Merge tag 'platform-drivers-x86-v4.7-1' of git://git.infradead.org/users/dvhart/linux...
[linux-2.6-block.git] / drivers / edac / amd64_edac.c
CommitLineData
2bc65418 1#include "amd64_edac.h"
23ac4ae8 2#include <asm/amd_nb.h>
2bc65418 3
d1ea71cd 4static struct edac_pci_ctl_info *pci_ctl;
2bc65418
DT
5
6static int report_gart_errors;
7module_param(report_gart_errors, int, 0644);
8
9/*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
12 */
13static int ecc_enable_override;
14module_param(ecc_enable_override, int, 0644);
15
a29d8b8e 16static struct msr __percpu *msrs;
50542251 17
2ec591ac 18/* Per-node stuff */
ae7bb7c6 19static struct ecc_settings **ecc_stngs;
2bc65418 20
b70ef010
BP
21/*
22 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
23 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
24 * or higher value'.
25 *
26 *FIXME: Produce a better mapping/linearisation.
27 */
c7e5301a 28static const struct scrubrate {
39094443
BP
29 u32 scrubval; /* bit pattern for scrub rate */
30 u32 bandwidth; /* bandwidth consumed (bytes/sec) */
31} scrubrates[] = {
b70ef010
BP
32 { 0x01, 1600000000UL},
33 { 0x02, 800000000UL},
34 { 0x03, 400000000UL},
35 { 0x04, 200000000UL},
36 { 0x05, 100000000UL},
37 { 0x06, 50000000UL},
38 { 0x07, 25000000UL},
39 { 0x08, 12284069UL},
40 { 0x09, 6274509UL},
41 { 0x0A, 3121951UL},
42 { 0x0B, 1560975UL},
43 { 0x0C, 781440UL},
44 { 0x0D, 390720UL},
45 { 0x0E, 195300UL},
46 { 0x0F, 97650UL},
47 { 0x10, 48854UL},
48 { 0x11, 24427UL},
49 { 0x12, 12213UL},
50 { 0x13, 6101UL},
51 { 0x14, 3051UL},
52 { 0x15, 1523UL},
53 { 0x16, 761UL},
54 { 0x00, 0UL}, /* scrubbing off */
55};
56
66fed2d4
BP
57int __amd64_read_pci_cfg_dword(struct pci_dev *pdev, int offset,
58 u32 *val, const char *func)
b2b0c605
BP
59{
60 int err = 0;
61
62 err = pci_read_config_dword(pdev, offset, val);
63 if (err)
64 amd64_warn("%s: error reading F%dx%03x.\n",
65 func, PCI_FUNC(pdev->devfn), offset);
66
67 return err;
68}
69
70int __amd64_write_pci_cfg_dword(struct pci_dev *pdev, int offset,
71 u32 val, const char *func)
72{
73 int err = 0;
74
75 err = pci_write_config_dword(pdev, offset, val);
76 if (err)
77 amd64_warn("%s: error writing to F%dx%03x.\n",
78 func, PCI_FUNC(pdev->devfn), offset);
79
80 return err;
81}
82
7981a28f
AG
83/*
84 * Select DCT to which PCI cfg accesses are routed
85 */
86static void f15h_select_dct(struct amd64_pvt *pvt, u8 dct)
87{
88 u32 reg = 0;
89
90 amd64_read_pci_cfg(pvt->F1, DCT_CFG_SEL, &reg);
91 reg &= (pvt->model == 0x30) ? ~3 : ~1;
92 reg |= dct;
93 amd64_write_pci_cfg(pvt->F1, DCT_CFG_SEL, reg);
94}
95
b2b0c605
BP
96/*
97 *
98 * Depending on the family, F2 DCT reads need special handling:
99 *
7981a28f 100 * K8: has a single DCT only and no address offsets >= 0x100
b2b0c605
BP
101 *
102 * F10h: each DCT has its own set of regs
103 * DCT0 -> F2x040..
104 * DCT1 -> F2x140..
105 *
94c1acf2 106 * F16h: has only 1 DCT
7981a28f
AG
107 *
108 * F15h: we select which DCT we access using F1x10C[DctCfgSel]
b2b0c605 109 */
7981a28f
AG
110static inline int amd64_read_dct_pci_cfg(struct amd64_pvt *pvt, u8 dct,
111 int offset, u32 *val)
b2b0c605 112{
7981a28f
AG
113 switch (pvt->fam) {
114 case 0xf:
115 if (dct || offset >= 0x100)
116 return -EINVAL;
117 break;
b2b0c605 118
7981a28f
AG
119 case 0x10:
120 if (dct) {
121 /*
122 * Note: If ganging is enabled, barring the regs
123 * F2x[1,0]98 and F2x[1,0]9C; reads reads to F2x1xx
124 * return 0. (cf. Section 2.8.1 F10h BKDG)
125 */
126 if (dct_ganging_enabled(pvt))
127 return 0;
b2b0c605 128
7981a28f
AG
129 offset += 0x100;
130 }
131 break;
73ba8593 132
7981a28f
AG
133 case 0x15:
134 /*
135 * F15h: F2x1xx addresses do not map explicitly to DCT1.
136 * We should select which DCT we access using F1x10C[DctCfgSel]
137 */
138 dct = (dct && pvt->model == 0x30) ? 3 : dct;
139 f15h_select_dct(pvt, dct);
140 break;
73ba8593 141
7981a28f
AG
142 case 0x16:
143 if (dct)
144 return -EINVAL;
145 break;
b2b0c605 146
7981a28f
AG
147 default:
148 break;
b2b0c605 149 }
7981a28f 150 return amd64_read_pci_cfg(pvt->F2, offset, val);
b2b0c605
BP
151}
152
2bc65418
DT
153/*
154 * Memory scrubber control interface. For K8, memory scrubbing is handled by
155 * hardware and can involve L2 cache, dcache as well as the main memory. With
156 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
157 * functionality.
158 *
159 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
160 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
161 * bytes/sec for the setting.
162 *
163 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
164 * other archs, we might not have access to the caches directly.
165 */
166
167/*
168 * scan the scrub rate mapping table for a close or matching bandwidth value to
169 * issue. If requested is too big, then use last maximum value found.
170 */
da92110d 171static int __set_scrub_rate(struct amd64_pvt *pvt, u32 new_bw, u32 min_rate)
2bc65418
DT
172{
173 u32 scrubval;
174 int i;
175
176 /*
177 * map the configured rate (new_bw) to a value specific to the AMD64
178 * memory controller and apply to register. Search for the first
179 * bandwidth entry that is greater or equal than the setting requested
180 * and program that. If at last entry, turn off DRAM scrubbing.
168bfeef
AM
181 *
182 * If no suitable bandwidth is found, turn off DRAM scrubbing entirely
183 * by falling back to the last element in scrubrates[].
2bc65418 184 */
168bfeef 185 for (i = 0; i < ARRAY_SIZE(scrubrates) - 1; i++) {
2bc65418
DT
186 /*
187 * skip scrub rates which aren't recommended
188 * (see F10 BKDG, F3x58)
189 */
395ae783 190 if (scrubrates[i].scrubval < min_rate)
2bc65418
DT
191 continue;
192
193 if (scrubrates[i].bandwidth <= new_bw)
194 break;
2bc65418
DT
195 }
196
197 scrubval = scrubrates[i].scrubval;
2bc65418 198
da92110d
AG
199 if (pvt->fam == 0x15 && pvt->model == 0x60) {
200 f15h_select_dct(pvt, 0);
201 pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
202 f15h_select_dct(pvt, 1);
203 pci_write_bits32(pvt->F2, F15H_M60H_SCRCTRL, scrubval, 0x001F);
204 } else {
205 pci_write_bits32(pvt->F3, SCRCTRL, scrubval, 0x001F);
206 }
2bc65418 207
39094443
BP
208 if (scrubval)
209 return scrubrates[i].bandwidth;
210
2bc65418
DT
211 return 0;
212}
213
d1ea71cd 214static int set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
2bc65418
DT
215{
216 struct amd64_pvt *pvt = mci->pvt_info;
87b3e0e6 217 u32 min_scrubrate = 0x5;
2bc65418 218
a4b4bedc 219 if (pvt->fam == 0xf)
87b3e0e6
BP
220 min_scrubrate = 0x0;
221
da92110d
AG
222 if (pvt->fam == 0x15) {
223 /* Erratum #505 */
224 if (pvt->model < 0x10)
225 f15h_select_dct(pvt, 0);
73ba8593 226
da92110d
AG
227 if (pvt->model == 0x60)
228 min_scrubrate = 0x6;
229 }
230 return __set_scrub_rate(pvt, bw, min_scrubrate);
2bc65418
DT
231}
232
d1ea71cd 233static int get_scrub_rate(struct mem_ctl_info *mci)
2bc65418
DT
234{
235 struct amd64_pvt *pvt = mci->pvt_info;
236 u32 scrubval = 0;
39094443 237 int i, retval = -EINVAL;
2bc65418 238
da92110d
AG
239 if (pvt->fam == 0x15) {
240 /* Erratum #505 */
241 if (pvt->model < 0x10)
242 f15h_select_dct(pvt, 0);
73ba8593 243
da92110d
AG
244 if (pvt->model == 0x60)
245 amd64_read_pci_cfg(pvt->F2, F15H_M60H_SCRCTRL, &scrubval);
246 } else
247 amd64_read_pci_cfg(pvt->F3, SCRCTRL, &scrubval);
2bc65418
DT
248
249 scrubval = scrubval & 0x001F;
250
926311fd 251 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
2bc65418 252 if (scrubrates[i].scrubval == scrubval) {
39094443 253 retval = scrubrates[i].bandwidth;
2bc65418
DT
254 break;
255 }
256 }
39094443 257 return retval;
2bc65418
DT
258}
259
6775763a 260/*
7f19bf75
BP
261 * returns true if the SysAddr given by sys_addr matches the
262 * DRAM base/limit associated with node_id
6775763a 263 */
d1ea71cd 264static bool base_limit_match(struct amd64_pvt *pvt, u64 sys_addr, u8 nid)
6775763a 265{
7f19bf75 266 u64 addr;
6775763a
DT
267
268 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
269 * all ones if the most significant implemented address bit is 1.
270 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
271 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
272 * Application Programming.
273 */
274 addr = sys_addr & 0x000000ffffffffffull;
275
7f19bf75
BP
276 return ((addr >= get_dram_base(pvt, nid)) &&
277 (addr <= get_dram_limit(pvt, nid)));
6775763a
DT
278}
279
280/*
281 * Attempt to map a SysAddr to a node. On success, return a pointer to the
282 * mem_ctl_info structure for the node that the SysAddr maps to.
283 *
284 * On failure, return NULL.
285 */
286static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
287 u64 sys_addr)
288{
289 struct amd64_pvt *pvt;
c7e5301a 290 u8 node_id;
6775763a
DT
291 u32 intlv_en, bits;
292
293 /*
294 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
295 * 3.4.4.2) registers to map the SysAddr to a node ID.
296 */
297 pvt = mci->pvt_info;
298
299 /*
300 * The value of this field should be the same for all DRAM Base
301 * registers. Therefore we arbitrarily choose to read it from the
302 * register for node 0.
303 */
7f19bf75 304 intlv_en = dram_intlv_en(pvt, 0);
6775763a
DT
305
306 if (intlv_en == 0) {
7f19bf75 307 for (node_id = 0; node_id < DRAM_RANGES; node_id++) {
d1ea71cd 308 if (base_limit_match(pvt, sys_addr, node_id))
8edc5445 309 goto found;
6775763a 310 }
8edc5445 311 goto err_no_match;
6775763a
DT
312 }
313
72f158fe
BP
314 if (unlikely((intlv_en != 0x01) &&
315 (intlv_en != 0x03) &&
316 (intlv_en != 0x07))) {
24f9a7fe 317 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
6775763a
DT
318 return NULL;
319 }
320
321 bits = (((u32) sys_addr) >> 12) & intlv_en;
322
323 for (node_id = 0; ; ) {
7f19bf75 324 if ((dram_intlv_sel(pvt, node_id) & intlv_en) == bits)
6775763a
DT
325 break; /* intlv_sel field matches */
326
7f19bf75 327 if (++node_id >= DRAM_RANGES)
6775763a
DT
328 goto err_no_match;
329 }
330
331 /* sanity test for sys_addr */
d1ea71cd 332 if (unlikely(!base_limit_match(pvt, sys_addr, node_id))) {
24f9a7fe
BP
333 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
334 "range for node %d with node interleaving enabled.\n",
335 __func__, sys_addr, node_id);
6775763a
DT
336 return NULL;
337 }
338
339found:
b487c33e 340 return edac_mc_find((int)node_id);
6775763a
DT
341
342err_no_match:
956b9ba1
JP
343 edac_dbg(2, "sys_addr 0x%lx doesn't match any node\n",
344 (unsigned long)sys_addr);
6775763a
DT
345
346 return NULL;
347}
e2ce7255
DT
348
349/*
11c75ead
BP
350 * compute the CS base address of the @csrow on the DRAM controller @dct.
351 * For details see F2x[5C:40] in the processor's BKDG
e2ce7255 352 */
11c75ead
BP
353static void get_cs_base_and_mask(struct amd64_pvt *pvt, int csrow, u8 dct,
354 u64 *base, u64 *mask)
e2ce7255 355{
11c75ead
BP
356 u64 csbase, csmask, base_bits, mask_bits;
357 u8 addr_shift;
e2ce7255 358
18b94f66 359 if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
11c75ead
BP
360 csbase = pvt->csels[dct].csbases[csrow];
361 csmask = pvt->csels[dct].csmasks[csrow];
10ef6b0d
CG
362 base_bits = GENMASK_ULL(31, 21) | GENMASK_ULL(15, 9);
363 mask_bits = GENMASK_ULL(29, 21) | GENMASK_ULL(15, 9);
11c75ead 364 addr_shift = 4;
94c1acf2
AG
365
366 /*
18b94f66
AG
367 * F16h and F15h, models 30h and later need two addr_shift values:
368 * 8 for high and 6 for low (cf. F16h BKDG).
