[CPUFREQ] powernow-k8: Set transition latency to 1 if ACPI tables export 0
[linux-2.6-block.git] / drivers / cpufreq / cpufreq_conservative.c
CommitLineData
b9170836
DJ
1/*
2 * drivers/cpufreq/cpufreq_conservative.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
11a80a9c 7 * (C) 2009 Alexander Clouter <alex@digriz.org.uk>
b9170836
DJ
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13
14#include <linux/kernel.h>
15#include <linux/module.h>
b9170836 16#include <linux/init.h>
b9170836 17#include <linux/cpufreq.h>
138a0128 18#include <linux/cpu.h>
b9170836
DJ
19#include <linux/jiffies.h>
20#include <linux/kernel_stat.h>
3fc54d37 21#include <linux/mutex.h>
8e677ce8
AC
22#include <linux/hrtimer.h>
23#include <linux/tick.h>
24#include <linux/ktime.h>
25#include <linux/sched.h>
26
b9170836
DJ
27/*
28 * dbs is used in this file as a shortform for demandbased switching
29 * It helps to keep variable names smaller, simpler
30 */
31
32#define DEF_FREQUENCY_UP_THRESHOLD (80)
b9170836 33#define DEF_FREQUENCY_DOWN_THRESHOLD (20)
b9170836 34
18a7247d
DJ
35/*
36 * The polling frequency of this governor depends on the capability of
b9170836 37 * the processor. Default polling frequency is 1000 times the transition
18a7247d
DJ
38 * latency of the processor. The governor will work on any processor with
39 * transition latency <= 10mS, using appropriate sampling
b9170836 40 * rate.
8e677ce8
AC
41 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
42 * this governor will not work.
b9170836
DJ
43 * All times here are in uS.
44 */
2c906b31 45#define MIN_SAMPLING_RATE_RATIO (2)
112124ab 46
cef9615a
TR
47static unsigned int min_sampling_rate;
48
112124ab 49#define LATENCY_MULTIPLIER (1000)
cef9615a 50#define MIN_LATENCY_MULTIPLIER (100)
2c906b31
AC
51#define DEF_SAMPLING_DOWN_FACTOR (1)
52#define MAX_SAMPLING_DOWN_FACTOR (10)
1c256245 53#define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
b9170836 54
c4028958 55static void do_dbs_timer(struct work_struct *work);
b9170836
DJ
56
57struct cpu_dbs_info_s {
8e677ce8
AC
58 cputime64_t prev_cpu_idle;
59 cputime64_t prev_cpu_wall;
60 cputime64_t prev_cpu_nice;
18a7247d 61 struct cpufreq_policy *cur_policy;
8e677ce8 62 struct delayed_work work;
18a7247d
DJ
63 unsigned int down_skip;
64 unsigned int requested_freq;
8e677ce8
AC
65 int cpu;
66 unsigned int enable:1;
b9170836
DJ
67};
68static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
69
70static unsigned int dbs_enable; /* number of CPUs using this policy */
71
4ec223d0
VP
72/*
73 * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
74 * lock and dbs_mutex. cpu_hotplug lock should always be held before
75 * dbs_mutex. If any function that can potentially take cpu_hotplug lock
76 * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
77 * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
78 * is recursive for the same process. -Venki
b253d2b2
MD
79 * DEADLOCK ALERT! (2) : do_dbs_timer() must not take the dbs_mutex, because it
80 * would deadlock with cancel_delayed_work_sync(), which is needed for proper
81 * raceless workqueue teardown.
