[PATCH] ipmi: use refcount in message handler
[linux-2.6-block.git] / drivers / char / ipmi / ipmi_si_intf.c
CommitLineData
1da177e4
LT
1/*
2 * ipmi_si.c
3 *
4 * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5 * BT).
6 *
7 * Author: MontaVista Software, Inc.
8 * Corey Minyard <minyard@mvista.com>
9 * source@mvista.com
10 *
11 * Copyright 2002 MontaVista Software Inc.
12 *
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms of the GNU General Public License as published by the
15 * Free Software Foundation; either version 2 of the License, or (at your
16 * option) any later version.
17 *
18 *
19 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
20 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
21 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
22 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
23 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
24 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
25 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
26 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
27 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
28 * USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 *
30 * You should have received a copy of the GNU General Public License along
31 * with this program; if not, write to the Free Software Foundation, Inc.,
32 * 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35/*
36 * This file holds the "policy" for the interface to the SMI state
37 * machine. It does the configuration, handles timers and interrupts,
38 * and drives the real SMI state machine.
39 */
40
41#include <linux/config.h>
42#include <linux/module.h>
43#include <linux/moduleparam.h>
44#include <asm/system.h>
45#include <linux/sched.h>
46#include <linux/timer.h>
47#include <linux/errno.h>
48#include <linux/spinlock.h>
49#include <linux/slab.h>
50#include <linux/delay.h>
51#include <linux/list.h>
52#include <linux/pci.h>
53#include <linux/ioport.h>
54#include <asm/irq.h>
55#ifdef CONFIG_HIGH_RES_TIMERS
56#include <linux/hrtime.h>
57# if defined(schedule_next_int)
58/* Old high-res timer code, do translations. */
59# define get_arch_cycles(a) quick_update_jiffies_sub(a)
60# define arch_cycles_per_jiffy cycles_per_jiffies
61# endif
62static inline void add_usec_to_timer(struct timer_list *t, long v)
63{
75b0768a
CM
64 t->arch_cycle_expires += nsec_to_arch_cycle(v * 1000);
65 while (t->arch_cycle_expires >= arch_cycles_per_jiffy)
1da177e4
LT
66 {
67 t->expires++;
75b0768a 68 t->arch_cycle_expires -= arch_cycles_per_jiffy;
1da177e4
LT
69 }
70}
71#endif
72#include <linux/interrupt.h>
73#include <linux/rcupdate.h>
74#include <linux/ipmi_smi.h>
75#include <asm/io.h>
76#include "ipmi_si_sm.h"
77#include <linux/init.h>
b224cd3a 78#include <linux/dmi.h>
1da177e4
LT
79
80/* Measure times between events in the driver. */
81#undef DEBUG_TIMING
82
83/* Call every 10 ms. */
84#define SI_TIMEOUT_TIME_USEC 10000
85#define SI_USEC_PER_JIFFY (1000000/HZ)
86#define SI_TIMEOUT_JIFFIES (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
87#define SI_SHORT_TIMEOUT_USEC 250 /* .25ms when the SM request a
88 short timeout */
89
90enum si_intf_state {
91 SI_NORMAL,
92 SI_GETTING_FLAGS,
93 SI_GETTING_EVENTS,
94 SI_CLEARING_FLAGS,
95 SI_CLEARING_FLAGS_THEN_SET_IRQ,
96 SI_GETTING_MESSAGES,
97 SI_ENABLE_INTERRUPTS1,
98 SI_ENABLE_INTERRUPTS2
99 /* FIXME - add watchdog stuff. */
100};
101
9dbf68f9
CM
102/* Some BT-specific defines we need here. */
103#define IPMI_BT_INTMASK_REG 2
104#define IPMI_BT_INTMASK_CLEAR_IRQ_BIT 2
105#define IPMI_BT_INTMASK_ENABLE_IRQ_BIT 1
106
1da177e4
LT
107enum si_type {
108 SI_KCS, SI_SMIC, SI_BT
109};
110
3ae0e0f9
CM
111struct ipmi_device_id {
112 unsigned char device_id;
113 unsigned char device_revision;
114 unsigned char firmware_revision_1;
115 unsigned char firmware_revision_2;
116 unsigned char ipmi_version;
117 unsigned char additional_device_support;
118 unsigned char manufacturer_id[3];
119 unsigned char product_id[2];
120 unsigned char aux_firmware_revision[4];
121} __attribute__((packed));
122
123#define ipmi_version_major(v) ((v)->ipmi_version & 0xf)
124#define ipmi_version_minor(v) ((v)->ipmi_version >> 4)
125
1da177e4
LT
126struct smi_info
127{
128 ipmi_smi_t intf;
129 struct si_sm_data *si_sm;
130 struct si_sm_handlers *handlers;
131 enum si_type si_type;
132 spinlock_t si_lock;
133 spinlock_t msg_lock;
134 struct list_head xmit_msgs;
135 struct list_head hp_xmit_msgs;
136 struct ipmi_smi_msg *curr_msg;
137 enum si_intf_state si_state;
138
139 /* Used to handle the various types of I/O that can occur with
140 IPMI */
141 struct si_sm_io io;
142 int (*io_setup)(struct smi_info *info);
143 void (*io_cleanup)(struct smi_info *info);
144 int (*irq_setup)(struct smi_info *info);
145 void (*irq_cleanup)(struct smi_info *info);
146 unsigned int io_size;
147
3ae0e0f9
CM
148 /* Per-OEM handler, called from handle_flags().
149 Returns 1 when handle_flags() needs to be re-run
150 or 0 indicating it set si_state itself.
151 */
152 int (*oem_data_avail_handler)(struct smi_info *smi_info);
153
1da177e4
LT
154 /* Flags from the last GET_MSG_FLAGS command, used when an ATTN
155 is set to hold the flags until we are done handling everything
156 from the flags. */
157#define RECEIVE_MSG_AVAIL 0x01
158#define EVENT_MSG_BUFFER_FULL 0x02
159#define WDT_PRE_TIMEOUT_INT 0x08
3ae0e0f9
CM
160#define OEM0_DATA_AVAIL 0x20
161#define OEM1_DATA_AVAIL 0x40
162#define OEM2_DATA_AVAIL 0x80
163#define OEM_DATA_AVAIL (OEM0_DATA_AVAIL | \
164 OEM1_DATA_AVAIL | \
165 OEM2_DATA_AVAIL)
1da177e4
LT
166 unsigned char msg_flags;
167
168 /* If set to true, this will request events the next time the
169 state machine is idle. */
170 atomic_t req_events;
171
172 /* If true, run the state machine to completion on every send
173 call. Generally used after a panic to make sure stuff goes
174 out. */
175 int run_to_completion;
176
177 /* The I/O port of an SI interface. */
178 int port;
179
180 /* The space between start addresses of the two ports. For
181 instance, if the first port is 0xca2 and the spacing is 4, then
182 the second port is 0xca6. */
183 unsigned int spacing;
184
185 /* zero if no irq; */
186 int irq;
187
188 /* The timer for this si. */
189 struct timer_list si_timer;
190
191 /* The time (in jiffies) the last timeout occurred at. */
192 unsigned long last_timeout_jiffies;
193
194 /* Used to gracefully stop the timer without race conditions. */
195 volatile int stop_operation;
196 volatile int timer_stopped;
197
198 /* The driver will disable interrupts when it gets into a
199 situation where it cannot handle messages due to lack of
200 memory. Once that situation clears up, it will re-enable
201 interrupts. */
202 int interrupt_disabled;
203
3ae0e0f9 204 struct ipmi_device_id device_id;
1da177e4
LT
205
206 /* Slave address, could be reported from DMI. */
207 unsigned char slave_addr;
208
209 /* Counters and things for the proc filesystem. */
210 spinlock_t count_lock;
211 unsigned long short_timeouts;
212 unsigned long long_timeouts;
213 unsigned long timeout_restarts;
214 unsigned long idles;
215 unsigned long interrupts;
216 unsigned long attentions;
217 unsigned long flag_fetches;
218 unsigned long hosed_count;
219 unsigned long complete_transactions;
220 unsigned long events;
221 unsigned long watchdog_pretimeouts;
222 unsigned long incoming_messages;
223};
224
225static void si_restart_short_timer(struct smi_info *smi_info);
226
227static void deliver_recv_msg(struct smi_info *smi_info,
228 struct ipmi_smi_msg *msg)
229{
230 /* Deliver the message to the upper layer with the lock
231 released. */
232 spin_unlock(&(smi_info->si_lock));
233 ipmi_smi_msg_received(smi_info->intf, msg);
234 spin_lock(&(smi_info->si_lock));
235}
236
237static void return_hosed_msg(struct smi_info *smi_info)
238{
239 struct ipmi_smi_msg *msg = smi_info->curr_msg;
240
241 /* Make it a reponse */
242 msg->rsp[0] = msg->data[0] | 4;
243 msg->rsp[1] = msg->data[1];
244 msg->rsp[2] = 0xFF; /* Unknown error. */
245 msg->rsp_size = 3;
246
247 smi_info->curr_msg = NULL;
248 deliver_recv_msg(smi_info, msg);
249}
250
251static enum si_sm_result start_next_msg(struct smi_info *smi_info)
252{
253 int rv;
254 struct list_head *entry = NULL;
255#ifdef DEBUG_TIMING
256 struct timeval t;
257#endif
258
259 /* No need to save flags, we aleady have interrupts off and we
260 already hold the SMI lock. */
261 spin_lock(&(smi_info->msg_lock));
262
263 /* Pick the high priority queue first. */
264 if (! list_empty(&(smi_info->hp_xmit_msgs))) {
265 entry = smi_info->hp_xmit_msgs.next;
266 } else if (! list_empty(&(smi_info->xmit_msgs))) {
267 entry = smi_info->xmit_msgs.next;
268 }
269
