cpumask: replace CPUMASK_ALLOC etc with cpumask_var_t
[linux-2.6-block.git] / drivers / cpufreq / cpufreq_conservative.c
CommitLineData
b9170836
DJ
1/*
2 * drivers/cpufreq/cpufreq_conservative.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 * (C) 2004 Alexander Clouter <alex-kernel@digriz.org.uk>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/smp.h>
17#include <linux/init.h>
18#include <linux/interrupt.h>
19#include <linux/ctype.h>
20#include <linux/cpufreq.h>
21#include <linux/sysctl.h>
22#include <linux/types.h>
23#include <linux/fs.h>
24#include <linux/sysfs.h>
138a0128 25#include <linux/cpu.h>
b9170836
DJ
26#include <linux/kmod.h>
27#include <linux/workqueue.h>
28#include <linux/jiffies.h>
29#include <linux/kernel_stat.h>
30#include <linux/percpu.h>
3fc54d37 31#include <linux/mutex.h>
b9170836
DJ
32/*
33 * dbs is used in this file as a shortform for demandbased switching
34 * It helps to keep variable names smaller, simpler
35 */
36
37#define DEF_FREQUENCY_UP_THRESHOLD (80)
b9170836 38#define DEF_FREQUENCY_DOWN_THRESHOLD (20)
b9170836 39
18a7247d
DJ
40/*
41 * The polling frequency of this governor depends on the capability of
b9170836 42 * the processor. Default polling frequency is 1000 times the transition
18a7247d
DJ
43 * latency of the processor. The governor will work on any processor with
44 * transition latency <= 10mS, using appropriate sampling
b9170836 45 * rate.
e08f5f5b
GS
46 * For CPUs with transition latency > 10mS (mostly drivers
47 * with CPUFREQ_ETERNAL), this governor will not work.
b9170836
DJ
48 * All times here are in uS.
49 */
18a7247d 50static unsigned int def_sampling_rate;
2c906b31
AC
51#define MIN_SAMPLING_RATE_RATIO (2)
52/* for correct statistics, we need at least 10 ticks between each measure */
e08f5f5b
GS
53#define MIN_STAT_SAMPLING_RATE \
54 (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
55#define MIN_SAMPLING_RATE \
56 (def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
b9170836 57#define MAX_SAMPLING_RATE (500 * def_sampling_rate)
2c906b31
AC
58#define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER (1000)
59#define DEF_SAMPLING_DOWN_FACTOR (1)
60#define MAX_SAMPLING_DOWN_FACTOR (10)
1c256245 61#define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
b9170836 62
c4028958 63static void do_dbs_timer(struct work_struct *work);
b9170836
DJ
64
65struct cpu_dbs_info_s {
18a7247d
DJ
66 struct cpufreq_policy *cur_policy;
67 unsigned int prev_cpu_idle_up;
68 unsigned int prev_cpu_idle_down;
69 unsigned int enable;
70 unsigned int down_skip;
71 unsigned int requested_freq;
b9170836
DJ
72};
73static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
74
75static unsigned int dbs_enable; /* number of CPUs using this policy */
76
4ec223d0
VP
77/*
78 * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
79 * lock and dbs_mutex. cpu_hotplug lock should always be held before
80 * dbs_mutex. If any function that can potentially take cpu_hotplug lock
81 * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
82 * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
83 * is recursive for the same process. -Venki
84 */
18a7247d 85static DEFINE_MUTEX (dbs_mutex);
c4028958 86static DECLARE_DELAYED_WORK(dbs_work, do_dbs_timer);
b9170836
DJ
87
88struct dbs_tuners {
18a7247d
DJ
89 unsigned int sampling_rate;
