Linux 3.18-rc2
[linux-2.6-block.git] / drivers / cpufreq / cpufreq-dt.c
CommitLineData
95ceafd4
SG
1/*
2 * Copyright (C) 2012 Freescale Semiconductor, Inc.
3 *
748c8766
VK
4 * Copyright (C) 2014 Linaro.
5 * Viresh Kumar <viresh.kumar@linaro.org>
6 *
bbcf0719 7 * The OPP code in function set_target() is reused from
95ceafd4
SG
8 * drivers/cpufreq/omap-cpufreq.c
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License version 2 as
12 * published by the Free Software Foundation.
13 */
14
15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17#include <linux/clk.h>
e1825b25 18#include <linux/cpu.h>
77cff592 19#include <linux/cpu_cooling.h>
95ceafd4 20#include <linux/cpufreq.h>
34e5a527 21#include <linux/cpufreq-dt.h>
77cff592 22#include <linux/cpumask.h>
95ceafd4
SG
23#include <linux/err.h>
24#include <linux/module.h>
25#include <linux/of.h>
e4db1c74 26#include <linux/pm_opp.h>
5553f9e2 27#include <linux/platform_device.h>
95ceafd4
SG
28#include <linux/regulator/consumer.h>
29#include <linux/slab.h>
77cff592 30#include <linux/thermal.h>
95ceafd4 31
d2f31f1d
VK
32struct private_data {
33 struct device *cpu_dev;
34 struct regulator *cpu_reg;
35 struct thermal_cooling_device *cdev;
36 unsigned int voltage_tolerance; /* in percentage */
37};
95ceafd4 38
bbcf0719 39static int set_target(struct cpufreq_policy *policy, unsigned int index)
95ceafd4 40{
47d43ba7 41 struct dev_pm_opp *opp;
d2f31f1d
VK
42 struct cpufreq_frequency_table *freq_table = policy->freq_table;
43 struct clk *cpu_clk = policy->clk;
44 struct private_data *priv = policy->driver_data;
45 struct device *cpu_dev = priv->cpu_dev;
46 struct regulator *cpu_reg = priv->cpu_reg;
5df60559 47 unsigned long volt = 0, volt_old = 0, tol = 0;
d4019f0a 48 unsigned int old_freq, new_freq;
0ca68436 49 long freq_Hz, freq_exact;
95ceafd4
SG
50 int ret;
51
95ceafd4 52 freq_Hz = clk_round_rate(cpu_clk, freq_table[index].frequency * 1000);
2209b0c9 53 if (freq_Hz <= 0)
95ceafd4 54 freq_Hz = freq_table[index].frequency * 1000;
95ceafd4 55
d4019f0a
VK
56 freq_exact = freq_Hz;
57 new_freq = freq_Hz / 1000;
58 old_freq = clk_get_rate(cpu_clk) / 1000;
95ceafd4 59
4a511de9 60 if (!IS_ERR(cpu_reg)) {
78e8eb8f 61 rcu_read_lock();
5d4879cd 62 opp = dev_pm_opp_find_freq_ceil(cpu_dev, &freq_Hz);
95ceafd4 63 if (IS_ERR(opp)) {
78e8eb8f 64 rcu_read_unlock();
fbd48ca5
VK
65 dev_err(cpu_dev, "failed to find OPP for %ld\n",
66 freq_Hz);
d4019f0a 67 return PTR_ERR(opp);
95ceafd4 68 }
5d4879cd 69 volt = dev_pm_opp_get_voltage(opp);
78e8eb8f 70 rcu_read_unlock();
d2f31f1d 71 tol = volt * priv->voltage_tolerance / 100;
95ceafd4
SG
72 volt_old = regulator_get_voltage(cpu_reg);
73 }
74
fbd48ca5
VK
75 dev_dbg(cpu_dev, "%u MHz, %ld mV --> %u MHz, %ld mV\n",
76 old_freq / 1000, volt_old ? volt_old / 1000 : -1,