e8b33617 270 if (! entry) {
1da177e4
LT
271 smi_info->curr_msg = NULL;
272 rv = SI_SM_IDLE;
273 } else {
274 int err;
275
276 list_del(entry);
277 smi_info->curr_msg = list_entry(entry,
278 struct ipmi_smi_msg,
279 link);
280#ifdef DEBUG_TIMING
281 do_gettimeofday(&t);
282 printk("**Start2: %d.%9.9d\n", t.tv_sec, t.tv_usec);
283#endif
284 err = smi_info->handlers->start_transaction(
285 smi_info->si_sm,
286 smi_info->curr_msg->data,
287 smi_info->curr_msg->data_size);
288 if (err) {
289 return_hosed_msg(smi_info);
290 }
291
292 rv = SI_SM_CALL_WITHOUT_DELAY;
293 }
294 spin_unlock(&(smi_info->msg_lock));
295
296 return rv;
297}
298
299static void start_enable_irq(struct smi_info *smi_info)
300{
301 unsigned char msg[2];
302
303 /* If we are enabling interrupts, we have to tell the
304 BMC to use them. */
305 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
306 msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
307
308 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
309 smi_info->si_state = SI_ENABLE_INTERRUPTS1;
310}
311
312static void start_clear_flags(struct smi_info *smi_info)
313{
314 unsigned char msg[3];
315
316 /* Make sure the watchdog pre-timeout flag is not set at startup. */
317 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
318 msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
319 msg[2] = WDT_PRE_TIMEOUT_INT;
320
321 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
322 smi_info->si_state = SI_CLEARING_FLAGS;
323}
324
325/* When we have a situtaion where we run out of memory and cannot
326 allocate messages, we just leave them in the BMC and run the system
327 polled until we can allocate some memory. Once we have some
328 memory, we will re-enable the interrupt. */
329static inline void disable_si_irq(struct smi_info *smi_info)
330{
e8b33617 331 if ((smi_info->irq) && (! smi_info->interrupt_disabled)) {
1da177e4
LT
332 disable_irq_nosync(smi_info->irq);
333 smi_info->interrupt_disabled = 1;
334 }
335}
336
337static inline void enable_si_irq(struct smi_info *smi_info)
338{
339 if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
340 enable_irq(smi_info->irq);
341 smi_info->interrupt_disabled = 0;
342 }
343}
344
345static void handle_flags(struct smi_info *smi_info)
346{
3ae0e0f9 347 retry:
1da177e4
LT
348 if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
349 /* Watchdog pre-timeout */
350 spin_lock(&smi_info->count_lock);
351 smi_info->watchdog_pretimeouts++;
352 spin_unlock(&smi_info->count_lock);
353
354 start_clear_flags(smi_info);
355 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
356 spin_unlock(&(smi_info->si_lock));
357 ipmi_smi_watchdog_pretimeout(smi_info->intf);
358 spin_lock(&(smi_info->si_lock));
359 } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
360 /* Messages available. */
361 smi_info->curr_msg = ipmi_alloc_smi_msg();
e8b33617 362 if (! smi_info->curr_msg) {
1da177e4
LT
363 disable_si_irq(smi_info);
364 smi_info->si_state = SI_NORMAL;
365 return;
366 }
367 enable_si_irq(smi_info);
368
369 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
370 smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
371 smi_info->curr_msg->data_size = 2;
372
373 smi_info->handlers->start_transaction(
374 smi_info->si_sm,
375 smi_info->curr_msg->data,
376 smi_info->curr_msg->data_size);
377 smi_info->si_state = SI_GETTING_MESSAGES;
378 } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
379 /* Events available. */
380 smi_info->curr_msg = ipmi_alloc_smi_msg();
e8b33617 381 if (! smi_info->curr_msg) {
1da177e4
LT
382 disable_si_irq(smi_info);
383 smi_info->si_state = SI_NORMAL;
384 return;
385 }
386 enable_si_irq(smi_info);
387
388 smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
389 smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
390 smi_info->curr_msg->data_size = 2;
391
392 smi_info->handlers->start_transaction(
393 smi_info->si_sm,
394 smi_info->curr_msg->data,
395 smi_info->curr_msg->data_size);
396 smi_info->si_state = SI_GETTING_EVENTS;
3ae0e0f9
CM
397 } else if (smi_info->msg_flags & OEM_DATA_AVAIL) {
398 if (smi_info->oem_data_avail_handler)
399 if (smi_info->oem_data_avail_handler(smi_info))
400 goto retry;
1da177e4
LT
401 } else {
402 smi_info->si_state = SI_NORMAL;
403 }
404}
405
406static void handle_transaction_done(struct smi_info *smi_info)
407{
408 struct ipmi_smi_msg *msg;
409#ifdef DEBUG_TIMING
410 struct timeval t;
411
412 do_gettimeofday(&t);
413 printk("**Done: %d.%9.9d\n", t.tv_sec, t.tv_usec);
414#endif
415 switch (smi_info->si_state) {
416 case SI_NORMAL:
e8b33617 417 if (! smi_info->curr_msg)
1da177e4
LT
418 break;
419
420 smi_info->curr_msg->rsp_size
421 = smi_info->handlers->get_result(
422 smi_info->si_sm,
423 smi_info->curr_msg->rsp,
424 IPMI_MAX_MSG_LENGTH);
425
426 /* Do this here becase deliver_recv_msg() releases the
427 lock, and a new message can be put in during the
428 time the lock is released. */
429 msg = smi_info->curr_msg;
430 smi_info->curr_msg = NULL;
431 deliver_recv_msg(smi_info, msg);
432 break;
433
434 case SI_GETTING_FLAGS:
435 {
436 unsigned char msg[4];
437 unsigned int len;
438
439 /* We got the flags from the SMI, now handle them. */
440 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
441 if (msg[2] != 0) {
442 /* Error fetching flags, just give up for
443 now. */
444 smi_info->si_state = SI_NORMAL;
445 } else if (len < 4) {
446 /* Hmm, no flags. That's technically illegal, but
447 don't use uninitialized data. */
448 smi_info->si_state = SI_NORMAL;
449 } else {
450 smi_info->msg_flags = msg[3];
451 handle_flags(smi_info);
452 }
453 break;
454 }
455
456 case SI_CLEARING_FLAGS:
457 case SI_CLEARING_FLAGS_THEN_SET_IRQ:
458 {
459 unsigned char msg[3];
460
461 /* We cleared the flags. */
462 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
463 if (msg[2] != 0) {
464 /* Error clearing flags */
465 printk(KERN_WARNING
466 "ipmi_si: Error clearing flags: %2.2x\n",
467 msg[2]);
468 }
469 if (smi_info->si_state == SI_CLEARING_FLAGS_THEN_SET_IRQ)
470 start_enable_irq(smi_info);
471 else
472 smi_info->si_state = SI_NORMAL;
473 break;
474 }
475
476 case SI_GETTING_EVENTS:
477 {
478 smi_info->curr_msg->rsp_size
479 = smi_info->handlers->get_result(
480 smi_info->si_sm,
481 smi_info->curr_msg->rsp,
482 IPMI_MAX_MSG_LENGTH);
483
484 /* Do this here becase deliver_recv_msg() releases the
485 lock, and a new message can be put in during the
486 time the lock is released. */
487 msg = smi_info->curr_msg;
488 smi_info->curr_msg = NULL;
489 if (msg->rsp[2] != 0) {
490 /* Error getting event, probably done. */
491 msg->done(msg);
492
493 /* Take off the event flag. */
494 smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
495 handle_flags(smi_info);
496 } else {
497 spin_lock(&smi_info->count_lock);
498 smi_info->events++;
499 spin_unlock(&smi_info->count_lock);
500
501 /* Do this before we deliver the message
502 because delivering the message releases the
503 lock and something else can mess with the
504 state. */
505 handle_flags(smi_info);
506
507 deliver_recv_msg(smi_info, msg);
508 }
509 break;
510 }
511
512 case SI_GETTING_MESSAGES:
513 {
514 smi_info->curr_msg->rsp_size
515 = smi_info->handlers->get_result(
516 smi_info->si_sm,
517 smi_info->curr_msg->rsp,
518 IPMI_MAX_MSG_LENGTH);
519
520 /* Do this here becase deliver_recv_msg() releases the
521 lock, and a new message can be put in during the
522 time the lock is released. */
523 msg = smi_info->curr_msg;
524 smi_info->curr_msg = NULL;
525 if (msg->rsp[2] != 0) {
526 /* Error getting event, probably done. */
527 msg->done(msg);
528
529 /* Take off the msg flag. */
530 smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
531 handle_flags(smi_info);
532 } else {
533 spin_lock(&smi_info->count_lock);
534 smi_info->incoming_messages++;
535 spin_unlock(&smi_info->count_lock);
536
537 /* Do this before we deliver the message
538 because delivering the message releases the
539 lock and something else can mess with the
540 state. */
541 handle_flags(smi_info);
542
543 deliver_recv_msg(smi_info, msg);
544 }
545 break;
546 }
547
548 case SI_ENABLE_INTERRUPTS1:
549 {
550 unsigned char msg[4];
551
552 /* We got the flags from the SMI, now handle them. */
553 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
554 if (msg[2] != 0) {
555 printk(KERN_WARNING
556 "ipmi_si: Could not enable interrupts"
557 ", failed get, using polled mode.\n");
558 smi_info->si_state = SI_NORMAL;
559 } else {
560 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
561 msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
562 msg[2] = msg[3] | 1; /* enable msg queue int */
563 smi_info->handlers->start_transaction(
564 smi_info->si_sm, msg, 3);