90 unsigned int sampling_down_factor;
91 unsigned int up_threshold;
92 unsigned int down_threshold;
93 unsigned int ignore_nice;
94 unsigned int freq_step;
b9170836
DJ
95};
96
97static struct dbs_tuners dbs_tuners_ins = {
18a7247d
DJ
98 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
99 .down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
100 .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
101 .ignore_nice = 0,
102 .freq_step = 5,
b9170836
DJ
103};
104
dac1c1a5
DJ
105static inline unsigned int get_cpu_idle_time(unsigned int cpu)
106{
e08f5f5b
GS
107 unsigned int add_nice = 0, ret;
108
109 if (dbs_tuners_ins.ignore_nice)
110 add_nice = kstat_cpu(cpu).cpustat.nice;
111
18a7247d 112 ret = kstat_cpu(cpu).cpustat.idle +
dac1c1a5 113 kstat_cpu(cpu).cpustat.iowait +
e08f5f5b
GS
114 add_nice;
115
116 return ret;
dac1c1a5
DJ
117}
118
a8d7c3bc
EO
119/* keep track of frequency transitions */
120static int
121dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
122 void *data)
123{
124 struct cpufreq_freqs *freq = data;
125 struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cpu_dbs_info,
126 freq->cpu);
127
128 if (!this_dbs_info->enable)
129 return 0;
130
131 this_dbs_info->requested_freq = freq->new;
132
133 return 0;
134}
135
136static struct notifier_block dbs_cpufreq_notifier_block = {
137 .notifier_call = dbs_cpufreq_notifier
138};
139
b9170836
DJ
140/************************** sysfs interface ************************/
141static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
142{
143 return sprintf (buf, "%u\n", MAX_SAMPLING_RATE);
144}
145
146static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
147{
148 return sprintf (buf, "%u\n", MIN_SAMPLING_RATE);
149}
150
18a7247d
DJ
151#define define_one_ro(_name) \
152static struct freq_attr _name = \
b9170836
DJ
153__ATTR(_name, 0444, show_##_name, NULL)
154
155define_one_ro(sampling_rate_max);
156define_one_ro(sampling_rate_min);
157
158/* cpufreq_conservative Governor Tunables */
159#define show_one(file_name, object) \
160static ssize_t show_##file_name \
161(struct cpufreq_policy *unused, char *buf) \
162{ \
163 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
164}
165show_one(sampling_rate, sampling_rate);
166show_one(sampling_down_factor, sampling_down_factor);
167show_one(up_threshold, up_threshold);
168show_one(down_threshold, down_threshold);
001893cd 169show_one(ignore_nice_load, ignore_nice);
b9170836
DJ
170show_one(freq_step, freq_step);
171
18a7247d 172static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused,
b9170836
DJ
173 const char *buf, size_t count)
174{
175 unsigned int input;
176 int ret;
177 ret = sscanf (buf, "%u", &input);
2c906b31 178 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
b9170836
DJ
179 return -EINVAL;
180
3fc54d37 181 mutex_lock(&dbs_mutex);
b9170836 182 dbs_tuners_ins.sampling_down_factor = input;
3fc54d37 183 mutex_unlock(&dbs_mutex);
b9170836
DJ
184
185 return count;
186}
187
18a7247d 188static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
b9170836
DJ
189 const char *buf, size_t count)
190{
191 unsigned int input;
192 int ret;
193 ret = sscanf (buf, "%u", &input);
194
3fc54d37 195 mutex_lock(&dbs_mutex);
b9170836 196 if (ret != 1 || input > MAX_SAMPLING_RATE || input < MIN_SAMPLING_RATE) {
3fc54d37 197 mutex_unlock(&dbs_mutex);
b9170836
DJ