77 new_freq / 1000, volt ? volt / 1000 : -1);
95ceafd4
SG
78
79 /* scaling up? scale voltage before frequency */
d4019f0a 80 if (!IS_ERR(cpu_reg) && new_freq > old_freq) {
95ceafd4
SG
81 ret = regulator_set_voltage_tol(cpu_reg, volt, tol);
82 if (ret) {
fbd48ca5
VK
83 dev_err(cpu_dev, "failed to scale voltage up: %d\n",
84 ret);
d4019f0a 85 return ret;
95ceafd4
SG
86 }
87 }
88
0ca68436 89 ret = clk_set_rate(cpu_clk, freq_exact);
95ceafd4 90 if (ret) {
fbd48ca5 91 dev_err(cpu_dev, "failed to set clock rate: %d\n", ret);
4a511de9 92 if (!IS_ERR(cpu_reg))
95ceafd4 93 regulator_set_voltage_tol(cpu_reg, volt_old, tol);
d4019f0a 94 return ret;
95ceafd4
SG
95 }
96
97 /* scaling down? scale voltage after frequency */
d4019f0a 98 if (!IS_ERR(cpu_reg) && new_freq < old_freq) {
95ceafd4
SG
99 ret = regulator_set_voltage_tol(cpu_reg, volt, tol);
100 if (ret) {
fbd48ca5
VK
101 dev_err(cpu_dev, "failed to scale voltage down: %d\n",
102 ret);
d4019f0a 103 clk_set_rate(cpu_clk, old_freq * 1000);
95ceafd4
SG
104 }
105 }
106
fd143b4d 107 return ret;
95ceafd4
SG
108}
109
95b61058 110static int allocate_resources(int cpu, struct device **cdev,
d2f31f1d 111 struct regulator **creg, struct clk **cclk)
95ceafd4 112{
d2f31f1d
VK
113 struct device *cpu_dev;
114 struct regulator *cpu_reg;
115 struct clk *cpu_clk;
116 int ret = 0;
2d2c5e0e 117 char *reg_cpu0 = "cpu0", *reg_cpu = "cpu", *reg;
95ceafd4 118
95b61058 119 cpu_dev = get_cpu_device(cpu);
e1825b25 120 if (!cpu_dev) {
95b61058 121 pr_err("failed to get cpu%d device\n", cpu);
e1825b25
SK
122 return -ENODEV;
123 }
6754f556 124
2d2c5e0e 125 /* Try "cpu0" for older DTs */
95b61058
VK
126 if (!cpu)
127 reg = reg_cpu0;
128 else
129 reg = reg_cpu;
2d2c5e0e
VK
130
131try_again:
132 cpu_reg = regulator_get_optional(cpu_dev, reg);
fc31d6f5
NM
133 if (IS_ERR(cpu_reg)) {
134 /*
95b61058 135 * If cpu's regulator supply node is present, but regulator is
fc31d6f5
NM
136 * not yet registered, we should try defering probe.
137 */
138 if (PTR_ERR(cpu_reg) == -EPROBE_DEFER) {
95b61058
VK
139 dev_dbg(cpu_dev, "cpu%d regulator not ready, retry\n",
140 cpu);
d2f31f1d 141 return -EPROBE_DEFER;
fc31d6f5 142 }
2d2c5e0e
VK
143
144 /* Try with "cpu-supply" */
145 if (reg == reg_cpu0) {
146 reg = reg_cpu;
147 goto try_again;
148 }
149
a00de1ab
TP
150 dev_dbg(cpu_dev, "no regulator for cpu%d: %ld\n",
151 cpu, PTR_ERR(cpu_reg));
fc31d6f5
NM
152 }
153
e3beb0ac 154 cpu_clk = clk_get(cpu_dev, NULL);
95ceafd4 155 if (IS_ERR(cpu_clk)) {
d2f31f1d
VK
156 /* put regulator */
157 if (!IS_ERR(cpu_reg))
158 regulator_put(cpu_reg);
159
95ceafd4 160 ret = PTR_ERR(cpu_clk);
48a8624b
VK
161
162 /*
163 * If cpu's clk node is present, but clock is not yet
164 * registered, we should try defering probe.
