clocksource: sh_cmt: Drop support for legacy platform data
[linux-2.6-block.git] / drivers / clocksource / sh_cmt.c
CommitLineData
3fb1b6ad
MD
1/*
2 * SuperH Timer Support - CMT
3 *
4 * Copyright (C) 2008 Magnus Damm
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
3fb1b6ad
MD
14 */
15
e7a9bcc2
LP
16#include <linux/clk.h>
17#include <linux/clockchips.h>
18#include <linux/clocksource.h>
19#include <linux/delay.h>
20#include <linux/err.h>
3fb1b6ad 21#include <linux/init.h>
3fb1b6ad 22#include <linux/interrupt.h>
3fb1b6ad 23#include <linux/io.h>
e7a9bcc2 24#include <linux/ioport.h>
3fb1b6ad 25#include <linux/irq.h>
7deeab5d 26#include <linux/module.h>
e7a9bcc2 27#include <linux/platform_device.h>
615a445f 28#include <linux/pm_domain.h>
bad81383 29#include <linux/pm_runtime.h>
e7a9bcc2
LP
30#include <linux/sh_timer.h>
31#include <linux/slab.h>
32#include <linux/spinlock.h>
3fb1b6ad 33
2653caf4 34struct sh_cmt_device;
7269f933 35
2cda3ac4
LP
36/*
37 * The CMT comes in 5 different identified flavours, depending not only on the
38 * SoC but also on the particular instance. The following table lists the main
39 * characteristics of those flavours.
40 *
41 * 16B 32B 32B-F 48B 48B-2
42 * -----------------------------------------------------------------------------
43 * Channels 2 1/4 1 6 2/8
44 * Control Width 16 16 16 16 32
45 * Counter Width 16 32 32 32/48 32/48
46 * Shared Start/Stop Y Y Y Y N
47 *
48 * The 48-bit gen2 version has a per-channel start/stop register located in the
49 * channel registers block. All other versions have a shared start/stop register
50 * located in the global space.
51 *
81b3b271
LP
52 * Channels are indexed from 0 to N-1 in the documentation. The channel index
53 * infers the start/stop bit position in the control register and the channel
54 * registers block address. Some CMT instances have a subset of channels
55 * available, in which case the index in the documentation doesn't match the
56 * "real" index as implemented in hardware. This is for instance the case with
57 * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
58 * in the documentation but using start/stop bit 5 and having its registers
59 * block at 0x60.
60 *
61 * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
2cda3ac4
LP
62 * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
63 */
64
65enum sh_cmt_model {
66 SH_CMT_16BIT,
67 SH_CMT_32BIT,
68 SH_CMT_32BIT_FAST,
69 SH_CMT_48BIT,
70 SH_CMT_48BIT_GEN2,
71};
72
73struct sh_cmt_info {
74 enum sh_cmt_model model;
75
76 unsigned long width; /* 16 or 32 bit version of hardware block */
77 unsigned long overflow_bit;
78 unsigned long clear_bits;
79
80 /* callbacks for CMSTR and CMCSR access */
81 unsigned long (*read_control)(void __iomem *base, unsigned long offs);
82 void (*write_control)(void __iomem *base, unsigned long offs,
83 unsigned long value);
84
85 /* callbacks for CMCNT and CMCOR access */
86 unsigned long (*read_count)(void __iomem *base, unsigned long offs);
87 void (*write_count)(void __iomem *base, unsigned long offs,
88 unsigned long value);
89};
90
7269f933 91struct sh_cmt_channel {
2653caf4 92 struct sh_cmt_device *cmt;
3fb1b6ad 93
81b3b271
LP
94 unsigned int index; /* Index in the documentation */
95 unsigned int hwidx; /* Real hardware index */
96
97 void __iomem *iostart;
98 void __iomem *ioctrl;
c924d2d2 99
81b3b271 100 unsigned int timer_bit;
3fb1b6ad
MD
101 unsigned long flags;
102 unsigned long match_value;
103 unsigned long next_match_value;
104 unsigned long max_match_value;
105 unsigned long rate;
7d0c399f 106 raw_spinlock_t lock;
3fb1b6ad 107 struct clock_event_device ced;
19bdc9d0 108 struct clocksource cs;
3fb1b6ad 109 unsigned long total_cycles;
bad81383 110 bool cs_enabled;
7269f933
LP
111};
112
2653caf4 113struct sh_cmt_device {
7269f933
LP
114 struct platform_device *pdev;
115
2cda3ac4
LP
116 const struct sh_cmt_info *info;
117
7269f933 118 void __iomem *mapbase;
7269f933
LP
119 struct clk *clk;
120
f5ec9b19
LP
121 struct sh_cmt_channel *channels;
122 unsigned int num_channels;
81b3b271
LP
123
124 bool has_clockevent;
125 bool has_clocksource;
3fb1b6ad
MD
126};
127
d14be99b
LP
128#define SH_CMT16_CMCSR_CMF (1 << 7)