198 return -EINVAL;
199 }
200
201 dbs_tuners_ins.sampling_rate = input;
3fc54d37 202 mutex_unlock(&dbs_mutex);
b9170836
DJ
203
204 return count;
205}
206
18a7247d 207static ssize_t store_up_threshold(struct cpufreq_policy *unused,
b9170836
DJ
208 const char *buf, size_t count)
209{
210 unsigned int input;
211 int ret;
212 ret = sscanf (buf, "%u", &input);
213
3fc54d37 214 mutex_lock(&dbs_mutex);
b82fbe6c 215 if (ret != 1 || input > 100 || input <= dbs_tuners_ins.down_threshold) {
3fc54d37 216 mutex_unlock(&dbs_mutex);
b9170836
DJ
217 return -EINVAL;
218 }
219
220 dbs_tuners_ins.up_threshold = input;
3fc54d37 221 mutex_unlock(&dbs_mutex);
b9170836
DJ
222
223 return count;
224}
225
18a7247d 226static ssize_t store_down_threshold(struct cpufreq_policy *unused,
b9170836
DJ
227 const char *buf, size_t count)
228{
229 unsigned int input;
230 int ret;
231 ret = sscanf (buf, "%u", &input);
232
3fc54d37 233 mutex_lock(&dbs_mutex);
b82fbe6c 234 if (ret != 1 || input > 100 || input >= dbs_tuners_ins.up_threshold) {
3fc54d37 235 mutex_unlock(&dbs_mutex);
b9170836
DJ
236 return -EINVAL;
237 }
238
239 dbs_tuners_ins.down_threshold = input;
3fc54d37 240 mutex_unlock(&dbs_mutex);
b9170836
DJ
241
242 return count;
243}
244
001893cd 245static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
b9170836
DJ
246 const char *buf, size_t count)
247{
248 unsigned int input;
249 int ret;
250
251 unsigned int j;
18a7247d
DJ
252
253 ret = sscanf(buf, "%u", &input);
254 if (ret != 1)
b9170836
DJ
255 return -EINVAL;
256
18a7247d 257 if (input > 1)
b9170836 258 input = 1;
18a7247d 259
3fc54d37 260 mutex_lock(&dbs_mutex);
18a7247d 261 if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
3fc54d37 262 mutex_unlock(&dbs_mutex);
b9170836
DJ
263 return count;
264 }
265 dbs_tuners_ins.ignore_nice = input;
266
267 /* we need to re-evaluate prev_cpu_idle_up and prev_cpu_idle_down */
dac1c1a5 268 for_each_online_cpu(j) {
b9170836
DJ
269 struct cpu_dbs_info_s *j_dbs_info;
270 j_dbs_info = &per_cpu(cpu_dbs_info, j);
dac1c1a5 271 j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j);
b9170836
DJ
272 j_dbs_info->prev_cpu_idle_down = j_dbs_info->prev_cpu_idle_up;
273 }
3fc54d37 274 mutex_unlock(&dbs_mutex);
b9170836
DJ
275
276 return count;
277}
278
279static ssize_t store_freq_step(struct cpufreq_policy *policy,
280 const char *buf, size_t count)
281{
282 unsigned int input;
283 int ret;
284
18a7247d 285 ret = sscanf(buf, "%u", &input);
b9170836 286
18a7247d 287 if (ret != 1)
b9170836
DJ
288 return -EINVAL;
289
18a7247d 290 if (input > 100)
b9170836 291 input = 100;
18a7247d 292
b9170836
DJ
293 /* no need to test here if freq_step is zero as the user might actually
294 * want this, they would be crazy though :) */
3fc54d37 295 mutex_lock(&dbs_mutex);
b9170836 296 dbs_tuners_ins.freq_step = input;
3fc54d37 297 mutex_unlock(&dbs_mutex);
b9170836
DJ
298
299 return count;
300}
301
302#define define_one_rw(_name) \
303static struct freq_attr _name = \
304__ATTR(_name, 0644, show_##_name, store_##_name)
305
306define_one_rw(sampling_rate);
307define_one_rw(sampling_down_factor);
308define_one_rw(up_threshold);
309define_one_rw(down_threshold);
001893cd 310define_one_rw(ignore_nice_load);
b9170836
DJ
311define_one_rw(freq_step);
312
313static struct attribute * dbs_attributes[] = {
314 &sampling_rate_max.attr,
315 &sampling_rate_min.attr,
