Linux 3.16-rc3
[linux-2.6-block.git] / drivers / clocksource / sh_cmt.c
CommitLineData
3fb1b6ad
MD
1/*
2 * SuperH Timer Support - CMT
3 *
4 * Copyright (C) 2008 Magnus Damm
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
3fb1b6ad
MD
14 */
15
e7a9bcc2
LP
16#include <linux/clk.h>
17#include <linux/clockchips.h>
18#include <linux/clocksource.h>
19#include <linux/delay.h>
20#include <linux/err.h>
3fb1b6ad 21#include <linux/init.h>
3fb1b6ad 22#include <linux/interrupt.h>
3fb1b6ad 23#include <linux/io.h>
e7a9bcc2 24#include <linux/ioport.h>
3fb1b6ad 25#include <linux/irq.h>
7deeab5d 26#include <linux/module.h>
e7a9bcc2 27#include <linux/platform_device.h>
615a445f 28#include <linux/pm_domain.h>
bad81383 29#include <linux/pm_runtime.h>
e7a9bcc2
LP
30#include <linux/sh_timer.h>
31#include <linux/slab.h>
32#include <linux/spinlock.h>
3fb1b6ad 33
2653caf4 34struct sh_cmt_device;
7269f933 35
2cda3ac4
LP
36/*
37 * The CMT comes in 5 different identified flavours, depending not only on the
38 * SoC but also on the particular instance. The following table lists the main
39 * characteristics of those flavours.
40 *
41 * 16B 32B 32B-F 48B 48B-2
42 * -----------------------------------------------------------------------------
43 * Channels 2 1/4 1 6 2/8
44 * Control Width 16 16 16 16 32
45 * Counter Width 16 32 32 32/48 32/48
46 * Shared Start/Stop Y Y Y Y N
47 *
48 * The 48-bit gen2 version has a per-channel start/stop register located in the
49 * channel registers block. All other versions have a shared start/stop register
50 * located in the global space.
51 *
81b3b271
LP
52 * Channels are indexed from 0 to N-1 in the documentation. The channel index
53 * infers the start/stop bit position in the control register and the channel
54 * registers block address. Some CMT instances have a subset of channels
55 * available, in which case the index in the documentation doesn't match the
56 * "real" index as implemented in hardware. This is for instance the case with
57 * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
58 * in the documentation but using start/stop bit 5 and having its registers
59 * block at 0x60.
60 *
61 * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
2cda3ac4
LP
62 * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
63 */
64
65enum sh_cmt_model {
66 SH_CMT_16BIT,
67 SH_CMT_32BIT,
68 SH_CMT_32BIT_FAST,
69 SH_CMT_48BIT,
70 SH_CMT_48BIT_GEN2,
71};
72
73struct sh_cmt_info {
74 enum sh_cmt_model model;
75
76 unsigned long width; /* 16 or 32 bit version of hardware block */
77 unsigned long overflow_bit;
78 unsigned long clear_bits;
79
80 /* callbacks for CMSTR and CMCSR access */
81 unsigned long (*read_control)(void __iomem *base, unsigned long offs);
82 void (*write_control)(void __iomem *base, unsigned long offs,
83 unsigned long value);
84
85 /* callbacks for CMCNT and CMCOR access */
86 unsigned long (*read_count)(void __iomem *base, unsigned long offs);
87 void (*write_count)(void __iomem *base, unsigned long offs,
88 unsigned long value);
89};
90
7269f933 91struct sh_cmt_channel {
2653caf4 92 struct sh_cmt_device *cmt;
3fb1b6ad 93
81b3b271
LP
94 unsigned int index; /* Index in the documentation */
95 unsigned int hwidx; /* Real hardware index */
96
97 void __iomem *iostart;
98 void __iomem *ioctrl;
c924d2d2 99
81b3b271 100 unsigned int timer_bit;
3fb1b6ad
MD
101 unsigned long flags;
102 unsigned long match_value;
103 unsigned long next_match_value;
104 unsigned long max_match_value;
105 unsigned long rate;
7d0c399f 106 raw_spinlock_t lock;
3fb1b6ad 107 struct clock_event_device ced;
19bdc9d0 108 struct clocksource cs;
3fb1b6ad 109 unsigned long total_cycles;
bad81383 110 bool cs_enabled;
7269f933
LP
111};
112
2653caf4 113struct sh_cmt_device {
7269f933
LP
114 struct platform_device *pdev;
115
2cda3ac4 116 const struct sh_cmt_info *info;
81b3b271 117 bool legacy;
2cda3ac4 118
36f1ac98 119 void __iomem *mapbase_ch;
7269f933 120 void __iomem *mapbase;
7269f933
LP
121 struct clk *clk;
122
f5ec9b19
LP
123 struct sh_cmt_channel *channels;
124 unsigned int num_channels;
81b3b271
LP
125
126 bool has_clockevent;
127 bool has_clocksource;
3fb1b6ad
MD
128};
129
d14be99b
LP
130#define SH_CMT16_CMCSR_CMF (1 << 7)
131#define SH_CMT16_CMCSR_CMIE (1 << 6)
132#define SH_CMT16_CMCSR_CKS8 (0 << 0)
133#define SH_CMT16_CMCSR_CKS32 (1 << 0)
134#define SH_CMT16_CMCSR_CKS128 (2 << 0)
135#define SH_CMT16_CMCSR_CKS512 (3 << 0)
136#define SH_CMT16_CMCSR_CKS_MASK (3 << 0)
137
138#define SH_CMT32_CMCSR_CMF (1 << 15)
139#define SH_CMT32_CMCSR_OVF (1 << 14)
140#define SH_CMT32_CMCSR_WRFLG (1 << 13)
141#define SH_CMT32_CMCSR_STTF (1 << 12)
142#define SH_CMT32_CMCSR_STPF (1 << 11)
143#define SH_CMT32_CMCSR_SSIE (1 << 10)
144#define SH_CMT32_CMCSR_CMS (1 << 9)
145#define SH_CMT32_CMCSR_CMM (1 << 8)