129#define SH_CMT16_CMCSR_CMIE (1 << 6)
130#define SH_CMT16_CMCSR_CKS8 (0 << 0)
131#define SH_CMT16_CMCSR_CKS32 (1 << 0)
132#define SH_CMT16_CMCSR_CKS128 (2 << 0)
133#define SH_CMT16_CMCSR_CKS512 (3 << 0)
134#define SH_CMT16_CMCSR_CKS_MASK (3 << 0)
135
136#define SH_CMT32_CMCSR_CMF (1 << 15)
137#define SH_CMT32_CMCSR_OVF (1 << 14)
138#define SH_CMT32_CMCSR_WRFLG (1 << 13)
139#define SH_CMT32_CMCSR_STTF (1 << 12)
140#define SH_CMT32_CMCSR_STPF (1 << 11)
141#define SH_CMT32_CMCSR_SSIE (1 << 10)
142#define SH_CMT32_CMCSR_CMS (1 << 9)
143#define SH_CMT32_CMCSR_CMM (1 << 8)
144#define SH_CMT32_CMCSR_CMTOUT_IE (1 << 7)
145#define SH_CMT32_CMCSR_CMR_NONE (0 << 4)
146#define SH_CMT32_CMCSR_CMR_DMA (1 << 4)
147#define SH_CMT32_CMCSR_CMR_IRQ (2 << 4)
148#define SH_CMT32_CMCSR_CMR_MASK (3 << 4)
149#define SH_CMT32_CMCSR_DBGIVD (1 << 3)
150#define SH_CMT32_CMCSR_CKS_RCLK8 (4 << 0)
151#define SH_CMT32_CMCSR_CKS_RCLK32 (5 << 0)
152#define SH_CMT32_CMCSR_CKS_RCLK128 (6 << 0)
153#define SH_CMT32_CMCSR_CKS_RCLK1 (7 << 0)
154#define SH_CMT32_CMCSR_CKS_MASK (7 << 0)
155
a6a912ca 156static unsigned long sh_cmt_read16(void __iomem *base, unsigned long offs)
587acb3d
MD
157{
158 return ioread16(base + (offs << 1));
159}
160
a6a912ca
MD
161static unsigned long sh_cmt_read32(void __iomem *base, unsigned long offs)
162{
163 return ioread32(base + (offs << 2));
164}
165
166static void sh_cmt_write16(void __iomem *base, unsigned long offs,
167 unsigned long value)
587acb3d
MD
168{
169 iowrite16(value, base + (offs << 1));
170}
3fb1b6ad 171
a6a912ca
MD
172static void sh_cmt_write32(void __iomem *base, unsigned long offs,
173 unsigned long value)
174{
175 iowrite32(value, base + (offs << 2));
176}
177
2cda3ac4
LP
178static const struct sh_cmt_info sh_cmt_info[] = {
179 [SH_CMT_16BIT] = {
180 .model = SH_CMT_16BIT,
181 .width = 16,
d14be99b
LP
182 .overflow_bit = SH_CMT16_CMCSR_CMF,
183 .clear_bits = ~SH_CMT16_CMCSR_CMF,
2cda3ac4
LP
184 .read_control = sh_cmt_read16,
185 .write_control = sh_cmt_write16,
186 .read_count = sh_cmt_read16,
187 .write_count = sh_cmt_write16,
188 },
189 [SH_CMT_32BIT] = {
190 .model = SH_CMT_32BIT,
191 .width = 32,
d14be99b
LP
192 .overflow_bit = SH_CMT32_CMCSR_CMF,
193 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
2cda3ac4
LP
194 .read_control = sh_cmt_read16,
195 .write_control = sh_cmt_write16,
196 .read_count = sh_cmt_read32,
197 .write_count = sh_cmt_write32,
198 },
199 [SH_CMT_32BIT_FAST] = {
200 .model = SH_CMT_32BIT_FAST,
201 .width = 32,
d14be99b
LP
202 .overflow_bit = SH_CMT32_CMCSR_CMF,
203 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
2cda3ac4
LP
204 .read_control = sh_cmt_read16,
205 .write_control = sh_cmt_write16,
206 .read_count = sh_cmt_read32,
207 .write_count = sh_cmt_write32,
208 },
209 [SH_CMT_48BIT] = {
210 .model = SH_CMT_48BIT,
211 .width = 32,
d14be99b
LP
212 .overflow_bit = SH_CMT32_CMCSR_CMF,
213 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
2cda3ac4
LP
214 .read_control = sh_cmt_read32,
215 .write_control = sh_cmt_write32,
216 .read_count = sh_cmt_read32,
217 .write_count = sh_cmt_write32,
218 },
219 [SH_CMT_48BIT_GEN2] = {
220 .model = SH_CMT_48BIT_GEN2,
221 .width = 32,
d14be99b
LP
222 .overflow_bit = SH_CMT32_CMCSR_CMF,
223 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
2cda3ac4
LP
224 .read_control = sh_cmt_read32,
225 .write_control = sh_cmt_write32,
226 .read_count = sh_cmt_read32,
227 .write_count = sh_cmt_write32,
228 },
229};
230
3fb1b6ad
MD
231#define CMCSR 0 /* channel register */
232#define CMCNT 1 /* channel register */
233#define CMCOR 2 /* channel register */
234
7269f933 235static inline unsigned long sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
1b56b96b 236{
81b3b271
LP
237 if (ch->iostart)
238 return ch->cmt->info->read_control(ch->iostart, 0);
239 else
240 return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
1b56b96b
MD
241}
242
81b3b271
LP
243static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch,
244 unsigned long value)
1b56b96b 245{
81b3b271
LP
246 if (ch->iostart)
247 ch->cmt->info->write_control(ch->iostart, 0, value);
248 else
249 ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
1b56b96b
MD
250}