565 smi_info->si_state = SI_ENABLE_INTERRUPTS2;
566 }
567 break;
568 }
569
570 case SI_ENABLE_INTERRUPTS2:
571 {
572 unsigned char msg[4];
573
574 /* We got the flags from the SMI, now handle them. */
575 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
576 if (msg[2] != 0) {
577 printk(KERN_WARNING
578 "ipmi_si: Could not enable interrupts"
579 ", failed set, using polled mode.\n");
580 }
581 smi_info->si_state = SI_NORMAL;
582 break;
583 }
584 }
585}
586
587/* Called on timeouts and events. Timeouts should pass the elapsed
588 time, interrupts should pass in zero. */
589static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
590 int time)
591{
592 enum si_sm_result si_sm_result;
593
594 restart:
595 /* There used to be a loop here that waited a little while
596 (around 25us) before giving up. That turned out to be
597 pointless, the minimum delays I was seeing were in the 300us
598 range, which is far too long to wait in an interrupt. So
599 we just run until the state machine tells us something
600 happened or it needs a delay. */
601 si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
602 time = 0;
603 while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
604 {
605 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
606 }
607
608 if (si_sm_result == SI_SM_TRANSACTION_COMPLETE)
609 {
610 spin_lock(&smi_info->count_lock);
611 smi_info->complete_transactions++;
612 spin_unlock(&smi_info->count_lock);
613
614 handle_transaction_done(smi_info);
615 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
616 }
617 else if (si_sm_result == SI_SM_HOSED)
618 {
619 spin_lock(&smi_info->count_lock);
620 smi_info->hosed_count++;
621 spin_unlock(&smi_info->count_lock);
622
623 /* Do the before return_hosed_msg, because that
624 releases the lock. */
625 smi_info->si_state = SI_NORMAL;
626 if (smi_info->curr_msg != NULL) {
627 /* If we were handling a user message, format
628 a response to send to the upper layer to
629 tell it about the error. */
630 return_hosed_msg(smi_info);
631 }
632 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
633 }
634
635 /* We prefer handling attn over new messages. */
636 if (si_sm_result == SI_SM_ATTN)
637 {
638 unsigned char msg[2];
639
640 spin_lock(&smi_info->count_lock);
641 smi_info->attentions++;
642 spin_unlock(&smi_info->count_lock);
643
644 /* Got a attn, send down a get message flags to see
645 what's causing it. It would be better to handle
646 this in the upper layer, but due to the way
647 interrupts work with the SMI, that's not really
648 possible. */
649 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
650 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
651
652 smi_info->handlers->start_transaction(
653 smi_info->si_sm, msg, 2);
654 smi_info->si_state = SI_GETTING_FLAGS;
655 goto restart;
656 }
657
658 /* If we are currently idle, try to start the next message. */
659 if (si_sm_result == SI_SM_IDLE) {
660 spin_lock(&smi_info->count_lock);
661 smi_info->idles++;
662 spin_unlock(&smi_info->count_lock);
663
664 si_sm_result = start_next_msg(smi_info);
665 if (si_sm_result != SI_SM_IDLE)
666 goto restart;
667 }
668
669 if ((si_sm_result == SI_SM_IDLE)
670 && (atomic_read(&smi_info->req_events)))
671 {
672 /* We are idle and the upper layer requested that I fetch
673 events, so do so. */
674 unsigned char msg[2];
675
676 spin_lock(&smi_info->count_lock);
677 smi_info->flag_fetches++;
678 spin_unlock(&smi_info->count_lock);
679
680 atomic_set(&smi_info->req_events, 0);
681 msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
682 msg[1] = IPMI_GET_MSG_FLAGS_CMD;
683
684 smi_info->handlers->start_transaction(
685 smi_info->si_sm, msg, 2);
686 smi_info->si_state = SI_GETTING_FLAGS;
687 goto restart;
688 }
689
690 return si_sm_result;
691}
692
693static void sender(void *send_info,
694 struct ipmi_smi_msg *msg,
695 int priority)
696{
697 struct smi_info *smi_info = send_info;
698 enum si_sm_result result;
699 unsigned long flags;
700#ifdef DEBUG_TIMING
701 struct timeval t;
702#endif
703
704 spin_lock_irqsave(&(smi_info->msg_lock), flags);
705#ifdef DEBUG_TIMING
706 do_gettimeofday(&t);
707 printk("**Enqueue: %d.%9.9d\n", t.tv_sec, t.tv_usec);
708#endif
709
710 if (smi_info->run_to_completion) {
711 /* If we are running to completion, then throw it in
712 the list and run transactions until everything is
713 clear. Priority doesn't matter here. */
714 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
715
716 /* We have to release the msg lock and claim the smi
717 lock in this case, because of race conditions. */
718 spin_unlock_irqrestore(&(smi_info->msg_lock), flags);
719
720 spin_lock_irqsave(&(smi_info->si_lock), flags);
721 result = smi_event_handler(smi_info, 0);
722 while (result != SI_SM_IDLE) {
723 udelay(SI_SHORT_TIMEOUT_USEC);
724 result = smi_event_handler(smi_info,
725 SI_SHORT_TIMEOUT_USEC);
726 }
727 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
728 return;
729 } else {
730 if (priority > 0) {
731 list_add_tail(&(msg->link), &(smi_info->hp_xmit_msgs));
732 } else {
733 list_add_tail(&(msg->link), &(smi_info->xmit_msgs));
734 }
735 }
736 spin_unlock_irqrestore(&(smi_info->msg_lock), flags);
737
738 spin_lock_irqsave(&(smi_info->si_lock), flags);
739 if ((smi_info->si_state == SI_NORMAL)
740 && (smi_info->curr_msg == NULL))
741 {
742 start_next_msg(smi_info);
743 si_restart_short_timer(smi_info);
744 }
745 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
746}
747
748static void set_run_to_completion(void *send_info, int i_run_to_completion)
749{
750 struct smi_info *smi_info = send_info;
751 enum si_sm_result result;
752 unsigned long flags;
753
754 spin_lock_irqsave(&(smi_info->si_lock), flags);
755
756 smi_info->run_to_completion = i_run_to_completion;
757 if (i_run_to_completion) {
758 result = smi_event_handler(smi_info, 0);
759 while (result != SI_SM_IDLE) {
760 udelay(SI_SHORT_TIMEOUT_USEC);
761 result = smi_event_handler(smi_info,
762 SI_SHORT_TIMEOUT_USEC);
763 }
764 }
765
766 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
767}
768
769static void poll(void *send_info)
770{
771 struct smi_info *smi_info = send_info;
772
773 smi_event_handler(smi_info, 0);
774}
775
776static void request_events(void *send_info)
777{
778 struct smi_info *smi_info = send_info;
779
780 atomic_set(&smi_info->req_events, 1);
781}
782
783static int initialized = 0;
784
785/* Must be called with interrupts off and with the si_lock held. */
786static void si_restart_short_timer(struct smi_info *smi_info)
787{
788#if defined(CONFIG_HIGH_RES_TIMERS)
789 unsigned long flags;
790 unsigned long jiffies_now;
75b0768a 791 unsigned long seq;
1da177e4
LT
792
793 if (del_timer(&(smi_info->si_timer))) {
794 /* If we don't delete the timer, then it will go off
795 immediately, anyway. So we only process if we
796 actually delete the timer. */
797
75b0768a
CM
798 do {
799 seq = read_seqbegin_irqsave(&xtime_lock, flags);
800 jiffies_now = jiffies;
801 smi_info->si_timer.expires = jiffies_now;
802 smi_info->si_timer.arch_cycle_expires
803 = get_arch_cycles(jiffies_now);
804 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
1da177e4
LT
805
806 add_usec_to_timer(&smi_info->si_timer, SI_SHORT_TIMEOUT_USEC);
807
808 add_timer(&(smi_info->si_timer));
809 spin_lock_irqsave(&smi_info->count_lock, flags);
810 smi_info->timeout_restarts++;
811 spin_unlock_irqrestore(&smi_info->count_lock, flags);
812 }
813#endif
814}
815
816static void smi_timeout(unsigned long data)
817{
818 struct smi_info *smi_info = (struct smi_info *) data;
819 enum si_sm_result smi_result;
820 unsigned long flags;
821 unsigned long jiffies_now;
822 unsigned long time_diff;
823#ifdef DEBUG_TIMING
824 struct timeval t;
825#endif
826
827 if (smi_info->stop_operation) {
828 smi_info->timer_stopped = 1;
829 return;
830 }
831
832 spin_lock_irqsave(&(smi_info->si_lock), flags);
833#ifdef DEBUG_TIMING
834 do_gettimeofday(&t);
835 printk("**Timer: %d.%9.9d\n", t.tv_sec, t.tv_usec);
836#endif
837 jiffies_now = jiffies;
838 time_diff = ((jiffies_now - smi_info->last_timeout_jiffies)
839 * SI_USEC_PER_JIFFY);
840 smi_result = smi_event_handler(smi_info, time_diff);
841
842 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
843
844 smi_info->last_timeout_jiffies = jiffies_now;
845
846 if ((smi_info->irq) && (! smi_info->interrupt_disabled)) {
847 /* Running with interrupts, only do long timeouts. */
848 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
849 spin_lock_irqsave(&smi_info->count_lock, flags);
850 smi_info->long_timeouts++;
851 spin_unlock_irqrestore(&smi_info->count_lock, flags);
852 goto do_add_timer;
853 }
854
855 /* If the state machine asks for a short delay, then shorten
856 the timer timeout. */