316 &sampling_rate.attr,
317 &sampling_down_factor.attr,
318 &up_threshold.attr,
319 &down_threshold.attr,
001893cd 320 &ignore_nice_load.attr,
b9170836
DJ
321 &freq_step.attr,
322 NULL
323};
324
325static struct attribute_group dbs_attr_group = {
326 .attrs = dbs_attributes,
327 .name = "conservative",
328};
329
330/************************** sysfs end ************************/
331
332static void dbs_check_cpu(int cpu)
333{
334 unsigned int idle_ticks, up_idle_ticks, down_idle_ticks;
08a28e2e 335 unsigned int tmp_idle_ticks, total_idle_ticks;
f068c04b 336 unsigned int freq_target;
b9170836 337 unsigned int freq_down_sampling_rate;
08a28e2e 338 struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
b9170836 339 struct cpufreq_policy *policy;
b9170836 340
b9170836
DJ
341 if (!this_dbs_info->enable)
342 return;
343
08a28e2e
AC
344 policy = this_dbs_info->cur_policy;
345
18a7247d
DJ
346 /*
347 * The default safe range is 20% to 80%
b9170836 348 * Every sampling_rate, we check
18a7247d
DJ
349 * - If current idle time is less than 20%, then we try to
350 * increase frequency
b9170836 351 * Every sampling_rate*sampling_down_factor, we check
18a7247d
DJ
352 * - If current idle time is more than 80%, then we try to
353 * decrease frequency
b9170836 354 *
18a7247d
DJ
355 * Any frequency increase takes it to the maximum frequency.
356 * Frequency reduction happens at minimum steps of
357 * 5% (default) of max_frequency
b9170836
DJ
358 */
359
360 /* Check for frequency increase */
9c7d269b 361 idle_ticks = UINT_MAX;
b9170836 362
08a28e2e
AC
363 /* Check for frequency increase */
364 total_idle_ticks = get_cpu_idle_time(cpu);
365 tmp_idle_ticks = total_idle_ticks -
366 this_dbs_info->prev_cpu_idle_up;
367 this_dbs_info->prev_cpu_idle_up = total_idle_ticks;
368
369 if (tmp_idle_ticks < idle_ticks)
370 idle_ticks = tmp_idle_ticks;
b9170836
DJ
371
372 /* Scale idle ticks by 100 and compare with up and down ticks */
373 idle_ticks *= 100;
374 up_idle_ticks = (100 - dbs_tuners_ins.up_threshold) *
2c906b31 375 usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
b9170836
DJ
376
377 if (idle_ticks < up_idle_ticks) {
a159b827 378 this_dbs_info->down_skip = 0;
08a28e2e
AC
379 this_dbs_info->prev_cpu_idle_down =
380 this_dbs_info->prev_cpu_idle_up;
790d76fa 381
b9170836 382 /* if we are already at full speed then break out early */
a159b827 383 if (this_dbs_info->requested_freq == policy->max)
b9170836 384 return;
18a7247d 385
f068c04b 386 freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
b9170836
DJ
387
388 /* max freq cannot be less than 100. But who knows.... */
f068c04b
DJ
389 if (unlikely(freq_target == 0))
390 freq_target = 5;
18a7247d 391
f068c04b 392 this_dbs_info->requested_freq += freq_target;
a159b827
AC
393 if (this_dbs_info->requested_freq > policy->max)
394 this_dbs_info->requested_freq = policy->max;
b9170836 395
a159b827 396 __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
b9170836 397 CPUFREQ_RELATION_H);
b9170836
DJ
398 return;
399 }
400
401 /* Check for frequency decrease */
a159b827
AC
402 this_dbs_info->down_skip++;
403 if (this_dbs_info->down_skip < dbs_tuners_ins.sampling_down_factor)
b9170836
DJ
404 return;
405
08a28e2e
AC
406 /* Check for frequency decrease */
407 total_idle_ticks = this_dbs_info->prev_cpu_idle_up;
408 tmp_idle_ticks = total_idle_ticks -