251
81b3b271 252static inline unsigned long sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
1b56b96b 253{
81b3b271 254 return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
3fb1b6ad
MD
255}
256
81b3b271 257static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch,
1b56b96b
MD
258 unsigned long value)
259{
81b3b271 260 ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
1b56b96b
MD
261}
262
81b3b271 263static inline unsigned long sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
1b56b96b 264{
81b3b271 265 return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
1b56b96b
MD
266}
267
7269f933 268static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch,
1b56b96b
MD
269 unsigned long value)
270{
81b3b271 271 ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
1b56b96b
MD
272}
273
7269f933 274static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch,
1b56b96b
MD
275 unsigned long value)
276{
81b3b271 277 ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
1b56b96b
MD
278}
279
7269f933 280static unsigned long sh_cmt_get_counter(struct sh_cmt_channel *ch,
3fb1b6ad
MD
281 int *has_wrapped)
282{
283 unsigned long v1, v2, v3;
5b644c7a
MD
284 int o1, o2;
285
2cda3ac4 286 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
3fb1b6ad
MD
287
288 /* Make sure the timer value is stable. Stolen from acpi_pm.c */
289 do {
5b644c7a 290 o2 = o1;
7269f933
LP
291 v1 = sh_cmt_read_cmcnt(ch);
292 v2 = sh_cmt_read_cmcnt(ch);
293 v3 = sh_cmt_read_cmcnt(ch);
2cda3ac4 294 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
5b644c7a
MD
295 } while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
296 || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
3fb1b6ad 297
5b644c7a 298 *has_wrapped = o1;
3fb1b6ad
MD
299 return v2;
300}
301
587acb3d 302static DEFINE_RAW_SPINLOCK(sh_cmt_lock);
3fb1b6ad 303
7269f933 304static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
3fb1b6ad 305{
3fb1b6ad
MD
306 unsigned long flags, value;
307
308 /* start stop register shared by multiple timer channels */
7d0c399f 309 raw_spin_lock_irqsave(&sh_cmt_lock, flags);
7269f933 310 value = sh_cmt_read_cmstr(ch);
3fb1b6ad
MD
311
312 if (start)
81b3b271 313 value |= 1 << ch->timer_bit;
3fb1b6ad 314 else
81b3b271 315 value &= ~(1 << ch->timer_bit);
3fb1b6ad 316
7269f933 317 sh_cmt_write_cmstr(ch, value);
7d0c399f 318 raw_spin_unlock_irqrestore(&sh_cmt_lock, flags);
3fb1b6ad
MD
319}
320
7269f933 321static int sh_cmt_enable(struct sh_cmt_channel *ch, unsigned long *rate)
3fb1b6ad 322{
3f7e5e24 323 int k, ret;
3fb1b6ad 324
7269f933
LP
325 pm_runtime_get_sync(&ch->cmt->pdev->dev);
326 dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
bad81383 327
9436b4ab 328 /* enable clock */
7269f933 329 ret = clk_enable(ch->cmt->clk);
3fb1b6ad 330 if (ret) {
740a9518
LP
331 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
332 ch->index);
3f7e5e24 333 goto err0;
3fb1b6ad 334 }
3fb1b6ad
MD
335
336 /* make sure channel is disabled */
7269f933 337 sh_cmt_start_stop_ch(ch, 0);
3fb1b6ad
MD
338
339 /* configure channel, periodic mode and maximum timeout */
2cda3ac4 340 if (ch->cmt->info->width == 16) {
7269f933 341 *rate = clk_get_rate(ch->cmt->clk) / 512;
d14be99b
LP
342 sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
343 SH_CMT16_CMCSR_CKS512);
3014f474 344 } else {
7269f933 345 *rate = clk_get_rate(ch->cmt->clk) / 8;
d14be99b
LP
346 sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM |
347 SH_CMT32_CMCSR_CMTOUT_IE |
348 SH_CMT32_CMCSR_CMR_IRQ |
349 SH_CMT32_CMCSR_CKS_RCLK8);
3014f474 350 }
3fb1b6ad 351
7269f933
LP
352 sh_cmt_write_cmcor(ch, 0xffffffff);
353 sh_cmt_write_cmcnt(ch, 0);
3fb1b6ad 354
3f7e5e24
MD
355 /*
356 * According to the sh73a0 user's manual, as CMCNT can be operated
357 * only by the RCLK (Pseudo 32 KHz), there's one restriction on
358 * modifying CMCNT register; two RCLK cycles are necessary before
359 * this register is either read or any modification of the value
360 * it holds is reflected in the LSI's actual operation.
361 *
362 * While at it, we're supposed to clear out the CMCNT as of this
363 * moment, so make sure it's processed properly here. This will
364 * take RCLKx2 at maximum.
