[PATCH] ipmi: add generic PCI handling
[linux-2.6-block.git] / drivers / char / ipmi / ipmi_si_intf.c
CommitLineData
1da177e4
LT
1/*
2 * ipmi_si.c
3 *
4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5 * BT).
6 *
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
10 *
11 * Copyright 2002 MontaVista Software Inc.
12 *
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms of the GNU General Public License as published by the
15 * Free Software Foundation; either version 2 of the License, or (at your
16 * option) any later version.
17 *
18 *
19 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
25 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
26 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
27 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
28 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 *
30 * You should have received a copy of the GNU General Public License along
31 * with this program; if not, write to the Free Software Foundation, Inc.,
32 * 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35/*
36 * This file holds the "policy" for the interface to the SMI state
37 * machine. It does the configuration, handles timers and interrupts,
38 * and drives the real SMI state machine.
39 */
40
41#include <linux/config.h>
42#include <linux/module.h>
43#include <linux/moduleparam.h>
44#include <asm/system.h>
45#include <linux/sched.h>
46#include <linux/timer.h>
47#include <linux/errno.h>
48#include <linux/spinlock.h>
49#include <linux/slab.h>
50#include <linux/delay.h>
51#include <linux/list.h>
52#include <linux/pci.h>
53#include <linux/ioport.h>
ea94027b 54#include <linux/notifier.h>
b0defcdb 55#include <linux/mutex.h>
e9a705a0 56#include <linux/kthread.h>
1da177e4
LT
57#include <asm/irq.h>
58#ifdef CONFIG_HIGH_RES_TIMERS
59#include <linux/hrtime.h>
60# if defined(schedule_next_int)
61/* Old high-res timer code, do translations. */
62# define get_arch_cycles(a) quick_update_jiffies_sub(a)
63# define arch_cycles_per_jiffy cycles_per_jiffies
64# endif
65static inline void add_usec_to_timer(struct timer_list *t, long v)
66{
75b0768a
CM
67 t->arch_cycle_expires += nsec_to_arch_cycle(v * 1000);
68 while (t->arch_cycle_expires >= arch_cycles_per_jiffy)
1da177e4
LT
69 {
70 t->expires++;
75b0768a 71 t->arch_cycle_expires -= arch_cycles_per_jiffy;
1da177e4
LT
72 }
73}
74#endif
75#include <linux/interrupt.h>
76#include <linux/rcupdate.h>
77#include <linux/ipmi_smi.h>
78#include <asm/io.h>
79#include "ipmi_si_sm.h"
80#include <linux/init.h>
b224cd3a 81#include <linux/dmi.h>
1da177e4
LT
82
83/* Measure times between events in the driver. */
84#undef DEBUG_TIMING
85
86/* Call every 10 ms. */
87#define SI_TIMEOUT_TIME_USEC 10000
88#define SI_USEC_PER_JIFFY (1000000/HZ)
89#define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
90#define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
91 short timeout */
92
93enum si_intf_state {
94 SI_NORMAL,
95 SI_GETTING_FLAGS,
96 SI_GETTING_EVENTS,
97 SI_CLEARING_FLAGS,
98 SI_CLEARING_FLAGS_THEN_SET_IRQ,
99 SI_GETTING_MESSAGES,
100 SI_ENABLE_INTERRUPTS1,
101 SI_ENABLE_INTERRUPTS2
102 /* FIXME - add watchdog stuff. */
103};
104
9dbf68f9
CM
105/* Some BT-specific defines we need here. */
106#define IPMI_BT_INTMASK_REG 2
107#define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
108#define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
109
1da177e4
LT
110enum si_type {
111 SI_KCS, SI_SMIC, SI_BT
112};
b0defcdb 113static char *si_to_str[] = { "KCS", "SMIC", "BT" };
1da177e4 114
3ae0e0f9
CM
115struct ipmi_device_id {
116 unsigned char device_id;
117 unsigned char device_revision;
118 unsigned char firmware_revision_1;
119 unsigned char firmware_revision_2;
120 unsigned char ipmi_version;
121 unsigned char additional_device_support;
122 unsigned char manufacturer_id[3];
123 unsigned char product_id[2];
124 unsigned char aux_firmware_revision[4];
125} __attribute__((packed));
126
127#define ipmi_version_major(v) ((v)->ipmi_version & 0xf)
128#define ipmi_version_minor(v) ((v)->ipmi_version >> 4)
129
1da177e4
LT
130struct smi_info
131{
a9a2c44f 132 int intf_num;
1da177e4
LT
133 ipmi_smi_t intf;
134 struct si_sm_data *si_sm;
135 struct si_sm_handlers *handlers;
136 enum si_type si_type;
137 spinlock_t si_lock;
138 spinlock_t msg_lock;
139 struct list_head xmit_msgs;
140 struct list_head hp_xmit_msgs;
141 struct ipmi_smi_msg *curr_msg;
142 enum si_intf_state si_state;
143
144 /* Used to handle the various types of I/O that can occur with
145 IPMI */
146 struct si_sm_io io;
147 int (*io_setup)(struct smi_info *info);
148 void (*io_cleanup)(struct smi_info *info);
149 int (*irq_setup)(struct smi_info *info);
150 void (*irq_cleanup)(struct smi_info *info);
151 unsigned int io_size;
b0defcdb
CM
152 char *addr_source; /* ACPI, PCI, SMBIOS, hardcode, default. */
153 void (*addr_source_cleanup)(struct smi_info *info);
154 void *addr_source_data;
1da177e4 155
3ae0e0f9
CM
156 /* Per-OEM handler, called from handle_flags().
157 Returns 1 when handle_flags() needs to be re-run
158 or 0 indicating it set si_state itself.
159 */
160 int (*oem_data_avail_handler)(struct smi_info *smi_info);
161
1da177e4
LT
162 /* Flags from the last GET_MSG_FLAGS command, used when an ATTN
163 is set to hold the flags until we are done handling everything
164 from the flags. */
165#define RECEIVE_MSG_AVAIL 0x01
166#define EVENT_MSG_BUFFER_FULL 0x02
167#define WDT_PRE_TIMEOUT_INT 0x08
3ae0e0f9
CM
168#define OEM0_DATA_AVAIL 0x20
169#define OEM1_DATA_AVAIL 0x40
170#define OEM2_DATA_AVAIL 0x80
171#define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
172 OEM1_DATA_AVAIL | \
173 OEM2_DATA_AVAIL)
1da177e4
LT
174 unsigned char msg_flags;
175
176 /* If set to true, this will request events the next time the
177 state machine is idle. */
178 atomic_t req_events;
179
180 /* If true, run the state machine to completion on every send
181 call. Generally used after a panic to make sure stuff goes
182 out. */
183 int run_to_completion;
184
185 /* The I/O port of an SI interface. */
186 int port;
187
188 /* The space between start addresses of the two ports. For
189 instance, if the first port is 0xca2 and the spacing is 4, then
190 the second port is 0xca6. */
191 unsigned int spacing;
192
193 /* zero if no irq; */
194 int irq;
195
196 /* The timer for this si. */
197 struct timer_list si_timer;
198
199 /* The time (in jiffies) the last timeout occurred at. */
200 unsigned long last_timeout_jiffies;
201
202 /* Used to gracefully stop the timer without race conditions. */
a9a2c44f 203 atomic_t stop_operation;
1da177e4
LT
204
205 /* The driver will disable interrupts when it gets into a
206 situation where it cannot handle messages due to lack of
207 memory. Once that situation clears up, it will re-enable
208 interrupts. */
209 int interrupt_disabled;
210
3ae0e0f9 211 struct ipmi_device_id device_id;
1da177e4
LT
212
213 /* Slave address, could be reported from DMI. */
214 unsigned char slave_addr;
215
216 /* Counters and things for the proc filesystem. */
217 spinlock_t count_lock;
218 unsigned long short_timeouts;
219 unsigned long long_timeouts;
220 unsigned long timeout_restarts;
221 unsigned long idles;
222 unsigned long interrupts;
223 unsigned long attentions;
224 unsigned long flag_fetches;
225 unsigned long hosed_count;
226 unsigned long complete_transactions;
227 unsigned long events;
228 unsigned long watchdog_pretimeouts;
229 unsigned long incoming_messages;
a9a2c44f 230
e9a705a0 231 struct task_struct *thread;
b0defcdb
CM
232
233 struct list_head link;
1da177e4
LT
234};
235
b0defcdb
CM
236static int try_smi_init(struct smi_info *smi);
237
ea94027b
CM
238static struct notifier_block *xaction_notifier_list;
239static int register_xaction_notifier(struct notifier_block * nb)
240{
241 return notifier_chain_register(&xaction_notifier_list, nb);
242}
243
1da177e4
LT
244static void si_restart_short_timer(struct smi_info *smi_info);
245
246static void deliver_recv_msg(struct smi_info *smi_info,
247 struct ipmi_smi_msg *msg)
248{
249 /* Deliver the message to the upper layer with the lock
250 released. */
251 spin_unlock(&(smi_info->si_lock));
252 ipmi_smi_msg_received(smi_info->intf, msg);
253 spin_lock(&(smi_info->si_lock));
254}
255
256static void return_hosed_msg(struct smi_info *smi_info)
257{
258 struct ipmi_smi_msg *msg = smi_info->curr_msg;
259
260 /* Make it a reponse */
261 msg->rsp[0] = msg->data[0] | 4;
262 msg->rsp[1] = msg->data[1];
263 msg->rsp[2] = 0xFF; /* Unknown error. */
264 msg->rsp_size = 3;
265
266 smi_info->curr_msg = NULL;
267 deliver_recv_msg(smi_info, msg);
268}
269
270static enum si_sm_result start_next_msg(struct smi_info *smi_info)
271{
272 int rv;
273 struct list_head *entry = NULL;
274#ifdef DEBUG_TIMING
275 struct timeval t;
276#endif
277
278 /* No need to save flags, we aleady have interrupts off and we
279 already hold the SMI lock. */
280 spin_lock(&(smi_info->msg_lock));
281
282 /* Pick the high priority queue first. */
b0defcdb 283 if (!list_empty(&(smi_info->hp_xmit_msgs))) {
1da177e4 284 entry = smi_info->hp_xmit_msgs.next;
b0defcdb 285 } else if (!list_empty(&(smi_info->xmit_msgs))) {
1da177e4
LT
286 entry = smi_info->xmit_msgs.next;
287 }
288
b0defcdb 289 if (!entry) {
1da177e4
LT
290 smi_info->curr_msg = NULL;
291 rv = SI_SM_IDLE;
292 } else {
293 int err;
294
295 list_del(entry);
296 smi_info->curr_msg = list_entry(entry,
297 struct ipmi_smi_msg,
298 link);
299#ifdef DEBUG_TIMING
300 do_gettimeofday(&t);
301 printk("**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
302#endif
ea94027b
CM
303 err = notifier_call_chain(&xaction_notifier_list, 0, smi_info);
304 if (err & NOTIFY_STOP_MASK) {
305 rv = SI_SM_CALL_WITHOUT_DELAY;
306 goto out;
307 }
1da177e4
LT
308 err = smi_info->handlers->start_transaction(
309 smi_info->si_sm,
310 smi_info->curr_msg->data,
311 smi_info->curr_msg->data_size);
312 if (err) {
313 return_hosed_msg(smi_info);
314 }
315
316 rv = SI_SM_CALL_WITHOUT_DELAY;
317 }
ea94027b 318 out:
1da177e4
LT
319 spin_unlock(&(smi_info->msg_lock));
320
321 return rv;
322}
323
324static void start_enable_irq(struct smi_info *smi_info)
325{
326 unsigned char msg[2];
327
328 /* If we are enabling interrupts, we have to tell the
329 BMC to use them. */
330 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
331 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