409 this_dbs_info->prev_cpu_idle_down;
410 this_dbs_info->prev_cpu_idle_down = total_idle_ticks;
b9170836 411
08a28e2e
AC
412 if (tmp_idle_ticks < idle_ticks)
413 idle_ticks = tmp_idle_ticks;
b9170836
DJ
414
415 /* Scale idle ticks by 100 and compare with up and down ticks */
416 idle_ticks *= 100;
a159b827 417 this_dbs_info->down_skip = 0;
b9170836
DJ
418
419 freq_down_sampling_rate = dbs_tuners_ins.sampling_rate *
420 dbs_tuners_ins.sampling_down_factor;
421 down_idle_ticks = (100 - dbs_tuners_ins.down_threshold) *
2c906b31 422 usecs_to_jiffies(freq_down_sampling_rate);
b9170836 423
9c7d269b 424 if (idle_ticks > down_idle_ticks) {
2c906b31
AC
425 /*
426 * if we are already at the lowest speed then break out early
b9170836 427 * or if we 'cannot' reduce the speed as the user might want
f068c04b 428 * freq_target to be zero
2c906b31 429 */
a159b827 430 if (this_dbs_info->requested_freq == policy->min
b9170836
DJ
431 || dbs_tuners_ins.freq_step == 0)
432 return;
433
f068c04b 434 freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
b9170836
DJ
435
436 /* max freq cannot be less than 100. But who knows.... */
f068c04b
DJ
437 if (unlikely(freq_target == 0))
438 freq_target = 5;
b9170836 439
f068c04b 440 this_dbs_info->requested_freq -= freq_target;
a159b827
AC
441 if (this_dbs_info->requested_freq < policy->min)
442 this_dbs_info->requested_freq = policy->min;
b9170836 443
a159b827 444 __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
2c906b31 445 CPUFREQ_RELATION_H);
b9170836
DJ
446 return;
447 }
448}
449
c4028958 450static void do_dbs_timer(struct work_struct *work)
18a7247d 451{
b9170836 452 int i;
3fc54d37 453 mutex_lock(&dbs_mutex);
b9170836
DJ
454 for_each_online_cpu(i)
455 dbs_check_cpu(i);
18a7247d 456 schedule_delayed_work(&dbs_work,
b9170836 457 usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
3fc54d37 458 mutex_unlock(&dbs_mutex);
18a7247d 459}
b9170836
DJ
460
461static inline void dbs_timer_init(void)
462{
8217e4f4 463 init_timer_deferrable(&dbs_work.timer);
b9170836
DJ
464 schedule_delayed_work(&dbs_work,
465 usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
466 return;
467}
468
469static inline void dbs_timer_exit(void)
470{
471 cancel_delayed_work(&dbs_work);
472 return;
473}
474
475static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
476 unsigned int event)
477{
478 unsigned int cpu = policy->cpu;
479 struct cpu_dbs_info_s *this_dbs_info;
480 unsigned int j;
914f7c31 481 int rc;
b9170836
DJ
482
483 this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
484
485 switch (event) {
486 case CPUFREQ_GOV_START:
18a7247d 487 if ((!cpu_online(cpu)) || (!policy->cur))
b9170836
DJ
488 return -EINVAL;
489
b9170836
DJ
490 if (this_dbs_info->enable) /* Already enabled */
491 break;
18a7247d 492
3fc54d37 493 mutex_lock(&dbs_mutex);
914f7c31
JG
494
495 rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
496 if (rc) {
497 mutex_unlock(&dbs_mutex);
498 return rc;
499 }
500
068b1277 501 for_each_cpu_mask_nr(j, policy->cpus) {
b9170836
DJ
502 struct cpu_dbs_info_s *j_dbs_info;
503 j_dbs_info = &per_cpu(cpu_dbs_info, j);
504 j_dbs_info->cur_policy = policy;
18a7247d 505
08a28e2e 506 j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(cpu);
b9170836
DJ
507 j_dbs_info->prev_cpu_idle_down
508 = j_dbs_info->prev_cpu_idle_up;
509 }