365 */
366 for (k = 0; k < 100; k++) {
7269f933 367 if (!sh_cmt_read_cmcnt(ch))
3f7e5e24
MD
368 break;
369 udelay(1);
370 }
371
7269f933 372 if (sh_cmt_read_cmcnt(ch)) {
740a9518
LP
373 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
374 ch->index);
3f7e5e24
MD
375 ret = -ETIMEDOUT;
376 goto err1;
377 }
378
3fb1b6ad 379 /* enable channel */
7269f933 380 sh_cmt_start_stop_ch(ch, 1);
3fb1b6ad 381 return 0;
3f7e5e24
MD
382 err1:
383 /* stop clock */
7269f933 384 clk_disable(ch->cmt->clk);
3f7e5e24
MD
385
386 err0:
387 return ret;
3fb1b6ad
MD
388}
389
7269f933 390static void sh_cmt_disable(struct sh_cmt_channel *ch)
3fb1b6ad
MD
391{
392 /* disable channel */
7269f933 393 sh_cmt_start_stop_ch(ch, 0);
3fb1b6ad 394
be890a1a 395 /* disable interrupts in CMT block */
7269f933 396 sh_cmt_write_cmcsr(ch, 0);
be890a1a 397
9436b4ab 398 /* stop clock */
7269f933 399 clk_disable(ch->cmt->clk);
bad81383 400
7269f933
LP
401 dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
402 pm_runtime_put(&ch->cmt->pdev->dev);
3fb1b6ad
MD
403}
404
405/* private flags */
406#define FLAG_CLOCKEVENT (1 << 0)
407#define FLAG_CLOCKSOURCE (1 << 1)
408#define FLAG_REPROGRAM (1 << 2)
409#define FLAG_SKIPEVENT (1 << 3)
410#define FLAG_IRQCONTEXT (1 << 4)
411
7269f933 412static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
3fb1b6ad
MD
413 int absolute)
414{
415 unsigned long new_match;
7269f933 416 unsigned long value = ch->next_match_value;
3fb1b6ad
MD
417 unsigned long delay = 0;
418 unsigned long now = 0;
419 int has_wrapped;
420
7269f933
LP
421 now = sh_cmt_get_counter(ch, &has_wrapped);
422 ch->flags |= FLAG_REPROGRAM; /* force reprogram */
3fb1b6ad
MD
423
424 if (has_wrapped) {
425 /* we're competing with the interrupt handler.
426 * -> let the interrupt handler reprogram the timer.
427 * -> interrupt number two handles the event.
428 */
7269f933 429 ch->flags |= FLAG_SKIPEVENT;
3fb1b6ad
MD
430 return;
431 }
432
433 if (absolute)
434 now = 0;
435
436 do {
437 /* reprogram the timer hardware,
438 * but don't save the new match value yet.
439 */
440 new_match = now + value + delay;
7269f933
LP
441 if (new_match > ch->max_match_value)
442 new_match = ch->max_match_value;
3fb1b6ad 443
7269f933 444 sh_cmt_write_cmcor(ch, new_match);
3fb1b6ad 445
7269f933
LP
446 now = sh_cmt_get_counter(ch, &has_wrapped);
447 if (has_wrapped && (new_match > ch->match_value)) {
3fb1b6ad
MD
448 /* we are changing to a greater match value,
449 * so this wrap must be caused by the counter
450 * matching the old value.
451 * -> first interrupt reprograms the timer.
452 * -> interrupt number two handles the event.
453 */
7269f933 454 ch->flags |= FLAG_SKIPEVENT;
3fb1b6ad
MD
455 break;
456 }
457
458 if (has_wrapped) {
459 /* we are changing to a smaller match value,
460 * so the wrap must be caused by the counter
461 * matching the new value.
462 * -> save programmed match value.
463 * -> let isr handle the event.
464 */
7269f933 465 ch->match_value = new_match;
3fb1b6ad
MD
466 break;
467 }
468
469 /* be safe: verify hardware settings */
470 if (now < new_match) {
471 /* timer value is below match value, all good.
472 * this makes sure we won't miss any match events.
473 * -> save programmed match value.
474 * -> let isr handle the event.
475 */
7269f933 476 ch->match_value = new_match;
3fb1b6ad
MD
477 break;
478 }
479
480 /* the counter has reached a value greater
481 * than our new match value. and since the
482 * has_wrapped flag isn't set we must have
483 * programmed a too close event.
484 * -> increase delay and retry.
485 */
486 if (delay)
487 delay <<= 1;
488 else
489 delay = 1;
490
491 if (!delay)
740a9518
LP
492 dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
493 ch->index);
3fb1b6ad
MD
494
495 } while (delay);
496}
497
7269f933 498static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
3fb1b6ad 499{
7269f933 500 if (delta > ch->max_match_value)
740a9518
LP
501 dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
502 ch->index);
3fb1b6ad 503
7269f933
LP
504 ch->next_match_value = delta;
505 sh_cmt_clock_event_program_verify(ch, 0);
65ada547
TY
506}
507
7269f933 508static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
65ada547
TY
509{
510 unsigned long flags;
511
7269f933
LP
512 raw_spin_lock_irqsave(&ch->lock, flags);
513 __sh_cmt_set_next(ch, delta);
514 raw_spin_unlock_irqrestore(&ch->lock, flags);
3fb1b6ad
MD
515}
516
517static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
518{
7269f933 519 struct sh_cmt_channel *ch = dev_id;
3fb1b6ad
MD
520
521 /* clear flags */
2cda3ac4
LP
522 sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
523 ch->cmt->info->clear_bits);
3fb1b6ad
MD
524
525 /* update clock source counter to begin with if enabled
526 * the wrap flag should be cleared by the timer specific
527 * isr before we end up here.