332
333 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
334 smi_info->si_state = SI_ENABLE_INTERRUPTS1;
335}
336
337static void start_clear_flags(struct smi_info *smi_info)
338{
339 unsigned char msg[3];
340
341 /* Make sure the watchdog pre-timeout flag is not set at startup. */
342 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
343 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
344 msg[2] = WDT_PRE_TIMEOUT_INT;
345
346 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
347 smi_info->si_state = SI_CLEARING_FLAGS;
348}
349
350/* When we have a situtaion where we run out of memory and cannot
351 allocate messages, we just leave them in the BMC and run the system
352 polled until we can allocate some memory. Once we have some
353 memory, we will re-enable the interrupt. */
354static inline void disable_si_irq(struct smi_info *smi_info)
355{
b0defcdb 356 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1da177e4
LT
357 disable_irq_nosync(smi_info->irq);
358 smi_info->interrupt_disabled = 1;
359 }
360}
361
362static inline void enable_si_irq(struct smi_info *smi_info)
363{
364 if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
365 enable_irq(smi_info->irq);
366 smi_info->interrupt_disabled = 0;
367 }
368}
369
370static void handle_flags(struct smi_info *smi_info)
371{
3ae0e0f9 372 retry:
1da177e4
LT
373 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
374 /* Watchdog pre-timeout */
375 spin_lock(&smi_info->count_lock);
376 smi_info->watchdog_pretimeouts++;
377 spin_unlock(&smi_info->count_lock);
378
379 start_clear_flags(smi_info);
380 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
381 spin_unlock(&(smi_info->si_lock));
382 ipmi_smi_watchdog_pretimeout(smi_info->intf);
383 spin_lock(&(smi_info->si_lock));
384 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
385 /* Messages available. */
386 smi_info->curr_msg = ipmi_alloc_smi_msg();
b0defcdb 387 if (!smi_info->curr_msg) {
1da177e4
LT
388 disable_si_irq(smi_info);
389 smi_info->si_state = SI_NORMAL;
390 return;
391 }
392 enable_si_irq(smi_info);
393
394 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
395 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
396 smi_info->curr_msg->data_size = 2;
397
398 smi_info->handlers->start_transaction(
399 smi_info->si_sm,
400 smi_info->curr_msg->data,
401 smi_info->curr_msg->data_size);
402 smi_info->si_state = SI_GETTING_MESSAGES;
403 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
404 /* Events available. */
405 smi_info->curr_msg = ipmi_alloc_smi_msg();
b0defcdb 406 if (!smi_info->curr_msg) {
1da177e4
LT
407 disable_si_irq(smi_info);
408 smi_info->si_state = SI_NORMAL;
409 return;
410 }
411 enable_si_irq(smi_info);
412
413 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
414 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
415 smi_info->curr_msg->data_size = 2;
416
417 smi_info->handlers->start_transaction(
418 smi_info->si_sm,
419 smi_info->curr_msg->data,
420 smi_info->curr_msg->data_size);
421 smi_info->si_state = SI_GETTING_EVENTS;
3ae0e0f9
CM
422 } else if (smi_info->msg_flags & OEM_DATA_AVAIL) {
423 if (smi_info->oem_data_avail_handler)
424 if (smi_info->oem_data_avail_handler(smi_info))
425 goto retry;
1da177e4
LT
426 } else {
427 smi_info->si_state = SI_NORMAL;
428 }
429}
430
431static void handle_transaction_done(struct smi_info *smi_info)
432{
433 struct ipmi_smi_msg *msg;
434#ifdef DEBUG_TIMING
435 struct timeval t;
436
437 do_gettimeofday(&t);
438 printk("**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
439#endif
440 switch (smi_info->si_state) {
441 case SI_NORMAL:
b0defcdb 442 if (!smi_info->curr_msg)
1da177e4
LT
443 break;
444
445 smi_info->curr_msg->rsp_size
446 = smi_info->handlers->get_result(
447 smi_info->si_sm,
448 smi_info->curr_msg->rsp,
449 IPMI_MAX_MSG_LENGTH);
450
451 /* Do this here becase deliver_recv_msg() releases the
452 lock, and a new message can be put in during the
453 time the lock is released. */
454 msg = smi_info->curr_msg;
455 smi_info->curr_msg = NULL;
456 deliver_recv_msg(smi_info, msg);
457 break;
458
459 case SI_GETTING_FLAGS:
460 {
461 unsigned char msg[4];
462 unsigned int len;
463
464 /* We got the flags from the SMI, now handle them. */
465 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
466 if (msg[2] != 0) {
467 /* Error fetching flags, just give up for
468 now. */
469 smi_info->si_state = SI_NORMAL;
470 } else if (len < 4) {
471 /* Hmm, no flags. That's technically illegal, but
472 don't use uninitialized data. */
473 smi_info->si_state = SI_NORMAL;
474 } else {
475 smi_info->msg_flags = msg[3];
476 handle_flags(smi_info);
477 }
478 break;
479 }
480
481 case SI_CLEARING_FLAGS:
482 case SI_CLEARING_FLAGS_THEN_SET_IRQ:
483 {
484 unsigned char msg[3];
485
486 /* We cleared the flags. */
487 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
488 if (msg[2] != 0) {
489 /* Error clearing flags */
490 printk(KERN_WARNING
491 "ipmi_si: Error clearing flags: %2.2x\n",
492 msg[2]);
493 }
494 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
495 start_enable_irq(smi_info);
496 else
497 smi_info->si_state = SI_NORMAL;
498 break;
499 }
500
501 case SI_GETTING_EVENTS:
502 {
503 smi_info->curr_msg->rsp_size
504 = smi_info->handlers->get_result(
505 smi_info->si_sm,
506 smi_info->curr_msg->rsp,
507 IPMI_MAX_MSG_LENGTH);
508
509 /* Do this here becase deliver_recv_msg() releases the
510 lock, and a new message can be put in during the
511 time the lock is released. */
512 msg = smi_info->curr_msg;
513 smi_info->curr_msg = NULL;
514 if (msg->rsp[2] != 0) {
515 /* Error getting event, probably done. */
516 msg->done(msg);
517
518 /* Take off the event flag. */
519 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
520 handle_flags(smi_info);
521 } else {
522 spin_lock(&smi_info->count_lock);
523 smi_info->events++;
524 spin_unlock(&smi_info->count_lock);
525
526 /* Do this before we deliver the message
527 because delivering the message releases the
528 lock and something else can mess with the
529 state. */
530 handle_flags(smi_info);
531
532 deliver_recv_msg(smi_info, msg);
533 }
534 break;
535 }
536
537 case SI_GETTING_MESSAGES:
538 {
539 smi_info->curr_msg->rsp_size
540 = smi_info->handlers->get_result(
541 smi_info->si_sm,
542 smi_info->curr_msg->rsp,
543 IPMI_MAX_MSG_LENGTH);
544
545 /* Do this here becase deliver_recv_msg() releases the
546 lock, and a new message can be put in during the
547 time the lock is released. */
548 msg = smi_info->curr_msg;
549 smi_info->curr_msg = NULL;
550 if (msg->rsp[2] != 0) {
551 /* Error getting event, probably done. */
552 msg->done(msg);
553
554 /* Take off the msg flag. */
555 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
556 handle_flags(smi_info);
557 } else {
558 spin_lock(&smi_info->count_lock);
559 smi_info->incoming_messages++;
560 spin_unlock(&smi_info->count_lock);
561
562 /* Do this before we deliver the message
563 because delivering the message releases the
564 lock and something else can mess with the
565 state. */
566 handle_flags(smi_info);
567
568 deliver_recv_msg(smi_info, msg);
569 }
570 break;
571 }
572
573 case SI_ENABLE_INTERRUPTS1:
574 {
575 unsigned char msg[4];
576
577 /* We got the flags from the SMI, now handle them. */
578 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
579 if (msg[2] != 0) {
580 printk(KERN_WARNING
581 "ipmi_si: Could not enable interrupts"
582 ", failed get, using polled mode.\n");
583 smi_info->si_state = SI_NORMAL;
584 } else {
585 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
586 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
587 msg[2] = msg[3] | 1; /* enable msg queue int */
588 smi_info->handlers->start_transaction(
589 smi_info->si_sm, msg, 3);
590 smi_info->si_state = SI_ENABLE_INTERRUPTS2;
591 }
592 break;
593 }
594
595 case SI_ENABLE_INTERRUPTS2:
596 {
597 unsigned char msg[4];
598
599 /* We got the flags from the SMI, now handle them. */
600 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
601 if (msg[2] != 0) {
602 printk(KERN_WARNING
603 "ipmi_si: Could not enable interrupts"
604 ", failed set, using polled mode.\n");
605 }
606 smi_info->si_state = SI_NORMAL;
607 break;
608 }
609 }
610}
611
612/* Called on timeouts and events. Timeouts should pass the elapsed
613 time, interrupts should pass in zero. */
614static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
615 int time)
616{
617 enum si_sm_result si_sm_result;
618
619 restart:
620 /* There used to be a loop here that waited a little while
621 (around 25us) before giving up. That turned out to be
622 pointless, the minimum delays I was seeing were in the 300us
623 range, which is far too long to wait in an interrupt. So
624 we just run until the state machine tells us something
625 happened or it needs a delay. */
626 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
627 time = 0;
628 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
629 {
630 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
631 }
632
633 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE)
634 {
635 spin_lock(&smi_info->count_lock);
636 smi_info->complete_transactions++;
637 spin_unlock(&smi_info->count_lock);
638
639 handle_transaction_done(smi_info);
640 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
641 }
642 else if (si_sm_result == SI_SM_HOSED)
643 {
644 spin_lock(&smi_info->count_lock);
645 smi_info->hosed_count++;
646 spin_unlock(&smi_info->count_lock);
647
648 /* Do the before return_hosed_msg, because that
649 releases the lock. */
650 smi_info->si_state = SI_NORMAL;
651 if (smi_info->curr_msg != NULL) {
652 /* If we were handling a user message, format
653 a response to send to the upper layer to
654 tell it about the error. */
655 return_hosed_msg(smi_info);
656 }
657 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
658 }
659
660 /* We prefer handling attn over new messages. */
661 if (si_sm_result == SI_SM_ATTN)
662 {
663 unsigned char msg[2];
664
665 spin_lock(&smi_info->count_lock);
666 smi_info->attentions++;
667 spin_unlock(&smi_info->count_lock);
668
669 /* Got a attn, send down a get message flags to see
670 what's causing it. It would be better to handle
671 this in the upper layer, but due to the way
672 interrupts work with the SMI, that's not really
673 possible. */
674 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
