the state of some registers, so when we come back from PC8+ we need to
9506 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9507 * need to take care of the registers kept by RC6. Notice that this happens even
9508 * if we don't put the device in PCI D3 state (which is what currently happens
9509 * because of the runtime PM support).
9510 *
9511 * For more, read "Display Sequences for Package C8" on the hardware
9512 * documentation.
9513 */
a14cb6fc 9514void hsw_enable_pc8(struct drm_i915_private *dev_priv)
c67a470b 9515{
c67a470b
PZ
9516 struct drm_device *dev = dev_priv->dev;
9517 uint32_t val;
9518
c67a470b
PZ
9519 DRM_DEBUG_KMS("Enabling package C8+\n");
9520
c2699524 9521 if (HAS_PCH_LPT_LP(dev)) {
c67a470b
PZ
9522 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9523 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9524 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9525 }
9526
9527 lpt_disable_clkout_dp(dev);
c67a470b
PZ
9528 hsw_disable_lcpll(dev_priv, true, true);
9529}
9530
a14cb6fc 9531void hsw_disable_pc8(struct drm_i915_private *dev_priv)
c67a470b
PZ
9532{
9533 struct drm_device *dev = dev_priv->dev;
9534 uint32_t val;
9535
c67a470b
PZ
9536 DRM_DEBUG_KMS("Disabling package C8+\n");
9537
9538 hsw_restore_lcpll(dev_priv);
c67a470b
PZ
9539 lpt_init_pch_refclk(dev);
9540
c2699524 9541 if (HAS_PCH_LPT_LP(dev)) {
c67a470b
PZ
9542 val = I915_READ(SOUTH_DSPCLK_GATE_D);
9543 val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9544 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9545 }
c67a470b
PZ
9546}
9547
27c329ed 9548static void broxton_modeset_commit_cdclk(struct drm_atomic_state *old_state)
f8437dd1 9549{
a821fc46 9550 struct drm_device *dev = old_state->dev;
1a617b77
ML
9551 struct intel_atomic_state *old_intel_state =
9552 to_intel_atomic_state(old_state);
9553 unsigned int req_cdclk = old_intel_state->dev_cdclk;
f8437dd1 9554
c6c4696f 9555 broxton_set_cdclk(to_i915(dev), req_cdclk);
f8437dd1
VK
9556}
9557
b432e5cf 9558/* compute the max rate for new configuration */
27c329ed 9559static int ilk_max_pixel_rate(struct drm_atomic_state *state)
b432e5cf 9560{
565602d7
ML
9561 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
9562 struct drm_i915_private *dev_priv = state->dev->dev_private;
9563 struct drm_crtc *crtc;
9564 struct drm_crtc_state *cstate;
27c329ed 9565 struct intel_crtc_state *crtc_state;
565602d7
ML
9566 unsigned max_pixel_rate = 0, i;
9567 enum pipe pipe;
b432e5cf 9568
565602d7
ML
9569 memcpy(intel_state->min_pixclk, dev_priv->min_pixclk,
9570 sizeof(intel_state->min_pixclk));
27c329ed 9571
565602d7
ML
9572 for_each_crtc_in_state(state, crtc, cstate, i) {
9573 int pixel_rate;
27c329ed 9574
565602d7
ML
9575 crtc_state = to_intel_crtc_state(cstate);
9576 if (!crtc_state->base.enable) {
9577 intel_state->min_pixclk[i] = 0;
b432e5cf 9578 continue;
565602d7 9579 }
b432e5cf 9580
27c329ed 9581 pixel_rate = ilk_pipe_pixel_rate(crtc_state);
b432e5cf
VS
9582
9583 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
565602d7 9584 if (IS_BROADWELL(dev_priv) && crtc_state->ips_enabled)
b432e5cf
VS
9585 pixel_rate = DIV_ROUND_UP(pixel_rate * 100, 95);
9586
565602d7 9587 intel_state->min_pixclk[i] = pixel_rate;
b432e5cf
VS
9588 }
9589
565602d7
ML
9590 for_each_pipe(dev_priv, pipe)
9591 max_pixel_rate = max(intel_state->min_pixclk[pipe], max_pixel_rate);
9592
b432e5cf
VS
9593 return max_pixel_rate;
9594}
9595
9596static void broadwell_set_cdclk(struct drm_device *dev, int cdclk)
9597{
9598 struct drm_i915_private *dev_priv = dev->dev_private;
9599 uint32_t val, data;
9600 int ret;
9601
9602 if (WARN((I915_READ(LCPLL_CTL) &
9603 (LCPLL_PLL_DISABLE | LCPLL_PLL_LOCK |
9604 LCPLL_CD_CLOCK_DISABLE | LCPLL_ROOT_CD_CLOCK_DISABLE |
9605 LCPLL_CD2X_CLOCK_DISABLE | LCPLL_POWER_DOWN_ALLOW |
9606 LCPLL_CD_SOURCE_FCLK)) != LCPLL_PLL_LOCK,
9607 "trying to change cdclk frequency with cdclk not enabled\n"))
9608 return;
9609
9610 mutex_lock(&dev_priv->rps.hw_lock);
9611 ret = sandybridge_pcode_write(dev_priv,
9612 BDW_PCODE_DISPLAY_FREQ_CHANGE_REQ, 0x0);
9613 mutex_unlock(&dev_priv->rps.hw_lock);
9614 if (ret) {
9615 DRM_ERROR("failed to inform pcode about cdclk change\n");
9616 return;
9617 }
9618
9619 val = I915_READ(LCPLL_CTL);
9620 val |= LCPLL_CD_SOURCE_FCLK;
9621 I915_WRITE(LCPLL_CTL, val);
9622
5ba00178
TU
9623 if (wait_for_us(I915_READ(LCPLL_CTL) &
9624 LCPLL_CD_SOURCE_FCLK_DONE, 1))
b432e5cf
VS
9625 DRM_ERROR("Switching to FCLK failed\n");
9626
9627 val = I915_READ(LCPLL_CTL);
9628 val &= ~LCPLL_CLK_FREQ_MASK;
9629
9630 switch (cdclk) {
9631 case 450000:
9632 val |= LCPLL_CLK_FREQ_450;
9633 data = 0;
9634 break;
9635 case 540000:
9636 val |= LCPLL_CLK_FREQ_54O_BDW;
9637 data = 1;
9638 break;
9639 case 337500:
9640 val |= LCPLL_CLK_FREQ_337_5_BDW;
9641 data = 2;
9642 break;
9643 case 675000:
9644 val |= LCPLL_CLK_FREQ_675_BDW;
9645 data = 3;
9646 break;
9647 default:
9648 WARN(1, "invalid cdclk frequency\n");
9649 return;
9650 }
9651
9652 I915_WRITE(LCPLL_CTL, val);
9653
9654 val = I915_READ(LCPLL_CTL);
9655 val &= ~LCPLL_CD_SOURCE_FCLK;
9656 I915_WRITE(LCPLL_CTL, val);
9657
5ba00178
TU
9658 if (wait_for_us((I915_READ(LCPLL_CTL) &
9659 LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
b432e5cf
VS
9660 DRM_ERROR("Switching back to LCPLL failed\n");
9661
9662 mutex_lock(&dev_priv->rps.hw_lock);
9663 sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ, data);
9664 mutex_unlock(&dev_priv->rps.hw_lock);
9665
7f1052a8
VS
9666 I915_WRITE(CDCLK_FREQ, DIV_ROUND_CLOSEST(cdclk, 1000) - 1);
9667
b432e5cf
VS
9668 intel_update_cdclk(dev);
9669
9670 WARN(cdclk != dev_priv->cdclk_freq,
9671 "cdclk requested %d kHz but got %d kHz\n",
9672 cdclk, dev_priv->cdclk_freq);
9673}
9674
587c7914
VS
9675static int broadwell_calc_cdclk(int max_pixclk)
9676{
9677 if (max_pixclk > 540000)
9678 return 675000;
9679 else if (max_pixclk > 450000)
9680 return 540000;
9681 else if (max_pixclk > 337500)
9682 return 450000;
9683 else
9684 return 337500;
9685}
9686
27c329ed 9687static int broadwell_modeset_calc_cdclk(struct drm_atomic_state *state)
b432e5cf 9688{
27c329ed 9689 struct drm_i915_private *dev_priv = to_i915(state->dev);
1a617b77 9690 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
27c329ed 9691 int max_pixclk = ilk_max_pixel_rate(state);
b432e5cf
VS
9692 int cdclk;
9693
9694 /*
9695 * FIXME should also account for plane ratio
9696 * once 64bpp pixel formats are supported.
9697 */
587c7914 9698 cdclk = broadwell_calc_cdclk(max_pixclk);
b432e5cf 9699
b432e5cf 9700 if (cdclk > dev_priv->max_cdclk_freq) {
63ba534e
ML
9701 DRM_DEBUG_KMS("requested cdclk (%d kHz) exceeds max (%d kHz)\n",
9702 cdclk, dev_priv->max_cdclk_freq);
9703 return -EINVAL;
b432e5cf
VS
9704 }
9705
1a617b77
ML
9706 intel_state->cdclk = intel_state->dev_cdclk = cdclk;
9707 if (!intel_state->active_crtcs)
587c7914 9708 intel_state->dev_cdclk = broadwell_calc_cdclk(0);
b432e5cf
VS
9709
9710 return 0;
9711}
9712
27c329ed 9713static void broadwell_modeset_commit_cdclk(struct drm_atomic_state *old_state)
b432e5cf 9714{
27c329ed 9715 struct drm_device *dev = old_state->dev;
1a617b77
ML
9716 struct intel_atomic_state *old_intel_state =
9717 to_intel_atomic_state(old_state);
9718 unsigned req_cdclk = old_intel_state->dev_cdclk;
b432e5cf 9719
27c329ed 9720 broadwell_set_cdclk(dev, req_cdclk);
b432e5cf
VS
9721}
9722
190f68c5
ACO
9723static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9724 struct intel_crtc_state *crtc_state)
09b4ddf9 9725{
af3997b5
MK
9726 struct intel_encoder *intel_encoder =
9727 intel_ddi_get_crtc_new_encoder(crtc_state);
9728
9729 if (intel_encoder->type != INTEL_OUTPUT_DSI) {
9730 if (!intel_ddi_pll_select(crtc, crtc_state))
9731 return -EINVAL;
9732 }
716c2e55 9733
c7653199 9734 crtc->lowfreq_avail = false;
644cef34 9735
c8f7a0db 9736 return 0;
79e53945
JB
9737}
9738
3760b59c
S
9739static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9740 enum port port,
9741 struct intel_crtc_state *pipe_config)
9742{
8106ddbd
ACO
9743 enum intel_dpll_id id;
9744
3760b59c
S
9745 switch (port) {
9746 case PORT_A:
9747 pipe_config->ddi_pll_sel = SKL_DPLL0;
08250c4b 9748 id = DPLL_ID_SKL_DPLL0;
3760b59c
S
9749 break;
9750 case PORT_B:
9751 pipe_config->ddi_pll_sel = SKL_DPLL1;
08250c4b 9752 id = DPLL_ID_SKL_DPLL1;
3760b59c
S
9753 break;
9754 case PORT_C:
9755 pipe_config->ddi_pll_sel = SKL_DPLL2;
08250c4b 9756 id = DPLL_ID_SKL_DPLL2;
3760b59c
S
9757 break;
9758 default:
9759 DRM_ERROR("Incorrect port type\n");
8106ddbd 9760 return;
3760b59c 9761 }
8106ddbd
ACO
9762
9763 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
3760b59c
S
9764}
9765
96b7dfb7
S
9766static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9767 enum port port,
5cec258b 9768 struct intel_crtc_state *pipe_config)
96b7dfb7 9769{
8106ddbd 9770 enum intel_dpll_id id;
a3c988ea 9771 u32 temp;
96b7dfb7
S
9772
9773 temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9774 pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9775
9776 switch (pipe_config->ddi_pll_sel) {
3148ade7 9777 case SKL_DPLL0:
a3c988ea
ACO
9778 id = DPLL_ID_SKL_DPLL0;
9779 break;
96b7dfb7 9780 case SKL_DPLL1:
8106ddbd 9781 id = DPLL_ID_SKL_DPLL1;
96b7dfb7
S
9782 break;
9783 case SKL_DPLL2:
8106ddbd 9784 id = DPLL_ID_SKL_DPLL2;
96b7dfb7
S
9785 break;
9786 case SKL_DPLL3:
8106ddbd 9787 id = DPLL_ID_SKL_DPLL3;
96b7dfb7 9788 break;
8106ddbd
ACO
9789 default:
9790 MISSING_CASE(pipe_config->ddi_pll_sel);
9791 return;
96b7dfb7 9792 }
8106ddbd
ACO
9793
9794 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
96b7dfb7
S
9795}
9796
7d2c8175
DL
9797static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9798 enum port port,
5cec258b 9799 struct intel_crtc_state *pipe_config)
7d2c8175 9800{
8106ddbd
ACO
9801 enum intel_dpll_id id;
9802
7d2c8175
DL
9803 pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9804
9805 switch (pipe_config->ddi_pll_sel) {
9806 case PORT_CLK_SEL_WRPLL1:
8106ddbd 9807 id = DPLL_ID_WRPLL1;
7d2c8175
DL
9808 break;
9809 case PORT_CLK_SEL_WRPLL2:
8106ddbd 9810 id = DPLL_ID_WRPLL2;
7d2c8175 9811 break;
00490c22 9812 case PORT_CLK_SEL_SPLL:
8106ddbd 9813 id = DPLL_ID_SPLL;
79bd23da 9814 break;
9d16da65
ACO
9815 case PORT_CLK_SEL_LCPLL_810:
9816 id = DPLL_ID_LCPLL_810;
9817 break;
9818 case PORT_CLK_SEL_LCPLL_1350:
9819 id = DPLL_ID_LCPLL_1350;
9820 break;
9821 case PORT_CLK_SEL_LCPLL_2700:
9822 id = DPLL_ID_LCPLL_2700;
9823 break;
8106ddbd
ACO
9824 default:
9825 MISSING_CASE(pipe_config->ddi_pll_sel);
9826 /* fall through */
9827 case PORT_CLK_SEL_NONE:
8106ddbd 9828 return;
7d2c8175 9829 }
8106ddbd
ACO
9830
9831 pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
7d2c8175
DL
9832}
9833
cf30429e
JN
9834static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
9835 struct intel_crtc_state *pipe_config,
9836 unsigned long *power_domain_mask)
9837{
9838 struct drm_device *dev = crtc->base.dev;
9839 struct drm_i915_private *dev_priv = dev->dev_private;
9840 enum intel_display_power_domain power_domain;
9841 u32 tmp;
9842
d9a7bc67
ID
9843 /*
9844 * The pipe->transcoder mapping is fixed with the exception of the eDP
9845 * transcoder handled below.
9846 */
cf30429e
JN
9847 pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9848
9849 /*
9850 * XXX: Do intel_display_power_get_if_enabled before reading this (for
9851 * consistency and less surprising code; it's in always on power).
9852 */
9853 tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9854 if (tmp & TRANS_DDI_FUNC_ENABLE) {
9855 enum pipe trans_edp_pipe;
9856 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9857 default:
9858 WARN(1, "unknown pipe linked to edp transcoder\n");
9859 case TRANS_DDI_EDP_INPUT_A_ONOFF:
9860 case TRANS_DDI_EDP_INPUT_A_ON:
9861 trans_edp_pipe = PIPE_A;
9862 break;
9863 case TRANS_DDI_EDP_INPUT_B_ONOFF:
9864 trans_edp_pipe = PIPE_B;
9865 break;
9866 case TRANS_DDI_EDP_INPUT_C_ONOFF:
9867 trans_edp_pipe = PIPE_C;
9868 break;
9869 }
9870
9871 if (trans_edp_pipe == crtc->pipe)
9872 pipe_config->cpu_transcoder = TRANSCODER_EDP;
9873 }
9874
9875 power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
9876 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9877 return false;
9878 *power_domain_mask |= BIT(power_domain);
9879
9880 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
9881
9882 return tmp & PIPECONF_ENABLE;
9883}
9884
4d1de975
JN
9885static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
9886 struct intel_crtc_state *pipe_config,
9887 unsigned long *power_domain_mask)
9888{
9889 struct drm_device *dev = crtc->base.dev;
9890 struct drm_i915_private *dev_priv = dev->dev_private;
9891 enum intel_display_power_domain power_domain;
9892 enum port port;
9893 enum transcoder cpu_transcoder;
9894 u32 tmp;
9895
9896 pipe_config->has_dsi_encoder = false;
9897
9898 for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
9899 if (port == PORT_A)
9900 cpu_transcoder = TRANSCODER_DSI_A;
9901 else
9902 cpu_transcoder = TRANSCODER_DSI_C;
9903
9904 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
9905 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
9906 continue;
9907 *power_domain_mask |= BIT(power_domain);
9908
db18b6a6
ID
9909 /*
9910 * The PLL needs to be enabled with a valid divider
9911 * configuration, otherwise accessing DSI registers will hang
9912 * the machine. See BSpec North Display Engine
9913 * registers/MIPI[BXT]. We can break out here early, since we
9914 * need the same DSI PLL to be enabled for both DSI ports.
9915 */
9916 if (!intel_dsi_pll_is_enabled(dev_priv))
9917 break;
9918
4d1de975
JN
9919 /* XXX: this works for video mode only */
9920 tmp = I915_READ(BXT_MIPI_PORT_CTRL(port));
9921 if (!(tmp & DPI_ENABLE))
9922 continue;
9923
9924 tmp = I915_READ(MIPI_CTRL(port));
9925 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
9926 continue;
9927
9928 pipe_config->cpu_transcoder = cpu_transcoder;
9929 pipe_config->has_dsi_encoder = true;
9930 break;
9931 }
9932
9933 return pipe_config->has_dsi_encoder;
9934}
9935
26804afd 9936static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
5cec258b 9937 struct intel_crtc_state *pipe_config)
26804afd
DV
9938{
9939 struct drm_device *dev = crtc->base.dev;
9940 struct drm_i915_private *dev_priv = dev->dev_private;
d452c5b6 9941 struct intel_shared_dpll *pll;
26804afd
DV
9942 enum port port;
9943 uint32_t tmp;
9944
9945 tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9946
9947 port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9948
ef11bdb3 9949 if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
96b7dfb7 9950 skylake_get_ddi_pll(dev_priv, port, pipe_config);
3760b59c
S
9951 else if (IS_BROXTON(dev))
9952 bxt_get_ddi_pll(dev_priv, port, pipe_config);
96b7dfb7
S
9953 else
9954 haswell_get_ddi_pll(dev_priv, port, pipe_config);
9cd86933 9955
8106ddbd
ACO
9956 pll = pipe_config->shared_dpll;
9957 if (pll) {
2edd6443
ACO
9958 WARN_ON(!pll->funcs.get_hw_state(dev_priv, pll,
9959 &pipe_config->dpll_hw_state));
d452c5b6
DV
9960 }
9961
26804afd
DV
9962 /*
9963 * Haswell has only FDI/PCH transcoder A. It is which is connected to
9964 * DDI E. So just check whether this pipe is wired to DDI E and whether
9965 * the PCH transcoder is on.
9966 */
ca370455
DL
9967 if (INTEL_INFO(dev)->gen < 9 &&
9968 (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
26804afd
DV
9969 pipe_config->has_pch_encoder = true;
9970
9971 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9972 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9973 FDI_DP_PORT_WIDTH_SHIFT) + 1;
9974
9975 ironlake_get_fdi_m_n_config(crtc, pipe_config);
9976 }
9977}
9978
0e8ffe1b 9979static bool haswell_get_pipe_config(struct intel_crtc *crtc,
5cec258b 9980 struct intel_crtc_state *pipe_config)
0e8ffe1b
DV
9981{
9982 struct drm_device *dev = crtc->base.dev;
9983 struct drm_i915_private *dev_priv = dev->dev_private;
1729050e
ID
9984 enum intel_display_power_domain power_domain;
9985 unsigned long power_domain_mask;
cf30429e 9986 bool active;
0e8ffe1b 9987
1729050e
ID
9988 power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
9989 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
b5482bd0 9990 return false;
1729050e
ID
9991 power_domain_mask = BIT(power_domain);
9992
8106ddbd 9993 pipe_config->shared_dpll = NULL;
c0d43d62 9994
cf30429e 9995 active = hsw_get_transcoder_state(crtc, pipe_config, &power_domain_mask);
eccb140b 9996
4d1de975
JN
9997 if (IS_BROXTON(dev_priv)) {
9998 bxt_get_dsi_transcoder_state(crtc, pipe_config,
9999 &power_domain_mask);
10000 WARN_ON(active && pipe_config->has_dsi_encoder);
10001 if (pipe_config->has_dsi_encoder)
10002 active = true;
10003 }
10004
cf30429e 10005 if (!active)
1729050e 10006 goto out;
0e8ffe1b 10007
4d1de975
JN
10008 if (!pipe_config->has_dsi_encoder) {
10009 haswell_get_ddi_port_state(crtc, pipe_config);
10010 intel_get_pipe_timings(crtc, pipe_config);
10011 }
627eb5a3 10012
bc58be60 10013 intel_get_pipe_src_size(crtc, pipe_config);
1bd1bd80 10014
05dc698c
LL
10015 pipe_config->gamma_mode =
10016 I915_READ(GAMMA_MODE(crtc->pipe)) & GAMMA_MODE_MODE_MASK;
10017
a1b2278e
CK
10018 if (INTEL_INFO(dev)->gen >= 9) {
10019 skl_init_scalers(dev, crtc, pipe_config);
10020 }
10021
af99ceda
CK
10022 if (INTEL_INFO(dev)->gen >= 9) {
10023 pipe_config->scaler_state.scaler_id = -1;
10024 pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
10025 }
10026
1729050e
ID
10027 power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
10028 if (intel_display_power_get_if_enabled(dev_priv, power_domain)) {
10029 power_domain_mask |= BIT(power_domain);
1c132b44 10030 if (INTEL_INFO(dev)->gen >= 9)
bd2e244f 10031 skylake_get_pfit_config(crtc, pipe_config);
ff6d9f55 10032 else
1c132b44 10033 ironlake_get_pfit_config(crtc, pipe_config);
bd2e244f 10034 }
88adfff1 10035
e59150dc
JB
10036 if (IS_HASWELL(dev))
10037 pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
10038 (I915_READ(IPS_CTL) & IPS_ENABLE);
42db64ef 10039
4d1de975
JN
10040 if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
10041 !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
ebb69c95
CT
10042 pipe_config->pixel_multiplier =
10043 I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
10044 } else {
10045 pipe_config->pixel_multiplier = 1;
10046 }
6c49f241 10047
1729050e
ID
10048out:
10049 for_each_power_domain(power_domain, power_domain_mask)
10050 intel_display_power_put(dev_priv, power_domain);
10051
cf30429e 10052 return active;
0e8ffe1b
DV
10053}
10054
55a08b3f
ML
10055static void i845_update_cursor(struct drm_crtc *crtc, u32 base,
10056 const struct intel_plane_state *plane_state)
560b85bb
CW
10057{
10058 struct drm_device *dev = crtc->dev;
10059 struct drm_i915_private *dev_priv = dev->dev_private;
10060 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
dc41c154 10061 uint32_t cntl = 0, size = 0;
560b85bb 10062
55a08b3f
ML
10063 if (plane_state && plane_state->visible) {
10064 unsigned int width = plane_state->base.crtc_w;
10065 unsigned int height = plane_state->base.crtc_h;
dc41c154
VS
10066 unsigned int stride = roundup_pow_of_two(width) * 4;
10067
10068 switch (stride) {
10069 default:
10070 WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
10071 width, stride);
10072 stride = 256;
10073 /* fallthrough */
10074 case 256:
10075 case 512:
10076 case 1024:
10077 case 2048:
10078 break;
4b0e333e
CW
10079 }
10080
dc41c154
VS
10081 cntl |= CURSOR_ENABLE |
10082 CURSOR_GAMMA_ENABLE |
10083 CURSOR_FORMAT_ARGB |
10084 CURSOR_STRIDE(stride);
10085
10086 size = (height << 12) | width;
4b0e333e 10087 }
560b85bb 10088
dc41c154
VS
10089 if (intel_crtc->cursor_cntl != 0 &&
10090 (intel_crtc->cursor_base != base ||
10091 intel_crtc->cursor_size != size ||
10092 intel_crtc->cursor_cntl != cntl)) {
10093 /* On these chipsets we can only modify the base/size/stride
10094 * whilst the cursor is disabled.
10095 */
0b87c24e
VS
10096 I915_WRITE(CURCNTR(PIPE_A), 0);
10097 POSTING_READ(CURCNTR(PIPE_A));
dc41c154 10098 intel_crtc->cursor_cntl = 0;
4b0e333e 10099 }
560b85bb 10100
99d1f387 10101 if (intel_crtc->cursor_base != base) {
0b87c24e 10102 I915_WRITE(CURBASE(PIPE_A), base);
99d1f387
VS
10103 intel_crtc->cursor_base = base;
10104 }
4726e0b0 10105
dc41c154
VS
10106 if (intel_crtc->cursor_size != size) {
10107 I915_WRITE(CURSIZE, size);
10108 intel_crtc->cursor_size = size;
4b0e333e 10109 }
560b85bb 10110
4b0e333e 10111 if (intel_crtc->cursor_cntl != cntl) {
0b87c24e
VS
10112 I915_WRITE(CURCNTR(PIPE_A), cntl);
10113 POSTING_READ(CURCNTR(PIPE_A));
4b0e333e 10114 intel_crtc->cursor_cntl = cntl;
560b85bb 10115 }
560b85bb
CW
10116}
10117
55a08b3f
ML
10118static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base,
10119 const struct intel_plane_state *plane_state)
65a21cd6
JB
10120{
10121 struct drm_device *dev = crtc->dev;
10122 struct drm_i915_private *dev_priv = dev->dev_private;
10123 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10124 int pipe = intel_crtc->pipe;
663f3122 10125 uint32_t cntl = 0;
4b0e333e 10126
55a08b3f 10127 if (plane_state && plane_state->visible) {
4b0e333e 10128 cntl = MCURSOR_GAMMA_ENABLE;
55a08b3f 10129 switch (plane_state->base.crtc_w) {
4726e0b0
SK
10130 case 64:
10131 cntl |= CURSOR_MODE_64_ARGB_AX;
10132 break;
10133 case 128:
10134 cntl |= CURSOR_MODE_128_ARGB_AX;
10135 break;
10136 case 256:
10137 cntl |= CURSOR_MODE_256_ARGB_AX;
10138 break;
10139 default:
55a08b3f 10140 MISSING_CASE(plane_state->base.crtc_w);
4726e0b0 10141 return;
65a21cd6 10142 }
4b0e333e 10143 cntl |= pipe << 28; /* Connect to correct pipe */
47bf17a7 10144
fc6f93bc 10145 if (HAS_DDI(dev))
47bf17a7 10146 cntl |= CURSOR_PIPE_CSC_ENABLE;
65a21cd6 10147
55a08b3f
ML
10148 if (plane_state->base.rotation == BIT(DRM_ROTATE_180))
10149 cntl |= CURSOR_ROTATE_180;
10150 }
4398ad45 10151
4b0e333e
CW
10152 if (intel_crtc->cursor_cntl != cntl) {
10153 I915_WRITE(CURCNTR(pipe), cntl);
10154 POSTING_READ(CURCNTR(pipe));
10155 intel_crtc->cursor_cntl = cntl;
65a21cd6 10156 }
4b0e333e 10157
65a21cd6 10158 /* and commit changes on next vblank */
5efb3e28
VS
10159 I915_WRITE(CURBASE(pipe), base);
10160 POSTING_READ(CURBASE(pipe));
99d1f387
VS
10161
10162 intel_crtc->cursor_base = base;
65a21cd6
JB
10163}
10164
cda4b7d3 10165/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
6b383a7f 10166static void intel_crtc_update_cursor(struct drm_crtc *crtc,
55a08b3f 10167 const struct intel_plane_state *plane_state)
cda4b7d3
CW
10168{
10169 struct drm_device *dev = crtc->dev;
10170 struct drm_i915_private *dev_priv = dev->dev_private;
10171 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10172 int pipe = intel_crtc->pipe;
55a08b3f
ML
10173 u32 base = intel_crtc->cursor_addr;
10174 u32 pos = 0;
cda4b7d3 10175
55a08b3f
ML
10176 if (plane_state) {
10177 int x = plane_state->base.crtc_x;
10178 int y = plane_state->base.crtc_y;
cda4b7d3 10179
55a08b3f
ML
10180 if (x < 0) {
10181 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10182 x = -x;
10183 }
10184 pos |= x << CURSOR_X_SHIFT;
cda4b7d3 10185
55a08b3f
ML
10186 if (y < 0) {
10187 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10188 y = -y;
10189 }
10190 pos |= y << CURSOR_Y_SHIFT;
10191
10192 /* ILK+ do this automagically */
10193 if (HAS_GMCH_DISPLAY(dev) &&
10194 plane_state->base.rotation == BIT(DRM_ROTATE_180)) {
10195 base += (plane_state->base.crtc_h *
10196 plane_state->base.crtc_w - 1) * 4;
10197 }
cda4b7d3 10198 }
cda4b7d3 10199
5efb3e28
VS
10200 I915_WRITE(CURPOS(pipe), pos);
10201
8ac54669 10202 if (IS_845G(dev) || IS_I865G(dev))
55a08b3f 10203 i845_update_cursor(crtc, base, plane_state);
5efb3e28 10204 else
55a08b3f 10205 i9xx_update_cursor(crtc, base, plane_state);
cda4b7d3
CW
10206}
10207
dc41c154
VS
10208static bool cursor_size_ok(struct drm_device *dev,
10209 uint32_t width, uint32_t height)
10210{
10211 if (width == 0 || height == 0)
10212 return false;
10213
10214 /*
10215 * 845g/865g are special in that they are only limited by
10216 * the width of their cursors, the height is arbitrary up to
10217 * the precision of the register. Everything else requires
10218 * square cursors, limited to a few power-of-two sizes.
10219 */
10220 if (IS_845G(dev) || IS_I865G(dev)) {
10221 if ((width & 63) != 0)
10222 return false;
10223
10224 if (width > (IS_845G(dev) ? 64 : 512))
10225 return false;
10226
10227 if (height > 1023)
10228 return false;
10229 } else {
10230 switch (width | height) {
10231 case 256:
10232 case 128:
10233 if (IS_GEN2(dev))
10234 return false;
10235 case 64:
10236 break;
10237 default:
10238 return false;
10239 }
10240 }
10241
10242 return true;
10243}
10244
79e53945
JB
10245/* VESA 640x480x72Hz mode to set on the pipe */
10246static struct drm_display_mode load_detect_mode = {
10247 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
10248 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
10249};
10250
a8bb6818
DV
10251struct drm_framebuffer *
10252__intel_framebuffer_create(struct drm_device *dev,
10253 struct drm_mode_fb_cmd2 *mode_cmd,
10254 struct drm_i915_gem_object *obj)
d2dff872
CW
10255{
10256 struct intel_framebuffer *intel_fb;
10257 int ret;
10258
10259 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
dcb1394e 10260 if (!intel_fb)
d2dff872 10261 return ERR_PTR(-ENOMEM);
d2dff872
CW
10262
10263 ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
dd4916c5
DV
10264 if (ret)
10265 goto err;
d2dff872
CW
10266
10267 return &intel_fb->base;
dcb1394e 10268
dd4916c5 10269err:
dd4916c5 10270 kfree(intel_fb);
dd4916c5 10271 return ERR_PTR(ret);
d2dff872
CW
10272}
10273
b5ea642a 10274static struct drm_framebuffer *
a8bb6818
DV
10275intel_framebuffer_create(struct drm_device *dev,
10276 struct drm_mode_fb_cmd2 *mode_cmd,
10277 struct drm_i915_gem_object *obj)
10278{
10279 struct drm_framebuffer *fb;
10280 int ret;
10281
10282 ret = i915_mutex_lock_interruptible(dev);
10283 if (ret)
10284 return ERR_PTR(ret);
10285 fb = __intel_framebuffer_create(dev, mode_cmd, obj);
10286 mutex_unlock(&dev->struct_mutex);
10287
10288 return fb;
10289}
10290
d2dff872
CW
10291static u32
10292intel_framebuffer_pitch_for_width(int width, int bpp)
10293{
10294 u32 pitch = DIV_ROUND_UP(width * bpp, 8);
10295 return ALIGN(pitch, 64);
10296}
10297
10298static u32
10299intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
10300{
10301 u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
1267a26b 10302 return PAGE_ALIGN(pitch * mode->vdisplay);
d2dff872
CW
10303}
10304
10305static struct drm_framebuffer *
10306intel_framebuffer_create_for_mode(struct drm_device *dev,
10307 struct drm_display_mode *mode,
10308 int depth, int bpp)
10309{
dcb1394e 10310 struct drm_framebuffer *fb;
d2dff872 10311 struct drm_i915_gem_object *obj;
0fed39bd 10312 struct drm_mode_fb_cmd2 mode_cmd = { 0 };
d2dff872 10313
d37cd8a8 10314 obj = i915_gem_object_create(dev,
d2dff872 10315 intel_framebuffer_size_for_mode(mode, bpp));
fe3db79b
CW
10316 if (IS_ERR(obj))
10317 return ERR_CAST(obj);
d2dff872
CW
10318
10319 mode_cmd.width = mode->hdisplay;
10320 mode_cmd.height = mode->vdisplay;
308e5bcb
JB
10321 mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
10322 bpp);
5ca0c34a 10323 mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
d2dff872 10324
dcb1394e
LW
10325 fb = intel_framebuffer_create(dev, &mode_cmd, obj);
10326 if (IS_ERR(fb))
10327 drm_gem_object_unreference_unlocked(&obj->base);
10328
10329 return fb;
d2dff872
CW
10330}
10331
10332static struct drm_framebuffer *
10333mode_fits_in_fbdev(struct drm_device *dev,
10334 struct drm_display_mode *mode)
10335{
0695726e 10336#ifdef CONFIG_DRM_FBDEV_EMULATION
d2dff872
CW
10337 struct drm_i915_private *dev_priv = dev->dev_private;
10338 struct drm_i915_gem_object *obj;
10339 struct drm_framebuffer *fb;
10340
4c0e5528 10341 if (!dev_priv->fbdev)
d2dff872
CW
10342 return NULL;
10343
4c0e5528 10344 if (!dev_priv->fbdev->fb)
d2dff872
CW
10345 return NULL;
10346
4c0e5528
DV
10347 obj = dev_priv->fbdev->fb->obj;
10348 BUG_ON(!obj);
10349
8bcd4553 10350 fb = &dev_priv->fbdev->fb->base;
01f2c773
VS
10351 if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
10352 fb->bits_per_pixel))
d2dff872
CW
10353 return NULL;
10354
01f2c773 10355 if (obj->base.size < mode->vdisplay * fb->pitches[0])
d2dff872
CW
10356 return NULL;
10357
edde3617 10358 drm_framebuffer_reference(fb);
d2dff872 10359 return fb;
4520f53a
DV
10360#else
10361 return NULL;
10362#endif
d2dff872
CW
10363}
10364
d3a40d1b
ACO
10365static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
10366 struct drm_crtc *crtc,
10367 struct drm_display_mode *mode,
10368 struct drm_framebuffer *fb,
10369 int x, int y)
10370{
10371 struct drm_plane_state *plane_state;
10372 int hdisplay, vdisplay;
10373 int ret;
10374
10375 plane_state = drm_atomic_get_plane_state(state, crtc->primary);
10376 if (IS_ERR(plane_state))
10377 return PTR_ERR(plane_state);
10378
10379 if (mode)
10380 drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
10381 else
10382 hdisplay = vdisplay = 0;
10383
10384 ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
10385 if (ret)
10386 return ret;
10387 drm_atomic_set_fb_for_plane(plane_state, fb);
10388 plane_state->crtc_x = 0;
10389 plane_state->crtc_y = 0;
10390 plane_state->crtc_w = hdisplay;
10391 plane_state->crtc_h = vdisplay;
10392 plane_state->src_x = x << 16;
10393 plane_state->src_y = y << 16;
10394 plane_state->src_w = hdisplay << 16;
10395 plane_state->src_h = vdisplay << 16;
10396
10397 return 0;
10398}
10399
d2434ab7 10400bool intel_get_load_detect_pipe(struct drm_connector *connector,
7173188d 10401 struct drm_display_mode *mode,
51fd371b
RC
10402 struct intel_load_detect_pipe *old,
10403 struct drm_modeset_acquire_ctx *ctx)
79e53945
JB
10404{
10405 struct intel_crtc *intel_crtc;
d2434ab7
DV
10406 struct intel_encoder *intel_encoder =
10407 intel_attached_encoder(connector);
79e53945 10408 struct drm_crtc *possible_crtc;
4ef69c7a 10409 struct drm_encoder *encoder = &intel_encoder->base;
79e53945
JB
10410 struct drm_crtc *crtc = NULL;
10411 struct drm_device *dev = encoder->dev;
94352cf9 10412 struct drm_framebuffer *fb;
51fd371b 10413 struct drm_mode_config *config = &dev->mode_config;
edde3617 10414 struct drm_atomic_state *state = NULL, *restore_state = NULL;
944b0c76 10415 struct drm_connector_state *connector_state;
4be07317 10416 struct intel_crtc_state *crtc_state;
51fd371b 10417 int ret, i = -1;
79e53945 10418
d2dff872 10419 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 10420 connector->base.id, connector->name,
8e329a03 10421 encoder->base.id, encoder->name);
d2dff872 10422
edde3617
ML
10423 old->restore_state = NULL;
10424
51fd371b
RC
10425retry:
10426 ret = drm_modeset_lock(&config->connection_mutex, ctx);
10427 if (ret)
ad3c558f 10428 goto fail;
6e9f798d 10429
79e53945
JB
10430 /*
10431 * Algorithm gets a little messy:
7a5e4805 10432 *
79e53945
JB
10433 * - if the connector already has an assigned crtc, use it (but make
10434 * sure it's on first)
7a5e4805 10435 *
79e53945
JB
10436 * - try to find the first unused crtc that can drive this connector,
10437 * and use that if we find one
79e53945
JB
10438 */
10439
10440 /* See if we already have a CRTC for this connector */
edde3617
ML
10441 if (connector->state->crtc) {
10442 crtc = connector->state->crtc;
8261b191 10443
51fd371b 10444 ret = drm_modeset_lock(&crtc->mutex, ctx);
4d02e2de 10445 if (ret)
ad3c558f 10446 goto fail;
8261b191
CW
10447
10448 /* Make sure the crtc and connector are running */
edde3617 10449 goto found;
79e53945
JB
10450 }
10451
10452 /* Find an unused one (if possible) */
70e1e0ec 10453 for_each_crtc(dev, possible_crtc) {
79e53945
JB
10454 i++;
10455 if (!(encoder->possible_crtcs & (1 << i)))
10456 continue;
edde3617
ML
10457
10458 ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
10459 if (ret)
10460 goto fail;
10461
10462 if (possible_crtc->state->enable) {
10463 drm_modeset_unlock(&possible_crtc->mutex);
a459249c 10464 continue;
edde3617 10465 }
a459249c
VS
10466
10467 crtc = possible_crtc;
10468 break;
79e53945
JB
10469 }
10470
10471 /*
10472 * If we didn't find an unused CRTC, don't use any.