528 */
7269f933
LP
529 if (ch->flags & FLAG_CLOCKSOURCE)
530 ch->total_cycles += ch->match_value + 1;
3fb1b6ad 531
7269f933
LP
532 if (!(ch->flags & FLAG_REPROGRAM))
533 ch->next_match_value = ch->max_match_value;
3fb1b6ad 534
7269f933 535 ch->flags |= FLAG_IRQCONTEXT;
3fb1b6ad 536
7269f933
LP
537 if (ch->flags & FLAG_CLOCKEVENT) {
538 if (!(ch->flags & FLAG_SKIPEVENT)) {
539 if (ch->ced.mode == CLOCK_EVT_MODE_ONESHOT) {
540 ch->next_match_value = ch->max_match_value;
541 ch->flags |= FLAG_REPROGRAM;
3fb1b6ad
MD
542 }
543
7269f933 544 ch->ced.event_handler(&ch->ced);
3fb1b6ad
MD
545 }
546 }
547
7269f933 548 ch->flags &= ~FLAG_SKIPEVENT;
3fb1b6ad 549
7269f933
LP
550 if (ch->flags & FLAG_REPROGRAM) {
551 ch->flags &= ~FLAG_REPROGRAM;
552 sh_cmt_clock_event_program_verify(ch, 1);
3fb1b6ad 553
7269f933
LP
554 if (ch->flags & FLAG_CLOCKEVENT)
555 if ((ch->ced.mode == CLOCK_EVT_MODE_SHUTDOWN)
556 || (ch->match_value == ch->next_match_value))
557 ch->flags &= ~FLAG_REPROGRAM;
3fb1b6ad
MD
558 }
559
7269f933 560 ch->flags &= ~FLAG_IRQCONTEXT;
3fb1b6ad
MD
561
562 return IRQ_HANDLED;
563}
564
7269f933 565static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
3fb1b6ad
MD
566{
567 int ret = 0;
568 unsigned long flags;
569
7269f933 570 raw_spin_lock_irqsave(&ch->lock, flags);
3fb1b6ad 571
7269f933
LP
572 if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
573 ret = sh_cmt_enable(ch, &ch->rate);
3fb1b6ad
MD
574
575 if (ret)
576 goto out;
7269f933 577 ch->flags |= flag;
3fb1b6ad
MD
578
579 /* setup timeout if no clockevent */
7269f933
LP
580 if ((flag == FLAG_CLOCKSOURCE) && (!(ch->flags & FLAG_CLOCKEVENT)))
581 __sh_cmt_set_next(ch, ch->max_match_value);
3fb1b6ad 582 out:
7269f933 583 raw_spin_unlock_irqrestore(&ch->lock, flags);
3fb1b6ad
MD
584
585 return ret;
586}
587
7269f933 588static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
3fb1b6ad
MD
589{
590 unsigned long flags;
591 unsigned long f;
592
7269f933 593 raw_spin_lock_irqsave(&ch->lock, flags);
3fb1b6ad 594
7269f933
LP
595 f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
596 ch->flags &= ~flag;
3fb1b6ad 597
7269f933
LP
598 if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
599 sh_cmt_disable(ch);
3fb1b6ad
MD
600
601 /* adjust the timeout to maximum if only clocksource left */
7269f933
LP
602 if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
603 __sh_cmt_set_next(ch, ch->max_match_value);
3fb1b6ad 604
7269f933 605 raw_spin_unlock_irqrestore(&ch->lock, flags);
3fb1b6ad
MD
606}
607
7269f933 608static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
19bdc9d0 609{
7269f933 610 return container_of(cs, struct sh_cmt_channel, cs);
19bdc9d0
MD
611}
612
613static cycle_t sh_cmt_clocksource_read(struct clocksource *cs)
614{
7269f933 615 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
19bdc9d0
MD
616 unsigned long flags, raw;
617 unsigned long value;
618 int has_wrapped;
619
7269f933
LP
620 raw_spin_lock_irqsave(&ch->lock, flags);
621 value = ch->total_cycles;
622 raw = sh_cmt_get_counter(ch, &has_wrapped);
19bdc9d0
MD
623
624 if (unlikely(has_wrapped))
7269f933
LP
625 raw += ch->match_value + 1;
626 raw_spin_unlock_irqrestore(&ch->lock, flags);
19bdc9d0
MD
627
628 return value + raw;
629}
630
631static int sh_cmt_clocksource_enable(struct clocksource *cs)
632{
3593f5fe 633 int ret;
7269f933 634 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
19bdc9d0 635
7269f933 636 WARN_ON(ch->cs_enabled);
bad81383 637
7269f933 638 ch->total_cycles = 0;
19bdc9d0 639
7269f933 640 ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
bad81383 641 if (!ret) {
7269f933
LP
642 __clocksource_updatefreq_hz(cs, ch->rate);
643 ch->cs_enabled = true;
bad81383 644 }
3593f5fe 645 return ret;
19bdc9d0
MD
646}
647
648static void sh_cmt_clocksource_disable(struct clocksource *cs)
649{
7269f933 650 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
bad81383 651
7269f933 652 WARN_ON(!ch->cs_enabled);
bad81383 653
7269f933
LP
654 sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
655 ch->cs_enabled = false;
19bdc9d0
MD
656}
657
9bb5ec88
RW
658static void sh_cmt_clocksource_suspend(struct clocksource *cs)
659{
7269f933 660 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
9bb5ec88 661
7269f933
LP
662 sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
663 pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
9bb5ec88
RW
664}
665
c8162884
MD
666static void sh_cmt_clocksource_resume(struct clocksource *cs)
667{
7269f933 668 struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
9bb5ec88 669
7269f933
LP
670 pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
671 sh_cmt_start(ch, FLAG_CLOCKSOURCE);
c8162884
MD
672}
673
7269f933 674static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
fb28a659 675 const char *name)