675 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
676
677 smi_info->handlers->start_transaction(
678 smi_info->si_sm, msg, 2);
679 smi_info->si_state = SI_GETTING_FLAGS;
680 goto restart;
681 }
682
683 /* If we are currently idle, try to start the next message. */
684 if (si_sm_result == SI_SM_IDLE) {
685 spin_lock(&smi_info->count_lock);
686 smi_info->idles++;
687 spin_unlock(&smi_info->count_lock);
688
689 si_sm_result = start_next_msg(smi_info);
690 if (si_sm_result != SI_SM_IDLE)
691 goto restart;
692 }
693
694 if ((si_sm_result == SI_SM_IDLE)
695 && (atomic_read(&smi_info->req_events)))
696 {
697 /* We are idle and the upper layer requested that I fetch
698 events, so do so. */
699 unsigned char msg[2];
700
701 spin_lock(&smi_info->count_lock);
702 smi_info->flag_fetches++;
703 spin_unlock(&smi_info->count_lock);
704
705 atomic_set(&smi_info->req_events, 0);
706 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
707 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
708
709 smi_info->handlers->start_transaction(
710 smi_info->si_sm, msg, 2);
711 smi_info->si_state = SI_GETTING_FLAGS;
712 goto restart;
713 }
714
715 return si_sm_result;
716}
717
718static void sender(void *send_info,
719 struct ipmi_smi_msg *msg,
720 int priority)
721{
722 struct smi_info *smi_info = send_info;
723 enum si_sm_result result;
724 unsigned long flags;
725#ifdef DEBUG_TIMING
726 struct timeval t;
727#endif
728
729 spin_lock_irqsave(&(smi_info->msg_lock), flags);
730#ifdef DEBUG_TIMING
731 do_gettimeofday(&t);
732 printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
733#endif
734
735 if (smi_info->run_to_completion) {
736 /* If we are running to completion, then throw it in
737 the list and run transactions until everything is
738 clear. Priority doesn't matter here. */
739 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
740
741 /* We have to release the msg lock and claim the smi
742 lock in this case, because of race conditions. */
743 spin_unlock_irqrestore(&(smi_info->msg_lock), flags);
744
745 spin_lock_irqsave(&(smi_info->si_lock), flags);
746 result = smi_event_handler(smi_info, 0);
747 while (result != SI_SM_IDLE) {
748 udelay(SI_SHORT_TIMEOUT_USEC);
749 result = smi_event_handler(smi_info,
750 SI_SHORT_TIMEOUT_USEC);
751 }
752 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
753 return;
754 } else {
755 if (priority > 0) {
756 list_add_tail(&(msg->link), &(smi_info->hp_xmit_msgs));
757 } else {
758 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
759 }
760 }
761 spin_unlock_irqrestore(&(smi_info->msg_lock), flags);
762
763 spin_lock_irqsave(&(smi_info->si_lock), flags);
764 if ((smi_info->si_state == SI_NORMAL)
765 && (smi_info->curr_msg == NULL))
766 {
767 start_next_msg(smi_info);
768 si_restart_short_timer(smi_info);
769 }
770 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
771}
772
773static void set_run_to_completion(void *send_info, int i_run_to_completion)
774{
775 struct smi_info *smi_info = send_info;
776 enum si_sm_result result;
777 unsigned long flags;
778
779 spin_lock_irqsave(&(smi_info->si_lock), flags);
780
781 smi_info->run_to_completion = i_run_to_completion;
782 if (i_run_to_completion) {
783 result = smi_event_handler(smi_info, 0);
784 while (result != SI_SM_IDLE) {
785 udelay(SI_SHORT_TIMEOUT_USEC);
786 result = smi_event_handler(smi_info,
787 SI_SHORT_TIMEOUT_USEC);
788 }
789 }
790
791 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
792}
793
a9a2c44f
CM
794static int ipmi_thread(void *data)
795{
796 struct smi_info *smi_info = data;
e9a705a0 797 unsigned long flags;
a9a2c44f
CM
798 enum si_sm_result smi_result;
799
a9a2c44f 800 set_user_nice(current, 19);
e9a705a0 801 while (!kthread_should_stop()) {
a9a2c44f
CM
802 spin_lock_irqsave(&(smi_info->si_lock), flags);
803 smi_result=smi_event_handler(smi_info, 0);
804 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
e9a705a0
MD
805 if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
806 /* do nothing */
a9a2c44f 807 }
e9a705a0
MD
808 else if (smi_result == SI_SM_CALL_WITH_DELAY)
809 udelay(1);
810 else
811 schedule_timeout_interruptible(1);
a9a2c44f 812 }
a9a2c44f
CM
813 return 0;
814}
815
816
1da177e4
LT
817static void poll(void *send_info)
818{
819 struct smi_info *smi_info = send_info;
820
821 smi_event_handler(smi_info, 0);
822}
823
824static void request_events(void *send_info)
825{
826 struct smi_info *smi_info = send_info;
827
828 atomic_set(&smi_info->req_events, 1);
829}
830
831static int initialized = 0;
832
833/* Must be called with interrupts off and with the si_lock held. */
834static void si_restart_short_timer(struct smi_info *smi_info)
835{
836#if defined(CONFIG_HIGH_RES_TIMERS)
837 unsigned long flags;
838 unsigned long jiffies_now;
75b0768a 839 unsigned long seq;
1da177e4
LT
840
841 if (del_timer(&(smi_info->si_timer))) {
842 /* If we don't delete the timer, then it will go off
843 immediately, anyway. So we only process if we
844 actually delete the timer. */
845
75b0768a
CM
846 do {
847 seq = read_seqbegin_irqsave(&xtime_lock, flags);
848 jiffies_now = jiffies;
849 smi_info->si_timer.expires = jiffies_now;
850 smi_info->si_timer.arch_cycle_expires
851 = get_arch_cycles(jiffies_now);
852 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
1da177e4
LT
853
854 add_usec_to_timer(&smi_info->si_timer, SI_SHORT_TIMEOUT_USEC);
855
856 add_timer(&(smi_info->si_timer));
857 spin_lock_irqsave(&smi_info->count_lock, flags);
858 smi_info->timeout_restarts++;
859 spin_unlock_irqrestore(&smi_info->count_lock, flags);
860 }
861#endif
862}
863
864static void smi_timeout(unsigned long data)
865{
866 struct smi_info *smi_info = (struct smi_info *) data;
867 enum si_sm_result smi_result;
868 unsigned long flags;
869 unsigned long jiffies_now;
c4edff1c 870 long time_diff;
1da177e4
LT
871#ifdef DEBUG_TIMING
872 struct timeval t;
873#endif
874
a9a2c44f 875 if (atomic_read(&smi_info->stop_operation))
1da177e4 876 return;
1da177e4
LT
877
878 spin_lock_irqsave(&(smi_info->si_lock), flags);
879#ifdef DEBUG_TIMING
880 do_gettimeofday(&t);
881 printk("**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
882#endif
883 jiffies_now = jiffies;
c4edff1c 884 time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1da177e4
LT
885 * SI_USEC_PER_JIFFY);
886 smi_result = smi_event_handler(smi_info, time_diff);
887
888 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
889
890 smi_info->last_timeout_jiffies = jiffies_now;
891
b0defcdb 892 if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1da177e4
LT
893 /* Running with interrupts, only do long timeouts. */
894 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
895 spin_lock_irqsave(&smi_info->count_lock, flags);
896 smi_info->long_timeouts++;
897 spin_unlock_irqrestore(&smi_info->count_lock, flags);
898 goto do_add_timer;
899 }
900
901 /* If the state machine asks for a short delay, then shorten
902 the timer timeout. */
903 if (smi_result == SI_SM_CALL_WITH_DELAY) {
75b0768a
CM
904#if defined(CONFIG_HIGH_RES_TIMERS)
905 unsigned long seq;
906#endif
1da177e4
LT
907 spin_lock_irqsave(&smi_info->count_lock, flags);
908 smi_info->short_timeouts++;
909 spin_unlock_irqrestore(&smi_info->count_lock, flags);
910#if defined(CONFIG_HIGH_RES_TIMERS)
75b0768a
CM
911 do {
912 seq = read_seqbegin_irqsave(&xtime_lock, flags);
913 smi_info->si_timer.expires = jiffies;
914 smi_info->si_timer.arch_cycle_expires
915 = get_arch_cycles(smi_info->si_timer.expires);
916 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
1da177e4
LT
917 add_usec_to_timer(&smi_info->si_timer, SI_SHORT_TIMEOUT_USEC);
918#else
919 smi_info->si_timer.expires = jiffies + 1;
920#endif
921 } else {
922 spin_lock_irqsave(&smi_info->count_lock, flags);
923 smi_info->long_timeouts++;
924 spin_unlock_irqrestore(&smi_info->count_lock, flags);
925 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
926#if defined(CONFIG_HIGH_RES_TIMERS)
75b0768a 927 smi_info->si_timer.arch_cycle_expires = 0;
1da177e4
LT
928#endif
929 }
930
931 do_add_timer:
932 add_timer(&(smi_info->si_timer));
933}
934
935static irqreturn_t si_irq_handler(int irq, void *data, struct pt_regs *regs)
936{
937 struct smi_info *smi_info = data;
938 unsigned long flags;
939#ifdef DEBUG_TIMING
940 struct timeval t;
941#endif
942
943 spin_lock_irqsave(&(smi_info->si_lock), flags);
944
945 spin_lock(&smi_info->count_lock);
946 smi_info->interrupts++;
947 spin_unlock(&smi_info->count_lock);
948
a9a2c44f 949 if (atomic_read(&smi_info->stop_operation))
1da177e4
LT
950 goto out;
951
952#ifdef DEBUG_TIMING
953 do_gettimeofday(&t);
954 printk("**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
955#endif
956 smi_event_handler(smi_info, 0);
957 out:
958 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
959 return IRQ_HANDLED;
960}
961
9dbf68f9
CM
962static irqreturn_t si_bt_irq_handler(int irq, void *data, struct pt_regs *regs)
963{
964 struct smi_info *smi_info = data;
965 /* We need to clear the IRQ flag for the BT interface. */
966 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
967 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
968 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
969 return si_irq_handler(irq, data, regs);
970}
971
972
1da177e4
LT
973static struct ipmi_smi_handlers handlers =
974{
975 .owner = THIS_MODULE,
976 .sender = sender,
977 .request_events = request_events,
978 .set_run_to_completion = set_run_to_completion,
979 .poll = poll,
980};
981
982/* There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
983 a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS */
984
985#define SI_MAX_PARMS 4
b0defcdb
CM
986static LIST_HEAD(smi_infos);
987static DECLARE_MUTEX(smi_infos_lock);
988static int smi_num; /* Used to sequence the SMIs */
1da177e4
LT
989
990#define DEVICE_NAME "ipmi_si"
991
1da177e4
LT
992#define DEFAULT_REGSPACING 1
993
994static int si_trydefaults = 1;
995static char *si_type[SI_MAX_PARMS];
996#define MAX_SI_TYPE_STR 30
997static char si_type_str[MAX_SI_TYPE_STR];
998static unsigned long addrs[SI_MAX_PARMS];
999static int num_addrs;
1000static unsigned int ports[SI_MAX_PARMS];
1001static int num_ports;
1002static int irqs[SI_MAX_PARMS];
1003static int num_irqs;
1004static int regspacings[SI_MAX_PARMS];
1005static int num_regspacings = 0;
1006static int regsizes[SI_MAX_PARMS];