10473 */
10474 if (!crtc) {
7173188d 10475 DRM_DEBUG_KMS("no pipe available for load-detect\n");
ad3c558f 10476 goto fail;
79e53945
JB
10477 }
10478
edde3617
ML
10479found:
10480 intel_crtc = to_intel_crtc(crtc);
10481
4d02e2de
DV
10482 ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10483 if (ret)
ad3c558f 10484 goto fail;
79e53945 10485
83a57153 10486 state = drm_atomic_state_alloc(dev);
edde3617
ML
10487 restore_state = drm_atomic_state_alloc(dev);
10488 if (!state || !restore_state) {
10489 ret = -ENOMEM;
10490 goto fail;
10491 }
83a57153
ACO
10492
10493 state->acquire_ctx = ctx;
edde3617 10494 restore_state->acquire_ctx = ctx;
83a57153 10495
944b0c76
ACO
10496 connector_state = drm_atomic_get_connector_state(state, connector);
10497 if (IS_ERR(connector_state)) {
10498 ret = PTR_ERR(connector_state);
10499 goto fail;
10500 }
10501
edde3617
ML
10502 ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
10503 if (ret)
10504 goto fail;
944b0c76 10505
4be07317
ACO
10506 crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10507 if (IS_ERR(crtc_state)) {
10508 ret = PTR_ERR(crtc_state);
10509 goto fail;
10510 }
10511
49d6fa21 10512 crtc_state->base.active = crtc_state->base.enable = true;
4be07317 10513
6492711d
CW
10514 if (!mode)
10515 mode = &load_detect_mode;
79e53945 10516
d2dff872
CW
10517 /* We need a framebuffer large enough to accommodate all accesses
10518 * that the plane may generate whilst we perform load detection.
10519 * We can not rely on the fbcon either being present (we get called
10520 * during its initialisation to detect all boot displays, or it may
10521 * not even exist) or that it is large enough to satisfy the
10522 * requested mode.
10523 */
94352cf9
DV
10524 fb = mode_fits_in_fbdev(dev, mode);
10525 if (fb == NULL) {
d2dff872 10526 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
94352cf9 10527 fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
d2dff872
CW
10528 } else
10529 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
94352cf9 10530 if (IS_ERR(fb)) {
d2dff872 10531 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
412b61d8 10532 goto fail;
79e53945 10533 }
79e53945 10534
d3a40d1b
ACO
10535 ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10536 if (ret)
10537 goto fail;
10538
edde3617
ML
10539 drm_framebuffer_unreference(fb);
10540
10541 ret = drm_atomic_set_mode_for_crtc(&crtc_state->base, mode);
10542 if (ret)
10543 goto fail;
10544
10545 ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
10546 if (!ret)
10547 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
10548 if (!ret)
10549 ret = PTR_ERR_OR_ZERO(drm_atomic_get_plane_state(restore_state, crtc->primary));
10550 if (ret) {
10551 DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
10552 goto fail;
10553 }
8c7b5ccb 10554
3ba86073
ML
10555 ret = drm_atomic_commit(state);
10556 if (ret) {
6492711d 10557 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
412b61d8 10558 goto fail;
79e53945 10559 }
edde3617
ML
10560
10561 old->restore_state = restore_state;
7173188d 10562
79e53945 10563 /* let the connector get through one full cycle before testing */
9d0498a2 10564 intel_wait_for_vblank(dev, intel_crtc->pipe);
7173188d 10565 return true;
412b61d8 10566
ad3c558f 10567fail:
e5d958ef 10568 drm_atomic_state_free(state);
edde3617
ML
10569 drm_atomic_state_free(restore_state);
10570 restore_state = state = NULL;
83a57153 10571
51fd371b
RC
10572 if (ret == -EDEADLK) {
10573 drm_modeset_backoff(ctx);
10574 goto retry;
10575 }
10576
412b61d8 10577 return false;
79e53945
JB
10578}
10579
d2434ab7 10580void intel_release_load_detect_pipe(struct drm_connector *connector,
49172fee
ACO
10581 struct intel_load_detect_pipe *old,
10582 struct drm_modeset_acquire_ctx *ctx)
79e53945 10583{
d2434ab7
DV
10584 struct intel_encoder *intel_encoder =
10585 intel_attached_encoder(connector);
4ef69c7a 10586 struct drm_encoder *encoder = &intel_encoder->base;
edde3617 10587 struct drm_atomic_state *state = old->restore_state;
d3a40d1b 10588 int ret;
79e53945 10589
d2dff872 10590 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
c23cc417 10591 connector->base.id, connector->name,
8e329a03 10592 encoder->base.id, encoder->name);
d2dff872 10593
edde3617 10594 if (!state)
0622a53c 10595 return;
79e53945 10596
edde3617
ML
10597 ret = drm_atomic_commit(state);
10598 if (ret) {
10599 DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
10600 drm_atomic_state_free(state);
10601 }
79e53945
JB
10602}
10603
da4a1efa 10604static int i9xx_pll_refclk(struct drm_device *dev,
5cec258b 10605 const struct intel_crtc_state *pipe_config)
da4a1efa
VS
10606{
10607 struct drm_i915_private *dev_priv = dev->dev_private;
10608 u32 dpll = pipe_config->dpll_hw_state.dpll;
10609
10610 if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
e91e941b 10611 return dev_priv->vbt.lvds_ssc_freq;
da4a1efa
VS
10612 else if (HAS_PCH_SPLIT(dev))
10613 return 120000;
10614 else if (!IS_GEN2(dev))
10615 return 96000;
10616 else
10617 return 48000;
10618}
10619
79e53945 10620/* Returns the clock of the currently programmed mode of the given pipe. */
f1f644dc 10621static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
5cec258b 10622 struct intel_crtc_state *pipe_config)
79e53945 10623{
f1f644dc 10624 struct drm_device *dev = crtc->base.dev;
79e53945 10625 struct drm_i915_private *dev_priv = dev->dev_private;
f1f644dc 10626 int pipe = pipe_config->cpu_transcoder;
293623f7 10627 u32 dpll = pipe_config->dpll_hw_state.dpll;
79e53945 10628 u32 fp;
9e2c8475 10629 struct dpll clock;
dccbea3b 10630 int port_clock;
da4a1efa 10631 int refclk = i9xx_pll_refclk(dev, pipe_config);
79e53945
JB
10632
10633 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
293623f7 10634 fp = pipe_config->dpll_hw_state.fp0;
79e53945 10635 else
293623f7 10636 fp = pipe_config->dpll_hw_state.fp1;
79e53945
JB
10637
10638 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
f2b115e6
AJ
10639 if (IS_PINEVIEW(dev)) {
10640 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10641 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
2177832f
SL
10642 } else {
10643 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10644 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10645 }
10646
a6c45cf0 10647 if (!IS_GEN2(dev)) {
f2b115e6
AJ
10648 if (IS_PINEVIEW(dev))
10649 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10650 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
2177832f
SL
10651 else
10652 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
79e53945
JB
10653 DPLL_FPA01_P1_POST_DIV_SHIFT);
10654
10655 switch (dpll & DPLL_MODE_MASK) {
10656 case DPLLB_MODE_DAC_SERIAL:
10657 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10658 5 : 10;
10659 break;
10660 case DPLLB_MODE_LVDS:
10661 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10662 7 : 14;
10663 break;
10664 default:
28c97730 10665 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
79e53945 10666 "mode\n", (int)(dpll & DPLL_MODE_MASK));
f1f644dc 10667 return;
79e53945
JB
10668 }
10669
ac58c3f0 10670 if (IS_PINEVIEW(dev))
dccbea3b 10671 port_clock = pnv_calc_dpll_params(refclk, &clock);
ac58c3f0 10672 else
dccbea3b 10673 port_clock = i9xx_calc_dpll_params(refclk, &clock);
79e53945 10674 } else {
0fb58223 10675 u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
b1c560d1 10676 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
79e53945
JB
10677
10678 if (is_lvds) {
10679 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10680 DPLL_FPA01_P1_POST_DIV_SHIFT);
b1c560d1
VS
10681
10682 if (lvds & LVDS_CLKB_POWER_UP)
10683 clock.p2 = 7;
10684 else
10685 clock.p2 = 14;
79e53945
JB
10686 } else {
10687 if (dpll & PLL_P1_DIVIDE_BY_TWO)
10688 clock.p1 = 2;
10689 else {
10690 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10691 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10692 }
10693 if (dpll & PLL_P2_DIVIDE_BY_4)
10694 clock.p2 = 4;
10695 else
10696 clock.p2 = 2;
79e53945 10697 }
da4a1efa 10698
dccbea3b 10699 port_clock = i9xx_calc_dpll_params(refclk, &clock);
79e53945
JB
10700 }
10701
18442d08
VS
10702 /*
10703 * This value includes pixel_multiplier. We will use
241bfc38 10704 * port_clock to compute adjusted_mode.crtc_clock in the
18442d08
VS
10705 * encoder's get_config() function.
10706 */
dccbea3b 10707 pipe_config->port_clock = port_clock;
f1f644dc
JB
10708}
10709
6878da05
VS
10710int intel_dotclock_calculate(int link_freq,
10711 const struct intel_link_m_n *m_n)
f1f644dc 10712{
f1f644dc
JB
10713 /*
10714 * The calculation for the data clock is:
1041a02f 10715 * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
f1f644dc 10716 * But we want to avoid losing precison if possible, so:
1041a02f 10717 * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
f1f644dc
JB
10718 *
10719 * and the link clock is simpler:
1041a02f 10720 * link_clock = (m * link_clock) / n
f1f644dc
JB
10721 */
10722
6878da05
VS
10723 if (!m_n->link_n)
10724 return 0;
f1f644dc 10725
6878da05
VS
10726 return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10727}
f1f644dc 10728
18442d08 10729static void ironlake_pch_clock_get(struct intel_crtc *crtc,
5cec258b 10730 struct intel_crtc_state *pipe_config)
6878da05 10731{
e3b247da 10732 struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
79e53945 10733
18442d08
VS
10734 /* read out port_clock from the DPLL */
10735 i9xx_crtc_clock_get(crtc, pipe_config);
f1f644dc 10736
f1f644dc 10737 /*
e3b247da
VS
10738 * In case there is an active pipe without active ports,
10739 * we may need some idea for the dotclock anyway.
10740 * Calculate one based on the FDI configuration.
79e53945 10741 */
2d112de7 10742 pipe_config->base.adjusted_mode.crtc_clock =
21a727b3 10743 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
18442d08 10744 &pipe_config->fdi_m_n);
79e53945
JB
10745}
10746
10747/** Returns the currently programmed mode of the given pipe. */
10748struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10749 struct drm_crtc *crtc)
10750{
548f245b 10751 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 10752 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6e3c9717 10753 enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
79e53945 10754 struct drm_display_mode *mode;
3f36b937 10755 struct intel_crtc_state *pipe_config;
fe2b8f9d
PZ
10756 int htot = I915_READ(HTOTAL(cpu_transcoder));
10757 int hsync = I915_READ(HSYNC(cpu_transcoder));
10758 int vtot = I915_READ(VTOTAL(cpu_transcoder));
10759 int vsync = I915_READ(VSYNC(cpu_transcoder));
293623f7 10760 enum pipe pipe = intel_crtc->pipe;
79e53945
JB
10761
10762 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10763 if (!mode)
10764 return NULL;
10765
3f36b937
TU
10766 pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
10767 if (!pipe_config) {
10768 kfree(mode);
10769 return NULL;
10770 }
10771
f1f644dc
JB
10772 /*
10773 * Construct a pipe_config sufficient for getting the clock info
10774 * back out of crtc_clock_get.
10775 *
10776 * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10777 * to use a real value here instead.
10778 */
3f36b937
TU
10779 pipe_config->cpu_transcoder = (enum transcoder) pipe;
10780 pipe_config->pixel_multiplier = 1;
10781 pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10782 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10783 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10784 i9xx_crtc_clock_get(intel_crtc, pipe_config);
10785
10786 mode->clock = pipe_config->port_clock / pipe_config->pixel_multiplier;
79e53945
JB
10787 mode->hdisplay = (htot & 0xffff) + 1;
10788 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10789 mode->hsync_start = (hsync & 0xffff) + 1;
10790 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10791 mode->vdisplay = (vtot & 0xffff) + 1;
10792 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10793 mode->vsync_start = (vsync & 0xffff) + 1;
10794 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10795
10796 drm_mode_set_name(mode);
79e53945 10797
3f36b937
TU
10798 kfree(pipe_config);
10799
79e53945
JB
10800 return mode;
10801}
10802
7d993739 10803void intel_mark_busy(struct drm_i915_private *dev_priv)
f047e395 10804{
f62a0076
CW
10805 if (dev_priv->mm.busy)
10806 return;
10807
43694d69 10808 intel_runtime_pm_get(dev_priv);
c67a470b 10809 i915_update_gfx_val(dev_priv);
7d993739 10810 if (INTEL_GEN(dev_priv) >= 6)
43cf3bf0 10811 gen6_rps_busy(dev_priv);
f62a0076 10812 dev_priv->mm.busy = true;
f047e395
CW
10813}
10814
7d993739 10815void intel_mark_idle(struct drm_i915_private *dev_priv)
652c393a 10816{
f62a0076
CW
10817 if (!dev_priv->mm.busy)
10818 return;
10819
10820 dev_priv->mm.busy = false;
10821
7d993739
TU
10822 if (INTEL_GEN(dev_priv) >= 6)
10823 gen6_rps_idle(dev_priv);
bb4cdd53 10824
43694d69 10825 intel_runtime_pm_put(dev_priv);
652c393a
JB
10826}
10827
79e53945
JB
10828static void intel_crtc_destroy(struct drm_crtc *crtc)
10829{
10830 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
67e77c5a
DV
10831 struct drm_device *dev = crtc->dev;
10832 struct intel_unpin_work *work;
67e77c5a 10833
5e2d7afc 10834 spin_lock_irq(&dev->event_lock);
67e77c5a
DV
10835 work = intel_crtc->unpin_work;
10836 intel_crtc->unpin_work = NULL;
5e2d7afc 10837 spin_unlock_irq(&dev->event_lock);
67e77c5a
DV
10838
10839 if (work) {
10840 cancel_work_sync(&work->work);
10841 kfree(work);
10842 }
79e53945
JB
10843
10844 drm_crtc_cleanup(crtc);
67e77c5a 10845
79e53945
JB
10846 kfree(intel_crtc);
10847}
10848
6b95a207
KH
10849static void intel_unpin_work_fn(struct work_struct *__work)
10850{
10851 struct intel_unpin_work *work =
10852 container_of(__work, struct intel_unpin_work, work);
a9ff8714
VS
10853 struct intel_crtc *crtc = to_intel_crtc(work->crtc);
10854 struct drm_device *dev = crtc->base.dev;
10855 struct drm_plane *primary = crtc->base.primary;
6b95a207 10856
b4a98e57 10857 mutex_lock(&dev->struct_mutex);
3465c580 10858 intel_unpin_fb_obj(work->old_fb, primary->state->rotation);
05394f39 10859 drm_gem_object_unreference(&work->pending_flip_obj->base);
d9e86c0e 10860
f06cc1b9 10861 if (work->flip_queued_req)
146d84f0 10862 i915_gem_request_assign(&work->flip_queued_req, NULL);
b4a98e57
CW
10863 mutex_unlock(&dev->struct_mutex);
10864
a9ff8714 10865 intel_frontbuffer_flip_complete(dev, to_intel_plane(primary)->frontbuffer_bit);
1eb52238 10866 intel_fbc_post_update(crtc);
89ed88ba 10867 drm_framebuffer_unreference(work->old_fb);
f99d7069 10868
a9ff8714
VS
10869 BUG_ON(atomic_read(&crtc->unpin_work_count) == 0);
10870 atomic_dec(&crtc->unpin_work_count);
b4a98e57 10871
6b95a207
KH
10872 kfree(work);
10873}
10874
91d14251 10875static void do_intel_finish_page_flip(struct drm_i915_private *dev_priv,
49b14a5c 10876 struct drm_crtc *crtc)
6b95a207 10877{
91d14251 10878 struct drm_device *dev = dev_priv->dev;
6b95a207
KH
10879 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10880 struct intel_unpin_work *work;
6b95a207
KH
10881 unsigned long flags;
10882
10883 /* Ignore early vblank irqs */
10884 if (intel_crtc == NULL)
10885 return;
10886
f326038a
DV
10887 /*
10888 * This is called both by irq handlers and the reset code (to complete
10889 * lost pageflips) so needs the full irqsave spinlocks.
10890 */
6b95a207
KH
10891 spin_lock_irqsave(&dev->event_lock, flags);
10892 work = intel_crtc->unpin_work;
e7d841ca
CW
10893
10894 /* Ensure we don't miss a work->pending update ... */
10895 smp_rmb();
10896
10897 if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
6b95a207
KH
10898 spin_unlock_irqrestore(&dev->event_lock, flags);
10899 return;
10900 }
10901
d6bbafa1 10902 page_flip_completed(intel_crtc);
0af7e4df 10903
6b95a207 10904 spin_unlock_irqrestore(&dev->event_lock, flags);
6b95a207
KH
10905}
10906
91d14251 10907void intel_finish_page_flip(struct drm_i915_private *dev_priv, int pipe)
1afe3e9d 10908{
1afe3e9d
JB
10909 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10910
91d14251 10911 do_intel_finish_page_flip(dev_priv, crtc);
1afe3e9d
JB
10912}
10913
91d14251 10914void intel_finish_page_flip_plane(struct drm_i915_private *dev_priv, int plane)
1afe3e9d 10915{
1afe3e9d
JB
10916 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10917
91d14251 10918 do_intel_finish_page_flip(dev_priv, crtc);
1afe3e9d
JB
10919}
10920
75f7f3ec
VS
10921/* Is 'a' after or equal to 'b'? */
10922static bool g4x_flip_count_after_eq(u32 a, u32 b)
10923{
10924 return !((a - b) & 0x80000000);
10925}
10926
10927static bool page_flip_finished(struct intel_crtc *crtc)
10928{
10929 struct drm_device *dev = crtc->base.dev;
10930 struct drm_i915_private *dev_priv = dev->dev_private;
c19ae989 10931 unsigned reset_counter;
75f7f3ec 10932
c19ae989 10933 reset_counter = i915_reset_counter(&dev_priv->gpu_error);
7f1847eb 10934 if (crtc->reset_counter != reset_counter)
bdfa7542
VS
10935 return true;
10936
75f7f3ec
VS
10937 /*
10938 * The relevant registers doen't exist on pre-ctg.
10939 * As the flip done interrupt doesn't trigger for mmio
10940 * flips on gmch platforms, a flip count check isn't
10941 * really needed there. But since ctg has the registers,
10942 * include it in the check anyway.
10943 */
10944 if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10945 return true;
10946
e8861675
ML
10947 /*
10948 * BDW signals flip done immediately if the plane
10949 * is disabled, even if the plane enable is already
10950 * armed to occur at the next vblank :(
10951 */
10952
75f7f3ec
VS
10953 /*
10954 * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10955 * used the same base address. In that case the mmio flip might
10956 * have completed, but the CS hasn't even executed the flip yet.
10957 *
10958 * A flip count check isn't enough as the CS might have updated
10959 * the base address just after start of vblank, but before we
10960 * managed to process the interrupt. This means we'd complete the
10961 * CS flip too soon.
10962 *
10963 * Combining both checks should get us a good enough result. It may
10964 * still happen that the CS flip has been executed, but has not
10965 * yet actually completed. But in case the base address is the same
10966 * anyway, we don't really care.
10967 */
10968 return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10969 crtc->unpin_work->gtt_offset &&
fd8f507c 10970 g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_G4X(crtc->pipe)),
75f7f3ec
VS
10971 crtc->unpin_work->flip_count);
10972}
10973
91d14251 10974void intel_prepare_page_flip(struct drm_i915_private *dev_priv, int plane)
6b95a207 10975{
91d14251 10976 struct drm_device *dev = dev_priv->dev;
6b95a207
KH
10977 struct intel_crtc *intel_crtc =
10978 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
10979 unsigned long flags;
10980
f326038a
DV
10981
10982 /*
10983 * This is called both by irq handlers and the reset code (to complete
10984 * lost pageflips) so needs the full irqsave spinlocks.
10985 *
10986 * NB: An MMIO update of the plane base pointer will also
e7d841ca
CW
10987 * generate a page-flip completion irq, i.e. every modeset
10988 * is also accompanied by a spurious intel_prepare_page_flip().
10989 */
6b95a207 10990 spin_lock_irqsave(&dev->event_lock, flags);
75f7f3ec 10991 if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
e7d841ca 10992 atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
6b95a207
KH
10993 spin_unlock_irqrestore(&dev->event_lock, flags);
10994}
10995
6042639c 10996static inline void intel_mark_page_flip_active(struct intel_unpin_work *work)
e7d841ca
CW
10997{
10998 /* Ensure that the work item is consistent when activating it ... */
10999 smp_wmb();
6042639c 11000 atomic_set(&work->pending, INTEL_FLIP_PENDING);
e7d841ca
CW
11001 /* and that it is marked active as soon as the irq could fire. */
11002 smp_wmb();
11003}
11004
8c9f3aaf
JB
11005static int intel_gen2_queue_flip(struct drm_device *dev,
11006 struct drm_crtc *crtc,
11007 struct drm_framebuffer *fb,
ed8d1975 11008 struct drm_i915_gem_object *obj,
6258fbe2 11009 struct drm_i915_gem_request *req,
ed8d1975 11010 uint32_t flags)
8c9f3aaf 11011{
4a570db5 11012 struct intel_engine_cs *engine = req->engine;
8c9f3aaf 11013 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
11014 u32 flip_mask;
11015 int ret;
11016
5fb9de1a 11017 ret = intel_ring_begin(req, 6);
8c9f3aaf 11018 if (ret)
4fa62c89 11019 return ret;
8c9f3aaf
JB
11020
11021 /* Can't queue multiple flips, so wait for the previous
11022 * one to finish before executing the next.
11023 */
11024 if (intel_crtc->plane)
11025 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11026 else
11027 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
e2f80391
TU
11028 intel_ring_emit(engine, MI_WAIT_FOR_EVENT | flip_mask);
11029 intel_ring_emit(engine, MI_NOOP);
11030 intel_ring_emit(engine, MI_DISPLAY_FLIP |
6d90c952 11031 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
e2f80391
TU
11032 intel_ring_emit(engine, fb->pitches[0]);
11033 intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset);
11034 intel_ring_emit(engine, 0); /* aux display base address, unused */
e7d841ca 11035
6042639c 11036 intel_mark_page_flip_active(intel_crtc->unpin_work);
83d4092b 11037 return 0;
8c9f3aaf
JB
11038}
11039
11040static int intel_gen3_queue_flip(struct drm_device *dev,
11041 struct drm_crtc *crtc,
11042 struct drm_framebuffer *fb,
ed8d1975 11043 struct drm_i915_gem_object *obj,
6258fbe2 11044 struct drm_i915_gem_request *req,
ed8d1975 11045 uint32_t flags)
8c9f3aaf 11046{
4a570db5 11047 struct intel_engine_cs *engine = req->engine;
8c9f3aaf 11048 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8c9f3aaf
JB
11049 u32 flip_mask;
11050 int ret;
11051
5fb9de1a 11052 ret = intel_ring_begin(req, 6);
8c9f3aaf 11053 if (ret)
4fa62c89 11054 return ret;
8c9f3aaf
JB
11055
11056 if (intel_crtc->plane)
11057 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
11058 else
11059 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
e2f80391
TU
11060 intel_ring_emit(engine, MI_WAIT_FOR_EVENT | flip_mask);
11061 intel_ring_emit(engine, MI_NOOP);
11062 intel_ring_emit(engine, MI_DISPLAY_FLIP_I915 |
6d90c952 11063 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
e2f80391
TU
11064 intel_ring_emit(engine, fb->pitches[0]);
11065 intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset);
11066 intel_ring_emit(engine, MI_NOOP);
6d90c952 11067
6042639c 11068 intel_mark_page_flip_active(intel_crtc->unpin_work);
83d4092b 11069 return 0;
8c9f3aaf
JB
11070}
11071
11072static int intel_gen4_queue_flip(struct drm_device *dev,
11073 struct drm_crtc *crtc,
11074 struct drm_framebuffer *fb,
ed8d1975 11075 struct drm_i915_gem_object *obj,
6258fbe2 11076 struct drm_i915_gem_request *req,
ed8d1975 11077 uint32_t flags)
8c9f3aaf 11078{
4a570db5 11079 struct intel_engine_cs *engine = req->engine;
8c9f3aaf
JB
11080 struct drm_i915_private *dev_priv = dev->dev_private;
11081 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11082 uint32_t pf, pipesrc;
11083 int ret;
11084
5fb9de1a 11085 ret = intel_ring_begin(req, 4);
8c9f3aaf 11086 if (ret)
4fa62c89 11087 return ret;
8c9f3aaf
JB
11088
11089 /* i965+ uses the linear or tiled offsets from the
11090 * Display Registers (which do not change across a page-flip)
11091 * so we need only reprogram the base address.
11092 */
e2f80391 11093 intel_ring_emit(engine, MI_DISPLAY_FLIP |
6d90c952 11094 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
e2f80391
TU
11095 intel_ring_emit(engine, fb->pitches[0]);
11096 intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset |
c2c75131 11097 obj->tiling_mode);
8c9f3aaf
JB
11098
11099 /* XXX Enabling the panel-fitter across page-flip is so far
11100 * untested on non-native modes, so ignore it for now.
11101 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
11102 */
11103 pf = 0;
11104 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
e2f80391 11105 intel_ring_emit(engine, pf | pipesrc);
e7d841ca 11106
6042639c 11107 intel_mark_page_flip_active(intel_crtc->unpin_work);
83d4092b 11108 return 0;
8c9f3aaf
JB
11109}
11110
11111static int intel_gen6_queue_flip(struct drm_device *dev,
11112 struct drm_crtc *crtc,
11113 struct drm_framebuffer *fb,
ed8d1975 11114 struct drm_i915_gem_object *obj,
6258fbe2 11115 struct drm_i915_gem_request *req,
ed8d1975 11116 uint32_t flags)
8c9f3aaf 11117{
4a570db5 11118 struct intel_engine_cs *engine = req->engine;
8c9f3aaf
JB
11119 struct drm_i915_private *dev_priv = dev->dev_private;
11120 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11121 uint32_t pf, pipesrc;
11122 int ret;
11123
5fb9de1a 11124 ret = intel_ring_begin(req, 4);
8c9f3aaf 11125 if (ret)
4fa62c89 11126 return ret;
8c9f3aaf 11127
e2f80391 11128 intel_ring_emit(engine, MI_DISPLAY_FLIP |
6d90c952 11129 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
e2f80391
TU
11130 intel_ring_emit(engine, fb->pitches[0] | obj->tiling_mode);
11131 intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset);
8c9f3aaf 11132
dc257cf1
DV
11133 /* Contrary to the suggestions in the documentation,
11134 * "Enable Panel Fitter" does not seem to be required when page
11135 * flipping with a non-native mode, and worse causes a normal
11136 * modeset to fail.
11137 * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
11138 */
11139 pf = 0;
8c9f3aaf 11140 pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
e2f80391 11141 intel_ring_emit(engine, pf | pipesrc);
e7d841ca 11142
6042639c 11143 intel_mark_page_flip_active(intel_crtc->unpin_work);
83d4092b 11144 return 0;
8c9f3aaf
JB
11145}
11146
7c9017e5
JB
11147static int intel_gen7_queue_flip(struct drm_device *dev,
11148 struct drm_crtc *crtc,
11149 struct drm_framebuffer *fb,
ed8d1975 11150 struct drm_i915_gem_object *obj,
6258fbe2 11151 struct drm_i915_gem_request *req,
ed8d1975 11152 uint32_t flags)
7c9017e5 11153{
4a570db5 11154 struct intel_engine_cs *engine = req->engine;
7c9017e5 11155 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
cb05d8de 11156 uint32_t plane_bit = 0;
ffe74d75
CW
11157 int len, ret;
11158
eba905b2 11159 switch (intel_crtc->plane) {
cb05d8de
DV
11160 case PLANE_A:
11161 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
11162 break;
11163 case PLANE_B:
11164 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
11165 break;
11166 case PLANE_C:
11167 plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
11168 break;
11169 default:
11170 WARN_ONCE(1, "unknown plane in flip command\n");
4fa62c89 11171 return -ENODEV;
cb05d8de
DV
11172 }
11173
ffe74d75 11174 len = 4;
e2f80391 11175 if (engine->id == RCS) {
ffe74d75 11176 len += 6;
f476828a
DL
11177 /*
11178 * On Gen 8, SRM is now taking an extra dword to accommodate
11179 * 48bits addresses, and we need a NOOP for the batch size to
11180 * stay even.
11181 */
11182 if (IS_GEN8(dev))
11183 len += 2;
11184 }
ffe74d75 11185
f66fab8e
VS
11186 /*
11187 * BSpec MI_DISPLAY_FLIP for IVB:
11188 * "The full packet must be contained within the same cache line."
11189 *
11190 * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
11191 * cacheline, if we ever start emitting more commands before
11192 * the MI_DISPLAY_FLIP we may need to first emit everything else,
11193 * then do the cacheline alignment, and finally emit the
11194 * MI_DISPLAY_FLIP.
11195 */
bba09b12 11196 ret = intel_ring_cacheline_align(req);
f66fab8e 11197 if (ret)
4fa62c89 11198 return ret;
f66fab8e 11199
5fb9de1a 11200 ret = intel_ring_begin(req, len);
7c9017e5 11201 if (ret)
4fa62c89 11202 return ret;
7c9017e5 11203
ffe74d75
CW
11204 /* Unmask the flip-done completion message. Note that the bspec says that
11205 * we should do this for both the BCS and RCS, and that we must not unmask
11206 * more than one flip event at any time (or ensure that one flip message
11207 * can be sent by waiting for flip-done prior to queueing new flips).
11208 * Experimentation says that BCS works despite DERRMR masking all
11209 * flip-done completion events and that unmasking all planes at once
11210 * for the RCS also doesn't appear to drop events. Setting the DERRMR
11211 * to zero does lead to lockups within MI_DISPLAY_FLIP.
11212 */
e2f80391
TU
11213 if (engine->id == RCS) {
11214 intel_ring_emit(engine, MI_LOAD_REGISTER_IMM(1));
11215 intel_ring_emit_reg(engine, DERRMR);
11216 intel_ring_emit(engine, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
11217 DERRMR_PIPEB_PRI_FLIP_DONE |
11218 DERRMR_PIPEC_PRI_FLIP_DONE));
f476828a 11219 if (IS_GEN8(dev))
e2f80391 11220 intel_ring_emit(engine, MI_STORE_REGISTER_MEM_GEN8 |
f476828a
DL
11221 MI_SRM_LRM_GLOBAL_GTT);
11222 else
e2f80391 11223 intel_ring_emit(engine, MI_STORE_REGISTER_MEM |
f476828a 11224 MI_SRM_LRM_GLOBAL_GTT);
e2f80391
TU
11225 intel_ring_emit_reg(engine, DERRMR);
11226 intel_ring_emit(engine, engine->scratch.gtt_offset + 256);
f476828a 11227 if (IS_GEN8(dev)) {
e2f80391
TU
11228 intel_ring_emit(engine, 0);
11229 intel_ring_emit(engine, MI_NOOP);
f476828a 11230 }
ffe74d75
CW
11231 }
11232
e2f80391
TU
11233 intel_ring_emit(engine, MI_DISPLAY_FLIP_I915 | plane_bit);
11234 intel_ring_emit(engine, (fb->pitches[0] | obj->tiling_mode));
11235 intel_ring_emit(engine, intel_crtc->unpin_work->gtt_offset);
11236 intel_ring_emit(engine, (MI_NOOP));
e7d841ca 11237
6042639c 11238 intel_mark_page_flip_active(intel_crtc->unpin_work);
83d4092b 11239 return 0;
7c9017e5
JB
11240}
11241
0bc40be8 11242static bool use_mmio_flip(struct intel_engine_cs *engine,
84c33a64
SG
11243 struct drm_i915_gem_object *obj)
11244{
11245 /*
11246 * This is not being used for older platforms, because
11247 * non-availability of flip done interrupt forces us to use
11248 * CS flips. Older platforms derive flip done using some clever
11249 * tricks involving the flip_pending status bits and vblank irqs.
11250 * So using MMIO flips there would disrupt this mechanism.