369 */
370 } else if (pvt->fam == 0x16 ||
371 (pvt->fam == 0x15 && pvt->model >= 0x30)) {
94c1acf2
AG
372 csbase = pvt->csels[dct].csbases[csrow];
373 csmask = pvt->csels[dct].csmasks[csrow >> 1];
374
10ef6b0d
CG
375 *base = (csbase & GENMASK_ULL(15, 5)) << 6;
376 *base |= (csbase & GENMASK_ULL(30, 19)) << 8;
94c1acf2
AG
377
378 *mask = ~0ULL;
379 /* poke holes for the csmask */
10ef6b0d
CG
380 *mask &= ~((GENMASK_ULL(15, 5) << 6) |
381 (GENMASK_ULL(30, 19) << 8));
94c1acf2 382
10ef6b0d
CG
383 *mask |= (csmask & GENMASK_ULL(15, 5)) << 6;
384 *mask |= (csmask & GENMASK_ULL(30, 19)) << 8;
94c1acf2
AG
385
386 return;
11c75ead
BP
387 } else {
388 csbase = pvt->csels[dct].csbases[csrow];
389 csmask = pvt->csels[dct].csmasks[csrow >> 1];
390 addr_shift = 8;
e2ce7255 391
a4b4bedc 392 if (pvt->fam == 0x15)
10ef6b0d
CG
393 base_bits = mask_bits =
394 GENMASK_ULL(30,19) | GENMASK_ULL(13,5);
11c75ead 395 else
10ef6b0d
CG
396 base_bits = mask_bits =
397 GENMASK_ULL(28,19) | GENMASK_ULL(13,5);
11c75ead 398 }
e2ce7255 399
11c75ead 400 *base = (csbase & base_bits) << addr_shift;
e2ce7255 401
11c75ead
BP
402 *mask = ~0ULL;
403 /* poke holes for the csmask */
404 *mask &= ~(mask_bits << addr_shift);
405 /* OR them in */
406 *mask |= (csmask & mask_bits) << addr_shift;
e2ce7255
DT
407}
408
11c75ead
BP
409#define for_each_chip_select(i, dct, pvt) \
410 for (i = 0; i < pvt->csels[dct].b_cnt; i++)
411
614ec9d8
BP
412#define chip_select_base(i, dct, pvt) \
413 pvt->csels[dct].csbases[i]
414
11c75ead
BP
415#define for_each_chip_select_mask(i, dct, pvt) \
416 for (i = 0; i < pvt->csels[dct].m_cnt; i++)
417
e2ce7255
DT
418/*
419 * @input_addr is an InputAddr associated with the node given by mci. Return the
420 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
421 */
422static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
423{
424 struct amd64_pvt *pvt;
425 int csrow;
426 u64 base, mask;
427
428 pvt = mci->pvt_info;
429
11c75ead
BP
430 for_each_chip_select(csrow, 0, pvt) {
431 if (!csrow_enabled(csrow, 0, pvt))
e2ce7255
DT
432 continue;
433
11c75ead
BP
434 get_cs_base_and_mask(pvt, csrow, 0, &base, &mask);
435
436 mask = ~mask;
e2ce7255
DT
437
438 if ((input_addr & mask) == (base & mask)) {
956b9ba1
JP
439 edac_dbg(2, "InputAddr 0x%lx matches csrow %d (node %d)\n",
440 (unsigned long)input_addr, csrow,
441 pvt->mc_node_id);
e2ce7255
DT
442
443 return csrow;
444 }
445 }
956b9ba1
JP
446 edac_dbg(2, "no matching csrow for InputAddr 0x%lx (MC node %d)\n",
447 (unsigned long)input_addr, pvt->mc_node_id);
e2ce7255
DT
448
449 return -1;
450}
451
e2ce7255
DT
452/*
453 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
454 * for the node represented by mci. Info is passed back in *hole_base,
455 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
456 * info is invalid. Info may be invalid for either of the following reasons:
457 *
458 * - The revision of the node is not E or greater. In this case, the DRAM Hole
459 * Address Register does not exist.
460 *
461 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
462 * indicating that its contents are not valid.
463 *
464 * The values passed back in *hole_base, *hole_offset, and *hole_size are
465 * complete 32-bit values despite the fact that the bitfields in the DHAR
466 * only represent bits 31-24 of the base and offset values.
467 */
468int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
469 u64 *hole_offset, u64 *hole_size)
470{
471 struct amd64_pvt *pvt = mci->pvt_info;
e2ce7255
DT
472
473 /* only revE and later have the DRAM Hole Address Register */
a4b4bedc 474 if (pvt->fam == 0xf && pvt->ext_model < K8_REV_E) {
956b9ba1
JP
475 edac_dbg(1, " revision %d for node %d does not support DHAR\n",
476 pvt->ext_model, pvt->mc_node_id);
e2ce7255
DT
477 return 1;
478 }
479
bc21fa57 480 /* valid for Fam10h and above */
a4b4bedc 481 if (pvt->fam >= 0x10 && !dhar_mem_hoist_valid(pvt)) {
956b9ba1 482 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this system\n");
e2ce7255
DT
483 return 1;
484 }
485
c8e518d5 486 if (!dhar_valid(pvt)) {
956b9ba1
JP
487 edac_dbg(1, " Dram Memory Hoisting is DISABLED on this node %d\n",
488 pvt->mc_node_id);
e2ce7255
DT
489 return 1;
490 }
491
492 /* This node has Memory Hoisting */
493
494 /* +------------------+--------------------+--------------------+-----
495 * | memory | DRAM hole | relocated |
496 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
497 * | | | DRAM hole |
498 * | | | [0x100000000, |
499 * | | | (0x100000000+ |
500 * | | | (0xffffffff-x))] |
501 * +------------------+--------------------+--------------------+-----
502 *
503 * Above is a diagram of physical memory showing the DRAM hole and the
504 * relocated addresses from the DRAM hole. As shown, the DRAM hole
505 * starts at address x (the base address) and extends through address
506 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
507 * addresses in the hole so that they start at 0x100000000.
508 */
509
1f31677e
BP
510 *hole_base = dhar_base(pvt);
511 *hole_size = (1ULL << 32) - *hole_base;
e2ce7255 512
a4b4bedc
BP
513 *hole_offset = (pvt->fam > 0xf) ? f10_dhar_offset(pvt)
514 : k8_dhar_offset(pvt);
e2ce7255 515
956b9ba1
JP
516 edac_dbg(1, " DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
517 pvt->mc_node_id, (unsigned long)*hole_base,
518 (unsigned long)*hole_offset, (unsigned long)*hole_size);
e2ce7255
DT
519
520 return 0;
521}
522EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
523
93c2df58
DT
524/*
525 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
526 * assumed that sys_addr maps to the node given by mci.
527 *
528 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
529 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
530 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
531 * then it is also involved in translating a SysAddr to a DramAddr. Sections
532 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
533 * These parts of the documentation are unclear. I interpret them as follows:
534 *
535 * When node n receives a SysAddr, it processes the SysAddr as follows:
536 *
537 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
538 * Limit registers for node n. If the SysAddr is not within the range
539 * specified by the base and limit values, then node n ignores the Sysaddr
540 * (since it does not map to node n). Otherwise continue to step 2 below.
541 *
542 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
543 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
544 * the range of relocated addresses (starting at 0x100000000) from the DRAM
545 * hole. If not, skip to step 3 below. Else get the value of the
546 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
547 * offset defined by this value from the SysAddr.
548 *
549 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
550 * Base register for node n. To obtain the DramAddr, subtract the base
551 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
552 */
553static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
554{
7f19bf75 555 struct amd64_pvt *pvt = mci->pvt_info;
93c2df58 556 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
1f31677e 557 int ret;
93c2df58 558
7f19bf75 559 dram_base = get_dram_base(pvt, pvt->mc_node_id);
93c2df58
DT
560
561 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
562 &hole_size);
563 if (!ret) {
1f31677e
BP
564 if ((sys_addr >= (1ULL << 32)) &&
565 (sys_addr < ((1ULL << 32) + hole_size))) {
93c2df58
DT
566 /* use DHAR to translate SysAddr to DramAddr */
567 dram_addr = sys_addr - hole_offset;
568
956b9ba1
JP
569 edac_dbg(2, "using DHAR to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
570 (unsigned long)sys_addr,
571 (unsigned long)dram_addr);
93c2df58
DT
572
573 return dram_addr;
574 }
575 }
576
577 /*
578 * Translate the SysAddr to a DramAddr as shown near the start of
579 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
580 * only deals with 40-bit values. Therefore we discard bits 63-40 of
581 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
582 * discard are all 1s. Otherwise the bits we discard are all 0s. See
583 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
584 * Programmer's Manual Volume 1 Application Programming.
585 */
10ef6b0d 586 dram_addr = (sys_addr & GENMASK_ULL(39, 0)) - dram_base;
93c2df58 587
956b9ba1
JP
588 edac_dbg(2, "using DRAM Base register to translate SysAddr 0x%lx to DramAddr 0x%lx\n",
589 (unsigned long)sys_addr, (unsigned long)dram_addr);
93c2df58
DT
590 return dram_addr;
591}
592
593/*
594 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
595 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
596 * for node interleaving.
597 */
598static int num_node_interleave_bits(unsigned intlv_en)
599{
600 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
601 int n;
602
603 BUG_ON(intlv_en > 7);
604 n = intlv_shift_table[intlv_en];
605 return n;
606}
607
608/* Translate the DramAddr given by @dram_addr to an InputAddr. */
609static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
610{
611 struct amd64_pvt *pvt;
612 int intlv_shift;
613 u64 input_addr;
614
615 pvt = mci->pvt_info;
616
617 /*
618 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
619 * concerning translating a DramAddr to an InputAddr.
620 */
7f19bf75 621 intlv_shift = num_node_interleave_bits(dram_intlv_en(pvt, 0));
10ef6b0d 622 input_addr = ((dram_addr >> intlv_shift) & GENMASK_ULL(35, 12)) +
f678b8cc 623 (dram_addr & 0xfff);
93c2df58 624
956b9ba1
JP
625 edac_dbg(2, " Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
626 intlv_shift, (unsigned long)dram_addr,
627 (unsigned long)input_addr);
93c2df58
DT
628
629 return input_addr;
630}
631
632/*
633 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
634 * assumed that @sys_addr maps to the node given by mci.
635 */
636static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
637{
638 u64 input_addr;
639
640 input_addr =
641 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
642
c19ca6cb 643 edac_dbg(2, "SysAddr 0x%lx translates to InputAddr 0x%lx\n",
956b9ba1 644 (unsigned long)sys_addr, (unsigned long)input_addr);
93c2df58
DT
645
646 return input_addr;
647}
648
93c2df58
DT
649/* Map the Error address to a PAGE and PAGE OFFSET. */
650static inline void error_address_to_page_and_offset(u64 error_address,
33ca0643 651 struct err_info *err)
93c2df58 652{
33ca0643
BP
653 err->page = (u32) (error_address >> PAGE_SHIFT);
654 err->offset = ((u32) error_address) & ~PAGE_MASK;
93c2df58
DT
655}
656
657/*
658 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
659 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
660 * of a node that detected an ECC memory error. mci represents the node that
661 * the error address maps to (possibly different from the node that detected
662 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
663 * error.
664 */
665static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
666{
667 int csrow;
668
669 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
670
671 if (csrow == -1)
24f9a7fe
BP
672 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
673 "address 0x%lx\n", (unsigned long)sys_addr);
93c2df58
DT
674 return csrow;
675}
e2ce7255 676
bfc04aec 677static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
2da11654 678
2da11654
DT
679/*
680 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
681 * are ECC capable.
682 */
d1ea71cd 683static unsigned long determine_edac_cap(struct amd64_pvt *pvt)
2da11654 684{
cb328507 685 u8 bit;
1f6189ed 686 unsigned long edac_cap = EDAC_FLAG_NONE;
2da11654 687
a4b4bedc 688 bit = (pvt->fam > 0xf || pvt->ext_model >= K8_REV_F)
2da11654
DT
689 ? 19
690 : 17;
691
584fcff4 692 if (pvt->dclr0 & BIT(bit))
2da11654
DT
693 edac_cap = EDAC_FLAG_SECDED;
694
695 return edac_cap;
696}
697
d1ea71cd 698static void debug_display_dimm_sizes(struct amd64_pvt *, u8);
2da11654 699
d1ea71cd 700static void debug_dump_dramcfg_low(struct amd64_pvt *pvt, u32 dclr, int chan)
68798e17 701{
956b9ba1 702 edac_dbg(1, "F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
68798e17 703
a597d2a5
AG
704 if (pvt->dram_type == MEM_LRDDR3) {
705 u32 dcsm = pvt->csels[chan].csmasks[0];
706 /*
707 * It's assumed all LRDIMMs in a DCT are going to be of
708 * same 'type' until proven otherwise. So, use a cs
709 * value of '0' here to get dcsm value.
710 */
711 edac_dbg(1, " LRDIMM %dx rank multiply\n", (dcsm & 0x3));
712 }
713
714 edac_dbg(1, "All DIMMs support ECC:%s\n",
715 (dclr & BIT(19)) ? "yes" : "no");
716
68798e17 717
956b9ba1
JP
718 edac_dbg(1, " PAR/ERR parity: %s\n",
719 (dclr & BIT(8)) ? "enabled" : "disabled");
68798e17 720
a4b4bedc 721 if (pvt->fam == 0x10)
956b9ba1
JP
722 edac_dbg(1, " DCT 128bit mode width: %s\n",
723 (dclr & BIT(11)) ? "128b" : "64b");
68798e17 724
956b9ba1
JP
725 edac_dbg(1, " x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
726 (dclr & BIT(12)) ? "yes" : "no",
727 (dclr & BIT(13)) ? "yes" : "no",
728 (dclr & BIT(14)) ? "yes" : "no",
729 (dclr & BIT(15)) ? "yes" : "no");
68798e17
BP
730}
731
2da11654 732/* Display and decode various NB registers for debug purposes. */
b2b0c605 733static void dump_misc_regs(struct amd64_pvt *pvt)
2da11654 734{
956b9ba1 735 edac_dbg(1, "F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
68798e17 736
956b9ba1
JP
737 edac_dbg(1, " NB two channel DRAM capable: %s\n",
738 (pvt->nbcap & NBCAP_DCT_DUAL) ? "yes" : "no");
2da11654 739
956b9ba1
JP
740 edac_dbg(1, " ECC capable: %s, ChipKill ECC capable: %s\n",
741 (pvt->nbcap & NBCAP_SECDED) ? "yes" : "no",
742 (pvt->nbcap & NBCAP_CHIPKILL) ? "yes" : "no");
68798e17 743
d1ea71cd 744 debug_dump_dramcfg_low(pvt, pvt->dclr0, 0);
2da11654 745
956b9ba1 746 edac_dbg(1, "F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
2da11654 747
956b9ba1
JP
748 edac_dbg(1, "F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, offset: 0x%08x\n",
749 pvt->dhar, dhar_base(pvt),
a4b4bedc
BP
750 (pvt->fam == 0xf) ? k8_dhar_offset(pvt)
751 : f10_dhar_offset(pvt));
2da11654 752
956b9ba1 753 edac_dbg(1, " DramHoleValid: %s\n", dhar_valid(pvt) ? "yes" : "no");
2da11654 754
d1ea71cd 755 debug_display_dimm_sizes(pvt, 0);
4d796364 756
8de1d91e 757 /* everything below this point is Fam10h and above */
a4b4bedc 758 if (pvt->fam == 0xf)
2da11654 759 return;
4d796364 760
d1ea71cd 761 debug_display_dimm_sizes(pvt, 1);
2da11654 762
a3b7db09 763 amd64_info("using %s syndromes.\n", ((pvt->ecc_sym_sz == 8) ? "x8" : "x4"));
ad6a32e9 764
8de1d91e 765 /* Only if NOT ganged does dclr1 have valid info */
68798e17 766 if (!dct_ganging_enabled(pvt))
d1ea71cd 767 debug_dump_dramcfg_low(pvt, pvt->dclr1, 1);
2da11654
DT
768}
769
94be4bff 770/*
18b94f66 771 * See BKDG, F2x[1,0][5C:40], F2[1,0][6C:60]
94be4bff 772 */
11c75ead 773static void prep_chip_selects(struct amd64_pvt *pvt)
94be4bff 774{
18b94f66 775 if (pvt->fam == 0xf && pvt->ext_model < K8_REV_F) {
11c75ead
BP
776 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
777 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 8;
a597d2a5 778 } else if (pvt->fam == 0x15 && pvt->model == 0x30) {
18b94f66
AG
779 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 4;
780 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 2;
9d858bb1 781 } else {
11c75ead
BP
782 pvt->csels[0].b_cnt = pvt->csels[1].b_cnt = 8;
783 pvt->csels[0].m_cnt = pvt->csels[1].m_cnt = 4;
94be4bff
DT
784 }
785}
786
787/*
11c75ead 788 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask registers
94be4bff 789 */
b2b0c605 790static void read_dct_base_mask(struct amd64_pvt *pvt)
94be4bff 791{
11c75ead 792 int cs;
94be4bff 793
11c75ead 794 prep_chip_selects(pvt);
94be4bff 795
11c75ead 796 for_each_chip_select(cs, 0, pvt) {
71d2a32e
BP
797 int reg0 = DCSB0 + (cs * 4);
798 int reg1 = DCSB1 + (cs * 4);
11c75ead
BP
799 u32 *base0 = &pvt->csels[0].csbases[cs];
800 u32 *base1 = &pvt->csels[1].csbases[cs];
b2b0c605 801
7981a28f 802 if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, base0))
956b9ba1
JP
803 edac_dbg(0, " DCSB0[%d]=0x%08x reg: F2x%x\n",
804 cs, *base0, reg0);
94be4bff 805
7981a28f 806 if (pvt->fam == 0xf)
11c75ead 807 continue;
b2b0c605 808
7981a28f 809 if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, base1))
956b9ba1 810 edac_dbg(0, " DCSB1[%d]=0x%08x reg: F2x%x\n",
7981a28f
AG
811 cs, *base1, (pvt->fam == 0x10) ? reg1
812 : reg0);
94be4bff
DT
813 }
814
11c75ead 815 for_each_chip_select_mask(cs, 0, pvt) {
71d2a32e
BP
816 int reg0 = DCSM0 + (cs * 4);
817 int reg1 = DCSM1 + (cs * 4);
11c75ead
BP
818 u32 *mask0 = &pvt->csels[0].csmasks[cs];
819 u32 *mask1 = &pvt->csels[1].csmasks[cs];
b2b0c605 820
7981a28f 821 if (!amd64_read_dct_pci_cfg(pvt, 0, reg0, mask0))
956b9ba1
JP
822 edac_dbg(0, " DCSM0[%d]=0x%08x reg: F2x%x\n",
823 cs, *mask0, reg0);
94be4bff 824
7981a28f 825 if (pvt->fam == 0xf)
11c75ead 826 continue;
b2b0c605 827
7981a28f 828 if (!amd64_read_dct_pci_cfg(pvt, 1, reg0, mask1))
956b9ba1 829 edac_dbg(0, " DCSM1[%d]=0x%08x reg: F2x%x\n",
7981a28f
AG
830 cs, *mask1, (pvt->fam == 0x10) ? reg1
831 : reg0);
94be4bff
DT
832 }
833}
834
a597d2a5 835static void determine_memory_type(struct amd64_pvt *pvt)
94be4bff 836{
a597d2a5 837 u32 dram_ctrl, dcsm;
94be4bff 838
a597d2a5
AG
839 switch (pvt->fam) {
840 case 0xf:
841 if (pvt->ext_model >= K8_REV_F)
842 goto ddr3;
843
844 pvt->dram_type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
845 return;
846
847 case 0x10:
6b4c0bde 848 if (pvt->dchr0 & DDR3_MODE)
a597d2a5
AG
849 goto ddr3;
850
851 pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
852 return;
853
854 case 0x15:
855 if (pvt->model < 0x60)
856 goto ddr3;
857
858 /*
859 * Model 0x60h needs special handling:
860 *
861 * We use a Chip Select value of '0' to obtain dcsm.