4ec223d0 82 */
9acef487 83static DEFINE_MUTEX(dbs_mutex);
b9170836 84
8e677ce8
AC
85static struct workqueue_struct *kconservative_wq;
86
87static struct dbs_tuners {
18a7247d
DJ
88 unsigned int sampling_rate;
89 unsigned int sampling_down_factor;
90 unsigned int up_threshold;
91 unsigned int down_threshold;
92 unsigned int ignore_nice;
93 unsigned int freq_step;
8e677ce8 94} dbs_tuners_ins = {
18a7247d
DJ
95 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
96 .down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
97 .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
98 .ignore_nice = 0,
99 .freq_step = 5,
b9170836
DJ
100};
101
8e677ce8
AC
102static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
103 cputime64_t *wall)
dac1c1a5 104{
8e677ce8
AC
105 cputime64_t idle_time;
106 cputime64_t cur_wall_time;
107 cputime64_t busy_time;
108
109 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
110 busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
111 kstat_cpu(cpu).cpustat.system);
e08f5f5b 112
8e677ce8
AC
113 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
114 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
115 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
116 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
e08f5f5b 117
8e677ce8
AC
118 idle_time = cputime64_sub(cur_wall_time, busy_time);
119 if (wall)
120 *wall = cur_wall_time;
e08f5f5b 121
8e677ce8
AC
122 return idle_time;
123}
124
125static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
126{
127 u64 idle_time = get_cpu_idle_time_us(cpu, wall);
128
129 if (idle_time == -1ULL)
130 return get_cpu_idle_time_jiffy(cpu, wall);
131
132 return idle_time;
dac1c1a5
DJ
133}
134
a8d7c3bc
EO
135/* keep track of frequency transitions */
136static int
137dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
138 void *data)
139{
140 struct cpufreq_freqs *freq = data;
141 struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cpu_dbs_info,
142 freq->cpu);
143
f407a08b
AC
144 struct cpufreq_policy *policy;
145
a8d7c3bc
EO
146 if (!this_dbs_info->enable)
147 return 0;
148
f407a08b
AC
149 policy = this_dbs_info->cur_policy;
150
151 /*
152 * we only care if our internally tracked freq moves outside
153 * the 'valid' ranges of freqency available to us otherwise
154 * we do not change it
155 */
156 if (this_dbs_info->requested_freq > policy->max
157 || this_dbs_info->requested_freq < policy->min)
158 this_dbs_info->requested_freq = freq->new;
a8d7c3bc
EO
159
160 return 0;
161}
162
163static struct notifier_block dbs_cpufreq_notifier_block = {
164 .notifier_call = dbs_cpufreq_notifier
165};
166
b9170836
DJ
167/************************** sysfs interface ************************/
168static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
169{
9411b4ef
TR
170 static int print_once;
171
172 if (!print_once) {
173 printk(KERN_INFO "CPUFREQ: conservative sampling_rate_max "
174 "sysfs file is deprecated - used by: %s\n",
175 current->comm);
176 print_once = 1;
177 }
cef9615a 178 return sprintf(buf, "%u\n", -1U);
b9170836
DJ
179}
180
181static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
182{
9411b4ef
TR
183 static int print_once;
184
185 if (!print_once) {
186 printk(KERN_INFO "CPUFREQ: conservative sampling_rate_max "
187 "sysfs file is deprecated - used by: %s\n", current->comm);
188 print_once = 1;
189 }
cef9615a 190 return sprintf(buf, "%u\n", min_sampling_rate);
b9170836
DJ
191}
192
8e677ce8
AC
193#define define_one_ro(_name) \
194static struct freq_attr _name = \
b9170836
DJ
195__ATTR(_name, 0444, show_##_name, NULL)
196
197define_one_ro(sampling_rate_max);
198define_one_ro(sampling_rate_min);
199
200/* cpufreq_conservative Governor Tunables */
201#define show_one(file_name, object) \
202static ssize_t show_##file_name \
203(struct cpufreq_policy *unused, char *buf) \
204{ \
205 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
206}
207show_one(sampling_rate, sampling_rate);
208show_one(sampling_down_factor, sampling_down_factor);
209show_one(up_threshold, up_threshold);
210show_one(down_threshold, down_threshold);