11251 */
11252
0bc40be8 11253 if (engine == NULL)
8e09bf83
CW
11254 return true;
11255
c033666a 11256 if (INTEL_GEN(engine->i915) < 5)
84c33a64
SG
11257 return false;
11258
11259 if (i915.use_mmio_flip < 0)
11260 return false;
11261 else if (i915.use_mmio_flip > 0)
11262 return true;
14bf993e
OM
11263 else if (i915.enable_execlists)
11264 return true;
fd8e058a
AG
11265 else if (obj->base.dma_buf &&
11266 !reservation_object_test_signaled_rcu(obj->base.dma_buf->resv,
11267 false))
11268 return true;
84c33a64 11269 else
666796da 11270 return engine != i915_gem_request_get_engine(obj->last_write_req);
84c33a64
SG
11271}
11272
6042639c 11273static void skl_do_mmio_flip(struct intel_crtc *intel_crtc,
86efe24a 11274 unsigned int rotation,
6042639c 11275 struct intel_unpin_work *work)
ff944564
DL
11276{
11277 struct drm_device *dev = intel_crtc->base.dev;
11278 struct drm_i915_private *dev_priv = dev->dev_private;
11279 struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
ff944564 11280 const enum pipe pipe = intel_crtc->pipe;
86efe24a 11281 u32 ctl, stride, tile_height;
ff944564
DL
11282
11283 ctl = I915_READ(PLANE_CTL(pipe, 0));
11284 ctl &= ~PLANE_CTL_TILED_MASK;
2ebef630
TU
11285 switch (fb->modifier[0]) {
11286 case DRM_FORMAT_MOD_NONE:
11287 break;
11288 case I915_FORMAT_MOD_X_TILED:
ff944564 11289 ctl |= PLANE_CTL_TILED_X;
2ebef630
TU
11290 break;
11291 case I915_FORMAT_MOD_Y_TILED:
11292 ctl |= PLANE_CTL_TILED_Y;
11293 break;
11294 case I915_FORMAT_MOD_Yf_TILED:
11295 ctl |= PLANE_CTL_TILED_YF;
11296 break;
11297 default:
11298 MISSING_CASE(fb->modifier[0]);
11299 }
ff944564
DL
11300
11301 /*
11302 * The stride is either expressed as a multiple of 64 bytes chunks for
11303 * linear buffers or in number of tiles for tiled buffers.
11304 */
86efe24a
TU
11305 if (intel_rotation_90_or_270(rotation)) {
11306 /* stride = Surface height in tiles */
832be82f 11307 tile_height = intel_tile_height(dev_priv, fb->modifier[0], 0);
86efe24a
TU
11308 stride = DIV_ROUND_UP(fb->height, tile_height);
11309 } else {
11310 stride = fb->pitches[0] /
7b49f948
VS
11311 intel_fb_stride_alignment(dev_priv, fb->modifier[0],
11312 fb->pixel_format);
86efe24a 11313 }
ff944564
DL
11314
11315 /*
11316 * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
11317 * PLANE_SURF updates, the update is then guaranteed to be atomic.
11318 */
11319 I915_WRITE(PLANE_CTL(pipe, 0), ctl);
11320 I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
11321
6042639c 11322 I915_WRITE(PLANE_SURF(pipe, 0), work->gtt_offset);
ff944564
DL
11323 POSTING_READ(PLANE_SURF(pipe, 0));
11324}
11325
6042639c
CW
11326static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc,
11327 struct intel_unpin_work *work)
84c33a64
SG
11328{
11329 struct drm_device *dev = intel_crtc->base.dev;
11330 struct drm_i915_private *dev_priv = dev->dev_private;
11331 struct intel_framebuffer *intel_fb =
11332 to_intel_framebuffer(intel_crtc->base.primary->fb);
11333 struct drm_i915_gem_object *obj = intel_fb->obj;
f0f59a00 11334 i915_reg_t reg = DSPCNTR(intel_crtc->plane);
84c33a64 11335 u32 dspcntr;
84c33a64 11336
84c33a64
SG
11337 dspcntr = I915_READ(reg);
11338
c5d97472
DL
11339 if (obj->tiling_mode != I915_TILING_NONE)
11340 dspcntr |= DISPPLANE_TILED;
11341 else
11342 dspcntr &= ~DISPPLANE_TILED;
11343
84c33a64
SG
11344 I915_WRITE(reg, dspcntr);
11345
6042639c 11346 I915_WRITE(DSPSURF(intel_crtc->plane), work->gtt_offset);
84c33a64 11347 POSTING_READ(DSPSURF(intel_crtc->plane));
ff944564
DL
11348}
11349
11350/*
11351 * XXX: This is the temporary way to update the plane registers until we get
11352 * around to using the usual plane update functions for MMIO flips
11353 */
6042639c 11354static void intel_do_mmio_flip(struct intel_mmio_flip *mmio_flip)
ff944564 11355{
6042639c
CW
11356 struct intel_crtc *crtc = mmio_flip->crtc;
11357 struct intel_unpin_work *work;
11358
11359 spin_lock_irq(&crtc->base.dev->event_lock);
11360 work = crtc->unpin_work;
11361 spin_unlock_irq(&crtc->base.dev->event_lock);
11362 if (work == NULL)
11363 return;
ff944564 11364
6042639c 11365 intel_mark_page_flip_active(work);
ff944564 11366
6042639c 11367 intel_pipe_update_start(crtc);
ff944564 11368
6042639c 11369 if (INTEL_INFO(mmio_flip->i915)->gen >= 9)
86efe24a 11370 skl_do_mmio_flip(crtc, mmio_flip->rotation, work);
ff944564
DL
11371 else
11372 /* use_mmio_flip() retricts MMIO flips to ilk+ */
6042639c 11373 ilk_do_mmio_flip(crtc, work);
ff944564 11374
6042639c 11375 intel_pipe_update_end(crtc);
84c33a64
SG
11376}
11377
9362c7c5 11378static void intel_mmio_flip_work_func(struct work_struct *work)
84c33a64 11379{
b2cfe0ab
CW
11380 struct intel_mmio_flip *mmio_flip =
11381 container_of(work, struct intel_mmio_flip, work);
fd8e058a
AG
11382 struct intel_framebuffer *intel_fb =
11383 to_intel_framebuffer(mmio_flip->crtc->base.primary->fb);
11384 struct drm_i915_gem_object *obj = intel_fb->obj;
84c33a64 11385
6042639c 11386 if (mmio_flip->req) {
eed29a5b 11387 WARN_ON(__i915_wait_request(mmio_flip->req,
bcafc4e3
CW
11388 false, NULL,
11389 &mmio_flip->i915->rps.mmioflips));
73db04cf 11390 i915_gem_request_unreference(mmio_flip->req);
6042639c 11391 }
84c33a64 11392
fd8e058a
AG
11393 /* For framebuffer backed by dmabuf, wait for fence */
11394 if (obj->base.dma_buf)
11395 WARN_ON(reservation_object_wait_timeout_rcu(obj->base.dma_buf->resv,
11396 false, false,
11397 MAX_SCHEDULE_TIMEOUT) < 0);
11398
6042639c 11399 intel_do_mmio_flip(mmio_flip);
b2cfe0ab 11400 kfree(mmio_flip);
84c33a64
SG
11401}
11402
11403static int intel_queue_mmio_flip(struct drm_device *dev,
11404 struct drm_crtc *crtc,
86efe24a 11405 struct drm_i915_gem_object *obj)
84c33a64 11406{
b2cfe0ab
CW
11407 struct intel_mmio_flip *mmio_flip;
11408
11409 mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
11410 if (mmio_flip == NULL)
11411 return -ENOMEM;
84c33a64 11412
bcafc4e3 11413 mmio_flip->i915 = to_i915(dev);
eed29a5b 11414 mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
b2cfe0ab 11415 mmio_flip->crtc = to_intel_crtc(crtc);
86efe24a 11416 mmio_flip->rotation = crtc->primary->state->rotation;
536f5b5e 11417
b2cfe0ab
CW
11418 INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
11419 schedule_work(&mmio_flip->work);
84c33a64 11420
84c33a64
SG
11421 return 0;
11422}
11423
8c9f3aaf
JB
11424static int intel_default_queue_flip(struct drm_device *dev,
11425 struct drm_crtc *crtc,
11426 struct drm_framebuffer *fb,
ed8d1975 11427 struct drm_i915_gem_object *obj,
6258fbe2 11428 struct drm_i915_gem_request *req,
ed8d1975 11429 uint32_t flags)
8c9f3aaf
JB
11430{
11431 return -ENODEV;
11432}
11433
d6bbafa1
CW
11434static bool __intel_pageflip_stall_check(struct drm_device *dev,
11435 struct drm_crtc *crtc)
11436{
11437 struct drm_i915_private *dev_priv = dev->dev_private;
11438 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11439 struct intel_unpin_work *work = intel_crtc->unpin_work;
11440 u32 addr;
11441
11442 if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
11443 return true;
11444
908565c2
CW
11445 if (atomic_read(&work->pending) < INTEL_FLIP_PENDING)
11446 return false;
11447
d6bbafa1
CW
11448 if (!work->enable_stall_check)
11449 return false;
11450
11451 if (work->flip_ready_vblank == 0) {
3a8a946e
DV
11452 if (work->flip_queued_req &&
11453 !i915_gem_request_completed(work->flip_queued_req, true))
d6bbafa1
CW
11454 return false;
11455
1e3feefd 11456 work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
d6bbafa1
CW
11457 }
11458
1e3feefd 11459 if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
d6bbafa1
CW
11460 return false;
11461
11462 /* Potential stall - if we see that the flip has happened,
11463 * assume a missed interrupt. */
11464 if (INTEL_INFO(dev)->gen >= 4)
11465 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11466 else
11467 addr = I915_READ(DSPADDR(intel_crtc->plane));
11468
11469 /* There is a potential issue here with a false positive after a flip
11470 * to the same address. We could address this by checking for a
11471 * non-incrementing frame counter.
11472 */
11473 return addr == work->gtt_offset;
11474}
11475
91d14251 11476void intel_check_page_flip(struct drm_i915_private *dev_priv, int pipe)
d6bbafa1 11477{
91d14251 11478 struct drm_device *dev = dev_priv->dev;
d6bbafa1
CW
11479 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11480 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6ad790c0 11481 struct intel_unpin_work *work;
f326038a 11482
6c51d46f 11483 WARN_ON(!in_interrupt());
d6bbafa1
CW
11484
11485 if (crtc == NULL)
11486 return;
11487
f326038a 11488 spin_lock(&dev->event_lock);
6ad790c0
CW
11489 work = intel_crtc->unpin_work;
11490 if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
d6bbafa1 11491 WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
6ad790c0 11492 work->flip_queued_vblank, drm_vblank_count(dev, pipe));
d6bbafa1 11493 page_flip_completed(intel_crtc);
6ad790c0 11494 work = NULL;
d6bbafa1 11495 }
6ad790c0
CW
11496 if (work != NULL &&
11497 drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
91d14251 11498 intel_queue_rps_boost_for_request(work->flip_queued_req);
f326038a 11499 spin_unlock(&dev->event_lock);
d6bbafa1
CW
11500}
11501
6b95a207
KH
11502static int intel_crtc_page_flip(struct drm_crtc *crtc,
11503 struct drm_framebuffer *fb,
ed8d1975
KP
11504 struct drm_pending_vblank_event *event,
11505 uint32_t page_flip_flags)
6b95a207
KH
11506{
11507 struct drm_device *dev = crtc->dev;
11508 struct drm_i915_private *dev_priv = dev->dev_private;
f4510a27 11509 struct drm_framebuffer *old_fb = crtc->primary->fb;
2ff8fde1 11510 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
6b95a207 11511 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
455a6808 11512 struct drm_plane *primary = crtc->primary;
a071fa00 11513 enum pipe pipe = intel_crtc->pipe;
6b95a207 11514 struct intel_unpin_work *work;
e2f80391 11515 struct intel_engine_cs *engine;
cf5d8a46 11516 bool mmio_flip;
91af127f 11517 struct drm_i915_gem_request *request = NULL;
52e68630 11518 int ret;
6b95a207 11519
2ff8fde1
MR
11520 /*
11521 * drm_mode_page_flip_ioctl() should already catch this, but double
11522 * check to be safe. In the future we may enable pageflipping from
11523 * a disabled primary plane.
11524 */
11525 if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11526 return -EBUSY;
11527
e6a595d2 11528 /* Can't change pixel format via MI display flips. */
f4510a27 11529 if (fb->pixel_format != crtc->primary->fb->pixel_format)
e6a595d2
VS
11530 return -EINVAL;
11531
11532 /*
11533 * TILEOFF/LINOFF registers can't be changed via MI display flips.
11534 * Note that pitch changes could also affect these register.
11535 */
11536 if (INTEL_INFO(dev)->gen > 3 &&
f4510a27
MR
11537 (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11538 fb->pitches[0] != crtc->primary->fb->pitches[0]))
e6a595d2
VS
11539 return -EINVAL;
11540
f900db47
CW
11541 if (i915_terminally_wedged(&dev_priv->gpu_error))
11542 goto out_hang;
11543
b14c5679 11544 work = kzalloc(sizeof(*work), GFP_KERNEL);
6b95a207
KH
11545 if (work == NULL)
11546 return -ENOMEM;
11547
6b95a207 11548 work->event = event;
b4a98e57 11549 work->crtc = crtc;
ab8d6675 11550 work->old_fb = old_fb;
6b95a207
KH
11551 INIT_WORK(&work->work, intel_unpin_work_fn);
11552
87b6b101 11553 ret = drm_crtc_vblank_get(crtc);
7317c75e
JB
11554 if (ret)
11555 goto free_work;
11556
6b95a207 11557 /* We borrow the event spin lock for protecting unpin_work */
5e2d7afc 11558 spin_lock_irq(&dev->event_lock);
6b95a207 11559 if (intel_crtc->unpin_work) {
d6bbafa1
CW
11560 /* Before declaring the flip queue wedged, check if
11561 * the hardware completed the operation behind our backs.
11562 */
11563 if (__intel_pageflip_stall_check(dev, crtc)) {
11564 DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11565 page_flip_completed(intel_crtc);
11566 } else {
11567 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
5e2d7afc 11568 spin_unlock_irq(&dev->event_lock);
468f0b44 11569
d6bbafa1
CW
11570 drm_crtc_vblank_put(crtc);
11571 kfree(work);
11572 return -EBUSY;
11573 }
6b95a207
KH
11574 }
11575 intel_crtc->unpin_work = work;
5e2d7afc 11576 spin_unlock_irq(&dev->event_lock);
6b95a207 11577
b4a98e57
CW
11578 if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11579 flush_workqueue(dev_priv->wq);
11580
75dfca80 11581 /* Reference the objects for the scheduled work. */
ab8d6675 11582 drm_framebuffer_reference(work->old_fb);
05394f39 11583 drm_gem_object_reference(&obj->base);
6b95a207 11584
f4510a27 11585 crtc->primary->fb = fb;
afd65eb4 11586 update_state_fb(crtc->primary);
e8216e50 11587 intel_fbc_pre_update(intel_crtc);
1ed1f968 11588
e1f99ce6 11589 work->pending_flip_obj = obj;
e1f99ce6 11590
89ed88ba
CW
11591 ret = i915_mutex_lock_interruptible(dev);
11592 if (ret)
11593 goto cleanup;
11594
c19ae989 11595 intel_crtc->reset_counter = i915_reset_counter(&dev_priv->gpu_error);
7f1847eb
CW
11596 if (__i915_reset_in_progress_or_wedged(intel_crtc->reset_counter)) {
11597 ret = -EIO;
11598 goto cleanup;
11599 }
11600
11601 atomic_inc(&intel_crtc->unpin_work_count);
e1f99ce6 11602
75f7f3ec 11603 if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
fd8f507c 11604 work->flip_count = I915_READ(PIPE_FLIPCOUNT_G4X(pipe)) + 1;
75f7f3ec 11605
666a4537 11606 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
4a570db5 11607 engine = &dev_priv->engine[BCS];
ab8d6675 11608 if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
8e09bf83 11609 /* vlv: DISPLAY_FLIP fails to change tiling */
e2f80391 11610 engine = NULL;
48bf5b2d 11611 } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
4a570db5 11612 engine = &dev_priv->engine[BCS];
4fa62c89 11613 } else if (INTEL_INFO(dev)->gen >= 7) {
666796da 11614 engine = i915_gem_request_get_engine(obj->last_write_req);
e2f80391 11615 if (engine == NULL || engine->id != RCS)
4a570db5 11616 engine = &dev_priv->engine[BCS];
4fa62c89 11617 } else {
4a570db5 11618 engine = &dev_priv->engine[RCS];
4fa62c89
VS
11619 }
11620
e2f80391 11621 mmio_flip = use_mmio_flip(engine, obj);
cf5d8a46
CW
11622
11623 /* When using CS flips, we want to emit semaphores between rings.
11624 * However, when using mmio flips we will create a task to do the
11625 * synchronisation, so all we want here is to pin the framebuffer
11626 * into the display plane and skip any waits.
11627 */
7580d774 11628 if (!mmio_flip) {
e2f80391 11629 ret = i915_gem_object_sync(obj, engine, &request);
7580d774
ML
11630 if (ret)
11631 goto cleanup_pending;
11632 }
11633
3465c580 11634 ret = intel_pin_and_fence_fb_obj(fb, primary->state->rotation);
8c9f3aaf
JB
11635 if (ret)
11636 goto cleanup_pending;
6b95a207 11637
dedf278c
TU
11638 work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary),
11639 obj, 0);
11640 work->gtt_offset += intel_crtc->dspaddr_offset;
4fa62c89 11641
cf5d8a46 11642 if (mmio_flip) {
86efe24a 11643 ret = intel_queue_mmio_flip(dev, crtc, obj);
d6bbafa1
CW
11644 if (ret)
11645 goto cleanup_unpin;
11646
f06cc1b9
JH
11647 i915_gem_request_assign(&work->flip_queued_req,
11648 obj->last_write_req);
d6bbafa1 11649 } else {
6258fbe2 11650 if (!request) {
e2f80391 11651 request = i915_gem_request_alloc(engine, NULL);
26827088
DG
11652 if (IS_ERR(request)) {
11653 ret = PTR_ERR(request);
6258fbe2 11654 goto cleanup_unpin;
26827088 11655 }
6258fbe2
JH
11656 }
11657
11658 ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, request,
d6bbafa1
CW
11659 page_flip_flags);
11660 if (ret)
11661 goto cleanup_unpin;
11662
6258fbe2 11663 i915_gem_request_assign(&work->flip_queued_req, request);
d6bbafa1
CW
11664 }
11665
91af127f 11666 if (request)
75289874 11667 i915_add_request_no_flush(request);
91af127f 11668
1e3feefd 11669 work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
d6bbafa1 11670 work->enable_stall_check = true;
4fa62c89 11671
ab8d6675 11672 i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
a9ff8714 11673 to_intel_plane(primary)->frontbuffer_bit);
c80ac854 11674 mutex_unlock(&dev->struct_mutex);
a071fa00 11675
a9ff8714
VS
11676 intel_frontbuffer_flip_prepare(dev,
11677 to_intel_plane(primary)->frontbuffer_bit);
6b95a207 11678
e5510fac
JB
11679 trace_i915_flip_request(intel_crtc->plane, obj);
11680
6b95a207 11681 return 0;
96b099fd 11682
4fa62c89 11683cleanup_unpin:
3465c580 11684 intel_unpin_fb_obj(fb, crtc->primary->state->rotation);
8c9f3aaf 11685cleanup_pending:
0aa498d5 11686 if (!IS_ERR_OR_NULL(request))
aa9b7810 11687 i915_add_request_no_flush(request);
b4a98e57 11688 atomic_dec(&intel_crtc->unpin_work_count);
89ed88ba
CW
11689 mutex_unlock(&dev->struct_mutex);
11690cleanup:
f4510a27 11691 crtc->primary->fb = old_fb;
afd65eb4 11692 update_state_fb(crtc->primary);
89ed88ba
CW
11693
11694 drm_gem_object_unreference_unlocked(&obj->base);
ab8d6675 11695 drm_framebuffer_unreference(work->old_fb);
96b099fd 11696
5e2d7afc 11697 spin_lock_irq(&dev->event_lock);
96b099fd 11698 intel_crtc->unpin_work = NULL;
5e2d7afc 11699 spin_unlock_irq(&dev->event_lock);
96b099fd 11700
87b6b101 11701 drm_crtc_vblank_put(crtc);
7317c75e 11702free_work:
96b099fd
CW
11703 kfree(work);
11704
f900db47 11705 if (ret == -EIO) {
02e0efb5
ML
11706 struct drm_atomic_state *state;
11707 struct drm_plane_state *plane_state;
11708
f900db47 11709out_hang:
02e0efb5
ML
11710 state = drm_atomic_state_alloc(dev);
11711 if (!state)
11712 return -ENOMEM;
11713 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
11714
11715retry:
11716 plane_state = drm_atomic_get_plane_state(state, primary);
11717 ret = PTR_ERR_OR_ZERO(plane_state);
11718 if (!ret) {
11719 drm_atomic_set_fb_for_plane(plane_state, fb);
11720
11721 ret = drm_atomic_set_crtc_for_plane(plane_state, crtc);
11722 if (!ret)
11723 ret = drm_atomic_commit(state);
11724 }
11725
11726 if (ret == -EDEADLK) {
11727 drm_modeset_backoff(state->acquire_ctx);
11728 drm_atomic_state_clear(state);
11729 goto retry;
11730 }
11731
11732 if (ret)
11733 drm_atomic_state_free(state);
11734
f0d3dad3 11735 if (ret == 0 && event) {
5e2d7afc 11736 spin_lock_irq(&dev->event_lock);
560ce1dc 11737 drm_crtc_send_vblank_event(crtc, event);
5e2d7afc 11738 spin_unlock_irq(&dev->event_lock);
f0d3dad3 11739 }
f900db47 11740 }
96b099fd 11741 return ret;
6b95a207
KH
11742}
11743
da20eabd
ML
11744
11745/**
11746 * intel_wm_need_update - Check whether watermarks need updating
11747 * @plane: drm plane
11748 * @state: new plane state
11749 *
11750 * Check current plane state versus the new one to determine whether
11751 * watermarks need to be recalculated.
11752 *
11753 * Returns true or false.
11754 */
11755static bool intel_wm_need_update(struct drm_plane *plane,
11756 struct drm_plane_state *state)
11757{
d21fbe87
MR
11758 struct intel_plane_state *new = to_intel_plane_state(state);
11759 struct intel_plane_state *cur = to_intel_plane_state(plane->state);
11760
11761 /* Update watermarks on tiling or size changes. */
92826fcd
ML
11762 if (new->visible != cur->visible)
11763 return true;
11764
11765 if (!cur->base.fb || !new->base.fb)
11766 return false;
11767
11768 if (cur->base.fb->modifier[0] != new->base.fb->modifier[0] ||
11769 cur->base.rotation != new->base.rotation ||
d21fbe87
MR
11770 drm_rect_width(&new->src) != drm_rect_width(&cur->src) ||
11771 drm_rect_height(&new->src) != drm_rect_height(&cur->src) ||
11772 drm_rect_width(&new->dst) != drm_rect_width(&cur->dst) ||
11773 drm_rect_height(&new->dst) != drm_rect_height(&cur->dst))
2791a16c 11774 return true;
7809e5ae 11775
2791a16c 11776 return false;
7809e5ae
MR
11777}
11778
d21fbe87
MR
11779static bool needs_scaling(struct intel_plane_state *state)
11780{
11781 int src_w = drm_rect_width(&state->src) >> 16;
11782 int src_h = drm_rect_height(&state->src) >> 16;
11783 int dst_w = drm_rect_width(&state->dst);
11784 int dst_h = drm_rect_height(&state->dst);
11785
11786 return (src_w != dst_w || src_h != dst_h);
11787}
11788
da20eabd
ML
11789int intel_plane_atomic_calc_changes(struct drm_crtc_state *crtc_state,
11790 struct drm_plane_state *plane_state)
11791{
ab1d3a0e 11792 struct intel_crtc_state *pipe_config = to_intel_crtc_state(crtc_state);
da20eabd
ML
11793 struct drm_crtc *crtc = crtc_state->crtc;
11794 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11795 struct drm_plane *plane = plane_state->plane;
11796 struct drm_device *dev = crtc->dev;
ed4a6a7c 11797 struct drm_i915_private *dev_priv = to_i915(dev);
da20eabd
ML
11798 struct intel_plane_state *old_plane_state =
11799 to_intel_plane_state(plane->state);
11800 int idx = intel_crtc->base.base.id, ret;
da20eabd
ML
11801 bool mode_changed = needs_modeset(crtc_state);
11802 bool was_crtc_enabled = crtc->state->active;
11803 bool is_crtc_enabled = crtc_state->active;
da20eabd
ML
11804 bool turn_off, turn_on, visible, was_visible;
11805 struct drm_framebuffer *fb = plane_state->fb;
11806
11807 if (crtc_state && INTEL_INFO(dev)->gen >= 9 &&
11808 plane->type != DRM_PLANE_TYPE_CURSOR) {
11809 ret = skl_update_scaler_plane(
11810 to_intel_crtc_state(crtc_state),
11811 to_intel_plane_state(plane_state));
11812 if (ret)
11813 return ret;
11814 }
11815
da20eabd
ML
11816 was_visible = old_plane_state->visible;
11817 visible = to_intel_plane_state(plane_state)->visible;
11818
11819 if (!was_crtc_enabled && WARN_ON(was_visible))
11820 was_visible = false;
11821
35c08f43
ML
11822 /*
11823 * Visibility is calculated as if the crtc was on, but
11824 * after scaler setup everything depends on it being off
11825 * when the crtc isn't active.
f818ffea
VS
11826 *
11827 * FIXME this is wrong for watermarks. Watermarks should also
11828 * be computed as if the pipe would be active. Perhaps move
11829 * per-plane wm computation to the .check_plane() hook, and
11830 * only combine the results from all planes in the current place?
35c08f43
ML
11831 */
11832 if (!is_crtc_enabled)
11833 to_intel_plane_state(plane_state)->visible = visible = false;
da20eabd
ML
11834
11835 if (!was_visible && !visible)
11836 return 0;
11837
e8861675
ML
11838 if (fb != old_plane_state->base.fb)
11839 pipe_config->fb_changed = true;
11840
da20eabd
ML
11841 turn_off = was_visible && (!visible || mode_changed);
11842 turn_on = visible && (!was_visible || mode_changed);
11843
11844 DRM_DEBUG_ATOMIC("[CRTC:%i] has [PLANE:%i] with fb %i\n", idx,
11845 plane->base.id, fb ? fb->base.id : -1);
11846
11847 DRM_DEBUG_ATOMIC("[PLANE:%i] visible %i -> %i, off %i, on %i, ms %i\n",
11848 plane->base.id, was_visible, visible,
11849 turn_off, turn_on, mode_changed);
11850
caed361d
VS
11851 if (turn_on) {
11852 pipe_config->update_wm_pre = true;
11853
11854 /* must disable cxsr around plane enable/disable */
11855 if (plane->type != DRM_PLANE_TYPE_CURSOR)
11856 pipe_config->disable_cxsr = true;
11857 } else if (turn_off) {
11858 pipe_config->update_wm_post = true;
92826fcd 11859
852eb00d 11860 /* must disable cxsr around plane enable/disable */
e8861675 11861 if (plane->type != DRM_PLANE_TYPE_CURSOR)
ab1d3a0e 11862 pipe_config->disable_cxsr = true;
852eb00d 11863 } else if (intel_wm_need_update(plane, plane_state)) {
caed361d
VS
11864 /* FIXME bollocks */
11865 pipe_config->update_wm_pre = true;
11866 pipe_config->update_wm_post = true;
852eb00d 11867 }
da20eabd 11868
ed4a6a7c 11869 /* Pre-gen9 platforms need two-step watermark updates */
caed361d
VS
11870 if ((pipe_config->update_wm_pre || pipe_config->update_wm_post) &&
11871 INTEL_INFO(dev)->gen < 9 && dev_priv->display.optimize_watermarks)
ed4a6a7c
MR
11872 to_intel_crtc_state(crtc_state)->wm.need_postvbl_update = true;
11873
8be6ca85 11874 if (visible || was_visible)
cd202f69 11875 pipe_config->fb_bits |= to_intel_plane(plane)->frontbuffer_bit;
a9ff8714 11876
31ae71fc
ML
11877 /*
11878 * WaCxSRDisabledForSpriteScaling:ivb
11879 *
11880 * cstate->update_wm was already set above, so this flag will
11881 * take effect when we commit and program watermarks.
11882 */
11883 if (plane->type == DRM_PLANE_TYPE_OVERLAY && IS_IVYBRIDGE(dev) &&
11884 needs_scaling(to_intel_plane_state(plane_state)) &&
11885 !needs_scaling(old_plane_state))
11886 pipe_config->disable_lp_wm = true;
d21fbe87 11887
da20eabd
ML
11888 return 0;
11889}
11890
6d3a1ce7
ML
11891static bool encoders_cloneable(const struct intel_encoder *a,
11892 const struct intel_encoder *b)
11893{
11894 /* masks could be asymmetric, so check both ways */
11895 return a == b || (a->cloneable & (1 << b->type) &&
11896 b->cloneable & (1 << a->type));
11897}
11898
11899static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11900 struct intel_crtc *crtc,
11901 struct intel_encoder *encoder)
11902{
11903 struct intel_encoder *source_encoder;
11904 struct drm_connector *connector;
11905 struct drm_connector_state *connector_state;
11906 int i;
11907
11908 for_each_connector_in_state(state, connector, connector_state, i) {
11909 if (connector_state->crtc != &crtc->base)
11910 continue;
11911
11912 source_encoder =
11913 to_intel_encoder(connector_state->best_encoder);
11914 if (!encoders_cloneable(encoder, source_encoder))
11915 return false;
11916 }
11917
11918 return true;
11919}
11920
11921static bool check_encoder_cloning(struct drm_atomic_state *state,
11922 struct intel_crtc *crtc)
11923{
11924 struct intel_encoder *encoder;
11925 struct drm_connector *connector;
11926 struct drm_connector_state *connector_state;
11927 int i;
11928
11929 for_each_connector_in_state(state, connector, connector_state, i) {
11930 if (connector_state->crtc != &crtc->base)
11931 continue;
11932
11933 encoder = to_intel_encoder(connector_state->best_encoder);
11934 if (!check_single_encoder_cloning(state, crtc, encoder))
11935 return false;
11936 }
11937
11938 return true;
11939}
11940
11941static int intel_crtc_atomic_check(struct drm_crtc *crtc,
11942 struct drm_crtc_state *crtc_state)
11943{
cf5a15be 11944 struct drm_device *dev = crtc->dev;
ad421372 11945 struct drm_i915_private *dev_priv = dev->dev_private;
6d3a1ce7 11946 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
cf5a15be
ML
11947 struct intel_crtc_state *pipe_config =
11948 to_intel_crtc_state(crtc_state);
6d3a1ce7 11949 struct drm_atomic_state *state = crtc_state->state;
4d20cd86 11950 int ret;
6d3a1ce7
ML
11951 bool mode_changed = needs_modeset(crtc_state);
11952
11953 if (mode_changed && !check_encoder_cloning(state, intel_crtc)) {
11954 DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11955 return -EINVAL;
11956 }
11957
852eb00d 11958 if (mode_changed && !crtc_state->active)
caed361d 11959 pipe_config->update_wm_post = true;
eddfcbcd 11960
ad421372
ML
11961 if (mode_changed && crtc_state->enable &&
11962 dev_priv->display.crtc_compute_clock &&
8106ddbd 11963 !WARN_ON(pipe_config->shared_dpll)) {
ad421372
ML
11964 ret = dev_priv->display.crtc_compute_clock(intel_crtc,
11965 pipe_config);
11966 if (ret)
11967 return ret;
11968 }
11969
82cf435b
LL
11970 if (crtc_state->color_mgmt_changed) {
11971 ret = intel_color_check(crtc, crtc_state);
11972 if (ret)
11973 return ret;
11974 }
11975
e435d6e5 11976 ret = 0;
86c8bbbe 11977 if (dev_priv->display.compute_pipe_wm) {
e3bddded 11978 ret = dev_priv->display.compute_pipe_wm(pipe_config);
ed4a6a7c
MR
11979 if (ret) {
11980 DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
11981 return ret;
11982 }
11983 }
11984
11985 if (dev_priv->display.compute_intermediate_wm &&
11986 !to_intel_atomic_state(state)->skip_intermediate_wm) {
11987 if (WARN_ON(!dev_priv->display.compute_pipe_wm))
11988 return 0;
11989
11990 /*
11991 * Calculate 'intermediate' watermarks that satisfy both the
11992 * old state and the new state. We can program these
11993 * immediately.