862 * Theoretically, it is possible to populate LRDIMMs of different
863 * 'Rank' value on a DCT. But this is not the common case. So,
864 * it's reasonable to assume all DIMMs are going to be of same
865 * 'type' until proven otherwise.
866 */
867 amd64_read_dct_pci_cfg(pvt, 0, DRAM_CONTROL, &dram_ctrl);
868 dcsm = pvt->csels[0].csmasks[0];
869
870 if (((dram_ctrl >> 8) & 0x7) == 0x2)
871 pvt->dram_type = MEM_DDR4;
872 else if (pvt->dclr0 & BIT(16))
873 pvt->dram_type = MEM_DDR3;
874 else if (dcsm & 0x3)
875 pvt->dram_type = MEM_LRDDR3;
6b4c0bde 876 else
a597d2a5 877 pvt->dram_type = MEM_RDDR3;
94be4bff 878
a597d2a5
AG
879 return;
880
881 case 0x16:
882 goto ddr3;
883
884 default:
885 WARN(1, KERN_ERR "%s: Family??? 0x%x\n", __func__, pvt->fam);
886 pvt->dram_type = MEM_EMPTY;
887 }
888 return;
94be4bff 889
a597d2a5
AG
890ddr3:
891 pvt->dram_type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
94be4bff
DT
892}
893
cb328507 894/* Get the number of DCT channels the memory controller is using. */
ddff876d
DT
895static int k8_early_channel_count(struct amd64_pvt *pvt)
896{
cb328507 897 int flag;
ddff876d 898
9f56da0e 899 if (pvt->ext_model >= K8_REV_F)
ddff876d 900 /* RevF (NPT) and later */
41d8bfab 901 flag = pvt->dclr0 & WIDTH_128;
9f56da0e 902 else
ddff876d
DT
903 /* RevE and earlier */
904 flag = pvt->dclr0 & REVE_WIDTH_128;
ddff876d
DT
905
906 /* not used */
907 pvt->dclr1 = 0;
908
909 return (flag) ? 2 : 1;
910}
911
70046624 912/* On F10h and later ErrAddr is MC4_ADDR[47:1] */
a4b4bedc 913static u64 get_error_address(struct amd64_pvt *pvt, struct mce *m)
ddff876d 914{
2ec591ac
BP
915 u16 mce_nid = amd_get_nb_id(m->extcpu);
916 struct mem_ctl_info *mci;
70046624
BP
917 u8 start_bit = 1;
918 u8 end_bit = 47;
2ec591ac
BP
919 u64 addr;
920
921 mci = edac_mc_find(mce_nid);
922 if (!mci)
923 return 0;
924
925 pvt = mci->pvt_info;
70046624 926
a4b4bedc 927 if (pvt->fam == 0xf) {
70046624
BP
928 start_bit = 3;
929 end_bit = 39;
930 }
931
10ef6b0d 932 addr = m->addr & GENMASK_ULL(end_bit, start_bit);
c1ae6830
BP
933
934 /*
935 * Erratum 637 workaround
936 */
a4b4bedc 937 if (pvt->fam == 0x15) {
c1ae6830
BP
938 u64 cc6_base, tmp_addr;
939 u32 tmp;
8b84c8df 940 u8 intlv_en;
c1ae6830 941
10ef6b0d 942 if ((addr & GENMASK_ULL(47, 24)) >> 24 != 0x00fdf7)
c1ae6830
BP
943 return addr;
944
c1ae6830
BP
945
946 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_LIM, &tmp);
947 intlv_en = tmp >> 21 & 0x7;
948
949 /* add [47:27] + 3 trailing bits */
10ef6b0d 950 cc6_base = (tmp & GENMASK_ULL(20, 0)) << 3;
c1ae6830
BP
951
952 /* reverse and add DramIntlvEn */
953 cc6_base |= intlv_en ^ 0x7;
954
955 /* pin at [47:24] */
956 cc6_base <<= 24;
957
958 if (!intlv_en)
10ef6b0d 959 return cc6_base | (addr & GENMASK_ULL(23, 0));
c1ae6830
BP
960
961 amd64_read_pci_cfg(pvt->F1, DRAM_LOCAL_NODE_BASE, &tmp);
962
963 /* faster log2 */
10ef6b0d 964 tmp_addr = (addr & GENMASK_ULL(23, 12)) << __fls(intlv_en + 1);
c1ae6830
BP
965
966 /* OR DramIntlvSel into bits [14:12] */
10ef6b0d 967 tmp_addr |= (tmp & GENMASK_ULL(23, 21)) >> 9;
c1ae6830
BP
968
969 /* add remaining [11:0] bits from original MC4_ADDR */
10ef6b0d 970 tmp_addr |= addr & GENMASK_ULL(11, 0);
c1ae6830
BP
971
972 return cc6_base | tmp_addr;
973 }
974
975 return addr;
ddff876d
DT
976}
977
e2c0bffe
DB
978static struct pci_dev *pci_get_related_function(unsigned int vendor,
979 unsigned int device,
980 struct pci_dev *related)
981{
982 struct pci_dev *dev = NULL;
983
984 while ((dev = pci_get_device(vendor, device, dev))) {
985 if (pci_domain_nr(dev->bus) == pci_domain_nr(related->bus) &&
986 (dev->bus->number == related->bus->number) &&
987 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
988 break;
989 }
990
991 return dev;
992}
993
7f19bf75 994static void read_dram_base_limit_regs(struct amd64_pvt *pvt, unsigned range)
ddff876d 995{
e2c0bffe 996 struct amd_northbridge *nb;
18b94f66
AG
997 struct pci_dev *f1 = NULL;
998 unsigned int pci_func;
71d2a32e 999 int off = range << 3;
e2c0bffe 1000 u32 llim;
ddff876d 1001
7f19bf75
BP
1002 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_LO + off, &pvt->ranges[range].base.lo);
1003 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_LO + off, &pvt->ranges[range].lim.lo);
ddff876d 1004
18b94f66 1005 if (pvt->fam == 0xf)
7f19bf75 1006 return;
ddff876d 1007
7f19bf75
BP
1008 if (!dram_rw(pvt, range))
1009 return;
ddff876d 1010
7f19bf75
BP
1011 amd64_read_pci_cfg(pvt->F1, DRAM_BASE_HI + off, &pvt->ranges[range].base.hi);
1012 amd64_read_pci_cfg(pvt->F1, DRAM_LIMIT_HI + off, &pvt->ranges[range].lim.hi);
f08e457c 1013
e2c0bffe 1014 /* F15h: factor in CC6 save area by reading dst node's limit reg */
18b94f66 1015 if (pvt->fam != 0x15)
e2c0bffe 1016 return;
f08e457c 1017
e2c0bffe
DB
1018 nb = node_to_amd_nb(dram_dst_node(pvt, range));
1019 if (WARN_ON(!nb))
1020 return;
f08e457c 1021
a597d2a5
AG
1022 if (pvt->model == 0x60)
1023 pci_func = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1;
1024 else if (pvt->model == 0x30)
1025 pci_func = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1;
1026 else
1027 pci_func = PCI_DEVICE_ID_AMD_15H_NB_F1;
18b94f66
AG
1028
1029 f1 = pci_get_related_function(nb->misc->vendor, pci_func, nb->misc);
e2c0bffe
DB
1030 if (WARN_ON(!f1))
1031 return;
f08e457c 1032
e2c0bffe 1033 amd64_read_pci_cfg(f1, DRAM_LOCAL_NODE_LIM, &llim);
f08e457c 1034
10ef6b0d 1035 pvt->ranges[range].lim.lo &= GENMASK_ULL(15, 0);
f08e457c 1036
e2c0bffe
DB
1037 /* {[39:27],111b} */
1038 pvt->ranges[range].lim.lo |= ((llim & 0x1fff) << 3 | 0x7) << 16;
f08e457c 1039
10ef6b0d 1040 pvt->ranges[range].lim.hi &= GENMASK_ULL(7, 0);
f08e457c 1041
e2c0bffe
DB
1042 /* [47:40] */
1043 pvt->ranges[range].lim.hi |= llim >> 13;
1044
1045 pci_dev_put(f1);
ddff876d
DT
1046}
1047
f192c7b1 1048static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
33ca0643 1049 struct err_info *err)
ddff876d 1050{
f192c7b1 1051 struct amd64_pvt *pvt = mci->pvt_info;
ddff876d 1052
33ca0643 1053 error_address_to_page_and_offset(sys_addr, err);
ab5a503c
MCC
1054
1055 /*
1056 * Find out which node the error address belongs to. This may be
1057 * different from the node that detected the error.
1058 */
33ca0643
BP
1059 err->src_mci = find_mc_by_sys_addr(mci, sys_addr);
1060 if (!err->src_mci) {
ab5a503c
MCC
1061 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
1062 (unsigned long)sys_addr);
33ca0643 1063 err->err_code = ERR_NODE;
ab5a503c
MCC
1064 return;
1065 }
1066
1067 /* Now map the sys_addr to a CSROW */
33ca0643
BP
1068 err->csrow = sys_addr_to_csrow(err->src_mci, sys_addr);
1069 if (err->csrow < 0) {
1070 err->err_code = ERR_CSROW;
ab5a503c
MCC
1071 return;
1072 }
1073
ddff876d 1074 /* CHIPKILL enabled */
f192c7b1 1075 if (pvt->nbcfg & NBCFG_CHIPKILL) {
33ca0643
BP
1076 err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
1077 if (err->channel < 0) {
ddff876d
DT
1078 /*
1079 * Syndrome didn't map, so we don't know which of the
1080 * 2 DIMMs is in error. So we need to ID 'both' of them
1081 * as suspect.
1082 */
33ca0643 1083 amd64_mc_warn(err->src_mci, "unknown syndrome 0x%04x - "
ab5a503c 1084 "possible error reporting race\n",
33ca0643
BP
1085 err->syndrome);
1086 err->err_code = ERR_CHANNEL;
ddff876d
DT
1087 return;
1088 }
1089 } else {
1090 /*
1091 * non-chipkill ecc mode
1092 *
1093 * The k8 documentation is unclear about how to determine the
1094 * channel number when using non-chipkill memory. This method
1095 * was obtained from email communication with someone at AMD.
1096 * (Wish the email was placed in this comment - norsk)
1097 */
33ca0643 1098 err->channel = ((sys_addr & BIT(3)) != 0);
ddff876d 1099 }
ddff876d
DT
1100}
1101
41d8bfab 1102static int ddr2_cs_size(unsigned i, bool dct_width)
ddff876d 1103{
41d8bfab 1104 unsigned shift = 0;
ddff876d 1105
41d8bfab
BP
1106 if (i <= 2)
1107 shift = i;
1108 else if (!(i & 0x1))
1109 shift = i >> 1;
1433eb99 1110 else
41d8bfab 1111 shift = (i + 1) >> 1;
ddff876d 1112
41d8bfab
BP
1113 return 128 << (shift + !!dct_width);
1114}
1115
1116static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
a597d2a5 1117 unsigned cs_mode, int cs_mask_nr)
41d8bfab
BP
1118{
1119 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1120
1121 if (pvt->ext_model >= K8_REV_F) {
1122 WARN_ON(cs_mode > 11);
1123 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1124 }
1125 else if (pvt->ext_model >= K8_REV_D) {
11b0a314 1126 unsigned diff;
41d8bfab
BP
1127 WARN_ON(cs_mode > 10);
1128
11b0a314
BP
1129 /*
1130 * the below calculation, besides trying to win an obfuscated C
1131 * contest, maps cs_mode values to DIMM chip select sizes. The
1132 * mappings are:
1133 *
1134 * cs_mode CS size (mb)
1135 * ======= ============
1136 * 0 32
1137 * 1 64
1138 * 2 128
1139 * 3 128
1140 * 4 256
1141 * 5 512
1142 * 6 256
1143 * 7 512
1144 * 8 1024
1145 * 9 1024
1146 * 10 2048
1147 *
1148 * Basically, it calculates a value with which to shift the
1149 * smallest CS size of 32MB.
1150 *
1151 * ddr[23]_cs_size have a similar purpose.
1152 */
1153 diff = cs_mode/3 + (unsigned)(cs_mode > 5);
1154
1155 return 32 << (cs_mode - diff);
41d8bfab
BP
1156 }
1157 else {
1158 WARN_ON(cs_mode > 6);
1159 return 32 << cs_mode;
1160 }
ddff876d
DT
1161}
1162
1afd3c98
DT
1163/*
1164 * Get the number of DCT channels in use.
1165 *
1166 * Return:
1167 * number of Memory Channels in operation
1168 * Pass back:
1169 * contents of the DCL0_LOW register
1170 */
7d20d14d 1171static int f1x_early_channel_count(struct amd64_pvt *pvt)
1afd3c98 1172{
6ba5dcdc 1173 int i, j, channels = 0;
1afd3c98 1174
7d20d14d 1175 /* On F10h, if we are in 128 bit mode, then we are using 2 channels */
a4b4bedc 1176 if (pvt->fam == 0x10 && (pvt->dclr0 & WIDTH_128))
7d20d14d 1177 return 2;
1afd3c98
DT
1178
1179 /*
d16149e8
BP
1180 * Need to check if in unganged mode: In such, there are 2 channels,
1181 * but they are not in 128 bit mode and thus the above 'dclr0' status
1182 * bit will be OFF.
1afd3c98
DT
1183 *
1184 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1185 * their CSEnable bit on. If so, then SINGLE DIMM case.
1186 */
956b9ba1 1187 edac_dbg(0, "Data width is not 128 bits - need more decoding\n");
ddff876d 1188
1afd3c98
DT
1189 /*
1190 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1191 * is more than just one DIMM present in unganged mode. Need to check
1192 * both controllers since DIMMs can be placed in either one.