857 if (smi_result == SI_SM_CALL_WITH_DELAY) {
75b0768a
CM
858#if defined(CONFIG_HIGH_RES_TIMERS)
859 unsigned long seq;
860#endif
1da177e4
LT
861 spin_lock_irqsave(&smi_info->count_lock, flags);
862 smi_info->short_timeouts++;
863 spin_unlock_irqrestore(&smi_info->count_lock, flags);
864#if defined(CONFIG_HIGH_RES_TIMERS)
75b0768a
CM
865 do {
866 seq = read_seqbegin_irqsave(&xtime_lock, flags);
867 smi_info->si_timer.expires = jiffies;
868 smi_info->si_timer.arch_cycle_expires
869 = get_arch_cycles(smi_info->si_timer.expires);
870 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
1da177e4
LT
871 add_usec_to_timer(&smi_info->si_timer, SI_SHORT_TIMEOUT_USEC);
872#else
873 smi_info->si_timer.expires = jiffies + 1;
874#endif
875 } else {
876 spin_lock_irqsave(&smi_info->count_lock, flags);
877 smi_info->long_timeouts++;
878 spin_unlock_irqrestore(&smi_info->count_lock, flags);
879 smi_info->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
880#if defined(CONFIG_HIGH_RES_TIMERS)
75b0768a 881 smi_info->si_timer.arch_cycle_expires = 0;
1da177e4
LT
882#endif
883 }
884
885 do_add_timer:
886 add_timer(&(smi_info->si_timer));
887}
888
889static irqreturn_t si_irq_handler(int irq, void *data, struct pt_regs *regs)
890{
891 struct smi_info *smi_info = data;
892 unsigned long flags;
893#ifdef DEBUG_TIMING
894 struct timeval t;
895#endif
896
897 spin_lock_irqsave(&(smi_info->si_lock), flags);
898
899 spin_lock(&smi_info->count_lock);
900 smi_info->interrupts++;
901 spin_unlock(&smi_info->count_lock);
902
903 if (smi_info->stop_operation)
904 goto out;
905
906#ifdef DEBUG_TIMING
907 do_gettimeofday(&t);
908 printk("**Interrupt: %d.%9.9d\n", t.tv_sec, t.tv_usec);
909#endif
910 smi_event_handler(smi_info, 0);
911 out:
912 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
913 return IRQ_HANDLED;
914}
915
9dbf68f9
CM
916static irqreturn_t si_bt_irq_handler(int irq, void *data, struct pt_regs *regs)
917{
918 struct smi_info *smi_info = data;
919 /* We need to clear the IRQ flag for the BT interface. */
920 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
921 IPMI_BT_INTMASK_CLEAR_IRQ_BIT
922 | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
923 return si_irq_handler(irq, data, regs);
924}
925
926
1da177e4
LT
927static struct ipmi_smi_handlers handlers =
928{
929 .owner = THIS_MODULE,
930 .sender = sender,
931 .request_events = request_events,
932 .set_run_to_completion = set_run_to_completion,
933 .poll = poll,
934};
935
936/* There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
937 a default IO port, and 1 ACPI/SPMI address. That sets SI_MAX_DRIVERS */
938
939#define SI_MAX_PARMS 4
940#define SI_MAX_DRIVERS ((SI_MAX_PARMS * 2) + 2)
941static struct smi_info *smi_infos[SI_MAX_DRIVERS] =
942{ NULL, NULL, NULL, NULL };
943
944#define DEVICE_NAME "ipmi_si"
945
946#define DEFAULT_KCS_IO_PORT 0xca2
947#define DEFAULT_SMIC_IO_PORT 0xca9
948#define DEFAULT_BT_IO_PORT 0xe4
949#define DEFAULT_REGSPACING 1
950
951static int si_trydefaults = 1;
952static char *si_type[SI_MAX_PARMS];
953#define MAX_SI_TYPE_STR 30
954static char si_type_str[MAX_SI_TYPE_STR];
955static unsigned long addrs[SI_MAX_PARMS];
956static int num_addrs;
957static unsigned int ports[SI_MAX_PARMS];
958static int num_ports;
959static int irqs[SI_MAX_PARMS];
960static int num_irqs;
961static int regspacings[SI_MAX_PARMS];
962static int num_regspacings = 0;
963static int regsizes[SI_MAX_PARMS];
964static int num_regsizes = 0;
965static int regshifts[SI_MAX_PARMS];
966static int num_regshifts = 0;
967static int slave_addrs[SI_MAX_PARMS];
968static int num_slave_addrs = 0;
969
970
971module_param_named(trydefaults, si_trydefaults, bool, 0);
972MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
973 " default scan of the KCS and SMIC interface at the standard"
974 " address");
975module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
976MODULE_PARM_DESC(type, "Defines the type of each interface, each"
977 " interface separated by commas. The types are 'kcs',"
978 " 'smic', and 'bt'. For example si_type=kcs,bt will set"
979 " the first interface to kcs and the second to bt");
980module_param_array(addrs, long, &num_addrs, 0);
981MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
982 " addresses separated by commas. Only use if an interface"
983 " is in memory. Otherwise, set it to zero or leave"
984 " it blank.");
985module_param_array(ports, int, &num_ports, 0);
986MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
987 " addresses separated by commas. Only use if an interface"
988 " is a port. Otherwise, set it to zero or leave"
989 " it blank.");
990module_param_array(irqs, int, &num_irqs, 0);
991MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
992 " addresses separated by commas. Only use if an interface"
993 " has an interrupt. Otherwise, set it to zero or leave"
994 " it blank.");
995module_param_array(regspacings, int, &num_regspacings, 0);
996MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
997 " and each successive register used by the interface. For"
998 " instance, if the start address is 0xca2 and the spacing"
999 " is 2, then the second address is at 0xca4. Defaults"
1000 " to 1.");
1001module_param_array(regsizes, int, &num_regsizes, 0);
1002MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1003 " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1004 " 16-bit, 32-bit, or 64-bit register. Use this if you"
1005 " the 8-bit IPMI register has to be read from a larger"
1006 " register.");
1007module_param_array(regshifts, int, &num_regshifts, 0);
1008MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1009 " IPMI register, in bits. For instance, if the data"
1010 " is read from a 32-bit word and the IPMI data is in"
1011 " bit 8-15, then the shift would be 8");
1012module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1013MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1014 " the controller. Normally this is 0x20, but can be"
1015 " overridden by this parm. This is an array indexed"
1016 " by interface number.");
1017
1018
1019#define IPMI_MEM_ADDR_SPACE 1
1020#define IPMI_IO_ADDR_SPACE 2
1021
8466361a 1022#if defined(CONFIG_ACPI) || defined(CONFIG_X86) || defined(CONFIG_PCI)
1da177e4
LT
1023static int is_new_interface(int intf, u8 addr_space, unsigned long base_addr)
1024{
1025 int i;
1026
1027 for (i = 0; i < SI_MAX_PARMS; ++i) {
1028 /* Don't check our address. */
1029 if (i == intf)
1030 continue;
1031 if (si_type[i] != NULL) {
1032 if ((addr_space == IPMI_MEM_ADDR_SPACE &&
1033 base_addr == addrs[i]) ||
1034 (addr_space == IPMI_IO_ADDR_SPACE &&
1035 base_addr == ports[i]))
1036 return 0;
1037 }
1038 else
1039 break;
1040 }
1041
1042 return 1;
1043}
1044#endif
1045
1046static int std_irq_setup(struct smi_info *info)
1047{
1048 int rv;
1049
e8b33617 1050 if (! info->irq)
1da177e4
LT
1051 return 0;
1052
9dbf68f9
CM
1053 if (info->si_type == SI_BT) {
1054 rv = request_irq(info->irq,
1055 si_bt_irq_handler,
1056 SA_INTERRUPT,
1057 DEVICE_NAME,
1058 info);
e8b33617 1059 if (! rv)
9dbf68f9
CM
1060 /* Enable the interrupt in the BT interface. */
1061 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1062 IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1063 } else
1064 rv = request_irq(info->irq,
1065 si_irq_handler,
1066 SA_INTERRUPT,
1067 DEVICE_NAME,
1068 info);
1da177e4
LT
1069 if (rv) {
1070 printk(KERN_WARNING
1071 "ipmi_si: %s unable to claim interrupt %d,"
1072 " running polled\n",
1073 DEVICE_NAME, info->irq);
1074 info->irq = 0;
1075 } else {
1076 printk(" Using irq %d\n", info->irq);
1077 }
1078
1079 return rv;
1080}
1081
1082static void std_irq_cleanup(struct smi_info *info)
1083{
e8b33617 1084 if (! info->irq)
1da177e4
LT
1085 return;
1086
9dbf68f9
CM
1087 if (info->si_type == SI_BT)
1088 /* Disable the interrupt in the BT interface. */
1089 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1da177e4
LT
1090 free_irq(info->irq, info);
1091}
1092
1093static unsigned char port_inb(struct si_sm_io *io, unsigned int offset)
1094{
1095 unsigned int *addr = io->info;
1096
1097 return inb((*addr)+(offset*io->regspacing));
1098}
1099
1100static void port_outb(struct si_sm_io *io, unsigned int offset,
1101 unsigned char b)
1102{
1103 unsigned int *addr = io->info;
1104
1105 outb(b, (*addr)+(offset * io->regspacing));
1106}
1107
1108static unsigned char port_inw(struct si_sm_io *io, unsigned int offset)
1109{
1110 unsigned int *addr = io->info;
1111
1112 return (inw((*addr)+(offset * io->regspacing)) >> io->regshift) & 0xff;
1113}
1114
1115static void port_outw(struct si_sm_io *io, unsigned int offset,
1116 unsigned char b)
1117{
1118 unsigned int *addr = io->info;
1119