146#define SH_CMT32_CMCSR_CMTOUT_IE (1 << 7)
147#define SH_CMT32_CMCSR_CMR_NONE (0 << 4)
148#define SH_CMT32_CMCSR_CMR_DMA (1 << 4)
149#define SH_CMT32_CMCSR_CMR_IRQ (2 << 4)
150#define SH_CMT32_CMCSR_CMR_MASK (3 << 4)
151#define SH_CMT32_CMCSR_DBGIVD (1 << 3)
152#define SH_CMT32_CMCSR_CKS_RCLK8 (4 << 0)
153#define SH_CMT32_CMCSR_CKS_RCLK32 (5 << 0)
154#define SH_CMT32_CMCSR_CKS_RCLK128 (6 << 0)
155#define SH_CMT32_CMCSR_CKS_RCLK1 (7 << 0)
156#define SH_CMT32_CMCSR_CKS_MASK (7 << 0)
157
a6a912ca 158static unsigned long sh_cmt_read16(void __iomem *base, unsigned long offs)
587acb3d
MD
159{
160 return ioread16(base + (offs << 1));
161}
162
a6a912ca
MD
163static unsigned long sh_cmt_read32(void __iomem *base, unsigned long offs)
164{
165 return ioread32(base + (offs << 2));
166}
167
168static void sh_cmt_write16(void __iomem *base, unsigned long offs,
169 unsigned long value)
587acb3d
MD
170{
171 iowrite16(value, base + (offs << 1));
172}
3fb1b6ad 173
a6a912ca
MD
174static void sh_cmt_write32(void __iomem *base, unsigned long offs,
175 unsigned long value)
176{
177 iowrite32(value, base + (offs << 2));
178}
179
2cda3ac4
LP
180static const struct sh_cmt_info sh_cmt_info[] = {
181 [SH_CMT_16BIT] = {
182 .model = SH_CMT_16BIT,
183 .width = 16,
d14be99b
LP
184 .overflow_bit = SH_CMT16_CMCSR_CMF,
185 .clear_bits = ~SH_CMT16_CMCSR_CMF,
2cda3ac4
LP
186 .read_control = sh_cmt_read16,
187 .write_control = sh_cmt_write16,
188 .read_count = sh_cmt_read16,
189 .write_count = sh_cmt_write16,
190 },
191 [SH_CMT_32BIT] = {
192 .model = SH_CMT_32BIT,
193 .width = 32,
d14be99b
LP
194 .overflow_bit = SH_CMT32_CMCSR_CMF,
195 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
2cda3ac4
LP
196 .read_control = sh_cmt_read16,
197 .write_control = sh_cmt_write16,
198 .read_count = sh_cmt_read32,
199 .write_count = sh_cmt_write32,
200 },
201 [SH_CMT_32BIT_FAST] = {
202 .model = SH_CMT_32BIT_FAST,
203 .width = 32,
d14be99b
LP
204 .overflow_bit = SH_CMT32_CMCSR_CMF,
205 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
2cda3ac4
LP
206 .read_control = sh_cmt_read16,
207 .write_control = sh_cmt_write16,
208 .read_count = sh_cmt_read32,
209 .write_count = sh_cmt_write32,
210 },
211 [SH_CMT_48BIT] = {
212 .model = SH_CMT_48BIT,
213 .width = 32,
d14be99b
LP
214 .overflow_bit = SH_CMT32_CMCSR_CMF,
215 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
2cda3ac4
LP
216 .read_control = sh_cmt_read32,
217 .write_control = sh_cmt_write32,
218 .read_count = sh_cmt_read32,
219 .write_count = sh_cmt_write32,
220 },
221 [SH_CMT_48BIT_GEN2] = {
222 .model = SH_CMT_48BIT_GEN2,
223 .width = 32,
d14be99b
LP
224 .overflow_bit = SH_CMT32_CMCSR_CMF,
225 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
2cda3ac4
LP
226 .read_control = sh_cmt_read32,
227 .write_control = sh_cmt_write32,
228 .read_count = sh_cmt_read32,
229 .write_count = sh_cmt_write32,
230 },
231};
232
3fb1b6ad
MD
233#define CMCSR 0 /* channel register */
234#define CMCNT 1 /* channel register */
235#define CMCOR 2 /* channel register */
236
7269f933 237static inline unsigned long sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
1b56b96b 238{
81b3b271
LP
239 if (ch->iostart)
240 return ch->cmt->info->read_control(ch->iostart, 0);
241 else
242 return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
1b56b96b
MD
243}
244
81b3b271
LP
245static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch,
246 unsigned long value)
1b56b96b 247{
81b3b271
LP
248 if (ch->iostart)
249 ch->cmt->info->write_control(ch->iostart, 0, value);
250 else
251 ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
1b56b96b
MD
252}
253
81b3b271 254static inline unsigned long sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
1b56b96b 255{
81b3b271 256 return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
3fb1b6ad
MD
257}
258
81b3b271 259static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch,
1b56b96b
MD
260 unsigned long value)
261{
81b3b271 262 ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
1b56b96b
MD
263}
264
81b3b271 265static inline unsigned long sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
1b56b96b 266{
81b3b271 267 return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
1b56b96b
MD
268}
269
7269f933 270static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch,
1b56b96b
MD
271 unsigned long value)
272{
81b3b271 273 ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
1b56b96b
MD
274}
275
7269f933 276static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch,
1b56b96b
MD
277 unsigned long value)
278{
81b3b271 279 ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
1b56b96b
MD
280}
281
7269f933 282static unsigned long sh_cmt_get_counter(struct sh_cmt_channel *ch,
3fb1b6ad
MD
283 int *has_wrapped)
284{