1193 */
525a1b20
BP
1194 for (i = 0; i < 2; i++) {
1195 u32 dbam = (i ? pvt->dbam1 : pvt->dbam0);
1afd3c98 1196
57a30854
WW
1197 for (j = 0; j < 4; j++) {
1198 if (DBAM_DIMM(j, dbam) > 0) {
1199 channels++;
1200 break;
1201 }
1202 }
1afd3c98
DT
1203 }
1204
d16149e8
BP
1205 if (channels > 2)
1206 channels = 2;
1207
24f9a7fe 1208 amd64_info("MCT channel count: %d\n", channels);
1afd3c98
DT
1209
1210 return channels;
1afd3c98
DT
1211}
1212
41d8bfab 1213static int ddr3_cs_size(unsigned i, bool dct_width)
1afd3c98 1214{
41d8bfab
BP
1215 unsigned shift = 0;
1216 int cs_size = 0;
1217
1218 if (i == 0 || i == 3 || i == 4)
1219 cs_size = -1;
1220 else if (i <= 2)
1221 shift = i;
1222 else if (i == 12)
1223 shift = 7;
1224 else if (!(i & 0x1))
1225 shift = i >> 1;
1226 else
1227 shift = (i + 1) >> 1;
1228
1229 if (cs_size != -1)
1230 cs_size = (128 * (1 << !!dct_width)) << shift;
1231
1232 return cs_size;
1233}
1234
a597d2a5
AG
1235static int ddr3_lrdimm_cs_size(unsigned i, unsigned rank_multiply)
1236{
1237 unsigned shift = 0;
1238 int cs_size = 0;
1239
1240 if (i < 4 || i == 6)
1241 cs_size = -1;
1242 else if (i == 12)
1243 shift = 7;
1244 else if (!(i & 0x1))
1245 shift = i >> 1;
1246 else
1247 shift = (i + 1) >> 1;
1248
1249 if (cs_size != -1)
1250 cs_size = rank_multiply * (128 << shift);
1251
1252 return cs_size;
1253}
1254
1255static int ddr4_cs_size(unsigned i)
1256{
1257 int cs_size = 0;
1258
1259 if (i == 0)
1260 cs_size = -1;
1261 else if (i == 1)
1262 cs_size = 1024;
1263 else
1264 /* Min cs_size = 1G */
1265 cs_size = 1024 * (1 << (i >> 1));
1266
1267 return cs_size;
1268}
1269
41d8bfab 1270static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
a597d2a5 1271 unsigned cs_mode, int cs_mask_nr)
41d8bfab
BP
1272{
1273 u32 dclr = dct ? pvt->dclr1 : pvt->dclr0;
1274
1275 WARN_ON(cs_mode > 11);
1433eb99
BP
1276
1277 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
41d8bfab 1278 return ddr3_cs_size(cs_mode, dclr & WIDTH_128);
1433eb99 1279 else
41d8bfab
BP
1280 return ddr2_cs_size(cs_mode, dclr & WIDTH_128);
1281}
1282
1283/*
1284 * F15h supports only 64bit DCT interfaces
1285 */
1286static int f15_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
a597d2a5 1287 unsigned cs_mode, int cs_mask_nr)
41d8bfab
BP
1288{
1289 WARN_ON(cs_mode > 12);
1433eb99 1290
41d8bfab 1291 return ddr3_cs_size(cs_mode, false);
1afd3c98
DT
1292}
1293
a597d2a5
AG
1294/* F15h M60h supports DDR4 mapping as well.. */
1295static int f15_m60h_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
1296 unsigned cs_mode, int cs_mask_nr)
1297{
1298 int cs_size;
1299 u32 dcsm = pvt->csels[dct].csmasks[cs_mask_nr];
1300
1301 WARN_ON(cs_mode > 12);
1302
1303 if (pvt->dram_type == MEM_DDR4) {
1304 if (cs_mode > 9)
1305 return -1;
1306
1307 cs_size = ddr4_cs_size(cs_mode);
1308 } else if (pvt->dram_type == MEM_LRDDR3) {
1309 unsigned rank_multiply = dcsm & 0xf;
1310
1311 if (rank_multiply == 3)
1312 rank_multiply = 4;
1313 cs_size = ddr3_lrdimm_cs_size(cs_mode, rank_multiply);
1314 } else {
1315 /* Minimum cs size is 512mb for F15hM60h*/
1316 if (cs_mode == 0x1)
1317 return -1;
1318
1319 cs_size = ddr3_cs_size(cs_mode, false);
1320 }
1321
1322 return cs_size;
1323}
1324
94c1acf2 1325/*
18b94f66 1326 * F16h and F15h model 30h have only limited cs_modes.
94c1acf2
AG
1327 */
1328static int f16_dbam_to_chip_select(struct amd64_pvt *pvt, u8 dct,
a597d2a5 1329 unsigned cs_mode, int cs_mask_nr)
94c1acf2
AG
1330{
1331 WARN_ON(cs_mode > 12);
1332
1333 if (cs_mode == 6 || cs_mode == 8 ||
1334 cs_mode == 9 || cs_mode == 12)
1335 return -1;
1336 else
1337 return ddr3_cs_size(cs_mode, false);
1338}
1339
5a5d2371 1340static void read_dram_ctl_register(struct amd64_pvt *pvt)
6163b5d4 1341{
6163b5d4 1342
a4b4bedc 1343 if (pvt->fam == 0xf)
5a5d2371
BP
1344 return;
1345
7981a28f 1346 if (!amd64_read_pci_cfg(pvt->F2, DCT_SEL_LO, &pvt->dct_sel_lo)) {
956b9ba1
JP
1347 edac_dbg(0, "F2x110 (DCTSelLow): 0x%08x, High range addrs at: 0x%x\n",
1348 pvt->dct_sel_lo, dct_sel_baseaddr(pvt));
72381bd5 1349
956b9ba1
JP
1350 edac_dbg(0, " DCTs operate in %s mode\n",
1351 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"));
72381bd5
BP
1352
1353 if (!dct_ganging_enabled(pvt))
956b9ba1
JP
1354 edac_dbg(0, " Address range split per DCT: %s\n",
1355 (dct_high_range_enabled(pvt) ? "yes" : "no"));
72381bd5 1356
956b9ba1
JP
1357 edac_dbg(0, " data interleave for ECC: %s, DRAM cleared since last warm reset: %s\n",
1358 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1359 (dct_memory_cleared(pvt) ? "yes" : "no"));
72381bd5 1360
956b9ba1
JP
1361 edac_dbg(0, " channel interleave: %s, "
1362 "interleave bits selector: 0x%x\n",
1363 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
1364 dct_sel_interleave_addr(pvt));
6163b5d4
DT
1365 }
1366
7981a28f 1367 amd64_read_pci_cfg(pvt->F2, DCT_SEL_HI, &pvt->dct_sel_hi);
6163b5d4
DT
1368}
1369
18b94f66
AG
1370/*
1371 * Determine channel (DCT) based on the interleaving mode (see F15h M30h BKDG,
1372 * 2.10.12 Memory Interleaving Modes).
1373 */
1374static u8 f15_m30h_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1375 u8 intlv_en, int num_dcts_intlv,
1376 u32 dct_sel)
1377{
1378 u8 channel = 0;
1379 u8 select;
1380
1381 if (!(intlv_en))
1382 return (u8)(dct_sel);
1383
1384 if (num_dcts_intlv == 2) {
1385 select = (sys_addr >> 8) & 0x3;
1386 channel = select ? 0x3 : 0;
9d0e8d83
AG
1387 } else if (num_dcts_intlv == 4) {
1388 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1389 switch (intlv_addr) {
1390 case 0x4:
1391 channel = (sys_addr >> 8) & 0x3;
1392 break;
1393 case 0x5:
1394 channel = (sys_addr >> 9) & 0x3;
1395 break;
1396 }
1397 }
18b94f66
AG
1398 return channel;
1399}
1400
f71d0a05 1401/*
229a7a11 1402 * Determine channel (DCT) based on the interleaving mode: F10h BKDG, 2.8.9 Memory
f71d0a05
DT
1403 * Interleaving Modes.
1404 */
b15f0fca 1405static u8 f1x_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
229a7a11 1406 bool hi_range_sel, u8 intlv_en)
6163b5d4 1407{
151fa71c 1408 u8 dct_sel_high = (pvt->dct_sel_lo >> 1) & 1;
6163b5d4
DT
1409
1410 if (dct_ganging_enabled(pvt))
229a7a11 1411 return 0;
6163b5d4 1412
229a7a11
BP
1413 if (hi_range_sel)
1414 return dct_sel_high;
6163b5d4 1415
229a7a11
BP
1416 /*
1417 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1418 */
1419 if (dct_interleave_enabled(pvt)) {
1420 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1421
1422 /* return DCT select function: 0=DCT0, 1=DCT1 */
1423 if (!intlv_addr)
1424 return sys_addr >> 6 & 1;
1425
1426 if (intlv_addr & 0x2) {
1427 u8 shift = intlv_addr & 0x1 ? 9 : 6;
1428 u32 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1429
1430 return ((sys_addr >> shift) & 1) ^ temp;
1431 }
1432
1433 return (sys_addr >> (12 + hweight8(intlv_en))) & 1;
1434 }
1435
1436 if (dct_high_range_enabled(pvt))
1437 return ~dct_sel_high & 1;
6163b5d4
DT
1438
1439 return 0;
1440}
1441
c8e518d5 1442/* Convert the sys_addr to the normalized DCT address */
c7e5301a 1443static u64 f1x_get_norm_dct_addr(struct amd64_pvt *pvt, u8 range,
c8e518d5
BP
1444 u64 sys_addr, bool hi_rng,
1445 u32 dct_sel_base_addr)
6163b5d4
DT
1446{
1447 u64 chan_off;
c8e518d5
BP
1448 u64 dram_base = get_dram_base(pvt, range);
1449 u64 hole_off = f10_dhar_offset(pvt);
6f3508f6 1450 u64 dct_sel_base_off = (u64)(pvt->dct_sel_hi & 0xFFFFFC00) << 16;
6163b5d4 1451
c8e518d5
BP
1452 if (hi_rng) {
1453 /*
1454 * if
1455 * base address of high range is below 4Gb
1456 * (bits [47:27] at [31:11])
1457 * DRAM address space on this DCT is hoisted above 4Gb &&
1458 * sys_addr > 4Gb
1459 *
1460 * remove hole offset from sys_addr
1461 * else
1462 * remove high range offset from sys_addr
1463 */
1464 if ((!(dct_sel_base_addr >> 16) ||
1465 dct_sel_base_addr < dhar_base(pvt)) &&
972ea17a 1466 dhar_valid(pvt) &&
c8e518d5 1467 (sys_addr >= BIT_64(32)))
bc21fa57 1468 chan_off = hole_off;
6163b5d4
DT
1469 else
1470 chan_off = dct_sel_base_off;
1471 } else {
c8e518d5
BP
1472 /*
1473 * if
1474 * we have a valid hole &&
1475 * sys_addr > 4Gb
1476 *
1477 * remove hole
1478 * else
1479 * remove dram base to normalize to DCT address
1480 */
972ea17a 1481 if (dhar_valid(pvt) && (sys_addr >= BIT_64(32)))
bc21fa57 1482 chan_off = hole_off;
6163b5d4 1483 else
c8e518d5 1484 chan_off = dram_base;
6163b5d4
DT
1485 }
1486
10ef6b0d 1487 return (sys_addr & GENMASK_ULL(47,6)) - (chan_off & GENMASK_ULL(47,23));
6163b5d4
DT
1488}
1489
6163b5d4
DT
1490/*
1491 * checks if the csrow passed in is marked as SPARED, if so returns the new
1492 * spare row
1493 */
11c75ead 1494static int f10_process_possible_spare(struct amd64_pvt *pvt, u8 dct, int csrow)
6163b5d4 1495{
614ec9d8
BP
1496 int tmp_cs;
1497
1498 if (online_spare_swap_done(pvt, dct) &&
1499 csrow == online_spare_bad_dramcs(pvt, dct)) {
1500
1501 for_each_chip_select(tmp_cs, dct, pvt) {
1502 if (chip_select_base(tmp_cs, dct, pvt) & 0x2) {
1503 csrow = tmp_cs;
1504 break;
1505 }
1506 }
6163b5d4
DT
1507 }
1508 return csrow;
1509}
1510
1511/*
1512 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1513 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1514 *
1515 * Return:
1516 * -EINVAL: NOT FOUND
1517 * 0..csrow = Chip-Select Row
1518 */
c7e5301a 1519static int f1x_lookup_addr_in_dct(u64 in_addr, u8 nid, u8 dct)
6163b5d4
DT
1520{
1521 struct mem_ctl_info *mci;
1522 struct amd64_pvt *pvt;
11c75ead 1523 u64 cs_base, cs_mask;
6163b5d4
DT
1524 int cs_found = -EINVAL;
1525 int csrow;
1526
2ec591ac 1527 mci = edac_mc_find(nid);
6163b5d4
DT
1528 if (!mci)
1529 return cs_found;
1530
1531 pvt = mci->pvt_info;
1532
956b9ba1 1533 edac_dbg(1, "input addr: 0x%llx, DCT: %d\n", in_addr, dct);
6163b5d4 1534
11c75ead
BP
1535 for_each_chip_select(csrow, dct, pvt) {
1536 if (!csrow_enabled(csrow, dct, pvt))
6163b5d4
DT
1537 continue;
1538
11c75ead 1539 get_cs_base_and_mask(pvt, csrow, dct, &cs_base, &cs_mask);
6163b5d4 1540
956b9ba1
JP
1541 edac_dbg(1, " CSROW=%d CSBase=0x%llx CSMask=0x%llx\n",
1542 csrow, cs_base, cs_mask);
6163b5d4 1543
11c75ead 1544 cs_mask = ~cs_mask;
6163b5d4 1545
956b9ba1
JP
1546 edac_dbg(1, " (InputAddr & ~CSMask)=0x%llx (CSBase & ~CSMask)=0x%llx\n",
1547 (in_addr & cs_mask), (cs_base & cs_mask));
6163b5d4 1548
11c75ead 1549 if ((in_addr & cs_mask) == (cs_base & cs_mask)) {
18b94f66
AG
1550 if (pvt->fam == 0x15 && pvt->model >= 0x30) {
1551 cs_found = csrow;
1552 break;
1553 }
11c75ead 1554 cs_found = f10_process_possible_spare(pvt, dct, csrow);
6163b5d4 1555
956b9ba1 1556 edac_dbg(1, " MATCH csrow=%d\n", cs_found);
6163b5d4
DT
1557 break;
1558 }
1559 }
1560 return cs_found;
1561}
1562
95b0ef55
BP
1563/*
1564 * See F2x10C. Non-interleaved graphics framebuffer memory under the 16G is
1565 * swapped with a region located at the bottom of memory so that the GPU can use
1566 * the interleaved region and thus two channels.