1120 outw(b << io->regshift, (*addr)+(offset * io->regspacing));
1121}
1122
1123static unsigned char port_inl(struct si_sm_io *io, unsigned int offset)
1124{
1125 unsigned int *addr = io->info;
1126
1127 return (inl((*addr)+(offset * io->regspacing)) >> io->regshift) & 0xff;
1128}
1129
1130static void port_outl(struct si_sm_io *io, unsigned int offset,
1131 unsigned char b)
1132{
1133 unsigned int *addr = io->info;
1134
1135 outl(b << io->regshift, (*addr)+(offset * io->regspacing));
1136}
1137
1138static void port_cleanup(struct smi_info *info)
1139{
1140 unsigned int *addr = info->io.info;
1141 int mapsize;
1142
1143 if (addr && (*addr)) {
1144 mapsize = ((info->io_size * info->io.regspacing)
1145 - (info->io.regspacing - info->io.regsize));
1146
1147 release_region (*addr, mapsize);
1148 }
1149 kfree(info);
1150}
1151
1152static int port_setup(struct smi_info *info)
1153{
1154 unsigned int *addr = info->io.info;
1155 int mapsize;
1156
e8b33617 1157 if (! addr || (! *addr))
1da177e4
LT
1158 return -ENODEV;
1159
1160 info->io_cleanup = port_cleanup;
1161
1162 /* Figure out the actual inb/inw/inl/etc routine to use based
1163 upon the register size. */
1164 switch (info->io.regsize) {
1165 case 1:
1166 info->io.inputb = port_inb;
1167 info->io.outputb = port_outb;
1168 break;
1169 case 2:
1170 info->io.inputb = port_inw;
1171 info->io.outputb = port_outw;
1172 break;
1173 case 4:
1174 info->io.inputb = port_inl;
1175 info->io.outputb = port_outl;
1176 break;
1177 default:
1178 printk("ipmi_si: Invalid register size: %d\n",
1179 info->io.regsize);
1180 return -EINVAL;
1181 }
1182
1183 /* Calculate the total amount of memory to claim. This is an
1184 * unusual looking calculation, but it avoids claiming any
1185 * more memory than it has to. It will claim everything
1186 * between the first address to the end of the last full
1187 * register. */
1188 mapsize = ((info->io_size * info->io.regspacing)
1189 - (info->io.regspacing - info->io.regsize));
1190
1191 if (request_region(*addr, mapsize, DEVICE_NAME) == NULL)
1192 return -EIO;
1193 return 0;
1194}
1195
1196static int try_init_port(int intf_num, struct smi_info **new_info)
1197{
1198 struct smi_info *info;
1199
e8b33617 1200 if (! ports[intf_num])
1da177e4
LT
1201 return -ENODEV;
1202
e8b33617 1203 if (! is_new_interface(intf_num, IPMI_IO_ADDR_SPACE,
1da177e4
LT
1204 ports[intf_num]))
1205 return -ENODEV;
1206
1207 info = kmalloc(sizeof(*info), GFP_KERNEL);
e8b33617 1208 if (! info) {
1da177e4
LT
1209 printk(KERN_ERR "ipmi_si: Could not allocate SI data (1)\n");
1210 return -ENOMEM;
1211 }
1212 memset(info, 0, sizeof(*info));
1213
1214 info->io_setup = port_setup;
1215 info->io.info = &(ports[intf_num]);
1216 info->io.addr = NULL;
1217 info->io.regspacing = regspacings[intf_num];
e8b33617 1218 if (! info->io.regspacing)
1da177e4
LT
1219 info->io.regspacing = DEFAULT_REGSPACING;
1220 info->io.regsize = regsizes[intf_num];
e8b33617 1221 if (! info->io.regsize)
1da177e4
LT
1222 info->io.regsize = DEFAULT_REGSPACING;
1223 info->io.regshift = regshifts[intf_num];
1224 info->irq = 0;
1225 info->irq_setup = NULL;
1226 *new_info = info;
1227
1228 if (si_type[intf_num] == NULL)
1229 si_type[intf_num] = "kcs";
1230
1231 printk("ipmi_si: Trying \"%s\" at I/O port 0x%x\n",
1232 si_type[intf_num], ports[intf_num]);
1233 return 0;
1234}
1235
1236static unsigned char mem_inb(struct si_sm_io *io, unsigned int offset)
1237{
1238 return readb((io->addr)+(offset * io->regspacing));
1239}
1240
1241static void mem_outb(struct si_sm_io *io, unsigned int offset,
1242 unsigned char b)
1243{
1244 writeb(b, (io->addr)+(offset * io->regspacing));
1245}
1246
1247static unsigned char mem_inw(struct si_sm_io *io, unsigned int offset)
1248{
1249 return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1250 && 0xff;
1251}
1252
1253static void mem_outw(struct si_sm_io *io, unsigned int offset,
1254 unsigned char b)
1255{
1256 writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1257}
1258
1259static unsigned char mem_inl(struct si_sm_io *io, unsigned int offset)
1260{
1261 return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1262 && 0xff;
1263}
1264
1265static void mem_outl(struct si_sm_io *io, unsigned int offset,
1266 unsigned char b)
1267{
1268 writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1269}
1270
1271#ifdef readq
1272static unsigned char mem_inq(struct si_sm_io *io, unsigned int offset)
1273{
1274 return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1275 && 0xff;
1276}
1277
1278static void mem_outq(struct si_sm_io *io, unsigned int offset,
1279 unsigned char b)
1280{
1281 writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1282}
1283#endif
1284
1285static void mem_cleanup(struct smi_info *info)
1286{
1287 unsigned long *addr = info->io.info;
1288 int mapsize;
1289
1290 if (info->io.addr) {
1291 iounmap(info->io.addr);
1292
1293 mapsize = ((info->io_size * info->io.regspacing)
1294 - (info->io.regspacing - info->io.regsize));
1295
1296 release_mem_region(*addr, mapsize);
1297 }
1298 kfree(info);
1299}
1300
1301static int mem_setup(struct smi_info *info)
1302{
1303 unsigned long *addr = info->io.info;
1304 int mapsize;
1305
e8b33617 1306 if (! addr || (! *addr))
1da177e4
LT
1307 return -ENODEV;
1308
1309 info->io_cleanup = mem_cleanup;
1310
1311 /* Figure out the actual readb/readw/readl/etc routine to use based
1312 upon the register size. */
1313 switch (info->io.regsize) {
1314 case 1:
1315 info->io.inputb = mem_inb;
1316 info->io.outputb = mem_outb;
1317 break;
1318 case 2:
1319 info->io.inputb = mem_inw;
1320 info->io.outputb = mem_outw;
1321 break;
1322 case 4:
1323 info->io.inputb = mem_inl;
1324 info->io.outputb = mem_outl;
1325 break;
1326#ifdef readq
1327 case 8:
1328 info->io.inputb = mem_inq;
1329 info->io.outputb = mem_outq;
1330 break;
1331#endif
1332 default:
1333 printk("ipmi_si: Invalid register size: %d\n",
1334 info->io.regsize);
1335 return -EINVAL;
1336 }
1337
1338 /* Calculate the total amount of memory to claim. This is an
1339 * unusual looking calculation, but it avoids claiming any
1340 * more memory than it has to. It will claim everything
1341 * between the first address to the end of the last full
1342 * register. */
1343 mapsize = ((info->io_size * info->io.regspacing)
1344 - (info->io.regspacing - info->io.regsize));
1345
1346 if (request_mem_region(*addr, mapsize, DEVICE_NAME) == NULL)
1347 return -EIO;
1348
1349 info->io.addr = ioremap(*addr, mapsize);
1350 if (info->io.addr == NULL) {
1351 release_mem_region(*addr, mapsize);
1352 return -EIO;
1353 }
1354 return 0;
1355}
1356
1357static int try_init_mem(int intf_num, struct smi_info **new_info)
1358{
1359 struct smi_info *info;
1360
e8b33617 1361 if (! addrs[intf_num])
1da177e4
LT
1362 return -ENODEV;
1363
e8b33617 1364 if (! is_new_interface(intf_num, IPMI_MEM_ADDR_SPACE,
1da177e4
LT
1365 addrs[intf_num]))
1366 return -ENODEV;
1367
1368 info = kmalloc(sizeof(*info), GFP_KERNEL);
e8b33617 1369 if (! info) {
1da177e4
LT
1370 printk(KERN_ERR "ipmi_si: Could not allocate SI data (2)\n");
1371 return -ENOMEM;
1372 }
1373 memset(info, 0, sizeof(*info));
1374
1375 info->io_setup = mem_setup;
1376 info->io.info = &addrs[intf_num];
1377 info->io.addr = NULL;
1378 info->io.regspacing = regspacings[intf_num];
e8b33617 1379 if (! info->io.regspacing)
1da177e4
LT
1380 info->io.regspacing = DEFAULT_REGSPACING;
1381 info->io.regsize = regsizes[intf_num];
e8b33617 1382 if (! info->io.regsize)
1da177e4
LT
1383 info->io.regsize = DEFAULT_REGSPACING;
1384 info->io.regshift = regshifts[intf_num];
1385 info->irq = 0;
1386 info->irq_setup = NULL;
1387 *new_info = info;
1388
1389 if (si_type[intf_num] == NULL)
1390 si_type[intf_num] = "kcs";
1391
1392 printk("ipmi_si: Trying \"%s\" at memory address 0x%lx\n",
1393 si_type[intf_num], addrs[intf_num]);
1394 return 0;
1395}
1396
1397
8466361a 1398#ifdef CONFIG_ACPI
1da177e4
LT
1399
1400#include <linux/acpi.h>
1401
1402/* Once we get an ACPI failure, we don't try any more, because we go
1403 through the tables sequentially. Once we don't find a table, there
1404 are no more. */
1405static int acpi_failure = 0;
1406
1407/* For GPE-type interrupts. */
1408static u32 ipmi_acpi_gpe(void *context)
1409{
1410 struct smi_info *smi_info = context;
1411 unsigned long flags;
1412#ifdef DEBUG_TIMING
1413 struct timeval t;
1414#endif
1415
1416 spin_lock_irqsave(&(smi_info->si_lock), flags);
1417
1418 spin_lock(&smi_info->count_lock);
1419 smi_info->interrupts++;
1420 spin_unlock(&smi_info->count_lock);
1421
1422 if (smi_info->stop_operation)
1423 goto out;
1424
1425#ifdef DEBUG_TIMING
1426 do_gettimeofday(&t);
1427 printk("**ACPI_GPE: %d.%9.9d\n", t.tv_sec, t.tv_usec);
1428#endif