001893cd 211show_one(ignore_nice_load, ignore_nice);
b9170836
DJ
212show_one(freq_step, freq_step);
213
18a7247d 214static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused,
b9170836
DJ
215 const char *buf, size_t count)
216{
217 unsigned int input;
218 int ret;
9acef487 219 ret = sscanf(buf, "%u", &input);
8e677ce8 220
2c906b31 221 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
b9170836
DJ
222 return -EINVAL;
223
3fc54d37 224 mutex_lock(&dbs_mutex);
b9170836 225 dbs_tuners_ins.sampling_down_factor = input;
3fc54d37 226 mutex_unlock(&dbs_mutex);
b9170836
DJ
227
228 return count;
229}
230
18a7247d 231static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
b9170836
DJ
232 const char *buf, size_t count)
233{
234 unsigned int input;
235 int ret;
9acef487 236 ret = sscanf(buf, "%u", &input);
b9170836 237
8e677ce8 238 if (ret != 1)
b9170836 239 return -EINVAL;
8e677ce8
AC
240
241 mutex_lock(&dbs_mutex);
cef9615a 242 dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
3fc54d37 243 mutex_unlock(&dbs_mutex);
b9170836
DJ
244
245 return count;
246}
247
18a7247d 248static ssize_t store_up_threshold(struct cpufreq_policy *unused,
b9170836
DJ
249 const char *buf, size_t count)
250{
251 unsigned int input;
252 int ret;
9acef487 253 ret = sscanf(buf, "%u", &input);
b9170836 254
3fc54d37 255 mutex_lock(&dbs_mutex);
9acef487 256 if (ret != 1 || input > 100 ||
8e677ce8 257 input <= dbs_tuners_ins.down_threshold) {
3fc54d37 258 mutex_unlock(&dbs_mutex);
b9170836
DJ
259 return -EINVAL;
260 }
261
262 dbs_tuners_ins.up_threshold = input;
3fc54d37 263 mutex_unlock(&dbs_mutex);
b9170836
DJ
264
265 return count;
266}
267
18a7247d 268static ssize_t store_down_threshold(struct cpufreq_policy *unused,
b9170836
DJ
269 const char *buf, size_t count)
270{
271 unsigned int input;
272 int ret;
9acef487 273 ret = sscanf(buf, "%u", &input);
b9170836 274
3fc54d37 275 mutex_lock(&dbs_mutex);
8e677ce8
AC
276 /* cannot be lower than 11 otherwise freq will not fall */
277 if (ret != 1 || input < 11 || input > 100 ||
278 input >= dbs_tuners_ins.up_threshold) {
3fc54d37 279 mutex_unlock(&dbs_mutex);
b9170836
DJ
280 return -EINVAL;
281 }
282
283 dbs_tuners_ins.down_threshold = input;
3fc54d37 284 mutex_unlock(&dbs_mutex);
b9170836
DJ
285
286 return count;
287}
288
001893cd 289static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
b9170836
DJ
290 const char *buf, size_t count)
291{
292 unsigned int input;
293 int ret;
294
295 unsigned int j;
18a7247d
DJ
296
297 ret = sscanf(buf, "%u", &input);
298 if (ret != 1)
b9170836
DJ
299 return -EINVAL;
300
18a7247d 301 if (input > 1)
b9170836 302 input = 1;
18a7247d 303
3fc54d37 304 mutex_lock(&dbs_mutex);
18a7247d 305 if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
3fc54d37 306 mutex_unlock(&dbs_mutex);
b9170836
DJ
307 return count;
308 }
309 dbs_tuners_ins.ignore_nice = input;
310
8e677ce8 311 /* we need to re-evaluate prev_cpu_idle */
dac1c1a5 312 for_each_online_cpu(j) {
8e677ce8
AC
313 struct cpu_dbs_info_s *dbs_info;
314 dbs_info = &per_cpu(cpu_dbs_info, j);
315 dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
316 &dbs_info->prev_cpu_wall);
317 if (dbs_tuners_ins.ignore_nice)
318 dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
b9170836 319 }
3fc54d37 320 mutex_unlock(&dbs_mutex);
b9170836
DJ
321
322 return count;
323}
324
325static ssize_t store_freq_step(struct cpufreq_policy *policy,
326 const char *buf, size_t count)
327{
328 unsigned int input;
329 int ret;
18a7247d 330 ret = sscanf(buf, "%u", &input);
b9170836 331
18a7247d 332 if (ret != 1)
b9170836
DJ
333 return -EINVAL;
334
18a7247d 335 if (input > 100)
b9170836 336 input = 100;
18a7247d 337
b9170836
DJ
338 /* no need to test here if freq_step is zero as the user might actually
339 * want this, they would be crazy though :) */
3fc54d37 340 mutex_lock(&dbs_mutex);
b9170836 341 dbs_tuners_ins.freq_step = input;
3fc54d37 342 mutex_unlock(&dbs_mutex);
b9170836
DJ
343
344 return count;
345}
346
347#define define_one_rw(_name) \
348static struct freq_attr _name = \
349__ATTR(_name, 0644, show_##_name, store_##_name)
350
351define_one_rw(sampling_rate);