1567 */
b15f0fca 1568static u64 f1x_swap_interleaved_region(struct amd64_pvt *pvt, u64 sys_addr)
95b0ef55
BP
1569{
1570 u32 swap_reg, swap_base, swap_limit, rgn_size, tmp_addr;
1571
a4b4bedc 1572 if (pvt->fam == 0x10) {
95b0ef55 1573 /* only revC3 and revE have that feature */
a4b4bedc 1574 if (pvt->model < 4 || (pvt->model < 0xa && pvt->stepping < 3))
95b0ef55
BP
1575 return sys_addr;
1576 }
1577
7981a28f 1578 amd64_read_pci_cfg(pvt->F2, SWAP_INTLV_REG, &swap_reg);
95b0ef55
BP
1579
1580 if (!(swap_reg & 0x1))
1581 return sys_addr;
1582
1583 swap_base = (swap_reg >> 3) & 0x7f;
1584 swap_limit = (swap_reg >> 11) & 0x7f;
1585 rgn_size = (swap_reg >> 20) & 0x7f;
1586 tmp_addr = sys_addr >> 27;
1587
1588 if (!(sys_addr >> 34) &&
1589 (((tmp_addr >= swap_base) &&
1590 (tmp_addr <= swap_limit)) ||
1591 (tmp_addr < rgn_size)))
1592 return sys_addr ^ (u64)swap_base << 27;
1593
1594 return sys_addr;
1595}
1596
f71d0a05 1597/* For a given @dram_range, check if @sys_addr falls within it. */
e761359a 1598static int f1x_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
33ca0643 1599 u64 sys_addr, int *chan_sel)
f71d0a05 1600{
229a7a11 1601 int cs_found = -EINVAL;
c8e518d5 1602 u64 chan_addr;
5d4b58e8 1603 u32 dct_sel_base;
11c75ead 1604 u8 channel;
229a7a11 1605 bool high_range = false;
f71d0a05 1606
7f19bf75 1607 u8 node_id = dram_dst_node(pvt, range);
229a7a11 1608 u8 intlv_en = dram_intlv_en(pvt, range);
7f19bf75 1609 u32 intlv_sel = dram_intlv_sel(pvt, range);
f71d0a05 1610
956b9ba1
JP
1611 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1612 range, sys_addr, get_dram_limit(pvt, range));
f71d0a05 1613
355fba60
BP
1614 if (dhar_valid(pvt) &&
1615 dhar_base(pvt) <= sys_addr &&
1616 sys_addr < BIT_64(32)) {
1617 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1618 sys_addr);
1619 return -EINVAL;
1620 }
1621
f030ddfb 1622 if (intlv_en && (intlv_sel != ((sys_addr >> 12) & intlv_en)))
f71d0a05
DT
1623 return -EINVAL;
1624
b15f0fca 1625 sys_addr = f1x_swap_interleaved_region(pvt, sys_addr);
95b0ef55 1626
f71d0a05
DT
1627 dct_sel_base = dct_sel_baseaddr(pvt);
1628
1629 /*
1630 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1631 * select between DCT0 and DCT1.
1632 */
1633 if (dct_high_range_enabled(pvt) &&
1634 !dct_ganging_enabled(pvt) &&
1635 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
229a7a11 1636 high_range = true;
f71d0a05 1637
b15f0fca 1638 channel = f1x_determine_channel(pvt, sys_addr, high_range, intlv_en);
f71d0a05 1639
b15f0fca 1640 chan_addr = f1x_get_norm_dct_addr(pvt, range, sys_addr,
c8e518d5 1641 high_range, dct_sel_base);
f71d0a05 1642
e2f79dbd
BP
1643 /* Remove node interleaving, see F1x120 */
1644 if (intlv_en)
1645 chan_addr = ((chan_addr >> (12 + hweight8(intlv_en))) << 12) |
1646 (chan_addr & 0xfff);
f71d0a05 1647
5d4b58e8 1648 /* remove channel interleave */
f71d0a05
DT
1649 if (dct_interleave_enabled(pvt) &&
1650 !dct_high_range_enabled(pvt) &&
1651 !dct_ganging_enabled(pvt)) {
5d4b58e8
BP
1652
1653 if (dct_sel_interleave_addr(pvt) != 1) {
1654 if (dct_sel_interleave_addr(pvt) == 0x3)
1655 /* hash 9 */
1656 chan_addr = ((chan_addr >> 10) << 9) |
1657 (chan_addr & 0x1ff);
1658 else
1659 /* A[6] or hash 6 */
1660 chan_addr = ((chan_addr >> 7) << 6) |
1661 (chan_addr & 0x3f);
1662 } else
1663 /* A[12] */
1664 chan_addr = ((chan_addr >> 13) << 12) |
1665 (chan_addr & 0xfff);
f71d0a05
DT
1666 }
1667
956b9ba1 1668 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr);
f71d0a05 1669
b15f0fca 1670 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, channel);
f71d0a05 1671
33ca0643 1672 if (cs_found >= 0)
f71d0a05 1673 *chan_sel = channel;
33ca0643 1674
f71d0a05
DT
1675 return cs_found;
1676}
1677
18b94f66
AG
1678static int f15_m30h_match_to_this_node(struct amd64_pvt *pvt, unsigned range,
1679 u64 sys_addr, int *chan_sel)
1680{
1681 int cs_found = -EINVAL;
1682 int num_dcts_intlv = 0;
1683 u64 chan_addr, chan_offset;
1684 u64 dct_base, dct_limit;
1685 u32 dct_cont_base_reg, dct_cont_limit_reg, tmp;
1686 u8 channel, alias_channel, leg_mmio_hole, dct_sel, dct_offset_en;
1687
1688 u64 dhar_offset = f10_dhar_offset(pvt);
1689 u8 intlv_addr = dct_sel_interleave_addr(pvt);
1690 u8 node_id = dram_dst_node(pvt, range);
1691 u8 intlv_en = dram_intlv_en(pvt, range);
1692
1693 amd64_read_pci_cfg(pvt->F1, DRAM_CONT_BASE, &dct_cont_base_reg);
1694 amd64_read_pci_cfg(pvt->F1, DRAM_CONT_LIMIT, &dct_cont_limit_reg);
1695
1696 dct_offset_en = (u8) ((dct_cont_base_reg >> 3) & BIT(0));
1697 dct_sel = (u8) ((dct_cont_base_reg >> 4) & 0x7);
1698
1699 edac_dbg(1, "(range %d) SystemAddr= 0x%llx Limit=0x%llx\n",
1700 range, sys_addr, get_dram_limit(pvt, range));
1701
1702 if (!(get_dram_base(pvt, range) <= sys_addr) &&
1703 !(get_dram_limit(pvt, range) >= sys_addr))
1704 return -EINVAL;
1705
1706 if (dhar_valid(pvt) &&
1707 dhar_base(pvt) <= sys_addr &&
1708 sys_addr < BIT_64(32)) {
1709 amd64_warn("Huh? Address is in the MMIO hole: 0x%016llx\n",
1710 sys_addr);
1711 return -EINVAL;
1712 }
1713
1714 /* Verify sys_addr is within DCT Range. */
4fc06b31
AG
1715 dct_base = (u64) dct_sel_baseaddr(pvt);
1716 dct_limit = (dct_cont_limit_reg >> 11) & 0x1FFF;
18b94f66
AG
1717
1718 if (!(dct_cont_base_reg & BIT(0)) &&
4fc06b31
AG
1719 !(dct_base <= (sys_addr >> 27) &&
1720 dct_limit >= (sys_addr >> 27)))
18b94f66
AG
1721 return -EINVAL;
1722
1723 /* Verify number of dct's that participate in channel interleaving. */
1724 num_dcts_intlv = (int) hweight8(intlv_en);
1725
1726 if (!(num_dcts_intlv % 2 == 0) || (num_dcts_intlv > 4))
1727 return -EINVAL;
1728
1729 channel = f15_m30h_determine_channel(pvt, sys_addr, intlv_en,
1730 num_dcts_intlv, dct_sel);
1731
1732 /* Verify we stay within the MAX number of channels allowed */
7f3f5240 1733 if (channel > 3)
18b94f66
AG
1734 return -EINVAL;
1735
1736 leg_mmio_hole = (u8) (dct_cont_base_reg >> 1 & BIT(0));
1737
1738 /* Get normalized DCT addr */
1739 if (leg_mmio_hole && (sys_addr >= BIT_64(32)))
1740 chan_offset = dhar_offset;
1741 else
4fc06b31 1742 chan_offset = dct_base << 27;
18b94f66
AG
1743
1744 chan_addr = sys_addr - chan_offset;
1745
1746 /* remove channel interleave */
1747 if (num_dcts_intlv == 2) {
1748 if (intlv_addr == 0x4)
1749 chan_addr = ((chan_addr >> 9) << 8) |
1750 (chan_addr & 0xff);
1751 else if (intlv_addr == 0x5)
1752 chan_addr = ((chan_addr >> 10) << 9) |
1753 (chan_addr & 0x1ff);
1754 else
1755 return -EINVAL;
1756
1757 } else if (num_dcts_intlv == 4) {
1758 if (intlv_addr == 0x4)
1759 chan_addr = ((chan_addr >> 10) << 8) |
1760 (chan_addr & 0xff);
1761 else if (intlv_addr == 0x5)
1762 chan_addr = ((chan_addr >> 11) << 9) |
1763 (chan_addr & 0x1ff);
1764 else
1765 return -EINVAL;
1766 }
1767
1768 if (dct_offset_en) {
1769 amd64_read_pci_cfg(pvt->F1,
1770 DRAM_CONT_HIGH_OFF + (int) channel * 4,
1771 &tmp);
4fc06b31 1772 chan_addr += (u64) ((tmp >> 11) & 0xfff) << 27;
18b94f66
AG
1773 }
1774
1775 f15h_select_dct(pvt, channel);
1776
1777 edac_dbg(1, " Normalized DCT addr: 0x%llx\n", chan_addr);
1778
1779 /*
1780 * Find Chip select:
1781 * if channel = 3, then alias it to 1. This is because, in F15 M30h,
1782 * there is support for 4 DCT's, but only 2 are currently functional.
1783 * They are DCT0 and DCT3. But we have read all registers of DCT3 into
1784 * pvt->csels[1]. So we need to use '1' here to get correct info.
1785 * Refer F15 M30h BKDG Section 2.10 and 2.10.3 for clarifications.
1786 */
1787 alias_channel = (channel == 3) ? 1 : channel;
1788
1789 cs_found = f1x_lookup_addr_in_dct(chan_addr, node_id, alias_channel);
1790
1791 if (cs_found >= 0)
1792 *chan_sel = alias_channel;
1793
1794 return cs_found;
1795}
1796
1797static int f1x_translate_sysaddr_to_cs(struct amd64_pvt *pvt,
1798 u64 sys_addr,
1799 int *chan_sel)
f71d0a05 1800{
e761359a
BP
1801 int cs_found = -EINVAL;
1802 unsigned range;
f71d0a05 1803
7f19bf75 1804 for (range = 0; range < DRAM_RANGES; range++) {
7f19bf75 1805 if (!dram_rw(pvt, range))
f71d0a05
DT
1806 continue;
1807
18b94f66
AG
1808 if (pvt->fam == 0x15 && pvt->model >= 0x30)
1809 cs_found = f15_m30h_match_to_this_node(pvt, range,
1810 sys_addr,
1811 chan_sel);
f71d0a05 1812
18b94f66
AG
1813 else if ((get_dram_base(pvt, range) <= sys_addr) &&
1814 (get_dram_limit(pvt, range) >= sys_addr)) {
b15f0fca 1815 cs_found = f1x_match_to_this_node(pvt, range,
33ca0643 1816 sys_addr, chan_sel);
f71d0a05
DT
1817 if (cs_found >= 0)
1818 break;
1819 }
1820 }
1821 return cs_found;
1822}
1823
1824/*
bdc30a0c
BP
1825 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1826 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
f71d0a05 1827 *
bdc30a0c
BP
1828 * The @sys_addr is usually an error address received from the hardware
1829 * (MCX_ADDR).
f71d0a05 1830 */
b15f0fca 1831static void f1x_map_sysaddr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr,
33ca0643 1832 struct err_info *err)
f71d0a05
DT
1833{
1834 struct amd64_pvt *pvt = mci->pvt_info;
f71d0a05 1835
33ca0643 1836 error_address_to_page_and_offset(sys_addr, err);
ab5a503c 1837
33ca0643
BP
1838 err->csrow = f1x_translate_sysaddr_to_cs(pvt, sys_addr, &err->channel);
1839 if (err->csrow < 0) {
1840 err->err_code = ERR_CSROW;
bdc30a0c
BP
1841 return;
1842 }
1843
bdc30a0c
BP
1844 /*
1845 * We need the syndromes for channel detection only when we're
1846 * ganged. Otherwise @chan should already contain the channel at
1847 * this point.
1848 */
a97fa68e 1849 if (dct_ganging_enabled(pvt))
33ca0643 1850 err->channel = get_channel_from_ecc_syndrome(mci, err->syndrome);
f71d0a05
DT
1851}
1852
f71d0a05 1853/*
8566c4df 1854 * debug routine to display the memory sizes of all logical DIMMs and its
cb328507 1855 * CSROWs
f71d0a05 1856 */
d1ea71cd 1857static void debug_display_dimm_sizes(struct amd64_pvt *pvt, u8 ctrl)
f71d0a05 1858{
bb89f5a0 1859 int dimm, size0, size1;
525a1b20
BP
1860 u32 *dcsb = ctrl ? pvt->csels[1].csbases : pvt->csels[0].csbases;
1861 u32 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
f71d0a05 1862
a4b4bedc 1863 if (pvt->fam == 0xf) {
8566c4df 1864 /* K8 families < revF not supported yet */
1433eb99 1865 if (pvt->ext_model < K8_REV_F)
8566c4df
BP
1866 return;
1867 else
1868 WARN_ON(ctrl != 0);
1869 }
1870
7981a28f
AG
1871 if (pvt->fam == 0x10) {
1872 dbam = (ctrl && !dct_ganging_enabled(pvt)) ? pvt->dbam1
1873 : pvt->dbam0;
1874 dcsb = (ctrl && !dct_ganging_enabled(pvt)) ?
1875 pvt->csels[1].csbases :
1876 pvt->csels[0].csbases;
1877 } else if (ctrl) {
1878 dbam = pvt->dbam0;
1879 dcsb = pvt->csels[1].csbases;
1880 }
956b9ba1
JP
1881 edac_dbg(1, "F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
1882 ctrl, dbam);
f71d0a05 1883
8566c4df
BP
1884 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1885
f71d0a05
DT
1886 /* Dump memory sizes for DIMM and its CSROWs */
1887 for (dimm = 0; dimm < 4; dimm++) {
1888
1889 size0 = 0;
11c75ead 1890 if (dcsb[dimm*2] & DCSB_CS_ENABLE)
a597d2a5
AG
1891 /* For f15m60h, need multiplier for LRDIMM cs_size
1892 * calculation. We pass 'dimm' value to the dbam_to_cs
1893 * mapper so we can find the multiplier from the
1894 * corresponding DCSM.