285 unsigned long v1, v2, v3;
5b644c7a
MD
286 int o1, o2;
287
2cda3ac4 288 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
3fb1b6ad
MD
289
290 /* Make sure the timer value is stable. Stolen from acpi_pm.c */
291 do {
5b644c7a 292 o2 = o1;
7269f933
LP
293 v1 = sh_cmt_read_cmcnt(ch);
294 v2 = sh_cmt_read_cmcnt(ch);
295 v3 = sh_cmt_read_cmcnt(ch);
2cda3ac4 296 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
5b644c7a
MD
297 } while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
298 || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
3fb1b6ad 299
5b644c7a 300 *has_wrapped = o1;
3fb1b6ad
MD
301 return v2;
302}
303
587acb3d 304static DEFINE_RAW_SPINLOCK(sh_cmt_lock);
3fb1b6ad 305
7269f933 306static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
3fb1b6ad 307{
3fb1b6ad
MD
308 unsigned long flags, value;
309
310 /* start stop register shared by multiple timer channels */
7d0c399f 311 raw_spin_lock_irqsave(&sh_cmt_lock, flags);
7269f933 312 value = sh_cmt_read_cmstr(ch);
3fb1b6ad
MD
313
314 if (start)
81b3b271 315 value |= 1 << ch->timer_bit;
3fb1b6ad 316 else
81b3b271 317 value &= ~(1 << ch->timer_bit);
3fb1b6ad 318
7269f933 319 sh_cmt_write_cmstr(ch, value);
7d0c399f 320 raw_spin_unlock_irqrestore(&sh_cmt_lock, flags);
3fb1b6ad
MD
321}
322
7269f933 323static int sh_cmt_enable(struct sh_cmt_channel *ch, unsigned long *rate)
3fb1b6ad 324{
3f7e5e24 325 int k, ret;
3fb1b6ad 326
7269f933
LP
327 pm_runtime_get_sync(&ch->cmt->pdev->dev);
328 dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
bad81383 329
9436b4ab 330 /* enable clock */
7269f933 331 ret = clk_enable(ch->cmt->clk);
3fb1b6ad 332 if (ret) {
740a9518
LP
333 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
334 ch->index);
3f7e5e24 335 goto err0;
3fb1b6ad 336 }
3fb1b6ad
MD
337
338 /* make sure channel is disabled */
7269f933 339 sh_cmt_start_stop_ch(ch, 0);
3fb1b6ad
MD
340
341 /* configure channel, periodic mode and maximum timeout */
2cda3ac4 342 if (ch->cmt->info->width == 16) {
7269f933 343 *rate = clk_get_rate(ch->cmt->clk) / 512;
d14be99b
LP
344 sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
345 SH_CMT16_CMCSR_CKS512);
3014f474 346 } else {
7269f933 347 *rate = clk_get_rate(ch->cmt->clk) / 8;
d14be99b
LP
348 sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM |
349 SH_CMT32_CMCSR_CMTOUT_IE |
350 SH_CMT32_CMCSR_CMR_IRQ |
351 SH_CMT32_CMCSR_CKS_RCLK8);
3014f474 352 }
3fb1b6ad 353
7269f933
LP
354 sh_cmt_write_cmcor(ch, 0xffffffff);
355 sh_cmt_write_cmcnt(ch, 0);
3fb1b6ad 356
3f7e5e24
MD
357 /*
358 * According to the sh73a0 user's manual, as CMCNT can be operated
359 * only by the RCLK (Pseudo 32 KHz), there's one restriction on
360 * modifying CMCNT register; two RCLK cycles are necessary before
361 * this register is either read or any modification of the value
362 * it holds is reflected in the LSI's actual operation.
363 *
364 * While at it, we're supposed to clear out the CMCNT as of this
365 * moment, so make sure it's processed properly here. This will
366 * take RCLKx2 at maximum.
367 */
368 for (k = 0; k < 100; k++) {
7269f933 369 if (!sh_cmt_read_cmcnt(ch))
3f7e5e24
MD
370 break;
371 udelay(1);
372 }
373
7269f933 374 if (sh_cmt_read_cmcnt(ch)) {
740a9518
LP
375 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
376 ch->index);
3f7e5e24
MD
377 ret = -ETIMEDOUT;
378 goto err1;
379 }
380
3fb1b6ad 381 /* enable channel */
7269f933 382 sh_cmt_start_stop_ch(ch, 1);
3fb1b6ad 383 return 0;
3f7e5e24
MD
384 err1:
385 /* stop clock */
7269f933 386 clk_disable(ch->cmt->clk);
3f7e5e24
MD
387
388 err0:
389 return ret;
3fb1b6ad
MD
390}
391
7269f933 392static void sh_cmt_disable(struct sh_cmt_channel *ch)
3fb1b6ad
MD
393{
394 /* disable channel */
7269f933 395 sh_cmt_start_stop_ch(ch, 0);
3fb1b6ad 396
be890a1a 397 /* disable interrupts in CMT block */
7269f933 398 sh_cmt_write_cmcsr(ch, 0);
be890a1a 399
9436b4ab 400 /* stop clock */
7269f933 401 clk_disable(ch->cmt->clk);
bad81383 402
7269f933
LP
403 dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
404 pm_runtime_put(&ch->cmt->pdev->dev);
3fb1b6ad
MD
405}
406
407/* private flags */
408#define FLAG_CLOCKEVENT (1 << 0)
409#define FLAG_CLOCKSOURCE (1 << 1)
410#define FLAG_REPROGRAM (1 << 2)
411#define FLAG_SKIPEVENT (1 << 3)
412#define FLAG_IRQCONTEXT (1 << 4)
413
7269f933 414static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
3fb1b6ad
MD
415 int absolute)
416{
417 unsigned long new_match;
7269f933 418 unsigned long value = ch->next_match_value;
3fb1b6ad
MD
419 unsigned long delay = 0;
420 unsigned long now = 0;
421 int has_wrapped;
422
7269f933
LP
423 now = sh_cmt_get_counter(ch, &has_wrapped);
424 ch->flags |= FLAG_REPROGRAM; /* force reprogram */
3fb1b6ad
MD
425
426 if (has_wrapped) {
427 /* we're competing with the interrupt handler.