352define_one_rw(sampling_down_factor);
353define_one_rw(up_threshold);
354define_one_rw(down_threshold);
001893cd 355define_one_rw(ignore_nice_load);
b9170836
DJ
356define_one_rw(freq_step);
357
9acef487 358static struct attribute *dbs_attributes[] = {
b9170836
DJ
359 &sampling_rate_max.attr,
360 &sampling_rate_min.attr,
361 &sampling_rate.attr,
362 &sampling_down_factor.attr,
363 &up_threshold.attr,
364 &down_threshold.attr,
001893cd 365 &ignore_nice_load.attr,
b9170836
DJ
366 &freq_step.attr,
367 NULL
368};
369
370static struct attribute_group dbs_attr_group = {
371 .attrs = dbs_attributes,
372 .name = "conservative",
373};
374
375/************************** sysfs end ************************/
376
8e677ce8 377static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
b9170836 378{
8e677ce8 379 unsigned int load = 0;
f068c04b 380 unsigned int freq_target;
b9170836 381
8e677ce8
AC
382 struct cpufreq_policy *policy;
383 unsigned int j;
b9170836 384
08a28e2e
AC
385 policy = this_dbs_info->cur_policy;
386
18a7247d 387 /*
8e677ce8
AC
388 * Every sampling_rate, we check, if current idle time is less
389 * than 20% (default), then we try to increase frequency
390 * Every sampling_rate*sampling_down_factor, we check, if current
391 * idle time is more than 80%, then we try to decrease frequency
b9170836 392 *
18a7247d
DJ
393 * Any frequency increase takes it to the maximum frequency.
394 * Frequency reduction happens at minimum steps of
8e677ce8 395 * 5% (default) of maximum frequency
b9170836
DJ
396 */
397
8e677ce8
AC
398 /* Get Absolute Load */
399 for_each_cpu(j, policy->cpus) {
400 struct cpu_dbs_info_s *j_dbs_info;
401 cputime64_t cur_wall_time, cur_idle_time;
402 unsigned int idle_time, wall_time;
b9170836 403
8e677ce8
AC
404 j_dbs_info = &per_cpu(cpu_dbs_info, j);
405
406 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
407
408 wall_time = (unsigned int) cputime64_sub(cur_wall_time,
409 j_dbs_info->prev_cpu_wall);
410 j_dbs_info->prev_cpu_wall = cur_wall_time;
08a28e2e 411
8e677ce8
AC
412 idle_time = (unsigned int) cputime64_sub(cur_idle_time,
413 j_dbs_info->prev_cpu_idle);
414 j_dbs_info->prev_cpu_idle = cur_idle_time;
b9170836 415
8e677ce8
AC
416 if (dbs_tuners_ins.ignore_nice) {
417 cputime64_t cur_nice;
418 unsigned long cur_nice_jiffies;
419
420 cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
421 j_dbs_info->prev_cpu_nice);
422 /*
423 * Assumption: nice time between sampling periods will
424 * be less than 2^32 jiffies for 32 bit sys
425 */
426 cur_nice_jiffies = (unsigned long)
427 cputime64_to_jiffies64(cur_nice);
428
429 j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
430 idle_time += jiffies_to_usecs(cur_nice_jiffies);
431 }
432
433 if (unlikely(!wall_time || wall_time < idle_time))
434 continue;
435
436 load = 100 * (wall_time - idle_time) / wall_time;
437 }
438
439 /*
440 * break out if we 'cannot' reduce the speed as the user might
441 * want freq_step to be zero
442 */
443 if (dbs_tuners_ins.freq_step == 0)
444 return;
b9170836 445
8e677ce8
AC
446 /* Check for frequency increase */
447 if (load > dbs_tuners_ins.up_threshold) {
a159b827 448 this_dbs_info->down_skip = 0;
790d76fa 449
b9170836 450 /* if we are already at full speed then break out early */
a159b827 451 if (this_dbs_info->requested_freq == policy->max)
b9170836 452 return;
18a7247d 453
f068c04b 454 freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
b9170836
DJ
455
456 /* max freq cannot be less than 100. But who knows.... */
f068c04b
DJ
457 if (unlikely(freq_target == 0))
458 freq_target = 5;
18a7247d 459
f068c04b 460 this_dbs_info->requested_freq += freq_target;
a159b827
AC
461 if (this_dbs_info->requested_freq > policy->max)
462 this_dbs_info->requested_freq = policy->max;
b9170836 463
a159b827 464 __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
b9170836 465 CPUFREQ_RELATION_H);
b9170836
DJ
466 return;
467 }
468
8e677ce8
AC
469 /*
470 * The optimal frequency is the frequency that is the lowest that
471 * can support the current CPU usage without triggering the up
472 * policy. To be safe, we focus 10 points under the threshold.