19bdc9d0 676{
7269f933 677 struct clocksource *cs = &ch->cs;
19bdc9d0
MD
678
679 cs->name = name;
fb28a659 680 cs->rating = 125;
19bdc9d0
MD
681 cs->read = sh_cmt_clocksource_read;
682 cs->enable = sh_cmt_clocksource_enable;
683 cs->disable = sh_cmt_clocksource_disable;
9bb5ec88 684 cs->suspend = sh_cmt_clocksource_suspend;
c8162884 685 cs->resume = sh_cmt_clocksource_resume;
19bdc9d0
MD
686 cs->mask = CLOCKSOURCE_MASK(sizeof(unsigned long) * 8);
687 cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
f4d7c356 688
740a9518
LP
689 dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
690 ch->index);
f4d7c356 691
3593f5fe
MD
692 /* Register with dummy 1 Hz value, gets updated in ->enable() */
693 clocksource_register_hz(cs, 1);
19bdc9d0
MD
694 return 0;
695}
696
7269f933 697static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
3fb1b6ad 698{
7269f933 699 return container_of(ced, struct sh_cmt_channel, ced);
3fb1b6ad
MD
700}
701
7269f933 702static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
3fb1b6ad 703{
7269f933 704 struct clock_event_device *ced = &ch->ced;
3fb1b6ad 705
7269f933 706 sh_cmt_start(ch, FLAG_CLOCKEVENT);
3fb1b6ad
MD
707
708 /* TODO: calculate good shift from rate and counter bit width */
709
710 ced->shift = 32;
7269f933
LP
711 ced->mult = div_sc(ch->rate, NSEC_PER_SEC, ced->shift);
712 ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
3fb1b6ad
MD
713 ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
714
715 if (periodic)
7269f933 716 sh_cmt_set_next(ch, ((ch->rate + HZ/2) / HZ) - 1);
3fb1b6ad 717 else
7269f933 718 sh_cmt_set_next(ch, ch->max_match_value);
3fb1b6ad
MD
719}
720
721static void sh_cmt_clock_event_mode(enum clock_event_mode mode,
722 struct clock_event_device *ced)
723{
7269f933 724 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
3fb1b6ad
MD
725
726 /* deal with old setting first */
727 switch (ced->mode) {
728 case CLOCK_EVT_MODE_PERIODIC:
729 case CLOCK_EVT_MODE_ONESHOT:
7269f933 730 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
3fb1b6ad
MD
731 break;
732 default:
733 break;
734 }
735
736 switch (mode) {
737 case CLOCK_EVT_MODE_PERIODIC:
7269f933 738 dev_info(&ch->cmt->pdev->dev,
740a9518 739 "ch%u: used for periodic clock events\n", ch->index);
7269f933 740 sh_cmt_clock_event_start(ch, 1);
3fb1b6ad
MD
741 break;
742 case CLOCK_EVT_MODE_ONESHOT:
7269f933 743 dev_info(&ch->cmt->pdev->dev,
740a9518 744 "ch%u: used for oneshot clock events\n", ch->index);
7269f933 745 sh_cmt_clock_event_start(ch, 0);
3fb1b6ad
MD
746 break;
747 case CLOCK_EVT_MODE_SHUTDOWN:
748 case CLOCK_EVT_MODE_UNUSED:
7269f933 749 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
3fb1b6ad
MD
750 break;
751 default:
752 break;
753 }
754}
755
756static int sh_cmt_clock_event_next(unsigned long delta,
757 struct clock_event_device *ced)
758{
7269f933 759 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
3fb1b6ad
MD
760
761 BUG_ON(ced->mode != CLOCK_EVT_MODE_ONESHOT);
7269f933
LP
762 if (likely(ch->flags & FLAG_IRQCONTEXT))
763 ch->next_match_value = delta - 1;
3fb1b6ad 764 else
7269f933 765 sh_cmt_set_next(ch, delta - 1);
3fb1b6ad
MD
766
767 return 0;
768}
769
9bb5ec88
RW
770static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
771{
7269f933 772 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
57dee992 773
7269f933
LP
774 pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
775 clk_unprepare(ch->cmt->clk);
9bb5ec88
RW
776}
777
778static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
779{
7269f933 780 struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
57dee992 781
7269f933
LP
782 clk_prepare(ch->cmt->clk);
783 pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
9bb5ec88
RW
784}
785
bfa76bb1
LP
786static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
787 const char *name)
3fb1b6ad 788{
7269f933 789 struct clock_event_device *ced = &ch->ced;
bfa76bb1
LP
790 int irq;
791 int ret;
792
31e912f5 793 irq = platform_get_irq(ch->cmt->pdev, ch->index);
bfa76bb1
LP
794 if (irq < 0) {
795 dev_err(&ch->cmt->pdev->dev, "ch%u: failed to get irq\n",
796 ch->index);
797 return irq;
798 }
799
800 ret = request_irq(irq, sh_cmt_interrupt,
801 IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
802 dev_name(&ch->cmt->pdev->dev), ch);
803 if (ret) {
804 dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
805 ch->index, irq);
806 return ret;
807 }
3fb1b6ad 808
3fb1b6ad
MD
809 ced->name = name;
810 ced->features = CLOCK_EVT_FEAT_PERIODIC;
811 ced->features |= CLOCK_EVT_FEAT_ONESHOT;
b7fcbb0f 812 ced->rating = 125;
f1ebe1e4 813 ced->cpumask = cpu_possible_mask;
3fb1b6ad
MD
814 ced->set_next_event = sh_cmt_clock_event_next;
815 ced->set_mode = sh_cmt_clock_event_mode;
9bb5ec88
RW
816 ced->suspend = sh_cmt_clock_event_suspend;