510 this_dbs_info->enable = 1;
a159b827
AC
511 this_dbs_info->down_skip = 0;
512 this_dbs_info->requested_freq = policy->cur;
914f7c31 513
b9170836
DJ
514 dbs_enable++;
515 /*
516 * Start the timerschedule work, when this governor
517 * is used for first time
518 */
519 if (dbs_enable == 1) {
520 unsigned int latency;
521 /* policy latency is in nS. Convert it to uS first */
2c906b31
AC
522 latency = policy->cpuinfo.transition_latency / 1000;
523 if (latency == 0)
524 latency = 1;
b9170836 525
e8a02572 526 def_sampling_rate = 10 * latency *
b9170836 527 DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
2c906b31
AC
528
529 if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
530 def_sampling_rate = MIN_STAT_SAMPLING_RATE;
531
b9170836 532 dbs_tuners_ins.sampling_rate = def_sampling_rate;
b9170836
DJ
533
534 dbs_timer_init();
a8d7c3bc
EO
535 cpufreq_register_notifier(
536 &dbs_cpufreq_notifier_block,
537 CPUFREQ_TRANSITION_NOTIFIER);
b9170836 538 }
18a7247d 539
3fc54d37 540 mutex_unlock(&dbs_mutex);
b9170836
DJ
541 break;
542
543 case CPUFREQ_GOV_STOP:
3fc54d37 544 mutex_lock(&dbs_mutex);
b9170836
DJ
545 this_dbs_info->enable = 0;
546 sysfs_remove_group(&policy->kobj, &dbs_attr_group);
547 dbs_enable--;
548 /*
549 * Stop the timerschedule work, when this governor
550 * is used for first time
551 */
a8d7c3bc 552 if (dbs_enable == 0) {
b9170836 553 dbs_timer_exit();
a8d7c3bc
EO
554 cpufreq_unregister_notifier(
555 &dbs_cpufreq_notifier_block,
556 CPUFREQ_TRANSITION_NOTIFIER);
557 }
558
3fc54d37 559 mutex_unlock(&dbs_mutex);
b9170836
DJ
560
561 break;
562
563 case CPUFREQ_GOV_LIMITS:
3fc54d37 564 mutex_lock(&dbs_mutex);
b9170836
DJ
565 if (policy->max < this_dbs_info->cur_policy->cur)
566 __cpufreq_driver_target(
567 this_dbs_info->cur_policy,
18a7247d 568 policy->max, CPUFREQ_RELATION_H);
b9170836
DJ
569 else if (policy->min > this_dbs_info->cur_policy->cur)
570 __cpufreq_driver_target(
571 this_dbs_info->cur_policy,
18a7247d 572 policy->min, CPUFREQ_RELATION_L);
3fc54d37 573 mutex_unlock(&dbs_mutex);
b9170836
DJ
574 break;
575 }
576 return 0;
577}
578
c4d14bc0
SW
579#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
580static
581#endif
1c256245
TR
582struct cpufreq_governor cpufreq_gov_conservative = {
583 .name = "conservative",
584 .governor = cpufreq_governor_dbs,
585 .max_transition_latency = TRANSITION_LATENCY_LIMIT,
586 .owner = THIS_MODULE,
b9170836
DJ
587};
588
589static int __init cpufreq_gov_dbs_init(void)
590{
1c256245 591 return cpufreq_register_governor(&cpufreq_gov_conservative);
b9170836
DJ
592}
593
594static void __exit cpufreq_gov_dbs_exit(void)
595{
596 /* Make sure that the scheduled work is indeed not running */
597 flush_scheduled_work();
598
1c256245 599 cpufreq_unregister_governor(&cpufreq_gov_conservative);
b9170836
DJ
600}
601
602
603MODULE_AUTHOR ("Alexander Clouter <alex-kernel@digriz.org.uk>");
604MODULE_DESCRIPTION ("'cpufreq_conservative' - A dynamic cpufreq governor for "
605 "Low Latency Frequency Transition capable processors "
606 "optimised for use in a battery environment");
607MODULE_LICENSE ("GPL");
608
6915719b
JW
609#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
610fs_initcall(cpufreq_gov_dbs_init);
611#else
b9170836 612module_init(cpufreq_gov_dbs_init);
6915719b 613#endif
b9170836 614module_exit(cpufreq_gov_dbs_exit);