drm/radeon: fixup further bus mastering confusion.
[linux-2.6-block.git] / drivers / gpu / drm / i915 / i915_gem.c
CommitLineData
673a394b
EA
1/*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28#include "drmP.h"
29#include "drm.h"
30#include "i915_drm.h"
31#include "i915_drv.h"
32#include <linux/swap.h>
33
34static int
35i915_gem_object_set_domain(struct drm_gem_object *obj,
36 uint32_t read_domains,
37 uint32_t write_domain);
38static int
39i915_gem_object_set_domain_range(struct drm_gem_object *obj,
40 uint64_t offset,
41 uint64_t size,
42 uint32_t read_domains,
43 uint32_t write_domain);
44static int
45i915_gem_set_domain(struct drm_gem_object *obj,
46 struct drm_file *file_priv,
47 uint32_t read_domains,
48 uint32_t write_domain);
49static int i915_gem_object_get_page_list(struct drm_gem_object *obj);
50static void i915_gem_object_free_page_list(struct drm_gem_object *obj);
51static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
52
6dbe2772
KP
53static void
54i915_gem_cleanup_ringbuffer(struct drm_device *dev);
55
673a394b
EA
56int
57i915_gem_init_ioctl(struct drm_device *dev, void *data,
58 struct drm_file *file_priv)
59{
60 drm_i915_private_t *dev_priv = dev->dev_private;
61 struct drm_i915_gem_init *args = data;
62
63 mutex_lock(&dev->struct_mutex);
64
65 if (args->gtt_start >= args->gtt_end ||
66 (args->gtt_start & (PAGE_SIZE - 1)) != 0 ||
67 (args->gtt_end & (PAGE_SIZE - 1)) != 0) {
68 mutex_unlock(&dev->struct_mutex);
69 return -EINVAL;
70 }
71
72 drm_mm_init(&dev_priv->mm.gtt_space, args->gtt_start,
73 args->gtt_end - args->gtt_start);
74
75 dev->gtt_total = (uint32_t) (args->gtt_end - args->gtt_start);
76
77 mutex_unlock(&dev->struct_mutex);
78
79 return 0;
80}
81
82
83/**
84 * Creates a new mm object and returns a handle to it.
85 */
86int
87i915_gem_create_ioctl(struct drm_device *dev, void *data,
88 struct drm_file *file_priv)
89{
90 struct drm_i915_gem_create *args = data;
91 struct drm_gem_object *obj;
92 int handle, ret;
93
94 args->size = roundup(args->size, PAGE_SIZE);
95
96 /* Allocate the new object */
97 obj = drm_gem_object_alloc(dev, args->size);
98 if (obj == NULL)
99 return -ENOMEM;
100
101 ret = drm_gem_handle_create(file_priv, obj, &handle);
102 mutex_lock(&dev->struct_mutex);
103 drm_gem_object_handle_unreference(obj);
104 mutex_unlock(&dev->struct_mutex);
105
106 if (ret)
107 return ret;
108
109 args->handle = handle;
110
111 return 0;
112}
113
114/**
115 * Reads data from the object referenced by handle.
116 *
117 * On error, the contents of *data are undefined.
118 */
119int
120i915_gem_pread_ioctl(struct drm_device *dev, void *data,
121 struct drm_file *file_priv)
122{
123 struct drm_i915_gem_pread *args = data;
124 struct drm_gem_object *obj;
125 struct drm_i915_gem_object *obj_priv;
126 ssize_t read;
127 loff_t offset;
128 int ret;
129
130 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
131 if (obj == NULL)
132 return -EBADF;
133 obj_priv = obj->driver_private;
134
135 /* Bounds check source.
136 *
137 * XXX: This could use review for overflow issues...
138 */
139 if (args->offset > obj->size || args->size > obj->size ||
140 args->offset + args->size > obj->size) {
141 drm_gem_object_unreference(obj);
142 return -EINVAL;
143 }
144
145 mutex_lock(&dev->struct_mutex);
146
147 ret = i915_gem_object_set_domain_range(obj, args->offset, args->size,
148 I915_GEM_DOMAIN_CPU, 0);
149 if (ret != 0) {
150 drm_gem_object_unreference(obj);
151 mutex_unlock(&dev->struct_mutex);
e7d22bc3 152 return ret;
673a394b
EA
153 }
154
155 offset = args->offset;
156
157 read = vfs_read(obj->filp, (char __user *)(uintptr_t)args->data_ptr,
158 args->size, &offset);
159 if (read != args->size) {
160 drm_gem_object_unreference(obj);
161 mutex_unlock(&dev->struct_mutex);
162 if (read < 0)
163 return read;
164 else
165 return -EINVAL;
166 }
167
168 drm_gem_object_unreference(obj);
169 mutex_unlock(&dev->struct_mutex);
170
171 return 0;
172}
173
9b7530cc
LT
174/*
175 * Try to write quickly with an atomic kmap. Return true on success.
176 *
177 * If this fails (which includes a partial write), we'll redo the whole
178 * thing with the slow version.
179 *
180 * This is a workaround for the low performance of iounmap (approximate
181 * 10% cpu cost on normal 3D workloads). kmap_atomic on HIGHMEM kernels
182 * happens to let us map card memory without taking IPIs. When the vmap
183 * rework lands we should be able to dump this hack.
184 */
e8848a17
TG
185static inline int fast_user_write(unsigned long pfn, char __user *user_data,
186 int l, int o)
9b7530cc
LT
187{
188#ifdef CONFIG_HIGHMEM
189 unsigned long unwritten;
190 char *vaddr_atomic;
191
192 vaddr_atomic = kmap_atomic_pfn(pfn, KM_USER0);
193#if WATCH_PWRITE
194 DRM_INFO("pwrite i %d o %d l %d pfn %ld vaddr %p\n",
195 i, o, l, pfn, vaddr_atomic);
196#endif
197 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + o, user_data, l);
198 kunmap_atomic(vaddr_atomic, KM_USER0);
199 return !unwritten;
200#else
201 return 0;
202#endif
203}
204
673a394b
EA
205static int
206i915_gem_gtt_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
207 struct drm_i915_gem_pwrite *args,
208 struct drm_file *file_priv)
209{
210 struct drm_i915_gem_object *obj_priv = obj->driver_private;
211 ssize_t remain;
212 loff_t offset;
213 char __user *user_data;
673a394b 214 int ret = 0;
673a394b
EA
215
216 user_data = (char __user *) (uintptr_t) args->data_ptr;
217 remain = args->size;
218 if (!access_ok(VERIFY_READ, user_data, remain))
219 return -EFAULT;
220
221
222 mutex_lock(&dev->struct_mutex);
223 ret = i915_gem_object_pin(obj, 0);
224 if (ret) {
225 mutex_unlock(&dev->struct_mutex);
226 return ret;
227 }
228 ret = i915_gem_set_domain(obj, file_priv,
229 I915_GEM_DOMAIN_GTT, I915_GEM_DOMAIN_GTT);
230 if (ret)
231 goto fail;
232
233 obj_priv = obj->driver_private;
234 offset = obj_priv->gtt_offset + args->offset;
235 obj_priv->dirty = 1;
236
237 while (remain > 0) {
9b7530cc
LT
238 unsigned long pfn;
239 int i, o, l;
240
673a394b
EA
241 /* Operation in this page
242 *
243 * i = page number
244 * o = offset within page
245 * l = bytes to copy
246 */
247 i = offset >> PAGE_SHIFT;
248 o = offset & (PAGE_SIZE-1);
249 l = remain;
250 if ((o + l) > PAGE_SIZE)
251 l = PAGE_SIZE - o;
252
253 pfn = (dev->agp->base >> PAGE_SHIFT) + i;
254
e8848a17 255 if (!fast_user_write(pfn, user_data, l, o)) {
9b7530cc
LT
256 unsigned long unwritten;
257 char __iomem *vaddr;
673a394b 258
bd88ee4c 259 vaddr = ioremap_wc(pfn << PAGE_SHIFT, PAGE_SIZE);
673a394b
EA
260#if WATCH_PWRITE
261 DRM_INFO("pwrite slow i %d o %d l %d "
262 "pfn %ld vaddr %p\n",
263 i, o, l, pfn, vaddr);
264#endif
265 if (vaddr == NULL) {
266 ret = -EFAULT;
267 goto fail;
268 }
269 unwritten = __copy_from_user(vaddr + o, user_data, l);
270#if WATCH_PWRITE
271 DRM_INFO("unwritten %ld\n", unwritten);
272#endif
273 iounmap(vaddr);
274 if (unwritten) {
275 ret = -EFAULT;
276 goto fail;
277 }
278 }
279
280 remain -= l;
281 user_data += l;
282 offset += l;
283 }
284#if WATCH_PWRITE && 1
285 i915_gem_clflush_object(obj);
286 i915_gem_dump_object(obj, args->offset + args->size, __func__, ~0);
287 i915_gem_clflush_object(obj);
288#endif
289
290fail:
291 i915_gem_object_unpin(obj);
292 mutex_unlock(&dev->struct_mutex);
293
294 return ret;
295}
296
3043c60c 297static int
673a394b
EA
298i915_gem_shmem_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
299 struct drm_i915_gem_pwrite *args,
300 struct drm_file *file_priv)
301{
302 int ret;
303 loff_t offset;
304 ssize_t written;
305
306 mutex_lock(&dev->struct_mutex);
307
308 ret = i915_gem_set_domain(obj, file_priv,
309 I915_GEM_DOMAIN_CPU, I915_GEM_DOMAIN_CPU);
310 if (ret) {
311 mutex_unlock(&dev->struct_mutex);
312 return ret;
313 }
314
315 offset = args->offset;
316
317 written = vfs_write(obj->filp,
318 (char __user *)(uintptr_t) args->data_ptr,
319 args->size, &offset);
320 if (written != args->size) {
321 mutex_unlock(&dev->struct_mutex);
322 if (written < 0)
323 return written;
324 else
325 return -EINVAL;
326 }
327
328 mutex_unlock(&dev->struct_mutex);
329
330 return 0;
331}
332
333/**
334 * Writes data to the object referenced by handle.
335 *
336 * On error, the contents of the buffer that were to be modified are undefined.
337 */
338int
339i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
340 struct drm_file *file_priv)
341{
342 struct drm_i915_gem_pwrite *args = data;
343 struct drm_gem_object *obj;
344 struct drm_i915_gem_object *obj_priv;
345 int ret = 0;
346
347 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
348 if (obj == NULL)
349 return -EBADF;
350 obj_priv = obj->driver_private;
351
352 /* Bounds check destination.
353 *
354 * XXX: This could use review for overflow issues...
355 */
356 if (args->offset > obj->size || args->size > obj->size ||
357 args->offset + args->size > obj->size) {
358 drm_gem_object_unreference(obj);
359 return -EINVAL;
360 }
361
362 /* We can only do the GTT pwrite on untiled buffers, as otherwise
363 * it would end up going through the fenced access, and we'll get
364 * different detiling behavior between reading and writing.