428 * -> let the interrupt handler reprogram the timer.
429 * -> interrupt number two handles the event.
430 */
7269f933 431 ch->flags |= FLAG_SKIPEVENT;
3fb1b6ad
MD
432 return;
433 }
434
435 if (absolute)
436 now = 0;
437
438 do {
439 /* reprogram the timer hardware,
440 * but don't save the new match value yet.
441 */
442 new_match = now + value + delay;
7269f933
LP
443 if (new_match > ch->max_match_value)
444 new_match = ch->max_match_value;
3fb1b6ad 445
7269f933 446 sh_cmt_write_cmcor(ch, new_match);
3fb1b6ad 447
7269f933
LP
448 now = sh_cmt_get_counter(ch, &has_wrapped);
449 if (has_wrapped && (new_match > ch->match_value)) {
3fb1b6ad
MD
450 /* we are changing to a greater match value,
451 * so this wrap must be caused by the counter
452 * matching the old value.
453 * -> first interrupt reprograms the timer.
454 * -> interrupt number two handles the event.
455 */
7269f933 456 ch->flags |= FLAG_SKIPEVENT;
3fb1b6ad
MD
457 break;
458 }
459
460 if (has_wrapped) {
461 /* we are changing to a smaller match value,
462 * so the wrap must be caused by the counter
463 * matching the new value.
464 * -> save programmed match value.
465 * -> let isr handle the event.
466 */
7269f933 467 ch->match_value = new_match;
3fb1b6ad
MD
468 break;
469 }
470
471 /* be safe: verify hardware settings */
472 if (now < new_match) {
473 /* timer value is below match value, all good.
474 * this makes sure we won't miss any match events.
475 * -> save programmed match value.
476 * -> let isr handle the event.
477 */
7269f933 478 ch->match_value = new_match;
3fb1b6ad
MD
479 break;
480 }
481
482 /* the counter has reached a value greater
483 * than our new match value. and since the
484 * has_wrapped flag isn't set we must have
485 * programmed a too close event.
486 * -> increase delay and retry.
487 */
488 if (delay)
489 delay <<= 1;
490 else
491 delay = 1;
492
493 if (!delay)
740a9518
LP
494 dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
495 ch->index);
3fb1b6ad
MD
496
497 } while (delay);
498}
499
7269f933 500static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
3fb1b6ad 501{
7269f933 502 if (delta > ch->max_match_value)
740a9518
LP
503 dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
504 ch->index);
3fb1b6ad 505
7269f933
LP
506 ch->next_match_value = delta;
507 sh_cmt_clock_event_program_verify(ch, 0);
65ada547
TY
508}
509
7269f933 510static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
65ada547
TY
511{
512 unsigned long flags;
513
7269f933
LP
514 raw_spin_lock_irqsave(&ch->lock, flags);
515 __sh_cmt_set_next(ch, delta);
516 raw_spin_unlock_irqrestore(&ch->lock, flags);
3fb1b6ad
MD
517}
518
519static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
520{
7269f933 521 struct sh_cmt_channel *ch = dev_id;
3fb1b6ad
MD
522
523 /* clear flags */
2cda3ac4
LP
524 sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
525 ch->cmt->info->clear_bits);
3fb1b6ad
MD
526
527 /* update clock source counter to begin with if enabled
528 * the wrap flag should be cleared by the timer specific
529 * isr before we end up here.
530 */
7269f933
LP
531 if (ch->flags & FLAG_CLOCKSOURCE)
532 ch->total_cycles += ch->match_value + 1;
3fb1b6ad 533
7269f933
LP
534 if (!(ch->flags & FLAG_REPROGRAM))
535 ch->next_match_value = ch->max_match_value;
3fb1b6ad 536
7269f933 537 ch->flags |= FLAG_IRQCONTEXT;
3fb1b6ad 538
7269f933
LP
539 if (ch->flags & FLAG_CLOCKEVENT) {
540 if (!(ch->flags & FLAG_SKIPEVENT)) {
541 if (ch->ced.mode == CLOCK_EVT_MODE_ONESHOT) {
542 ch->next_match_value = ch->max_match_value;
543 ch->flags |= FLAG_REPROGRAM;
3fb1b6ad
MD
544 }
545
7269f933 546 ch->ced.event_handler(&ch->ced);
3fb1b6ad
MD
547 }
548 }
549
7269f933 550 ch->flags &= ~FLAG_SKIPEVENT;
3fb1b6ad 551
7269f933
LP
552 if (ch->flags & FLAG_REPROGRAM) {
553 ch->flags &= ~FLAG_REPROGRAM;
554 sh_cmt_clock_event_program_verify(ch, 1);
3fb1b6ad 555
7269f933
LP
556 if (ch->flags & FLAG_CLOCKEVENT)
557 if ((ch->ced.mode == CLOCK_EVT_MODE_SHUTDOWN)
558 || (ch->match_value == ch->next_match_value))
559 ch->flags &= ~FLAG_REPROGRAM;
3fb1b6ad
MD
560 }
561
7269f933 562 ch->flags &= ~FLAG_IRQCONTEXT;
3fb1b6ad
MD
563
564 return IRQ_HANDLED;
565}
566
7269f933 567static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
3fb1b6ad
MD
568{
569 int ret = 0;
570 unsigned long flags;
571
7269f933 572 raw_spin_lock_irqsave(&ch->lock, flags);
3fb1b6ad 573
7269f933
LP
574 if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
575 ret = sh_cmt_enable(ch, &ch->rate);
3fb1b6ad
MD
576
577 if (ret)
578 goto out;
7269f933 579 ch->flags |= flag;
3fb1b6ad
MD
580
581 /* setup timeout if no clockevent */
7269f933
LP
582 if ((flag == FLAG_CLOCKSOURCE) && (!(ch->flags & FLAG_CLOCKEVENT)))