11994 */
11995 ret = dev_priv->display.compute_intermediate_wm(crtc->dev,
11996 intel_crtc,
11997 pipe_config);
11998 if (ret) {
11999 DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
86c8bbbe 12000 return ret;
ed4a6a7c 12001 }
86c8bbbe
MR
12002 }
12003
e435d6e5
ML
12004 if (INTEL_INFO(dev)->gen >= 9) {
12005 if (mode_changed)
12006 ret = skl_update_scaler_crtc(pipe_config);
12007
12008 if (!ret)
12009 ret = intel_atomic_setup_scalers(dev, intel_crtc,
12010 pipe_config);
12011 }
12012
12013 return ret;
6d3a1ce7
ML
12014}
12015
65b38e0d 12016static const struct drm_crtc_helper_funcs intel_helper_funcs = {
f6e5b160 12017 .mode_set_base_atomic = intel_pipe_set_base_atomic,
ea2c67bb
MR
12018 .atomic_begin = intel_begin_crtc_commit,
12019 .atomic_flush = intel_finish_crtc_commit,
6d3a1ce7 12020 .atomic_check = intel_crtc_atomic_check,
f6e5b160
CW
12021};
12022
d29b2f9d
ACO
12023static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
12024{
12025 struct intel_connector *connector;
12026
12027 for_each_intel_connector(dev, connector) {
12028 if (connector->base.encoder) {
12029 connector->base.state->best_encoder =
12030 connector->base.encoder;
12031 connector->base.state->crtc =
12032 connector->base.encoder->crtc;
12033 } else {
12034 connector->base.state->best_encoder = NULL;
12035 connector->base.state->crtc = NULL;
12036 }
12037 }
12038}
12039
050f7aeb 12040static void
eba905b2 12041connected_sink_compute_bpp(struct intel_connector *connector,
5cec258b 12042 struct intel_crtc_state *pipe_config)
050f7aeb
DV
12043{
12044 int bpp = pipe_config->pipe_bpp;
12045
12046 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
12047 connector->base.base.id,
c23cc417 12048 connector->base.name);
050f7aeb
DV
12049
12050 /* Don't use an invalid EDID bpc value */
12051 if (connector->base.display_info.bpc &&
12052 connector->base.display_info.bpc * 3 < bpp) {
12053 DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
12054 bpp, connector->base.display_info.bpc*3);
12055 pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
12056 }
12057
013dd9e0
JN
12058 /* Clamp bpp to default limit on screens without EDID 1.4 */
12059 if (connector->base.display_info.bpc == 0) {
12060 int type = connector->base.connector_type;
12061 int clamp_bpp = 24;
12062
12063 /* Fall back to 18 bpp when DP sink capability is unknown. */
12064 if (type == DRM_MODE_CONNECTOR_DisplayPort ||
12065 type == DRM_MODE_CONNECTOR_eDP)
12066 clamp_bpp = 18;
12067
12068 if (bpp > clamp_bpp) {
12069 DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of %d\n",
12070 bpp, clamp_bpp);
12071 pipe_config->pipe_bpp = clamp_bpp;
12072 }
050f7aeb
DV
12073 }
12074}
12075
4e53c2e0 12076static int
050f7aeb 12077compute_baseline_pipe_bpp(struct intel_crtc *crtc,
5cec258b 12078 struct intel_crtc_state *pipe_config)
4e53c2e0 12079{
050f7aeb 12080 struct drm_device *dev = crtc->base.dev;
1486017f 12081 struct drm_atomic_state *state;
da3ced29
ACO
12082 struct drm_connector *connector;
12083 struct drm_connector_state *connector_state;
1486017f 12084 int bpp, i;
4e53c2e0 12085
666a4537 12086 if ((IS_G4X(dev) || IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)))
4e53c2e0 12087 bpp = 10*3;
d328c9d7
DV
12088 else if (INTEL_INFO(dev)->gen >= 5)
12089 bpp = 12*3;
12090 else
12091 bpp = 8*3;
12092
4e53c2e0 12093
4e53c2e0
DV
12094 pipe_config->pipe_bpp = bpp;
12095
1486017f
ACO
12096 state = pipe_config->base.state;
12097
4e53c2e0 12098 /* Clamp display bpp to EDID value */
da3ced29
ACO
12099 for_each_connector_in_state(state, connector, connector_state, i) {
12100 if (connector_state->crtc != &crtc->base)
4e53c2e0
DV
12101 continue;
12102
da3ced29
ACO
12103 connected_sink_compute_bpp(to_intel_connector(connector),
12104 pipe_config);
4e53c2e0
DV
12105 }
12106
12107 return bpp;
12108}
12109
644db711
DV
12110static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
12111{
12112 DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
12113 "type: 0x%x flags: 0x%x\n",
1342830c 12114 mode->crtc_clock,
644db711
DV
12115 mode->crtc_hdisplay, mode->crtc_hsync_start,
12116 mode->crtc_hsync_end, mode->crtc_htotal,
12117 mode->crtc_vdisplay, mode->crtc_vsync_start,
12118 mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
12119}
12120
c0b03411 12121static void intel_dump_pipe_config(struct intel_crtc *crtc,
5cec258b 12122 struct intel_crtc_state *pipe_config,
c0b03411
DV
12123 const char *context)
12124{
6a60cd87
CK
12125 struct drm_device *dev = crtc->base.dev;
12126 struct drm_plane *plane;
12127 struct intel_plane *intel_plane;
12128 struct intel_plane_state *state;
12129 struct drm_framebuffer *fb;
12130
12131 DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
12132 context, pipe_config, pipe_name(crtc->pipe));
c0b03411 12133
da205630 12134 DRM_DEBUG_KMS("cpu_transcoder: %s\n", transcoder_name(pipe_config->cpu_transcoder));
c0b03411
DV
12135 DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
12136 pipe_config->pipe_bpp, pipe_config->dither);
12137 DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12138 pipe_config->has_pch_encoder,
12139 pipe_config->fdi_lanes,
12140 pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
12141 pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
12142 pipe_config->fdi_m_n.tu);
90a6b7b0 12143 DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
eb14cb74 12144 pipe_config->has_dp_encoder,
90a6b7b0 12145 pipe_config->lane_count,
eb14cb74
VS
12146 pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
12147 pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
12148 pipe_config->dp_m_n.tu);
b95af8be 12149
90a6b7b0 12150 DRM_DEBUG_KMS("dp: %i, lanes: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
b95af8be 12151 pipe_config->has_dp_encoder,
90a6b7b0 12152 pipe_config->lane_count,
b95af8be
VK
12153 pipe_config->dp_m2_n2.gmch_m,
12154 pipe_config->dp_m2_n2.gmch_n,
12155 pipe_config->dp_m2_n2.link_m,
12156 pipe_config->dp_m2_n2.link_n,
12157 pipe_config->dp_m2_n2.tu);
12158
55072d19
DV
12159 DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
12160 pipe_config->has_audio,
12161 pipe_config->has_infoframe);
12162
c0b03411 12163 DRM_DEBUG_KMS("requested mode:\n");
2d112de7 12164 drm_mode_debug_printmodeline(&pipe_config->base.mode);
c0b03411 12165 DRM_DEBUG_KMS("adjusted mode:\n");
2d112de7
ACO
12166 drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12167 intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
d71b8d4a 12168 DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
37327abd
VS
12169 DRM_DEBUG_KMS("pipe src size: %dx%d\n",
12170 pipe_config->pipe_src_w, pipe_config->pipe_src_h);
0ec463d3
TU
12171 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12172 crtc->num_scalers,
12173 pipe_config->scaler_state.scaler_users,
12174 pipe_config->scaler_state.scaler_id);
c0b03411
DV
12175 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12176 pipe_config->gmch_pfit.control,
12177 pipe_config->gmch_pfit.pgm_ratios,
12178 pipe_config->gmch_pfit.lvds_border_bits);
fd4daa9c 12179 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
c0b03411 12180 pipe_config->pch_pfit.pos,
fd4daa9c
CW
12181 pipe_config->pch_pfit.size,
12182 pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
42db64ef 12183 DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
cf532bb2 12184 DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
6a60cd87 12185
415ff0f6 12186 if (IS_BROXTON(dev)) {
05712c15 12187 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, ebb4: 0x%x,"
415ff0f6 12188 "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
c8453338 12189 "pll6: 0x%x, pll8: 0x%x, pll9: 0x%x, pll10: 0x%x, pcsdw12: 0x%x\n",
415ff0f6
TU
12190 pipe_config->ddi_pll_sel,
12191 pipe_config->dpll_hw_state.ebb0,
05712c15 12192 pipe_config->dpll_hw_state.ebb4,
415ff0f6
TU
12193 pipe_config->dpll_hw_state.pll0,
12194 pipe_config->dpll_hw_state.pll1,
12195 pipe_config->dpll_hw_state.pll2,
12196 pipe_config->dpll_hw_state.pll3,
12197 pipe_config->dpll_hw_state.pll6,
12198 pipe_config->dpll_hw_state.pll8,
05712c15 12199 pipe_config->dpll_hw_state.pll9,
c8453338 12200 pipe_config->dpll_hw_state.pll10,
415ff0f6 12201 pipe_config->dpll_hw_state.pcsdw12);
ef11bdb3 12202 } else if (IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) {
415ff0f6
TU
12203 DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
12204 "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
12205 pipe_config->ddi_pll_sel,
12206 pipe_config->dpll_hw_state.ctrl1,
12207 pipe_config->dpll_hw_state.cfgcr1,
12208 pipe_config->dpll_hw_state.cfgcr2);
12209 } else if (HAS_DDI(dev)) {
1260f07e 12210 DRM_DEBUG_KMS("ddi_pll_sel: 0x%x; dpll_hw_state: wrpll: 0x%x spll: 0x%x\n",
415ff0f6 12211 pipe_config->ddi_pll_sel,
00490c22
ML
12212 pipe_config->dpll_hw_state.wrpll,
12213 pipe_config->dpll_hw_state.spll);
415ff0f6
TU
12214 } else {
12215 DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
12216 "fp0: 0x%x, fp1: 0x%x\n",
12217 pipe_config->dpll_hw_state.dpll,
12218 pipe_config->dpll_hw_state.dpll_md,
12219 pipe_config->dpll_hw_state.fp0,
12220 pipe_config->dpll_hw_state.fp1);
12221 }
12222
6a60cd87
CK
12223 DRM_DEBUG_KMS("planes on this crtc\n");
12224 list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
12225 intel_plane = to_intel_plane(plane);
12226 if (intel_plane->pipe != crtc->pipe)
12227 continue;
12228
12229 state = to_intel_plane_state(plane->state);
12230 fb = state->base.fb;
12231 if (!fb) {
12232 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
12233 "disabled, scaler_id = %d\n",
12234 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12235 plane->base.id, intel_plane->pipe,
12236 (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
12237 drm_plane_index(plane), state->scaler_id);
12238 continue;
12239 }
12240
12241 DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
12242 plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
12243 plane->base.id, intel_plane->pipe,
12244 crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
12245 drm_plane_index(plane));
12246 DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
12247 fb->base.id, fb->width, fb->height, fb->pixel_format);
12248 DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
12249 state->scaler_id,
12250 state->src.x1 >> 16, state->src.y1 >> 16,
12251 drm_rect_width(&state->src) >> 16,
12252 drm_rect_height(&state->src) >> 16,
12253 state->dst.x1, state->dst.y1,
12254 drm_rect_width(&state->dst), drm_rect_height(&state->dst));
12255 }
c0b03411
DV
12256}
12257
5448a00d 12258static bool check_digital_port_conflicts(struct drm_atomic_state *state)
00f0b378 12259{
5448a00d 12260 struct drm_device *dev = state->dev;
da3ced29 12261 struct drm_connector *connector;
00f0b378
VS
12262 unsigned int used_ports = 0;
12263
12264 /*
12265 * Walk the connector list instead of the encoder
12266 * list to detect the problem on ddi platforms
12267 * where there's just one encoder per digital port.
12268 */
0bff4858
VS
12269 drm_for_each_connector(connector, dev) {
12270 struct drm_connector_state *connector_state;
12271 struct intel_encoder *encoder;
12272
12273 connector_state = drm_atomic_get_existing_connector_state(state, connector);
12274 if (!connector_state)
12275 connector_state = connector->state;
12276
5448a00d 12277 if (!connector_state->best_encoder)
00f0b378
VS
12278 continue;
12279
5448a00d
ACO
12280 encoder = to_intel_encoder(connector_state->best_encoder);
12281
12282 WARN_ON(!connector_state->crtc);
00f0b378
VS
12283
12284 switch (encoder->type) {
12285 unsigned int port_mask;
12286 case INTEL_OUTPUT_UNKNOWN:
12287 if (WARN_ON(!HAS_DDI(dev)))
12288 break;
12289 case INTEL_OUTPUT_DISPLAYPORT:
12290 case INTEL_OUTPUT_HDMI:
12291 case INTEL_OUTPUT_EDP:
12292 port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
12293
12294 /* the same port mustn't appear more than once */
12295 if (used_ports & port_mask)
12296 return false;
12297
12298 used_ports |= port_mask;
12299 default:
12300 break;
12301 }
12302 }
12303
12304 return true;
12305}
12306
83a57153
ACO
12307static void
12308clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12309{
12310 struct drm_crtc_state tmp_state;
663a3640 12311 struct intel_crtc_scaler_state scaler_state;
4978cc93 12312 struct intel_dpll_hw_state dpll_hw_state;
8106ddbd 12313 struct intel_shared_dpll *shared_dpll;
8504c74c 12314 uint32_t ddi_pll_sel;
c4e2d043 12315 bool force_thru;
83a57153 12316
7546a384
ACO
12317 /* FIXME: before the switch to atomic started, a new pipe_config was
12318 * kzalloc'd. Code that depends on any field being zero should be
12319 * fixed, so that the crtc_state can be safely duplicated. For now,
12320 * only fields that are know to not cause problems are preserved. */
12321
83a57153 12322 tmp_state = crtc_state->base;
663a3640 12323 scaler_state = crtc_state->scaler_state;
4978cc93
ACO
12324 shared_dpll = crtc_state->shared_dpll;
12325 dpll_hw_state = crtc_state->dpll_hw_state;
8504c74c 12326 ddi_pll_sel = crtc_state->ddi_pll_sel;
c4e2d043 12327 force_thru = crtc_state->pch_pfit.force_thru;
4978cc93 12328
83a57153 12329 memset(crtc_state, 0, sizeof *crtc_state);
4978cc93 12330
83a57153 12331 crtc_state->base = tmp_state;
663a3640 12332 crtc_state->scaler_state = scaler_state;
4978cc93
ACO
12333 crtc_state->shared_dpll = shared_dpll;
12334 crtc_state->dpll_hw_state = dpll_hw_state;
8504c74c 12335 crtc_state->ddi_pll_sel = ddi_pll_sel;
c4e2d043 12336 crtc_state->pch_pfit.force_thru = force_thru;
83a57153
ACO
12337}
12338
548ee15b 12339static int
b8cecdf5 12340intel_modeset_pipe_config(struct drm_crtc *crtc,
b359283a 12341 struct intel_crtc_state *pipe_config)
ee7b9f93 12342{
b359283a 12343 struct drm_atomic_state *state = pipe_config->base.state;
7758a113 12344 struct intel_encoder *encoder;
da3ced29 12345 struct drm_connector *connector;
0b901879 12346 struct drm_connector_state *connector_state;
d328c9d7 12347 int base_bpp, ret = -EINVAL;
0b901879 12348 int i;
e29c22c0 12349 bool retry = true;
ee7b9f93 12350
83a57153 12351 clear_intel_crtc_state(pipe_config);
7758a113 12352
e143a21c
DV
12353 pipe_config->cpu_transcoder =
12354 (enum transcoder) to_intel_crtc(crtc)->pipe;
b8cecdf5 12355
2960bc9c
ID
12356 /*
12357 * Sanitize sync polarity flags based on requested ones. If neither
12358 * positive or negative polarity is requested, treat this as meaning
12359 * negative polarity.
12360 */
2d112de7 12361 if (!(pipe_config->base.adjusted_mode.flags &
2960bc9c 12362 (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
2d112de7 12363 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
2960bc9c 12364
2d112de7 12365 if (!(pipe_config->base.adjusted_mode.flags &
2960bc9c 12366 (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
2d112de7 12367 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
2960bc9c 12368
d328c9d7
DV
12369 base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12370 pipe_config);
12371 if (base_bpp < 0)
4e53c2e0
DV
12372 goto fail;
12373
e41a56be
VS
12374 /*
12375 * Determine the real pipe dimensions. Note that stereo modes can
12376 * increase the actual pipe size due to the frame doubling and
12377 * insertion of additional space for blanks between the frame. This
12378 * is stored in the crtc timings. We use the requested mode to do this
12379 * computation to clearly distinguish it from the adjusted mode, which
12380 * can be changed by the connectors in the below retry loop.
12381 */
2d112de7 12382 drm_crtc_get_hv_timing(&pipe_config->base.mode,
ecb7e16b
GP
12383 &pipe_config->pipe_src_w,
12384 &pipe_config->pipe_src_h);
e41a56be 12385
e29c22c0 12386encoder_retry:
ef1b460d 12387 /* Ensure the port clock defaults are reset when retrying. */
ff9a6750 12388 pipe_config->port_clock = 0;
ef1b460d 12389 pipe_config->pixel_multiplier = 1;
ff9a6750 12390
135c81b8 12391 /* Fill in default crtc timings, allow encoders to overwrite them. */
2d112de7
ACO
12392 drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12393 CRTC_STEREO_DOUBLE);
135c81b8 12394
7758a113
DV
12395 /* Pass our mode to the connectors and the CRTC to give them a chance to
12396 * adjust it according to limitations or connector properties, and also
12397 * a chance to reject the mode entirely.
47f1c6c9 12398 */
da3ced29 12399 for_each_connector_in_state(state, connector, connector_state, i) {
0b901879 12400 if (connector_state->crtc != crtc)
7758a113 12401 continue;
7ae89233 12402
0b901879
ACO
12403 encoder = to_intel_encoder(connector_state->best_encoder);
12404
efea6e8e
DV
12405 if (!(encoder->compute_config(encoder, pipe_config))) {
12406 DRM_DEBUG_KMS("Encoder config failure\n");
7758a113
DV
12407 goto fail;
12408 }
ee7b9f93 12409 }
47f1c6c9 12410
ff9a6750
DV
12411 /* Set default port clock if not overwritten by the encoder. Needs to be
12412 * done afterwards in case the encoder adjusts the mode. */
12413 if (!pipe_config->port_clock)
2d112de7 12414 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
241bfc38 12415 * pipe_config->pixel_multiplier;
ff9a6750 12416
a43f6e0f 12417 ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
e29c22c0 12418 if (ret < 0) {
7758a113
DV
12419 DRM_DEBUG_KMS("CRTC fixup failed\n");
12420 goto fail;
ee7b9f93 12421 }
e29c22c0
DV
12422
12423 if (ret == RETRY) {
12424 if (WARN(!retry, "loop in pipe configuration computation\n")) {
12425 ret = -EINVAL;
12426 goto fail;
12427 }
12428
12429 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12430 retry = false;
12431 goto encoder_retry;
12432 }
12433
e8fa4270
DV
12434 /* Dithering seems to not pass-through bits correctly when it should, so
12435 * only enable it on 6bpc panels. */
12436 pipe_config->dither = pipe_config->pipe_bpp == 6*3;
62f0ace5 12437 DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
d328c9d7 12438 base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
4e53c2e0 12439
7758a113 12440fail:
548ee15b 12441 return ret;
ee7b9f93 12442}
47f1c6c9 12443
ea9d758d 12444static void
4740b0f2 12445intel_modeset_update_crtc_state(struct drm_atomic_state *state)
ea9d758d 12446{
0a9ab303
ACO
12447 struct drm_crtc *crtc;
12448 struct drm_crtc_state *crtc_state;
8a75d157 12449 int i;
ea9d758d 12450
7668851f 12451 /* Double check state. */
8a75d157 12452 for_each_crtc_in_state(state, crtc, crtc_state, i) {
3cb480bc 12453 to_intel_crtc(crtc)->config = to_intel_crtc_state(crtc->state);
fc467a22
ML
12454
12455 /* Update hwmode for vblank functions */
12456 if (crtc->state->active)
12457 crtc->hwmode = crtc->state->adjusted_mode;
12458 else
12459 crtc->hwmode.crtc_clock = 0;
61067a5e
ML
12460
12461 /*
12462 * Update legacy state to satisfy fbc code. This can
12463 * be removed when fbc uses the atomic state.
12464 */
12465 if (drm_atomic_get_existing_plane_state(state, crtc->primary)) {
12466 struct drm_plane_state *plane_state = crtc->primary->state;
12467
12468 crtc->primary->fb = plane_state->fb;
12469 crtc->x = plane_state->src_x >> 16;
12470 crtc->y = plane_state->src_y >> 16;
12471 }
ea9d758d 12472 }
ea9d758d
DV
12473}
12474
3bd26263 12475static bool intel_fuzzy_clock_check(int clock1, int clock2)
f1f644dc 12476{
3bd26263 12477 int diff;
f1f644dc
JB
12478
12479 if (clock1 == clock2)
12480 return true;
12481
12482 if (!clock1 || !clock2)
12483 return false;
12484
12485 diff = abs(clock1 - clock2);
12486
12487 if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12488 return true;
12489
12490 return false;
12491}
12492
25c5b266
DV
12493#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
12494 list_for_each_entry((intel_crtc), \
12495 &(dev)->mode_config.crtc_list, \
12496 base.head) \
95150bdf 12497 for_each_if (mask & (1 <<(intel_crtc)->pipe))
25c5b266 12498
cfb23ed6
ML
12499static bool
12500intel_compare_m_n(unsigned int m, unsigned int n,
12501 unsigned int m2, unsigned int n2,
12502 bool exact)
12503{
12504 if (m == m2 && n == n2)
12505 return true;
12506
12507 if (exact || !m || !n || !m2 || !n2)
12508 return false;
12509
12510 BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
12511
31d10b57
ML
12512 if (n > n2) {
12513 while (n > n2) {
cfb23ed6
ML
12514 m2 <<= 1;
12515 n2 <<= 1;
12516 }
31d10b57
ML
12517 } else if (n < n2) {
12518 while (n < n2) {
cfb23ed6
ML
12519 m <<= 1;
12520 n <<= 1;
12521 }
12522 }
12523
31d10b57
ML
12524 if (n != n2)
12525 return false;
12526
12527 return intel_fuzzy_clock_check(m, m2);
cfb23ed6
ML
12528}
12529
12530static bool
12531intel_compare_link_m_n(const struct intel_link_m_n *m_n,
12532 struct intel_link_m_n *m2_n2,
12533 bool adjust)
12534{
12535 if (m_n->tu == m2_n2->tu &&
12536 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
12537 m2_n2->gmch_m, m2_n2->gmch_n, !adjust) &&
12538 intel_compare_m_n(m_n->link_m, m_n->link_n,
12539 m2_n2->link_m, m2_n2->link_n, !adjust)) {
12540 if (adjust)
12541 *m2_n2 = *m_n;
12542
12543 return true;
12544 }
12545
12546 return false;
12547}
12548
0e8ffe1b 12549static bool
2fa2fe9a 12550intel_pipe_config_compare(struct drm_device *dev,
5cec258b 12551 struct intel_crtc_state *current_config,
cfb23ed6
ML
12552 struct intel_crtc_state *pipe_config,
12553 bool adjust)
0e8ffe1b 12554{
cfb23ed6
ML
12555 bool ret = true;
12556
12557#define INTEL_ERR_OR_DBG_KMS(fmt, ...) \
12558 do { \
12559 if (!adjust) \
12560 DRM_ERROR(fmt, ##__VA_ARGS__); \
12561 else \
12562 DRM_DEBUG_KMS(fmt, ##__VA_ARGS__); \
12563 } while (0)
12564
66e985c0
DV
12565#define PIPE_CONF_CHECK_X(name) \
12566 if (current_config->name != pipe_config->name) { \
cfb23ed6 12567 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
66e985c0
DV
12568 "(expected 0x%08x, found 0x%08x)\n", \
12569 current_config->name, \
12570 pipe_config->name); \
cfb23ed6 12571 ret = false; \
66e985c0
DV
12572 }
12573
08a24034
DV
12574#define PIPE_CONF_CHECK_I(name) \
12575 if (current_config->name != pipe_config->name) { \
cfb23ed6 12576 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
08a24034
DV
12577 "(expected %i, found %i)\n", \
12578 current_config->name, \
12579 pipe_config->name); \
cfb23ed6
ML
12580 ret = false; \
12581 }
12582
8106ddbd
ACO
12583#define PIPE_CONF_CHECK_P(name) \
12584 if (current_config->name != pipe_config->name) { \
12585 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12586 "(expected %p, found %p)\n", \
12587 current_config->name, \
12588 pipe_config->name); \
12589 ret = false; \
12590 }
12591
cfb23ed6
ML
12592#define PIPE_CONF_CHECK_M_N(name) \
12593 if (!intel_compare_link_m_n(&current_config->name, \
12594 &pipe_config->name,\
12595 adjust)) { \
12596 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12597 "(expected tu %i gmch %i/%i link %i/%i, " \
12598 "found tu %i, gmch %i/%i link %i/%i)\n", \
12599 current_config->name.tu, \
12600 current_config->name.gmch_m, \
12601 current_config->name.gmch_n, \
12602 current_config->name.link_m, \
12603 current_config->name.link_n, \
12604 pipe_config->name.tu, \
12605 pipe_config->name.gmch_m, \
12606 pipe_config->name.gmch_n, \
12607 pipe_config->name.link_m, \
12608 pipe_config->name.link_n); \
12609 ret = false; \
12610 }
12611
55c561a7
DV
12612/* This is required for BDW+ where there is only one set of registers for
12613 * switching between high and low RR.
12614 * This macro can be used whenever a comparison has to be made between one
12615 * hw state and multiple sw state variables.
12616 */
cfb23ed6
ML
12617#define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) \
12618 if (!intel_compare_link_m_n(&current_config->name, \
12619 &pipe_config->name, adjust) && \
12620 !intel_compare_link_m_n(&current_config->alt_name, \
12621 &pipe_config->name, adjust)) { \
12622 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
12623 "(expected tu %i gmch %i/%i link %i/%i, " \
12624 "or tu %i gmch %i/%i link %i/%i, " \
12625 "found tu %i, gmch %i/%i link %i/%i)\n", \
12626 current_config->name.tu, \
12627 current_config->name.gmch_m, \
12628 current_config->name.gmch_n, \
12629 current_config->name.link_m, \
12630 current_config->name.link_n, \
12631 current_config->alt_name.tu, \
12632 current_config->alt_name.gmch_m, \
12633 current_config->alt_name.gmch_n, \
12634 current_config->alt_name.link_m, \
12635 current_config->alt_name.link_n, \
12636 pipe_config->name.tu, \
12637 pipe_config->name.gmch_m, \
12638 pipe_config->name.gmch_n, \
12639 pipe_config->name.link_m, \
12640 pipe_config->name.link_n); \
12641 ret = false; \
88adfff1
DV
12642 }
12643
1bd1bd80
DV
12644#define PIPE_CONF_CHECK_FLAGS(name, mask) \
12645 if ((current_config->name ^ pipe_config->name) & (mask)) { \
cfb23ed6 12646 INTEL_ERR_OR_DBG_KMS("mismatch in " #name "(" #mask ") " \
1bd1bd80
DV
12647 "(expected %i, found %i)\n", \
12648 current_config->name & (mask), \
12649 pipe_config->name & (mask)); \
cfb23ed6 12650 ret = false; \
1bd1bd80
DV
12651 }
12652
5e550656
VS
12653#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
12654 if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
cfb23ed6 12655 INTEL_ERR_OR_DBG_KMS("mismatch in " #name " " \
5e550656
VS
12656 "(expected %i, found %i)\n", \
12657 current_config->name, \
12658 pipe_config->name); \
cfb23ed6 12659 ret = false; \
5e550656
VS
12660 }
12661
bb760063
DV
12662#define PIPE_CONF_QUIRK(quirk) \
12663 ((current_config->quirks | pipe_config->quirks) & (quirk))
12664
eccb140b
DV
12665 PIPE_CONF_CHECK_I(cpu_transcoder);
12666
08a24034
DV
12667 PIPE_CONF_CHECK_I(has_pch_encoder);
12668 PIPE_CONF_CHECK_I(fdi_lanes);
cfb23ed6 12669 PIPE_CONF_CHECK_M_N(fdi_m_n);
08a24034 12670
eb14cb74 12671 PIPE_CONF_CHECK_I(has_dp_encoder);
90a6b7b0 12672 PIPE_CONF_CHECK_I(lane_count);
b95af8be
VK
12673
12674 if (INTEL_INFO(dev)->gen < 8) {
cfb23ed6
ML
12675 PIPE_CONF_CHECK_M_N(dp_m_n);
12676
cfb23ed6
ML
12677 if (current_config->has_drrs)
12678 PIPE_CONF_CHECK_M_N(dp_m2_n2);
12679 } else
12680 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
eb14cb74 12681
a65347ba
JN
12682 PIPE_CONF_CHECK_I(has_dsi_encoder);
12683
2d112de7
ACO
12684 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12685 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12686 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12687 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12688 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12689 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
1bd1bd80 12690
2d112de7
ACO
12691 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12692 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12693 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12694 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12695 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12696 PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
1bd1bd80 12697
c93f54cf 12698 PIPE_CONF_CHECK_I(pixel_multiplier);
6897b4b5 12699 PIPE_CONF_CHECK_I(has_hdmi_sink);
b5a9fa09 12700 if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
666a4537 12701 IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
b5a9fa09 12702 PIPE_CONF_CHECK_I(limited_color_range);
e43823ec 12703 PIPE_CONF_CHECK_I(has_infoframe);
6c49f241 12704
9ed109a7
DV
12705 PIPE_CONF_CHECK_I(has_audio);
12706
2d112de7 12707 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
1bd1bd80
DV
12708 DRM_MODE_FLAG_INTERLACE);
12709
bb760063 12710 if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
2d112de7 12711 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 12712 DRM_MODE_FLAG_PHSYNC);
2d112de7 12713 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 12714 DRM_MODE_FLAG_NHSYNC);
2d112de7 12715 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063 12716 DRM_MODE_FLAG_PVSYNC);
2d112de7 12717 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
bb760063
DV
12718 DRM_MODE_FLAG_NVSYNC);
12719 }
045ac3b5 12720
333b8ca8 12721 PIPE_CONF_CHECK_X(gmch_pfit.control);
e2ff2d4a
DV
12722 /* pfit ratios are autocomputed by the hw on gen4+ */
12723 if (INTEL_INFO(dev)->gen < 4)
7f7d8dd6 12724 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
333b8ca8 12725 PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
9953599b 12726
bfd16b2a
ML
12727 if (!adjust) {
12728 PIPE_CONF_CHECK_I(pipe_src_w);
12729 PIPE_CONF_CHECK_I(pipe_src_h);
12730
12731 PIPE_CONF_CHECK_I(pch_pfit.enabled);
12732 if (current_config->pch_pfit.enabled) {
12733 PIPE_CONF_CHECK_X(pch_pfit.pos);
12734 PIPE_CONF_CHECK_X(pch_pfit.size);
12735 }
2fa2fe9a 12736
7aefe2b5
ML
12737 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12738 }
a1b2278e 12739
e59150dc
JB
12740 /* BDW+ don't expose a synchronous way to read the state */
12741 if (IS_HASWELL(dev))
12742 PIPE_CONF_CHECK_I(ips_enabled);
42db64ef 12743
282740f7
VS
12744 PIPE_CONF_CHECK_I(double_wide);
12745
26804afd
DV
12746 PIPE_CONF_CHECK_X(ddi_pll_sel);
12747
8106ddbd 12748 PIPE_CONF_CHECK_P(shared_dpll);
66e985c0 12749 PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
8bcc2795 12750 PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
66e985c0
DV
12751 PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12752 PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
d452c5b6 12753 PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
00490c22 12754 PIPE_CONF_CHECK_X(dpll_hw_state.spll);
3f4cd19f
DL
12755 PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12756 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12757 PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
c0d43d62 12758
47eacbab
VS
12759 PIPE_CONF_CHECK_X(dsi_pll.ctrl);
12760 PIPE_CONF_CHECK_X(dsi_pll.div);
12761
42571aef
VS
12762 if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12763 PIPE_CONF_CHECK_I(pipe_bpp);
12764
2d112de7 12765 PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
a9a7e98a 12766 PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
5e550656 12767
66e985c0 12768#undef PIPE_CONF_CHECK_X
08a24034 12769#undef PIPE_CONF_CHECK_I
8106ddbd 12770#undef PIPE_CONF_CHECK_P
1bd1bd80 12771#undef PIPE_CONF_CHECK_FLAGS
5e550656 12772#undef PIPE_CONF_CHECK_CLOCK_FUZZY
bb760063 12773#undef PIPE_CONF_QUIRK
cfb23ed6 12774#undef INTEL_ERR_OR_DBG_KMS
88adfff1 12775
cfb23ed6 12776 return ret;
0e8ffe1b
DV
12777}
12778
e3b247da
VS
12779static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
12780 const struct intel_crtc_state *pipe_config)
12781{
12782 if (pipe_config->has_pch_encoder) {
21a727b3 12783 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
e3b247da
VS
12784 &pipe_config->fdi_m_n);
12785 int dotclock = pipe_config->base.adjusted_mode.crtc_clock;
12786
12787 /*
12788 * FDI already provided one idea for the dotclock.
12789 * Yell if the encoder disagrees.