365 * pread/pwrite currently are reading and writing from the CPU
366 * perspective, requiring manual detiling by the client.
367 */
368 if (obj_priv->tiling_mode == I915_TILING_NONE &&
369 dev->gtt_total != 0)
370 ret = i915_gem_gtt_pwrite(dev, obj, args, file_priv);
371 else
372 ret = i915_gem_shmem_pwrite(dev, obj, args, file_priv);
373
374#if WATCH_PWRITE
375 if (ret)
376 DRM_INFO("pwrite failed %d\n", ret);
377#endif
378
379 drm_gem_object_unreference(obj);
380
381 return ret;
382}
383
384/**
385 * Called when user space prepares to use an object
386 */
387int
388i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
389 struct drm_file *file_priv)
390{
391 struct drm_i915_gem_set_domain *args = data;
392 struct drm_gem_object *obj;
393 int ret;
394
395 if (!(dev->driver->driver_features & DRIVER_GEM))
396 return -ENODEV;
397
398 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
399 if (obj == NULL)
400 return -EBADF;
401
402 mutex_lock(&dev->struct_mutex);
403#if WATCH_BUF
404 DRM_INFO("set_domain_ioctl %p(%d), %08x %08x\n",
405 obj, obj->size, args->read_domains, args->write_domain);
406#endif
407 ret = i915_gem_set_domain(obj, file_priv,
408 args->read_domains, args->write_domain);
409 drm_gem_object_unreference(obj);
410 mutex_unlock(&dev->struct_mutex);
411 return ret;
412}
413
414/**
415 * Called when user space has done writes to this buffer
416 */
417int
418i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
419 struct drm_file *file_priv)
420{
421 struct drm_i915_gem_sw_finish *args = data;
422 struct drm_gem_object *obj;
423 struct drm_i915_gem_object *obj_priv;
424 int ret = 0;
425
426 if (!(dev->driver->driver_features & DRIVER_GEM))
427 return -ENODEV;
428
429 mutex_lock(&dev->struct_mutex);
430 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
431 if (obj == NULL) {
432 mutex_unlock(&dev->struct_mutex);
433 return -EBADF;
434 }
435
436#if WATCH_BUF
437 DRM_INFO("%s: sw_finish %d (%p %d)\n",
438 __func__, args->handle, obj, obj->size);
439#endif
440 obj_priv = obj->driver_private;
441
442 /* Pinned buffers may be scanout, so flush the cache */
443 if ((obj->write_domain & I915_GEM_DOMAIN_CPU) && obj_priv->pin_count) {
444 i915_gem_clflush_object(obj);
445 drm_agp_chipset_flush(dev);
446 }
447 drm_gem_object_unreference(obj);
448 mutex_unlock(&dev->struct_mutex);
449 return ret;
450}
451
452/**
453 * Maps the contents of an object, returning the address it is mapped
454 * into.
455 *
456 * While the mapping holds a reference on the contents of the object, it doesn't
457 * imply a ref on the object itself.
458 */
459int
460i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
461 struct drm_file *file_priv)
462{
463 struct drm_i915_gem_mmap *args = data;
464 struct drm_gem_object *obj;
465 loff_t offset;
466 unsigned long addr;
467
468 if (!(dev->driver->driver_features & DRIVER_GEM))
469 return -ENODEV;
470
471 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
472 if (obj == NULL)
473 return -EBADF;
474
475 offset = args->offset;
476
477 down_write(&current->mm->mmap_sem);
478 addr = do_mmap(obj->filp, 0, args->size,
479 PROT_READ | PROT_WRITE, MAP_SHARED,
480 args->offset);
481 up_write(&current->mm->mmap_sem);
482 mutex_lock(&dev->struct_mutex);
483 drm_gem_object_unreference(obj);
484 mutex_unlock(&dev->struct_mutex);
485 if (IS_ERR((void *)addr))
486 return addr;
487
488 args->addr_ptr = (uint64_t) addr;
489
490 return 0;
491}
492
493static void
494i915_gem_object_free_page_list(struct drm_gem_object *obj)
495{
496 struct drm_i915_gem_object *obj_priv = obj->driver_private;
497 int page_count = obj->size / PAGE_SIZE;
498 int i;
499
500 if (obj_priv->page_list == NULL)
501 return;
502
503
504 for (i = 0; i < page_count; i++)
505 if (obj_priv->page_list[i] != NULL) {
506 if (obj_priv->dirty)
507 set_page_dirty(obj_priv->page_list[i]);
508 mark_page_accessed(obj_priv->page_list[i]);
509 page_cache_release(obj_priv->page_list[i]);
510 }
511 obj_priv->dirty = 0;
512
513 drm_free(obj_priv->page_list,
514 page_count * sizeof(struct page *),
515 DRM_MEM_DRIVER);
516 obj_priv->page_list = NULL;
517}
518
519static void
520i915_gem_object_move_to_active(struct drm_gem_object *obj)
521{
522 struct drm_device *dev = obj->dev;
523 drm_i915_private_t *dev_priv = dev->dev_private;
524 struct drm_i915_gem_object *obj_priv = obj->driver_private;
525
526 /* Add a reference if we're newly entering the active list. */
527 if (!obj_priv->active) {
528 drm_gem_object_reference(obj);
529 obj_priv->active = 1;
530 }
531 /* Move from whatever list we were on to the tail of execution. */
532 list_move_tail(&obj_priv->list,
533 &dev_priv->mm.active_list);
534}
535
536
537static void
538i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
539{
540 struct drm_device *dev = obj->dev;
541 drm_i915_private_t *dev_priv = dev->dev_private;
542 struct drm_i915_gem_object *obj_priv = obj->driver_private;
543
544 i915_verify_inactive(dev, __FILE__, __LINE__);
545 if (obj_priv->pin_count != 0)
546 list_del_init(&obj_priv->list);
547 else
548 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
549
550 if (obj_priv->active) {
551 obj_priv->active = 0;
552 drm_gem_object_unreference(obj);
553 }
554 i915_verify_inactive(dev, __FILE__, __LINE__);
555}
556
557/**
558 * Creates a new sequence number, emitting a write of it to the status page
559 * plus an interrupt, which will trigger i915_user_interrupt_handler.
560 *
561 * Must be called with struct_lock held.
562 *
563 * Returned sequence numbers are nonzero on success.
564 */
565static uint32_t
566i915_add_request(struct drm_device *dev, uint32_t flush_domains)
567{
568 drm_i915_private_t *dev_priv = dev->dev_private;
569 struct drm_i915_gem_request *request;
570 uint32_t seqno;
571 int was_empty;
572 RING_LOCALS;
573
574 request = drm_calloc(1, sizeof(*request), DRM_MEM_DRIVER);
575 if (request == NULL)
576 return 0;
577
578 /* Grab the seqno we're going to make this request be, and bump the
579 * next (skipping 0 so it can be the reserved no-seqno value).
580 */
581 seqno = dev_priv->mm.next_gem_seqno;
582 dev_priv->mm.next_gem_seqno++;
583 if (dev_priv->mm.next_gem_seqno == 0)
584 dev_priv->mm.next_gem_seqno++;
585
586 BEGIN_LP_RING(4);
587 OUT_RING(MI_STORE_DWORD_INDEX);
588 OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
589 OUT_RING(seqno);
590
591 OUT_RING(MI_USER_INTERRUPT);
592 ADVANCE_LP_RING();
593
594 DRM_DEBUG("%d\n", seqno);
595
596 request->seqno = seqno;
597 request->emitted_jiffies = jiffies;
598 request->flush_domains = flush_domains;
599 was_empty = list_empty(&dev_priv->mm.request_list);
600 list_add_tail(&request->list, &dev_priv->mm.request_list);
601
6dbe2772 602 if (was_empty && !dev_priv->mm.suspended)
673a394b
EA
603 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
604 return seqno;
605}
606
607/**
608 * Command execution barrier
609 *
610 * Ensures that all commands in the ring are finished
611 * before signalling the CPU
612 */
3043c60c 613static uint32_t
673a394b
EA
614i915_retire_commands(struct drm_device *dev)
615{
616 drm_i915_private_t *dev_priv = dev->dev_private;
617 uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
618 uint32_t flush_domains = 0;
619 RING_LOCALS;
620
621 /* The sampler always gets flushed on i965 (sigh) */
622 if (IS_I965G(dev))
623 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
624 BEGIN_LP_RING(2);
625 OUT_RING(cmd);
626 OUT_RING(0); /* noop */
627 ADVANCE_LP_RING();
628 return flush_domains;
629}
630
631/**
632 * Moves buffers associated only with the given active seqno from the active
633 * to inactive list, potentially freeing them.
634 */
635static void
636i915_gem_retire_request(struct drm_device *dev,
637 struct drm_i915_gem_request *request)
638{
639 drm_i915_private_t *dev_priv = dev->dev_private;
640
641 /* Move any buffers on the active list that are no longer referenced
642 * by the ringbuffer to the flushing/inactive lists as appropriate.
643 */
644 while (!list_empty(&dev_priv->mm.active_list)) {
645 struct drm_gem_object *obj;
646 struct drm_i915_gem_object *obj_priv;
647
648 obj_priv = list_first_entry(&dev_priv->mm.active_list,
649 struct drm_i915_gem_object,
650 list);
651 obj = obj_priv->obj;
652
653 /* If the seqno being retired doesn't match the oldest in the
654 * list, then the oldest in the list must still be newer than
655 * this seqno.
656 */
657 if (obj_priv->last_rendering_seqno != request->seqno)
658 return;
659#if WATCH_LRU
660 DRM_INFO("%s: retire %d moves to inactive list %p\n",
661 __func__, request->seqno, obj);
662#endif
663
664 if (obj->write_domain != 0) {
665 list_move_tail(&obj_priv->list,
666 &dev_priv->mm.flushing_list);
667 } else {
668 i915_gem_object_move_to_inactive(obj);
669 }
670 }
671
672 if (request->flush_domains != 0) {
673 struct drm_i915_gem_object *obj_priv, *next;
674
675 /* Clear the write domain and activity from any buffers
676 * that are just waiting for a flush matching the one retired.
677 */
678 list_for_each_entry_safe(obj_priv, next,
679 &dev_priv->mm.flushing_list, list) {
680 struct drm_gem_object *obj = obj_priv->obj;
681
682 if (obj->write_domain & request->flush_domains) {
683 obj->write_domain = 0;
684 i915_gem_object_move_to_inactive(obj);
685 }
686 }
687
688 }
689}
690
691/**
692 * Returns true if seq1 is later than seq2.
693 */
694static int
695i915_seqno_passed(uint32_t seq1, uint32_t seq2)
696{
697 return (int32_t)(seq1 - seq2) >= 0;
698}
699
700uint32_t
701i915_get_gem_seqno(struct drm_device *dev)
702{
703 drm_i915_private_t *dev_priv = dev->dev_private;
704
705 return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
706}
707
708/**
709 * This function clears the request list as sequence numbers are passed.