583 __sh_cmt_set_next(ch, ch->max_match_value);
3fb1b6ad 584 out:
7269f933 585 raw_spin_unlock_irqrestore(&ch->lock, flags);
3fb1b6ad
MD
586
587 return ret;
588}
589
7269f933 590static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
3fb1b6ad
MD
591{
592 unsigned long flags;
593 unsigned long f;
594
7269f933 595 raw_spin_lock_irqsave(&ch->lock, flags);
3fb1b6ad 596
7269f933
LP
597 f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
598 ch->flags &= ~flag;
3fb1b6ad 599
7269f933
LP
600 if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
601 sh_cmt_disable(ch);
3fb1b6ad
MD
602
603 /* adjust the timeout to maximum if only clocksource left */
7269f933
LP
604 if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
605 __sh_cmt_set_next(ch, ch->max_match_value);
3fb1b6ad 606
7269f933 607 raw_spin_unlock_irqrestore(&ch->lock, flags);
3fb1b6ad
MD
608}
609
7269f933 610static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
19bdc9d0 611{
7269f933 612 return container_of(cs, struct sh_cmt_channel, cs);
19bdc9d0
MD
613}
614
615static cycle_t sh_cmt_clocksource_read(struct clocksource *cs)
616{
7269f933 617 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
19bdc9d0
MD
618 unsigned long flags, raw;
619 unsigned long value;
620 int has_wrapped;
621
7269f933
LP
622 raw_spin_lock_irqsave(&ch->lock, flags);
623 value = ch->total_cycles;
624 raw = sh_cmt_get_counter(ch, &has_wrapped);
19bdc9d0
MD
625
626 if (unlikely(has_wrapped))
7269f933
LP
627 raw += ch->match_value + 1;
628 raw_spin_unlock_irqrestore(&ch->lock, flags);
19bdc9d0
MD
629
630 return value + raw;
631}
632
633static int sh_cmt_clocksource_enable(struct clocksource *cs)
634{
3593f5fe 635 int ret;
7269f933 636 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
19bdc9d0 637
7269f933 638 WARN_ON(ch->cs_enabled);
bad81383 639
7269f933 640 ch->total_cycles = 0;
19bdc9d0 641
7269f933 642 ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
bad81383 643 if (!ret) {
7269f933
LP
644 __clocksource_updatefreq_hz(cs, ch->rate);
645 ch->cs_enabled = true;
bad81383 646 }
3593f5fe 647 return ret;
19bdc9d0
MD
648}
649
650static void sh_cmt_clocksource_disable(struct clocksource *cs)
651{
7269f933 652 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
bad81383 653
7269f933 654 WARN_ON(!ch->cs_enabled);
bad81383 655
7269f933
LP
656 sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
657 ch->cs_enabled = false;
19bdc9d0
MD
658}
659
9bb5ec88
RW
660static void sh_cmt_clocksource_suspend(struct clocksource *cs)
661{
7269f933 662 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
9bb5ec88 663
7269f933
LP
664 sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
665 pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
9bb5ec88
RW
666}
667
c8162884
MD
668static void sh_cmt_clocksource_resume(struct clocksource *cs)
669{
7269f933 670 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
9bb5ec88 671
7269f933
LP
672 pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
673 sh_cmt_start(ch, FLAG_CLOCKSOURCE);
c8162884
MD
674}
675
7269f933 676static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
fb28a659 677 const char *name)
19bdc9d0 678{
7269f933 679 struct clocksource *cs = &ch->cs;
19bdc9d0
MD
680
681 cs->name = name;
fb28a659 682 cs->rating = 125;
19bdc9d0
MD
683 cs->read = sh_cmt_clocksource_read;
684 cs->enable = sh_cmt_clocksource_enable;
685 cs->disable = sh_cmt_clocksource_disable;
9bb5ec88 686 cs->suspend = sh_cmt_clocksource_suspend;
c8162884 687 cs->resume = sh_cmt_clocksource_resume;
19bdc9d0
MD
688 cs->mask = CLOCKSOURCE_MASK(sizeof(unsigned long) * 8);
689 cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
f4d7c356 690
740a9518
LP
691 dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
692 ch->index);
f4d7c356 693
3593f5fe
MD
694 /* Register with dummy 1 Hz value, gets updated in ->enable() */
695 clocksource_register_hz(cs, 1);
19bdc9d0
MD
696 return 0;
697}
698
7269f933 699static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
3fb1b6ad 700{
7269f933 701 return container_of(ced, struct sh_cmt_channel, ced);
3fb1b6ad
MD
702}
703
7269f933 704static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
3fb1b6ad 705{
7269f933 706 struct clock_event_device *ced = &ch->ced;
3fb1b6ad 707
7269f933 708 sh_cmt_start(ch, FLAG_CLOCKEVENT);
3fb1b6ad
MD
709
710 /* TODO: calculate good shift from rate and counter bit width */
711
712 ced->shift = 32;
7269f933
LP
713 ced->mult = div_sc(ch->rate, NSEC_PER_SEC, ced->shift);
714 ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
3fb1b6ad
MD
715 ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
716
717 if (periodic)
7269f933 718 sh_cmt_set_next(ch, ((ch->rate + HZ/2) / HZ) - 1);