12790 */
12791 WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
12792 "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12793 fdi_dotclock, dotclock);
12794 }
12795}
12796
c0ead703
ML
12797static void verify_wm_state(struct drm_crtc *crtc,
12798 struct drm_crtc_state *new_state)
08db6652 12799{
e7c84544 12800 struct drm_device *dev = crtc->dev;
08db6652
DL
12801 struct drm_i915_private *dev_priv = dev->dev_private;
12802 struct skl_ddb_allocation hw_ddb, *sw_ddb;
e7c84544
ML
12803 struct skl_ddb_entry *hw_entry, *sw_entry;
12804 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12805 const enum pipe pipe = intel_crtc->pipe;
08db6652
DL
12806 int plane;
12807
e7c84544 12808 if (INTEL_INFO(dev)->gen < 9 || !new_state->active)
08db6652
DL
12809 return;
12810
12811 skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12812 sw_ddb = &dev_priv->wm.skl_hw.ddb;
12813
e7c84544
ML
12814 /* planes */
12815 for_each_plane(dev_priv, pipe, plane) {
12816 hw_entry = &hw_ddb.plane[pipe][plane];
12817 sw_entry = &sw_ddb->plane[pipe][plane];
08db6652 12818
e7c84544 12819 if (skl_ddb_entry_equal(hw_entry, sw_entry))
08db6652
DL
12820 continue;
12821
e7c84544
ML
12822 DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12823 "(expected (%u,%u), found (%u,%u))\n",
12824 pipe_name(pipe), plane + 1,
12825 sw_entry->start, sw_entry->end,
12826 hw_entry->start, hw_entry->end);
12827 }
08db6652 12828
e7c84544
ML
12829 /* cursor */
12830 hw_entry = &hw_ddb.plane[pipe][PLANE_CURSOR];
12831 sw_entry = &sw_ddb->plane[pipe][PLANE_CURSOR];
08db6652 12832
e7c84544 12833 if (!skl_ddb_entry_equal(hw_entry, sw_entry)) {
08db6652
DL
12834 DRM_ERROR("mismatch in DDB state pipe %c cursor "
12835 "(expected (%u,%u), found (%u,%u))\n",
12836 pipe_name(pipe),
12837 sw_entry->start, sw_entry->end,
12838 hw_entry->start, hw_entry->end);
12839 }
12840}
12841
91d1b4bd 12842static void
c0ead703 12843verify_connector_state(struct drm_device *dev, struct drm_crtc *crtc)
8af6cf88 12844{
35dd3c64 12845 struct drm_connector *connector;
8af6cf88 12846
e7c84544 12847 drm_for_each_connector(connector, dev) {
35dd3c64
ML
12848 struct drm_encoder *encoder = connector->encoder;
12849 struct drm_connector_state *state = connector->state;
ad3c558f 12850
e7c84544
ML
12851 if (state->crtc != crtc)
12852 continue;
12853
c0ead703 12854 intel_connector_verify_state(to_intel_connector(connector));
8af6cf88 12855
ad3c558f 12856 I915_STATE_WARN(state->best_encoder != encoder,
35dd3c64 12857 "connector's atomic encoder doesn't match legacy encoder\n");
8af6cf88 12858 }
91d1b4bd
DV
12859}
12860
12861static void
c0ead703 12862verify_encoder_state(struct drm_device *dev)
91d1b4bd
DV
12863{
12864 struct intel_encoder *encoder;
12865 struct intel_connector *connector;
8af6cf88 12866
b2784e15 12867 for_each_intel_encoder(dev, encoder) {
8af6cf88 12868 bool enabled = false;
4d20cd86 12869 enum pipe pipe;
8af6cf88
DV
12870
12871 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12872 encoder->base.base.id,
8e329a03 12873 encoder->base.name);
8af6cf88 12874
3a3371ff 12875 for_each_intel_connector(dev, connector) {
4d20cd86 12876 if (connector->base.state->best_encoder != &encoder->base)
8af6cf88
DV
12877 continue;
12878 enabled = true;
ad3c558f
ML
12879
12880 I915_STATE_WARN(connector->base.state->crtc !=
12881 encoder->base.crtc,
12882 "connector's crtc doesn't match encoder crtc\n");
8af6cf88 12883 }
0e32b39c 12884
e2c719b7 12885 I915_STATE_WARN(!!encoder->base.crtc != enabled,
8af6cf88
DV
12886 "encoder's enabled state mismatch "
12887 "(expected %i, found %i)\n",
12888 !!encoder->base.crtc, enabled);
7c60d198
ML
12889
12890 if (!encoder->base.crtc) {
4d20cd86 12891 bool active;
7c60d198 12892
4d20cd86
ML
12893 active = encoder->get_hw_state(encoder, &pipe);
12894 I915_STATE_WARN(active,
12895 "encoder detached but still enabled on pipe %c.\n",
12896 pipe_name(pipe));
7c60d198 12897 }
8af6cf88 12898 }
91d1b4bd
DV
12899}
12900
12901static void
c0ead703
ML
12902verify_crtc_state(struct drm_crtc *crtc,
12903 struct drm_crtc_state *old_crtc_state,
12904 struct drm_crtc_state *new_crtc_state)
91d1b4bd 12905{
e7c84544 12906 struct drm_device *dev = crtc->dev;
fbee40df 12907 struct drm_i915_private *dev_priv = dev->dev_private;
91d1b4bd 12908 struct intel_encoder *encoder;
e7c84544
ML
12909 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
12910 struct intel_crtc_state *pipe_config, *sw_config;
12911 struct drm_atomic_state *old_state;
12912 bool active;
045ac3b5 12913
e7c84544
ML
12914 old_state = old_crtc_state->state;
12915 __drm_atomic_helper_crtc_destroy_state(crtc, old_crtc_state);
12916 pipe_config = to_intel_crtc_state(old_crtc_state);
12917 memset(pipe_config, 0, sizeof(*pipe_config));
12918 pipe_config->base.crtc = crtc;
12919 pipe_config->base.state = old_state;
8af6cf88 12920
e7c84544 12921 DRM_DEBUG_KMS("[CRTC:%d]\n", crtc->base.id);
8af6cf88 12922
e7c84544 12923 active = dev_priv->display.get_pipe_config(intel_crtc, pipe_config);
d62cf62a 12924
e7c84544
ML
12925 /* hw state is inconsistent with the pipe quirk */
12926 if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12927 (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12928 active = new_crtc_state->active;
6c49f241 12929
e7c84544
ML
12930 I915_STATE_WARN(new_crtc_state->active != active,
12931 "crtc active state doesn't match with hw state "
12932 "(expected %i, found %i)\n", new_crtc_state->active, active);
0e8ffe1b 12933
e7c84544
ML
12934 I915_STATE_WARN(intel_crtc->active != new_crtc_state->active,
12935 "transitional active state does not match atomic hw state "
12936 "(expected %i, found %i)\n", new_crtc_state->active, intel_crtc->active);
4d20cd86 12937
e7c84544
ML
12938 for_each_encoder_on_crtc(dev, crtc, encoder) {
12939 enum pipe pipe;
4d20cd86 12940
e7c84544
ML
12941 active = encoder->get_hw_state(encoder, &pipe);
12942 I915_STATE_WARN(active != new_crtc_state->active,
12943 "[ENCODER:%i] active %i with crtc active %i\n",
12944 encoder->base.base.id, active, new_crtc_state->active);
4d20cd86 12945
e7c84544
ML
12946 I915_STATE_WARN(active && intel_crtc->pipe != pipe,
12947 "Encoder connected to wrong pipe %c\n",
12948 pipe_name(pipe));
4d20cd86 12949
e7c84544
ML
12950 if (active)
12951 encoder->get_config(encoder, pipe_config);
12952 }
53d9f4e9 12953
e7c84544
ML
12954 if (!new_crtc_state->active)
12955 return;
cfb23ed6 12956
e7c84544 12957 intel_pipe_config_sanity_check(dev_priv, pipe_config);
e3b247da 12958
e7c84544
ML
12959 sw_config = to_intel_crtc_state(crtc->state);
12960 if (!intel_pipe_config_compare(dev, sw_config,
12961 pipe_config, false)) {
12962 I915_STATE_WARN(1, "pipe state doesn't match!\n");
12963 intel_dump_pipe_config(intel_crtc, pipe_config,
12964 "[hw state]");
12965 intel_dump_pipe_config(intel_crtc, sw_config,
12966 "[sw state]");
8af6cf88
DV
12967 }
12968}
12969
91d1b4bd 12970static void
c0ead703
ML
12971verify_single_dpll_state(struct drm_i915_private *dev_priv,
12972 struct intel_shared_dpll *pll,
12973 struct drm_crtc *crtc,
12974 struct drm_crtc_state *new_state)
91d1b4bd 12975{
91d1b4bd 12976 struct intel_dpll_hw_state dpll_hw_state;
e7c84544
ML
12977 unsigned crtc_mask;
12978 bool active;
5358901f 12979
e7c84544 12980 memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
5358901f 12981
e7c84544 12982 DRM_DEBUG_KMS("%s\n", pll->name);
5358901f 12983
e7c84544 12984 active = pll->funcs.get_hw_state(dev_priv, pll, &dpll_hw_state);
5358901f 12985
e7c84544
ML
12986 if (!(pll->flags & INTEL_DPLL_ALWAYS_ON)) {
12987 I915_STATE_WARN(!pll->on && pll->active_mask,
12988 "pll in active use but not on in sw tracking\n");
12989 I915_STATE_WARN(pll->on && !pll->active_mask,
12990 "pll is on but not used by any active crtc\n");
12991 I915_STATE_WARN(pll->on != active,
12992 "pll on state mismatch (expected %i, found %i)\n",
12993 pll->on, active);
12994 }
5358901f 12995
e7c84544 12996 if (!crtc) {
2dd66ebd 12997 I915_STATE_WARN(pll->active_mask & ~pll->config.crtc_mask,
e7c84544
ML
12998 "more active pll users than references: %x vs %x\n",
12999 pll->active_mask, pll->config.crtc_mask);
5358901f 13000
e7c84544
ML
13001 return;
13002 }
13003
13004 crtc_mask = 1 << drm_crtc_index(crtc);
13005
13006 if (new_state->active)
13007 I915_STATE_WARN(!(pll->active_mask & crtc_mask),
13008 "pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
13009 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
13010 else
13011 I915_STATE_WARN(pll->active_mask & crtc_mask,
13012 "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
13013 pipe_name(drm_crtc_index(crtc)), pll->active_mask);
2dd66ebd 13014
e7c84544
ML
13015 I915_STATE_WARN(!(pll->config.crtc_mask & crtc_mask),
13016 "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
13017 crtc_mask, pll->config.crtc_mask);
66e985c0 13018
e7c84544
ML
13019 I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state,
13020 &dpll_hw_state,
13021 sizeof(dpll_hw_state)),
13022 "pll hw state mismatch\n");
13023}
13024
13025static void
c0ead703
ML
13026verify_shared_dpll_state(struct drm_device *dev, struct drm_crtc *crtc,
13027 struct drm_crtc_state *old_crtc_state,
13028 struct drm_crtc_state *new_crtc_state)
e7c84544
ML
13029{
13030 struct drm_i915_private *dev_priv = dev->dev_private;
13031 struct intel_crtc_state *old_state = to_intel_crtc_state(old_crtc_state);
13032 struct intel_crtc_state *new_state = to_intel_crtc_state(new_crtc_state);
13033
13034 if (new_state->shared_dpll)
c0ead703 13035 verify_single_dpll_state(dev_priv, new_state->shared_dpll, crtc, new_crtc_state);
e7c84544
ML
13036
13037 if (old_state->shared_dpll &&
13038 old_state->shared_dpll != new_state->shared_dpll) {
13039 unsigned crtc_mask = 1 << drm_crtc_index(crtc);
13040 struct intel_shared_dpll *pll = old_state->shared_dpll;
13041
13042 I915_STATE_WARN(pll->active_mask & crtc_mask,
13043 "pll active mismatch (didn't expect pipe %c in active mask)\n",
13044 pipe_name(drm_crtc_index(crtc)));
13045 I915_STATE_WARN(pll->config.crtc_mask & crtc_mask,
13046 "pll enabled crtcs mismatch (found %x in enabled mask)\n",
13047 pipe_name(drm_crtc_index(crtc)));
5358901f 13048 }
8af6cf88
DV
13049}
13050
e7c84544 13051static void
c0ead703 13052intel_modeset_verify_crtc(struct drm_crtc *crtc,
e7c84544
ML
13053 struct drm_crtc_state *old_state,
13054 struct drm_crtc_state *new_state)
13055{
13056 if (!needs_modeset(new_state) &&
13057 !to_intel_crtc_state(new_state)->update_pipe)
13058 return;
13059
c0ead703
ML
13060 verify_wm_state(crtc, new_state);
13061 verify_connector_state(crtc->dev, crtc);
13062 verify_crtc_state(crtc, old_state, new_state);
13063 verify_shared_dpll_state(crtc->dev, crtc, old_state, new_state);
e7c84544
ML
13064}
13065
13066static void
c0ead703 13067verify_disabled_dpll_state(struct drm_device *dev)
e7c84544
ML
13068{
13069 struct drm_i915_private *dev_priv = dev->dev_private;
13070 int i;
13071
13072 for (i = 0; i < dev_priv->num_shared_dpll; i++)
c0ead703 13073 verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL);
e7c84544
ML
13074}
13075
13076static void
c0ead703 13077intel_modeset_verify_disabled(struct drm_device *dev)
e7c84544 13078{
c0ead703
ML
13079 verify_encoder_state(dev);
13080 verify_connector_state(dev, NULL);
13081 verify_disabled_dpll_state(dev);
e7c84544
ML
13082}
13083
80715b2f
VS
13084static void update_scanline_offset(struct intel_crtc *crtc)
13085{
13086 struct drm_device *dev = crtc->base.dev;
13087
13088 /*
13089 * The scanline counter increments at the leading edge of hsync.
13090 *
13091 * On most platforms it starts counting from vtotal-1 on the
13092 * first active line. That means the scanline counter value is
13093 * always one less than what we would expect. Ie. just after
13094 * start of vblank, which also occurs at start of hsync (on the
13095 * last active line), the scanline counter will read vblank_start-1.
13096 *
13097 * On gen2 the scanline counter starts counting from 1 instead
13098 * of vtotal-1, so we have to subtract one (or rather add vtotal-1
13099 * to keep the value positive), instead of adding one.
13100 *
13101 * On HSW+ the behaviour of the scanline counter depends on the output
13102 * type. For DP ports it behaves like most other platforms, but on HDMI
13103 * there's an extra 1 line difference. So we need to add two instead of
13104 * one to the value.
13105 */
13106 if (IS_GEN2(dev)) {
124abe07 13107 const struct drm_display_mode *adjusted_mode = &crtc->config->base.adjusted_mode;
80715b2f
VS
13108 int vtotal;
13109
124abe07
VS
13110 vtotal = adjusted_mode->crtc_vtotal;
13111 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
80715b2f
VS
13112 vtotal /= 2;
13113
13114 crtc->scanline_offset = vtotal - 1;
13115 } else if (HAS_DDI(dev) &&
409ee761 13116 intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
80715b2f
VS
13117 crtc->scanline_offset = 2;
13118 } else
13119 crtc->scanline_offset = 1;
13120}
13121
ad421372 13122static void intel_modeset_clear_plls(struct drm_atomic_state *state)
ed6739ef 13123{
225da59b 13124 struct drm_device *dev = state->dev;
ed6739ef 13125 struct drm_i915_private *dev_priv = to_i915(dev);
ad421372 13126 struct intel_shared_dpll_config *shared_dpll = NULL;
0a9ab303
ACO
13127 struct drm_crtc *crtc;
13128 struct drm_crtc_state *crtc_state;
0a9ab303 13129 int i;
ed6739ef
ACO
13130
13131 if (!dev_priv->display.crtc_compute_clock)
ad421372 13132 return;
ed6739ef 13133
0a9ab303 13134 for_each_crtc_in_state(state, crtc, crtc_state, i) {
fb1a38a9 13135 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8106ddbd
ACO
13136 struct intel_shared_dpll *old_dpll =
13137 to_intel_crtc_state(crtc->state)->shared_dpll;
0a9ab303 13138
fb1a38a9 13139 if (!needs_modeset(crtc_state))
225da59b
ACO
13140 continue;
13141
8106ddbd 13142 to_intel_crtc_state(crtc_state)->shared_dpll = NULL;
fb1a38a9 13143
8106ddbd 13144 if (!old_dpll)
fb1a38a9 13145 continue;
0a9ab303 13146
ad421372
ML
13147 if (!shared_dpll)
13148 shared_dpll = intel_atomic_get_shared_dpll_state(state);
ed6739ef 13149
8106ddbd 13150 intel_shared_dpll_config_put(shared_dpll, old_dpll, intel_crtc);
ad421372 13151 }
ed6739ef
ACO
13152}
13153
99d736a2
ML
13154/*
13155 * This implements the workaround described in the "notes" section of the mode
13156 * set sequence documentation. When going from no pipes or single pipe to
13157 * multiple pipes, and planes are enabled after the pipe, we need to wait at
13158 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
13159 */
13160static int haswell_mode_set_planes_workaround(struct drm_atomic_state *state)
13161{
13162 struct drm_crtc_state *crtc_state;
13163 struct intel_crtc *intel_crtc;
13164 struct drm_crtc *crtc;
13165 struct intel_crtc_state *first_crtc_state = NULL;
13166 struct intel_crtc_state *other_crtc_state = NULL;
13167 enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13168 int i;
13169
13170 /* look at all crtc's that are going to be enabled in during modeset */
13171 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13172 intel_crtc = to_intel_crtc(crtc);
13173
13174 if (!crtc_state->active || !needs_modeset(crtc_state))
13175 continue;
13176
13177 if (first_crtc_state) {
13178 other_crtc_state = to_intel_crtc_state(crtc_state);
13179 break;
13180 } else {
13181 first_crtc_state = to_intel_crtc_state(crtc_state);
13182 first_pipe = intel_crtc->pipe;
13183 }
13184 }
13185
13186 /* No workaround needed? */
13187 if (!first_crtc_state)
13188 return 0;
13189
13190 /* w/a possibly needed, check how many crtc's are already enabled. */
13191 for_each_intel_crtc(state->dev, intel_crtc) {
13192 struct intel_crtc_state *pipe_config;
13193
13194 pipe_config = intel_atomic_get_crtc_state(state, intel_crtc);
13195 if (IS_ERR(pipe_config))
13196 return PTR_ERR(pipe_config);
13197
13198 pipe_config->hsw_workaround_pipe = INVALID_PIPE;
13199
13200 if (!pipe_config->base.active ||
13201 needs_modeset(&pipe_config->base))
13202 continue;
13203
13204 /* 2 or more enabled crtcs means no need for w/a */
13205 if (enabled_pipe != INVALID_PIPE)
13206 return 0;
13207
13208 enabled_pipe = intel_crtc->pipe;
13209 }
13210
13211 if (enabled_pipe != INVALID_PIPE)
13212 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13213 else if (other_crtc_state)
13214 other_crtc_state->hsw_workaround_pipe = first_pipe;
13215
13216 return 0;
13217}
13218
27c329ed
ML
13219static int intel_modeset_all_pipes(struct drm_atomic_state *state)
13220{
13221 struct drm_crtc *crtc;
13222 struct drm_crtc_state *crtc_state;
13223 int ret = 0;
13224
13225 /* add all active pipes to the state */
13226 for_each_crtc(state->dev, crtc) {
13227 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13228 if (IS_ERR(crtc_state))
13229 return PTR_ERR(crtc_state);
13230
13231 if (!crtc_state->active || needs_modeset(crtc_state))
13232 continue;
13233
13234 crtc_state->mode_changed = true;
13235
13236 ret = drm_atomic_add_affected_connectors(state, crtc);
13237 if (ret)
13238 break;
13239
13240 ret = drm_atomic_add_affected_planes(state, crtc);
13241 if (ret)
13242 break;
13243 }
13244
13245 return ret;
13246}
13247
c347a676 13248static int intel_modeset_checks(struct drm_atomic_state *state)
054518dd 13249{
565602d7
ML
13250 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
13251 struct drm_i915_private *dev_priv = state->dev->dev_private;
13252 struct drm_crtc *crtc;
13253 struct drm_crtc_state *crtc_state;
13254 int ret = 0, i;
054518dd 13255
b359283a
ML
13256 if (!check_digital_port_conflicts(state)) {
13257 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
13258 return -EINVAL;
13259 }
13260
565602d7
ML
13261 intel_state->modeset = true;
13262 intel_state->active_crtcs = dev_priv->active_crtcs;
13263
13264 for_each_crtc_in_state(state, crtc, crtc_state, i) {
13265 if (crtc_state->active)
13266 intel_state->active_crtcs |= 1 << i;
13267 else
13268 intel_state->active_crtcs &= ~(1 << i);
8b4a7d05
MR
13269
13270 if (crtc_state->active != crtc->state->active)
13271 intel_state->active_pipe_changes |= drm_crtc_mask(crtc);
565602d7
ML
13272 }
13273
054518dd
ACO
13274 /*
13275 * See if the config requires any additional preparation, e.g.
13276 * to adjust global state with pipes off. We need to do this
13277 * here so we can get the modeset_pipe updated config for the new
13278 * mode set on this crtc. For other crtcs we need to use the
13279 * adjusted_mode bits in the crtc directly.
13280 */
27c329ed 13281 if (dev_priv->display.modeset_calc_cdclk) {
27c329ed
ML
13282 ret = dev_priv->display.modeset_calc_cdclk(state);
13283
1a617b77 13284 if (!ret && intel_state->dev_cdclk != dev_priv->cdclk_freq)
27c329ed
ML
13285 ret = intel_modeset_all_pipes(state);
13286
13287 if (ret < 0)
054518dd 13288 return ret;
e8788cbc
ML
13289
13290 DRM_DEBUG_KMS("New cdclk calculated to be atomic %u, actual %u\n",
13291 intel_state->cdclk, intel_state->dev_cdclk);
27c329ed 13292 } else
1a617b77 13293 to_intel_atomic_state(state)->cdclk = dev_priv->atomic_cdclk_freq;
054518dd 13294
ad421372 13295 intel_modeset_clear_plls(state);
054518dd 13296
565602d7 13297 if (IS_HASWELL(dev_priv))
ad421372 13298 return haswell_mode_set_planes_workaround(state);
99d736a2 13299
ad421372 13300 return 0;
c347a676
ACO
13301}
13302
aa363136
MR
13303/*
13304 * Handle calculation of various watermark data at the end of the atomic check
13305 * phase. The code here should be run after the per-crtc and per-plane 'check'
13306 * handlers to ensure that all derived state has been updated.
13307 */
55994c2c 13308static int calc_watermark_data(struct drm_atomic_state *state)
aa363136
MR
13309{
13310 struct drm_device *dev = state->dev;
98d39494 13311 struct drm_i915_private *dev_priv = to_i915(dev);
98d39494
MR
13312
13313 /* Is there platform-specific watermark information to calculate? */
13314 if (dev_priv->display.compute_global_watermarks)
55994c2c
MR
13315 return dev_priv->display.compute_global_watermarks(state);
13316
13317 return 0;
aa363136
MR
13318}
13319
74c090b1
ML
13320/**
13321 * intel_atomic_check - validate state object
13322 * @dev: drm device
13323 * @state: state to validate
13324 */
13325static int intel_atomic_check(struct drm_device *dev,
13326 struct drm_atomic_state *state)
c347a676 13327{
dd8b3bdb 13328 struct drm_i915_private *dev_priv = to_i915(dev);
aa363136 13329 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
c347a676
ACO
13330 struct drm_crtc *crtc;
13331 struct drm_crtc_state *crtc_state;
13332 int ret, i;
61333b60 13333 bool any_ms = false;
c347a676 13334
74c090b1 13335 ret = drm_atomic_helper_check_modeset(dev, state);
054518dd
ACO
13336 if (ret)
13337 return ret;
13338
c347a676 13339 for_each_crtc_in_state(state, crtc, crtc_state, i) {
cfb23ed6
ML
13340 struct intel_crtc_state *pipe_config =
13341 to_intel_crtc_state(crtc_state);
1ed51de9
DV
13342
13343 /* Catch I915_MODE_FLAG_INHERITED */
13344 if (crtc_state->mode.private_flags != crtc->state->mode.private_flags)
13345 crtc_state->mode_changed = true;
cfb23ed6 13346
61333b60
ML
13347 if (!crtc_state->enable) {
13348 if (needs_modeset(crtc_state))
13349 any_ms = true;
c347a676 13350 continue;
61333b60 13351 }
c347a676 13352
26495481 13353 if (!needs_modeset(crtc_state))
cfb23ed6
ML
13354 continue;
13355
26495481
DV
13356 /* FIXME: For only active_changed we shouldn't need to do any
13357 * state recomputation at all. */
13358
1ed51de9
DV
13359 ret = drm_atomic_add_affected_connectors(state, crtc);
13360 if (ret)
13361 return ret;
b359283a 13362
cfb23ed6 13363 ret = intel_modeset_pipe_config(crtc, pipe_config);
25aa1c39
ML
13364 if (ret) {
13365 intel_dump_pipe_config(to_intel_crtc(crtc),
13366 pipe_config, "[failed]");
c347a676 13367 return ret;
25aa1c39 13368 }
c347a676 13369
73831236 13370 if (i915.fastboot &&
dd8b3bdb 13371 intel_pipe_config_compare(dev,
cfb23ed6 13372 to_intel_crtc_state(crtc->state),
1ed51de9 13373 pipe_config, true)) {
26495481 13374 crtc_state->mode_changed = false;
bfd16b2a 13375 to_intel_crtc_state(crtc_state)->update_pipe = true;
26495481
DV
13376 }
13377
13378 if (needs_modeset(crtc_state)) {
13379 any_ms = true;
cfb23ed6
ML
13380
13381 ret = drm_atomic_add_affected_planes(state, crtc);
13382 if (ret)
13383 return ret;
13384 }
61333b60 13385
26495481
DV
13386 intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,
13387 needs_modeset(crtc_state) ?
13388 "[modeset]" : "[fastset]");
c347a676
ACO
13389 }
13390
61333b60
ML
13391 if (any_ms) {
13392 ret = intel_modeset_checks(state);
13393
13394 if (ret)
13395 return ret;
27c329ed 13396 } else
dd8b3bdb 13397 intel_state->cdclk = dev_priv->cdclk_freq;
76305b1a 13398
dd8b3bdb 13399 ret = drm_atomic_helper_check_planes(dev, state);
aa363136
MR
13400 if (ret)
13401 return ret;
13402
f51be2e0 13403 intel_fbc_choose_crtc(dev_priv, state);
55994c2c 13404 return calc_watermark_data(state);
054518dd
ACO
13405}
13406
5008e874
ML
13407static int intel_atomic_prepare_commit(struct drm_device *dev,
13408 struct drm_atomic_state *state,
13409 bool async)
13410{
7580d774
ML
13411 struct drm_i915_private *dev_priv = dev->dev_private;
13412 struct drm_plane_state *plane_state;
5008e874 13413 struct drm_crtc_state *crtc_state;
7580d774 13414 struct drm_plane *plane;
5008e874
ML
13415 struct drm_crtc *crtc;
13416 int i, ret;
13417
13418 if (async) {
13419 DRM_DEBUG_KMS("i915 does not yet support async commit\n");
13420 return -EINVAL;
13421 }
13422
13423 for_each_crtc_in_state(state, crtc, crtc_state, i) {
acf4e84d
CW
13424 if (state->legacy_cursor_update)
13425 continue;
13426
5008e874
ML
13427 ret = intel_crtc_wait_for_pending_flips(crtc);
13428 if (ret)
13429 return ret;
7580d774
ML
13430
13431 if (atomic_read(&to_intel_crtc(crtc)->unpin_work_count) >= 2)
13432 flush_workqueue(dev_priv->wq);
5008e874
ML
13433 }
13434
f935675f
ML
13435 ret = mutex_lock_interruptible(&dev->struct_mutex);
13436 if (ret)
13437 return ret;
13438
5008e874 13439 ret = drm_atomic_helper_prepare_planes(dev, state);
f7e5838b 13440 mutex_unlock(&dev->struct_mutex);
7580d774 13441
f7e5838b 13442 if (!ret && !async) {
7580d774
ML
13443 for_each_plane_in_state(state, plane, plane_state, i) {
13444 struct intel_plane_state *intel_plane_state =
13445 to_intel_plane_state(plane_state);
13446
13447 if (!intel_plane_state->wait_req)
13448 continue;
13449
13450 ret = __i915_wait_request(intel_plane_state->wait_req,
299259a3 13451 true, NULL, NULL);
f7e5838b 13452 if (ret) {
f4457ae7
CW
13453 /* Any hang should be swallowed by the wait */
13454 WARN_ON(ret == -EIO);
f7e5838b
CW
13455 mutex_lock(&dev->struct_mutex);
13456 drm_atomic_helper_cleanup_planes(dev, state);
13457 mutex_unlock(&dev->struct_mutex);
7580d774 13458 break;
f7e5838b 13459 }
7580d774 13460 }
7580d774 13461 }
5008e874
ML
13462
13463 return ret;
13464}
13465
e8861675
ML
13466static void intel_atomic_wait_for_vblanks(struct drm_device *dev,
13467 struct drm_i915_private *dev_priv,
13468 unsigned crtc_mask)
13469{
13470 unsigned last_vblank_count[I915_MAX_PIPES];
13471 enum pipe pipe;
13472 int ret;
13473
13474 if (!crtc_mask)
13475 return;
13476
13477 for_each_pipe(dev_priv, pipe) {
13478 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
13479
13480 if (!((1 << pipe) & crtc_mask))
13481 continue;
13482
13483 ret = drm_crtc_vblank_get(crtc);
13484 if (WARN_ON(ret != 0)) {
13485 crtc_mask &= ~(1 << pipe);
13486 continue;
13487 }
13488
13489 last_vblank_count[pipe] = drm_crtc_vblank_count(crtc);
13490 }
13491
13492 for_each_pipe(dev_priv, pipe) {
13493 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
13494 long lret;
13495
13496 if (!((1 << pipe) & crtc_mask))
13497 continue;
13498
13499 lret = wait_event_timeout(dev->vblank[pipe].queue,
13500 last_vblank_count[pipe] !=
13501 drm_crtc_vblank_count(crtc),
13502 msecs_to_jiffies(50));
13503
8a8dae26 13504 WARN(!lret, "pipe %c vblank wait timed out\n", pipe_name(pipe));
e8861675
ML
13505
13506 drm_crtc_vblank_put(crtc);
13507 }
13508}
13509
13510static bool needs_vblank_wait(struct intel_crtc_state *crtc_state)
13511{
13512 /* fb updated, need to unpin old fb */
13513 if (crtc_state->fb_changed)
13514 return true;
13515
13516 /* wm changes, need vblank before final wm's */
caed361d 13517 if (crtc_state->update_wm_post)
e8861675
ML
13518 return true;
13519
13520 /*
13521 * cxsr is re-enabled after vblank.
caed361d 13522 * This is already handled by crtc_state->update_wm_post,
e8861675
ML
13523 * but added for clarity.
13524 */
13525 if (crtc_state->disable_cxsr)
13526 return true;
13527
13528 return false;
13529}
13530
74c090b1
ML
13531/**
13532 * intel_atomic_commit - commit validated state object
13533 * @dev: DRM device
13534 * @state: the top-level driver state object
13535 * @async: asynchronous commit
13536 *
13537 * This function commits a top-level state object that has been validated
13538 * with drm_atomic_helper_check().
13539 *
13540 * FIXME: Atomic modeset support for i915 is not yet complete. At the moment
13541 * we can only handle plane-related operations and do not yet support
13542 * asynchronous commit.
13543 *
13544 * RETURNS
13545 * Zero for success or -errno.
13546 */
13547static int intel_atomic_commit(struct drm_device *dev,
13548 struct drm_atomic_state *state,
13549 bool async)
a6778b3c 13550{
565602d7 13551 struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
fbee40df 13552 struct drm_i915_private *dev_priv = dev->dev_private;
29ceb0e6 13553 struct drm_crtc_state *old_crtc_state;
7580d774 13554 struct drm_crtc *crtc;
ed4a6a7c 13555 struct intel_crtc_state *intel_cstate;
565602d7
ML
13556 int ret = 0, i;
13557 bool hw_check = intel_state->modeset;
33c8df89 13558 unsigned long put_domains[I915_MAX_PIPES] = {};
e8861675 13559 unsigned crtc_vblank_mask = 0;
a6778b3c 13560
5008e874 13561 ret = intel_atomic_prepare_commit(dev, state, async);
7580d774
ML
13562 if (ret) {
13563 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
d4afb8cc 13564 return ret;
7580d774 13565 }
d4afb8cc 13566
1c5e19f8 13567 drm_atomic_helper_swap_state(dev, state);
279e99d7 13568 dev_priv->wm.distrust_bios_wm = false;
734fa01f 13569 dev_priv->wm.skl_results = intel_state->wm_results;
a1475e77 13570 intel_shared_dpll_commit(state);
1c5e19f8 13571
565602d7
ML
13572 if (intel_state->modeset) {
13573 memcpy(dev_priv->min_pixclk, intel_state->min_pixclk,
13574 sizeof(intel_state->min_pixclk));
13575 dev_priv->active_crtcs = intel_state->active_crtcs;
1a617b77 13576 dev_priv->atomic_cdclk_freq = intel_state->cdclk;
33c8df89
ML
13577
13578 intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
565602d7
ML
13579 }
13580
29ceb0e6 13581 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
a539205a
ML
13582 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13583
33c8df89
ML
13584 if (needs_modeset(crtc->state) ||
13585 to_intel_crtc_state(crtc->state)->update_pipe) {
13586 hw_check = true;
13587
13588 put_domains[to_intel_crtc(crtc)->pipe] =
13589 modeset_get_crtc_power_domains(crtc,
13590 to_intel_crtc_state(crtc->state));
13591 }
13592
61333b60
ML
13593 if (!needs_modeset(crtc->state))
13594 continue;
13595
29ceb0e6 13596 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
460da916 13597
29ceb0e6
VS
13598 if (old_crtc_state->active) {
13599 intel_crtc_disable_planes(crtc, old_crtc_state->plane_mask);
a539205a 13600 dev_priv->display.crtc_disable(crtc);
eddfcbcd 13601 intel_crtc->active = false;
58f9c0bc 13602 intel_fbc_disable(intel_crtc);
eddfcbcd 13603 intel_disable_shared_dpll(intel_crtc);
9bbc8258
VS
13604
13605 /*
13606 * Underruns don't always raise
13607 * interrupts, so check manually.
13608 */
13609 intel_check_cpu_fifo_underruns(dev_priv);
13610 intel_check_pch_fifo_underruns(dev_priv);
b9001114
ML
13611
13612 if (!crtc->state->active)
13613 intel_update_watermarks(crtc);
a539205a 13614 }
b8cecdf5 13615 }
7758a113 13616
ea9d758d
DV
13617 /* Only after disabling all output pipelines that will be changed can we
13618 * update the the output configuration. */
4740b0f2 13619 intel_modeset_update_crtc_state(state);
f6e5b160 13620
565602d7 13621 if (intel_state->modeset) {
4740b0f2 13622 drm_atomic_helper_update_legacy_modeset_state(state->dev, state);
33c8df89
ML
13623
13624 if (dev_priv->display.modeset_commit_cdclk &&
13625 intel_state->dev_cdclk != dev_priv->cdclk_freq)
13626 dev_priv->display.modeset_commit_cdclk(state);
f6d1973d 13627
c0ead703 13628 intel_modeset_verify_disabled(dev);
4740b0f2 13629 }
47fab737 13630
a6778b3c 13631 /* Now enable the clocks, plane, pipe, and connectors that we set up. */
29ceb0e6 13632 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
f6ac4b2a
ML
13633 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13634 bool modeset = needs_modeset(crtc->state);
e8861675
ML
13635 struct intel_crtc_state *pipe_config =
13636 to_intel_crtc_state(crtc->state);
13637 bool update_pipe = !modeset && pipe_config->update_pipe;
9f836f90 13638
f6ac4b2a 13639 if (modeset && crtc->state->active) {
a539205a
ML
13640 update_scanline_offset(to_intel_crtc(crtc));
13641 dev_priv->display.crtc_enable(crtc);
13642 }
80715b2f 13643
f6ac4b2a 13644 if (!modeset)
29ceb0e6 13645 intel_pre_plane_update(to_intel_crtc_state(old_crtc_state));
f6ac4b2a 13646
31ae71fc
ML
13647 if (crtc->state->active &&
13648 drm_atomic_get_existing_plane_state(state, crtc->primary))
49227c4a
PZ
13649 intel_fbc_enable(intel_crtc);
13650
6173ee28
ML
13651 if (crtc->state->active &&
13652 (crtc->state->planes_changed || update_pipe))
29ceb0e6 13653 drm_atomic_helper_commit_planes_on_crtc(old_crtc_state);
bfd16b2a 13654
e8861675
ML
13655 if (pipe_config->base.active && needs_vblank_wait(pipe_config))
13656 crtc_vblank_mask |= 1 << i;
80715b2f 13657 }
a6778b3c 13658
a6778b3c 13659 /* FIXME: add subpixel order */
83a57153 13660
e8861675
ML
13661 if (!state->legacy_cursor_update)
13662 intel_atomic_wait_for_vblanks(dev, dev_priv, crtc_vblank_mask);
f935675f 13663
ed4a6a7c
MR
13664 /*
13665 * Now that the vblank has passed, we can go ahead and program the
13666 * optimal watermarks on platforms that need two-step watermark
13667 * programming.
13668 *
13669 * TODO: Move this (and other cleanup) to an async worker eventually.
13670 */
29ceb0e6 13671 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
ed4a6a7c
MR
13672 intel_cstate = to_intel_crtc_state(crtc->state);
13673
13674 if (dev_priv->display.optimize_watermarks)
13675 dev_priv->display.optimize_watermarks(intel_cstate);
13676 }
13677
177246a8
MR
13678 for_each_crtc_in_state(state, crtc, old_crtc_state, i) {
13679 intel_post_plane_update(to_intel_crtc_state(old_crtc_state));
13680
13681 if (put_domains[i])
13682 modeset_put_power_domains(dev_priv, put_domains[i]);
f6d1973d 13683
c0ead703 13684 intel_modeset_verify_crtc(crtc, old_crtc_state, crtc->state);
177246a8
MR
13685 }
13686
13687 if (intel_state->modeset)
13688 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET);
13689
f935675f 13690 mutex_lock(&dev->struct_mutex);
d4afb8cc 13691 drm_atomic_helper_cleanup_planes(dev, state);
f935675f 13692 mutex_unlock(&dev->struct_mutex);
2bfb4627 13693
ee165b1a 13694 drm_atomic_state_free(state);
f30da187 13695
75714940
MK
13696 /* As one of the primary mmio accessors, KMS has a high likelihood
13697 * of triggering bugs in unclaimed access. After we finish
13698 * modesetting, see if an error has been flagged, and if so
13699 * enable debugging for the next modeset - and hope we catch
13700 * the culprit.
13701 *
13702 * XXX note that we assume display power is on at this point.
13703 * This might hold true now but we need to add pm helper to check
13704 * unclaimed only when the hardware is on, as atomic commits
13705 * can happen also when the device is completely off.
13706 */
13707 intel_uncore_arm_unclaimed_mmio_detection(dev_priv);
13708
74c090b1 13709 return 0;
7f27126e
JB
13710}
13711
c0c36b94
CW
13712void intel_crtc_restore_mode(struct drm_crtc *crtc)
13713{
83a57153
ACO
13714 struct drm_device *dev = crtc->dev;
13715 struct drm_atomic_state *state;
e694eb02 13716 struct drm_crtc_state *crtc_state;
2bfb4627 13717 int ret;
83a57153
ACO
13718
13719 state = drm_atomic_state_alloc(dev);
13720 if (!state) {
e694eb02 13721 DRM_DEBUG_KMS("[CRTC:%d] crtc restore failed, out of memory",
83a57153
ACO
13722 crtc->base.id);
13723 return;
13724 }
13725
e694eb02 13726 state->acquire_ctx = drm_modeset_legacy_acquire_ctx(crtc);
83a57153 13727
e694eb02
ML
13728retry:
13729 crtc_state = drm_atomic_get_crtc_state(state, crtc);
13730 ret = PTR_ERR_OR_ZERO(crtc_state);
13731 if (!ret) {
13732 if (!crtc_state->active)
13733 goto out;
83a57153 13734
e694eb02 13735 crtc_state->mode_changed = true;
74c090b1 13736 ret = drm_atomic_commit(state);
83a57153
ACO
13737 }
13738
e694eb02
ML
13739 if (ret == -EDEADLK) {
13740 drm_atomic_state_clear(state);
13741 drm_modeset_backoff(state->acquire_ctx);
13742 goto retry;
4ed9fb37 13743 }
4be07317 13744
2bfb4627 13745 if (ret)
e694eb02 13746out:
2bfb4627 13747 drm_atomic_state_free(state);
c0c36b94
CW
13748}
13749
25c5b266
DV
13750#undef for_each_intel_crtc_masked
13751
f6e5b160 13752static const struct drm_crtc_funcs intel_crtc_funcs = {
82cf435b 13753 .gamma_set = drm_atomic_helper_legacy_gamma_set,
74c090b1 13754 .set_config = drm_atomic_helper_set_config,
82cf435b 13755 .set_property = drm_atomic_helper_crtc_set_property,
f6e5b160
CW
13756 .destroy = intel_crtc_destroy,
13757 .page_flip = intel_crtc_page_flip,
1356837e
MR
13758 .atomic_duplicate_state = intel_crtc_duplicate_state,
13759 .atomic_destroy_state = intel_crtc_destroy_state,
f6e5b160
CW
13760};
13761
6beb8c23
MR
13762/**
13763 * intel_prepare_plane_fb - Prepare fb for usage on plane
13764 * @plane: drm plane to prepare for
13765 * @fb: framebuffer to prepare for presentation
13766 *
13767 * Prepares a framebuffer for usage on a display plane. Generally this
13768 * involves pinning the underlying object and updating the frontbuffer tracking
13769 * bits. Some older platforms need special physical address handling for
13770 * cursor planes.
13771 *
f935675f
ML
13772 * Must be called with struct_mutex held.
13773 *
6beb8c23
MR
13774 * Returns 0 on success, negative error code on failure.