710 */
711void
712i915_gem_retire_requests(struct drm_device *dev)
713{
714 drm_i915_private_t *dev_priv = dev->dev_private;
715 uint32_t seqno;
716
717 seqno = i915_get_gem_seqno(dev);
718
719 while (!list_empty(&dev_priv->mm.request_list)) {
720 struct drm_i915_gem_request *request;
721 uint32_t retiring_seqno;
722
723 request = list_first_entry(&dev_priv->mm.request_list,
724 struct drm_i915_gem_request,
725 list);
726 retiring_seqno = request->seqno;
727
728 if (i915_seqno_passed(seqno, retiring_seqno) ||
729 dev_priv->mm.wedged) {
730 i915_gem_retire_request(dev, request);
731
732 list_del(&request->list);
733 drm_free(request, sizeof(*request), DRM_MEM_DRIVER);
734 } else
735 break;
736 }
737}
738
739void
740i915_gem_retire_work_handler(struct work_struct *work)
741{
742 drm_i915_private_t *dev_priv;
743 struct drm_device *dev;
744
745 dev_priv = container_of(work, drm_i915_private_t,
746 mm.retire_work.work);
747 dev = dev_priv->dev;
748
749 mutex_lock(&dev->struct_mutex);
750 i915_gem_retire_requests(dev);
6dbe2772
KP
751 if (!dev_priv->mm.suspended &&
752 !list_empty(&dev_priv->mm.request_list))
673a394b
EA
753 schedule_delayed_work(&dev_priv->mm.retire_work, HZ);
754 mutex_unlock(&dev->struct_mutex);
755}
756
757/**
758 * Waits for a sequence number to be signaled, and cleans up the
759 * request and object lists appropriately for that event.
760 */
3043c60c 761static int
673a394b
EA
762i915_wait_request(struct drm_device *dev, uint32_t seqno)
763{
764 drm_i915_private_t *dev_priv = dev->dev_private;
765 int ret = 0;
766
767 BUG_ON(seqno == 0);
768
769 if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
770 dev_priv->mm.waiting_gem_seqno = seqno;
771 i915_user_irq_get(dev);
772 ret = wait_event_interruptible(dev_priv->irq_queue,
773 i915_seqno_passed(i915_get_gem_seqno(dev),
774 seqno) ||
775 dev_priv->mm.wedged);
776 i915_user_irq_put(dev);
777 dev_priv->mm.waiting_gem_seqno = 0;
778 }
779 if (dev_priv->mm.wedged)
780 ret = -EIO;
781
782 if (ret && ret != -ERESTARTSYS)
783 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
784 __func__, ret, seqno, i915_get_gem_seqno(dev));
785
786 /* Directly dispatch request retiring. While we have the work queue
787 * to handle this, the waiter on a request often wants an associated
788 * buffer to have made it to the inactive list, and we would need
789 * a separate wait queue to handle that.
790 */
791 if (ret == 0)
792 i915_gem_retire_requests(dev);
793
794 return ret;
795}
796
797static void
798i915_gem_flush(struct drm_device *dev,
799 uint32_t invalidate_domains,
800 uint32_t flush_domains)
801{
802 drm_i915_private_t *dev_priv = dev->dev_private;
803 uint32_t cmd;
804 RING_LOCALS;
805
806#if WATCH_EXEC
807 DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
808 invalidate_domains, flush_domains);
809#endif
810
811 if (flush_domains & I915_GEM_DOMAIN_CPU)
812 drm_agp_chipset_flush(dev);
813
814 if ((invalidate_domains | flush_domains) & ~(I915_GEM_DOMAIN_CPU |
815 I915_GEM_DOMAIN_GTT)) {
816 /*
817 * read/write caches:
818 *
819 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
820 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
821 * also flushed at 2d versus 3d pipeline switches.
822 *
823 * read-only caches:
824 *
825 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
826 * MI_READ_FLUSH is set, and is always flushed on 965.
827 *
828 * I915_GEM_DOMAIN_COMMAND may not exist?
829 *
830 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
831 * invalidated when MI_EXE_FLUSH is set.
832 *
833 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
834 * invalidated with every MI_FLUSH.
835 *
836 * TLBs:
837 *
838 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
839 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
840 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
841 * are flushed at any MI_FLUSH.
842 */
843
844 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
845 if ((invalidate_domains|flush_domains) &
846 I915_GEM_DOMAIN_RENDER)
847 cmd &= ~MI_NO_WRITE_FLUSH;
848 if (!IS_I965G(dev)) {
849 /*
850 * On the 965, the sampler cache always gets flushed
851 * and this bit is reserved.
852 */
853 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
854 cmd |= MI_READ_FLUSH;
855 }
856 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
857 cmd |= MI_EXE_FLUSH;
858
859#if WATCH_EXEC
860 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
861#endif
862 BEGIN_LP_RING(2);
863 OUT_RING(cmd);
864 OUT_RING(0); /* noop */
865 ADVANCE_LP_RING();
866 }
867}
868
869/**
870 * Ensures that all rendering to the object has completed and the object is
871 * safe to unbind from the GTT or access from the CPU.
872 */
873static int
874i915_gem_object_wait_rendering(struct drm_gem_object *obj)
875{
876 struct drm_device *dev = obj->dev;
877 struct drm_i915_gem_object *obj_priv = obj->driver_private;
878 int ret;
879
880 /* If there are writes queued to the buffer, flush and
881 * create a new seqno to wait for.
882 */
883 if (obj->write_domain & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT)) {
884 uint32_t write_domain = obj->write_domain;
885#if WATCH_BUF
886 DRM_INFO("%s: flushing object %p from write domain %08x\n",
887 __func__, obj, write_domain);
888#endif
889 i915_gem_flush(dev, 0, write_domain);
890
891 i915_gem_object_move_to_active(obj);
892 obj_priv->last_rendering_seqno = i915_add_request(dev,
893 write_domain);
894 BUG_ON(obj_priv->last_rendering_seqno == 0);
895#if WATCH_LRU
896 DRM_INFO("%s: flush moves to exec list %p\n", __func__, obj);
897#endif
898 }
899
900 /* If there is rendering queued on the buffer being evicted, wait for
901 * it.
902 */
903 if (obj_priv->active) {
904#if WATCH_BUF
905 DRM_INFO("%s: object %p wait for seqno %08x\n",
906 __func__, obj, obj_priv->last_rendering_seqno);
907#endif
908 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
909 if (ret != 0)
910 return ret;
911 }
912
913 return 0;
914}
915
916/**
917 * Unbinds an object from the GTT aperture.
918 */
919static int
920i915_gem_object_unbind(struct drm_gem_object *obj)
921{
922 struct drm_device *dev = obj->dev;
923 struct drm_i915_gem_object *obj_priv = obj->driver_private;
924 int ret = 0;
925
926#if WATCH_BUF
927 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
928 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
929#endif
930 if (obj_priv->gtt_space == NULL)
931 return 0;
932
933 if (obj_priv->pin_count != 0) {
934 DRM_ERROR("Attempting to unbind pinned buffer\n");
935 return -EINVAL;
936 }
937
938 /* Wait for any rendering to complete
939 */
940 ret = i915_gem_object_wait_rendering(obj);
941 if (ret) {
942 DRM_ERROR("wait_rendering failed: %d\n", ret);
943 return ret;
944 }
945
946 /* Move the object to the CPU domain to ensure that
947 * any possible CPU writes while it's not in the GTT
948 * are flushed when we go to remap it. This will
949 * also ensure that all pending GPU writes are finished
950 * before we unbind.
951 */
952 ret = i915_gem_object_set_domain(obj, I915_GEM_DOMAIN_CPU,
953 I915_GEM_DOMAIN_CPU);
954 if (ret) {
955 DRM_ERROR("set_domain failed: %d\n", ret);
956 return ret;
957 }
958
959 if (obj_priv->agp_mem != NULL) {
960 drm_unbind_agp(obj_priv->agp_mem);
961 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
962 obj_priv->agp_mem = NULL;
963 }
964
965 BUG_ON(obj_priv->active);
966
967 i915_gem_object_free_page_list(obj);
968
969 if (obj_priv->gtt_space) {
970 atomic_dec(&dev->gtt_count);
971 atomic_sub(obj->size, &dev->gtt_memory);
972
973 drm_mm_put_block(obj_priv->gtt_space);
974 obj_priv->gtt_space = NULL;
975 }
976
977 /* Remove ourselves from the LRU list if present. */
978 if (!list_empty(&obj_priv->list))
979 list_del_init(&obj_priv->list);
980
981 return 0;
982}
983
984static int
985i915_gem_evict_something(struct drm_device *dev)
986{
987 drm_i915_private_t *dev_priv = dev->dev_private;
988 struct drm_gem_object *obj;
989 struct drm_i915_gem_object *obj_priv;
990 int ret = 0;
991
992 for (;;) {
993 /* If there's an inactive buffer available now, grab it
994 * and be done.
995 */
996 if (!list_empty(&dev_priv->mm.inactive_list)) {
997 obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
998 struct drm_i915_gem_object,
999 list);
1000 obj = obj_priv->obj;
1001 BUG_ON(obj_priv->pin_count != 0);
1002#if WATCH_LRU
1003 DRM_INFO("%s: evicting %p\n", __func__, obj);
1004#endif
1005 BUG_ON(obj_priv->active);
1006
1007 /* Wait on the rendering and unbind the buffer. */
1008 ret = i915_gem_object_unbind(obj);
1009 break;
1010 }
1011
1012 /* If we didn't get anything, but the ring is still processing
1013 * things, wait for one of those things to finish and hopefully
1014 * leave us a buffer to evict.
1015 */
1016 if (!list_empty(&dev_priv->mm.request_list)) {
1017 struct drm_i915_gem_request *request;
1018
1019 request = list_first_entry(&dev_priv->mm.request_list,
1020 struct drm_i915_gem_request,
1021 list);
1022
1023 ret = i915_wait_request(dev, request->seqno);
1024 if (ret)
1025 break;
1026
1027 /* if waiting caused an object to become inactive,
1028 * then loop around and wait for it. Otherwise, we
1029 * assume that waiting freed and unbound something,
1030 * so there should now be some space in the GTT
1031 */
1032 if (!list_empty(&dev_priv->mm.inactive_list))
1033 continue;
1034 break;
1035 }
1036
1037 /* If we didn't have anything on the request list but there
1038 * are buffers awaiting a flush, emit one and try again.
1039 * When we wait on it, those buffers waiting for that flush
1040 * will get moved to inactive.