3fb1b6ad 719 else
7269f933 720 sh_cmt_set_next(ch, ch->max_match_value);
3fb1b6ad
MD
721}
722
723static void sh_cmt_clock_event_mode(enum clock_event_mode mode,
724 struct clock_event_device *ced)
725{
7269f933 726 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
3fb1b6ad
MD
727
728 /* deal with old setting first */
729 switch (ced->mode) {
730 case CLOCK_EVT_MODE_PERIODIC:
731 case CLOCK_EVT_MODE_ONESHOT:
7269f933 732 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
3fb1b6ad
MD
733 break;
734 default:
735 break;
736 }
737
738 switch (mode) {
739 case CLOCK_EVT_MODE_PERIODIC:
7269f933 740 dev_info(&ch->cmt->pdev->dev,
740a9518 741 "ch%u: used for periodic clock events\n", ch->index);
7269f933 742 sh_cmt_clock_event_start(ch, 1);
3fb1b6ad
MD
743 break;
744 case CLOCK_EVT_MODE_ONESHOT:
7269f933 745 dev_info(&ch->cmt->pdev->dev,
740a9518 746 "ch%u: used for oneshot clock events\n", ch->index);
7269f933 747 sh_cmt_clock_event_start(ch, 0);
3fb1b6ad
MD
748 break;
749 case CLOCK_EVT_MODE_SHUTDOWN:
750 case CLOCK_EVT_MODE_UNUSED:
7269f933 751 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
3fb1b6ad
MD
752 break;
753 default:
754 break;
755 }
756}
757
758static int sh_cmt_clock_event_next(unsigned long delta,
759 struct clock_event_device *ced)
760{
7269f933 761 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
3fb1b6ad
MD
762
763 BUG_ON(ced->mode != CLOCK_EVT_MODE_ONESHOT);
7269f933
LP
764 if (likely(ch->flags & FLAG_IRQCONTEXT))
765 ch->next_match_value = delta - 1;
3fb1b6ad 766 else
7269f933 767 sh_cmt_set_next(ch, delta - 1);
3fb1b6ad
MD
768
769 return 0;
770}
771
9bb5ec88
RW
772static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
773{
7269f933 774 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
57dee992 775
7269f933
LP
776 pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
777 clk_unprepare(ch->cmt->clk);
9bb5ec88
RW
778}
779
780static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
781{
7269f933 782 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
57dee992 783
7269f933
LP
784 clk_prepare(ch->cmt->clk);
785 pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
9bb5ec88
RW
786}
787
bfa76bb1
LP
788static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
789 const char *name)
3fb1b6ad 790{
7269f933 791 struct clock_event_device *ced = &ch->ced;
bfa76bb1
LP
792 int irq;
793 int ret;
794
795 irq = platform_get_irq(ch->cmt->pdev, ch->cmt->legacy ? 0 : ch->index);
796 if (irq < 0) {
797 dev_err(&ch->cmt->pdev->dev, "ch%u: failed to get irq\n",
798 ch->index);
799 return irq;
800 }
801
802 ret = request_irq(irq, sh_cmt_interrupt,
803 IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
804 dev_name(&ch->cmt->pdev->dev), ch);
805 if (ret) {
806 dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
807 ch->index, irq);
808 return ret;
809 }
3fb1b6ad 810
3fb1b6ad
MD
811 ced->name = name;
812 ced->features = CLOCK_EVT_FEAT_PERIODIC;
813 ced->features |= CLOCK_EVT_FEAT_ONESHOT;
b7fcbb0f 814 ced->rating = 125;
f1ebe1e4 815 ced->cpumask = cpu_possible_mask;
3fb1b6ad
MD
816 ced->set_next_event = sh_cmt_clock_event_next;
817 ced->set_mode = sh_cmt_clock_event_mode;
9bb5ec88
RW
818 ced->suspend = sh_cmt_clock_event_suspend;
819 ced->resume = sh_cmt_clock_event_resume;
3fb1b6ad 820
740a9518
LP
821 dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
822 ch->index);
3fb1b6ad 823 clockevents_register_device(ced);
bfa76bb1
LP
824
825 return 0;
3fb1b6ad
MD
826}
827
1d053e1d 828static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
fb28a659 829 bool clockevent, bool clocksource)
3fb1b6ad 830{
bfa76bb1
LP
831 int ret;
832
81b3b271
LP
833 if (clockevent) {
834 ch->cmt->has_clockevent = true;
bfa76bb1
LP
835 ret = sh_cmt_register_clockevent(ch, name);
836 if (ret < 0)
837 return ret;
81b3b271 838 }
3fb1b6ad 839
81b3b271
LP
840 if (clocksource) {
841 ch->cmt->has_clocksource = true;
fb28a659 842 sh_cmt_register_clocksource(ch, name);
81b3b271 843 }
19bdc9d0 844
3fb1b6ad
MD
845 return 0;
846}
847
740a9518 848static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
81b3b271
LP
849 unsigned int hwidx, bool clockevent,
850 bool clocksource, struct sh_cmt_device *cmt)
b882e7b1 851{
b882e7b1
LP
852 int ret;
853
81b3b271
LP
854 /* Skip unused channels. */
855 if (!clockevent && !clocksource)
856 return 0;
857
b882e7b1 858 ch->cmt = cmt;
740a9518 859 ch->index = index;
81b3b271
LP
860 ch->hwidx = hwidx;
861
862 /*
863 * Compute the address of the channel control register block. For the
864 * timers with a per-channel start/stop register, compute its address
865 * as well.
866 *
867 * For legacy configuration the address has been mapped explicitly.