817 ced->resume = sh_cmt_clock_event_resume;
3fb1b6ad 818
740a9518
LP
819 dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
820 ch->index);
3fb1b6ad 821 clockevents_register_device(ced);
bfa76bb1
LP
822
823 return 0;
3fb1b6ad
MD
824}
825
1d053e1d 826static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
fb28a659 827 bool clockevent, bool clocksource)
3fb1b6ad 828{
bfa76bb1
LP
829 int ret;
830
81b3b271
LP
831 if (clockevent) {
832 ch->cmt->has_clockevent = true;
bfa76bb1
LP
833 ret = sh_cmt_register_clockevent(ch, name);
834 if (ret < 0)
835 return ret;
81b3b271 836 }
3fb1b6ad 837
81b3b271
LP
838 if (clocksource) {
839 ch->cmt->has_clocksource = true;
fb28a659 840 sh_cmt_register_clocksource(ch, name);
81b3b271 841 }
19bdc9d0 842
3fb1b6ad
MD
843 return 0;
844}
845
740a9518 846static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
81b3b271
LP
847 unsigned int hwidx, bool clockevent,
848 bool clocksource, struct sh_cmt_device *cmt)
b882e7b1 849{
b882e7b1
LP
850 int ret;
851
81b3b271
LP
852 /* Skip unused channels. */
853 if (!clockevent && !clocksource)
854 return 0;
855
b882e7b1 856 ch->cmt = cmt;
740a9518 857 ch->index = index;
81b3b271
LP
858 ch->hwidx = hwidx;
859
860 /*
861 * Compute the address of the channel control register block. For the
862 * timers with a per-channel start/stop register, compute its address
863 * as well.
81b3b271 864 */
31e912f5
LP
865 switch (cmt->info->model) {
866 case SH_CMT_16BIT:
867 ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
868 break;
869 case SH_CMT_32BIT:
870 case SH_CMT_48BIT:
871 ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
872 break;
873 case SH_CMT_32BIT_FAST:
874 /*
875 * The 32-bit "fast" timer has a single channel at hwidx 5 but
876 * is located at offset 0x40 instead of 0x60 for some reason.
877 */
878 ch->ioctrl = cmt->mapbase + 0x40;
879 break;
880 case SH_CMT_48BIT_GEN2:
881 ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
882 ch->ioctrl = ch->iostart + 0x10;
883 break;
81b3b271
LP
884 }
885
2cda3ac4 886 if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
b882e7b1
LP
887 ch->max_match_value = ~0;
888 else
2cda3ac4 889 ch->max_match_value = (1 << cmt->info->width) - 1;
b882e7b1
LP
890
891 ch->match_value = ch->max_match_value;
892 raw_spin_lock_init(&ch->lock);
893
31e912f5 894 ch->timer_bit = cmt->info->model == SH_CMT_48BIT_GEN2 ? 0 : ch->hwidx;
81b3b271 895
1d053e1d 896 ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
81b3b271 897 clockevent, clocksource);
b882e7b1 898 if (ret) {
740a9518
LP
899 dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
900 ch->index);
b882e7b1
LP
901 return ret;
902 }
903 ch->cs_enabled = false;
904
b882e7b1
LP
905 return 0;
906}
907
81b3b271 908static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
3fb1b6ad 909{
81b3b271 910 struct resource *mem;
3fb1b6ad 911
81b3b271
LP
912 mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
913 if (!mem) {
914 dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
915 return -ENXIO;
916 }
3fb1b6ad 917
81b3b271
LP
918 cmt->mapbase = ioremap_nocache(mem->start, resource_size(mem));
919 if (cmt->mapbase == NULL) {
920 dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
921 return -ENXIO;
3fb1b6ad
MD
922 }
923
81b3b271
LP
924 return 0;
925}
926
81b3b271
LP
927static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
928{
929 struct sh_timer_config *cfg = pdev->dev.platform_data;
930 const struct platform_device_id *id = pdev->id_entry;
31e912f5
LP
931 unsigned int mask;
932 unsigned int i;
81b3b271
LP
933 int ret;
934
935 memset(cmt, 0, sizeof(*cmt));
936 cmt->pdev = pdev;
937
938 if (!cfg) {
939 dev_err(&cmt->pdev->dev, "missing platform data\n");
940 return -ENXIO;
941 }
942
943 cmt->info = (const struct sh_cmt_info *)id->driver_data;
81b3b271
LP
944
945 /* Get hold of clock. */
31e912f5 946 cmt->clk = clk_get(&cmt->pdev->dev, "fck");
2653caf4
LP
947 if (IS_ERR(cmt->clk)) {
948 dev_err(&cmt->pdev->dev, "cannot get clock\n");
81b3b271 949 return PTR_ERR(cmt->clk);
3fb1b6ad
MD
950 }
951
2653caf4 952 ret = clk_prepare(cmt->clk);
57dee992 953 if (ret < 0)
81b3b271 954 goto err_clk_put;
57dee992 955
31e912f5
LP
956 /* Map the memory resource(s). */
957 ret = sh_cmt_map_memory(cmt);
81b3b271
LP
958 if (ret < 0)
959 goto err_clk_unprepare;
960
961 /* Allocate and setup the channels. */
31e912f5 962 cmt->num_channels = hweight8(cfg->channels_mask);
81b3b271
LP
963
964 cmt->channels = kzalloc(cmt->num_channels * sizeof(*cmt->channels),
965 GFP_KERNEL);
f5ec9b19
LP
966 if (cmt->channels == NULL) {
967 ret = -ENOMEM;
81b3b271 968 goto err_unmap;
f5ec9b19
LP
969 }
970
31e912f5
LP
971 /*
972 * Use the first channel as a clock event device and the second channel
973 * as a clock source. If only one channel is available use it for both.