13775 */
13776int
13777intel_prepare_plane_fb(struct drm_plane *plane,
d136dfee 13778 const struct drm_plane_state *new_state)
465c120c
MR
13779{
13780 struct drm_device *dev = plane->dev;
844f9111 13781 struct drm_framebuffer *fb = new_state->fb;
6beb8c23 13782 struct intel_plane *intel_plane = to_intel_plane(plane);
6beb8c23 13783 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
1ee49399 13784 struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
6beb8c23 13785 int ret = 0;
465c120c 13786
1ee49399 13787 if (!obj && !old_obj)
465c120c
MR
13788 return 0;
13789
5008e874
ML
13790 if (old_obj) {
13791 struct drm_crtc_state *crtc_state =
13792 drm_atomic_get_existing_crtc_state(new_state->state, plane->state->crtc);
13793
13794 /* Big Hammer, we also need to ensure that any pending
13795 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
13796 * current scanout is retired before unpinning the old
13797 * framebuffer. Note that we rely on userspace rendering
13798 * into the buffer attached to the pipe they are waiting
13799 * on. If not, userspace generates a GPU hang with IPEHR
13800 * point to the MI_WAIT_FOR_EVENT.
13801 *
13802 * This should only fail upon a hung GPU, in which case we
13803 * can safely continue.
13804 */
13805 if (needs_modeset(crtc_state))
13806 ret = i915_gem_object_wait_rendering(old_obj, true);
f4457ae7
CW
13807 if (ret) {
13808 /* GPU hangs should have been swallowed by the wait */
13809 WARN_ON(ret == -EIO);
f935675f 13810 return ret;
f4457ae7 13811 }
5008e874
ML
13812 }
13813
3c28ff22
AG
13814 /* For framebuffer backed by dmabuf, wait for fence */
13815 if (obj && obj->base.dma_buf) {
bcf8be27
ML
13816 long lret;
13817
13818 lret = reservation_object_wait_timeout_rcu(obj->base.dma_buf->resv,
13819 false, true,
13820 MAX_SCHEDULE_TIMEOUT);
13821 if (lret == -ERESTARTSYS)
13822 return lret;
3c28ff22 13823
bcf8be27 13824 WARN(lret < 0, "waiting returns %li\n", lret);
3c28ff22
AG
13825 }
13826
1ee49399
ML
13827 if (!obj) {
13828 ret = 0;
13829 } else if (plane->type == DRM_PLANE_TYPE_CURSOR &&
6beb8c23
MR
13830 INTEL_INFO(dev)->cursor_needs_physical) {
13831 int align = IS_I830(dev) ? 16 * 1024 : 256;
13832 ret = i915_gem_object_attach_phys(obj, align);
13833 if (ret)
13834 DRM_DEBUG_KMS("failed to attach phys object\n");
13835 } else {
3465c580 13836 ret = intel_pin_and_fence_fb_obj(fb, new_state->rotation);
6beb8c23 13837 }
465c120c 13838
7580d774
ML
13839 if (ret == 0) {
13840 if (obj) {
13841 struct intel_plane_state *plane_state =
13842 to_intel_plane_state(new_state);
13843
13844 i915_gem_request_assign(&plane_state->wait_req,
13845 obj->last_write_req);
13846 }
13847
a9ff8714 13848 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
7580d774 13849 }
fdd508a6 13850
6beb8c23
MR
13851 return ret;
13852}
13853
38f3ce3a
MR
13854/**
13855 * intel_cleanup_plane_fb - Cleans up an fb after plane use
13856 * @plane: drm plane to clean up for
13857 * @fb: old framebuffer that was on plane
13858 *
13859 * Cleans up a framebuffer that has just been removed from a plane.
f935675f
ML
13860 *
13861 * Must be called with struct_mutex held.
38f3ce3a
MR
13862 */
13863void
13864intel_cleanup_plane_fb(struct drm_plane *plane,
d136dfee 13865 const struct drm_plane_state *old_state)
38f3ce3a
MR
13866{
13867 struct drm_device *dev = plane->dev;
1ee49399 13868 struct intel_plane *intel_plane = to_intel_plane(plane);
7580d774 13869 struct intel_plane_state *old_intel_state;
1ee49399
ML
13870 struct drm_i915_gem_object *old_obj = intel_fb_obj(old_state->fb);
13871 struct drm_i915_gem_object *obj = intel_fb_obj(plane->state->fb);
38f3ce3a 13872
7580d774
ML
13873 old_intel_state = to_intel_plane_state(old_state);
13874
1ee49399 13875 if (!obj && !old_obj)
38f3ce3a
MR
13876 return;
13877
1ee49399
ML
13878 if (old_obj && (plane->type != DRM_PLANE_TYPE_CURSOR ||
13879 !INTEL_INFO(dev)->cursor_needs_physical))
3465c580 13880 intel_unpin_fb_obj(old_state->fb, old_state->rotation);
1ee49399
ML
13881
13882 /* prepare_fb aborted? */
13883 if ((old_obj && (old_obj->frontbuffer_bits & intel_plane->frontbuffer_bit)) ||
13884 (obj && !(obj->frontbuffer_bits & intel_plane->frontbuffer_bit)))
13885 i915_gem_track_fb(old_obj, obj, intel_plane->frontbuffer_bit);
7580d774
ML
13886
13887 i915_gem_request_assign(&old_intel_state->wait_req, NULL);
465c120c
MR
13888}
13889
6156a456
CK
13890int
13891skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13892{
13893 int max_scale;
13894 struct drm_device *dev;
13895 struct drm_i915_private *dev_priv;
13896 int crtc_clock, cdclk;
13897
bf8a0af0 13898 if (!intel_crtc || !crtc_state->base.enable)
6156a456
CK
13899 return DRM_PLANE_HELPER_NO_SCALING;
13900
13901 dev = intel_crtc->base.dev;
13902 dev_priv = dev->dev_private;
13903 crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
27c329ed 13904 cdclk = to_intel_atomic_state(crtc_state->base.state)->cdclk;
6156a456 13905
54bf1ce6 13906 if (WARN_ON_ONCE(!crtc_clock || cdclk < crtc_clock))
6156a456
CK
13907 return DRM_PLANE_HELPER_NO_SCALING;
13908
13909 /*
13910 * skl max scale is lower of:
13911 * close to 3 but not 3, -1 is for that purpose
13912 * or
13913 * cdclk/crtc_clock
13914 */
13915 max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13916
13917 return max_scale;
13918}
13919
465c120c 13920static int
3c692a41 13921intel_check_primary_plane(struct drm_plane *plane,
061e4b8d 13922 struct intel_crtc_state *crtc_state,
3c692a41
GP
13923 struct intel_plane_state *state)
13924{
2b875c22
MR
13925 struct drm_crtc *crtc = state->base.crtc;
13926 struct drm_framebuffer *fb = state->base.fb;
6156a456 13927 int min_scale = DRM_PLANE_HELPER_NO_SCALING;
061e4b8d
ML
13928 int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13929 bool can_position = false;
465c120c 13930
693bdc28
VS
13931 if (INTEL_INFO(plane->dev)->gen >= 9) {
13932 /* use scaler when colorkey is not required */
13933 if (state->ckey.flags == I915_SET_COLORKEY_NONE) {
13934 min_scale = 1;
13935 max_scale = skl_max_scale(to_intel_crtc(crtc), crtc_state);
13936 }
d8106366 13937 can_position = true;
6156a456 13938 }
d8106366 13939
061e4b8d
ML
13940 return drm_plane_helper_check_update(plane, crtc, fb, &state->src,
13941 &state->dst, &state->clip,
da20eabd
ML
13942 min_scale, max_scale,
13943 can_position, true,
13944 &state->visible);
14af293f
GP
13945}
13946
613d2b27
ML
13947static void intel_begin_crtc_commit(struct drm_crtc *crtc,
13948 struct drm_crtc_state *old_crtc_state)
3c692a41 13949{
32b7eeec 13950 struct drm_device *dev = crtc->dev;
3c692a41 13951 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
bfd16b2a
ML
13952 struct intel_crtc_state *old_intel_state =
13953 to_intel_crtc_state(old_crtc_state);
13954 bool modeset = needs_modeset(crtc->state);
3c692a41 13955
c34c9ee4 13956 /* Perform vblank evasion around commit operation */
62852622 13957 intel_pipe_update_start(intel_crtc);
0583236e 13958
bfd16b2a
ML
13959 if (modeset)
13960 return;
13961
20a34e78
ML
13962 if (crtc->state->color_mgmt_changed || to_intel_crtc_state(crtc->state)->update_pipe) {
13963 intel_color_set_csc(crtc->state);
13964 intel_color_load_luts(crtc->state);
13965 }
13966
bfd16b2a
ML
13967 if (to_intel_crtc_state(crtc->state)->update_pipe)
13968 intel_update_pipe_config(intel_crtc, old_intel_state);
13969 else if (INTEL_INFO(dev)->gen >= 9)
0583236e 13970 skl_detach_scalers(intel_crtc);
32b7eeec
MR
13971}
13972
613d2b27
ML
13973static void intel_finish_crtc_commit(struct drm_crtc *crtc,
13974 struct drm_crtc_state *old_crtc_state)
32b7eeec 13975{
32b7eeec 13976 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
32b7eeec 13977
62852622 13978 intel_pipe_update_end(intel_crtc);
3c692a41
GP
13979}
13980
cf4c7c12 13981/**
4a3b8769
MR
13982 * intel_plane_destroy - destroy a plane
13983 * @plane: plane to destroy
cf4c7c12 13984 *
4a3b8769
MR
13985 * Common destruction function for all types of planes (primary, cursor,
13986 * sprite).
cf4c7c12 13987 */
4a3b8769 13988void intel_plane_destroy(struct drm_plane *plane)
465c120c
MR
13989{
13990 struct intel_plane *intel_plane = to_intel_plane(plane);
13991 drm_plane_cleanup(plane);
13992 kfree(intel_plane);
13993}
13994
65a3fea0 13995const struct drm_plane_funcs intel_plane_funcs = {
70a101f8
MR
13996 .update_plane = drm_atomic_helper_update_plane,
13997 .disable_plane = drm_atomic_helper_disable_plane,
3d7d6510 13998 .destroy = intel_plane_destroy,
c196e1d6 13999 .set_property = drm_atomic_helper_plane_set_property,
a98b3431
MR
14000 .atomic_get_property = intel_plane_atomic_get_property,
14001 .atomic_set_property = intel_plane_atomic_set_property,
ea2c67bb
MR
14002 .atomic_duplicate_state = intel_plane_duplicate_state,
14003 .atomic_destroy_state = intel_plane_destroy_state,
14004
465c120c
MR
14005};
14006
14007static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
14008 int pipe)
14009{
fca0ce2a
VS
14010 struct intel_plane *primary = NULL;
14011 struct intel_plane_state *state = NULL;
465c120c 14012 const uint32_t *intel_primary_formats;
45e3743a 14013 unsigned int num_formats;
fca0ce2a 14014 int ret;
465c120c
MR
14015
14016 primary = kzalloc(sizeof(*primary), GFP_KERNEL);
fca0ce2a
VS
14017 if (!primary)
14018 goto fail;
465c120c 14019
8e7d688b 14020 state = intel_create_plane_state(&primary->base);
fca0ce2a
VS
14021 if (!state)
14022 goto fail;
8e7d688b 14023 primary->base.state = &state->base;
ea2c67bb 14024
465c120c
MR
14025 primary->can_scale = false;
14026 primary->max_downscale = 1;
6156a456
CK
14027 if (INTEL_INFO(dev)->gen >= 9) {
14028 primary->can_scale = true;
af99ceda 14029 state->scaler_id = -1;
6156a456 14030 }
465c120c
MR
14031 primary->pipe = pipe;
14032 primary->plane = pipe;
a9ff8714 14033 primary->frontbuffer_bit = INTEL_FRONTBUFFER_PRIMARY(pipe);
c59cb179 14034 primary->check_plane = intel_check_primary_plane;
465c120c
MR
14035 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
14036 primary->plane = !pipe;
14037
6c0fd451
DL
14038 if (INTEL_INFO(dev)->gen >= 9) {
14039 intel_primary_formats = skl_primary_formats;
14040 num_formats = ARRAY_SIZE(skl_primary_formats);
a8d201af
ML
14041
14042 primary->update_plane = skylake_update_primary_plane;
14043 primary->disable_plane = skylake_disable_primary_plane;
14044 } else if (HAS_PCH_SPLIT(dev)) {
14045 intel_primary_formats = i965_primary_formats;
14046 num_formats = ARRAY_SIZE(i965_primary_formats);
14047
14048 primary->update_plane = ironlake_update_primary_plane;
14049 primary->disable_plane = i9xx_disable_primary_plane;
6c0fd451 14050 } else if (INTEL_INFO(dev)->gen >= 4) {
568db4f2
DL
14051 intel_primary_formats = i965_primary_formats;
14052 num_formats = ARRAY_SIZE(i965_primary_formats);
a8d201af
ML
14053
14054 primary->update_plane = i9xx_update_primary_plane;
14055 primary->disable_plane = i9xx_disable_primary_plane;
6c0fd451
DL
14056 } else {
14057 intel_primary_formats = i8xx_primary_formats;
14058 num_formats = ARRAY_SIZE(i8xx_primary_formats);
a8d201af
ML
14059
14060 primary->update_plane = i9xx_update_primary_plane;
14061 primary->disable_plane = i9xx_disable_primary_plane;
465c120c
MR
14062 }
14063
fca0ce2a
VS
14064 ret = drm_universal_plane_init(dev, &primary->base, 0,
14065 &intel_plane_funcs,
14066 intel_primary_formats, num_formats,
14067 DRM_PLANE_TYPE_PRIMARY, NULL);
14068 if (ret)
14069 goto fail;
48404c1e 14070
3b7a5119
SJ
14071 if (INTEL_INFO(dev)->gen >= 4)
14072 intel_create_rotation_property(dev, primary);
48404c1e 14073
ea2c67bb
MR
14074 drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
14075
465c120c 14076 return &primary->base;
fca0ce2a
VS
14077
14078fail:
14079 kfree(state);
14080 kfree(primary);
14081
14082 return NULL;
465c120c
MR
14083}
14084
3b7a5119
SJ
14085void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
14086{
14087 if (!dev->mode_config.rotation_property) {
14088 unsigned long flags = BIT(DRM_ROTATE_0) |
14089 BIT(DRM_ROTATE_180);
14090
14091 if (INTEL_INFO(dev)->gen >= 9)
14092 flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
14093
14094 dev->mode_config.rotation_property =
14095 drm_mode_create_rotation_property(dev, flags);
14096 }
14097 if (dev->mode_config.rotation_property)
14098 drm_object_attach_property(&plane->base.base,
14099 dev->mode_config.rotation_property,
14100 plane->base.state->rotation);
14101}
14102
3d7d6510 14103static int
852e787c 14104intel_check_cursor_plane(struct drm_plane *plane,
061e4b8d 14105 struct intel_crtc_state *crtc_state,
852e787c 14106 struct intel_plane_state *state)
3d7d6510 14107{
061e4b8d 14108 struct drm_crtc *crtc = crtc_state->base.crtc;
2b875c22 14109 struct drm_framebuffer *fb = state->base.fb;
757f9a3e 14110 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
b29ec92c 14111 enum pipe pipe = to_intel_plane(plane)->pipe;
757f9a3e
GP
14112 unsigned stride;
14113 int ret;
3d7d6510 14114
061e4b8d
ML
14115 ret = drm_plane_helper_check_update(plane, crtc, fb, &state->src,
14116 &state->dst, &state->clip,
3d7d6510
MR
14117 DRM_PLANE_HELPER_NO_SCALING,
14118 DRM_PLANE_HELPER_NO_SCALING,
852e787c 14119 true, true, &state->visible);
757f9a3e
GP
14120 if (ret)
14121 return ret;
14122
757f9a3e
GP
14123 /* if we want to turn off the cursor ignore width and height */
14124 if (!obj)
da20eabd 14125 return 0;
757f9a3e 14126
757f9a3e 14127 /* Check for which cursor types we support */
061e4b8d 14128 if (!cursor_size_ok(plane->dev, state->base.crtc_w, state->base.crtc_h)) {
ea2c67bb
MR
14129 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
14130 state->base.crtc_w, state->base.crtc_h);
757f9a3e
GP
14131 return -EINVAL;
14132 }
14133
ea2c67bb
MR
14134 stride = roundup_pow_of_two(state->base.crtc_w) * 4;
14135 if (obj->base.size < stride * state->base.crtc_h) {
757f9a3e
GP
14136 DRM_DEBUG_KMS("buffer is too small\n");
14137 return -ENOMEM;
14138 }
14139
3a656b54 14140 if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
757f9a3e 14141 DRM_DEBUG_KMS("cursor cannot be tiled\n");
da20eabd 14142 return -EINVAL;
32b7eeec
MR
14143 }
14144
b29ec92c
VS
14145 /*
14146 * There's something wrong with the cursor on CHV pipe C.
14147 * If it straddles the left edge of the screen then
14148 * moving it away from the edge or disabling it often
14149 * results in a pipe underrun, and often that can lead to
14150 * dead pipe (constant underrun reported, and it scans
14151 * out just a solid color). To recover from that, the
14152 * display power well must be turned off and on again.
14153 * Refuse the put the cursor into that compromised position.
14154 */
14155 if (IS_CHERRYVIEW(plane->dev) && pipe == PIPE_C &&
14156 state->visible && state->base.crtc_x < 0) {
14157 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
14158 return -EINVAL;
14159 }
14160
da20eabd 14161 return 0;
852e787c 14162}
3d7d6510 14163
a8ad0d8e
ML
14164static void
14165intel_disable_cursor_plane(struct drm_plane *plane,
7fabf5ef 14166 struct drm_crtc *crtc)
a8ad0d8e 14167{
f2858021
ML
14168 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
14169
14170 intel_crtc->cursor_addr = 0;
55a08b3f 14171 intel_crtc_update_cursor(crtc, NULL);
a8ad0d8e
ML
14172}
14173
f4a2cf29 14174static void
55a08b3f
ML
14175intel_update_cursor_plane(struct drm_plane *plane,
14176 const struct intel_crtc_state *crtc_state,
14177 const struct intel_plane_state *state)
852e787c 14178{
55a08b3f
ML
14179 struct drm_crtc *crtc = crtc_state->base.crtc;
14180 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
ea2c67bb 14181 struct drm_device *dev = plane->dev;
2b875c22 14182 struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
a912f12f 14183 uint32_t addr;
852e787c 14184
f4a2cf29 14185 if (!obj)
a912f12f 14186 addr = 0;
f4a2cf29 14187 else if (!INTEL_INFO(dev)->cursor_needs_physical)
a912f12f 14188 addr = i915_gem_obj_ggtt_offset(obj);
f4a2cf29 14189 else
a912f12f 14190 addr = obj->phys_handle->busaddr;
852e787c 14191
a912f12f 14192 intel_crtc->cursor_addr = addr;
55a08b3f 14193 intel_crtc_update_cursor(crtc, state);
852e787c
GP
14194}
14195
3d7d6510
MR
14196static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
14197 int pipe)
14198{
fca0ce2a
VS
14199 struct intel_plane *cursor = NULL;
14200 struct intel_plane_state *state = NULL;
14201 int ret;
3d7d6510
MR
14202
14203 cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
fca0ce2a
VS
14204 if (!cursor)
14205 goto fail;
3d7d6510 14206
8e7d688b 14207 state = intel_create_plane_state(&cursor->base);
fca0ce2a
VS
14208 if (!state)
14209 goto fail;
8e7d688b 14210 cursor->base.state = &state->base;
ea2c67bb 14211
3d7d6510
MR
14212 cursor->can_scale = false;
14213 cursor->max_downscale = 1;
14214 cursor->pipe = pipe;
14215 cursor->plane = pipe;
a9ff8714 14216 cursor->frontbuffer_bit = INTEL_FRONTBUFFER_CURSOR(pipe);
c59cb179 14217 cursor->check_plane = intel_check_cursor_plane;
55a08b3f 14218 cursor->update_plane = intel_update_cursor_plane;
a8ad0d8e 14219 cursor->disable_plane = intel_disable_cursor_plane;
3d7d6510 14220
fca0ce2a
VS
14221 ret = drm_universal_plane_init(dev, &cursor->base, 0,
14222 &intel_plane_funcs,
14223 intel_cursor_formats,
14224 ARRAY_SIZE(intel_cursor_formats),
14225 DRM_PLANE_TYPE_CURSOR, NULL);
14226 if (ret)
14227 goto fail;
4398ad45
VS
14228
14229 if (INTEL_INFO(dev)->gen >= 4) {
14230 if (!dev->mode_config.rotation_property)
14231 dev->mode_config.rotation_property =
14232 drm_mode_create_rotation_property(dev,
14233 BIT(DRM_ROTATE_0) |
14234 BIT(DRM_ROTATE_180));
14235 if (dev->mode_config.rotation_property)
14236 drm_object_attach_property(&cursor->base.base,
14237 dev->mode_config.rotation_property,
8e7d688b 14238 state->base.rotation);
4398ad45
VS
14239 }
14240
af99ceda
CK
14241 if (INTEL_INFO(dev)->gen >=9)
14242 state->scaler_id = -1;
14243
ea2c67bb
MR
14244 drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
14245
3d7d6510 14246 return &cursor->base;
fca0ce2a
VS
14247
14248fail:
14249 kfree(state);
14250 kfree(cursor);
14251
14252 return NULL;
3d7d6510
MR
14253}
14254
549e2bfb
CK
14255static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
14256 struct intel_crtc_state *crtc_state)
14257{
14258 int i;
14259 struct intel_scaler *intel_scaler;
14260 struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
14261
14262 for (i = 0; i < intel_crtc->num_scalers; i++) {
14263 intel_scaler = &scaler_state->scalers[i];
14264 intel_scaler->in_use = 0;
549e2bfb
CK
14265 intel_scaler->mode = PS_SCALER_MODE_DYN;
14266 }
14267
14268 scaler_state->scaler_id = -1;
14269}
14270
b358d0a6 14271static void intel_crtc_init(struct drm_device *dev, int pipe)
79e53945 14272{
fbee40df 14273 struct drm_i915_private *dev_priv = dev->dev_private;
79e53945 14274 struct intel_crtc *intel_crtc;
f5de6e07 14275 struct intel_crtc_state *crtc_state = NULL;
3d7d6510
MR
14276 struct drm_plane *primary = NULL;
14277 struct drm_plane *cursor = NULL;
8563b1e8 14278 int ret;
79e53945 14279
955382f3 14280 intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
79e53945
JB
14281 if (intel_crtc == NULL)
14282 return;
14283
f5de6e07
ACO
14284 crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
14285 if (!crtc_state)
14286 goto fail;
550acefd
ACO
14287 intel_crtc->config = crtc_state;
14288 intel_crtc->base.state = &crtc_state->base;
07878248 14289 crtc_state->base.crtc = &intel_crtc->base;
f5de6e07 14290
549e2bfb
CK
14291 /* initialize shared scalers */
14292 if (INTEL_INFO(dev)->gen >= 9) {
14293 if (pipe == PIPE_C)
14294 intel_crtc->num_scalers = 1;
14295 else
14296 intel_crtc->num_scalers = SKL_NUM_SCALERS;
14297
14298 skl_init_scalers(dev, intel_crtc, crtc_state);
14299 }
14300
465c120c 14301 primary = intel_primary_plane_create(dev, pipe);
3d7d6510
MR
14302 if (!primary)
14303 goto fail;
14304
14305 cursor = intel_cursor_plane_create(dev, pipe);
14306 if (!cursor)
14307 goto fail;
14308
465c120c 14309 ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
f9882876 14310 cursor, &intel_crtc_funcs, NULL);
3d7d6510
MR
14311 if (ret)
14312 goto fail;
79e53945 14313
1f1c2e24
VS
14314 /*
14315 * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
8c0f92e1 14316 * is hooked to pipe B. Hence we want plane A feeding pipe B.
1f1c2e24 14317 */
80824003
JB
14318 intel_crtc->pipe = pipe;
14319 intel_crtc->plane = pipe;
3a77c4c4 14320 if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
28c97730 14321 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
e2e767ab 14322 intel_crtc->plane = !pipe;
80824003
JB
14323 }
14324
4b0e333e
CW
14325 intel_crtc->cursor_base = ~0;
14326 intel_crtc->cursor_cntl = ~0;
dc41c154 14327 intel_crtc->cursor_size = ~0;
8d7849db 14328
852eb00d
VS
14329 intel_crtc->wm.cxsr_allowed = true;
14330
22fd0fab
JB
14331 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
14332 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
14333 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
14334 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
14335
79e53945 14336 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
87b6b101 14337
8563b1e8
LL
14338 intel_color_init(&intel_crtc->base);
14339
87b6b101 14340 WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
3d7d6510
MR
14341 return;
14342
14343fail:
14344 if (primary)
14345 drm_plane_cleanup(primary);
14346 if (cursor)
14347 drm_plane_cleanup(cursor);
f5de6e07 14348 kfree(crtc_state);
3d7d6510 14349 kfree(intel_crtc);
79e53945
JB
14350}
14351
752aa88a
JB
14352enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
14353{
14354 struct drm_encoder *encoder = connector->base.encoder;
6e9f798d 14355 struct drm_device *dev = connector->base.dev;
752aa88a 14356
51fd371b 14357 WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
752aa88a 14358
d3babd3f 14359 if (!encoder || WARN_ON(!encoder->crtc))
752aa88a
JB
14360 return INVALID_PIPE;
14361
14362 return to_intel_crtc(encoder->crtc)->pipe;
14363}
14364
08d7b3d1 14365int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
05394f39 14366 struct drm_file *file)
08d7b3d1 14367{
08d7b3d1 14368 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
7707e653 14369 struct drm_crtc *drmmode_crtc;
c05422d5 14370 struct intel_crtc *crtc;
08d7b3d1 14371
7707e653 14372 drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
08d7b3d1 14373
7707e653 14374 if (!drmmode_crtc) {
08d7b3d1 14375 DRM_ERROR("no such CRTC id\n");
3f2c2057 14376 return -ENOENT;
08d7b3d1
CW
14377 }
14378
7707e653 14379 crtc = to_intel_crtc(drmmode_crtc);
c05422d5 14380 pipe_from_crtc_id->pipe = crtc->pipe;
08d7b3d1 14381
c05422d5 14382 return 0;
08d7b3d1
CW
14383}
14384
66a9278e 14385static int intel_encoder_clones(struct intel_encoder *encoder)
79e53945 14386{
66a9278e
DV
14387 struct drm_device *dev = encoder->base.dev;
14388 struct intel_encoder *source_encoder;
79e53945 14389 int index_mask = 0;
79e53945
JB
14390 int entry = 0;
14391
b2784e15 14392 for_each_intel_encoder(dev, source_encoder) {
bc079e8b 14393 if (encoders_cloneable(encoder, source_encoder))
66a9278e
DV
14394 index_mask |= (1 << entry);
14395
79e53945
JB
14396 entry++;
14397 }
4ef69c7a 14398
79e53945
JB
14399 return index_mask;
14400}
14401
4d302442
CW
14402static bool has_edp_a(struct drm_device *dev)
14403{
14404 struct drm_i915_private *dev_priv = dev->dev_private;
14405
14406 if (!IS_MOBILE(dev))
14407 return false;
14408
14409 if ((I915_READ(DP_A) & DP_DETECTED) == 0)
14410 return false;
14411
e3589908 14412 if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
4d302442
CW
14413 return false;
14414
14415 return true;
14416}
14417
84b4e042
JB
14418static bool intel_crt_present(struct drm_device *dev)
14419{
14420 struct drm_i915_private *dev_priv = dev->dev_private;
14421
884497ed
DL
14422 if (INTEL_INFO(dev)->gen >= 9)
14423 return false;
14424
cf404ce4 14425 if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
84b4e042
JB
14426 return false;
14427
14428 if (IS_CHERRYVIEW(dev))
14429 return false;
14430
65e472e4
VS
14431 if (HAS_PCH_LPT_H(dev) && I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
14432 return false;
14433
70ac54d0
VS
14434 /* DDI E can't be used if DDI A requires 4 lanes */
14435 if (HAS_DDI(dev) && I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
14436 return false;
14437
e4abb733 14438 if (!dev_priv->vbt.int_crt_support)
84b4e042
JB
14439 return false;
14440
14441 return true;
14442}
14443
79e53945
JB
14444static void intel_setup_outputs(struct drm_device *dev)
14445{
725e30ad 14446 struct drm_i915_private *dev_priv = dev->dev_private;
4ef69c7a 14447 struct intel_encoder *encoder;
cb0953d7 14448 bool dpd_is_edp = false;
79e53945 14449
c9093354 14450 intel_lvds_init(dev);
79e53945 14451
84b4e042 14452 if (intel_crt_present(dev))
79935fca 14453 intel_crt_init(dev);
cb0953d7 14454
c776eb2e
VK
14455 if (IS_BROXTON(dev)) {
14456 /*
14457 * FIXME: Broxton doesn't support port detection via the
14458 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
14459 * detect the ports.
14460 */
14461 intel_ddi_init(dev, PORT_A);
14462 intel_ddi_init(dev, PORT_B);
14463 intel_ddi_init(dev, PORT_C);
c6c794a2
SS
14464
14465 intel_dsi_init(dev);
c776eb2e 14466 } else if (HAS_DDI(dev)) {
0e72a5b5
ED
14467 int found;
14468
de31facd
JB
14469 /*
14470 * Haswell uses DDI functions to detect digital outputs.
14471 * On SKL pre-D0 the strap isn't connected, so we assume
14472 * it's there.
14473 */
77179400 14474 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
de31facd 14475 /* WaIgnoreDDIAStrap: skl */
ef11bdb3 14476 if (found || IS_SKYLAKE(dev) || IS_KABYLAKE(dev))
0e72a5b5
ED
14477 intel_ddi_init(dev, PORT_A);
14478
14479 /* DDI B, C and D detection is indicated by the SFUSE_STRAP
14480 * register */
14481 found = I915_READ(SFUSE_STRAP);
14482
14483 if (found & SFUSE_STRAP_DDIB_DETECTED)
14484 intel_ddi_init(dev, PORT_B);
14485 if (found & SFUSE_STRAP_DDIC_DETECTED)
14486 intel_ddi_init(dev, PORT_C);
14487 if (found & SFUSE_STRAP_DDID_DETECTED)
14488 intel_ddi_init(dev, PORT_D);
2800e4c2
RV
14489 /*
14490 * On SKL we don't have a way to detect DDI-E so we rely on VBT.
14491 */
ef11bdb3 14492 if ((IS_SKYLAKE(dev) || IS_KABYLAKE(dev)) &&
2800e4c2
RV
14493 (dev_priv->vbt.ddi_port_info[PORT_E].supports_dp ||
14494 dev_priv->vbt.ddi_port_info[PORT_E].supports_dvi ||
14495 dev_priv->vbt.ddi_port_info[PORT_E].supports_hdmi))
14496 intel_ddi_init(dev, PORT_E);
14497
0e72a5b5 14498 } else if (HAS_PCH_SPLIT(dev)) {
cb0953d7 14499 int found;
5d8a7752 14500 dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
270b3042
DV
14501
14502 if (has_edp_a(dev))
14503 intel_dp_init(dev, DP_A, PORT_A);
cb0953d7 14504
dc0fa718 14505 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
461ed3ca 14506 /* PCH SDVOB multiplex with HDMIB */
2a5c0832 14507 found = intel_sdvo_init(dev, PCH_SDVOB, PORT_B);
30ad48b7 14508 if (!found)
e2debe91 14509 intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
5eb08b69 14510 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
ab9d7c30 14511 intel_dp_init(dev, PCH_DP_B, PORT_B);
30ad48b7
ZW
14512 }
14513
dc0fa718 14514 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
e2debe91 14515 intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
30ad48b7 14516
dc0fa718 14517 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
e2debe91 14518 intel_hdmi_init(dev, PCH_HDMID, PORT_D);
30ad48b7 14519
5eb08b69 14520 if (I915_READ(PCH_DP_C) & DP_DETECTED)
ab9d7c30 14521 intel_dp_init(dev, PCH_DP_C, PORT_C);
5eb08b69 14522
270b3042 14523 if (I915_READ(PCH_DP_D) & DP_DETECTED)
ab9d7c30 14524 intel_dp_init(dev, PCH_DP_D, PORT_D);
666a4537 14525 } else if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
e17ac6db
VS
14526 /*
14527 * The DP_DETECTED bit is the latched state of the DDC
14528 * SDA pin at boot. However since eDP doesn't require DDC
14529 * (no way to plug in a DP->HDMI dongle) the DDC pins for
14530 * eDP ports may have been muxed to an alternate function.
14531 * Thus we can't rely on the DP_DETECTED bit alone to detect
14532 * eDP ports. Consult the VBT as well as DP_DETECTED to
14533 * detect eDP ports.
14534 */
e66eb81d 14535 if (I915_READ(VLV_HDMIB) & SDVO_DETECTED &&
d2182a66 14536 !intel_dp_is_edp(dev, PORT_B))
e66eb81d
VS
14537 intel_hdmi_init(dev, VLV_HDMIB, PORT_B);
14538 if (I915_READ(VLV_DP_B) & DP_DETECTED ||
e17ac6db 14539 intel_dp_is_edp(dev, PORT_B))
e66eb81d 14540 intel_dp_init(dev, VLV_DP_B, PORT_B);
585a94b8 14541
e66eb81d 14542 if (I915_READ(VLV_HDMIC) & SDVO_DETECTED &&
d2182a66 14543 !intel_dp_is_edp(dev, PORT_C))
e66eb81d
VS
14544 intel_hdmi_init(dev, VLV_HDMIC, PORT_C);
14545 if (I915_READ(VLV_DP_C) & DP_DETECTED ||
e17ac6db 14546 intel_dp_is_edp(dev, PORT_C))
e66eb81d 14547 intel_dp_init(dev, VLV_DP_C, PORT_C);
19c03924 14548
9418c1f1 14549 if (IS_CHERRYVIEW(dev)) {
e17ac6db 14550 /* eDP not supported on port D, so don't check VBT */
e66eb81d
VS
14551 if (I915_READ(CHV_HDMID) & SDVO_DETECTED)
14552 intel_hdmi_init(dev, CHV_HDMID, PORT_D);
14553 if (I915_READ(CHV_DP_D) & DP_DETECTED)
14554 intel_dp_init(dev, CHV_DP_D, PORT_D);
9418c1f1
VS
14555 }
14556
3cfca973 14557 intel_dsi_init(dev);
09da55dc 14558 } else if (!IS_GEN2(dev) && !IS_PINEVIEW(dev)) {
27185ae1 14559 bool found = false;
7d57382e 14560
e2debe91 14561 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 14562 DRM_DEBUG_KMS("probing SDVOB\n");
2a5c0832 14563 found = intel_sdvo_init(dev, GEN3_SDVOB, PORT_B);
3fec3d2f 14564 if (!found && IS_G4X(dev)) {
b01f2c3a 14565 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
e2debe91 14566 intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
b01f2c3a 14567 }
27185ae1 14568
3fec3d2f 14569 if (!found && IS_G4X(dev))
ab9d7c30 14570 intel_dp_init(dev, DP_B, PORT_B);
725e30ad 14571 }
13520b05
KH
14572
14573 /* Before G4X SDVOC doesn't have its own detect register */
13520b05 14574
e2debe91 14575 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
b01f2c3a 14576 DRM_DEBUG_KMS("probing SDVOC\n");
2a5c0832 14577 found = intel_sdvo_init(dev, GEN3_SDVOC, PORT_C);
b01f2c3a 14578 }
27185ae1 14579
e2debe91 14580 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
27185ae1 14581
3fec3d2f 14582 if (IS_G4X(dev)) {
b01f2c3a 14583 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
e2debe91 14584 intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
b01f2c3a 14585 }
3fec3d2f 14586 if (IS_G4X(dev))
ab9d7c30 14587 intel_dp_init(dev, DP_C, PORT_C);
725e30ad 14588 }
27185ae1 14589
3fec3d2f 14590 if (IS_G4X(dev) &&
e7281eab 14591 (I915_READ(DP_D) & DP_DETECTED))
ab9d7c30 14592 intel_dp_init(dev, DP_D, PORT_D);
bad720ff 14593 } else if (IS_GEN2(dev))
79e53945
JB
14594 intel_dvo_init(dev);
14595
103a196f 14596 if (SUPPORTS_TV(dev))
79e53945
JB
14597 intel_tv_init(dev);
14598
0bc12bcb 14599 intel_psr_init(dev);
7c8f8a70 14600
b2784e15 14601 for_each_intel_encoder(dev, encoder) {
4ef69c7a
CW
14602 encoder->base.possible_crtcs = encoder->crtc_mask;
14603 encoder->base.possible_clones =
66a9278e 14604 intel_encoder_clones(encoder);
79e53945 14605 }
47356eb6 14606
dde86e2d 14607 intel_init_pch_refclk(dev);
270b3042
DV
14608
14609 drm_helper_move_panel_connectors_to_head(dev);
79e53945
JB
14610}
14611
14612static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14613{
60a5ca01 14614 struct drm_device *dev = fb->dev;
79e53945 14615 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
79e53945 14616
ef2d633e 14617 drm_framebuffer_cleanup(fb);
60a5ca01 14618 mutex_lock(&dev->struct_mutex);
ef2d633e 14619 WARN_ON(!intel_fb->obj->framebuffer_references--);
60a5ca01
VS
14620 drm_gem_object_unreference(&intel_fb->obj->base);
14621 mutex_unlock(&dev->struct_mutex);
79e53945
JB
14622 kfree(intel_fb);
14623}
14624
14625static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
05394f39 14626 struct drm_file *file,
79e53945
JB
14627 unsigned int *handle)
14628{
14629 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
05394f39 14630 struct drm_i915_gem_object *obj = intel_fb->obj;
79e53945 14631
cc917ab4
CW
14632 if (obj->userptr.mm) {
14633 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
14634 return -EINVAL;
14635 }
14636
05394f39 14637 return drm_gem_handle_create(file, &obj->base, handle);
79e53945
JB
14638}
14639
86c98588
RV
14640static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
14641 struct drm_file *file,
14642 unsigned flags, unsigned color,
14643 struct drm_clip_rect *clips,
14644 unsigned num_clips)
14645{
14646 struct drm_device *dev = fb->dev;
14647 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14648 struct drm_i915_gem_object *obj = intel_fb->obj;
14649
14650 mutex_lock(&dev->struct_mutex);
74b4ea1e 14651 intel_fb_obj_flush(obj, false, ORIGIN_DIRTYFB);
86c98588
RV
14652 mutex_unlock(&dev->struct_mutex);
14653
14654 return 0;
14655}
14656
79e53945
JB
14657static const struct drm_framebuffer_funcs intel_fb_funcs = {
14658 .destroy = intel_user_framebuffer_destroy,
14659 .create_handle = intel_user_framebuffer_create_handle,
86c98588 14660 .dirty = intel_user_framebuffer_dirty,
79e53945
JB
14661};
14662
b321803d
DL
14663static
14664u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14665 uint32_t pixel_format)
14666{
14667 u32 gen = INTEL_INFO(dev)->gen;
14668
14669 if (gen >= 9) {
ac484963
VS
14670 int cpp = drm_format_plane_cpp(pixel_format, 0);
14671
b321803d
DL
14672 /* "The stride in bytes must not exceed the of the size of 8K
14673 * pixels and 32K bytes."