1895 */
41d8bfab 1896 size0 = pvt->ops->dbam_to_cs(pvt, ctrl,
a597d2a5
AG
1897 DBAM_DIMM(dimm, dbam),
1898 dimm);
f71d0a05
DT
1899
1900 size1 = 0;
11c75ead 1901 if (dcsb[dimm*2 + 1] & DCSB_CS_ENABLE)
41d8bfab 1902 size1 = pvt->ops->dbam_to_cs(pvt, ctrl,
a597d2a5
AG
1903 DBAM_DIMM(dimm, dbam),
1904 dimm);
f71d0a05 1905
24f9a7fe 1906 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
bb89f5a0
BP
1907 dimm * 2, size0,
1908 dimm * 2 + 1, size1);
f71d0a05
DT
1909 }
1910}
1911
d1ea71cd 1912static struct amd64_family_type family_types[] = {
4d37607a 1913 [K8_CPUS] = {
0092b20d 1914 .ctl_name = "K8",
8d5b5d9c 1915 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
3f37a36b 1916 .f2_id = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
4d37607a 1917 .ops = {
1433eb99 1918 .early_channel_count = k8_early_channel_count,
1433eb99
BP
1919 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1920 .dbam_to_cs = k8_dbam_to_chip_select,
4d37607a
DT
1921 }
1922 },
1923 [F10_CPUS] = {
0092b20d 1924 .ctl_name = "F10h",
8d5b5d9c 1925 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
3f37a36b 1926 .f2_id = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
4d37607a 1927 .ops = {
7d20d14d 1928 .early_channel_count = f1x_early_channel_count,
b15f0fca 1929 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1433eb99 1930 .dbam_to_cs = f10_dbam_to_chip_select,
b2b0c605
BP
1931 }
1932 },
1933 [F15_CPUS] = {
1934 .ctl_name = "F15h",
df71a053 1935 .f1_id = PCI_DEVICE_ID_AMD_15H_NB_F1,
3f37a36b 1936 .f2_id = PCI_DEVICE_ID_AMD_15H_NB_F2,
b2b0c605 1937 .ops = {
7d20d14d 1938 .early_channel_count = f1x_early_channel_count,
b15f0fca 1939 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
41d8bfab 1940 .dbam_to_cs = f15_dbam_to_chip_select,
4d37607a
DT
1941 }
1942 },
18b94f66
AG
1943 [F15_M30H_CPUS] = {
1944 .ctl_name = "F15h_M30h",
1945 .f1_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F1,
3f37a36b 1946 .f2_id = PCI_DEVICE_ID_AMD_15H_M30H_NB_F2,
18b94f66
AG
1947 .ops = {
1948 .early_channel_count = f1x_early_channel_count,
1949 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1950 .dbam_to_cs = f16_dbam_to_chip_select,
18b94f66
AG
1951 }
1952 },
a597d2a5
AG
1953 [F15_M60H_CPUS] = {
1954 .ctl_name = "F15h_M60h",
1955 .f1_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F1,
3f37a36b 1956 .f2_id = PCI_DEVICE_ID_AMD_15H_M60H_NB_F2,
a597d2a5
AG
1957 .ops = {
1958 .early_channel_count = f1x_early_channel_count,
1959 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1960 .dbam_to_cs = f15_m60h_dbam_to_chip_select,
1961 }
1962 },
94c1acf2
AG
1963 [F16_CPUS] = {
1964 .ctl_name = "F16h",
1965 .f1_id = PCI_DEVICE_ID_AMD_16H_NB_F1,
3f37a36b 1966 .f2_id = PCI_DEVICE_ID_AMD_16H_NB_F2,
94c1acf2
AG
1967 .ops = {
1968 .early_channel_count = f1x_early_channel_count,
1969 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1970 .dbam_to_cs = f16_dbam_to_chip_select,
94c1acf2
AG
1971 }
1972 },
85a8885b
AG
1973 [F16_M30H_CPUS] = {
1974 .ctl_name = "F16h_M30h",
1975 .f1_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F1,
3f37a36b 1976 .f2_id = PCI_DEVICE_ID_AMD_16H_M30H_NB_F2,
85a8885b
AG
1977 .ops = {
1978 .early_channel_count = f1x_early_channel_count,
1979 .map_sysaddr_to_csrow = f1x_map_sysaddr_to_csrow,
1980 .dbam_to_cs = f16_dbam_to_chip_select,
85a8885b
AG
1981 }
1982 },
4d37607a
DT
1983};
1984
b1289d6f 1985/*
bfc04aec
BP
1986 * These are tables of eigenvectors (one per line) which can be used for the
1987 * construction of the syndrome tables. The modified syndrome search algorithm
1988 * uses those to find the symbol in error and thus the DIMM.
b1289d6f 1989 *
bfc04aec 1990 * Algorithm courtesy of Ross LaFetra from AMD.
b1289d6f 1991 */
c7e5301a 1992static const u16 x4_vectors[] = {
bfc04aec
BP
1993 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1994 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1995 0x0001, 0x0002, 0x0004, 0x0008,
1996 0x1013, 0x3032, 0x4044, 0x8088,
1997 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1998 0x4857, 0xc4fe, 0x13cc, 0x3288,
1999 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
2000 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
2001 0x15c1, 0x2a42, 0x89ac, 0x4758,
2002 0x2b03, 0x1602, 0x4f0c, 0xca08,
2003 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
2004 0x8ba7, 0x465e, 0x244c, 0x1cc8,
2005 0x2b87, 0x164e, 0x642c, 0xdc18,
2006 0x40b9, 0x80de, 0x1094, 0x20e8,
2007 0x27db, 0x1eb6, 0x9dac, 0x7b58,
2008 0x11c1, 0x2242, 0x84ac, 0x4c58,
2009 0x1be5, 0x2d7a, 0x5e34, 0xa718,
2010 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
2011 0x4c97, 0xc87e, 0x11fc, 0x33a8,
2012 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
2013 0x16b3, 0x3d62, 0x4f34, 0x8518,
2014 0x1e2f, 0x391a, 0x5cac, 0xf858,
2015 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
2016 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
2017 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
2018 0x4397, 0xc27e, 0x17fc, 0x3ea8,
2019 0x1617, 0x3d3e, 0x6464, 0xb8b8,
2020 0x23ff, 0x12aa, 0xab6c, 0x56d8,
2021 0x2dfb, 0x1ba6, 0x913c, 0x7328,
2022 0x185d, 0x2ca6, 0x7914, 0x9e28,
2023 0x171b, 0x3e36, 0x7d7c, 0xebe8,
2024 0x4199, 0x82ee, 0x19f4, 0x2e58,
2025 0x4807, 0xc40e, 0x130c, 0x3208,
2026 0x1905, 0x2e0a, 0x5804, 0xac08,
2027 0x213f, 0x132a, 0xadfc, 0x5ba8,
2028 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
b1289d6f
DT
2029};
2030
c7e5301a 2031static const u16 x8_vectors[] = {
bfc04aec
BP
2032 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
2033 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
2034 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
2035 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
2036 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
2037 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
2038 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
2039 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
2040 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
2041 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
2042 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
2043 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
2044 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
2045 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
2046 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
2047 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
2048 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
2049 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
2050 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
2051};
2052
c7e5301a 2053static int decode_syndrome(u16 syndrome, const u16 *vectors, unsigned num_vecs,
d34a6ecd 2054 unsigned v_dim)
b1289d6f 2055{
bfc04aec
BP
2056 unsigned int i, err_sym;
2057
2058 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
2059 u16 s = syndrome;
d34a6ecd
BP
2060 unsigned v_idx = err_sym * v_dim;
2061 unsigned v_end = (err_sym + 1) * v_dim;
bfc04aec
BP
2062
2063 /* walk over all 16 bits of the syndrome */
2064 for (i = 1; i < (1U << 16); i <<= 1) {
2065
2066 /* if bit is set in that eigenvector... */
2067 if (v_idx < v_end && vectors[v_idx] & i) {
2068 u16 ev_comp = vectors[v_idx++];
2069
2070 /* ... and bit set in the modified syndrome, */
2071 if (s & i) {
2072 /* remove it. */
2073 s ^= ev_comp;
4d37607a 2074
bfc04aec
BP
2075 if (!s)
2076 return err_sym;
2077 }
b1289d6f 2078
bfc04aec
BP
2079 } else if (s & i)
2080 /* can't get to zero, move to next symbol */
2081 break;
2082 }
b1289d6f
DT
2083 }
2084
956b9ba1 2085 edac_dbg(0, "syndrome(%x) not found\n", syndrome);
b1289d6f
DT
2086 return -1;
2087}
d27bf6fa 2088
bfc04aec
BP
2089static int map_err_sym_to_channel(int err_sym, int sym_size)
2090{
2091 if (sym_size == 4)
2092 switch (err_sym) {
2093 case 0x20:
2094 case 0x21:
2095 return 0;
2096 break;
2097 case 0x22:
2098 case 0x23:
2099 return 1;
2100 break;
2101 default:
2102 return err_sym >> 4;
2103 break;
2104 }
2105 /* x8 symbols */
2106 else
2107 switch (err_sym) {
2108 /* imaginary bits not in a DIMM */
2109 case 0x10:
2110 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
2111 err_sym);
2112 return -1;
2113 break;
2114
2115 case 0x11:
2116 return 0;
2117 break;
2118 case 0x12:
2119 return 1;
2120 break;
2121 default:
2122 return err_sym >> 3;
2123 break;
2124 }
2125 return -1;
2126}
2127
2128static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
2129{
2130 struct amd64_pvt *pvt = mci->pvt_info;
ad6a32e9
BP
2131 int err_sym = -1;
2132
a3b7db09 2133 if (pvt->ecc_sym_sz == 8)
ad6a32e9
BP
2134 err_sym = decode_syndrome(syndrome, x8_vectors,
2135 ARRAY_SIZE(x8_vectors),
a3b7db09
BP
2136 pvt->ecc_sym_sz);
2137 else if (pvt->ecc_sym_sz == 4)
ad6a32e9
BP
2138 err_sym = decode_syndrome(syndrome, x4_vectors,
2139 ARRAY_SIZE(x4_vectors),
a3b7db09 2140 pvt->ecc_sym_sz);
ad6a32e9 2141 else {
a3b7db09 2142 amd64_warn("Illegal syndrome type: %u\n", pvt->ecc_sym_sz);
ad6a32e9 2143 return err_sym;
bfc04aec 2144 }
ad6a32e9 2145
a3b7db09 2146 return map_err_sym_to_channel(err_sym, pvt->ecc_sym_sz);
bfc04aec
BP
2147}
2148
33ca0643
BP
2149static void __log_bus_error(struct mem_ctl_info *mci, struct err_info *err,
2150 u8 ecc_type)
d27bf6fa 2151{
33ca0643
BP
2152 enum hw_event_mc_err_type err_type;
2153 const char *string;
d27bf6fa 2154
33ca0643
BP
2155 if (ecc_type == 2)
2156 err_type = HW_EVENT_ERR_CORRECTED;
2157 else if (ecc_type == 1)
2158 err_type = HW_EVENT_ERR_UNCORRECTED;
2159 else {
2160 WARN(1, "Something is rotten in the state of Denmark.\n");
d27bf6fa
DT
2161 return;
2162 }
2163
33ca0643
BP
2164 switch (err->err_code) {
2165 case DECODE_OK:
2166 string = "";
2167 break;
2168 case ERR_NODE:
2169 string = "Failed to map error addr to a node";
2170 break;
2171 case ERR_CSROW:
2172 string = "Failed to map error addr to a csrow";
2173 break;
2174 case ERR_CHANNEL:
2175 string = "unknown syndrome - possible error reporting race";
2176 break;
2177 default:
2178 string = "WTF error";
2179 break;
d27bf6fa 2180 }
33ca0643
BP
2181
2182 edac_mc_handle_error(err_type, mci, 1,
2183 err->page, err->offset, err->syndrome,
2184 err->csrow, err->channel, -1,
2185 string, "");
d27bf6fa
DT
2186}
2187
df781d03 2188static inline void decode_bus_error(int node_id, struct mce *m)
d27bf6fa 2189{
0c510cc8
DB
2190 struct mem_ctl_info *mci;
2191 struct amd64_pvt *pvt;
f192c7b1 2192 u8 ecc_type = (m->status >> 45) & 0x3;
66fed2d4
BP
2193 u8 xec = XEC(m->status, 0x1f);
2194 u16 ec = EC(m->status);
33ca0643
BP
2195 u64 sys_addr;
2196 struct err_info err;
d27bf6fa 2197
0c510cc8
DB
2198 mci = edac_mc_find(node_id);
2199 if (!mci)
2200 return;
2201
2202 pvt = mci->pvt_info;
2203
66fed2d4 2204 /* Bail out early if this was an 'observed' error */
5980bb9c 2205 if (PP(ec) == NBSL_PP_OBS)
b70ef010 2206 return;
d27bf6fa 2207
ecaf5606
BP
2208 /* Do only ECC errors */
2209 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
d27bf6fa 2210 return;
d27bf6fa 2211
33ca0643
BP
2212 memset(&err, 0, sizeof(err));
2213
a4b4bedc 2214 sys_addr = get_error_address(pvt, m);
33ca0643 2215
ecaf5606 2216 if (ecc_type == 2)
33ca0643
BP
2217 err.syndrome = extract_syndrome(m->status);
2218
2219 pvt->ops->map_sysaddr_to_csrow(mci, sys_addr, &err);
2220
2221 __log_bus_error(mci, &err, ecc_type);
d27bf6fa
DT
2222}
2223
0ec449ee 2224/*
3f37a36b
BP
2225 * Use pvt->F3 which contains the F3 CPU PCI device to get the related
2226 * F1 (AddrMap) and F2 (Dct) devices. Return negative value on error.
0ec449ee 2227 */
3f37a36b 2228static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f2_id)
0ec449ee 2229{
0ec449ee 2230 /* Reserve the ADDRESS MAP Device */
3f37a36b 2231 pvt->F1 = pci_get_related_function(pvt->F3->vendor, f1_id, pvt->F3);
8d5b5d9c 2232 if (!pvt->F1) {
24f9a7fe
BP
2233 amd64_err("error address map device not found: "
2234 "vendor %x device 0x%x (broken BIOS?)\n",
2235 PCI_VENDOR_ID_AMD, f1_id);
bbd0c1f6 2236 return -ENODEV;
0ec449ee
DT
2237 }
2238
3f37a36b
BP
2239 /* Reserve the DCT Device */
2240 pvt->F2 = pci_get_related_function(pvt->F3->vendor, f2_id, pvt->F3);
2241 if (!pvt->F2) {
8d5b5d9c
BP
2242 pci_dev_put(pvt->F1);
2243 pvt->F1 = NULL;
0ec449ee 2244
3f37a36b 2245 amd64_err("error F2 device not found: "
24f9a7fe 2246 "vendor %x device 0x%x (broken BIOS?)\n",
3f37a36b 2247 PCI_VENDOR_ID_AMD, f2_id);
0ec449ee 2248
bbd0c1f6 2249 return -ENODEV;
0ec449ee 2250 }
956b9ba1
JP
2251 edac_dbg(1, "F1: %s\n", pci_name(pvt->F1));
2252 edac_dbg(1, "F2: %s\n", pci_name(pvt->F2));
2253 edac_dbg(1, "F3: %s\n", pci_name(pvt->F3));
0ec449ee
DT
2254
2255 return 0;
2256}
2257
360b7f3c 2258static void free_mc_sibling_devs(struct amd64_pvt *pvt)
0ec449ee 2259{
8d5b5d9c 2260 pci_dev_put(pvt->F1);
3f37a36b 2261 pci_dev_put(pvt->F2);
0ec449ee
DT
2262}
2263
2264/*
2265 * Retrieve the hardware registers of the memory controller (this includes the
2266 * 'Address Map' and 'Misc' device regs)
2267 */
360b7f3c 2268static void read_mc_regs(struct amd64_pvt *pvt)
0ec449ee 2269{
a4b4bedc 2270 unsigned range;
0ec449ee 2271 u64 msr_val;
ad6a32e9 2272 u32 tmp;
0ec449ee
DT
2273
2274 /*
2275 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2276 * those are Read-As-Zero
2277 */
e97f8bb8 2278 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
956b9ba1 2279 edac_dbg(0, " TOP_MEM: 0x%016llx\n", pvt->top_mem);
0ec449ee
DT
2280
2281 /* check first whether TOP_MEM2 is enabled */
2282 rdmsrl(MSR_K8_SYSCFG, msr_val);
2283 if (msr_val & (1U << 21)) {
e97f8bb8 2284 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
956b9ba1 2285 edac_dbg(0, " TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
0ec449ee 2286 } else
956b9ba1 2287 edac_dbg(0, " TOP_MEM2 disabled\n");
0ec449ee 2288
5980bb9c 2289 amd64_read_pci_cfg(pvt->F3, NBCAP, &pvt->nbcap);
0ec449ee 2290
5a5d2371 2291 read_dram_ctl_register(pvt);
0ec449ee 2292
7f19bf75
BP
2293 for (range = 0; range < DRAM_RANGES; range++) {
2294 u8 rw;
0ec449ee 2295
7f19bf75
BP
2296 /* read settings for this DRAM range */
2297 read_dram_base_limit_regs(pvt, range);
2298
2299 rw = dram_rw(pvt, range);
2300 if (!rw)
2301 continue;
2302
956b9ba1
JP
2303 edac_dbg(1, " DRAM range[%d], base: 0x%016llx; limit: 0x%016llx\n",
2304 range,
2305 get_dram_base(pvt, range),
2306 get_dram_limit(pvt, range));
7f19bf75 2307
956b9ba1
JP
2308 edac_dbg(1, " IntlvEn=%s; Range access: %s%s IntlvSel=%d DstNode=%d\n",
2309 dram_intlv_en(pvt, range) ? "Enabled" : "Disabled",
2310 (rw & 0x1) ? "R" : "-",
2311 (rw & 0x2) ? "W" : "-",
2312 dram_intlv_sel(pvt, range),
2313 dram_dst_node(pvt, range));
0ec449ee
DT
2314 }
2315
b2b0c605 2316 read_dct_base_mask(pvt);
0ec449ee 2317
bc21fa57 2318 amd64_read_pci_cfg(pvt->F1, DHAR, &pvt->dhar);
7981a28f 2319 amd64_read_dct_pci_cfg(pvt, 0, DBAM0, &pvt->dbam0);
0ec449ee 2320
8d5b5d9c 2321 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
0ec449ee 2322
7981a28f
AG
2323 amd64_read_dct_pci_cfg(pvt, 0, DCLR0, &pvt->dclr0);
2324 amd64_read_dct_pci_cfg(pvt, 0, DCHR0, &pvt->dchr0);
0ec449ee 2325
78da121e 2326 if (!dct_ganging_enabled(pvt)) {
7981a28f
AG
2327 amd64_read_dct_pci_cfg(pvt, 1, DCLR0, &pvt->dclr1);
2328 amd64_read_dct_pci_cfg(pvt, 1, DCHR0, &pvt->dchr1);
0ec449ee 2329 }
ad6a32e9 2330
a3b7db09 2331 pvt->ecc_sym_sz = 4;
a597d2a5
AG
2332 determine_memory_type(pvt);
2333 edac_dbg(1, " DIMM type: %s\n", edac_mem_types[pvt->dram_type]);
a3b7db09 2334
a4b4bedc 2335 if (pvt->fam >= 0x10) {
b2b0c605 2336 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
7981a28f 2337 /* F16h has only DCT0, so no need to read dbam1 */
a4b4bedc 2338 if (pvt->fam != 0x16)
7981a28f 2339 amd64_read_dct_pci_cfg(pvt, 1, DBAM0, &pvt->dbam1);
ad6a32e9 2340
a3b7db09 2341 /* F10h, revD and later can do x8 ECC too */
a4b4bedc 2342 if ((pvt->fam > 0x10 || pvt->model > 7) && tmp & BIT(25))
a3b7db09
BP
2343 pvt->ecc_sym_sz = 8;
2344 }
b2b0c605 2345 dump_misc_regs(pvt);
0ec449ee
DT
2346}
2347
2348/*
2349 * NOTE: CPU Revision Dependent code
2350 *
2351 * Input:
11c75ead 2352 * @csrow_nr ChipSelect Row Number (0..NUM_CHIPSELECTS-1)
0ec449ee
DT
2353 * k8 private pointer to -->
2354 * DRAM Bank Address mapping register
2355 * node_id
2356 * DCL register where dual_channel_active is
2357 *
2358 * The DBAM register consists of 4 sets of 4 bits each definitions:
2359 *
2360 * Bits: CSROWs
2361 * 0-3 CSROWs 0 and 1
2362 * 4-7 CSROWs 2 and 3
2363 * 8-11 CSROWs 4 and 5
2364 * 12-15 CSROWs 6 and 7
2365 *
2366 * Values range from: 0 to 15
2367 * The meaning of the values depends on CPU revision and dual-channel state,
2368 * see relevant BKDG more info.