1007static int num_regsizes = 0;
1008static int regshifts[SI_MAX_PARMS];
1009static int num_regshifts = 0;
1010static int slave_addrs[SI_MAX_PARMS];
1011static int num_slave_addrs = 0;
1012
1013
1014module_param_named(trydefaults, si_trydefaults, bool, 0);
1015MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1016 " default scan of the KCS and SMIC interface at the standard"
1017 " address");
1018module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1019MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1020 " interface separated by commas. The types are 'kcs',"
1021 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
1022 " the first interface to kcs and the second to bt");
1023module_param_array(addrs, long, &num_addrs, 0);
1024MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1025 " addresses separated by commas. Only use if an interface"
1026 " is in memory. Otherwise, set it to zero or leave"
1027 " it blank.");
1028module_param_array(ports, int, &num_ports, 0);
1029MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1030 " addresses separated by commas. Only use if an interface"
1031 " is a port. Otherwise, set it to zero or leave"
1032 " it blank.");
1033module_param_array(irqs, int, &num_irqs, 0);
1034MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1035 " addresses separated by commas. Only use if an interface"
1036 " has an interrupt. Otherwise, set it to zero or leave"
1037 " it blank.");
1038module_param_array(regspacings, int, &num_regspacings, 0);
1039MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1040 " and each successive register used by the interface. For"
1041 " instance, if the start address is 0xca2 and the spacing"
1042 " is 2, then the second address is at 0xca4. Defaults"
1043 " to 1.");
1044module_param_array(regsizes, int, &num_regsizes, 0);
1045MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1046 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1047 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1048 " the 8-bit IPMI register has to be read from a larger"
1049 " register.");
1050module_param_array(regshifts, int, &num_regshifts, 0);
1051MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1052 " IPMI register, in bits. For instance, if the data"
1053 " is read from a 32-bit word and the IPMI data is in"
1054 " bit 8-15, then the shift would be 8");
1055module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1056MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1057 " the controller. Normally this is 0x20, but can be"
1058 " overridden by this parm. This is an array indexed"
1059 " by interface number.");
1060
1061
b0defcdb 1062#define IPMI_IO_ADDR_SPACE 0
1da177e4 1063#define IPMI_MEM_ADDR_SPACE 1
b0defcdb 1064static char *addr_space_to_str[] = { "I/O", "memory" };
1da177e4 1065
b0defcdb 1066static void std_irq_cleanup(struct smi_info *info)
1da177e4 1067{
b0defcdb
CM
1068 if (info->si_type == SI_BT)
1069 /* Disable the interrupt in the BT interface. */
1070 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1071 free_irq(info->irq, info);
1da177e4 1072}
1da177e4
LT
1073
1074static int std_irq_setup(struct smi_info *info)
1075{
1076 int rv;
1077
b0defcdb 1078 if (!info->irq)
1da177e4
LT
1079 return 0;
1080
9dbf68f9
CM
1081 if (info->si_type == SI_BT) {
1082 rv = request_irq(info->irq,
1083 si_bt_irq_handler,
1084 SA_INTERRUPT,
1085 DEVICE_NAME,
1086 info);
b0defcdb 1087 if (!rv)
9dbf68f9
CM
1088 /* Enable the interrupt in the BT interface. */
1089 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1090 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1091 } else
1092 rv = request_irq(info->irq,
1093 si_irq_handler,
1094 SA_INTERRUPT,
1095 DEVICE_NAME,
1096 info);
1da177e4
LT
1097 if (rv) {
1098 printk(KERN_WARNING
1099 "ipmi_si: %s unable to claim interrupt %d,"
1100 " running polled\n",
1101 DEVICE_NAME, info->irq);
1102 info->irq = 0;
1103 } else {
b0defcdb 1104 info->irq_cleanup = std_irq_cleanup;
1da177e4
LT
1105 printk(" Using irq %d\n", info->irq);
1106 }
1107
1108 return rv;
1109}
1110
1da177e4
LT
1111static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1112{
b0defcdb 1113 unsigned int addr = io->addr_data;
1da177e4 1114
b0defcdb 1115 return inb(addr + (offset * io->regspacing));
1da177e4
LT
1116}
1117
1118static void port_outb(struct si_sm_io *io, unsigned int offset,
1119 unsigned char b)
1120{
b0defcdb 1121 unsigned int addr = io->addr_data;
1da177e4 1122
b0defcdb 1123 outb(b, addr + (offset * io->regspacing));
1da177e4
LT
1124}
1125
1126static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1127{
b0defcdb 1128 unsigned int addr = io->addr_data;
1da177e4 1129
b0defcdb 1130 return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1da177e4
LT
1131}
1132
1133static void port_outw(struct si_sm_io *io, unsigned int offset,
1134 unsigned char b)
1135{
b0defcdb 1136 unsigned int addr = io->addr_data;
1da177e4 1137
b0defcdb 1138 outw(b << io->regshift, addr + (offset * io->regspacing));
1da177e4
LT
1139}
1140
1141static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1142{
b0defcdb 1143 unsigned int addr = io->addr_data;
1da177e4 1144
b0defcdb 1145 return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1da177e4
LT
1146}
1147
1148static void port_outl(struct si_sm_io *io, unsigned int offset,
1149 unsigned char b)
1150{
b0defcdb 1151 unsigned int addr = io->addr_data;
1da177e4 1152
b0defcdb 1153 outl(b << io->regshift, addr+(offset * io->regspacing));
1da177e4
LT
1154}
1155
1156static void port_cleanup(struct smi_info *info)
1157{
b0defcdb
CM
1158 unsigned int addr = info->io.addr_data;
1159 int mapsize;
1da177e4 1160
b0defcdb 1161 if (addr) {
1da177e4
LT
1162 mapsize = ((info->io_size * info->io.regspacing)
1163 - (info->io.regspacing - info->io.regsize));
1164
b0defcdb 1165 release_region (addr, mapsize);
1da177e4
LT
1166 }
1167 kfree(info);
1168}
1169
1170static int port_setup(struct smi_info *info)
1171{
b0defcdb
CM
1172 unsigned int addr = info->io.addr_data;
1173 int mapsize;
1da177e4 1174
b0defcdb 1175 if (!addr)
1da177e4
LT
1176 return -ENODEV;
1177
1178 info->io_cleanup = port_cleanup;
1179
1180 /* Figure out the actual inb/inw/inl/etc routine to use based
1181 upon the register size. */
1182 switch (info->io.regsize) {
1183 case 1:
1184 info->io.inputb = port_inb;
1185 info->io.outputb = port_outb;
1186 break;
1187 case 2:
1188 info->io.inputb = port_inw;
1189 info->io.outputb = port_outw;
1190 break;
1191 case 4:
1192 info->io.inputb = port_inl;
1193 info->io.outputb = port_outl;
1194 break;
1195 default:
1196 printk("ipmi_si: Invalid register size: %d\n",
1197 info->io.regsize);
1198 return -EINVAL;
1199 }
1200
1201 /* Calculate the total amount of memory to claim. This is an
1202 * unusual looking calculation, but it avoids claiming any
1203 * more memory than it has to. It will claim everything
1204 * between the first address to the end of the last full
1205 * register. */
1206 mapsize = ((info->io_size * info->io.regspacing)
1207 - (info->io.regspacing - info->io.regsize));
1208
b0defcdb 1209 if (request_region(addr, mapsize, DEVICE_NAME) == NULL)
1da177e4
LT
1210 return -EIO;
1211 return 0;
1212}
1213
546cfdf4 1214static unsigned char intf_mem_inb(struct si_sm_io *io, unsigned int offset)
1da177e4
LT
1215{
1216 return readb((io->addr)+(offset * io->regspacing));
1217}
1218
546cfdf4 1219static void intf_mem_outb(struct si_sm_io *io, unsigned int offset,
1da177e4
LT
1220 unsigned char b)
1221{
1222 writeb(b, (io->addr)+(offset * io->regspacing));
1223}
1224
546cfdf4 1225static unsigned char intf_mem_inw(struct si_sm_io *io, unsigned int offset)
1da177e4
LT
1226{
1227 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1228 && 0xff;
1229}
1230
546cfdf4 1231static void intf_mem_outw(struct si_sm_io *io, unsigned int offset,
1da177e4
LT
1232 unsigned char b)
1233{
1234 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1235}
1236
546cfdf4 1237static unsigned char intf_mem_inl(struct si_sm_io *io, unsigned int offset)
1da177e4
LT
1238{
1239 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1240 && 0xff;
1241}
1242
546cfdf4 1243static void intf_mem_outl(struct si_sm_io *io, unsigned int offset,
1da177e4
LT
1244 unsigned char b)
1245{
1246 writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1247}
1248
1249#ifdef readq
1250static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1251{
1252 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1253 && 0xff;
1254}
1255
1256static void mem_outq(struct si_sm_io *io, unsigned int offset,
1257 unsigned char b)
1258{
1259 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1260}
1261#endif
1262
1263static void mem_cleanup(struct smi_info *info)
1264{
b0defcdb 1265 unsigned long addr = info->io.addr_data;
1da177e4
LT
1266 int mapsize;
1267
1268 if (info->io.addr) {
1269 iounmap(info->io.addr);
1270
1271 mapsize = ((info->io_size * info->io.regspacing)
1272 - (info->io.regspacing - info->io.regsize));
1273
b0defcdb 1274 release_mem_region(addr, mapsize);
1da177e4
LT
1275 }
1276 kfree(info);
1277}
1278
1279static int mem_setup(struct smi_info *info)
1280{
b0defcdb 1281 unsigned long addr = info->io.addr_data;
1da177e4
LT
1282 int mapsize;
1283
b0defcdb 1284 if (!addr)
1da177e4
LT
1285 return -ENODEV;
1286
1287 info->io_cleanup = mem_cleanup;
1288
1289 /* Figure out the actual readb/readw/readl/etc routine to use based
1290 upon the register size. */
1291 switch (info->io.regsize) {
1292 case 1:
546cfdf4
AD
1293 info->io.inputb = intf_mem_inb;
1294 info->io.outputb = intf_mem_outb;
1da177e4
LT
1295 break;
1296 case 2:
546cfdf4
AD
1297 info->io.inputb = intf_mem_inw;
1298 info->io.outputb = intf_mem_outw;
1da177e4
LT
1299 break;
1300 case 4:
546cfdf4
AD
1301 info->io.inputb = intf_mem_inl;
1302 info->io.outputb = intf_mem_outl;
1da177e4
LT
1303 break;
1304#ifdef readq
1305 case 8:
1306 info->io.inputb = mem_inq;
1307 info->io.outputb = mem_outq;
1308 break;
1309#endif
1310 default:
1311 printk("ipmi_si: Invalid register size: %d\n",
1312 info->io.regsize);
1313 return -EINVAL;
1314 }
1315
1316 /* Calculate the total amount of memory to claim. This is an
1317 * unusual looking calculation, but it avoids claiming any
1318 * more memory than it has to. It will claim everything
1319 * between the first address to the end of the last full
1320 * register. */
1321 mapsize = ((info->io_size * info->io.regspacing)