14674 */
ac484963 14675 return min(8192 * cpp, 32768);
666a4537 14676 } else if (gen >= 5 && !IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
b321803d
DL
14677 return 32*1024;
14678 } else if (gen >= 4) {
14679 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14680 return 16*1024;
14681 else
14682 return 32*1024;
14683 } else if (gen >= 3) {
14684 if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14685 return 8*1024;
14686 else
14687 return 16*1024;
14688 } else {
14689 /* XXX DSPC is limited to 4k tiled */
14690 return 8*1024;
14691 }
14692}
14693
b5ea642a
DV
14694static int intel_framebuffer_init(struct drm_device *dev,
14695 struct intel_framebuffer *intel_fb,
14696 struct drm_mode_fb_cmd2 *mode_cmd,
14697 struct drm_i915_gem_object *obj)
79e53945 14698{
7b49f948 14699 struct drm_i915_private *dev_priv = to_i915(dev);
6761dd31 14700 unsigned int aligned_height;
79e53945 14701 int ret;
b321803d 14702 u32 pitch_limit, stride_alignment;
79e53945 14703
dd4916c5
DV
14704 WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14705
2a80eada
DV
14706 if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14707 /* Enforce that fb modifier and tiling mode match, but only for
14708 * X-tiled. This is needed for FBC. */
14709 if (!!(obj->tiling_mode == I915_TILING_X) !=
14710 !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14711 DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14712 return -EINVAL;
14713 }
14714 } else {
14715 if (obj->tiling_mode == I915_TILING_X)
14716 mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14717 else if (obj->tiling_mode == I915_TILING_Y) {
14718 DRM_DEBUG("No Y tiling for legacy addfb\n");
14719 return -EINVAL;
14720 }
14721 }
14722
9a8f0a12
TU
14723 /* Passed in modifier sanity checking. */
14724 switch (mode_cmd->modifier[0]) {
14725 case I915_FORMAT_MOD_Y_TILED:
14726 case I915_FORMAT_MOD_Yf_TILED:
14727 if (INTEL_INFO(dev)->gen < 9) {
14728 DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14729 mode_cmd->modifier[0]);
14730 return -EINVAL;
14731 }
14732 case DRM_FORMAT_MOD_NONE:
14733 case I915_FORMAT_MOD_X_TILED:
14734 break;
14735 default:
c0f40428
JB
14736 DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14737 mode_cmd->modifier[0]);
57cd6508 14738 return -EINVAL;
c16ed4be 14739 }
57cd6508 14740
7b49f948
VS
14741 stride_alignment = intel_fb_stride_alignment(dev_priv,
14742 mode_cmd->modifier[0],
b321803d
DL
14743 mode_cmd->pixel_format);
14744 if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14745 DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14746 mode_cmd->pitches[0], stride_alignment);
57cd6508 14747 return -EINVAL;
c16ed4be 14748 }
57cd6508 14749
b321803d
DL
14750 pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14751 mode_cmd->pixel_format);
a35cdaa0 14752 if (mode_cmd->pitches[0] > pitch_limit) {
b321803d
DL
14753 DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14754 mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
2a80eada 14755 "tiled" : "linear",
a35cdaa0 14756 mode_cmd->pitches[0], pitch_limit);
5d7bd705 14757 return -EINVAL;
c16ed4be 14758 }
5d7bd705 14759
2a80eada 14760 if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
c16ed4be
CW
14761 mode_cmd->pitches[0] != obj->stride) {
14762 DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14763 mode_cmd->pitches[0], obj->stride);
5d7bd705 14764 return -EINVAL;
c16ed4be 14765 }
5d7bd705 14766
57779d06 14767 /* Reject formats not supported by any plane early. */
308e5bcb 14768 switch (mode_cmd->pixel_format) {
57779d06 14769 case DRM_FORMAT_C8:
04b3924d
VS
14770 case DRM_FORMAT_RGB565:
14771 case DRM_FORMAT_XRGB8888:
14772 case DRM_FORMAT_ARGB8888:
57779d06
VS
14773 break;
14774 case DRM_FORMAT_XRGB1555:
c16ed4be 14775 if (INTEL_INFO(dev)->gen > 3) {
4ee62c76
VS
14776 DRM_DEBUG("unsupported pixel format: %s\n",
14777 drm_get_format_name(mode_cmd->pixel_format));
57779d06 14778 return -EINVAL;
c16ed4be 14779 }
57779d06 14780 break;
57779d06 14781 case DRM_FORMAT_ABGR8888:
666a4537
WB
14782 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev) &&
14783 INTEL_INFO(dev)->gen < 9) {
6c0fd451
DL
14784 DRM_DEBUG("unsupported pixel format: %s\n",
14785 drm_get_format_name(mode_cmd->pixel_format));
14786 return -EINVAL;
14787 }
14788 break;
14789 case DRM_FORMAT_XBGR8888:
04b3924d 14790 case DRM_FORMAT_XRGB2101010:
57779d06 14791 case DRM_FORMAT_XBGR2101010:
c16ed4be 14792 if (INTEL_INFO(dev)->gen < 4) {
4ee62c76
VS
14793 DRM_DEBUG("unsupported pixel format: %s\n",
14794 drm_get_format_name(mode_cmd->pixel_format));
57779d06 14795 return -EINVAL;
c16ed4be 14796 }
b5626747 14797 break;
7531208b 14798 case DRM_FORMAT_ABGR2101010:
666a4537 14799 if (!IS_VALLEYVIEW(dev) && !IS_CHERRYVIEW(dev)) {
7531208b
DL
14800 DRM_DEBUG("unsupported pixel format: %s\n",
14801 drm_get_format_name(mode_cmd->pixel_format));
14802 return -EINVAL;
14803 }
14804 break;
04b3924d
VS
14805 case DRM_FORMAT_YUYV:
14806 case DRM_FORMAT_UYVY:
14807 case DRM_FORMAT_YVYU:
14808 case DRM_FORMAT_VYUY:
c16ed4be 14809 if (INTEL_INFO(dev)->gen < 5) {
4ee62c76
VS
14810 DRM_DEBUG("unsupported pixel format: %s\n",
14811 drm_get_format_name(mode_cmd->pixel_format));
57779d06 14812 return -EINVAL;
c16ed4be 14813 }
57cd6508
CW
14814 break;
14815 default:
4ee62c76
VS
14816 DRM_DEBUG("unsupported pixel format: %s\n",
14817 drm_get_format_name(mode_cmd->pixel_format));
57cd6508
CW
14818 return -EINVAL;
14819 }
14820
90f9a336
VS
14821 /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14822 if (mode_cmd->offsets[0] != 0)
14823 return -EINVAL;
14824
ec2c981e 14825 aligned_height = intel_fb_align_height(dev, mode_cmd->height,
091df6cb
DV
14826 mode_cmd->pixel_format,
14827 mode_cmd->modifier[0]);
53155c0a
DV
14828 /* FIXME drm helper for size checks (especially planar formats)? */
14829 if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14830 return -EINVAL;
14831
c7d73f6a
DV
14832 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14833 intel_fb->obj = obj;
14834
2d7a215f
VS
14835 intel_fill_fb_info(dev_priv, &intel_fb->base);
14836
79e53945
JB
14837 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14838 if (ret) {
14839 DRM_ERROR("framebuffer init failed %d\n", ret);
14840 return ret;
14841 }
14842
0b05e1e0
VS
14843 intel_fb->obj->framebuffer_references++;
14844
79e53945
JB
14845 return 0;
14846}
14847
79e53945
JB
14848static struct drm_framebuffer *
14849intel_user_framebuffer_create(struct drm_device *dev,
14850 struct drm_file *filp,
1eb83451 14851 const struct drm_mode_fb_cmd2 *user_mode_cmd)
79e53945 14852{
dcb1394e 14853 struct drm_framebuffer *fb;
05394f39 14854 struct drm_i915_gem_object *obj;
76dc3769 14855 struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
79e53945 14856
308e5bcb 14857 obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
76dc3769 14858 mode_cmd.handles[0]));
c8725226 14859 if (&obj->base == NULL)
cce13ff7 14860 return ERR_PTR(-ENOENT);
79e53945 14861
92907cbb 14862 fb = intel_framebuffer_create(dev, &mode_cmd, obj);
dcb1394e
LW
14863 if (IS_ERR(fb))
14864 drm_gem_object_unreference_unlocked(&obj->base);
14865
14866 return fb;
79e53945
JB
14867}
14868
0695726e 14869#ifndef CONFIG_DRM_FBDEV_EMULATION
0632fef6 14870static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
4520f53a
DV
14871{
14872}
14873#endif
14874
79e53945 14875static const struct drm_mode_config_funcs intel_mode_funcs = {
79e53945 14876 .fb_create = intel_user_framebuffer_create,
0632fef6 14877 .output_poll_changed = intel_fbdev_output_poll_changed,
5ee67f1c
MR
14878 .atomic_check = intel_atomic_check,
14879 .atomic_commit = intel_atomic_commit,
de419ab6
ML
14880 .atomic_state_alloc = intel_atomic_state_alloc,
14881 .atomic_state_clear = intel_atomic_state_clear,
79e53945
JB
14882};
14883
88212941
ID
14884/**
14885 * intel_init_display_hooks - initialize the display modesetting hooks
14886 * @dev_priv: device private
14887 */
14888void intel_init_display_hooks(struct drm_i915_private *dev_priv)
e70236a8 14889{
88212941 14890 if (INTEL_INFO(dev_priv)->gen >= 9) {
bc8d7dff 14891 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
5724dbd1
DL
14892 dev_priv->display.get_initial_plane_config =
14893 skylake_get_initial_plane_config;
bc8d7dff
DL
14894 dev_priv->display.crtc_compute_clock =
14895 haswell_crtc_compute_clock;
14896 dev_priv->display.crtc_enable = haswell_crtc_enable;
14897 dev_priv->display.crtc_disable = haswell_crtc_disable;
88212941 14898 } else if (HAS_DDI(dev_priv)) {
0e8ffe1b 14899 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
5724dbd1
DL
14900 dev_priv->display.get_initial_plane_config =
14901 ironlake_get_initial_plane_config;
797d0259
ACO
14902 dev_priv->display.crtc_compute_clock =
14903 haswell_crtc_compute_clock;
4f771f10
PZ
14904 dev_priv->display.crtc_enable = haswell_crtc_enable;
14905 dev_priv->display.crtc_disable = haswell_crtc_disable;
88212941 14906 } else if (HAS_PCH_SPLIT(dev_priv)) {
0e8ffe1b 14907 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
5724dbd1
DL
14908 dev_priv->display.get_initial_plane_config =
14909 ironlake_get_initial_plane_config;
3fb37703
ACO
14910 dev_priv->display.crtc_compute_clock =
14911 ironlake_crtc_compute_clock;
76e5a89c
DV
14912 dev_priv->display.crtc_enable = ironlake_crtc_enable;
14913 dev_priv->display.crtc_disable = ironlake_crtc_disable;
65b3d6a9 14914 } else if (IS_CHERRYVIEW(dev_priv)) {
89b667f8 14915 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
5724dbd1
DL
14916 dev_priv->display.get_initial_plane_config =
14917 i9xx_get_initial_plane_config;
65b3d6a9
ACO
14918 dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
14919 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14920 dev_priv->display.crtc_disable = i9xx_crtc_disable;
14921 } else if (IS_VALLEYVIEW(dev_priv)) {
14922 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14923 dev_priv->display.get_initial_plane_config =
14924 i9xx_get_initial_plane_config;
14925 dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
89b667f8
JB
14926 dev_priv->display.crtc_enable = valleyview_crtc_enable;
14927 dev_priv->display.crtc_disable = i9xx_crtc_disable;
19ec6693
ACO
14928 } else if (IS_G4X(dev_priv)) {
14929 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14930 dev_priv->display.get_initial_plane_config =
14931 i9xx_get_initial_plane_config;
14932 dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
14933 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14934 dev_priv->display.crtc_disable = i9xx_crtc_disable;
70e8aa21
ACO
14935 } else if (IS_PINEVIEW(dev_priv)) {
14936 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14937 dev_priv->display.get_initial_plane_config =
14938 i9xx_get_initial_plane_config;
14939 dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
14940 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14941 dev_priv->display.crtc_disable = i9xx_crtc_disable;
81c97f52 14942 } else if (!IS_GEN2(dev_priv)) {
0e8ffe1b 14943 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
5724dbd1
DL
14944 dev_priv->display.get_initial_plane_config =
14945 i9xx_get_initial_plane_config;
d6dfee7a 14946 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
76e5a89c
DV
14947 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14948 dev_priv->display.crtc_disable = i9xx_crtc_disable;
81c97f52
ACO
14949 } else {
14950 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14951 dev_priv->display.get_initial_plane_config =
14952 i9xx_get_initial_plane_config;
14953 dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
14954 dev_priv->display.crtc_enable = i9xx_crtc_enable;
14955 dev_priv->display.crtc_disable = i9xx_crtc_disable;
f564048e 14956 }
e70236a8 14957
e70236a8 14958 /* Returns the core display clock speed */
88212941 14959 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
1652d19e
VS
14960 dev_priv->display.get_display_clock_speed =
14961 skylake_get_display_clock_speed;
88212941 14962 else if (IS_BROXTON(dev_priv))
acd3f3d3
BP
14963 dev_priv->display.get_display_clock_speed =
14964 broxton_get_display_clock_speed;
88212941 14965 else if (IS_BROADWELL(dev_priv))
1652d19e
VS
14966 dev_priv->display.get_display_clock_speed =
14967 broadwell_get_display_clock_speed;
88212941 14968 else if (IS_HASWELL(dev_priv))
1652d19e
VS
14969 dev_priv->display.get_display_clock_speed =
14970 haswell_get_display_clock_speed;
88212941 14971 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
25eb05fc
JB
14972 dev_priv->display.get_display_clock_speed =
14973 valleyview_get_display_clock_speed;
88212941 14974 else if (IS_GEN5(dev_priv))
b37a6434
VS
14975 dev_priv->display.get_display_clock_speed =
14976 ilk_get_display_clock_speed;
88212941
ID
14977 else if (IS_I945G(dev_priv) || IS_BROADWATER(dev_priv) ||
14978 IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv))
e70236a8
JB
14979 dev_priv->display.get_display_clock_speed =
14980 i945_get_display_clock_speed;
88212941 14981 else if (IS_GM45(dev_priv))
34edce2f
VS
14982 dev_priv->display.get_display_clock_speed =
14983 gm45_get_display_clock_speed;
88212941 14984 else if (IS_CRESTLINE(dev_priv))
34edce2f
VS
14985 dev_priv->display.get_display_clock_speed =
14986 i965gm_get_display_clock_speed;
88212941 14987 else if (IS_PINEVIEW(dev_priv))
34edce2f
VS
14988 dev_priv->display.get_display_clock_speed =
14989 pnv_get_display_clock_speed;
88212941 14990 else if (IS_G33(dev_priv) || IS_G4X(dev_priv))
34edce2f
VS
14991 dev_priv->display.get_display_clock_speed =
14992 g33_get_display_clock_speed;
88212941 14993 else if (IS_I915G(dev_priv))
e70236a8
JB
14994 dev_priv->display.get_display_clock_speed =
14995 i915_get_display_clock_speed;
88212941 14996 else if (IS_I945GM(dev_priv) || IS_845G(dev_priv))
e70236a8
JB
14997 dev_priv->display.get_display_clock_speed =
14998 i9xx_misc_get_display_clock_speed;
88212941 14999 else if (IS_I915GM(dev_priv))
e70236a8
JB
15000 dev_priv->display.get_display_clock_speed =
15001 i915gm_get_display_clock_speed;
88212941 15002 else if (IS_I865G(dev_priv))
e70236a8
JB
15003 dev_priv->display.get_display_clock_speed =
15004 i865_get_display_clock_speed;
88212941 15005 else if (IS_I85X(dev_priv))
e70236a8 15006 dev_priv->display.get_display_clock_speed =
1b1d2716 15007 i85x_get_display_clock_speed;
623e01e5 15008 else { /* 830 */
88212941 15009 WARN(!IS_I830(dev_priv), "Unknown platform. Assuming 133 MHz CDCLK\n");
e70236a8
JB
15010 dev_priv->display.get_display_clock_speed =
15011 i830_get_display_clock_speed;
623e01e5 15012 }
e70236a8 15013
88212941 15014 if (IS_GEN5(dev_priv)) {
3bb11b53 15015 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
88212941 15016 } else if (IS_GEN6(dev_priv)) {
3bb11b53 15017 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
88212941 15018 } else if (IS_IVYBRIDGE(dev_priv)) {
3bb11b53
SJ
15019 /* FIXME: detect B0+ stepping and use auto training */
15020 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
88212941 15021 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3bb11b53 15022 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
445e780b
VS
15023 }
15024
15025 if (IS_BROADWELL(dev_priv)) {
15026 dev_priv->display.modeset_commit_cdclk =
15027 broadwell_modeset_commit_cdclk;
15028 dev_priv->display.modeset_calc_cdclk =
15029 broadwell_modeset_calc_cdclk;
88212941 15030 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
27c329ed
ML
15031 dev_priv->display.modeset_commit_cdclk =
15032 valleyview_modeset_commit_cdclk;
15033 dev_priv->display.modeset_calc_cdclk =
15034 valleyview_modeset_calc_cdclk;
88212941 15035 } else if (IS_BROXTON(dev_priv)) {
27c329ed
ML
15036 dev_priv->display.modeset_commit_cdclk =
15037 broxton_modeset_commit_cdclk;
15038 dev_priv->display.modeset_calc_cdclk =
15039 broxton_modeset_calc_cdclk;
e70236a8 15040 }
8c9f3aaf 15041
88212941 15042 switch (INTEL_INFO(dev_priv)->gen) {
8c9f3aaf
JB
15043 case 2:
15044 dev_priv->display.queue_flip = intel_gen2_queue_flip;
15045 break;
15046
15047 case 3:
15048 dev_priv->display.queue_flip = intel_gen3_queue_flip;
15049 break;
15050
15051 case 4:
15052 case 5:
15053 dev_priv->display.queue_flip = intel_gen4_queue_flip;
15054 break;
15055
15056 case 6:
15057 dev_priv->display.queue_flip = intel_gen6_queue_flip;
15058 break;
7c9017e5 15059 case 7:
4e0bbc31 15060 case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
7c9017e5
JB
15061 dev_priv->display.queue_flip = intel_gen7_queue_flip;
15062 break;
830c81db 15063 case 9:
ba343e02
TU
15064 /* Drop through - unsupported since execlist only. */
15065 default:
15066 /* Default just returns -ENODEV to indicate unsupported */
15067 dev_priv->display.queue_flip = intel_default_queue_flip;
8c9f3aaf 15068 }
e70236a8
JB
15069}
15070
b690e96c
JB
15071/*
15072 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
15073 * resume, or other times. This quirk makes sure that's the case for
15074 * affected systems.
15075 */
0206e353 15076static void quirk_pipea_force(struct drm_device *dev)
b690e96c
JB
15077{
15078 struct drm_i915_private *dev_priv = dev->dev_private;
15079
15080 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
bc0daf48 15081 DRM_INFO("applying pipe a force quirk\n");
b690e96c
JB
15082}
15083
b6b5d049
VS
15084static void quirk_pipeb_force(struct drm_device *dev)
15085{
15086 struct drm_i915_private *dev_priv = dev->dev_private;
15087
15088 dev_priv->quirks |= QUIRK_PIPEB_FORCE;
15089 DRM_INFO("applying pipe b force quirk\n");
15090}
15091
435793df
KP
15092/*
15093 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
15094 */
15095static void quirk_ssc_force_disable(struct drm_device *dev)
15096{
15097 struct drm_i915_private *dev_priv = dev->dev_private;
15098 dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
bc0daf48 15099 DRM_INFO("applying lvds SSC disable quirk\n");
435793df
KP
15100}
15101
4dca20ef 15102/*
5a15ab5b
CE
15103 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
15104 * brightness value
4dca20ef
CE
15105 */
15106static void quirk_invert_brightness(struct drm_device *dev)
15107{
15108 struct drm_i915_private *dev_priv = dev->dev_private;
15109 dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
bc0daf48 15110 DRM_INFO("applying inverted panel brightness quirk\n");
435793df
KP
15111}
15112
9c72cc6f
SD
15113/* Some VBT's incorrectly indicate no backlight is present */
15114static void quirk_backlight_present(struct drm_device *dev)
15115{
15116 struct drm_i915_private *dev_priv = dev->dev_private;
15117 dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
15118 DRM_INFO("applying backlight present quirk\n");
15119}
15120
b690e96c
JB
15121struct intel_quirk {
15122 int device;
15123 int subsystem_vendor;
15124 int subsystem_device;
15125 void (*hook)(struct drm_device *dev);
15126};
15127
5f85f176
EE
15128/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
15129struct intel_dmi_quirk {
15130 void (*hook)(struct drm_device *dev);
15131 const struct dmi_system_id (*dmi_id_list)[];
15132};
15133
15134static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
15135{
15136 DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
15137 return 1;
15138}
15139
15140static const struct intel_dmi_quirk intel_dmi_quirks[] = {
15141 {
15142 .dmi_id_list = &(const struct dmi_system_id[]) {
15143 {
15144 .callback = intel_dmi_reverse_brightness,
15145 .ident = "NCR Corporation",
15146 .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
15147 DMI_MATCH(DMI_PRODUCT_NAME, ""),
15148 },
15149 },
15150 { } /* terminating entry */
15151 },
15152 .hook = quirk_invert_brightness,
15153 },
15154};
15155
c43b5634 15156static struct intel_quirk intel_quirks[] = {
b690e96c
JB
15157 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
15158 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
15159
b690e96c
JB
15160 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
15161 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
15162
5f080c0f
VS
15163 /* 830 needs to leave pipe A & dpll A up */
15164 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
15165
b6b5d049
VS
15166 /* 830 needs to leave pipe B & dpll B up */
15167 { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
15168
435793df
KP
15169 /* Lenovo U160 cannot use SSC on LVDS */
15170 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
070d329a
MAS
15171
15172 /* Sony Vaio Y cannot use SSC on LVDS */
15173 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
5a15ab5b 15174
be505f64
AH
15175 /* Acer Aspire 5734Z must invert backlight brightness */
15176 { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
15177
15178 /* Acer/eMachines G725 */
15179 { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
15180
15181 /* Acer/eMachines e725 */
15182 { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
15183
15184 /* Acer/Packard Bell NCL20 */
15185 { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
15186
15187 /* Acer Aspire 4736Z */
15188 { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
0f540c3a
JN
15189
15190 /* Acer Aspire 5336 */
15191 { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
2e93a1aa
SD
15192
15193 /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
15194 { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
d4967d8c 15195
dfb3d47b
SD
15196 /* Acer C720 Chromebook (Core i3 4005U) */
15197 { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
15198
b2a9601c 15199 /* Apple Macbook 2,1 (Core 2 T7400) */
15200 { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
15201
1b9448b0
JN
15202 /* Apple Macbook 4,1 */
15203 { 0x2a02, 0x106b, 0x00a1, quirk_backlight_present },
15204
d4967d8c
SD
15205 /* Toshiba CB35 Chromebook (Celeron 2955U) */
15206 { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
724cb06f
SD
15207
15208 /* HP Chromebook 14 (Celeron 2955U) */
15209 { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
cf6f0af9
JN
15210
15211 /* Dell Chromebook 11 */
15212 { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
9be64eee
JN
15213
15214 /* Dell Chromebook 11 (2015 version) */
15215 { 0x0a16, 0x1028, 0x0a35, quirk_backlight_present },
b690e96c
JB
15216};
15217
15218static void intel_init_quirks(struct drm_device *dev)
15219{
15220 struct pci_dev *d = dev->pdev;
15221 int i;
15222
15223 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
15224 struct intel_quirk *q = &intel_quirks[i];
15225
15226 if (d->device == q->device &&
15227 (d->subsystem_vendor == q->subsystem_vendor ||
15228 q->subsystem_vendor == PCI_ANY_ID) &&
15229 (d->subsystem_device == q->subsystem_device ||
15230 q->subsystem_device == PCI_ANY_ID))
15231 q->hook(dev);
15232 }
5f85f176
EE
15233 for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
15234 if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
15235 intel_dmi_quirks[i].hook(dev);
15236 }
b690e96c
JB
15237}
15238
9cce37f4
JB
15239/* Disable the VGA plane that we never use */
15240static void i915_disable_vga(struct drm_device *dev)
15241{
15242 struct drm_i915_private *dev_priv = dev->dev_private;
15243 u8 sr1;
f0f59a00 15244 i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
9cce37f4 15245
2b37c616 15246 /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
9cce37f4 15247 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
3fdcf431 15248 outb(SR01, VGA_SR_INDEX);
9cce37f4
JB
15249 sr1 = inb(VGA_SR_DATA);
15250 outb(sr1 | 1<<5, VGA_SR_DATA);
15251 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
15252 udelay(300);
15253
01f5a626 15254 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
9cce37f4
JB
15255 POSTING_READ(vga_reg);
15256}
15257
f817586c
DV
15258void intel_modeset_init_hw(struct drm_device *dev)
15259{
1a617b77
ML
15260 struct drm_i915_private *dev_priv = dev->dev_private;
15261
b6283055 15262 intel_update_cdclk(dev);
1a617b77
ML
15263
15264 dev_priv->atomic_cdclk_freq = dev_priv->cdclk_freq;
15265
f817586c 15266 intel_init_clock_gating(dev);
dc97997a 15267 intel_enable_gt_powersave(dev_priv);
f817586c
DV
15268}
15269
d93c0372
MR
15270/*
15271 * Calculate what we think the watermarks should be for the state we've read
15272 * out of the hardware and then immediately program those watermarks so that
15273 * we ensure the hardware settings match our internal state.
15274 *
15275 * We can calculate what we think WM's should be by creating a duplicate of the
15276 * current state (which was constructed during hardware readout) and running it
15277 * through the atomic check code to calculate new watermark values in the
15278 * state object.
15279 */
15280static void sanitize_watermarks(struct drm_device *dev)
15281{
15282 struct drm_i915_private *dev_priv = to_i915(dev);
15283 struct drm_atomic_state *state;
15284 struct drm_crtc *crtc;
15285 struct drm_crtc_state *cstate;
15286 struct drm_modeset_acquire_ctx ctx;
15287 int ret;
15288 int i;
15289
15290 /* Only supported on platforms that use atomic watermark design */
ed4a6a7c 15291 if (!dev_priv->display.optimize_watermarks)
d93c0372
MR
15292 return;
15293
15294 /*
15295 * We need to hold connection_mutex before calling duplicate_state so
15296 * that the connector loop is protected.
15297 */
15298 drm_modeset_acquire_init(&ctx, 0);
15299retry:
0cd1262d 15300 ret = drm_modeset_lock_all_ctx(dev, &ctx);
d93c0372
MR
15301 if (ret == -EDEADLK) {
15302 drm_modeset_backoff(&ctx);
15303 goto retry;
15304 } else if (WARN_ON(ret)) {
0cd1262d 15305 goto fail;
d93c0372
MR
15306 }
15307
15308 state = drm_atomic_helper_duplicate_state(dev, &ctx);
15309 if (WARN_ON(IS_ERR(state)))
0cd1262d 15310 goto fail;
d93c0372 15311
ed4a6a7c
MR
15312 /*
15313 * Hardware readout is the only time we don't want to calculate
15314 * intermediate watermarks (since we don't trust the current
15315 * watermarks).
15316 */
15317 to_intel_atomic_state(state)->skip_intermediate_wm = true;
15318
d93c0372
MR
15319 ret = intel_atomic_check(dev, state);
15320 if (ret) {
15321 /*
15322 * If we fail here, it means that the hardware appears to be
15323 * programmed in a way that shouldn't be possible, given our
15324 * understanding of watermark requirements. This might mean a
15325 * mistake in the hardware readout code or a mistake in the
15326 * watermark calculations for a given platform. Raise a WARN
15327 * so that this is noticeable.
15328 *
15329 * If this actually happens, we'll have to just leave the
15330 * BIOS-programmed watermarks untouched and hope for the best.
15331 */
15332 WARN(true, "Could not determine valid watermarks for inherited state\n");
0cd1262d 15333 goto fail;
d93c0372
MR
15334 }
15335
15336 /* Write calculated watermark values back */
d93c0372
MR
15337 for_each_crtc_in_state(state, crtc, cstate, i) {
15338 struct intel_crtc_state *cs = to_intel_crtc_state(cstate);
15339
ed4a6a7c
MR
15340 cs->wm.need_postvbl_update = true;
15341 dev_priv->display.optimize_watermarks(cs);
d93c0372
MR
15342 }
15343
15344 drm_atomic_state_free(state);
0cd1262d 15345fail:
d93c0372
MR
15346 drm_modeset_drop_locks(&ctx);
15347 drm_modeset_acquire_fini(&ctx);
15348}
15349
79e53945
JB
15350void intel_modeset_init(struct drm_device *dev)
15351{
72e96d64
JL
15352 struct drm_i915_private *dev_priv = to_i915(dev);
15353 struct i915_ggtt *ggtt = &dev_priv->ggtt;
1fe47785 15354 int sprite, ret;
8cc87b75 15355 enum pipe pipe;
46f297fb 15356 struct intel_crtc *crtc;
79e53945
JB
15357
15358 drm_mode_config_init(dev);
15359
15360 dev->mode_config.min_width = 0;
15361 dev->mode_config.min_height = 0;
15362
019d96cb
DA
15363 dev->mode_config.preferred_depth = 24;
15364 dev->mode_config.prefer_shadow = 1;
15365
25bab385
TU
15366 dev->mode_config.allow_fb_modifiers = true;
15367
e6ecefaa 15368 dev->mode_config.funcs = &intel_mode_funcs;
79e53945 15369
b690e96c
JB
15370 intel_init_quirks(dev);
15371
1fa61106
ED
15372 intel_init_pm(dev);
15373
e3c74757
BW
15374 if (INTEL_INFO(dev)->num_pipes == 0)
15375 return;
15376
69f92f67
LW
15377 /*
15378 * There may be no VBT; and if the BIOS enabled SSC we can
15379 * just keep using it to avoid unnecessary flicker. Whereas if the
15380 * BIOS isn't using it, don't assume it will work even if the VBT
15381 * indicates as much.
15382 */
15383 if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)) {
15384 bool bios_lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
15385 DREF_SSC1_ENABLE);
15386
15387 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
15388 DRM_DEBUG_KMS("SSC %sabled by BIOS, overriding VBT which says %sabled\n",
15389 bios_lvds_use_ssc ? "en" : "dis",
15390 dev_priv->vbt.lvds_use_ssc ? "en" : "dis");
15391 dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
15392 }
15393 }
15394
a6c45cf0
CW
15395 if (IS_GEN2(dev)) {
15396 dev->mode_config.max_width = 2048;
15397 dev->mode_config.max_height = 2048;
15398 } else if (IS_GEN3(dev)) {
5e4d6fa7
KP
15399 dev->mode_config.max_width = 4096;
15400 dev->mode_config.max_height = 4096;
79e53945 15401 } else {
a6c45cf0
CW
15402 dev->mode_config.max_width = 8192;
15403 dev->mode_config.max_height = 8192;
79e53945 15404 }
068be561 15405
dc41c154
VS
15406 if (IS_845G(dev) || IS_I865G(dev)) {
15407 dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
15408 dev->mode_config.cursor_height = 1023;
15409 } else if (IS_GEN2(dev)) {
068be561
DL
15410 dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
15411 dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
15412 } else {
15413 dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
15414 dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
15415 }
15416
72e96d64 15417 dev->mode_config.fb_base = ggtt->mappable_base;
79e53945 15418
28c97730 15419 DRM_DEBUG_KMS("%d display pipe%s available.\n",
7eb552ae
BW
15420 INTEL_INFO(dev)->num_pipes,
15421 INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
79e53945 15422
055e393f 15423 for_each_pipe(dev_priv, pipe) {
8cc87b75 15424 intel_crtc_init(dev, pipe);
3bdcfc0c 15425 for_each_sprite(dev_priv, pipe, sprite) {
1fe47785 15426 ret = intel_plane_init(dev, pipe, sprite);
7f1f3851 15427 if (ret)
06da8da2 15428 DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
1fe47785 15429 pipe_name(pipe), sprite_name(pipe, sprite), ret);
7f1f3851 15430 }
79e53945
JB
15431 }
15432
bfa7df01
VS
15433 intel_update_czclk(dev_priv);
15434 intel_update_cdclk(dev);
15435
e72f9fbf 15436 intel_shared_dpll_init(dev);
ee7b9f93 15437
9cce37f4
JB
15438 /* Just disable it once at startup */
15439 i915_disable_vga(dev);
79e53945 15440 intel_setup_outputs(dev);
11be49eb 15441
6e9f798d 15442 drm_modeset_lock_all(dev);
043e9bda 15443 intel_modeset_setup_hw_state(dev);
6e9f798d 15444 drm_modeset_unlock_all(dev);
46f297fb 15445
d3fcc808 15446 for_each_intel_crtc(dev, crtc) {
eeebeac5
ML
15447 struct intel_initial_plane_config plane_config = {};
15448
46f297fb
JB
15449 if (!crtc->active)
15450 continue;
15451
46f297fb 15452 /*
46f297fb
JB
15453 * Note that reserving the BIOS fb up front prevents us
15454 * from stuffing other stolen allocations like the ring
15455 * on top. This prevents some ugliness at boot time, and
15456 * can even allow for smooth boot transitions if the BIOS
15457 * fb is large enough for the active pipe configuration.