1041 */
1042 if (!list_empty(&dev_priv->mm.flushing_list)) {
1043 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
1044 struct drm_i915_gem_object,
1045 list);
1046 obj = obj_priv->obj;
1047
1048 i915_gem_flush(dev,
1049 obj->write_domain,
1050 obj->write_domain);
1051 i915_add_request(dev, obj->write_domain);
1052
1053 obj = NULL;
1054 continue;
1055 }
1056
1057 DRM_ERROR("inactive empty %d request empty %d "
1058 "flushing empty %d\n",
1059 list_empty(&dev_priv->mm.inactive_list),
1060 list_empty(&dev_priv->mm.request_list),
1061 list_empty(&dev_priv->mm.flushing_list));
1062 /* If we didn't do any of the above, there's nothing to be done
1063 * and we just can't fit it in.
1064 */
1065 return -ENOMEM;
1066 }
1067 return ret;
1068}
1069
1070static int
1071i915_gem_object_get_page_list(struct drm_gem_object *obj)
1072{
1073 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1074 int page_count, i;
1075 struct address_space *mapping;
1076 struct inode *inode;
1077 struct page *page;
1078 int ret;
1079
1080 if (obj_priv->page_list)
1081 return 0;
1082
1083 /* Get the list of pages out of our struct file. They'll be pinned
1084 * at this point until we release them.
1085 */
1086 page_count = obj->size / PAGE_SIZE;
1087 BUG_ON(obj_priv->page_list != NULL);
1088 obj_priv->page_list = drm_calloc(page_count, sizeof(struct page *),
1089 DRM_MEM_DRIVER);
1090 if (obj_priv->page_list == NULL) {
1091 DRM_ERROR("Faled to allocate page list\n");
1092 return -ENOMEM;
1093 }
1094
1095 inode = obj->filp->f_path.dentry->d_inode;
1096 mapping = inode->i_mapping;
1097 for (i = 0; i < page_count; i++) {
1098 page = read_mapping_page(mapping, i, NULL);
1099 if (IS_ERR(page)) {
1100 ret = PTR_ERR(page);
1101 DRM_ERROR("read_mapping_page failed: %d\n", ret);
1102 i915_gem_object_free_page_list(obj);
1103 return ret;
1104 }
1105 obj_priv->page_list[i] = page;
1106 }
1107 return 0;
1108}
1109
1110/**
1111 * Finds free space in the GTT aperture and binds the object there.
1112 */
1113static int
1114i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
1115{
1116 struct drm_device *dev = obj->dev;
1117 drm_i915_private_t *dev_priv = dev->dev_private;
1118 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1119 struct drm_mm_node *free_space;
1120 int page_count, ret;
1121
1122 if (alignment == 0)
1123 alignment = PAGE_SIZE;
1124 if (alignment & (PAGE_SIZE - 1)) {
1125 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
1126 return -EINVAL;
1127 }
1128
1129 search_free:
1130 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
1131 obj->size, alignment, 0);
1132 if (free_space != NULL) {
1133 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
1134 alignment);
1135 if (obj_priv->gtt_space != NULL) {
1136 obj_priv->gtt_space->private = obj;
1137 obj_priv->gtt_offset = obj_priv->gtt_space->start;
1138 }
1139 }
1140 if (obj_priv->gtt_space == NULL) {
1141 /* If the gtt is empty and we're still having trouble
1142 * fitting our object in, we're out of memory.
1143 */
1144#if WATCH_LRU
1145 DRM_INFO("%s: GTT full, evicting something\n", __func__);
1146#endif
1147 if (list_empty(&dev_priv->mm.inactive_list) &&
1148 list_empty(&dev_priv->mm.flushing_list) &&
1149 list_empty(&dev_priv->mm.active_list)) {
1150 DRM_ERROR("GTT full, but LRU list empty\n");
1151 return -ENOMEM;
1152 }
1153
1154 ret = i915_gem_evict_something(dev);
1155 if (ret != 0) {
1156 DRM_ERROR("Failed to evict a buffer %d\n", ret);
1157 return ret;
1158 }
1159 goto search_free;
1160 }
1161
1162#if WATCH_BUF
1163 DRM_INFO("Binding object of size %d at 0x%08x\n",
1164 obj->size, obj_priv->gtt_offset);
1165#endif
1166 ret = i915_gem_object_get_page_list(obj);
1167 if (ret) {
1168 drm_mm_put_block(obj_priv->gtt_space);
1169 obj_priv->gtt_space = NULL;
1170 return ret;
1171 }
1172
1173 page_count = obj->size / PAGE_SIZE;
1174 /* Create an AGP memory structure pointing at our pages, and bind it
1175 * into the GTT.
1176 */
1177 obj_priv->agp_mem = drm_agp_bind_pages(dev,
1178 obj_priv->page_list,
1179 page_count,
ba1eb1d8
KP
1180 obj_priv->gtt_offset,
1181 obj_priv->agp_type);
673a394b
EA
1182 if (obj_priv->agp_mem == NULL) {
1183 i915_gem_object_free_page_list(obj);
1184 drm_mm_put_block(obj_priv->gtt_space);
1185 obj_priv->gtt_space = NULL;
1186 return -ENOMEM;
1187 }
1188 atomic_inc(&dev->gtt_count);
1189 atomic_add(obj->size, &dev->gtt_memory);
1190
1191 /* Assert that the object is not currently in any GPU domain. As it
1192 * wasn't in the GTT, there shouldn't be any way it could have been in
1193 * a GPU cache
1194 */
1195 BUG_ON(obj->read_domains & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
1196 BUG_ON(obj->write_domain & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
1197
1198 return 0;
1199}
1200
1201void
1202i915_gem_clflush_object(struct drm_gem_object *obj)
1203{
1204 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1205
1206 /* If we don't have a page list set up, then we're not pinned
1207 * to GPU, and we can ignore the cache flush because it'll happen
1208 * again at bind time.
1209 */
1210 if (obj_priv->page_list == NULL)
1211 return;
1212
1213 drm_clflush_pages(obj_priv->page_list, obj->size / PAGE_SIZE);
1214}
1215
1216/*
1217 * Set the next domain for the specified object. This
1218 * may not actually perform the necessary flushing/invaliding though,
1219 * as that may want to be batched with other set_domain operations
1220 *
1221 * This is (we hope) the only really tricky part of gem. The goal
1222 * is fairly simple -- track which caches hold bits of the object
1223 * and make sure they remain coherent. A few concrete examples may
1224 * help to explain how it works. For shorthand, we use the notation
1225 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
1226 * a pair of read and write domain masks.
1227 *
1228 * Case 1: the batch buffer
1229 *
1230 * 1. Allocated
1231 * 2. Written by CPU
1232 * 3. Mapped to GTT
1233 * 4. Read by GPU
1234 * 5. Unmapped from GTT
1235 * 6. Freed
1236 *
1237 * Let's take these a step at a time
1238 *
1239 * 1. Allocated
1240 * Pages allocated from the kernel may still have
1241 * cache contents, so we set them to (CPU, CPU) always.
1242 * 2. Written by CPU (using pwrite)
1243 * The pwrite function calls set_domain (CPU, CPU) and
1244 * this function does nothing (as nothing changes)
1245 * 3. Mapped by GTT
1246 * This function asserts that the object is not
1247 * currently in any GPU-based read or write domains
1248 * 4. Read by GPU
1249 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
1250 * As write_domain is zero, this function adds in the
1251 * current read domains (CPU+COMMAND, 0).
1252 * flush_domains is set to CPU.
1253 * invalidate_domains is set to COMMAND
1254 * clflush is run to get data out of the CPU caches
1255 * then i915_dev_set_domain calls i915_gem_flush to
1256 * emit an MI_FLUSH and drm_agp_chipset_flush
1257 * 5. Unmapped from GTT
1258 * i915_gem_object_unbind calls set_domain (CPU, CPU)
1259 * flush_domains and invalidate_domains end up both zero
1260 * so no flushing/invalidating happens
1261 * 6. Freed
1262 * yay, done
1263 *
1264 * Case 2: The shared render buffer
1265 *
1266 * 1. Allocated
1267 * 2. Mapped to GTT
1268 * 3. Read/written by GPU
1269 * 4. set_domain to (CPU,CPU)
1270 * 5. Read/written by CPU
1271 * 6. Read/written by GPU
1272 *
1273 * 1. Allocated
1274 * Same as last example, (CPU, CPU)
1275 * 2. Mapped to GTT
1276 * Nothing changes (assertions find that it is not in the GPU)
1277 * 3. Read/written by GPU
1278 * execbuffer calls set_domain (RENDER, RENDER)
1279 * flush_domains gets CPU
1280 * invalidate_domains gets GPU
1281 * clflush (obj)
1282 * MI_FLUSH and drm_agp_chipset_flush
1283 * 4. set_domain (CPU, CPU)
1284 * flush_domains gets GPU
1285 * invalidate_domains gets CPU
1286 * wait_rendering (obj) to make sure all drawing is complete.
1287 * This will include an MI_FLUSH to get the data from GPU
1288 * to memory
1289 * clflush (obj) to invalidate the CPU cache
1290 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
1291 * 5. Read/written by CPU
1292 * cache lines are loaded and dirtied
1293 * 6. Read written by GPU
1294 * Same as last GPU access
1295 *
1296 * Case 3: The constant buffer
1297 *
1298 * 1. Allocated
1299 * 2. Written by CPU
1300 * 3. Read by GPU
1301 * 4. Updated (written) by CPU again
1302 * 5. Read by GPU
1303 *
1304 * 1. Allocated
1305 * (CPU, CPU)
1306 * 2. Written by CPU
1307 * (CPU, CPU)
1308 * 3. Read by GPU
1309 * (CPU+RENDER, 0)
1310 * flush_domains = CPU
1311 * invalidate_domains = RENDER
1312 * clflush (obj)
1313 * MI_FLUSH
1314 * drm_agp_chipset_flush
1315 * 4. Updated (written) by CPU again
1316 * (CPU, CPU)
1317 * flush_domains = 0 (no previous write domain)
1318 * invalidate_domains = 0 (no new read domains)
1319 * 5. Read by GPU
1320 * (CPU+RENDER, 0)
1321 * flush_domains = CPU
1322 * invalidate_domains = RENDER
1323 * clflush (obj)
1324 * MI_FLUSH
1325 * drm_agp_chipset_flush
1326 */
1327static int
1328i915_gem_object_set_domain(struct drm_gem_object *obj,
1329 uint32_t read_domains,
1330 uint32_t write_domain)
1331{
1332 struct drm_device *dev = obj->dev;
1333 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1334 uint32_t invalidate_domains = 0;
1335 uint32_t flush_domains = 0;
1336 int ret;
1337
1338#if WATCH_BUF
1339 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
1340 __func__, obj,
1341 obj->read_domains, read_domains,
1342 obj->write_domain, write_domain);
1343#endif
1344 /*
1345 * If the object isn't moving to a new write domain,
1346 * let the object stay in multiple read domains
1347 */
1348 if (write_domain == 0)
1349 read_domains |= obj->read_domains;
1350 else
1351 obj_priv->dirty = 1;
1352
1353 /*
1354 * Flush the current write domain if
1355 * the new read domains don't match. Invalidate
1356 * any read domains which differ from the old
1357 * write domain
1358 */
1359 if (obj->write_domain && obj->write_domain != read_domains) {
1360 flush_domains |= obj->write_domain;
1361 invalidate_domains |= read_domains & ~obj->write_domain;
1362 }
1363 /*
1364 * Invalidate any read caches which may have
1365 * stale data. That is, any new read domains.