1322 - (info->io.regspacing - info->io.regsize));
1323
b0defcdb 1324 if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1da177e4
LT
1325 return -EIO;
1326
b0defcdb 1327 info->io.addr = ioremap(addr, mapsize);
1da177e4 1328 if (info->io.addr == NULL) {
b0defcdb 1329 release_mem_region(addr, mapsize);
1da177e4
LT
1330 return -EIO;
1331 }
1332 return 0;
1333}
1334
b0defcdb
CM
1335
1336static __devinit void hardcode_find_bmc(void)
1da177e4 1337{
b0defcdb 1338 int i;
1da177e4
LT
1339 struct smi_info *info;
1340
b0defcdb
CM
1341 for (i = 0; i < SI_MAX_PARMS; i++) {
1342 if (!ports[i] && !addrs[i])
1343 continue;
1da177e4 1344
b0defcdb
CM
1345 info = kzalloc(sizeof(*info), GFP_KERNEL);
1346 if (!info)
1347 return;
1da177e4 1348
b0defcdb 1349 info->addr_source = "hardcoded";
1da177e4 1350
b0defcdb
CM
1351 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
1352 info->si_type = SI_KCS;
1353 } else if (strcmp(si_type[i], "smic") == 0) {
1354 info->si_type = SI_SMIC;
1355 } else if (strcmp(si_type[i], "bt") == 0) {
1356 info->si_type = SI_BT;
1357 } else {
1358 printk(KERN_WARNING
1359 "ipmi_si: Interface type specified "
1360 "for interface %d, was invalid: %s\n",
1361 i, si_type[i]);
1362 kfree(info);
1363 continue;
1364 }
1da177e4 1365
b0defcdb
CM
1366 if (ports[i]) {
1367 /* An I/O port */
1368 info->io_setup = port_setup;
1369 info->io.addr_data = ports[i];
1370 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1371 } else if (addrs[i]) {
1372 /* A memory port */
1373 info->io_setup = mem_setup;
1374 info->io.addr_data = addrs[i];
1375 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1376 } else {
1377 printk(KERN_WARNING
1378 "ipmi_si: Interface type specified "
1379 "for interface %d, "
1380 "but port and address were not set or "
1381 "set to zero.\n", i);
1382 kfree(info);
1383 continue;
1384 }
1da177e4 1385
b0defcdb
CM
1386 info->io.addr = NULL;
1387 info->io.regspacing = regspacings[i];
1388 if (!info->io.regspacing)
1389 info->io.regspacing = DEFAULT_REGSPACING;
1390 info->io.regsize = regsizes[i];
1391 if (!info->io.regsize)
1392 info->io.regsize = DEFAULT_REGSPACING;
1393 info->io.regshift = regshifts[i];
1394 info->irq = irqs[i];
1395 if (info->irq)
1396 info->irq_setup = std_irq_setup;
1da177e4 1397
b0defcdb
CM
1398 try_smi_init(info);
1399 }
1400}
1da177e4 1401
8466361a 1402#ifdef CONFIG_ACPI
1da177e4
LT
1403
1404#include <linux/acpi.h>
1405
1406/* Once we get an ACPI failure, we don't try any more, because we go
1407 through the tables sequentially. Once we don't find a table, there
1408 are no more. */
1409static int acpi_failure = 0;
1410
1411/* For GPE-type interrupts. */
1412static u32 ipmi_acpi_gpe(void *context)
1413{
1414 struct smi_info *smi_info = context;
1415 unsigned long flags;
1416#ifdef DEBUG_TIMING
1417 struct timeval t;
1418#endif
1419
1420 spin_lock_irqsave(&(smi_info->si_lock), flags);
1421
1422 spin_lock(&smi_info->count_lock);
1423 smi_info->interrupts++;
1424 spin_unlock(&smi_info->count_lock);
1425
a9a2c44f 1426 if (atomic_read(&smi_info->stop_operation))
1da177e4
LT
1427 goto out;
1428
1429#ifdef DEBUG_TIMING
1430 do_gettimeofday(&t);
1431 printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1432#endif
1433 smi_event_handler(smi_info, 0);
1434 out:
1435 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1436
1437 return ACPI_INTERRUPT_HANDLED;
1438}
1439
b0defcdb
CM
1440static void acpi_gpe_irq_cleanup(struct smi_info *info)
1441{
1442 if (!info->irq)
1443 return;
1444
1445 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1446}
1447
1da177e4
LT
1448static int acpi_gpe_irq_setup(struct smi_info *info)
1449{
1450 acpi_status status;
1451
b0defcdb 1452 if (!info->irq)
1da177e4
LT
1453 return 0;
1454
1455 /* FIXME - is level triggered right? */
1456 status = acpi_install_gpe_handler(NULL,
1457 info->irq,
1458 ACPI_GPE_LEVEL_TRIGGERED,
1459 &ipmi_acpi_gpe,
1460 info);
1461 if (status != AE_OK) {
1462 printk(KERN_WARNING
1463 "ipmi_si: %s unable to claim ACPI GPE %d,"
1464 " running polled\n",
1465 DEVICE_NAME, info->irq);
1466 info->irq = 0;
1467 return -EINVAL;
1468 } else {
b0defcdb 1469 info->irq_cleanup = acpi_gpe_irq_cleanup;
1da177e4
LT
1470 printk(" Using ACPI GPE %d\n", info->irq);
1471 return 0;
1472 }
1473}
1474
1da177e4
LT
1475/*
1476 * Defined at
1477 * http://h21007.www2.hp.com/dspp/files/unprotected/devresource/Docs/TechPapers/IA64/hpspmi.pdf
1478 */
1479struct SPMITable {
1480 s8 Signature[4];
1481 u32 Length;
1482 u8 Revision;
1483 u8 Checksum;
1484 s8 OEMID[6];
1485 s8 OEMTableID[8];
1486 s8 OEMRevision[4];
1487 s8 CreatorID[4];
1488 s8 CreatorRevision[4];
1489 u8 InterfaceType;
1490 u8 IPMIlegacy;
1491 s16 SpecificationRevision;
1492
1493 /*
1494 * Bit 0 - SCI interrupt supported
1495 * Bit 1 - I/O APIC/SAPIC
1496 */
1497 u8 InterruptType;
1498
1499 /* If bit 0 of InterruptType is set, then this is the SCI
1500 interrupt in the GPEx_STS register. */
1501 u8 GPE;
1502
1503 s16 Reserved;
1504
1505 /* If bit 1 of InterruptType is set, then this is the I/O
1506 APIC/SAPIC interrupt. */
1507 u32 GlobalSystemInterrupt;
1508
1509 /* The actual register address. */
1510 struct acpi_generic_address addr;
1511
1512 u8 UID[4];
1513
1514 s8 spmi_id[1]; /* A '\0' terminated array starts here. */
1515};
1516
b0defcdb 1517static __devinit int try_init_acpi(struct SPMITable *spmi)
1da177e4
LT
1518{
1519 struct smi_info *info;
1da177e4
LT
1520 char *io_type;
1521 u8 addr_space;
1522
1da177e4
LT
1523 if (spmi->IPMIlegacy != 1) {
1524 printk(KERN_INFO "IPMI: Bad SPMI legacy %d\n", spmi->IPMIlegacy);
1525 return -ENODEV;
1526 }
1527
1528 if (spmi->addr.address_space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1529 addr_space = IPMI_MEM_ADDR_SPACE;
1530 else
1531 addr_space = IPMI_IO_ADDR_SPACE;
b0defcdb
CM
1532
1533 info = kzalloc(sizeof(*info), GFP_KERNEL);
1534 if (!info) {
1535 printk(KERN_ERR "ipmi_si: Could not allocate SI data (3)\n");
1536 return -ENOMEM;
1537 }
1538
1539 info->addr_source = "ACPI";
1da177e4 1540
1da177e4
LT
1541 /* Figure out the interface type. */
1542 switch (spmi->InterfaceType)
1543 {
1544 case 1: /* KCS */
b0defcdb 1545 info->si_type = SI_KCS;
1da177e4 1546 break;
1da177e4 1547 case 2: /* SMIC */
b0defcdb 1548 info->si_type = SI_SMIC;
1da177e4 1549 break;
1da177e4 1550 case 3: /* BT */
b0defcdb 1551 info->si_type = SI_BT;
1da177e4 1552 break;
1da177e4
LT
1553 default:
1554 printk(KERN_INFO "ipmi_si: Unknown ACPI/SPMI SI type %d\n",
1555 spmi->InterfaceType);
b0defcdb 1556 kfree(info);
1da177e4
LT
1557 return -EIO;
1558 }
1559
1da177e4
LT
1560 if (spmi->InterruptType & 1) {
1561 /* We've got a GPE interrupt. */
1562 info->irq = spmi->GPE;
1563 info->irq_setup = acpi_gpe_irq_setup;
1da177e4
LT
1564 } else if (spmi->InterruptType & 2) {
1565 /* We've got an APIC/SAPIC interrupt. */
1566 info->irq = spmi->GlobalSystemInterrupt;
1567 info->irq_setup = std_irq_setup;
1da177e4
LT
1568 } else {
1569 /* Use the default interrupt setting. */
1570 info->irq = 0;
1571 info->irq_setup = NULL;
1572 }
1573
35bc37a0
CM
1574 if (spmi->addr.register_bit_width) {
1575 /* A (hopefully) properly formed register bit width. */
35bc37a0
CM
1576 info->io.regspacing = spmi->addr.register_bit_width / 8;
1577 } else {
35bc37a0
CM
1578 info->io.regspacing = DEFAULT_REGSPACING;
1579 }
b0defcdb
CM
1580 info->io.regsize = info->io.regspacing;
1581 info->io.regshift = spmi->addr.register_bit_offset;
1da177e4
LT
1582
1583 if (spmi->addr.address_space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1584 io_type = "memory";
1585 info->io_setup = mem_setup;
b0defcdb 1586 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1da177e4
LT
1587 } else if (spmi->addr.address_space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1588 io_type = "I/O";
1589 info->io_setup = port_setup;
b0defcdb 1590 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1da177e4
LT
1591 } else {
1592 kfree(info);
1593 printk("ipmi_si: Unknown ACPI I/O Address type\n");
1594 return -EIO;
1595 }
b0defcdb 1596 info->io.addr_data = spmi->addr.address;
1da177e4 1597
b0defcdb 1598 try_smi_init(info);
1da177e4 1599
1da177e4
LT
1600 return 0;
1601}
b0defcdb
CM
1602
1603static __devinit void acpi_find_bmc(void)
1604{
1605 acpi_status status;
1606 struct SPMITable *spmi;
1607 int i;
1608
1609 if (acpi_disabled)
1610 return;
1611
1612 if (acpi_failure)
1613 return;
1614
1615 for (i = 0; ; i++) {
1616 status = acpi_get_firmware_table("SPMI", i+1,
1617 ACPI_LOGICAL_ADDRESSING,
1618 (struct acpi_table_header **)
1619 &spmi);
1620 if (status != AE_OK)
1621 return;
1622
1623 try_init_acpi(spmi);
1624 }
1625}
1da177e4
LT
1626#endif
1627
a9fad4cc 1628#ifdef CONFIG_DMI
b0defcdb 1629struct dmi_ipmi_data
1da177e4
LT
1630{
1631 u8 type;
1632 u8 addr_space;
1633 unsigned long base_addr;
1634 u8 irq;
1635 u8 offset;
1636 u8 slave_addr;
b0defcdb 1637};
1da177e4 1638
b0defcdb
CM
1639static int __devinit decode_dmi(struct dmi_header *dm,
1640 struct dmi_ipmi_data *dmi)
1da177e4 1641{
e8b33617 1642 u8 *data = (u8 *)dm;
1da177e4
LT
1643 unsigned long base_addr;
1644 u8 reg_spacing;
b224cd3a 1645 u8 len = dm->length;
1da177e4 1646
b0defcdb 1647 dmi->type = data[4];
1da177e4
LT
1648
1649 memcpy(&base_addr, data+8, sizeof(unsigned long));
1650 if (len >= 0x11) {
1651 if (base_addr & 1) {
1652 /* I/O */
1653 base_addr &= 0xFFFE;
b0defcdb 1654 dmi->addr_space = IPMI_IO_ADDR_SPACE;
1da177e4
LT
1655 }
1656 else {
1657 /* Memory */
b0defcdb 1658 dmi->addr_space = IPMI_MEM_ADDR_SPACE;
1da177e4
LT
1659 }
1660 /* If bit 4 of byte 0x10 is set, then the lsb for the address
1661 is odd. */
b0defcdb 1662 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
1da177e4 1663
b0defcdb 1664 dmi->irq = data[0x11];
1da177e4
LT
1665
1666 /* The top two bits of byte 0x10 hold the register spacing. */
b224cd3a 1667 reg_spacing = (data[0x10] & 0xC0) >> 6;
1da177e4
LT
1668 switch(reg_spacing){
1669 case 0x00: /* Byte boundaries */
b0defcdb 1670 dmi->offset = 1;
1da177e4
LT
1671 break;
1672 case 0x01: /* 32-bit boundaries */
b0defcdb 1673 dmi->offset = 4;
1da177e4
LT
1674 break;
1675 case 0x02: /* 16-byte boundaries */
b0defcdb 1676 dmi->offset = 16;
1da177e4
LT
1677 break;
1678 default:
1679 /* Some other interface, just ignore it. */
1680 return -EIO;
1681 }
1682 } else {
1683 /* Old DMI spec. */
92068801
CM
1684 /* Note that technically, the lower bit of the base