974 */
975 for (i = 0, mask = cfg->channels_mask; i < cmt->num_channels; ++i) {
976 unsigned int hwidx = ffs(mask) - 1;
977 bool clocksource = i == 1 || cmt->num_channels == 1;
978 bool clockevent = i == 0;
979
980 ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
981 clockevent, clocksource, cmt);
81b3b271
LP
982 if (ret < 0)
983 goto err_unmap;
f5ec9b19 984
31e912f5 985 mask &= ~(1 << hwidx);
81b3b271 986 }
da64c2a8 987
2653caf4 988 platform_set_drvdata(pdev, cmt);
adccc69e 989
da64c2a8 990 return 0;
81b3b271
LP
991
992err_unmap:
f5ec9b19 993 kfree(cmt->channels);
31e912f5 994 iounmap(cmt->mapbase);
81b3b271 995err_clk_unprepare:
2653caf4 996 clk_unprepare(cmt->clk);
81b3b271 997err_clk_put:
2653caf4 998 clk_put(cmt->clk);
3fb1b6ad
MD
999 return ret;
1000}
1001
1850514b 1002static int sh_cmt_probe(struct platform_device *pdev)
3fb1b6ad 1003{
2653caf4 1004 struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
3fb1b6ad
MD
1005 int ret;
1006
9bb5ec88 1007 if (!is_early_platform_device(pdev)) {
bad81383
RW
1008 pm_runtime_set_active(&pdev->dev);
1009 pm_runtime_enable(&pdev->dev);
9bb5ec88 1010 }
615a445f 1011
2653caf4 1012 if (cmt) {
214a607a 1013 dev_info(&pdev->dev, "kept as earlytimer\n");
bad81383 1014 goto out;
e475eedb
MD
1015 }
1016
b262bc74 1017 cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
0178f41d 1018 if (cmt == NULL)
3fb1b6ad 1019 return -ENOMEM;
3fb1b6ad 1020
2653caf4 1021 ret = sh_cmt_setup(cmt, pdev);
3fb1b6ad 1022 if (ret) {
2653caf4 1023 kfree(cmt);
bad81383
RW
1024 pm_runtime_idle(&pdev->dev);
1025 return ret;
3fb1b6ad 1026 }
bad81383
RW
1027 if (is_early_platform_device(pdev))
1028 return 0;
1029
1030 out:
81b3b271 1031 if (cmt->has_clockevent || cmt->has_clocksource)
bad81383
RW
1032 pm_runtime_irq_safe(&pdev->dev);
1033 else
1034 pm_runtime_idle(&pdev->dev);
1035
1036 return 0;
3fb1b6ad
MD
1037}
1038
1850514b 1039static int sh_cmt_remove(struct platform_device *pdev)
3fb1b6ad
MD
1040{
1041 return -EBUSY; /* cannot unregister clockevent and clocksource */
1042}
1043
81b3b271 1044static const struct platform_device_id sh_cmt_id_table[] = {
81b3b271
LP
1045 { "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
1046 { "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
1047 { "sh-cmt-32-fast", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT_FAST] },
1048 { "sh-cmt-48", (kernel_ulong_t)&sh_cmt_info[SH_CMT_48BIT] },
1049 { "sh-cmt-48-gen2", (kernel_ulong_t)&sh_cmt_info[SH_CMT_48BIT_GEN2] },
1050 { }
1051};
1052MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
1053
3fb1b6ad
MD
1054static struct platform_driver sh_cmt_device_driver = {
1055 .probe = sh_cmt_probe,
1850514b 1056 .remove = sh_cmt_remove,
3fb1b6ad
MD
1057 .driver = {
1058 .name = "sh_cmt",
81b3b271
LP
1059 },
1060 .id_table = sh_cmt_id_table,
3fb1b6ad
MD
1061};
1062
1063static int __init sh_cmt_init(void)
1064{
1065 return platform_driver_register(&sh_cmt_device_driver);
1066}
1067
1068static void __exit sh_cmt_exit(void)
1069{
1070 platform_driver_unregister(&sh_cmt_device_driver);
1071}
1072
e475eedb 1073early_platform_init("earlytimer", &sh_cmt_device_driver);
e903a031 1074subsys_initcall(sh_cmt_init);
3fb1b6ad
MD
1075module_exit(sh_cmt_exit);
1076
1077MODULE_AUTHOR("Magnus Damm");
1078MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1079MODULE_LICENSE("GPL v2");