1366 */
1367 invalidate_domains |= read_domains & ~obj->read_domains;
1368 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
1369#if WATCH_BUF
1370 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
1371 __func__, flush_domains, invalidate_domains);
1372#endif
1373 /*
1374 * If we're invaliding the CPU cache and flushing a GPU cache,
1375 * then pause for rendering so that the GPU caches will be
1376 * flushed before the cpu cache is invalidated
1377 */
1378 if ((invalidate_domains & I915_GEM_DOMAIN_CPU) &&
1379 (flush_domains & ~(I915_GEM_DOMAIN_CPU |
1380 I915_GEM_DOMAIN_GTT))) {
1381 ret = i915_gem_object_wait_rendering(obj);
1382 if (ret)
1383 return ret;
1384 }
1385 i915_gem_clflush_object(obj);
1386 }
1387
1388 if ((write_domain | flush_domains) != 0)
1389 obj->write_domain = write_domain;
1390
1391 /* If we're invalidating the CPU domain, clear the per-page CPU
1392 * domain list as well.
1393 */
1394 if (obj_priv->page_cpu_valid != NULL &&
1395 (write_domain != 0 ||
1396 read_domains & I915_GEM_DOMAIN_CPU)) {
1397 drm_free(obj_priv->page_cpu_valid, obj->size / PAGE_SIZE,
1398 DRM_MEM_DRIVER);
1399 obj_priv->page_cpu_valid = NULL;
1400 }
1401 obj->read_domains = read_domains;
1402
1403 dev->invalidate_domains |= invalidate_domains;
1404 dev->flush_domains |= flush_domains;
1405#if WATCH_BUF
1406 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
1407 __func__,
1408 obj->read_domains, obj->write_domain,
1409 dev->invalidate_domains, dev->flush_domains);
1410#endif
1411 return 0;
1412}
1413
1414/**
1415 * Set the read/write domain on a range of the object.
1416 *
1417 * Currently only implemented for CPU reads, otherwise drops to normal
1418 * i915_gem_object_set_domain().
1419 */
1420static int
1421i915_gem_object_set_domain_range(struct drm_gem_object *obj,
1422 uint64_t offset,
1423 uint64_t size,
1424 uint32_t read_domains,
1425 uint32_t write_domain)
1426{
1427 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1428 int ret, i;
1429
1430 if (obj->read_domains & I915_GEM_DOMAIN_CPU)
1431 return 0;
1432
1433 if (read_domains != I915_GEM_DOMAIN_CPU ||
1434 write_domain != 0)
1435 return i915_gem_object_set_domain(obj,
1436 read_domains, write_domain);
1437
1438 /* Wait on any GPU rendering to the object to be flushed. */
1439 if (obj->write_domain & ~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT)) {
1440 ret = i915_gem_object_wait_rendering(obj);
1441 if (ret)
1442 return ret;
1443 }
1444
1445 if (obj_priv->page_cpu_valid == NULL) {
1446 obj_priv->page_cpu_valid = drm_calloc(1, obj->size / PAGE_SIZE,
1447 DRM_MEM_DRIVER);
1448 }
1449
1450 /* Flush the cache on any pages that are still invalid from the CPU's
1451 * perspective.
1452 */
1453 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE; i++) {
1454 if (obj_priv->page_cpu_valid[i])
1455 continue;
1456
1457 drm_clflush_pages(obj_priv->page_list + i, 1);
1458
1459 obj_priv->page_cpu_valid[i] = 1;
1460 }
1461
1462 return 0;
1463}
1464
1465/**
1466 * Once all of the objects have been set in the proper domain,
1467 * perform the necessary flush and invalidate operations.
1468 *
1469 * Returns the write domains flushed, for use in flush tracking.
1470 */
1471static uint32_t
1472i915_gem_dev_set_domain(struct drm_device *dev)
1473{
1474 uint32_t flush_domains = dev->flush_domains;
1475
1476 /*
1477 * Now that all the buffers are synced to the proper domains,
1478 * flush and invalidate the collected domains
1479 */
1480 if (dev->invalidate_domains | dev->flush_domains) {
1481#if WATCH_EXEC
1482 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
1483 __func__,
1484 dev->invalidate_domains,
1485 dev->flush_domains);
1486#endif
1487 i915_gem_flush(dev,
1488 dev->invalidate_domains,
1489 dev->flush_domains);
1490 dev->invalidate_domains = 0;
1491 dev->flush_domains = 0;
1492 }
1493
1494 return flush_domains;
1495}
1496
1497/**
1498 * Pin an object to the GTT and evaluate the relocations landing in it.
1499 */
1500static int
1501i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
1502 struct drm_file *file_priv,
1503 struct drm_i915_gem_exec_object *entry)
1504{
1505 struct drm_device *dev = obj->dev;
1506 struct drm_i915_gem_relocation_entry reloc;
1507 struct drm_i915_gem_relocation_entry __user *relocs;
1508 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1509 int i, ret;
1510 uint32_t last_reloc_offset = -1;
3043c60c 1511 void __iomem *reloc_page = NULL;
673a394b
EA
1512
1513 /* Choose the GTT offset for our buffer and put it there. */
1514 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
1515 if (ret)
1516 return ret;
1517
1518 entry->offset = obj_priv->gtt_offset;
1519
1520 relocs = (struct drm_i915_gem_relocation_entry __user *)
1521 (uintptr_t) entry->relocs_ptr;
1522 /* Apply the relocations, using the GTT aperture to avoid cache
1523 * flushing requirements.
1524 */
1525 for (i = 0; i < entry->relocation_count; i++) {
1526 struct drm_gem_object *target_obj;
1527 struct drm_i915_gem_object *target_obj_priv;
3043c60c
EA
1528 uint32_t reloc_val, reloc_offset;
1529 uint32_t __iomem *reloc_entry;
673a394b
EA
1530
1531 ret = copy_from_user(&reloc, relocs + i, sizeof(reloc));
1532 if (ret != 0) {
1533 i915_gem_object_unpin(obj);
1534 return ret;
1535 }
1536
1537 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
1538 reloc.target_handle);
1539 if (target_obj == NULL) {
1540 i915_gem_object_unpin(obj);
1541 return -EBADF;
1542 }
1543 target_obj_priv = target_obj->driver_private;
1544
1545 /* The target buffer should have appeared before us in the
1546 * exec_object list, so it should have a GTT space bound by now.
1547 */
1548 if (target_obj_priv->gtt_space == NULL) {
1549 DRM_ERROR("No GTT space found for object %d\n",
1550 reloc.target_handle);
1551 drm_gem_object_unreference(target_obj);
1552 i915_gem_object_unpin(obj);
1553 return -EINVAL;
1554 }
1555
1556 if (reloc.offset > obj->size - 4) {
1557 DRM_ERROR("Relocation beyond object bounds: "
1558 "obj %p target %d offset %d size %d.\n",
1559 obj, reloc.target_handle,
1560 (int) reloc.offset, (int) obj->size);
1561 drm_gem_object_unreference(target_obj);
1562 i915_gem_object_unpin(obj);
1563 return -EINVAL;
1564 }
1565 if (reloc.offset & 3) {
1566 DRM_ERROR("Relocation not 4-byte aligned: "
1567 "obj %p target %d offset %d.\n",
1568 obj, reloc.target_handle,
1569 (int) reloc.offset);
1570 drm_gem_object_unreference(target_obj);
1571 i915_gem_object_unpin(obj);
1572 return -EINVAL;
1573 }
1574
1575 if (reloc.write_domain && target_obj->pending_write_domain &&
1576 reloc.write_domain != target_obj->pending_write_domain) {
1577 DRM_ERROR("Write domain conflict: "
1578 "obj %p target %d offset %d "
1579 "new %08x old %08x\n",
1580 obj, reloc.target_handle,
1581 (int) reloc.offset,
1582 reloc.write_domain,
1583 target_obj->pending_write_domain);
1584 drm_gem_object_unreference(target_obj);
1585 i915_gem_object_unpin(obj);
1586 return -EINVAL;
1587 }
1588
1589#if WATCH_RELOC
1590 DRM_INFO("%s: obj %p offset %08x target %d "
1591 "read %08x write %08x gtt %08x "
1592 "presumed %08x delta %08x\n",
1593 __func__,
1594 obj,
1595 (int) reloc.offset,
1596 (int) reloc.target_handle,
1597 (int) reloc.read_domains,
1598 (int) reloc.write_domain,
1599 (int) target_obj_priv->gtt_offset,
1600 (int) reloc.presumed_offset,
1601 reloc.delta);
1602#endif
1603
1604 target_obj->pending_read_domains |= reloc.read_domains;
1605 target_obj->pending_write_domain |= reloc.write_domain;
1606
1607 /* If the relocation already has the right value in it, no
1608 * more work needs to be done.
1609 */
1610 if (target_obj_priv->gtt_offset == reloc.presumed_offset) {
1611 drm_gem_object_unreference(target_obj);
1612 continue;
1613 }
1614
1615 /* Now that we're going to actually write some data in,
1616 * make sure that any rendering using this buffer's contents
1617 * is completed.
1618 */
1619 i915_gem_object_wait_rendering(obj);
1620
1621 /* As we're writing through the gtt, flush
1622 * any CPU writes before we write the relocations
1623 */
1624 if (obj->write_domain & I915_GEM_DOMAIN_CPU) {
1625 i915_gem_clflush_object(obj);
1626 drm_agp_chipset_flush(dev);
1627 obj->write_domain = 0;
1628 }
1629
1630 /* Map the page containing the relocation we're going to
1631 * perform.
1632 */
1633 reloc_offset = obj_priv->gtt_offset + reloc.offset;
1634 if (reloc_page == NULL ||
1635 (last_reloc_offset & ~(PAGE_SIZE - 1)) !=
1636 (reloc_offset & ~(PAGE_SIZE - 1))) {
1637 if (reloc_page != NULL)
1638 iounmap(reloc_page);
1639
bd88ee4c
EA
1640 reloc_page = ioremap_wc(dev->agp->base +
1641 (reloc_offset &
1642 ~(PAGE_SIZE - 1)),
1643 PAGE_SIZE);
673a394b
EA
1644 last_reloc_offset = reloc_offset;
1645 if (reloc_page == NULL) {
1646 drm_gem_object_unreference(target_obj);
1647 i915_gem_object_unpin(obj);
1648 return -ENOMEM;
1649 }
1650 }
1651
3043c60c 1652 reloc_entry = (uint32_t __iomem *)(reloc_page +
673a394b
EA
1653 (reloc_offset & (PAGE_SIZE - 1)));
1654 reloc_val = target_obj_priv->gtt_offset + reloc.delta;
1655
1656#if WATCH_BUF
1657 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
1658 obj, (unsigned int) reloc.offset,
1659 readl(reloc_entry), reloc_val);
1660#endif
1661 writel(reloc_val, reloc_entry);
1662
1663 /* Write the updated presumed offset for this entry back out
1664 * to the user.