1685 * address should be 1 if the address is I/O and 0 if
1686 * the address is in memory. So many systems get that
1687 * wrong (and all that I have seen are I/O) so we just
1688 * ignore that bit and assume I/O. Systems that use
1689 * memory should use the newer spec, anyway. */
b0defcdb
CM
1690 dmi->base_addr = base_addr & 0xfffe;
1691 dmi->addr_space = IPMI_IO_ADDR_SPACE;
1692 dmi->offset = 1;
1da177e4
LT
1693 }
1694
b0defcdb 1695 dmi->slave_addr = data[6];
1da177e4 1696
b0defcdb 1697 return 0;
1da177e4
LT
1698}
1699
b0defcdb 1700static __devinit void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
1da177e4 1701{
b0defcdb 1702 struct smi_info *info;
1da177e4 1703
b0defcdb
CM
1704 info = kzalloc(sizeof(*info), GFP_KERNEL);
1705 if (!info) {
1706 printk(KERN_ERR
1707 "ipmi_si: Could not allocate SI data\n");
1708 return;
1da177e4 1709 }
1da177e4 1710
b0defcdb 1711 info->addr_source = "SMBIOS";
1da177e4 1712
e8b33617 1713 switch (ipmi_data->type) {
b0defcdb
CM
1714 case 0x01: /* KCS */
1715 info->si_type = SI_KCS;
1716 break;
1717 case 0x02: /* SMIC */
1718 info->si_type = SI_SMIC;
1719 break;
1720 case 0x03: /* BT */
1721 info->si_type = SI_BT;
1722 break;
1723 default:
1724 return;
1da177e4 1725 }
1da177e4 1726
b0defcdb
CM
1727 switch (ipmi_data->addr_space) {
1728 case IPMI_MEM_ADDR_SPACE:
1da177e4 1729 info->io_setup = mem_setup;
b0defcdb
CM
1730 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1731 break;
1732
1733 case IPMI_IO_ADDR_SPACE:
1da177e4 1734 info->io_setup = port_setup;
b0defcdb
CM
1735 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1736 break;
1737
1738 default:
1da177e4 1739 kfree(info);
b0defcdb
CM
1740 printk(KERN_WARNING
1741 "ipmi_si: Unknown SMBIOS I/O Address type: %d.\n",
1742 ipmi_data->addr_space);
1743 return;
1da177e4 1744 }
b0defcdb 1745 info->io.addr_data = ipmi_data->base_addr;
1da177e4 1746
b0defcdb
CM
1747 info->io.regspacing = ipmi_data->offset;
1748 if (!info->io.regspacing)
1da177e4
LT
1749 info->io.regspacing = DEFAULT_REGSPACING;
1750 info->io.regsize = DEFAULT_REGSPACING;
b0defcdb 1751 info->io.regshift = 0;
1da177e4
LT
1752
1753 info->slave_addr = ipmi_data->slave_addr;
1754
b0defcdb
CM
1755 info->irq = ipmi_data->irq;
1756 if (info->irq)
1757 info->irq_setup = std_irq_setup;
1da177e4 1758
b0defcdb
CM
1759 try_smi_init(info);
1760}
1da177e4 1761
b0defcdb
CM
1762static void __devinit dmi_find_bmc(void)
1763{
1764 struct dmi_device *dev = NULL;
1765 struct dmi_ipmi_data data;
1766 int rv;
1767
1768 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
1769 rv = decode_dmi((struct dmi_header *) dev->device_data, &data);
1770 if (!rv)
1771 try_init_dmi(&data);
1772 }
1da177e4 1773}
a9fad4cc 1774#endif /* CONFIG_DMI */
1da177e4
LT
1775
1776#ifdef CONFIG_PCI
1777
b0defcdb
CM
1778#define PCI_ERMC_CLASSCODE 0x0C0700
1779#define PCI_ERMC_CLASSCODE_MASK 0xffffff00
1780#define PCI_ERMC_CLASSCODE_TYPE_MASK 0xff
1781#define PCI_ERMC_CLASSCODE_TYPE_SMIC 0x00
1782#define PCI_ERMC_CLASSCODE_TYPE_KCS 0x01
1783#define PCI_ERMC_CLASSCODE_TYPE_BT 0x02
1784
1da177e4
LT
1785#define PCI_HP_VENDOR_ID 0x103C
1786#define PCI_MMC_DEVICE_ID 0x121A
1787#define PCI_MMC_ADDR_CW 0x10
1788
b0defcdb
CM
1789static void ipmi_pci_cleanup(struct smi_info *info)
1790{
1791 struct pci_dev *pdev = info->addr_source_data;
1792
1793 pci_disable_device(pdev);
1794}
1da177e4 1795
b0defcdb
CM
1796static int __devinit ipmi_pci_probe(struct pci_dev *pdev,
1797 const struct pci_device_id *ent)
1da177e4 1798{
b0defcdb
CM
1799 int rv;
1800 int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
1801 struct smi_info *info;
1802 int first_reg_offset = 0;
1da177e4 1803
b0defcdb
CM
1804 info = kzalloc(sizeof(*info), GFP_KERNEL);
1805 if (!info)
1806 return ENOMEM;
1da177e4 1807
b0defcdb 1808 info->addr_source = "PCI";
1da177e4 1809
b0defcdb
CM
1810 switch (class_type) {
1811 case PCI_ERMC_CLASSCODE_TYPE_SMIC:
1812 info->si_type = SI_SMIC;
1813 break;
1da177e4 1814
b0defcdb
CM
1815 case PCI_ERMC_CLASSCODE_TYPE_KCS:
1816 info->si_type = SI_KCS;
1817 break;
1818
1819 case PCI_ERMC_CLASSCODE_TYPE_BT:
1820 info->si_type = SI_BT;
1821 break;
1822
1823 default:
1824 kfree(info);
1825 printk(KERN_INFO "ipmi_si: %s: Unknown IPMI type: %d\n",
1826 pci_name(pdev), class_type);
1827 return ENOMEM;
1da177e4
LT
1828 }
1829
b0defcdb
CM
1830 rv = pci_enable_device(pdev);
1831 if (rv) {
1832 printk(KERN_ERR "ipmi_si: %s: couldn't enable PCI device\n",
1833 pci_name(pdev));
1834 kfree(info);
1835 return rv;
1da177e4
LT
1836 }
1837
b0defcdb
CM
1838 info->addr_source_cleanup = ipmi_pci_cleanup;
1839 info->addr_source_data = pdev;
1da177e4 1840
b0defcdb
CM
1841 if (pdev->subsystem_vendor == PCI_HP_VENDOR_ID)
1842 first_reg_offset = 1;
1da177e4 1843
b0defcdb
CM
1844 if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
1845 info->io_setup = port_setup;
1846 info->io.addr_type = IPMI_IO_ADDR_SPACE;
1847 } else {
1848 info->io_setup = mem_setup;
1849 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
1da177e4 1850 }
b0defcdb 1851 info->io.addr_data = pci_resource_start(pdev, 0);
1da177e4 1852
b0defcdb 1853 info->io.regspacing = DEFAULT_REGSPACING;
1da177e4 1854 info->io.regsize = DEFAULT_REGSPACING;
b0defcdb 1855 info->io.regshift = 0;
1da177e4 1856
b0defcdb
CM
1857 info->irq = pdev->irq;
1858 if (info->irq)
1859 info->irq_setup = std_irq_setup;
1da177e4 1860
b0defcdb
CM
1861 return try_smi_init(info);
1862}
1da177e4 1863
b0defcdb
CM
1864static void __devexit ipmi_pci_remove(struct pci_dev *pdev)
1865{
1866}
1da177e4 1867
b0defcdb
CM
1868#ifdef CONFIG_PM
1869static int ipmi_pci_suspend(struct pci_dev *pdev, pm_message_t state)
1870{
1da177e4
LT
1871 return 0;
1872}
1da177e4 1873
b0defcdb 1874static int ipmi_pci_resume(struct pci_dev *pdev)
1da177e4 1875{
b0defcdb
CM
1876 return 0;
1877}
1da177e4 1878#endif
1da177e4 1879
b0defcdb
CM
1880static struct pci_device_id ipmi_pci_devices[] = {
1881 { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
1882 { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE) }
1883};
1884MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
1885
1886static struct pci_driver ipmi_pci_driver = {
1887 .name = DEVICE_NAME,
1888 .id_table = ipmi_pci_devices,
1889 .probe = ipmi_pci_probe,
1890 .remove = __devexit_p(ipmi_pci_remove),
1891#ifdef CONFIG_PM
1892 .suspend = ipmi_pci_suspend,
1893 .resume = ipmi_pci_resume,
1894#endif
1895};
1896#endif /* CONFIG_PCI */
1da177e4
LT
1897
1898
1899static int try_get_dev_id(struct smi_info *smi_info)
1900{
1901 unsigned char msg[2];
1902 unsigned char *resp;
1903 unsigned long resp_len;
1904 enum si_sm_result smi_result;
1905 int rv = 0;
1906
1907 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
b0defcdb 1908 if (!resp)
1da177e4
LT
1909 return -ENOMEM;
1910
1911 /* Do a Get Device ID command, since it comes back with some
1912 useful info. */
1913 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1914 msg[1] = IPMI_GET_DEVICE_ID_CMD;
1915 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1916
1917 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
1918 for (;;)
1919 {
c3e7e791
CM
1920 if (smi_result == SI_SM_CALL_WITH_DELAY ||
1921 smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
da4cd8df 1922 schedule_timeout_uninterruptible(1);
1da177e4
LT
1923 smi_result = smi_info->handlers->event(
1924 smi_info->si_sm, 100);
1925 }
1926 else if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1927 {
1928 smi_result = smi_info->handlers->event(
1929 smi_info->si_sm, 0);
1930 }
1931 else
1932 break;
1933 }
1934 if (smi_result == SI_SM_HOSED) {
1935 /* We couldn't get the state machine to run, so whatever's at
1936 the port is probably not an IPMI SMI interface. */
1937 rv = -ENODEV;
1938 goto out;
1939 }
1940
1941 /* Otherwise, we got some data. */
1942 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1943 resp, IPMI_MAX_MSG_LENGTH);
1944 if (resp_len < 6) {
1945 /* That's odd, it should be longer. */
1946 rv = -EINVAL;
1947 goto out;
1948 }
1949
1950 if ((resp[1] != IPMI_GET_DEVICE_ID_CMD) || (resp[2] != 0)) {
1951 /* That's odd, it shouldn't be able to fail. */
1952 rv = -EINVAL;
1953 goto out;
1954 }
1955
1956 /* Record info from the get device id, in case we need it. */
3ae0e0f9
CM
1957 memcpy(&smi_info->device_id, &resp[3],
1958 min_t(unsigned long, resp_len-3, sizeof(smi_info->device_id)));
1da177e4
LT
1959
1960 out:
1961 kfree(resp);
1962 return rv;
1963}
1964
1965static int type_file_read_proc(char *page, char **start, off_t off,
1966 int count, int *eof, void *data)
1967{
1968 char *out = (char *) page;
1969 struct smi_info *smi = data;
1970
1971 switch (smi->si_type) {
1972 case SI_KCS:
1973 return sprintf(out, "kcs\n");
1974 case SI_SMIC:
1975 return sprintf(out, "smic\n");
1976 case SI_BT:
1977 return sprintf(out, "bt\n");
1978 default:
1979 return 0;
1980 }
1981}
1982
1983static int stat_file_read_proc(char *page, char **start, off_t off,
1984 int count, int *eof, void *data)
1985{
1986 char *out = (char *) page;
1987 struct smi_info *smi = data;
1988
1989 out += sprintf(out, "interrupts_enabled: %d\n",
b0defcdb 1990 smi->irq && !smi->interrupt_disabled);
1da177e4
LT
1991 out += sprintf(out, "short_timeouts: %ld\n",
1992 smi->short_timeouts);
1993 out += sprintf(out, "long_timeouts: %ld\n",
1994 smi->long_timeouts);
1995 out += sprintf(out, "timeout_restarts: %ld\n",
1996 smi->timeout_restarts);
1997 out += sprintf(out, "idles: %ld\n",
1998 smi->idles);
1999 out += sprintf(out, "interrupts: %ld\n",
2000 smi->interrupts);
2001 out += sprintf(out, "attentions: %ld\n",
2002 smi->attentions);
2003 out += sprintf(out, "flag_fetches: %ld\n",
2004 smi->flag_fetches);
2005 out += sprintf(out, "hosed_count: %ld\n",
2006 smi->hosed_count);
2007 out += sprintf(out, "complete_transactions: %ld\n",
2008 smi->complete_transactions);
2009 out += sprintf(out, "events: %ld\n",
2010 smi->events);
2011 out += sprintf(out, "watchdog_pretimeouts: %ld\n",
2012 smi->watchdog_pretimeouts);
2013 out += sprintf(out, "incoming_messages: %ld\n",
2014 smi->incoming_messages);
2015
2016 return (out - ((char *) page));
2017}
2018
3ae0e0f9
CM
2019/*
2020 * oem_data_avail_to_receive_msg_avail
2021 * @info - smi_info structure with msg_flags set
2022 *
2023 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2024 * Returns 1 indicating need to re-run handle_flags().