1429 smi_event_handler(smi_info, 0);
1430 out:
1431 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1432
1433 return ACPI_INTERRUPT_HANDLED;
1434}
1435
1436static int acpi_gpe_irq_setup(struct smi_info *info)
1437{
1438 acpi_status status;
1439
e8b33617 1440 if (! info->irq)
1da177e4
LT
1441 return 0;
1442
1443 /* FIXME - is level triggered right? */
1444 status = acpi_install_gpe_handler(NULL,
1445 info->irq,
1446 ACPI_GPE_LEVEL_TRIGGERED,
1447 &ipmi_acpi_gpe,
1448 info);
1449 if (status != AE_OK) {
1450 printk(KERN_WARNING
1451 "ipmi_si: %s unable to claim ACPI GPE %d,"
1452 " running polled\n",
1453 DEVICE_NAME, info->irq);
1454 info->irq = 0;
1455 return -EINVAL;
1456 } else {
1457 printk(" Using ACPI GPE %d\n", info->irq);
1458 return 0;
1459 }
1460}
1461
1462static void acpi_gpe_irq_cleanup(struct smi_info *info)
1463{
e8b33617 1464 if (! info->irq)
1da177e4
LT
1465 return;
1466
1467 acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
1468}
1469
1470/*
1471 * Defined at
1472 * http://h21007.www2.hp.com/dspp/files/unprotected/devresource/Docs/TechPapers/IA64/hpspmi.pdf
1473 */
1474struct SPMITable {
1475 s8 Signature[4];
1476 u32 Length;
1477 u8 Revision;
1478 u8 Checksum;
1479 s8 OEMID[6];
1480 s8 OEMTableID[8];
1481 s8 OEMRevision[4];
1482 s8 CreatorID[4];
1483 s8 CreatorRevision[4];
1484 u8 InterfaceType;
1485 u8 IPMIlegacy;
1486 s16 SpecificationRevision;
1487
1488 /*
1489 * Bit 0 - SCI interrupt supported
1490 * Bit 1 - I/O APIC/SAPIC
1491 */
1492 u8 InterruptType;
1493
1494 /* If bit 0 of InterruptType is set, then this is the SCI
1495 interrupt in the GPEx_STS register. */
1496 u8 GPE;
1497
1498 s16 Reserved;
1499
1500 /* If bit 1 of InterruptType is set, then this is the I/O
1501 APIC/SAPIC interrupt. */
1502 u32 GlobalSystemInterrupt;
1503
1504 /* The actual register address. */
1505 struct acpi_generic_address addr;
1506
1507 u8 UID[4];
1508
1509 s8 spmi_id[1]; /* A '\0' terminated array starts here. */
1510};
1511
1512static int try_init_acpi(int intf_num, struct smi_info **new_info)
1513{
1514 struct smi_info *info;
1515 acpi_status status;
1516 struct SPMITable *spmi;
1517 char *io_type;
1518 u8 addr_space;
1519
4fbd1514
YD
1520 if (acpi_disabled)
1521 return -ENODEV;
1522
1da177e4
LT
1523 if (acpi_failure)
1524 return -ENODEV;
1525
1526 status = acpi_get_firmware_table("SPMI", intf_num+1,
1527 ACPI_LOGICAL_ADDRESSING,
1528 (struct acpi_table_header **) &spmi);
1529 if (status != AE_OK) {
1530 acpi_failure = 1;
1531 return -ENODEV;
1532 }
1533
1534 if (spmi->IPMIlegacy != 1) {
1535 printk(KERN_INFO "IPMI: Bad SPMI legacy %d\n", spmi->IPMIlegacy);
1536 return -ENODEV;
1537 }
1538
1539 if (spmi->addr.address_space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
1540 addr_space = IPMI_MEM_ADDR_SPACE;
1541 else
1542 addr_space = IPMI_IO_ADDR_SPACE;
e8b33617 1543 if (! is_new_interface(-1, addr_space, spmi->addr.address))
1da177e4
LT
1544 return -ENODEV;
1545
e8b33617 1546 if (! spmi->addr.register_bit_width) {
1da177e4
LT
1547 acpi_failure = 1;
1548 return -ENODEV;
1549 }
1550
1551 /* Figure out the interface type. */
1552 switch (spmi->InterfaceType)
1553 {
1554 case 1: /* KCS */
1555 si_type[intf_num] = "kcs";
1556 break;
1557
1558 case 2: /* SMIC */
1559 si_type[intf_num] = "smic";
1560 break;
1561
1562 case 3: /* BT */
1563 si_type[intf_num] = "bt";
1564 break;
1565
1566 default:
1567 printk(KERN_INFO "ipmi_si: Unknown ACPI/SPMI SI type %d\n",
1568 spmi->InterfaceType);
1569 return -EIO;
1570 }
1571
1572 info = kmalloc(sizeof(*info), GFP_KERNEL);
e8b33617 1573 if (! info) {
1da177e4
LT
1574 printk(KERN_ERR "ipmi_si: Could not allocate SI data (3)\n");
1575 return -ENOMEM;
1576 }
1577 memset(info, 0, sizeof(*info));
1578
1579 if (spmi->InterruptType & 1) {
1580 /* We've got a GPE interrupt. */
1581 info->irq = spmi->GPE;
1582 info->irq_setup = acpi_gpe_irq_setup;
1583 info->irq_cleanup = acpi_gpe_irq_cleanup;
1584 } else if (spmi->InterruptType & 2) {
1585 /* We've got an APIC/SAPIC interrupt. */
1586 info->irq = spmi->GlobalSystemInterrupt;
1587 info->irq_setup = std_irq_setup;
1588 info->irq_cleanup = std_irq_cleanup;
1589 } else {
1590 /* Use the default interrupt setting. */
1591 info->irq = 0;
1592 info->irq_setup = NULL;
1593 }
1594
35bc37a0
CM
1595 if (spmi->addr.register_bit_width) {
1596 /* A (hopefully) properly formed register bit width. */
1597 regspacings[intf_num] = spmi->addr.register_bit_width / 8;
1598 info->io.regspacing = spmi->addr.register_bit_width / 8;
1599 } else {
1600 /* Some broken systems get this wrong and set the value
1601 * to zero. Assume it is the default spacing. If that
1602 * is wrong, too bad, the vendor should fix the tables. */
1603 regspacings[intf_num] = DEFAULT_REGSPACING;
1604 info->io.regspacing = DEFAULT_REGSPACING;
1605 }
1da177e4
LT
1606 regsizes[intf_num] = regspacings[intf_num];
1607 info->io.regsize = regsizes[intf_num];
1608 regshifts[intf_num] = spmi->addr.register_bit_offset;
1609 info->io.regshift = regshifts[intf_num];
1610
1611 if (spmi->addr.address_space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
1612 io_type = "memory";
1613 info->io_setup = mem_setup;
1614 addrs[intf_num] = spmi->addr.address;
1615 info->io.info = &(addrs[intf_num]);
1616 } else if (spmi->addr.address_space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
1617 io_type = "I/O";
1618 info->io_setup = port_setup;
1619 ports[intf_num] = spmi->addr.address;
1620 info->io.info = &(ports[intf_num]);
1621 } else {
1622 kfree(info);
1623 printk("ipmi_si: Unknown ACPI I/O Address type\n");
1624 return -EIO;
1625 }
1626
1627 *new_info = info;
1628
1629 printk("ipmi_si: ACPI/SPMI specifies \"%s\" %s SI @ 0x%lx\n",
1630 si_type[intf_num], io_type, (unsigned long) spmi->addr.address);
1631 return 0;
1632}
1633#endif
1634
1635#ifdef CONFIG_X86
1636typedef struct dmi_ipmi_data
1637{
1638 u8 type;
1639 u8 addr_space;
1640 unsigned long base_addr;
1641 u8 irq;
1642 u8 offset;
1643 u8 slave_addr;
1644} dmi_ipmi_data_t;
1645
1646static dmi_ipmi_data_t dmi_data[SI_MAX_DRIVERS];
1647static int dmi_data_entries;
1648
b224cd3a 1649static int __init decode_dmi(struct dmi_header *dm, int intf_num)
1da177e4 1650{
e8b33617 1651 u8 *data = (u8 *)dm;
1da177e4
LT
1652 unsigned long base_addr;
1653 u8 reg_spacing;
b224cd3a 1654 u8 len = dm->length;
1da177e4
LT
1655 dmi_ipmi_data_t *ipmi_data = dmi_data+intf_num;
1656
b224cd3a 1657 ipmi_data->type = data[4];
1da177e4
LT
1658
1659 memcpy(&base_addr, data+8, sizeof(unsigned long));
1660 if (len >= 0x11) {
1661 if (base_addr & 1) {
1662 /* I/O */
1663 base_addr &= 0xFFFE;
1664 ipmi_data->addr_space = IPMI_IO_ADDR_SPACE;
1665 }
1666 else {
1667 /* Memory */
1668 ipmi_data->addr_space = IPMI_MEM_ADDR_SPACE;
1669 }
1670 /* If bit 4 of byte 0x10 is set, then the lsb for the address
1671 is odd. */
b224cd3a 1672 ipmi_data->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
1da177e4 1673
b224cd3a 1674 ipmi_data->irq = data[0x11];
1da177e4
LT
1675
1676 /* The top two bits of byte 0x10 hold the register spacing. */
b224cd3a 1677 reg_spacing = (data[0x10] & 0xC0) >> 6;
1da177e4
LT
1678 switch(reg_spacing){
1679 case 0x00: /* Byte boundaries */
1680 ipmi_data->offset = 1;
1681 break;
1682 case 0x01: /* 32-bit boundaries */
1683 ipmi_data->offset = 4;
1684 break;
1685 case 0x02: /* 16-byte boundaries */
1686 ipmi_data->offset = 16;
1687 break;
1688 default:
1689 /* Some other interface, just ignore it. */
1690 return -EIO;
1691 }
1692 } else {
1693 /* Old DMI spec. */
92068801
CM
1694 /* Note that technically, the lower bit of the base
1695 * address should be 1 if the address is I/O and 0 if
1696 * the address is in memory. So many systems get that
1697 * wrong (and all that I have seen are I/O) so we just
1698 * ignore that bit and assume I/O. Systems that use
1699 * memory should use the newer spec, anyway. */
1700 ipmi_data->base_addr = base_addr & 0xfffe;
1da177e4
LT
1701 ipmi_data->addr_space = IPMI_IO_ADDR_SPACE;
1702 ipmi_data->offset = 1;
1703 }
1704
b224cd3a 1705 ipmi_data->slave_addr = data[6];
1da177e4
LT
1706
1707 if (is_new_interface(-1, ipmi_data->addr_space,ipmi_data->base_addr)) {
1708 dmi_data_entries++;
1709 return 0;
1710 }
1711
1712 memset(ipmi_data, 0, sizeof(dmi_ipmi_data_t));
1713
1714 return -1;
1715}
1716
b224cd3a 1717static void __init dmi_find_bmc(void)
1da177e4 1718{
b224cd3a 1719 struct dmi_device *dev = NULL;
1da177e4
LT
1720 int intf_num = 0;
1721
b224cd3a
AP
1722 while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
1723 if (intf_num >= SI_MAX_DRIVERS)
1724 break;
1da177e4 1725
b224cd3a 1726 decode_dmi((struct dmi_header *) dev->device_data, intf_num++);
1da177e4 1727 }
1da177e4
LT
1728}
1729