1665 */
1666 reloc.presumed_offset = target_obj_priv->gtt_offset;
1667 ret = copy_to_user(relocs + i, &reloc, sizeof(reloc));
1668 if (ret != 0) {
1669 drm_gem_object_unreference(target_obj);
1670 i915_gem_object_unpin(obj);
1671 return ret;
1672 }
1673
1674 drm_gem_object_unreference(target_obj);
1675 }
1676
1677 if (reloc_page != NULL)
1678 iounmap(reloc_page);
1679
1680#if WATCH_BUF
1681 if (0)
1682 i915_gem_dump_object(obj, 128, __func__, ~0);
1683#endif
1684 return 0;
1685}
1686
1687/** Dispatch a batchbuffer to the ring
1688 */
1689static int
1690i915_dispatch_gem_execbuffer(struct drm_device *dev,
1691 struct drm_i915_gem_execbuffer *exec,
1692 uint64_t exec_offset)
1693{
1694 drm_i915_private_t *dev_priv = dev->dev_private;
1695 struct drm_clip_rect __user *boxes = (struct drm_clip_rect __user *)
1696 (uintptr_t) exec->cliprects_ptr;
1697 int nbox = exec->num_cliprects;
1698 int i = 0, count;
1699 uint32_t exec_start, exec_len;
1700 RING_LOCALS;
1701
1702 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
1703 exec_len = (uint32_t) exec->batch_len;
1704
1705 if ((exec_start | exec_len) & 0x7) {
1706 DRM_ERROR("alignment\n");
1707 return -EINVAL;
1708 }
1709
1710 if (!exec_start)
1711 return -EINVAL;
1712
1713 count = nbox ? nbox : 1;
1714
1715 for (i = 0; i < count; i++) {
1716 if (i < nbox) {
1717 int ret = i915_emit_box(dev, boxes, i,
1718 exec->DR1, exec->DR4);
1719 if (ret)
1720 return ret;
1721 }
1722
1723 if (IS_I830(dev) || IS_845G(dev)) {
1724 BEGIN_LP_RING(4);
1725 OUT_RING(MI_BATCH_BUFFER);
1726 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
1727 OUT_RING(exec_start + exec_len - 4);
1728 OUT_RING(0);
1729 ADVANCE_LP_RING();
1730 } else {
1731 BEGIN_LP_RING(2);
1732 if (IS_I965G(dev)) {
1733 OUT_RING(MI_BATCH_BUFFER_START |
1734 (2 << 6) |
1735 MI_BATCH_NON_SECURE_I965);
1736 OUT_RING(exec_start);
1737 } else {
1738 OUT_RING(MI_BATCH_BUFFER_START |
1739 (2 << 6));
1740 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
1741 }
1742 ADVANCE_LP_RING();
1743 }
1744 }
1745
1746 /* XXX breadcrumb */
1747 return 0;
1748}
1749
1750/* Throttle our rendering by waiting until the ring has completed our requests
1751 * emitted over 20 msec ago.
1752 *
1753 * This should get us reasonable parallelism between CPU and GPU but also
1754 * relatively low latency when blocking on a particular request to finish.
1755 */
1756static int
1757i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
1758{
1759 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
1760 int ret = 0;
1761 uint32_t seqno;
1762
1763 mutex_lock(&dev->struct_mutex);
1764 seqno = i915_file_priv->mm.last_gem_throttle_seqno;
1765 i915_file_priv->mm.last_gem_throttle_seqno =
1766 i915_file_priv->mm.last_gem_seqno;
1767 if (seqno)
1768 ret = i915_wait_request(dev, seqno);
1769 mutex_unlock(&dev->struct_mutex);
1770 return ret;
1771}
1772
1773int
1774i915_gem_execbuffer(struct drm_device *dev, void *data,
1775 struct drm_file *file_priv)
1776{
1777 drm_i915_private_t *dev_priv = dev->dev_private;
1778 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
1779 struct drm_i915_gem_execbuffer *args = data;
1780 struct drm_i915_gem_exec_object *exec_list = NULL;
1781 struct drm_gem_object **object_list = NULL;
1782 struct drm_gem_object *batch_obj;
1783 int ret, i, pinned = 0;
1784 uint64_t exec_offset;
1785 uint32_t seqno, flush_domains;
1786
1787#if WATCH_EXEC
1788 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
1789 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
1790#endif
1791
4f481ed2
EA
1792 if (args->buffer_count < 1) {
1793 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
1794 return -EINVAL;
1795 }
673a394b
EA
1796 /* Copy in the exec list from userland */
1797 exec_list = drm_calloc(sizeof(*exec_list), args->buffer_count,
1798 DRM_MEM_DRIVER);
1799 object_list = drm_calloc(sizeof(*object_list), args->buffer_count,
1800 DRM_MEM_DRIVER);
1801 if (exec_list == NULL || object_list == NULL) {
1802 DRM_ERROR("Failed to allocate exec or object list "
1803 "for %d buffers\n",
1804 args->buffer_count);
1805 ret = -ENOMEM;
1806 goto pre_mutex_err;
1807 }
1808 ret = copy_from_user(exec_list,
1809 (struct drm_i915_relocation_entry __user *)
1810 (uintptr_t) args->buffers_ptr,
1811 sizeof(*exec_list) * args->buffer_count);
1812 if (ret != 0) {
1813 DRM_ERROR("copy %d exec entries failed %d\n",
1814 args->buffer_count, ret);
1815 goto pre_mutex_err;
1816 }
1817
1818 mutex_lock(&dev->struct_mutex);
1819
1820 i915_verify_inactive(dev, __FILE__, __LINE__);
1821
1822 if (dev_priv->mm.wedged) {
1823 DRM_ERROR("Execbuf while wedged\n");
1824 mutex_unlock(&dev->struct_mutex);
1825 return -EIO;
1826 }
1827
1828 if (dev_priv->mm.suspended) {
1829 DRM_ERROR("Execbuf while VT-switched.\n");
1830 mutex_unlock(&dev->struct_mutex);
1831 return -EBUSY;
1832 }
1833
1834 /* Zero the gloabl flush/invalidate flags. These
1835 * will be modified as each object is bound to the
1836 * gtt
1837 */
1838 dev->invalidate_domains = 0;
1839 dev->flush_domains = 0;
1840
1841 /* Look up object handles and perform the relocations */
1842 for (i = 0; i < args->buffer_count; i++) {
1843 object_list[i] = drm_gem_object_lookup(dev, file_priv,
1844 exec_list[i].handle);
1845 if (object_list[i] == NULL) {
1846 DRM_ERROR("Invalid object handle %d at index %d\n",
1847 exec_list[i].handle, i);
1848 ret = -EBADF;
1849 goto err;
1850 }
1851
1852 object_list[i]->pending_read_domains = 0;
1853 object_list[i]->pending_write_domain = 0;
1854 ret = i915_gem_object_pin_and_relocate(object_list[i],
1855 file_priv,
1856 &exec_list[i]);
1857 if (ret) {
1858 DRM_ERROR("object bind and relocate failed %d\n", ret);
1859 goto err;
1860 }
1861 pinned = i + 1;
1862 }
1863
1864 /* Set the pending read domains for the batch buffer to COMMAND */
1865 batch_obj = object_list[args->buffer_count-1];
1866 batch_obj->pending_read_domains = I915_GEM_DOMAIN_COMMAND;
1867 batch_obj->pending_write_domain = 0;
1868
1869 i915_verify_inactive(dev, __FILE__, __LINE__);
1870
1871 for (i = 0; i < args->buffer_count; i++) {
1872 struct drm_gem_object *obj = object_list[i];
1873 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1874
1875 if (obj_priv->gtt_space == NULL) {
1876 /* We evicted the buffer in the process of validating
1877 * our set of buffers in. We could try to recover by
1878 * kicking them everything out and trying again from
1879 * the start.
1880 */
1881 ret = -ENOMEM;
1882 goto err;
1883 }
1884
1885 /* make sure all previous memory operations have passed */
1886 ret = i915_gem_object_set_domain(obj,
1887 obj->pending_read_domains,
1888 obj->pending_write_domain);
1889 if (ret)
1890 goto err;
1891 }
1892
1893 i915_verify_inactive(dev, __FILE__, __LINE__);
1894
1895 /* Flush/invalidate caches and chipset buffer */
1896 flush_domains = i915_gem_dev_set_domain(dev);
1897
1898 i915_verify_inactive(dev, __FILE__, __LINE__);
1899
1900#if WATCH_COHERENCY
1901 for (i = 0; i < args->buffer_count; i++) {
1902 i915_gem_object_check_coherency(object_list[i],
1903 exec_list[i].handle);
1904 }
1905#endif
1906
1907 exec_offset = exec_list[args->buffer_count - 1].offset;
1908
1909#if WATCH_EXEC
1910 i915_gem_dump_object(object_list[args->buffer_count - 1],
1911 args->batch_len,
1912 __func__,
1913 ~0);
1914#endif
1915
1916 (void)i915_add_request(dev, flush_domains);
1917
1918 /* Exec the batchbuffer */
1919 ret = i915_dispatch_gem_execbuffer(dev, args, exec_offset);
1920 if (ret) {
1921 DRM_ERROR("dispatch failed %d\n", ret);
1922 goto err;
1923 }
1924
1925 /*
1926 * Ensure that the commands in the batch buffer are
1927 * finished before the interrupt fires
1928 */
1929 flush_domains = i915_retire_commands(dev);
1930
1931 i915_verify_inactive(dev, __FILE__, __LINE__);
1932
1933 /*
1934 * Get a seqno representing the execution of the current buffer,
1935 * which we can wait on. We would like to mitigate these interrupts,
1936 * likely by only creating seqnos occasionally (so that we have
1937 * *some* interrupts representing completion of buffers that we can
1938 * wait on when trying to clear up gtt space).