2025 */
2026static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2027{
e8b33617
CM
2028 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2029 RECEIVE_MSG_AVAIL);
3ae0e0f9
CM
2030 return 1;
2031}
2032
2033/*
2034 * setup_dell_poweredge_oem_data_handler
2035 * @info - smi_info.device_id must be populated
2036 *
2037 * Systems that match, but have firmware version < 1.40 may assert
2038 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2039 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
2040 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2041 * as RECEIVE_MSG_AVAIL instead.
2042 *
2043 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2044 * assert the OEM[012] bits, and if it did, the driver would have to
2045 * change to handle that properly, we don't actually check for the
2046 * firmware version.
2047 * Device ID = 0x20 BMC on PowerEdge 8G servers
2048 * Device Revision = 0x80
2049 * Firmware Revision1 = 0x01 BMC version 1.40
2050 * Firmware Revision2 = 0x40 BCD encoded
2051 * IPMI Version = 0x51 IPMI 1.5
2052 * Manufacturer ID = A2 02 00 Dell IANA
2053 *
d5a2b89a
CM
2054 * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
2055 * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
2056 *
3ae0e0f9
CM
2057 */
2058#define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
2059#define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2060#define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2061#define DELL_IANA_MFR_ID {0xA2, 0x02, 0x00}
2062static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2063{
2064 struct ipmi_device_id *id = &smi_info->device_id;
2065 const char mfr[3]=DELL_IANA_MFR_ID;
b0defcdb 2066 if (!memcmp(mfr, id->manufacturer_id, sizeof(mfr))) {
d5a2b89a
CM
2067 if (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID &&
2068 id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
2069 id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
2070 smi_info->oem_data_avail_handler =
2071 oem_data_avail_to_receive_msg_avail;
2072 }
2073 else if (ipmi_version_major(id) < 1 ||
2074 (ipmi_version_major(id) == 1 &&
2075 ipmi_version_minor(id) < 5)) {
2076 smi_info->oem_data_avail_handler =
2077 oem_data_avail_to_receive_msg_avail;
2078 }
3ae0e0f9
CM
2079 }
2080}
2081
ea94027b
CM
2082#define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
2083static void return_hosed_msg_badsize(struct smi_info *smi_info)
2084{
2085 struct ipmi_smi_msg *msg = smi_info->curr_msg;
2086
2087 /* Make it a reponse */
2088 msg->rsp[0] = msg->data[0] | 4;
2089 msg->rsp[1] = msg->data[1];
2090 msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
2091 msg->rsp_size = 3;
2092 smi_info->curr_msg = NULL;
2093 deliver_recv_msg(smi_info, msg);
2094}
2095
2096/*
2097 * dell_poweredge_bt_xaction_handler
2098 * @info - smi_info.device_id must be populated
2099 *
2100 * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
2101 * not respond to a Get SDR command if the length of the data
2102 * requested is exactly 0x3A, which leads to command timeouts and no
2103 * data returned. This intercepts such commands, and causes userspace
2104 * callers to try again with a different-sized buffer, which succeeds.
2105 */
2106
2107#define STORAGE_NETFN 0x0A
2108#define STORAGE_CMD_GET_SDR 0x23
2109static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
2110 unsigned long unused,
2111 void *in)
2112{
2113 struct smi_info *smi_info = in;
2114 unsigned char *data = smi_info->curr_msg->data;
2115 unsigned int size = smi_info->curr_msg->data_size;
2116 if (size >= 8 &&
2117 (data[0]>>2) == STORAGE_NETFN &&
2118 data[1] == STORAGE_CMD_GET_SDR &&
2119 data[7] == 0x3A) {
2120 return_hosed_msg_badsize(smi_info);
2121 return NOTIFY_STOP;
2122 }
2123 return NOTIFY_DONE;
2124}
2125
2126static struct notifier_block dell_poweredge_bt_xaction_notifier = {
2127 .notifier_call = dell_poweredge_bt_xaction_handler,
2128};
2129
2130/*
2131 * setup_dell_poweredge_bt_xaction_handler
2132 * @info - smi_info.device_id must be filled in already
2133 *
2134 * Fills in smi_info.device_id.start_transaction_pre_hook
2135 * when we know what function to use there.
2136 */
2137static void
2138setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
2139{
2140 struct ipmi_device_id *id = &smi_info->device_id;
2141 const char mfr[3]=DELL_IANA_MFR_ID;
b0defcdb 2142 if (!memcmp(mfr, id->manufacturer_id, sizeof(mfr)) &&
ea94027b
CM
2143 smi_info->si_type == SI_BT)
2144 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
2145}
2146
3ae0e0f9
CM
2147/*
2148 * setup_oem_data_handler
2149 * @info - smi_info.device_id must be filled in already
2150 *
2151 * Fills in smi_info.device_id.oem_data_available_handler
2152 * when we know what function to use there.
2153 */
2154
2155static void setup_oem_data_handler(struct smi_info *smi_info)
2156{
2157 setup_dell_poweredge_oem_data_handler(smi_info);
2158}
2159
ea94027b
CM
2160static void setup_xaction_handlers(struct smi_info *smi_info)
2161{
2162 setup_dell_poweredge_bt_xaction_handler(smi_info);
2163}
2164
a9a2c44f
CM
2165static inline void wait_for_timer_and_thread(struct smi_info *smi_info)
2166{
44f080c4 2167 if (smi_info->thread != NULL && smi_info->thread != ERR_PTR(-ENOMEM))
e9a705a0 2168 kthread_stop(smi_info->thread);
a9a2c44f
CM
2169 del_timer_sync(&smi_info->si_timer);
2170}
2171
b0defcdb
CM
2172static struct ipmi_default_vals
2173{
2174 int type;
2175 int port;
2176} __devinit ipmi_defaults[] =
2177{
2178 { .type = SI_KCS, .port = 0xca2 },
2179 { .type = SI_SMIC, .port = 0xca9 },
2180 { .type = SI_BT, .port = 0xe4 },
2181 { .port = 0 }
2182};
2183
2184static __devinit void default_find_bmc(void)
2185{
2186 struct smi_info *info;
2187 int i;
2188
2189 for (i = 0; ; i++) {
2190 if (!ipmi_defaults[i].port)
2191 break;
2192
2193 info = kzalloc(sizeof(*info), GFP_KERNEL);
2194 if (!info)
2195 return;
2196
2197 info->addr_source = NULL;
2198
2199 info->si_type = ipmi_defaults[i].type;
2200 info->io_setup = port_setup;
2201 info->io.addr_data = ipmi_defaults[i].port;
2202 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2203
2204 info->io.addr = NULL;
2205 info->io.regspacing = DEFAULT_REGSPACING;
2206 info->io.regsize = DEFAULT_REGSPACING;
2207 info->io.regshift = 0;
2208
2209 if (try_smi_init(info) == 0) {
2210 /* Found one... */
2211 printk(KERN_INFO "ipmi_si: Found default %s state"
2212 " machine at %s address 0x%lx\n",
2213 si_to_str[info->si_type],
2214 addr_space_to_str[info->io.addr_type],
2215 info->io.addr_data);
2216 return;
2217 }
2218 }
2219}
2220
2221static int is_new_interface(struct smi_info *info)
1da177e4 2222{
b0defcdb 2223 struct smi_info *e;
1da177e4 2224
b0defcdb
CM
2225 list_for_each_entry(e, &smi_infos, link) {
2226 if (e->io.addr_type != info->io.addr_type)
2227 continue;
2228 if (e->io.addr_data == info->io.addr_data)
2229 return 0;
2230 }
1da177e4 2231
b0defcdb
CM
2232 return 1;
2233}
1da177e4 2234
b0defcdb
CM
2235static int try_smi_init(struct smi_info *new_smi)
2236{
2237 int rv;
2238
2239 if (new_smi->addr_source) {
2240 printk(KERN_INFO "ipmi_si: Trying %s-specified %s state"
2241 " machine at %s address 0x%lx, slave address 0x%x,"
2242 " irq %d\n",
2243 new_smi->addr_source,
2244 si_to_str[new_smi->si_type],
2245 addr_space_to_str[new_smi->io.addr_type],
2246 new_smi->io.addr_data,
2247 new_smi->slave_addr, new_smi->irq);
2248 }
2249
2250 down(&smi_infos_lock);
2251 if (!is_new_interface(new_smi)) {
2252 printk(KERN_WARNING "ipmi_si: duplicate interface\n");
2253 rv = -EBUSY;
2254 goto out_err;
2255 }
1da177e4
LT
2256
2257 /* So we know not to free it unless we have allocated one. */
2258 new_smi->intf = NULL;
2259 new_smi->si_sm = NULL;
2260 new_smi->handlers = NULL;
2261
b0defcdb
CM
2262 switch (new_smi->si_type) {
2263 case SI_KCS:
1da177e4 2264 new_smi->handlers = &kcs_smi_handlers;
b0defcdb
CM
2265 break;
2266
2267 case SI_SMIC:
1da177e4 2268 new_smi->handlers = &smic_smi_handlers;
b0defcdb
CM
2269 break;
2270
2271 case SI_BT:
1da177e4 2272 new_smi->handlers = &bt_smi_handlers;
b0defcdb
CM
2273 break;
2274
2275 default:
1da177e4
LT
2276 /* No support for anything else yet. */
2277 rv = -EIO;
2278 goto out_err;
2279 }
2280
2281 /* Allocate the state machine's data and initialize it. */
2282 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
b0defcdb 2283 if (!new_smi->si_sm) {
1da177e4
LT
2284 printk(" Could not allocate state machine memory\n");
2285 rv = -ENOMEM;
2286 goto out_err;
2287 }
2288 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
2289 &new_smi->io);
2290