473 */
474 if (load < (dbs_tuners_ins.down_threshold - 10)) {
f068c04b 475 freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
b9170836 476
f068c04b 477 this_dbs_info->requested_freq -= freq_target;
a159b827
AC
478 if (this_dbs_info->requested_freq < policy->min)
479 this_dbs_info->requested_freq = policy->min;
b9170836 480
8e677ce8
AC
481 /*
482 * if we cannot reduce the frequency anymore, break out early
483 */
484 if (policy->cur == policy->min)
485 return;
486
a159b827 487 __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
2c906b31 488 CPUFREQ_RELATION_H);
b9170836
DJ
489 return;
490 }
491}
492
c4028958 493static void do_dbs_timer(struct work_struct *work)
18a7247d 494{
8e677ce8
AC
495 struct cpu_dbs_info_s *dbs_info =
496 container_of(work, struct cpu_dbs_info_s, work.work);
497 unsigned int cpu = dbs_info->cpu;
498
499 /* We want all CPUs to do sampling nearly on same jiffy */
500 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
501
502 delay -= jiffies % delay;
503
504 if (lock_policy_rwsem_write(cpu) < 0)
505 return;
506
507 if (!dbs_info->enable) {
508 unlock_policy_rwsem_write(cpu);
509 return;
510 }
511
512 dbs_check_cpu(dbs_info);
513
514 queue_delayed_work_on(cpu, kconservative_wq, &dbs_info->work, delay);
515 unlock_policy_rwsem_write(cpu);
18a7247d 516}
b9170836 517
8e677ce8 518static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
b9170836 519{
8e677ce8
AC
520 /* We want all CPUs to do sampling nearly on same jiffy */
521 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
522 delay -= jiffies % delay;
523
524 dbs_info->enable = 1;
525 INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
526 queue_delayed_work_on(dbs_info->cpu, kconservative_wq, &dbs_info->work,
527 delay);
b9170836
DJ
528}
529
8e677ce8 530static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
b9170836 531{
8e677ce8 532 dbs_info->enable = 0;
b253d2b2 533 cancel_delayed_work_sync(&dbs_info->work);
b9170836
DJ
534}
535
536static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
537 unsigned int event)
538{
539 unsigned int cpu = policy->cpu;
540 struct cpu_dbs_info_s *this_dbs_info;
541 unsigned int j;
914f7c31 542 int rc;
b9170836
DJ
543
544 this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
545
546 switch (event) {
547 case CPUFREQ_GOV_START:
18a7247d 548 if ((!cpu_online(cpu)) || (!policy->cur))
b9170836
DJ
549 return -EINVAL;
550
b9170836
DJ
551 if (this_dbs_info->enable) /* Already enabled */
552 break;
18a7247d 553
3fc54d37 554 mutex_lock(&dbs_mutex);
914f7c31
JG
555
556 rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
557 if (rc) {
558 mutex_unlock(&dbs_mutex);
559 return rc;
560 }
561
835481d9 562 for_each_cpu(j, policy->cpus) {
b9170836
DJ
563 struct cpu_dbs_info_s *j_dbs_info;
564 j_dbs_info = &per_cpu(cpu_dbs_info, j);
565 j_dbs_info->cur_policy = policy;
18a7247d 566
8e677ce8
AC
567 j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
568 &j_dbs_info->prev_cpu_wall);
569 if (dbs_tuners_ins.ignore_nice) {
570 j_dbs_info->prev_cpu_nice =
571 kstat_cpu(j).cpustat.nice;
572 }
b9170836 573 }
a159b827
AC
574 this_dbs_info->down_skip = 0;
575 this_dbs_info->requested_freq = policy->cur;
914f7c31 576
b9170836
DJ
577 dbs_enable++;
578 /*
579 * Start the timerschedule work, when this governor
580 * is used for first time
581 */
582 if (dbs_enable == 1) {
583 unsigned int latency;
584 /* policy latency is in nS. Convert it to uS first */