868 */
869 if (cmt->legacy) {
870 ch->ioctrl = cmt->mapbase_ch;
871 } else {
872 switch (cmt->info->model) {
873 case SH_CMT_16BIT:
874 ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
875 break;
876 case SH_CMT_32BIT:
877 case SH_CMT_48BIT:
878 ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
879 break;
880 case SH_CMT_32BIT_FAST:
881 /*
882 * The 32-bit "fast" timer has a single channel at hwidx
883 * 5 but is located at offset 0x40 instead of 0x60 for
884 * some reason.
885 */
886 ch->ioctrl = cmt->mapbase + 0x40;
887 break;
888 case SH_CMT_48BIT_GEN2:
889 ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
890 ch->ioctrl = ch->iostart + 0x10;
891 break;
892 }
893 }
894
2cda3ac4 895 if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
b882e7b1
LP
896 ch->max_match_value = ~0;
897 else
2cda3ac4 898 ch->max_match_value = (1 << cmt->info->width) - 1;
b882e7b1
LP
899
900 ch->match_value = ch->max_match_value;
901 raw_spin_lock_init(&ch->lock);
902
81b3b271
LP
903 if (cmt->legacy) {
904 ch->timer_bit = ch->hwidx;
905 } else {
906 ch->timer_bit = cmt->info->model == SH_CMT_48BIT_GEN2
907 ? 0 : ch->hwidx;
908 }
909
1d053e1d 910 ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
81b3b271 911 clockevent, clocksource);
b882e7b1 912 if (ret) {
740a9518
LP
913 dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
914 ch->index);
b882e7b1
LP
915 return ret;
916 }
917 ch->cs_enabled = false;
918
b882e7b1
LP
919 return 0;
920}
921
81b3b271 922static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
3fb1b6ad 923{
81b3b271 924 struct resource *mem;
3fb1b6ad 925
81b3b271
LP
926 mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
927 if (!mem) {
928 dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
929 return -ENXIO;
930 }
3fb1b6ad 931
81b3b271
LP
932 cmt->mapbase = ioremap_nocache(mem->start, resource_size(mem));
933 if (cmt->mapbase == NULL) {
934 dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
935 return -ENXIO;
3fb1b6ad
MD
936 }
937
81b3b271
LP
938 return 0;
939}
940
941static int sh_cmt_map_memory_legacy(struct sh_cmt_device *cmt)
942{
943 struct sh_timer_config *cfg = cmt->pdev->dev.platform_data;
944 struct resource *res, *res2;
945
946 /* map memory, let mapbase_ch point to our channel */
2653caf4 947 res = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
3fb1b6ad 948 if (!res) {
2653caf4 949 dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
81b3b271 950 return -ENXIO;
3fb1b6ad
MD
951 }
952
36f1ac98
LP
953 cmt->mapbase_ch = ioremap_nocache(res->start, resource_size(res));
954 if (cmt->mapbase_ch == NULL) {
2653caf4 955 dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
81b3b271 956 return -ENXIO;
3fb1b6ad
MD
957 }
958
81b3b271
LP
959 /* optional resource for the shared timer start/stop register */
960 res2 = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 1);
961
8874c5e3 962 /* map second resource for CMSTR */
36f1ac98
LP
963 cmt->mapbase = ioremap_nocache(res2 ? res2->start :
964 res->start - cfg->channel_offset,
965 res2 ? resource_size(res2) : 2);
966 if (cmt->mapbase == NULL) {
2653caf4 967 dev_err(&cmt->pdev->dev, "failed to remap I/O second memory\n");
81b3b271
LP
968 iounmap(cmt->mapbase_ch);
969 return -ENXIO;
8874c5e3
MD
970 }
971
81b3b271
LP
972 /* identify the model based on the resources */
973 if (resource_size(res) == 6)
974 cmt->info = &sh_cmt_info[SH_CMT_16BIT];
975 else if (res2 && (resource_size(res2) == 4))
976 cmt->info = &sh_cmt_info[SH_CMT_48BIT_GEN2];
977 else
978 cmt->info = &sh_cmt_info[SH_CMT_32BIT];
979
980 return 0;
981}
982
983static void sh_cmt_unmap_memory(struct sh_cmt_device *cmt)
984{
985 iounmap(cmt->mapbase);
986 if (cmt->mapbase_ch)
987 iounmap(cmt->mapbase_ch);
988}
989
990static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
991{
992 struct sh_timer_config *cfg = pdev->dev.platform_data;
993 const struct platform_device_id *id = pdev->id_entry;
994 unsigned int hw_channels;
995 int ret;
996
997 memset(cmt, 0, sizeof(*cmt));
998 cmt->pdev = pdev;
999
1000 if (!cfg) {
1001 dev_err(&cmt->pdev->dev, "missing platform data\n");
1002 return -ENXIO;
1003 }
1004
1005 cmt->info = (const struct sh_cmt_info *)id->driver_data;
1006 cmt->legacy = cmt->info ? false : true;
1007
1008 /* Get hold of clock. */
24b4e07d 1009 cmt->clk = clk_get(&cmt->pdev->dev, cmt->legacy ? "cmt_fck" : "fck");
2653caf4
LP
1010 if (IS_ERR(cmt->clk)) {
1011 dev_err(&cmt->pdev->dev, "cannot get clock\n");
81b3b271 1012 return PTR_ERR(cmt->clk);
3fb1b6ad
MD
1013 }
1014
2653caf4 1015 ret = clk_prepare(cmt->clk);
57dee992 1016 if (ret < 0)
81b3b271 1017 goto err_clk_put;
57dee992 1018
81b3b271
LP
1019 /*
1020 * Map the memory resource(s). We need to support both the legacy
1021 * platform device configuration (with one device per channel) and the
1022 * new version (with multiple channels per device).