2291 /* Now that we know the I/O size, we can set up the I/O. */
2292 rv = new_smi->io_setup(new_smi);
2293 if (rv) {
2294 printk(" Could not set up I/O space\n");
2295 goto out_err;
2296 }
2297
2298 spin_lock_init(&(new_smi->si_lock));
2299 spin_lock_init(&(new_smi->msg_lock));
2300 spin_lock_init(&(new_smi->count_lock));
2301
2302 /* Do low-level detection first. */
2303 if (new_smi->handlers->detect(new_smi->si_sm)) {
b0defcdb
CM
2304 if (new_smi->addr_source)
2305 printk(KERN_INFO "ipmi_si: Interface detection"
2306 " failed\n");
1da177e4
LT
2307 rv = -ENODEV;
2308 goto out_err;
2309 }
2310
2311 /* Attempt a get device id command. If it fails, we probably
b0defcdb 2312 don't have a BMC here. */
1da177e4 2313 rv = try_get_dev_id(new_smi);
b0defcdb
CM
2314 if (rv) {
2315 if (new_smi->addr_source)
2316 printk(KERN_INFO "ipmi_si: There appears to be no BMC"
2317 " at this location\n");
1da177e4 2318 goto out_err;
b0defcdb 2319 }
1da177e4 2320
3ae0e0f9 2321 setup_oem_data_handler(new_smi);
ea94027b 2322 setup_xaction_handlers(new_smi);
3ae0e0f9 2323
1da177e4 2324 /* Try to claim any interrupts. */
b0defcdb
CM
2325 if (new_smi->irq_setup)
2326 new_smi->irq_setup(new_smi);
1da177e4
LT
2327
2328 INIT_LIST_HEAD(&(new_smi->xmit_msgs));
2329 INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
2330 new_smi->curr_msg = NULL;
2331 atomic_set(&new_smi->req_events, 0);
2332 new_smi->run_to_completion = 0;
2333
2334 new_smi->interrupt_disabled = 0;
a9a2c44f 2335 atomic_set(&new_smi->stop_operation, 0);
b0defcdb
CM
2336 new_smi->intf_num = smi_num;
2337 smi_num++;
1da177e4
LT
2338
2339 /* Start clearing the flags before we enable interrupts or the
2340 timer to avoid racing with the timer. */
2341 start_clear_flags(new_smi);
2342 /* IRQ is defined to be set when non-zero. */
2343 if (new_smi->irq)
2344 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
2345
2346 /* The ipmi_register_smi() code does some operations to
2347 determine the channel information, so we must be ready to
2348 handle operations before it is called. This means we have
2349 to stop the timer if we get an error after this point. */
2350 init_timer(&(new_smi->si_timer));
2351 new_smi->si_timer.data = (long) new_smi;
2352 new_smi->si_timer.function = smi_timeout;
2353 new_smi->last_timeout_jiffies = jiffies;
2354 new_smi->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
a9a2c44f 2355
1da177e4 2356 add_timer(&(new_smi->si_timer));
e9a705a0
MD
2357 if (new_smi->si_type != SI_BT)
2358 new_smi->thread = kthread_run(ipmi_thread, new_smi,
2359 "kipmi%d", new_smi->intf_num);
1da177e4
LT
2360
2361 rv = ipmi_register_smi(&handlers,
2362 new_smi,
3ae0e0f9
CM
2363 ipmi_version_major(&new_smi->device_id),
2364 ipmi_version_minor(&new_smi->device_id),
1da177e4
LT
2365 new_smi->slave_addr,
2366 &(new_smi->intf));
2367 if (rv) {
2368 printk(KERN_ERR
2369 "ipmi_si: Unable to register device: error %d\n",
2370 rv);
2371 goto out_err_stop_timer;
2372 }
2373
2374 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
2375 type_file_read_proc, NULL,
2376 new_smi, THIS_MODULE);
2377 if (rv) {
2378 printk(KERN_ERR
2379 "ipmi_si: Unable to create proc entry: %d\n",
2380 rv);
2381 goto out_err_stop_timer;
2382 }
2383
2384 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
2385 stat_file_read_proc, NULL,
2386 new_smi, THIS_MODULE);
2387 if (rv) {
2388 printk(KERN_ERR
2389 "ipmi_si: Unable to create proc entry: %d\n",
2390 rv);
2391 goto out_err_stop_timer;
2392 }
2393
b0defcdb
CM
2394 list_add_tail(&new_smi->link, &smi_infos);
2395
2396 up(&smi_infos_lock);
1da177e4 2397
b0defcdb 2398 printk(" IPMI %s interface initialized\n",si_to_str[new_smi->si_type]);
1da177e4
LT
2399
2400 return 0;
2401
2402 out_err_stop_timer:
a9a2c44f
CM
2403 atomic_inc(&new_smi->stop_operation);
2404 wait_for_timer_and_thread(new_smi);
1da177e4
LT
2405
2406 out_err:
2407 if (new_smi->intf)
2408 ipmi_unregister_smi(new_smi->intf);
2409
b0defcdb
CM
2410 if (new_smi->irq_cleanup)
2411 new_smi->irq_cleanup(new_smi);
1da177e4
LT
2412
2413 /* Wait until we know that we are out of any interrupt
2414 handlers might have been running before we freed the
2415 interrupt. */
fbd568a3 2416 synchronize_sched();
1da177e4
LT
2417
2418 if (new_smi->si_sm) {
2419 if (new_smi->handlers)
2420 new_smi->handlers->cleanup(new_smi->si_sm);
2421 kfree(new_smi->si_sm);
2422 }
b0defcdb
CM
2423 if (new_smi->addr_source_cleanup)
2424 new_smi->addr_source_cleanup(new_smi);
7767e126
PG
2425 if (new_smi->io_cleanup)
2426 new_smi->io_cleanup(new_smi);
1da177e4 2427
b0defcdb
CM
2428 up(&smi_infos_lock);
2429
1da177e4
LT
2430 return rv;
2431}
2432
b0defcdb 2433static __devinit int init_ipmi_si(void)
1da177e4 2434{
1da177e4
LT
2435 int i;
2436 char *str;
2437
2438 if (initialized)
2439 return 0;
2440 initialized = 1;
2441
2442 /* Parse out the si_type string into its components. */
2443 str = si_type_str;
2444 if (*str != '\0') {
e8b33617 2445 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
1da177e4
LT
2446 si_type[i] = str;
2447 str = strchr(str, ',');
2448 if (str) {
2449 *str = '\0';
2450 str++;
2451 } else {
2452 break;
2453 }
2454 }
2455 }
2456
1fdd75bd 2457 printk(KERN_INFO "IPMI System Interface driver.\n");
1da177e4 2458
b0defcdb
CM
2459 hardcode_find_bmc();
2460
a9fad4cc 2461#ifdef CONFIG_DMI
b224cd3a 2462 dmi_find_bmc();
1da177e4
LT
2463#endif
2464
b0defcdb
CM
2465#ifdef CONFIG_ACPI
2466 if (si_trydefaults)
2467 acpi_find_bmc();
2468#endif
1da177e4 2469
b0defcdb
CM
2470#ifdef CONFIG_PCI
2471 pci_module_init(&ipmi_pci_driver);
2472#endif
2473
2474 if (si_trydefaults) {
2475 down(&smi_infos_lock);
2476 if (list_empty(&smi_infos)) {
2477 /* No BMC was found, try defaults. */
2478 up(&smi_infos_lock);
2479 default_find_bmc();
2480 } else {
2481 up(&smi_infos_lock);
2482 }
1da177e4
LT
2483 }
2484
b0defcdb
CM
2485 down(&smi_infos_lock);
2486 if (list_empty(&smi_infos)) {
2487 up(&smi_infos_lock);
2488#ifdef CONFIG_PCI
2489 pci_unregister_driver(&ipmi_pci_driver);
2490#endif
1da177e4
LT
2491 printk("ipmi_si: Unable to find any System Interface(s)\n");
2492 return -ENODEV;
b0defcdb
CM
2493 } else {
2494 up(&smi_infos_lock);
2495 return 0;
1da177e4 2496 }
1da177e4
LT
2497}
2498module_init(init_ipmi_si);
2499
b0defcdb 2500static void __devexit cleanup_one_si(struct smi_info *to_clean)
1da177e4
LT
2501{
2502 int rv;
2503 unsigned long flags;
2504
b0defcdb 2505 if (!to_clean)
1da177e4
LT
2506 return;
2507
b0defcdb
CM
2508 list_del(&to_clean->link);
2509
1da177e4
LT
2510 /* Tell the timer and interrupt handlers that we are shutting
2511 down. */
2512 spin_lock_irqsave(&(to_clean->si_lock), flags);
2513 spin_lock(&(to_clean->msg_lock));
2514
a9a2c44f 2515 atomic_inc(&to_clean->stop_operation);
b0defcdb
CM
2516
2517 if (to_clean->irq_cleanup)
2518 to_clean->irq_cleanup(to_clean);
1da177e4
LT
2519
2520 spin_unlock(&(to_clean->msg_lock));
2521 spin_unlock_irqrestore(&(to_clean->si_lock), flags);
2522
2523 /* Wait until we know that we are out of any interrupt
2524 handlers might have been running before we freed the
2525 interrupt. */
fbd568a3 2526 synchronize_sched();
1da177e4 2527
a9a2c44f 2528 wait_for_timer_and_thread(to_clean);
1da177e4
LT
2529
2530 /* Interrupts and timeouts are stopped, now make sure the
2531 interface is in a clean state. */
e8b33617 2532 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
1da177e4 2533 poll(to_clean);
da4cd8df 2534 schedule_timeout_uninterruptible(1);
1da177e4
LT
2535 }
2536
2537 rv = ipmi_unregister_smi(to_clean->intf);
2538 if (rv) {
2539 printk(KERN_ERR
2540 "ipmi_si: Unable to unregister device: errno=%d\n",
2541 rv);
2542 }
2543
2544 to_clean->handlers->cleanup(to_clean->si_sm);
2545
2546 kfree(to_clean->si_sm);
2547
b0defcdb
CM
2548 if (to_clean->addr_source_cleanup)
2549 to_clean->addr_source_cleanup(to_clean);
7767e126
PG
2550 if (to_clean->io_cleanup)
2551 to_clean->io_cleanup(to_clean);
1da177e4
LT
2552}
2553
2554static __exit void cleanup_ipmi_si(void)
2555{
b0defcdb 2556 struct smi_info *e, *tmp_e;
1da177e4 2557
b0defcdb 2558 if (!initialized)
1da177e4
LT
2559 return;
2560
b0defcdb
CM
2561#ifdef CONFIG_PCI
2562 pci_unregister_driver(&ipmi_pci_driver);
2563#endif
2564
2565 down(&smi_infos_lock);
2566 list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
2567 cleanup_one_si(e);
2568 up(&smi_infos_lock);
1da177e4
LT
2569}
2570module_exit(cleanup_ipmi_si);
2571
2572MODULE_LICENSE("GPL");
1fdd75bd
CM
2573MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
2574MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT system interfaces.");