15458 */
eeebeac5
ML
15459 dev_priv->display.get_initial_plane_config(crtc,
15460 &plane_config);
15461
15462 /*
15463 * If the fb is shared between multiple heads, we'll
15464 * just get the first one.
15465 */
15466 intel_find_initial_plane_obj(crtc, &plane_config);
46f297fb 15467 }
d93c0372
MR
15468
15469 /*
15470 * Make sure hardware watermarks really match the state we read out.
15471 * Note that we need to do this after reconstructing the BIOS fb's
15472 * since the watermark calculation done here will use pstate->fb.
15473 */
15474 sanitize_watermarks(dev);
2c7111db
CW
15475}
15476
7fad798e
DV
15477static void intel_enable_pipe_a(struct drm_device *dev)
15478{
15479 struct intel_connector *connector;
15480 struct drm_connector *crt = NULL;
15481 struct intel_load_detect_pipe load_detect_temp;
208bf9fd 15482 struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
7fad798e
DV
15483
15484 /* We can't just switch on the pipe A, we need to set things up with a
15485 * proper mode and output configuration. As a gross hack, enable pipe A
15486 * by enabling the load detect pipe once. */
3a3371ff 15487 for_each_intel_connector(dev, connector) {
7fad798e
DV
15488 if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
15489 crt = &connector->base;
15490 break;
15491 }
15492 }
15493
15494 if (!crt)
15495 return;
15496
208bf9fd 15497 if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
49172fee 15498 intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
7fad798e
DV
15499}
15500
fa555837
DV
15501static bool
15502intel_check_plane_mapping(struct intel_crtc *crtc)
15503{
7eb552ae
BW
15504 struct drm_device *dev = crtc->base.dev;
15505 struct drm_i915_private *dev_priv = dev->dev_private;
649636ef 15506 u32 val;
fa555837 15507
7eb552ae 15508 if (INTEL_INFO(dev)->num_pipes == 1)
fa555837
DV
15509 return true;
15510
649636ef 15511 val = I915_READ(DSPCNTR(!crtc->plane));
fa555837
DV
15512
15513 if ((val & DISPLAY_PLANE_ENABLE) &&
15514 (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
15515 return false;
15516
15517 return true;
15518}
15519
02e93c35
VS
15520static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
15521{
15522 struct drm_device *dev = crtc->base.dev;
15523 struct intel_encoder *encoder;
15524
15525 for_each_encoder_on_crtc(dev, &crtc->base, encoder)
15526 return true;
15527
15528 return false;
15529}
15530
dd756198
VS
15531static bool intel_encoder_has_connectors(struct intel_encoder *encoder)
15532{
15533 struct drm_device *dev = encoder->base.dev;
15534 struct intel_connector *connector;
15535
15536 for_each_connector_on_encoder(dev, &encoder->base, connector)
15537 return true;
15538
15539 return false;
15540}
15541
24929352
DV
15542static void intel_sanitize_crtc(struct intel_crtc *crtc)
15543{
15544 struct drm_device *dev = crtc->base.dev;
15545 struct drm_i915_private *dev_priv = dev->dev_private;
4d1de975 15546 enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
24929352 15547
24929352 15548 /* Clear any frame start delays used for debugging left by the BIOS */
4d1de975
JN
15549 if (!transcoder_is_dsi(cpu_transcoder)) {
15550 i915_reg_t reg = PIPECONF(cpu_transcoder);
15551
15552 I915_WRITE(reg,
15553 I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
15554 }
24929352 15555
d3eaf884 15556 /* restore vblank interrupts to correct state */
9625604c 15557 drm_crtc_vblank_reset(&crtc->base);
d297e103 15558 if (crtc->active) {
f9cd7b88
VS
15559 struct intel_plane *plane;
15560
9625604c 15561 drm_crtc_vblank_on(&crtc->base);
f9cd7b88
VS
15562
15563 /* Disable everything but the primary plane */
15564 for_each_intel_plane_on_crtc(dev, crtc, plane) {
15565 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
15566 continue;
15567
15568 plane->disable_plane(&plane->base, &crtc->base);
15569 }
9625604c 15570 }
d3eaf884 15571
24929352 15572 /* We need to sanitize the plane -> pipe mapping first because this will
fa555837
DV
15573 * disable the crtc (and hence change the state) if it is wrong. Note
15574 * that gen4+ has a fixed plane -> pipe mapping. */
15575 if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
24929352
DV
15576 bool plane;
15577
24929352
DV
15578 DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
15579 crtc->base.base.id);
15580
15581 /* Pipe has the wrong plane attached and the plane is active.
15582 * Temporarily change the plane mapping and disable everything
15583 * ... */
15584 plane = crtc->plane;
b70709a6 15585 to_intel_plane_state(crtc->base.primary->state)->visible = true;
24929352 15586 crtc->plane = !plane;
b17d48e2 15587 intel_crtc_disable_noatomic(&crtc->base);
24929352 15588 crtc->plane = plane;
24929352 15589 }
24929352 15590
7fad798e
DV
15591 if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
15592 crtc->pipe == PIPE_A && !crtc->active) {
15593 /* BIOS forgot to enable pipe A, this mostly happens after
15594 * resume. Force-enable the pipe to fix this, the update_dpms
15595 * call below we restore the pipe to the right state, but leave
15596 * the required bits on. */
15597 intel_enable_pipe_a(dev);
15598 }
15599
24929352
DV
15600 /* Adjust the state of the output pipe according to whether we
15601 * have active connectors/encoders. */
842e0307 15602 if (crtc->active && !intel_crtc_has_encoders(crtc))
b17d48e2 15603 intel_crtc_disable_noatomic(&crtc->base);
24929352 15604
a3ed6aad 15605 if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
4cc31489
DV
15606 /*
15607 * We start out with underrun reporting disabled to avoid races.
15608 * For correct bookkeeping mark this on active crtcs.
15609 *
c5ab3bc0
DV
15610 * Also on gmch platforms we dont have any hardware bits to
15611 * disable the underrun reporting. Which means we need to start
15612 * out with underrun reporting disabled also on inactive pipes,
15613 * since otherwise we'll complain about the garbage we read when
15614 * e.g. coming up after runtime pm.
15615 *
4cc31489
DV
15616 * No protection against concurrent access is required - at
15617 * worst a fifo underrun happens which also sets this to false.
15618 */
15619 crtc->cpu_fifo_underrun_disabled = true;
15620 crtc->pch_fifo_underrun_disabled = true;
15621 }
24929352
DV
15622}
15623
15624static void intel_sanitize_encoder(struct intel_encoder *encoder)
15625{
15626 struct intel_connector *connector;
15627 struct drm_device *dev = encoder->base.dev;
15628
15629 /* We need to check both for a crtc link (meaning that the
15630 * encoder is active and trying to read from a pipe) and the
15631 * pipe itself being active. */
15632 bool has_active_crtc = encoder->base.crtc &&
15633 to_intel_crtc(encoder->base.crtc)->active;
15634
dd756198 15635 if (intel_encoder_has_connectors(encoder) && !has_active_crtc) {
24929352
DV
15636 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
15637 encoder->base.base.id,
8e329a03 15638 encoder->base.name);
24929352
DV
15639
15640 /* Connector is active, but has no active pipe. This is
15641 * fallout from our resume register restoring. Disable
15642 * the encoder manually again. */
15643 if (encoder->base.crtc) {
15644 DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
15645 encoder->base.base.id,
8e329a03 15646 encoder->base.name);
24929352 15647 encoder->disable(encoder);
a62d1497
VS
15648 if (encoder->post_disable)
15649 encoder->post_disable(encoder);
24929352 15650 }
7f1950fb 15651 encoder->base.crtc = NULL;
24929352
DV
15652
15653 /* Inconsistent output/port/pipe state happens presumably due to
15654 * a bug in one of the get_hw_state functions. Or someplace else
15655 * in our code, like the register restore mess on resume. Clamp
15656 * things to off as a safer default. */
3a3371ff 15657 for_each_intel_connector(dev, connector) {
24929352
DV
15658 if (connector->encoder != encoder)
15659 continue;
7f1950fb
EE
15660 connector->base.dpms = DRM_MODE_DPMS_OFF;
15661 connector->base.encoder = NULL;
24929352
DV
15662 }
15663 }
15664 /* Enabled encoders without active connectors will be fixed in
15665 * the crtc fixup. */
15666}
15667
04098753 15668void i915_redisable_vga_power_on(struct drm_device *dev)
0fde901f
KM
15669{
15670 struct drm_i915_private *dev_priv = dev->dev_private;
f0f59a00 15671 i915_reg_t vga_reg = i915_vgacntrl_reg(dev);
0fde901f 15672
04098753
ID
15673 if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
15674 DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
15675 i915_disable_vga(dev);
15676 }
15677}
15678
15679void i915_redisable_vga(struct drm_device *dev)
15680{
15681 struct drm_i915_private *dev_priv = dev->dev_private;
15682
8dc8a27c
PZ
15683 /* This function can be called both from intel_modeset_setup_hw_state or
15684 * at a very early point in our resume sequence, where the power well
15685 * structures are not yet restored. Since this function is at a very
15686 * paranoid "someone might have enabled VGA while we were not looking"
15687 * level, just check if the power well is enabled instead of trying to
15688 * follow the "don't touch the power well if we don't need it" policy
15689 * the rest of the driver uses. */
6392f847 15690 if (!intel_display_power_get_if_enabled(dev_priv, POWER_DOMAIN_VGA))
8dc8a27c
PZ
15691 return;
15692
04098753 15693 i915_redisable_vga_power_on(dev);
6392f847
ID
15694
15695 intel_display_power_put(dev_priv, POWER_DOMAIN_VGA);
0fde901f
KM
15696}
15697
f9cd7b88 15698static bool primary_get_hw_state(struct intel_plane *plane)
98ec7739 15699{
f9cd7b88 15700 struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
98ec7739 15701
f9cd7b88 15702 return I915_READ(DSPCNTR(plane->plane)) & DISPLAY_PLANE_ENABLE;
d032ffa0
ML
15703}
15704
f9cd7b88
VS
15705/* FIXME read out full plane state for all planes */
15706static void readout_plane_state(struct intel_crtc *crtc)
d032ffa0 15707{
b26d3ea3 15708 struct drm_plane *primary = crtc->base.primary;
f9cd7b88 15709 struct intel_plane_state *plane_state =
b26d3ea3 15710 to_intel_plane_state(primary->state);
d032ffa0 15711
19b8d387 15712 plane_state->visible = crtc->active &&
b26d3ea3
ML
15713 primary_get_hw_state(to_intel_plane(primary));
15714
15715 if (plane_state->visible)
15716 crtc->base.state->plane_mask |= 1 << drm_plane_index(primary);
98ec7739
VS
15717}
15718
30e984df 15719static void intel_modeset_readout_hw_state(struct drm_device *dev)
24929352
DV
15720{
15721 struct drm_i915_private *dev_priv = dev->dev_private;
15722 enum pipe pipe;
24929352
DV
15723 struct intel_crtc *crtc;
15724 struct intel_encoder *encoder;
15725 struct intel_connector *connector;
5358901f 15726 int i;
24929352 15727
565602d7
ML
15728 dev_priv->active_crtcs = 0;
15729
d3fcc808 15730 for_each_intel_crtc(dev, crtc) {
565602d7
ML
15731 struct intel_crtc_state *crtc_state = crtc->config;
15732 int pixclk = 0;
3b117c8f 15733
565602d7
ML
15734 __drm_atomic_helper_crtc_destroy_state(&crtc->base, &crtc_state->base);
15735 memset(crtc_state, 0, sizeof(*crtc_state));
15736 crtc_state->base.crtc = &crtc->base;
24929352 15737
565602d7
ML
15738 crtc_state->base.active = crtc_state->base.enable =
15739 dev_priv->display.get_pipe_config(crtc, crtc_state);
15740
15741 crtc->base.enabled = crtc_state->base.enable;
15742 crtc->active = crtc_state->base.active;
15743
15744 if (crtc_state->base.active) {
15745 dev_priv->active_crtcs |= 1 << crtc->pipe;
15746
15747 if (IS_BROADWELL(dev_priv)) {
15748 pixclk = ilk_pipe_pixel_rate(crtc_state);
15749
15750 /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
15751 if (crtc_state->ips_enabled)
15752 pixclk = DIV_ROUND_UP(pixclk * 100, 95);
15753 } else if (IS_VALLEYVIEW(dev_priv) ||
15754 IS_CHERRYVIEW(dev_priv) ||
15755 IS_BROXTON(dev_priv))
15756 pixclk = crtc_state->base.adjusted_mode.crtc_clock;
15757 else
15758 WARN_ON(dev_priv->display.modeset_calc_cdclk);
15759 }
15760
15761 dev_priv->min_pixclk[crtc->pipe] = pixclk;
b70709a6 15762
f9cd7b88 15763 readout_plane_state(crtc);
24929352
DV
15764
15765 DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15766 crtc->base.base.id,
15767 crtc->active ? "enabled" : "disabled");
15768 }
15769
5358901f
DV
15770 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15771 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15772
2edd6443
ACO
15773 pll->on = pll->funcs.get_hw_state(dev_priv, pll,
15774 &pll->config.hw_state);
3e369b76 15775 pll->config.crtc_mask = 0;
d3fcc808 15776 for_each_intel_crtc(dev, crtc) {
2dd66ebd 15777 if (crtc->active && crtc->config->shared_dpll == pll)
3e369b76 15778 pll->config.crtc_mask |= 1 << crtc->pipe;
5358901f 15779 }
2dd66ebd 15780 pll->active_mask = pll->config.crtc_mask;
5358901f 15781
1e6f2ddc 15782 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
3e369b76 15783 pll->name, pll->config.crtc_mask, pll->on);
5358901f
DV
15784 }
15785
b2784e15 15786 for_each_intel_encoder(dev, encoder) {
24929352
DV
15787 pipe = 0;
15788
15789 if (encoder->get_hw_state(encoder, &pipe)) {
045ac3b5
JB
15790 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15791 encoder->base.crtc = &crtc->base;
6e3c9717 15792 encoder->get_config(encoder, crtc->config);
24929352
DV
15793 } else {
15794 encoder->base.crtc = NULL;
15795 }
15796
6f2bcceb 15797 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
24929352 15798 encoder->base.base.id,
8e329a03 15799 encoder->base.name,
24929352 15800 encoder->base.crtc ? "enabled" : "disabled",
6f2bcceb 15801 pipe_name(pipe));
24929352
DV
15802 }
15803
3a3371ff 15804 for_each_intel_connector(dev, connector) {
24929352
DV
15805 if (connector->get_hw_state(connector)) {
15806 connector->base.dpms = DRM_MODE_DPMS_ON;
2aa974c9
ML
15807
15808 encoder = connector->encoder;
15809 connector->base.encoder = &encoder->base;
15810
15811 if (encoder->base.crtc &&
15812 encoder->base.crtc->state->active) {
15813 /*
15814 * This has to be done during hardware readout
15815 * because anything calling .crtc_disable may
15816 * rely on the connector_mask being accurate.
15817 */
15818 encoder->base.crtc->state->connector_mask |=
15819 1 << drm_connector_index(&connector->base);
e87a52b3
ML
15820 encoder->base.crtc->state->encoder_mask |=
15821 1 << drm_encoder_index(&encoder->base);
2aa974c9
ML
15822 }
15823
24929352
DV
15824 } else {
15825 connector->base.dpms = DRM_MODE_DPMS_OFF;
15826 connector->base.encoder = NULL;
15827 }
15828 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15829 connector->base.base.id,
c23cc417 15830 connector->base.name,
24929352
DV
15831 connector->base.encoder ? "enabled" : "disabled");
15832 }
7f4c6284
VS
15833
15834 for_each_intel_crtc(dev, crtc) {
15835 crtc->base.hwmode = crtc->config->base.adjusted_mode;
15836
15837 memset(&crtc->base.mode, 0, sizeof(crtc->base.mode));
15838 if (crtc->base.state->active) {
15839 intel_mode_from_pipe_config(&crtc->base.mode, crtc->config);
15840 intel_mode_from_pipe_config(&crtc->base.state->adjusted_mode, crtc->config);
15841 WARN_ON(drm_atomic_set_mode_for_crtc(crtc->base.state, &crtc->base.mode));
15842
15843 /*
15844 * The initial mode needs to be set in order to keep
15845 * the atomic core happy. It wants a valid mode if the
15846 * crtc's enabled, so we do the above call.
15847 *
15848 * At this point some state updated by the connectors
15849 * in their ->detect() callback has not run yet, so
15850 * no recalculation can be done yet.
15851 *
15852 * Even if we could do a recalculation and modeset
15853 * right now it would cause a double modeset if
15854 * fbdev or userspace chooses a different initial mode.
15855 *
15856 * If that happens, someone indicated they wanted a
15857 * mode change, which means it's safe to do a full
15858 * recalculation.
15859 */
15860 crtc->base.state->mode.private_flags = I915_MODE_FLAG_INHERITED;
9eca6832
VS
15861
15862 drm_calc_timestamping_constants(&crtc->base, &crtc->base.hwmode);
15863 update_scanline_offset(crtc);
7f4c6284 15864 }
e3b247da
VS
15865
15866 intel_pipe_config_sanity_check(dev_priv, crtc->config);
7f4c6284 15867 }
30e984df
DV
15868}
15869
043e9bda
ML
15870/* Scan out the current hw modeset state,
15871 * and sanitizes it to the current state
15872 */
15873static void
15874intel_modeset_setup_hw_state(struct drm_device *dev)
30e984df
DV
15875{
15876 struct drm_i915_private *dev_priv = dev->dev_private;
15877 enum pipe pipe;
30e984df
DV
15878 struct intel_crtc *crtc;
15879 struct intel_encoder *encoder;
35c95375 15880 int i;
30e984df
DV
15881
15882 intel_modeset_readout_hw_state(dev);
24929352
DV
15883
15884 /* HW state is read out, now we need to sanitize this mess. */
b2784e15 15885 for_each_intel_encoder(dev, encoder) {
24929352
DV
15886 intel_sanitize_encoder(encoder);
15887 }
15888
055e393f 15889 for_each_pipe(dev_priv, pipe) {
24929352
DV
15890 crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15891 intel_sanitize_crtc(crtc);
6e3c9717
ACO
15892 intel_dump_pipe_config(crtc, crtc->config,
15893 "[setup_hw_state]");
24929352 15894 }
9a935856 15895
d29b2f9d
ACO
15896 intel_modeset_update_connector_atomic_state(dev);
15897
35c95375
DV
15898 for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15899 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15900
2dd66ebd 15901 if (!pll->on || pll->active_mask)
35c95375
DV
15902 continue;
15903
15904 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15905
2edd6443 15906 pll->funcs.disable(dev_priv, pll);
35c95375
DV
15907 pll->on = false;
15908 }
15909
666a4537 15910 if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev))
6eb1a681
VS
15911 vlv_wm_get_hw_state(dev);
15912 else if (IS_GEN9(dev))
3078999f
PB
15913 skl_wm_get_hw_state(dev);
15914 else if (HAS_PCH_SPLIT(dev))
243e6a44 15915 ilk_wm_get_hw_state(dev);
292b990e
ML
15916
15917 for_each_intel_crtc(dev, crtc) {
15918 unsigned long put_domains;
15919
74bff5f9 15920 put_domains = modeset_get_crtc_power_domains(&crtc->base, crtc->config);
292b990e
ML
15921 if (WARN_ON(put_domains))
15922 modeset_put_power_domains(dev_priv, put_domains);
15923 }
15924 intel_display_set_init_power(dev_priv, false);
010cf73d
PZ
15925
15926 intel_fbc_init_pipe_state(dev_priv);
043e9bda 15927}
7d0bc1ea 15928
043e9bda
ML
15929void intel_display_resume(struct drm_device *dev)
15930{
e2c8b870
ML
15931 struct drm_i915_private *dev_priv = to_i915(dev);
15932 struct drm_atomic_state *state = dev_priv->modeset_restore_state;
15933 struct drm_modeset_acquire_ctx ctx;
043e9bda 15934 int ret;
e2c8b870 15935 bool setup = false;
f30da187 15936
e2c8b870 15937 dev_priv->modeset_restore_state = NULL;
043e9bda 15938
ea49c9ac
ML
15939 /*
15940 * This is a cludge because with real atomic modeset mode_config.mutex
15941 * won't be taken. Unfortunately some probed state like
15942 * audio_codec_enable is still protected by mode_config.mutex, so lock
15943 * it here for now.
15944 */
15945 mutex_lock(&dev->mode_config.mutex);
e2c8b870 15946 drm_modeset_acquire_init(&ctx, 0);
043e9bda 15947
e2c8b870
ML
15948retry:
15949 ret = drm_modeset_lock_all_ctx(dev, &ctx);
043e9bda 15950
e2c8b870
ML
15951 if (ret == 0 && !setup) {
15952 setup = true;
043e9bda 15953
e2c8b870
ML
15954 intel_modeset_setup_hw_state(dev);
15955 i915_redisable_vga(dev);
45e2b5f6 15956 }
8af6cf88 15957
e2c8b870
ML
15958 if (ret == 0 && state) {
15959 struct drm_crtc_state *crtc_state;
15960 struct drm_crtc *crtc;
15961 int i;
043e9bda 15962
e2c8b870
ML
15963 state->acquire_ctx = &ctx;
15964
15965 for_each_crtc_in_state(state, crtc, crtc_state, i) {
15966 /*
15967 * Force recalculation even if we restore
15968 * current state. With fast modeset this may not result
15969 * in a modeset when the state is compatible.
15970 */
15971 crtc_state->mode_changed = true;
15972 }
15973
15974 ret = drm_atomic_commit(state);
043e9bda
ML
15975 }
15976
e2c8b870
ML
15977 if (ret == -EDEADLK) {
15978 drm_modeset_backoff(&ctx);
15979 goto retry;
15980 }
043e9bda 15981
e2c8b870
ML
15982 drm_modeset_drop_locks(&ctx);
15983 drm_modeset_acquire_fini(&ctx);
ea49c9ac 15984 mutex_unlock(&dev->mode_config.mutex);
043e9bda 15985
e2c8b870
ML
15986 if (ret) {
15987 DRM_ERROR("Restoring old state failed with %i\n", ret);
15988 drm_atomic_state_free(state);
15989 }
2c7111db
CW
15990}
15991
15992void intel_modeset_gem_init(struct drm_device *dev)
15993{
dc97997a 15994 struct drm_i915_private *dev_priv = to_i915(dev);
484b41dd 15995 struct drm_crtc *c;
2ff8fde1 15996 struct drm_i915_gem_object *obj;
e0d6149b 15997 int ret;
484b41dd 15998
dc97997a 15999 intel_init_gt_powersave(dev_priv);
ae48434c 16000
1833b134 16001 intel_modeset_init_hw(dev);
02e792fb 16002
1ee8da6d 16003 intel_setup_overlay(dev_priv);
484b41dd
JB
16004
16005 /*
16006 * Make sure any fbs we allocated at startup are properly
16007 * pinned & fenced. When we do the allocation it's too early
16008 * for this.
16009 */
70e1e0ec 16010 for_each_crtc(dev, c) {
2ff8fde1
MR
16011 obj = intel_fb_obj(c->primary->fb);
16012 if (obj == NULL)
484b41dd
JB
16013 continue;
16014
e0d6149b 16015 mutex_lock(&dev->struct_mutex);
3465c580
VS
16016 ret = intel_pin_and_fence_fb_obj(c->primary->fb,
16017 c->primary->state->rotation);
e0d6149b
TU
16018 mutex_unlock(&dev->struct_mutex);
16019 if (ret) {
484b41dd
JB
16020 DRM_ERROR("failed to pin boot fb on pipe %d\n",
16021 to_intel_crtc(c)->pipe);
66e514c1
DA
16022 drm_framebuffer_unreference(c->primary->fb);
16023 c->primary->fb = NULL;
36750f28 16024 c->primary->crtc = c->primary->state->crtc = NULL;
afd65eb4 16025 update_state_fb(c->primary);
36750f28 16026 c->state->plane_mask &= ~(1 << drm_plane_index(c->primary));
484b41dd
JB
16027 }
16028 }
0962c3c9
VS
16029
16030 intel_backlight_register(dev);
79e53945
JB
16031}
16032
4932e2c3
ID
16033void intel_connector_unregister(struct intel_connector *intel_connector)
16034{
16035 struct drm_connector *connector = &intel_connector->base;
16036
16037 intel_panel_destroy_backlight(connector);
34ea3d38 16038 drm_connector_unregister(connector);
4932e2c3
ID
16039}
16040
79e53945
JB
16041void intel_modeset_cleanup(struct drm_device *dev)
16042{
652c393a 16043 struct drm_i915_private *dev_priv = dev->dev_private;
19c8054c 16044 struct intel_connector *connector;
652c393a 16045
dc97997a 16046 intel_disable_gt_powersave(dev_priv);
2eb5252e 16047
0962c3c9
VS
16048 intel_backlight_unregister(dev);
16049
fd0c0642
DV
16050 /*
16051 * Interrupts and polling as the first thing to avoid creating havoc.
2eb5252e 16052 * Too much stuff here (turning of connectors, ...) would
fd0c0642
DV
16053 * experience fancy races otherwise.
16054 */
2aeb7d3a 16055 intel_irq_uninstall(dev_priv);
eb21b92b 16056
fd0c0642
DV
16057 /*
16058 * Due to the hpd irq storm handling the hotplug work can re-arm the
16059 * poll handlers. Hence disable polling after hpd handling is shut down.
16060 */
f87ea761 16061 drm_kms_helper_poll_fini(dev);
fd0c0642 16062
723bfd70
JB
16063 intel_unregister_dsm_handler();
16064
c937ab3e 16065 intel_fbc_global_disable(dev_priv);
69341a5e 16066
1630fe75
CW
16067 /* flush any delayed tasks or pending work */
16068 flush_scheduled_work();
16069
db31af1d 16070 /* destroy the backlight and sysfs files before encoders/connectors */
19c8054c
JN
16071 for_each_intel_connector(dev, connector)
16072 connector->unregister(connector);
d9255d57 16073
79e53945 16074 drm_mode_config_cleanup(dev);
4d7bb011 16075
1ee8da6d 16076 intel_cleanup_overlay(dev_priv);
ae48434c 16077
dc97997a 16078 intel_cleanup_gt_powersave(dev_priv);
f5949141
DV
16079
16080 intel_teardown_gmbus(dev);
79e53945
JB
16081}
16082
f1c79df3
ZW
16083/*
16084 * Return which encoder is currently attached for connector.
16085 */
df0e9248 16086struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
79e53945 16087{
df0e9248
CW
16088 return &intel_attached_encoder(connector)->base;
16089}
f1c79df3 16090
df0e9248
CW
16091void intel_connector_attach_encoder(struct intel_connector *connector,
16092 struct intel_encoder *encoder)
16093{
16094 connector->encoder = encoder;
16095 drm_mode_connector_attach_encoder(&connector->base,
16096 &encoder->base);
79e53945 16097}
28d52043
DA
16098
16099/*
16100 * set vga decode state - true == enable VGA decode
16101 */
16102int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
16103{
16104 struct drm_i915_private *dev_priv = dev->dev_private;
a885b3cc 16105 unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
28d52043
DA
16106 u16 gmch_ctrl;
16107
75fa041d
CW
16108 if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
16109 DRM_ERROR("failed to read control word\n");
16110 return -EIO;
16111 }
16112
c0cc8a55
CW
16113 if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
16114 return 0;
16115
28d52043
DA
16116 if (state)
16117 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
16118 else
16119 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
75fa041d
CW
16120
16121 if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
16122 DRM_ERROR("failed to write control word\n");
16123 return -EIO;
16124 }
16125
28d52043
DA
16126 return 0;
16127}
c4a1d9e4 16128
c4a1d9e4 16129struct intel_display_error_state {
ff57f1b0
PZ
16130
16131 u32 power_well_driver;
16132
63b66e5b
CW
16133 int num_transcoders;
16134
c4a1d9e4
CW
16135 struct intel_cursor_error_state {
16136 u32 control;
16137 u32 position;
16138 u32 base;
16139 u32 size;
52331309 16140 } cursor[I915_MAX_PIPES];
c4a1d9e4
CW
16141
16142 struct intel_pipe_error_state {
ddf9c536 16143 bool power_domain_on;
c4a1d9e4 16144 u32 source;
f301b1e1 16145 u32 stat;
52331309 16146 } pipe[I915_MAX_PIPES];
c4a1d9e4
CW
16147
16148 struct intel_plane_error_state {
16149 u32 control;
16150 u32 stride;
16151 u32 size;
16152 u32 pos;
16153 u32 addr;
16154 u32 surface;
16155 u32 tile_offset;
52331309 16156 } plane[I915_MAX_PIPES];
63b66e5b
CW
16157
16158 struct intel_transcoder_error_state {
ddf9c536 16159 bool power_domain_on;
63b66e5b
CW
16160 enum transcoder cpu_transcoder;
16161
16162 u32 conf;
16163
16164 u32 htotal;
16165 u32 hblank;
16166 u32 hsync;
16167 u32 vtotal;
16168 u32 vblank;
16169 u32 vsync;
16170 } transcoder[4];
c4a1d9e4
CW
16171};
16172
16173struct intel_display_error_state *
c033666a 16174intel_display_capture_error_state(struct drm_i915_private *dev_priv)
c4a1d9e4 16175{
c4a1d9e4 16176 struct intel_display_error_state *error;
63b66e5b
CW
16177 int transcoders[] = {
16178 TRANSCODER_A,
16179 TRANSCODER_B,
16180 TRANSCODER_C,
16181 TRANSCODER_EDP,
16182 };
c4a1d9e4
CW
16183 int i;
16184
c033666a 16185 if (INTEL_INFO(dev_priv)->num_pipes == 0)
63b66e5b
CW
16186 return NULL;
16187
9d1cb914 16188 error = kzalloc(sizeof(*error), GFP_ATOMIC);
c4a1d9e4
CW
16189 if (error == NULL)
16190 return NULL;
16191
c033666a 16192 if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
ff57f1b0
PZ
16193 error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
16194
055e393f 16195 for_each_pipe(dev_priv, i) {
ddf9c536 16196 error->pipe[i].power_domain_on =
f458ebbc
DV
16197 __intel_display_power_is_enabled(dev_priv,
16198 POWER_DOMAIN_PIPE(i));
ddf9c536 16199 if (!error->pipe[i].power_domain_on)
9d1cb914
PZ
16200 continue;
16201
5efb3e28
VS
16202 error->cursor[i].control = I915_READ(CURCNTR(i));
16203 error->cursor[i].position = I915_READ(CURPOS(i));
16204 error->cursor[i].base = I915_READ(CURBASE(i));
c4a1d9e4
CW
16205
16206 error->plane[i].control = I915_READ(DSPCNTR(i));
16207 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
c033666a 16208 if (INTEL_GEN(dev_priv) <= 3) {
51889b35 16209 error->plane[i].size = I915_READ(DSPSIZE(i));
80ca378b
PZ
16210 error->plane[i].pos = I915_READ(DSPPOS(i));
16211 }
c033666a 16212 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
ca291363 16213 error->plane[i].addr = I915_READ(DSPADDR(i));
c033666a 16214 if (INTEL_GEN(dev_priv) >= 4) {
c4a1d9e4
CW
16215 error->plane[i].surface = I915_READ(DSPSURF(i));
16216 error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
16217 }
16218
c4a1d9e4 16219 error->pipe[i].source = I915_READ(PIPESRC(i));
f301b1e1 16220
c033666a 16221 if (HAS_GMCH_DISPLAY(dev_priv))
f301b1e1 16222 error->pipe[i].stat = I915_READ(PIPESTAT(i));
63b66e5b
CW
16223 }
16224
4d1de975 16225 /* Note: this does not include DSI transcoders. */
c033666a 16226 error->num_transcoders = INTEL_INFO(dev_priv)->num_pipes;
2d1fe073 16227 if (HAS_DDI(dev_priv))
63b66e5b
CW
16228 error->num_transcoders++; /* Account for eDP. */
16229
16230 for (i = 0; i < error->num_transcoders; i++) {
16231 enum transcoder cpu_transcoder = transcoders[i];
16232
ddf9c536 16233 error->transcoder[i].power_domain_on =
f458ebbc 16234 __intel_display_power_is_enabled(dev_priv,
38cc1daf 16235 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
ddf9c536 16236 if (!error->transcoder[i].power_domain_on)
9d1cb914
PZ
16237 continue;
16238
63b66e5b
CW
16239 error->transcoder[i].cpu_transcoder = cpu_transcoder;
16240
16241 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
16242 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
16243 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
16244 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
16245 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
16246 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
16247 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
c4a1d9e4
CW
16248 }
16249
16250 return error;
16251}
16252
edc3d884
MK
16253#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
16254
c4a1d9e4 16255void
edc3d884 16256intel_display_print_error_state(struct drm_i915_error_state_buf *m,
c4a1d9e4
CW
16257 struct drm_device *dev,
16258 struct intel_display_error_state *error)
16259{
055e393f 16260 struct drm_i915_private *dev_priv = dev->dev_private;
c4a1d9e4
CW
16261 int i;
16262
63b66e5b
CW
16263 if (!error)
16264 return;
16265
edc3d884 16266 err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
190be112 16267 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
edc3d884 16268 err_printf(m, "PWR_WELL_CTL2: %08x\n",
ff57f1b0 16269 error->power_well_driver);
055e393f 16270 for_each_pipe(dev_priv, i) {
edc3d884 16271 err_printf(m, "Pipe [%d]:\n", i);
ddf9c536 16272 err_printf(m, " Power: %s\n",
87ad3212 16273 onoff(error->pipe[i].power_domain_on));
edc3d884 16274 err_printf(m, " SRC: %08x\n", error->pipe[i].source);
f301b1e1 16275 err_printf(m, " STAT: %08x\n", error->pipe[i].stat);
edc3d884
MK
16276
16277 err_printf(m, "Plane [%d]:\n", i);
16278 err_printf(m, " CNTR: %08x\n", error->plane[i].control);
16279 err_printf(m, " STRIDE: %08x\n", error->plane[i].stride);
80ca378b 16280 if (INTEL_INFO(dev)->gen <= 3) {
edc3d884
MK
16281 err_printf(m, " SIZE: %08x\n", error->plane[i].size);
16282 err_printf(m, " POS: %08x\n", error->plane[i].pos);
80ca378b 16283 }
4b71a570 16284 if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
edc3d884 16285 err_printf(m, " ADDR: %08x\n", error->plane[i].addr);
c4a1d9e4 16286 if (INTEL_INFO(dev)->gen >= 4) {
edc3d884
MK
16287 err_printf(m, " SURF: %08x\n", error->plane[i].surface);
16288 err_printf(m, " TILEOFF: %08x\n", error->plane[i].tile_offset);
c4a1d9e4
CW
16289 }
16290
edc3d884
MK
16291 err_printf(m, "Cursor [%d]:\n", i);
16292 err_printf(m, " CNTR: %08x\n", error->cursor[i].control);
16293 err_printf(m, " POS: %08x\n", error->cursor[i].position);
16294 err_printf(m, " BASE: %08x\n", error->cursor[i].base);
c4a1d9e4 16295 }
63b66e5b
CW
16296
16297 for (i = 0; i < error->num_transcoders; i++) {
da205630 16298 err_printf(m, "CPU transcoder: %s\n",
63b66e5b 16299 transcoder_name(error->transcoder[i].cpu_transcoder));
ddf9c536 16300 err_printf(m, " Power: %s\n",
87ad3212 16301 onoff(error->transcoder[i].power_domain_on));
63b66e5b
CW
16302 err_printf(m, " CONF: %08x\n", error->transcoder[i].conf);
16303 err_printf(m, " HTOTAL: %08x\n", error->transcoder[i].htotal);
16304 err_printf(m, " HBLANK: %08x\n", error->transcoder[i].hblank);
16305 err_printf(m, " HSYNC: %08x\n", error->transcoder[i].hsync);
16306 err_printf(m, " VTOTAL: %08x\n", error->transcoder[i].vtotal);
16307 err_printf(m, " VBLANK: %08x\n", error->transcoder[i].vblank);
16308 err_printf(m, " VSYNC: %08x\n", error->transcoder[i].vsync);
16309 }
c4a1d9e4 16310}