2c906b31
AC
585 latency = policy->cpuinfo.transition_latency / 1000;
586 if (latency == 0)
587 latency = 1;
b9170836 588
cef9615a
TR
589 /*
590 * conservative does not implement micro like ondemand
591 * governor, thus we are bound to jiffes/HZ
592 */
593 min_sampling_rate =
594 MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
595 /* Bring kernel and HW constraints together */
596 min_sampling_rate = max(min_sampling_rate,
597 MIN_LATENCY_MULTIPLIER * latency);
598 dbs_tuners_ins.sampling_rate =
599 max(min_sampling_rate,
600 latency * LATENCY_MULTIPLIER);
b9170836 601
a8d7c3bc
EO
602 cpufreq_register_notifier(
603 &dbs_cpufreq_notifier_block,
604 CPUFREQ_TRANSITION_NOTIFIER);
b9170836 605 }
8e677ce8 606 dbs_timer_init(this_dbs_info);
18a7247d 607
3fc54d37 608 mutex_unlock(&dbs_mutex);
8e677ce8 609
b9170836
DJ
610 break;
611
612 case CPUFREQ_GOV_STOP:
3fc54d37 613 mutex_lock(&dbs_mutex);
8e677ce8 614 dbs_timer_exit(this_dbs_info);
b9170836
DJ
615 sysfs_remove_group(&policy->kobj, &dbs_attr_group);
616 dbs_enable--;
8e677ce8 617
b9170836
DJ
618 /*
619 * Stop the timerschedule work, when this governor
620 * is used for first time
621 */
8e677ce8 622 if (dbs_enable == 0)
a8d7c3bc
EO
623 cpufreq_unregister_notifier(
624 &dbs_cpufreq_notifier_block,
625 CPUFREQ_TRANSITION_NOTIFIER);
a8d7c3bc 626
3fc54d37 627 mutex_unlock(&dbs_mutex);
b9170836
DJ
628
629 break;
630
631 case CPUFREQ_GOV_LIMITS:
3fc54d37 632 mutex_lock(&dbs_mutex);
b9170836
DJ
633 if (policy->max < this_dbs_info->cur_policy->cur)
634 __cpufreq_driver_target(
635 this_dbs_info->cur_policy,
18a7247d 636 policy->max, CPUFREQ_RELATION_H);
b9170836
DJ
637 else if (policy->min > this_dbs_info->cur_policy->cur)
638 __cpufreq_driver_target(
639 this_dbs_info->cur_policy,
18a7247d 640 policy->min, CPUFREQ_RELATION_L);
3fc54d37 641 mutex_unlock(&dbs_mutex);
8e677ce8 642
b9170836
DJ
643 break;
644 }
645 return 0;
646}
647
c4d14bc0
SW
648#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
649static
650#endif
1c256245
TR
651struct cpufreq_governor cpufreq_gov_conservative = {
652 .name = "conservative",
653 .governor = cpufreq_governor_dbs,
654 .max_transition_latency = TRANSITION_LATENCY_LIMIT,
655 .owner = THIS_MODULE,
b9170836
DJ
656};
657
658static int __init cpufreq_gov_dbs_init(void)
659{
8e677ce8
AC
660 int err;
661
662 kconservative_wq = create_workqueue("kconservative");
663 if (!kconservative_wq) {
664 printk(KERN_ERR "Creation of kconservative failed\n");
665 return -EFAULT;
666 }
667
668 err = cpufreq_register_governor(&cpufreq_gov_conservative);
669 if (err)
670 destroy_workqueue(kconservative_wq);
671
672 return err;
b9170836
DJ
673}
674
675static void __exit cpufreq_gov_dbs_exit(void)
676{
1c256245 677 cpufreq_unregister_governor(&cpufreq_gov_conservative);
8e677ce8 678 destroy_workqueue(kconservative_wq);
b9170836
DJ
679}
680
681
11a80a9c 682MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
9acef487 683MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
b9170836
DJ
684 "Low Latency Frequency Transition capable processors "
685 "optimised for use in a battery environment");
9acef487 686MODULE_LICENSE("GPL");
b9170836 687
6915719b
JW
688#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
689fs_initcall(cpufreq_gov_dbs_init);
690#else
b9170836 691module_init(cpufreq_gov_dbs_init);
6915719b 692#endif
b9170836 693module_exit(cpufreq_gov_dbs_exit);