1939 */
1940 seqno = i915_add_request(dev, flush_domains);
1941 BUG_ON(seqno == 0);
1942 i915_file_priv->mm.last_gem_seqno = seqno;
1943 for (i = 0; i < args->buffer_count; i++) {
1944 struct drm_gem_object *obj = object_list[i];
1945 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1946
1947 i915_gem_object_move_to_active(obj);
1948 obj_priv->last_rendering_seqno = seqno;
1949#if WATCH_LRU
1950 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
1951#endif
1952 }
1953#if WATCH_LRU
1954 i915_dump_lru(dev, __func__);
1955#endif
1956
1957 i915_verify_inactive(dev, __FILE__, __LINE__);
1958
1959 /* Copy the new buffer offsets back to the user's exec list. */
1960 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
1961 (uintptr_t) args->buffers_ptr,
1962 exec_list,
1963 sizeof(*exec_list) * args->buffer_count);
1964 if (ret)
1965 DRM_ERROR("failed to copy %d exec entries "
1966 "back to user (%d)\n",
1967 args->buffer_count, ret);
1968err:
1969 if (object_list != NULL) {
1970 for (i = 0; i < pinned; i++)
1971 i915_gem_object_unpin(object_list[i]);
1972
1973 for (i = 0; i < args->buffer_count; i++)
1974 drm_gem_object_unreference(object_list[i]);
1975 }
1976 mutex_unlock(&dev->struct_mutex);
1977
1978pre_mutex_err:
1979 drm_free(object_list, sizeof(*object_list) * args->buffer_count,
1980 DRM_MEM_DRIVER);
1981 drm_free(exec_list, sizeof(*exec_list) * args->buffer_count,
1982 DRM_MEM_DRIVER);
1983
1984 return ret;
1985}
1986
1987int
1988i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
1989{
1990 struct drm_device *dev = obj->dev;
1991 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1992 int ret;
1993
1994 i915_verify_inactive(dev, __FILE__, __LINE__);
1995 if (obj_priv->gtt_space == NULL) {
1996 ret = i915_gem_object_bind_to_gtt(obj, alignment);
1997 if (ret != 0) {
1998 DRM_ERROR("Failure to bind: %d", ret);
1999 return ret;
2000 }
2001 }
2002 obj_priv->pin_count++;
2003
2004 /* If the object is not active and not pending a flush,
2005 * remove it from the inactive list
2006 */
2007 if (obj_priv->pin_count == 1) {
2008 atomic_inc(&dev->pin_count);
2009 atomic_add(obj->size, &dev->pin_memory);
2010 if (!obj_priv->active &&
2011 (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
2012 I915_GEM_DOMAIN_GTT)) == 0 &&
2013 !list_empty(&obj_priv->list))
2014 list_del_init(&obj_priv->list);
2015 }
2016 i915_verify_inactive(dev, __FILE__, __LINE__);
2017
2018 return 0;
2019}
2020
2021void
2022i915_gem_object_unpin(struct drm_gem_object *obj)
2023{
2024 struct drm_device *dev = obj->dev;
2025 drm_i915_private_t *dev_priv = dev->dev_private;
2026 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2027
2028 i915_verify_inactive(dev, __FILE__, __LINE__);
2029 obj_priv->pin_count--;
2030 BUG_ON(obj_priv->pin_count < 0);
2031 BUG_ON(obj_priv->gtt_space == NULL);
2032
2033 /* If the object is no longer pinned, and is
2034 * neither active nor being flushed, then stick it on
2035 * the inactive list
2036 */
2037 if (obj_priv->pin_count == 0) {
2038 if (!obj_priv->active &&
2039 (obj->write_domain & ~(I915_GEM_DOMAIN_CPU |
2040 I915_GEM_DOMAIN_GTT)) == 0)
2041 list_move_tail(&obj_priv->list,
2042 &dev_priv->mm.inactive_list);
2043 atomic_dec(&dev->pin_count);
2044 atomic_sub(obj->size, &dev->pin_memory);
2045 }
2046 i915_verify_inactive(dev, __FILE__, __LINE__);
2047}
2048
2049int
2050i915_gem_pin_ioctl(struct drm_device *dev, void *data,
2051 struct drm_file *file_priv)
2052{
2053 struct drm_i915_gem_pin *args = data;
2054 struct drm_gem_object *obj;
2055 struct drm_i915_gem_object *obj_priv;
2056 int ret;
2057
2058 mutex_lock(&dev->struct_mutex);
2059
2060 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
2061 if (obj == NULL) {
2062 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
2063 args->handle);
2064 mutex_unlock(&dev->struct_mutex);
2065 return -EBADF;
2066 }
2067 obj_priv = obj->driver_private;
2068
2069 ret = i915_gem_object_pin(obj, args->alignment);
2070 if (ret != 0) {
2071 drm_gem_object_unreference(obj);
2072 mutex_unlock(&dev->struct_mutex);
2073 return ret;
2074 }
2075
2076 /* XXX - flush the CPU caches for pinned objects
2077 * as the X server doesn't manage domains yet
2078 */
2079 if (obj->write_domain & I915_GEM_DOMAIN_CPU) {
2080 i915_gem_clflush_object(obj);
2081 drm_agp_chipset_flush(dev);
2082 obj->write_domain = 0;
2083 }
2084 args->offset = obj_priv->gtt_offset;
2085 drm_gem_object_unreference(obj);
2086 mutex_unlock(&dev->struct_mutex);
2087
2088 return 0;
2089}
2090
2091int
2092i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
2093 struct drm_file *file_priv)
2094{
2095 struct drm_i915_gem_pin *args = data;
2096 struct drm_gem_object *obj;
2097
2098 mutex_lock(&dev->struct_mutex);
2099
2100 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
2101 if (obj == NULL) {
2102 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
2103 args->handle);
2104 mutex_unlock(&dev->struct_mutex);
2105 return -EBADF;
2106 }
2107
2108 i915_gem_object_unpin(obj);
2109
2110 drm_gem_object_unreference(obj);
2111 mutex_unlock(&dev->struct_mutex);
2112 return 0;
2113}
2114
2115int
2116i915_gem_busy_ioctl(struct drm_device *dev, void *data,
2117 struct drm_file *file_priv)
2118{
2119 struct drm_i915_gem_busy *args = data;
2120 struct drm_gem_object *obj;
2121 struct drm_i915_gem_object *obj_priv;
2122
2123 mutex_lock(&dev->struct_mutex);
2124 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
2125 if (obj == NULL) {
2126 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
2127 args->handle);
2128 mutex_unlock(&dev->struct_mutex);
2129 return -EBADF;
2130 }
2131
2132 obj_priv = obj->driver_private;
2133 args->busy = obj_priv->active;
2134
2135 drm_gem_object_unreference(obj);
2136 mutex_unlock(&dev->struct_mutex);
2137 return 0;
2138}
2139
2140int
2141i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
2142 struct drm_file *file_priv)
2143{
2144 return i915_gem_ring_throttle(dev, file_priv);
2145}
2146
2147int i915_gem_init_object(struct drm_gem_object *obj)
2148{
2149 struct drm_i915_gem_object *obj_priv;
2150
2151 obj_priv = drm_calloc(1, sizeof(*obj_priv), DRM_MEM_DRIVER);
2152 if (obj_priv == NULL)
2153 return -ENOMEM;
2154
2155 /*
2156 * We've just allocated pages from the kernel,
2157 * so they've just been written by the CPU with
2158 * zeros. They'll need to be clflushed before we
2159 * use them with the GPU.
2160 */
2161 obj->write_domain = I915_GEM_DOMAIN_CPU;
2162 obj->read_domains = I915_GEM_DOMAIN_CPU;
2163
ba1eb1d8
KP
2164 obj_priv->agp_type = AGP_USER_MEMORY;
2165
673a394b
EA
2166 obj->driver_private = obj_priv;
2167 obj_priv->obj = obj;
2168 INIT_LIST_HEAD(&obj_priv->list);
2169 return 0;
2170}
2171
2172void i915_gem_free_object(struct drm_gem_object *obj)
2173{
2174 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2175
2176 while (obj_priv->pin_count > 0)
2177 i915_gem_object_unpin(obj);
2178
2179 i915_gem_object_unbind(obj);
2180
2181 drm_free(obj_priv->page_cpu_valid, 1, DRM_MEM_DRIVER);
2182 drm_free(obj->driver_private, 1, DRM_MEM_DRIVER);
2183}
2184
2185static int
2186i915_gem_set_domain(struct drm_gem_object *obj,
2187 struct drm_file *file_priv,
2188 uint32_t read_domains,
2189 uint32_t write_domain)
2190{
2191 struct drm_device *dev = obj->dev;
2192 int ret;
2193 uint32_t flush_domains;
2194
2195 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
2196
2197 ret = i915_gem_object_set_domain(obj, read_domains, write_domain);
2198 if (ret)
2199 return ret;
2200 flush_domains = i915_gem_dev_set_domain(obj->dev);
2201
2202 if (flush_domains & ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT))
2203 (void) i915_add_request(dev, flush_domains);
2204
2205 return 0;
2206}
2207
2208/** Unbinds all objects that are on the given buffer list. */
2209static int
2210i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
2211{
2212 struct drm_gem_object *obj;
2213 struct drm_i915_gem_object *obj_priv;
2214 int ret;
2215
2216 while (!list_empty(head)) {
2217 obj_priv = list_first_entry(head,
2218 struct drm_i915_gem_object,
2219 list);
2220 obj = obj_priv->obj;
2221
2222 if (obj_priv->pin_count != 0) {
2223 DRM_ERROR("Pinned object in unbind list\n");
2224 mutex_unlock(&dev->struct_mutex);
2225 return -EINVAL;
2226 }
2227
2228 ret = i915_gem_object_unbind(obj);
2229 if (ret != 0) {
2230 DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
2231 ret);
2232 mutex_unlock(&dev->struct_mutex);
2233 return ret;
2234 }
2235 }
2236
2237
2238 return 0;
2239}
2240
2241static int
2242i915_gem_idle(struct drm_device *dev)
2243{
2244 drm_i915_private_t *dev_priv = dev->dev_private;
2245 uint32_t seqno, cur_seqno, last_seqno;
2246 int stuck, ret;
2247
6dbe2772
KP
2248 mutex_lock(&dev->struct_mutex);
2249
2250 if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
2251 mutex_unlock(&dev->struct_mutex);
673a394b 2252 return 0;
6dbe2772 2253 }
673a394b
EA
2254
2255 /* Hack! Don't let anybody do execbuf while we don't control the chip.
2256 * We need to replace this with a semaphore, or something.