165 */
166 if (ret == -EPROBE_DEFER)
95b61058 167 dev_dbg(cpu_dev, "cpu%d clock not ready, retry\n", cpu);
48a8624b 168 else
95b61058
VK
169 dev_err(cpu_dev, "failed to get cpu%d clock: %d\n", ret,
170 cpu);
d2f31f1d
VK
171 } else {
172 *cdev = cpu_dev;
173 *creg = cpu_reg;
174 *cclk = cpu_clk;
175 }
176
177 return ret;
178}
179
bbcf0719 180static int cpufreq_init(struct cpufreq_policy *policy)
d2f31f1d 181{
34e5a527 182 struct cpufreq_dt_platform_data *pd;
d2f31f1d
VK
183 struct cpufreq_frequency_table *freq_table;
184 struct thermal_cooling_device *cdev;
185 struct device_node *np;
186 struct private_data *priv;
187 struct device *cpu_dev;
188 struct regulator *cpu_reg;
189 struct clk *cpu_clk;
190 unsigned int transition_latency;
191 int ret;
192
95b61058 193 ret = allocate_resources(policy->cpu, &cpu_dev, &cpu_reg, &cpu_clk);
d2f31f1d
VK
194 if (ret) {
195 pr_err("%s: Failed to allocate resources\n: %d", __func__, ret);
196 return ret;
197 }
48a8624b 198
d2f31f1d
VK
199 np = of_node_get(cpu_dev->of_node);
200 if (!np) {
201 dev_err(cpu_dev, "failed to find cpu%d node\n", policy->cpu);
202 ret = -ENOENT;
203 goto out_put_reg_clk;
95ceafd4
SG
204 }
205
1bf8cc3d
VK
206 /* OPPs might be populated at runtime, don't check for error here */
207 of_init_opp_table(cpu_dev);
95ceafd4 208
5d4879cd 209 ret = dev_pm_opp_init_cpufreq_table(cpu_dev, &freq_table);
95ceafd4 210 if (ret) {
fbd48ca5 211 dev_err(cpu_dev, "failed to init cpufreq table: %d\n", ret);
d2f31f1d
VK
212 goto out_put_node;
213 }
214
215 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
216 if (!priv) {
217 ret = -ENOMEM;
218 goto out_free_table;
95ceafd4
SG
219 }
220
d2f31f1d 221 of_property_read_u32(np, "voltage-tolerance", &priv->voltage_tolerance);
95ceafd4
SG
222
223 if (of_property_read_u32(np, "clock-latency", &transition_latency))
224 transition_latency = CPUFREQ_ETERNAL;
225
43c638e3 226 if (!IS_ERR(cpu_reg)) {
47d43ba7 227 struct dev_pm_opp *opp;
95ceafd4
SG
228 unsigned long min_uV, max_uV;
229 int i;
230
231 /*
232 * OPP is maintained in order of increasing frequency, and
233 * freq_table initialised from OPP is therefore sorted in the
234 * same order.
235 */
236 for (i = 0; freq_table[i].frequency != CPUFREQ_TABLE_END; i++)
237 ;
78e8eb8f 238 rcu_read_lock();
5d4879cd 239 opp = dev_pm_opp_find_freq_exact(cpu_dev,
95ceafd4 240 freq_table[0].frequency * 1000, true);
5d4879cd
NM
241 min_uV = dev_pm_opp_get_voltage(opp);
242 opp = dev_pm_opp_find_freq_exact(cpu_dev,
95ceafd4 243 freq_table[i-1].frequency * 1000, true);
5d4879cd 244 max_uV = dev_pm_opp_get_voltage(opp);
78e8eb8f 245 rcu_read_unlock();
95ceafd4
SG
246 ret = regulator_set_voltage_time(cpu_reg, min_uV, max_uV);
247 if (ret > 0)
248 transition_latency += ret * 1000;
249 }
250
77cff592
EV
251 /*
252 * For now, just loading the cooling device;
253 * thermal DT code takes care of matching them.