1730static int try_init_smbios(int intf_num, struct smi_info **new_info)
1731{
e8b33617
CM
1732 struct smi_info *info;
1733 dmi_ipmi_data_t *ipmi_data = dmi_data+intf_num;
1734 char *io_type;
1da177e4
LT
1735
1736 if (intf_num >= dmi_data_entries)
1737 return -ENODEV;
1738
e8b33617 1739 switch (ipmi_data->type) {
1da177e4
LT
1740 case 0x01: /* KCS */
1741 si_type[intf_num] = "kcs";
1742 break;
1743 case 0x02: /* SMIC */
1744 si_type[intf_num] = "smic";
1745 break;
1746 case 0x03: /* BT */
1747 si_type[intf_num] = "bt";
1748 break;
1749 default:
1750 return -EIO;
1751 }
1752
1753 info = kmalloc(sizeof(*info), GFP_KERNEL);
e8b33617 1754 if (! info) {
1da177e4
LT
1755 printk(KERN_ERR "ipmi_si: Could not allocate SI data (4)\n");
1756 return -ENOMEM;
1757 }
1758 memset(info, 0, sizeof(*info));
1759
1760 if (ipmi_data->addr_space == 1) {
1761 io_type = "memory";
1762 info->io_setup = mem_setup;
1763 addrs[intf_num] = ipmi_data->base_addr;
1764 info->io.info = &(addrs[intf_num]);
1765 } else if (ipmi_data->addr_space == 2) {
1766 io_type = "I/O";
1767 info->io_setup = port_setup;
1768 ports[intf_num] = ipmi_data->base_addr;
1769 info->io.info = &(ports[intf_num]);
1770 } else {
1771 kfree(info);
1772 printk("ipmi_si: Unknown SMBIOS I/O Address type.\n");
1773 return -EIO;
1774 }
1775
1776 regspacings[intf_num] = ipmi_data->offset;
1777 info->io.regspacing = regspacings[intf_num];
e8b33617 1778 if (! info->io.regspacing)
1da177e4
LT
1779 info->io.regspacing = DEFAULT_REGSPACING;
1780 info->io.regsize = DEFAULT_REGSPACING;
1781 info->io.regshift = regshifts[intf_num];
1782
1783 info->slave_addr = ipmi_data->slave_addr;
1784
1785 irqs[intf_num] = ipmi_data->irq;
1786
1787 *new_info = info;
1788
1789 printk("ipmi_si: Found SMBIOS-specified state machine at %s"
1790 " address 0x%lx, slave address 0x%x\n",
1791 io_type, (unsigned long)ipmi_data->base_addr,
1792 ipmi_data->slave_addr);
1793 return 0;
1794}
1795#endif /* CONFIG_X86 */
1796
1797#ifdef CONFIG_PCI
1798
1799#define PCI_ERMC_CLASSCODE 0x0C0700
1800#define PCI_HP_VENDOR_ID 0x103C
1801#define PCI_MMC_DEVICE_ID 0x121A
1802#define PCI_MMC_ADDR_CW 0x10
1803
1804/* Avoid more than one attempt to probe pci smic. */
1805static int pci_smic_checked = 0;
1806
1807static int find_pci_smic(int intf_num, struct smi_info **new_info)
1808{
1809 struct smi_info *info;
1810 int error;
1811 struct pci_dev *pci_dev = NULL;
1812 u16 base_addr;
1813 int fe_rmc = 0;
1814
1815 if (pci_smic_checked)
1816 return -ENODEV;
1817
1818 pci_smic_checked = 1;
1819
e8b33617
CM
1820 pci_dev = pci_get_device(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID, NULL);
1821 if (! pci_dev) {
1822 pci_dev = pci_get_class(PCI_ERMC_CLASSCODE, NULL);
1823 if (pci_dev && (pci_dev->subsystem_vendor == PCI_HP_VENDOR_ID))
1824 fe_rmc = 1;
1825 else
1826 return -ENODEV;
1827 }
1da177e4
LT
1828
1829 error = pci_read_config_word(pci_dev, PCI_MMC_ADDR_CW, &base_addr);
1830 if (error)
1831 {
1832 pci_dev_put(pci_dev);
1833 printk(KERN_ERR
1834 "ipmi_si: pci_read_config_word() failed (%d).\n",
1835 error);
1836 return -ENODEV;
1837 }
1838
1839 /* Bit 0: 1 specifies programmed I/O, 0 specifies memory mapped I/O */
e8b33617 1840 if (! (base_addr & 0x0001))
1da177e4
LT
1841 {
1842 pci_dev_put(pci_dev);
1843 printk(KERN_ERR
1844 "ipmi_si: memory mapped I/O not supported for PCI"
1845 " smic.\n");
1846 return -ENODEV;
1847 }
1848
1849 base_addr &= 0xFFFE;
e8b33617 1850 if (! fe_rmc)
1da177e4
LT
1851 /* Data register starts at base address + 1 in eRMC */
1852 ++base_addr;
1853
e8b33617 1854 if (! is_new_interface(-1, IPMI_IO_ADDR_SPACE, base_addr)) {
1da177e4
LT
1855 pci_dev_put(pci_dev);
1856 return -ENODEV;
1857 }
1858
1859 info = kmalloc(sizeof(*info), GFP_KERNEL);
e8b33617 1860 if (! info) {
1da177e4
LT
1861 pci_dev_put(pci_dev);
1862 printk(KERN_ERR "ipmi_si: Could not allocate SI data (5)\n");
1863 return -ENOMEM;
1864 }
1865 memset(info, 0, sizeof(*info));
1866
1867 info->io_setup = port_setup;
1868 ports[intf_num] = base_addr;
1869 info->io.info = &(ports[intf_num]);
1870 info->io.regspacing = regspacings[intf_num];
e8b33617 1871 if (! info->io.regspacing)
1da177e4
LT
1872 info->io.regspacing = DEFAULT_REGSPACING;
1873 info->io.regsize = DEFAULT_REGSPACING;
1874 info->io.regshift = regshifts[intf_num];
1875
1876 *new_info = info;
1877
1878 irqs[intf_num] = pci_dev->irq;
1879 si_type[intf_num] = "smic";
1880
1881 printk("ipmi_si: Found PCI SMIC at I/O address 0x%lx\n",
1882 (long unsigned int) base_addr);
1883
1884 pci_dev_put(pci_dev);
1885 return 0;
1886}
1887#endif /* CONFIG_PCI */
1888
1889static int try_init_plug_and_play(int intf_num, struct smi_info **new_info)
1890{
1891#ifdef CONFIG_PCI
e8b33617 1892 if (find_pci_smic(intf_num, new_info) == 0)
1da177e4
LT
1893 return 0;
1894#endif
1895 /* Include other methods here. */
1896
1897 return -ENODEV;
1898}
1899
1900
1901static int try_get_dev_id(struct smi_info *smi_info)
1902{
1903 unsigned char msg[2];
1904 unsigned char *resp;
1905 unsigned long resp_len;
1906 enum si_sm_result smi_result;
1907 int rv = 0;
1908
1909 resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
e8b33617 1910 if (! resp)
1da177e4
LT
1911 return -ENOMEM;
1912
1913 /* Do a Get Device ID command, since it comes back with some
1914 useful info. */
1915 msg[0] = IPMI_NETFN_APP_REQUEST << 2;
1916 msg[1] = IPMI_GET_DEVICE_ID_CMD;
1917 smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
1918
1919 smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
1920 for (;;)
1921 {
1922 if (smi_result == SI_SM_CALL_WITH_DELAY) {
da4cd8df 1923 schedule_timeout_uninterruptible(1);
1da177e4
LT
1924 smi_result = smi_info->handlers->event(
1925 smi_info->si_sm, 100);
1926 }
1927 else if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1928 {
1929 smi_result = smi_info->handlers->event(
1930 smi_info->si_sm, 0);
1931 }
1932 else
1933 break;
1934 }
1935 if (smi_result == SI_SM_HOSED) {
1936 /* We couldn't get the state machine to run, so whatever's at
1937 the port is probably not an IPMI SMI interface. */
1938 rv = -ENODEV;
1939 goto out;
1940 }
1941
1942 /* Otherwise, we got some data. */
1943 resp_len = smi_info->handlers->get_result(smi_info->si_sm,
1944 resp, IPMI_MAX_MSG_LENGTH);
1945 if (resp_len < 6) {
1946 /* That's odd, it should be longer. */
1947 rv = -EINVAL;
1948 goto out;
1949 }
1950
1951 if ((resp[1] != IPMI_GET_DEVICE_ID_CMD) || (resp[2] != 0)) {
1952 /* That's odd, it shouldn't be able to fail. */
1953 rv = -EINVAL;
1954 goto out;
1955 }
1956
1957 /* Record info from the get device id, in case we need it. */
3ae0e0f9
CM
1958 memcpy(&smi_info->device_id, &resp[3],
1959 min_t(unsigned long, resp_len-3, sizeof(smi_info->device_id)));
1da177e4
LT
1960
1961 out:
1962 kfree(resp);
1963 return rv;
1964}
1965
1966static int type_file_read_proc(char *page, char **start, off_t off,
1967 int count, int *eof, void *data)
1968{
1969 char *out = (char *) page;
1970 struct smi_info *smi = data;
1971
1972 switch (smi->si_type) {
1973 case SI_KCS:
1974 return sprintf(out, "kcs\n");
1975 case SI_SMIC:
1976 return sprintf(out, "smic\n");
1977 case SI_BT:
1978 return sprintf(out, "bt\n");
1979 default:
1980 return 0;
1981 }
1982}
1983
1984static int stat_file_read_proc(char *page, char **start, off_t off,
1985 int count, int *eof, void *data)
1986{
1987 char *out = (char *) page;
1988 struct smi_info *smi = data;
1989
1990 out += sprintf(out, "interrupts_enabled: %d\n",
e8b33617 1991 smi->irq && ! smi->interrupt_disabled);
1da177e4
LT
1992 out += sprintf(out, "short_timeouts: %ld\n",
1993 smi->short_timeouts);
1994 out += sprintf(out, "long_timeouts: %ld\n",
1995 smi->long_timeouts);
1996 out += sprintf(out, "timeout_restarts: %ld\n",
1997 smi->timeout_restarts);
1998 out += sprintf(out, "idles: %ld\n",
1999 smi->idles);
2000 out += sprintf(out, "interrupts: %ld\n",
2001 smi->interrupts);
2002 out += sprintf(out, "attentions: %ld\n",
2003 smi->attentions);
2004 out += sprintf(out, "flag_fetches: %ld\n",
2005 smi->flag_fetches);
2006 out += sprintf(out, "hosed_count: %ld\n",
2007 smi->hosed_count);
2008 out += sprintf(out, "complete_transactions: %ld\n",
2009 smi->complete_transactions);
2010 out += sprintf(out, "events: %ld\n",
2011 smi->events);
2012 out += sprintf(out, "watchdog_pretimeouts: %ld\n",
2013 smi->watchdog_pretimeouts);
2014 out += sprintf(out, "incoming_messages: %ld\n",
2015 smi->incoming_messages);
2016
2017 return (out - ((char *) page));
2018}
2019
3ae0e0f9
CM
2020/*
2021 * oem_data_avail_to_receive_msg_avail
2022 * @info - smi_info structure with msg_flags set
2023 *
2024 * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
2025 * Returns 1 indicating need to re-run handle_flags().