2369 *
2370 * The memory controller provides for total of only 8 CSROWs in its current
2371 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2372 * single channel or two (2) DIMMs in dual channel mode.
2373 *
2374 * The following code logic collapses the various tables for CSROW based on CPU
2375 * revision.
2376 *
2377 * Returns:
2378 * The number of PAGE_SIZE pages on the specified CSROW number it
2379 * encompasses
2380 *
2381 */
d1ea71cd 2382static u32 get_csrow_nr_pages(struct amd64_pvt *pvt, u8 dct, int csrow_nr)
0ec449ee 2383{
1433eb99 2384 u32 cs_mode, nr_pages;
f92cae45 2385 u32 dbam = dct ? pvt->dbam1 : pvt->dbam0;
0ec449ee 2386
10de6497 2387
0ec449ee
DT
2388 /*
2389 * The math on this doesn't look right on the surface because x/2*4 can
2390 * be simplified to x*2 but this expression makes use of the fact that
2391 * it is integral math where 1/2=0. This intermediate value becomes the
2392 * number of bits to shift the DBAM register to extract the proper CSROW
2393 * field.
2394 */
0a5dfc31 2395 cs_mode = DBAM_DIMM(csrow_nr / 2, dbam);
0ec449ee 2396
a597d2a5
AG
2397 nr_pages = pvt->ops->dbam_to_cs(pvt, dct, cs_mode, (csrow_nr / 2))
2398 << (20 - PAGE_SHIFT);
0ec449ee 2399
10de6497
BP
2400 edac_dbg(0, "csrow: %d, channel: %d, DBAM idx: %d\n",
2401 csrow_nr, dct, cs_mode);
2402 edac_dbg(0, "nr_pages/channel: %u\n", nr_pages);
0ec449ee
DT
2403
2404 return nr_pages;
2405}
2406
2407/*
2408 * Initialize the array of csrow attribute instances, based on the values
2409 * from pci config hardware registers.
2410 */
360b7f3c 2411static int init_csrows(struct mem_ctl_info *mci)
0ec449ee 2412{
10de6497 2413 struct amd64_pvt *pvt = mci->pvt_info;
0ec449ee 2414 struct csrow_info *csrow;
de3910eb 2415 struct dimm_info *dimm;
084a4fcc 2416 enum edac_type edac_mode;
10de6497 2417 int i, j, empty = 1;
a895bf8b 2418 int nr_pages = 0;
10de6497 2419 u32 val;
0ec449ee 2420
a97fa68e 2421 amd64_read_pci_cfg(pvt->F3, NBCFG, &val);
0ec449ee 2422
2299ef71 2423 pvt->nbcfg = val;
0ec449ee 2424
956b9ba1
JP
2425 edac_dbg(0, "node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2426 pvt->mc_node_id, val,
2427 !!(val & NBCFG_CHIPKILL), !!(val & NBCFG_ECC_ENABLE));
0ec449ee 2428
10de6497
BP
2429 /*
2430 * We iterate over DCT0 here but we look at DCT1 in parallel, if needed.
2431 */
11c75ead 2432 for_each_chip_select(i, 0, pvt) {
10de6497
BP
2433 bool row_dct0 = !!csrow_enabled(i, 0, pvt);
2434 bool row_dct1 = false;
0ec449ee 2435
a4b4bedc 2436 if (pvt->fam != 0xf)
10de6497
BP
2437 row_dct1 = !!csrow_enabled(i, 1, pvt);
2438
2439 if (!row_dct0 && !row_dct1)
0ec449ee 2440 continue;
0ec449ee 2441
10de6497 2442 csrow = mci->csrows[i];
0ec449ee 2443 empty = 0;
10de6497
BP
2444
2445 edac_dbg(1, "MC node: %d, csrow: %d\n",
2446 pvt->mc_node_id, i);
2447
1eef1282 2448 if (row_dct0) {
d1ea71cd 2449 nr_pages = get_csrow_nr_pages(pvt, 0, i);
1eef1282
MCC
2450 csrow->channels[0]->dimm->nr_pages = nr_pages;
2451 }
11c75ead 2452
10de6497 2453 /* K8 has only one DCT */
a4b4bedc 2454 if (pvt->fam != 0xf && row_dct1) {
d1ea71cd 2455 int row_dct1_pages = get_csrow_nr_pages(pvt, 1, i);
1eef1282
MCC
2456
2457 csrow->channels[1]->dimm->nr_pages = row_dct1_pages;
2458 nr_pages += row_dct1_pages;
2459 }
0ec449ee 2460
10de6497 2461 edac_dbg(1, "Total csrow%d pages: %u\n", i, nr_pages);
0ec449ee
DT
2462
2463 /*
2464 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2465 */
a97fa68e 2466 if (pvt->nbcfg & NBCFG_ECC_ENABLE)
084a4fcc
MCC
2467 edac_mode = (pvt->nbcfg & NBCFG_CHIPKILL) ?
2468 EDAC_S4ECD4ED : EDAC_SECDED;
0ec449ee 2469 else
084a4fcc
MCC
2470 edac_mode = EDAC_NONE;
2471
2472 for (j = 0; j < pvt->channel_count; j++) {
de3910eb 2473 dimm = csrow->channels[j]->dimm;
a597d2a5 2474 dimm->mtype = pvt->dram_type;
de3910eb 2475 dimm->edac_mode = edac_mode;
084a4fcc 2476 }
0ec449ee
DT
2477 }
2478
2479 return empty;
2480}
d27bf6fa 2481
f6d6ae96 2482/* get all cores on this DCT */
8b84c8df 2483static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, u16 nid)
f6d6ae96
BP
2484{
2485 int cpu;
2486
2487 for_each_online_cpu(cpu)
2488 if (amd_get_nb_id(cpu) == nid)
2489 cpumask_set_cpu(cpu, mask);
2490}
2491
2492/* check MCG_CTL on all the cpus on this node */
d1ea71cd 2493static bool nb_mce_bank_enabled_on_node(u16 nid)
f6d6ae96
BP
2494{
2495 cpumask_var_t mask;
50542251 2496 int cpu, nbe;
f6d6ae96
BP
2497 bool ret = false;
2498
2499 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
24f9a7fe 2500 amd64_warn("%s: Error allocating mask\n", __func__);
f6d6ae96
BP
2501 return false;
2502 }
2503
2504 get_cpus_on_this_dct_cpumask(mask, nid);
2505
f6d6ae96
BP
2506 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2507
2508 for_each_cpu(cpu, mask) {
50542251 2509 struct msr *reg = per_cpu_ptr(msrs, cpu);
5980bb9c 2510 nbe = reg->l & MSR_MCGCTL_NBE;
f6d6ae96 2511
956b9ba1
JP
2512 edac_dbg(0, "core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2513 cpu, reg->q,
2514 (nbe ? "enabled" : "disabled"));
f6d6ae96
BP
2515
2516 if (!nbe)
2517 goto out;
f6d6ae96
BP
2518 }
2519 ret = true;
2520
2521out:
f6d6ae96
BP
2522 free_cpumask_var(mask);
2523 return ret;
2524}
2525
c7e5301a 2526static int toggle_ecc_err_reporting(struct ecc_settings *s, u16 nid, bool on)
f6d6ae96
BP
2527{
2528 cpumask_var_t cmask;
50542251 2529 int cpu;
f6d6ae96
BP
2530
2531 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
24f9a7fe 2532 amd64_warn("%s: error allocating mask\n", __func__);
f6d6ae96
BP
2533 return false;
2534 }
2535
ae7bb7c6 2536 get_cpus_on_this_dct_cpumask(cmask, nid);
f6d6ae96 2537
f6d6ae96
BP
2538 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2539
2540 for_each_cpu(cpu, cmask) {
2541
50542251
BP
2542 struct msr *reg = per_cpu_ptr(msrs, cpu);
2543
f6d6ae96 2544 if (on) {
5980bb9c 2545 if (reg->l & MSR_MCGCTL_NBE)
ae7bb7c6 2546 s->flags.nb_mce_enable = 1;
f6d6ae96 2547
5980bb9c 2548 reg->l |= MSR_MCGCTL_NBE;
f6d6ae96
BP
2549 } else {
2550 /*
d95cf4de 2551 * Turn off NB MCE reporting only when it was off before
f6d6ae96 2552 */
ae7bb7c6 2553 if (!s->flags.nb_mce_enable)
5980bb9c 2554 reg->l &= ~MSR_MCGCTL_NBE;
f6d6ae96 2555 }
f6d6ae96
BP
2556 }
2557 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2558
f6d6ae96
BP
2559 free_cpumask_var(cmask);
2560
2561 return 0;
2562}
2563
c7e5301a 2564static bool enable_ecc_error_reporting(struct ecc_settings *s, u16 nid,
2299ef71 2565 struct pci_dev *F3)
f9431992 2566{
2299ef71 2567 bool ret = true;
c9f4f26e 2568 u32 value, mask = 0x3; /* UECC/CECC enable */
f9431992 2569
2299ef71
BP
2570 if (toggle_ecc_err_reporting(s, nid, ON)) {
2571 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2572 return false;
2573 }
2574
c9f4f26e 2575 amd64_read_pci_cfg(F3, NBCTL, &value);
f9431992 2576
ae7bb7c6
BP
2577 s->old_nbctl = value & mask;
2578 s->nbctl_valid = true;
f9431992
DT
2579
2580 value |= mask;
c9f4f26e 2581 amd64_write_pci_cfg(F3, NBCTL, value);
f9431992 2582
a97fa68e 2583 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2584
956b9ba1
JP
2585 edac_dbg(0, "1: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2586 nid, value, !!(value & NBCFG_ECC_ENABLE));
f9431992 2587
a97fa68e 2588 if (!(value & NBCFG_ECC_ENABLE)) {
24f9a7fe 2589 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
f9431992 2590
ae7bb7c6 2591 s->flags.nb_ecc_prev = 0;
d95cf4de 2592
f9431992 2593 /* Attempt to turn on DRAM ECC Enable */
a97fa68e
BP
2594 value |= NBCFG_ECC_ENABLE;
2595 amd64_write_pci_cfg(F3, NBCFG, value);
f9431992 2596
a97fa68e 2597 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2598
a97fa68e 2599 if (!(value & NBCFG_ECC_ENABLE)) {
24f9a7fe
BP
2600 amd64_warn("Hardware rejected DRAM ECC enable,"
2601 "check memory DIMM configuration.\n");
2299ef71 2602 ret = false;
f9431992 2603 } else {
24f9a7fe 2604 amd64_info("Hardware accepted DRAM ECC Enable\n");
f9431992 2605 }
d95cf4de 2606 } else {
ae7bb7c6 2607 s->flags.nb_ecc_prev = 1;
f9431992 2608 }
d95cf4de 2609
956b9ba1
JP
2610 edac_dbg(0, "2: node %d, NBCFG=0x%08x[DramEccEn: %d]\n",
2611 nid, value, !!(value & NBCFG_ECC_ENABLE));
f9431992 2612
2299ef71 2613 return ret;
f9431992
DT
2614}
2615
c7e5301a 2616static void restore_ecc_error_reporting(struct ecc_settings *s, u16 nid,
360b7f3c 2617 struct pci_dev *F3)
f9431992 2618{
c9f4f26e
BP
2619 u32 value, mask = 0x3; /* UECC/CECC enable */
2620
f9431992 2621
ae7bb7c6 2622 if (!s->nbctl_valid)
f9431992
DT
2623 return;
2624
c9f4f26e 2625 amd64_read_pci_cfg(F3, NBCTL, &value);
f9431992 2626 value &= ~mask;
ae7bb7c6 2627 value |= s->old_nbctl;
f9431992 2628
c9f4f26e 2629 amd64_write_pci_cfg(F3, NBCTL, value);
f9431992 2630
ae7bb7c6
BP
2631 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
2632 if (!s->flags.nb_ecc_prev) {
a97fa68e
BP
2633 amd64_read_pci_cfg(F3, NBCFG, &value);
2634 value &= ~NBCFG_ECC_ENABLE;
2635 amd64_write_pci_cfg(F3, NBCFG, value);
d95cf4de
BP
2636 }
2637
2638 /* restore the NB Enable MCGCTL bit */
2299ef71 2639 if (toggle_ecc_err_reporting(s, nid, OFF))
24f9a7fe 2640 amd64_warn("Error restoring NB MCGCTL settings!\n");
f9431992
DT
2641}
2642
2643/*
2299ef71
BP
2644 * EDAC requires that the BIOS have ECC enabled before
2645 * taking over the processing of ECC errors. A command line
2646 * option allows to force-enable hardware ECC later in
2647 * enable_ecc_error_reporting().
f9431992 2648 */
cab4d277
BP
2649static const char *ecc_msg =
2650 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2651 " Either enable ECC checking or force module loading by setting "
2652 "'ecc_enable_override'.\n"
2653 " (Note that use of the override may cause unknown side effects.)\n";
be3468e8 2654
c7e5301a 2655static bool ecc_enabled(struct pci_dev *F3, u16 nid)
f9431992
DT
2656{
2657 u32 value;
2299ef71 2658 u8 ecc_en = 0;
06724535 2659 bool nb_mce_en = false;
f9431992 2660
a97fa68e 2661 amd64_read_pci_cfg(F3, NBCFG, &value);
f9431992 2662
a97fa68e 2663 ecc_en = !!(value & NBCFG_ECC_ENABLE);
2299ef71 2664 amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
f9431992 2665
d1ea71cd 2666 nb_mce_en = nb_mce_bank_enabled_on_node(nid);
06724535 2667 if (!nb_mce_en)
2299ef71
BP
2668 amd64_notice("NB MCE bank disabled, set MSR "
2669 "0x%08x[4] on node %d to enable.\n",
2670 MSR_IA32_MCG_CTL, nid);
f9431992 2671
2299ef71
BP
2672 if (!ecc_en || !nb_mce_en) {
2673 amd64_notice("%s", ecc_msg);
2674 return false;
2675 }
2676 return true;
f9431992
DT
2677}
2678
df71a053
BP
2679static void setup_mci_misc_attrs(struct mem_ctl_info *mci,
2680 struct amd64_family_type *fam)
7d6034d3
DT
2681{
2682 struct amd64_pvt *pvt = mci->pvt_info;
2683
2684 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2685 mci->edac_ctl_cap = EDAC_FLAG_NONE;
7d6034d3 2686
5980bb9c 2687 if (pvt->nbcap & NBCAP_SECDED)
7d6034d3
DT
2688 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2689
5980bb9c 2690 if (pvt->nbcap & NBCAP_CHIPKILL)
7d6034d3
DT
2691 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2692
d1ea71cd 2693 mci->edac_cap = determine_edac_cap(pvt);
7d6034d3
DT
2694 mci->mod_name = EDAC_MOD_STR;
2695 mci->mod_ver = EDAC_AMD64_VERSION;
df71a053 2696 mci->ctl_name = fam->ctl_name;
8d5b5d9c 2697 mci->dev_name = pci_name(pvt->F2);
7d6034d3
DT
2698 mci->ctl_page_to_phys = NULL;
2699
7d6034d3 2700 /* memory scrubber interface */
d1ea71cd
BP
2701 mci->set_sdram_scrub_rate = set_scrub_rate;
2702 mci->get_sdram_scrub_rate = get_scrub_rate;
7d6034d3
DT
2703}
2704
0092b20d
BP
2705/*
2706 * returns a pointer to the family descriptor on success, NULL otherwise.