2257 */
2258 dev_priv->mm.suspended = 1;
2259
6dbe2772
KP
2260 /* Cancel the retire work handler, wait for it to finish if running
2261 */
2262 mutex_unlock(&dev->struct_mutex);
2263 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
2264 mutex_lock(&dev->struct_mutex);
2265
673a394b
EA
2266 i915_kernel_lost_context(dev);
2267
2268 /* Flush the GPU along with all non-CPU write domains
2269 */
2270 i915_gem_flush(dev, ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT),
2271 ~(I915_GEM_DOMAIN_CPU|I915_GEM_DOMAIN_GTT));
2272 seqno = i915_add_request(dev, ~(I915_GEM_DOMAIN_CPU |
2273 I915_GEM_DOMAIN_GTT));
2274
2275 if (seqno == 0) {
2276 mutex_unlock(&dev->struct_mutex);
2277 return -ENOMEM;
2278 }
2279
2280 dev_priv->mm.waiting_gem_seqno = seqno;
2281 last_seqno = 0;
2282 stuck = 0;
2283 for (;;) {
2284 cur_seqno = i915_get_gem_seqno(dev);
2285 if (i915_seqno_passed(cur_seqno, seqno))
2286 break;
2287 if (last_seqno == cur_seqno) {
2288 if (stuck++ > 100) {
2289 DRM_ERROR("hardware wedged\n");
2290 dev_priv->mm.wedged = 1;
2291 DRM_WAKEUP(&dev_priv->irq_queue);
2292 break;
2293 }
2294 }
2295 msleep(10);
2296 last_seqno = cur_seqno;
2297 }
2298 dev_priv->mm.waiting_gem_seqno = 0;
2299
2300 i915_gem_retire_requests(dev);
2301
2302 /* Active and flushing should now be empty as we've
2303 * waited for a sequence higher than any pending execbuffer
2304 */
2305 BUG_ON(!list_empty(&dev_priv->mm.active_list));
2306 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
2307
2308 /* Request should now be empty as we've also waited
2309 * for the last request in the list
2310 */
2311 BUG_ON(!list_empty(&dev_priv->mm.request_list));
2312
2313 /* Move all buffers out of the GTT. */
2314 ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
6dbe2772
KP
2315 if (ret) {
2316 mutex_unlock(&dev->struct_mutex);
673a394b 2317 return ret;
6dbe2772 2318 }
673a394b
EA
2319
2320 BUG_ON(!list_empty(&dev_priv->mm.active_list));
2321 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
2322 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
2323 BUG_ON(!list_empty(&dev_priv->mm.request_list));
6dbe2772
KP
2324
2325 i915_gem_cleanup_ringbuffer(dev);
2326 mutex_unlock(&dev->struct_mutex);
2327
673a394b
EA
2328 return 0;
2329}
2330
2331static int
2332i915_gem_init_hws(struct drm_device *dev)
2333{
2334 drm_i915_private_t *dev_priv = dev->dev_private;
2335 struct drm_gem_object *obj;
2336 struct drm_i915_gem_object *obj_priv;
2337 int ret;
2338
2339 /* If we need a physical address for the status page, it's already
2340 * initialized at driver load time.
2341 */
2342 if (!I915_NEED_GFX_HWS(dev))
2343 return 0;
2344
2345 obj = drm_gem_object_alloc(dev, 4096);
2346 if (obj == NULL) {
2347 DRM_ERROR("Failed to allocate status page\n");
2348 return -ENOMEM;
2349 }
2350 obj_priv = obj->driver_private;
ba1eb1d8 2351 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
673a394b
EA
2352
2353 ret = i915_gem_object_pin(obj, 4096);
2354 if (ret != 0) {
2355 drm_gem_object_unreference(obj);
2356 return ret;
2357 }
2358
2359 dev_priv->status_gfx_addr = obj_priv->gtt_offset;
673a394b 2360
ba1eb1d8
KP
2361 dev_priv->hw_status_page = kmap(obj_priv->page_list[0]);
2362 if (dev_priv->hw_status_page == NULL) {
673a394b
EA
2363 DRM_ERROR("Failed to map status page.\n");
2364 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
2365 drm_gem_object_unreference(obj);
2366 return -EINVAL;
2367 }
2368 dev_priv->hws_obj = obj;
673a394b
EA
2369 memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
2370 I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
ba1eb1d8 2371 I915_READ(HWS_PGA); /* posting read */
673a394b
EA
2372 DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
2373
2374 return 0;
2375}
2376
2377static int
2378i915_gem_init_ringbuffer(struct drm_device *dev)
2379{
2380 drm_i915_private_t *dev_priv = dev->dev_private;
2381 struct drm_gem_object *obj;
2382 struct drm_i915_gem_object *obj_priv;
2383 int ret;
50aa253d 2384 u32 head;
673a394b
EA
2385
2386 ret = i915_gem_init_hws(dev);
2387 if (ret != 0)
2388 return ret;
2389
2390 obj = drm_gem_object_alloc(dev, 128 * 1024);
2391 if (obj == NULL) {
2392 DRM_ERROR("Failed to allocate ringbuffer\n");
2393 return -ENOMEM;
2394 }
2395 obj_priv = obj->driver_private;
2396
2397 ret = i915_gem_object_pin(obj, 4096);
2398 if (ret != 0) {
2399 drm_gem_object_unreference(obj);
2400 return ret;
2401 }
2402
2403 /* Set up the kernel mapping for the ring. */
2404 dev_priv->ring.Size = obj->size;
2405 dev_priv->ring.tail_mask = obj->size - 1;
2406
2407 dev_priv->ring.map.offset = dev->agp->base + obj_priv->gtt_offset;
2408 dev_priv->ring.map.size = obj->size;
2409 dev_priv->ring.map.type = 0;
2410 dev_priv->ring.map.flags = 0;
2411 dev_priv->ring.map.mtrr = 0;
2412
bd88ee4c 2413 drm_core_ioremap_wc(&dev_priv->ring.map, dev);
673a394b
EA
2414 if (dev_priv->ring.map.handle == NULL) {
2415 DRM_ERROR("Failed to map ringbuffer.\n");
2416 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
2417 drm_gem_object_unreference(obj);
2418 return -EINVAL;
2419 }
2420 dev_priv->ring.ring_obj = obj;
2421 dev_priv->ring.virtual_start = dev_priv->ring.map.handle;
2422
2423 /* Stop the ring if it's running. */
2424 I915_WRITE(PRB0_CTL, 0);
673a394b 2425 I915_WRITE(PRB0_TAIL, 0);
50aa253d 2426 I915_WRITE(PRB0_HEAD, 0);
673a394b
EA
2427
2428 /* Initialize the ring. */
2429 I915_WRITE(PRB0_START, obj_priv->gtt_offset);
50aa253d
KP
2430 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
2431
2432 /* G45 ring initialization fails to reset head to zero */
2433 if (head != 0) {
2434 DRM_ERROR("Ring head not reset to zero "
2435 "ctl %08x head %08x tail %08x start %08x\n",
2436 I915_READ(PRB0_CTL),
2437 I915_READ(PRB0_HEAD),
2438 I915_READ(PRB0_TAIL),
2439 I915_READ(PRB0_START));
2440 I915_WRITE(PRB0_HEAD, 0);
2441
2442 DRM_ERROR("Ring head forced to zero "
2443 "ctl %08x head %08x tail %08x start %08x\n",
2444 I915_READ(PRB0_CTL),
2445 I915_READ(PRB0_HEAD),
2446 I915_READ(PRB0_TAIL),
2447 I915_READ(PRB0_START));
2448 }
2449
673a394b
EA
2450 I915_WRITE(PRB0_CTL,
2451 ((obj->size - 4096) & RING_NR_PAGES) |
2452 RING_NO_REPORT |
2453 RING_VALID);
2454
50aa253d
KP
2455 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
2456
2457 /* If the head is still not zero, the ring is dead */
2458 if (head != 0) {
2459 DRM_ERROR("Ring initialization failed "
2460 "ctl %08x head %08x tail %08x start %08x\n",
2461 I915_READ(PRB0_CTL),
2462 I915_READ(PRB0_HEAD),
2463 I915_READ(PRB0_TAIL),
2464 I915_READ(PRB0_START));
2465 return -EIO;
2466 }
2467
673a394b
EA
2468 /* Update our cache of the ring state */
2469 i915_kernel_lost_context(dev);
2470
2471 return 0;
2472}
2473
2474static void
2475i915_gem_cleanup_ringbuffer(struct drm_device *dev)
2476{
2477 drm_i915_private_t *dev_priv = dev->dev_private;
2478
2479 if (dev_priv->ring.ring_obj == NULL)
2480 return;
2481
2482 drm_core_ioremapfree(&dev_priv->ring.map, dev);
2483
2484 i915_gem_object_unpin(dev_priv->ring.ring_obj);
2485 drm_gem_object_unreference(dev_priv->ring.ring_obj);
2486 dev_priv->ring.ring_obj = NULL;
2487 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
2488
2489 if (dev_priv->hws_obj != NULL) {
ba1eb1d8
KP
2490 struct drm_gem_object *obj = dev_priv->hws_obj;
2491 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2492
2493 kunmap(obj_priv->page_list[0]);
2494 i915_gem_object_unpin(obj);
2495 drm_gem_object_unreference(obj);
673a394b
EA
2496 dev_priv->hws_obj = NULL;
2497 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
ba1eb1d8 2498 dev_priv->hw_status_page = NULL;
673a394b
EA
2499
2500 /* Write high address into HWS_PGA when disabling. */
2501 I915_WRITE(HWS_PGA, 0x1ffff000);
2502 }
2503}
2504
2505int
2506i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
2507 struct drm_file *file_priv)
2508{
2509 drm_i915_private_t *dev_priv = dev->dev_private;
2510 int ret;
2511
2512 if (dev_priv->mm.wedged) {
2513 DRM_ERROR("Reenabling wedged hardware, good luck\n");
2514 dev_priv->mm.wedged = 0;
2515 }
2516
2517 ret = i915_gem_init_ringbuffer(dev);
2518 if (ret != 0)
2519 return ret;
2520
2521 mutex_lock(&dev->struct_mutex);
2522 BUG_ON(!list_empty(&dev_priv->mm.active_list));
2523 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
2524 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
2525 BUG_ON(!list_empty(&dev_priv->mm.request_list));
2526 dev_priv->mm.suspended = 0;
2527 mutex_unlock(&dev->struct_mutex);
dbb19d30
KH
2528
2529 drm_irq_install(dev);
2530
673a394b
EA
2531 return 0;
2532}
2533
2534int
2535i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
2536 struct drm_file *file_priv)
2537{
2538 int ret;
2539
673a394b 2540 ret = i915_gem_idle(dev);
dbb19d30
KH
2541 drm_irq_uninstall(dev);
2542
6dbe2772 2543 return ret;
673a394b
EA
2544}
2545
2546void
2547i915_gem_lastclose(struct drm_device *dev)
2548{
2549 int ret;
673a394b 2550
6dbe2772
KP
2551 ret = i915_gem_idle(dev);
2552 if (ret)
2553 DRM_ERROR("failed to idle hardware: %d\n", ret);
673a394b
EA
2554}
2555
2556void
2557i915_gem_load(struct drm_device *dev)
2558{
2559 drm_i915_private_t *dev_priv = dev->dev_private;
2560
2561 INIT_LIST_HEAD(&dev_priv->mm.active_list);
2562 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
2563 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
2564 INIT_LIST_HEAD(&dev_priv->mm.request_list);
2565 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
2566 i915_gem_retire_work_handler);
2567 dev_priv->mm.next_gem_seqno = 1;
2568
2569 i915_gem_detect_bit_6_swizzle(dev);
2570}