1023 */
1024 if (cmt->legacy)
1025 ret = sh_cmt_map_memory_legacy(cmt);
2cda3ac4 1026 else
81b3b271 1027 ret = sh_cmt_map_memory(cmt);
3fb1b6ad 1028
81b3b271
LP
1029 if (ret < 0)
1030 goto err_clk_unprepare;
1031
1032 /* Allocate and setup the channels. */
1033 if (cmt->legacy) {
1034 cmt->num_channels = 1;
1035 hw_channels = 0;
1036 } else {
1037 cmt->num_channels = hweight8(cfg->channels_mask);
1038 hw_channels = cfg->channels_mask;
1039 }
1040
1041 cmt->channels = kzalloc(cmt->num_channels * sizeof(*cmt->channels),
1042 GFP_KERNEL);
f5ec9b19
LP
1043 if (cmt->channels == NULL) {
1044 ret = -ENOMEM;
81b3b271 1045 goto err_unmap;
f5ec9b19
LP
1046 }
1047
81b3b271
LP
1048 if (cmt->legacy) {
1049 ret = sh_cmt_setup_channel(&cmt->channels[0],
1050 cfg->timer_bit, cfg->timer_bit,
1051 cfg->clockevent_rating != 0,
1052 cfg->clocksource_rating != 0, cmt);
1053 if (ret < 0)
1054 goto err_unmap;
1055 } else {
1056 unsigned int mask = hw_channels;
1057 unsigned int i;
f5ec9b19 1058
81b3b271
LP
1059 /*
1060 * Use the first channel as a clock event device and the second
1061 * channel as a clock source. If only one channel is available
1062 * use it for both.
1063 */
1064 for (i = 0; i < cmt->num_channels; ++i) {
1065 unsigned int hwidx = ffs(mask) - 1;
1066 bool clocksource = i == 1 || cmt->num_channels == 1;
1067 bool clockevent = i == 0;
1068
1069 ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1070 clockevent, clocksource,
1071 cmt);
1072 if (ret < 0)
1073 goto err_unmap;
1074
1075 mask &= ~(1 << hwidx);
1076 }
1077 }
da64c2a8 1078
2653caf4 1079 platform_set_drvdata(pdev, cmt);
adccc69e 1080
da64c2a8 1081 return 0;
81b3b271
LP
1082
1083err_unmap:
f5ec9b19 1084 kfree(cmt->channels);
81b3b271
LP
1085 sh_cmt_unmap_memory(cmt);
1086err_clk_unprepare:
2653caf4 1087 clk_unprepare(cmt->clk);
81b3b271 1088err_clk_put:
2653caf4 1089 clk_put(cmt->clk);
3fb1b6ad
MD
1090 return ret;
1091}
1092
1850514b 1093static int sh_cmt_probe(struct platform_device *pdev)
3fb1b6ad 1094{
2653caf4 1095 struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
3fb1b6ad
MD
1096 int ret;
1097
9bb5ec88 1098 if (!is_early_platform_device(pdev)) {
bad81383
RW
1099 pm_runtime_set_active(&pdev->dev);
1100 pm_runtime_enable(&pdev->dev);
9bb5ec88 1101 }
615a445f 1102
2653caf4 1103 if (cmt) {
214a607a 1104 dev_info(&pdev->dev, "kept as earlytimer\n");
bad81383 1105 goto out;
e475eedb
MD
1106 }
1107
b262bc74 1108 cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
0178f41d 1109 if (cmt == NULL)
3fb1b6ad 1110 return -ENOMEM;
3fb1b6ad 1111
2653caf4 1112 ret = sh_cmt_setup(cmt, pdev);
3fb1b6ad 1113 if (ret) {
2653caf4 1114 kfree(cmt);
bad81383
RW
1115 pm_runtime_idle(&pdev->dev);
1116 return ret;
3fb1b6ad 1117 }
bad81383
RW
1118 if (is_early_platform_device(pdev))
1119 return 0;
1120
1121 out:
81b3b271 1122 if (cmt->has_clockevent || cmt->has_clocksource)
bad81383
RW
1123 pm_runtime_irq_safe(&pdev->dev);
1124 else
1125 pm_runtime_idle(&pdev->dev);
1126
1127 return 0;
3fb1b6ad
MD
1128}
1129
1850514b 1130static int sh_cmt_remove(struct platform_device *pdev)
3fb1b6ad
MD
1131{
1132 return -EBUSY; /* cannot unregister clockevent and clocksource */
1133}
1134
81b3b271
LP
1135static const struct platform_device_id sh_cmt_id_table[] = {
1136 { "sh_cmt", 0 },
1137 { "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
1138 { "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
1139 { "sh-cmt-32-fast", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT_FAST] },
1140 { "sh-cmt-48", (kernel_ulong_t)&sh_cmt_info[SH_CMT_48BIT] },
1141 { "sh-cmt-48-gen2", (kernel_ulong_t)&sh_cmt_info[SH_CMT_48BIT_GEN2] },
1142 { }
1143};
1144MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
1145
3fb1b6ad
MD
1146static struct platform_driver sh_cmt_device_driver = {
1147 .probe = sh_cmt_probe,
1850514b 1148 .remove = sh_cmt_remove,
3fb1b6ad
MD
1149 .driver = {
1150 .name = "sh_cmt",
81b3b271
LP
1151 },
1152 .id_table = sh_cmt_id_table,
3fb1b6ad
MD
1153};
1154
1155static int __init sh_cmt_init(void)
1156{
1157 return platform_driver_register(&sh_cmt_device_driver);
1158}
1159
1160static void __exit sh_cmt_exit(void)
1161{
1162 platform_driver_unregister(&sh_cmt_device_driver);
1163}
1164
e475eedb 1165early_platform_init("earlytimer", &sh_cmt_device_driver);
e903a031 1166subsys_initcall(sh_cmt_init);
3fb1b6ad
MD
1167module_exit(sh_cmt_exit);
1168
1169MODULE_AUTHOR("Magnus Damm");
1170MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1171MODULE_LICENSE("GPL v2");