2707 */
d1ea71cd 2708static struct amd64_family_type *per_family_init(struct amd64_pvt *pvt)
395ae783 2709{
0092b20d
BP
2710 struct amd64_family_type *fam_type = NULL;
2711
18b94f66 2712 pvt->ext_model = boot_cpu_data.x86_model >> 4;
a4b4bedc 2713 pvt->stepping = boot_cpu_data.x86_mask;
18b94f66
AG
2714 pvt->model = boot_cpu_data.x86_model;
2715 pvt->fam = boot_cpu_data.x86;
2716
2717 switch (pvt->fam) {
395ae783 2718 case 0xf:
d1ea71cd
BP
2719 fam_type = &family_types[K8_CPUS];
2720 pvt->ops = &family_types[K8_CPUS].ops;
395ae783 2721 break;
df71a053 2722
395ae783 2723 case 0x10:
d1ea71cd
BP
2724 fam_type = &family_types[F10_CPUS];
2725 pvt->ops = &family_types[F10_CPUS].ops;
df71a053
BP
2726 break;
2727
2728 case 0x15:
18b94f66 2729 if (pvt->model == 0x30) {
d1ea71cd
BP
2730 fam_type = &family_types[F15_M30H_CPUS];
2731 pvt->ops = &family_types[F15_M30H_CPUS].ops;
18b94f66 2732 break;
a597d2a5
AG
2733 } else if (pvt->model == 0x60) {
2734 fam_type = &family_types[F15_M60H_CPUS];
2735 pvt->ops = &family_types[F15_M60H_CPUS].ops;
2736 break;
18b94f66
AG
2737 }
2738
d1ea71cd
BP
2739 fam_type = &family_types[F15_CPUS];
2740 pvt->ops = &family_types[F15_CPUS].ops;
395ae783
BP
2741 break;
2742
94c1acf2 2743 case 0x16:
85a8885b
AG
2744 if (pvt->model == 0x30) {
2745 fam_type = &family_types[F16_M30H_CPUS];
2746 pvt->ops = &family_types[F16_M30H_CPUS].ops;
2747 break;
2748 }
d1ea71cd
BP
2749 fam_type = &family_types[F16_CPUS];
2750 pvt->ops = &family_types[F16_CPUS].ops;
94c1acf2
AG
2751 break;
2752
395ae783 2753 default:
24f9a7fe 2754 amd64_err("Unsupported family!\n");
0092b20d 2755 return NULL;
395ae783 2756 }
0092b20d 2757
df71a053 2758 amd64_info("%s %sdetected (node %d).\n", fam_type->ctl_name,
18b94f66 2759 (pvt->fam == 0xf ?
24f9a7fe
BP
2760 (pvt->ext_model >= K8_REV_F ? "revF or later "
2761 : "revE or earlier ")
2762 : ""), pvt->mc_node_id);
0092b20d 2763 return fam_type;
395ae783
BP
2764}
2765
e339f1ec
TI
2766static const struct attribute_group *amd64_edac_attr_groups[] = {
2767#ifdef CONFIG_EDAC_DEBUG
2768 &amd64_edac_dbg_group,
2769#endif
2770#ifdef CONFIG_EDAC_AMD64_ERROR_INJECTION
2771 &amd64_edac_inj_group,
2772#endif
2773 NULL
2774};
2775
3f37a36b 2776static int init_one_instance(unsigned int nid)
7d6034d3 2777{
3f37a36b 2778 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
0092b20d 2779 struct amd64_family_type *fam_type = NULL;
360b7f3c 2780 struct mem_ctl_info *mci = NULL;
ab5a503c 2781 struct edac_mc_layer layers[2];
3f37a36b 2782 struct amd64_pvt *pvt = NULL;
7d6034d3
DT
2783 int err = 0, ret;
2784
2785 ret = -ENOMEM;
2786 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2787 if (!pvt)
360b7f3c 2788 goto err_ret;
7d6034d3 2789
360b7f3c 2790 pvt->mc_node_id = nid;
3f37a36b 2791 pvt->F3 = F3;
7d6034d3 2792
395ae783 2793 ret = -EINVAL;
d1ea71cd 2794 fam_type = per_family_init(pvt);
0092b20d 2795 if (!fam_type)
395ae783
BP
2796 goto err_free;
2797
7d6034d3 2798 ret = -ENODEV;
3f37a36b 2799 err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f2_id);
7d6034d3
DT
2800 if (err)
2801 goto err_free;
2802
360b7f3c 2803 read_mc_regs(pvt);
7d6034d3 2804
7d6034d3
DT
2805 /*
2806 * We need to determine how many memory channels there are. Then use
2807 * that information for calculating the size of the dynamic instance
360b7f3c 2808 * tables in the 'mci' structure.
7d6034d3 2809 */
360b7f3c 2810 ret = -EINVAL;
7d6034d3
DT
2811 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2812 if (pvt->channel_count < 0)
360b7f3c 2813 goto err_siblings;
7d6034d3
DT
2814
2815 ret = -ENOMEM;
ab5a503c
MCC
2816 layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
2817 layers[0].size = pvt->csels[0].b_cnt;
2818 layers[0].is_virt_csrow = true;
2819 layers[1].type = EDAC_MC_LAYER_CHANNEL;
f0a56c48
BP
2820
2821 /*
2822 * Always allocate two channels since we can have setups with DIMMs on
2823 * only one channel. Also, this simplifies handling later for the price
2824 * of a couple of KBs tops.
2825 */
2826 layers[1].size = 2;
ab5a503c 2827 layers[1].is_virt_csrow = false;
f0a56c48 2828
ca0907b9 2829 mci = edac_mc_alloc(nid, ARRAY_SIZE(layers), layers, 0);
7d6034d3 2830 if (!mci)
360b7f3c 2831 goto err_siblings;
7d6034d3
DT
2832
2833 mci->pvt_info = pvt;
3f37a36b 2834 mci->pdev = &pvt->F3->dev;
7d6034d3 2835
df71a053 2836 setup_mci_misc_attrs(mci, fam_type);
360b7f3c
BP
2837
2838 if (init_csrows(mci))
7d6034d3
DT
2839 mci->edac_cap = EDAC_FLAG_NONE;
2840
7d6034d3 2841 ret = -ENODEV;
e339f1ec 2842 if (edac_mc_add_mc_with_groups(mci, amd64_edac_attr_groups)) {
956b9ba1 2843 edac_dbg(1, "failed edac_mc_add_mc()\n");
7d6034d3
DT
2844 goto err_add_mc;
2845 }
2846
549d042d
BP
2847 /* register stuff with EDAC MCE */
2848 if (report_gart_errors)
2849 amd_report_gart_errors(true);
2850
df781d03 2851 amd_register_ecc_decoder(decode_bus_error);
549d042d 2852
7d6034d3
DT
2853 return 0;
2854
2855err_add_mc:
2856 edac_mc_free(mci);
2857
360b7f3c
BP
2858err_siblings:
2859 free_mc_sibling_devs(pvt);
7d6034d3 2860
360b7f3c
BP
2861err_free:
2862 kfree(pvt);
7d6034d3 2863
360b7f3c 2864err_ret:
7d6034d3
DT
2865 return ret;
2866}
2867
3f37a36b 2868static int probe_one_instance(unsigned int nid)
7d6034d3 2869{
2299ef71 2870 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
ae7bb7c6 2871 struct ecc_settings *s;
3f37a36b 2872 int ret;
7d6034d3 2873
ae7bb7c6
BP
2874 ret = -ENOMEM;
2875 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
2876 if (!s)
2299ef71 2877 goto err_out;
ae7bb7c6
BP
2878
2879 ecc_stngs[nid] = s;
2880
2299ef71
BP
2881 if (!ecc_enabled(F3, nid)) {
2882 ret = -ENODEV;
2883
2884 if (!ecc_enable_override)
2885 goto err_enable;
2886
2887 amd64_warn("Forcing ECC on!\n");
2888
2889 if (!enable_ecc_error_reporting(s, nid, F3))
2890 goto err_enable;
2891 }
2892
3f37a36b 2893 ret = init_one_instance(nid);
360b7f3c 2894 if (ret < 0) {
ae7bb7c6 2895 amd64_err("Error probing instance: %d\n", nid);
360b7f3c
BP
2896 restore_ecc_error_reporting(s, nid, F3);
2897 }
7d6034d3
DT
2898
2899 return ret;
2299ef71
BP
2900
2901err_enable:
2902 kfree(s);
2903 ecc_stngs[nid] = NULL;
2904
2905err_out:
2906 return ret;
7d6034d3
DT
2907}
2908
3f37a36b 2909static void remove_one_instance(unsigned int nid)
7d6034d3 2910{
360b7f3c
BP
2911 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2912 struct ecc_settings *s = ecc_stngs[nid];
3f37a36b
BP
2913 struct mem_ctl_info *mci;
2914 struct amd64_pvt *pvt;
7d6034d3 2915
3f37a36b 2916 mci = find_mci_by_dev(&F3->dev);
a4b4bedc
BP
2917 WARN_ON(!mci);
2918
7d6034d3 2919 /* Remove from EDAC CORE tracking list */
3f37a36b 2920 mci = edac_mc_del_mc(&F3->dev);
7d6034d3
DT
2921 if (!mci)
2922 return;
2923
2924 pvt = mci->pvt_info;
2925
360b7f3c 2926 restore_ecc_error_reporting(s, nid, F3);
7d6034d3 2927
360b7f3c 2928 free_mc_sibling_devs(pvt);
7d6034d3 2929
549d042d
BP
2930 /* unregister from EDAC MCE */
2931 amd_report_gart_errors(false);
df781d03 2932 amd_unregister_ecc_decoder(decode_bus_error);
549d042d 2933
360b7f3c
BP
2934 kfree(ecc_stngs[nid]);
2935 ecc_stngs[nid] = NULL;
ae7bb7c6 2936
7d6034d3 2937 /* Free the EDAC CORE resources */
8f68ed97 2938 mci->pvt_info = NULL;
8f68ed97
BP
2939
2940 kfree(pvt);
7d6034d3
DT
2941 edac_mc_free(mci);
2942}
2943
360b7f3c 2944static void setup_pci_device(void)
7d6034d3
DT
2945{
2946 struct mem_ctl_info *mci;
2947 struct amd64_pvt *pvt;
2948
d1ea71cd 2949 if (pci_ctl)
7d6034d3
DT
2950 return;
2951
2ec591ac 2952 mci = edac_mc_find(0);
d1ea71cd
BP
2953 if (!mci)
2954 return;
7d6034d3 2955
d1ea71cd
BP
2956 pvt = mci->pvt_info;
2957 pci_ctl = edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
2958 if (!pci_ctl) {
2959 pr_warn("%s(): Unable to create PCI control\n", __func__);
2960 pr_warn("%s(): PCI error report via EDAC not set\n", __func__);
7d6034d3
DT
2961 }
2962}
2963
2964static int __init amd64_edac_init(void)
2965{
360b7f3c 2966 int err = -ENODEV;
3f37a36b 2967 int i;
7d6034d3 2968
7d6034d3
DT
2969 opstate_init();
2970
9653a5c7 2971 if (amd_cache_northbridges() < 0)
56b34b91 2972 goto err_ret;
7d6034d3 2973
cc4d8860 2974 err = -ENOMEM;
ae7bb7c6 2975 ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
2ec591ac 2976 if (!ecc_stngs)
a9f0fbe2 2977 goto err_free;
cc4d8860 2978
50542251 2979 msrs = msrs_alloc();
56b34b91 2980 if (!msrs)
360b7f3c 2981 goto err_free;
50542251 2982
3f37a36b
BP
2983 for (i = 0; i < amd_nb_num(); i++)
2984 if (probe_one_instance(i)) {
2985 /* unwind properly */
2986 while (--i >= 0)
2987 remove_one_instance(i);
7d6034d3 2988
3f37a36b
BP
2989 goto err_pci;
2990 }
7d6034d3 2991
360b7f3c 2992 setup_pci_device();
f5b10c45
TP
2993
2994#ifdef CONFIG_X86_32
2995 amd64_err("%s on 32-bit is unsupported. USE AT YOUR OWN RISK!\n", EDAC_MOD_STR);
2996#endif
2997
de0336b3
BP
2998 printk(KERN_INFO "AMD64 EDAC driver v%s\n", EDAC_AMD64_VERSION);
2999
360b7f3c 3000 return 0;
7d6034d3 3001
56b34b91
BP
3002err_pci:
3003 msrs_free(msrs);
3004 msrs = NULL;
cc4d8860 3005
360b7f3c 3006err_free:
360b7f3c
BP
3007 kfree(ecc_stngs);
3008 ecc_stngs = NULL;
3009
56b34b91 3010err_ret:
7d6034d3
DT
3011 return err;
3012}
3013
3014static void __exit amd64_edac_exit(void)
3015{
3f37a36b
BP
3016 int i;
3017
d1ea71cd
BP
3018 if (pci_ctl)
3019 edac_pci_release_generic_ctl(pci_ctl);
7d6034d3 3020
3f37a36b
BP
3021 for (i = 0; i < amd_nb_num(); i++)
3022 remove_one_instance(i);
50542251 3023
ae7bb7c6
BP
3024 kfree(ecc_stngs);
3025 ecc_stngs = NULL;
3026
50542251
BP
3027 msrs_free(msrs);
3028 msrs = NULL;
7d6034d3
DT
3029}
3030
3031module_init(amd64_edac_init);
3032module_exit(amd64_edac_exit);
3033
3034MODULE_LICENSE("GPL");
3035MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
3036 "Dave Peterson, Thayne Harbaugh");
3037MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
3038 EDAC_AMD64_VERSION);
3039
3040module_param(edac_op_state, int, 0444);
3041MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");