254 */
255 if (of_find_property(np, "#cooling-cells", NULL)) {
256 cdev = of_cpufreq_cooling_register(np, cpu_present_mask);
257 if (IS_ERR(cdev))
fbd48ca5
VK
258 dev_err(cpu_dev,
259 "running cpufreq without cooling device: %ld\n",
260 PTR_ERR(cdev));
d2f31f1d
VK
261 else
262 priv->cdev = cdev;
77cff592 263 }
d2f31f1d
VK
264
265 priv->cpu_dev = cpu_dev;
266 priv->cpu_reg = cpu_reg;
267 policy->driver_data = priv;
268
269 policy->clk = cpu_clk;
34e5a527
TP
270 ret = cpufreq_table_validate_and_show(policy, freq_table);
271 if (ret) {
272 dev_err(cpu_dev, "%s: invalid frequency table: %d\n", __func__,
273 ret);
d2f31f1d 274 goto out_cooling_unregister;
34e5a527
TP
275 }
276
277 policy->cpuinfo.transition_latency = transition_latency;
278
279 pd = cpufreq_get_driver_data();
280 if (pd && !pd->independent_clocks)
281 cpumask_setall(policy->cpus);
d2f31f1d 282
f9739d27
LS
283 of_node_put(np);
284
95ceafd4
SG
285 return 0;
286
d2f31f1d
VK
287out_cooling_unregister:
288 cpufreq_cooling_unregister(priv->cdev);
289 kfree(priv);
95ceafd4 290out_free_table:
5d4879cd 291 dev_pm_opp_free_cpufreq_table(cpu_dev, &freq_table);
d2f31f1d
VK
292out_put_node:
293 of_node_put(np);
294out_put_reg_clk:
ed4b053c 295 clk_put(cpu_clk);
e3beb0ac
LS
296 if (!IS_ERR(cpu_reg))
297 regulator_put(cpu_reg);
d2f31f1d
VK
298
299 return ret;
300}
301
bbcf0719 302static int cpufreq_exit(struct cpufreq_policy *policy)
d2f31f1d
VK
303{
304 struct private_data *priv = policy->driver_data;
305
306 cpufreq_cooling_unregister(priv->cdev);
307 dev_pm_opp_free_cpufreq_table(priv->cpu_dev, &policy->freq_table);
308 clk_put(policy->clk);
309 if (!IS_ERR(priv->cpu_reg))
310 regulator_put(priv->cpu_reg);
311 kfree(priv);
312
313 return 0;
314}
315
bbcf0719 316static struct cpufreq_driver dt_cpufreq_driver = {
d2f31f1d
VK
317 .flags = CPUFREQ_STICKY | CPUFREQ_NEED_INITIAL_FREQ_CHECK,
318 .verify = cpufreq_generic_frequency_table_verify,
bbcf0719 319 .target_index = set_target,
d2f31f1d 320 .get = cpufreq_generic_get,
bbcf0719
VK
321 .init = cpufreq_init,
322 .exit = cpufreq_exit,
323 .name = "cpufreq-dt",
d2f31f1d
VK
324 .attr = cpufreq_generic_attr,
325};
326
bbcf0719 327static int dt_cpufreq_probe(struct platform_device *pdev)
d2f31f1d
VK
328{
329 struct device *cpu_dev;
330 struct regulator *cpu_reg;
331 struct clk *cpu_clk;
332 int ret;
333
334 /*
335 * All per-cluster (CPUs sharing clock/voltages) initialization is done
336 * from ->init(). In probe(), we just need to make sure that clk and
337 * regulators are available. Else defer probe and retry.
338 *
339 * FIXME: Is checking this only for CPU0 sufficient ?
340 */
95b61058 341 ret = allocate_resources(0, &cpu_dev, &cpu_reg, &cpu_clk);
d2f31f1d
VK
342 if (ret)
343 return ret;
344
345 clk_put(cpu_clk);
346 if (!IS_ERR(cpu_reg))
347 regulator_put(cpu_reg);
348
34e5a527
TP
349 dt_cpufreq_driver.driver_data = dev_get_platdata(&pdev->dev);
350
bbcf0719 351 ret = cpufreq_register_driver(&dt_cpufreq_driver);
d2f31f1d
VK
352 if (ret)
353 dev_err(cpu_dev, "failed register driver: %d\n", ret);
354
95ceafd4
SG
355 return ret;
356}
5553f9e2 357
bbcf0719 358static int dt_cpufreq_remove(struct platform_device *pdev)
5553f9e2 359{
bbcf0719 360 cpufreq_unregister_driver(&dt_cpufreq_driver);
5553f9e2
SG
361 return 0;
362}
363
bbcf0719 364static struct platform_driver dt_cpufreq_platdrv = {
5553f9e2 365 .driver = {
bbcf0719 366 .name = "cpufreq-dt",
5553f9e2
SG
367 .owner = THIS_MODULE,
368 },
bbcf0719
VK
369 .probe = dt_cpufreq_probe,
370 .remove = dt_cpufreq_remove,
5553f9e2 371};
bbcf0719 372module_platform_driver(dt_cpufreq_platdrv);
95ceafd4 373
748c8766 374MODULE_AUTHOR("Viresh Kumar <viresh.kumar@linaro.org>");
95ceafd4 375MODULE_AUTHOR("Shawn Guo <shawn.guo@linaro.org>");
bbcf0719 376MODULE_DESCRIPTION("Generic cpufreq driver");
95ceafd4 377MODULE_LICENSE("GPL");