2026 */
2027static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
2028{
e8b33617
CM
2029 smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
2030 RECEIVE_MSG_AVAIL);
3ae0e0f9
CM
2031 return 1;
2032}
2033
2034/*
2035 * setup_dell_poweredge_oem_data_handler
2036 * @info - smi_info.device_id must be populated
2037 *
2038 * Systems that match, but have firmware version < 1.40 may assert
2039 * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
2040 * it's safe to do so. Such systems will de-assert OEM1_DATA_AVAIL
2041 * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
2042 * as RECEIVE_MSG_AVAIL instead.
2043 *
2044 * As Dell has no plans to release IPMI 1.5 firmware that *ever*
2045 * assert the OEM[012] bits, and if it did, the driver would have to
2046 * change to handle that properly, we don't actually check for the
2047 * firmware version.
2048 * Device ID = 0x20 BMC on PowerEdge 8G servers
2049 * Device Revision = 0x80
2050 * Firmware Revision1 = 0x01 BMC version 1.40
2051 * Firmware Revision2 = 0x40 BCD encoded
2052 * IPMI Version = 0x51 IPMI 1.5
2053 * Manufacturer ID = A2 02 00 Dell IANA
2054 *
2055 */
2056#define DELL_POWEREDGE_8G_BMC_DEVICE_ID 0x20
2057#define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
2058#define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
2059#define DELL_IANA_MFR_ID {0xA2, 0x02, 0x00}
2060static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
2061{
2062 struct ipmi_device_id *id = &smi_info->device_id;
2063 const char mfr[3]=DELL_IANA_MFR_ID;
e8b33617
CM
2064 if (! memcmp(mfr, id->manufacturer_id, sizeof(mfr))
2065 && (id->device_id == DELL_POWEREDGE_8G_BMC_DEVICE_ID)
2066 && (id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV)
2067 && (id->ipmi_version == DELL_POWEREDGE_8G_BMC_IPMI_VERSION))
2068 {
3ae0e0f9
CM
2069 smi_info->oem_data_avail_handler =
2070 oem_data_avail_to_receive_msg_avail;
2071 }
2072}
2073
2074/*
2075 * setup_oem_data_handler
2076 * @info - smi_info.device_id must be filled in already
2077 *
2078 * Fills in smi_info.device_id.oem_data_available_handler
2079 * when we know what function to use there.
2080 */
2081
2082static void setup_oem_data_handler(struct smi_info *smi_info)
2083{
2084 setup_dell_poweredge_oem_data_handler(smi_info);
2085}
2086
1da177e4
LT
2087/* Returns 0 if initialized, or negative on an error. */
2088static int init_one_smi(int intf_num, struct smi_info **smi)
2089{
2090 int rv;
2091 struct smi_info *new_smi;
2092
2093
2094 rv = try_init_mem(intf_num, &new_smi);
2095 if (rv)
2096 rv = try_init_port(intf_num, &new_smi);
8466361a 2097#ifdef CONFIG_ACPI
e8b33617 2098 if (rv && si_trydefaults)
1da177e4 2099 rv = try_init_acpi(intf_num, &new_smi);
1da177e4
LT
2100#endif
2101#ifdef CONFIG_X86
e8b33617 2102 if (rv && si_trydefaults)
1da177e4 2103 rv = try_init_smbios(intf_num, &new_smi);
1da177e4 2104#endif
e8b33617 2105 if (rv && si_trydefaults)
1da177e4 2106 rv = try_init_plug_and_play(intf_num, &new_smi);
1da177e4
LT
2107
2108 if (rv)
2109 return rv;
2110
2111 /* So we know not to free it unless we have allocated one. */
2112 new_smi->intf = NULL;
2113 new_smi->si_sm = NULL;
2114 new_smi->handlers = NULL;
2115
e8b33617 2116 if (! new_smi->irq_setup) {
1da177e4
LT
2117 new_smi->irq = irqs[intf_num];
2118 new_smi->irq_setup = std_irq_setup;
2119 new_smi->irq_cleanup = std_irq_cleanup;
2120 }
2121
2122 /* Default to KCS if no type is specified. */
2123 if (si_type[intf_num] == NULL) {
2124 if (si_trydefaults)
2125 si_type[intf_num] = "kcs";
2126 else {
2127 rv = -EINVAL;
2128 goto out_err;
2129 }
2130 }
2131
2132 /* Set up the state machine to use. */
2133 if (strcmp(si_type[intf_num], "kcs") == 0) {
2134 new_smi->handlers = &kcs_smi_handlers;
2135 new_smi->si_type = SI_KCS;
2136 } else if (strcmp(si_type[intf_num], "smic") == 0) {
2137 new_smi->handlers = &smic_smi_handlers;
2138 new_smi->si_type = SI_SMIC;
2139 } else if (strcmp(si_type[intf_num], "bt") == 0) {
2140 new_smi->handlers = &bt_smi_handlers;
2141 new_smi->si_type = SI_BT;
2142 } else {
2143 /* No support for anything else yet. */
2144 rv = -EIO;
2145 goto out_err;
2146 }
2147
2148 /* Allocate the state machine's data and initialize it. */
2149 new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
e8b33617 2150 if (! new_smi->si_sm) {
1da177e4
LT
2151 printk(" Could not allocate state machine memory\n");
2152 rv = -ENOMEM;
2153 goto out_err;
2154 }
2155 new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
2156 &new_smi->io);
2157
2158 /* Now that we know the I/O size, we can set up the I/O. */
2159 rv = new_smi->io_setup(new_smi);
2160 if (rv) {
2161 printk(" Could not set up I/O space\n");
2162 goto out_err;
2163 }
2164
2165 spin_lock_init(&(new_smi->si_lock));
2166 spin_lock_init(&(new_smi->msg_lock));
2167 spin_lock_init(&(new_smi->count_lock));
2168
2169 /* Do low-level detection first. */
2170 if (new_smi->handlers->detect(new_smi->si_sm)) {
2171 rv = -ENODEV;
2172 goto out_err;
2173 }
2174
2175 /* Attempt a get device id command. If it fails, we probably
2176 don't have a SMI here. */
2177 rv = try_get_dev_id(new_smi);
2178 if (rv)
2179 goto out_err;
2180
3ae0e0f9
CM
2181 setup_oem_data_handler(new_smi);
2182
1da177e4
LT
2183 /* Try to claim any interrupts. */
2184 new_smi->irq_setup(new_smi);
2185
2186 INIT_LIST_HEAD(&(new_smi->xmit_msgs));
2187 INIT_LIST_HEAD(&(new_smi->hp_xmit_msgs));
2188 new_smi->curr_msg = NULL;
2189 atomic_set(&new_smi->req_events, 0);
2190 new_smi->run_to_completion = 0;
2191
2192 new_smi->interrupt_disabled = 0;
2193 new_smi->timer_stopped = 0;
2194 new_smi->stop_operation = 0;
2195
2196 /* Start clearing the flags before we enable interrupts or the
2197 timer to avoid racing with the timer. */
2198 start_clear_flags(new_smi);
2199 /* IRQ is defined to be set when non-zero. */
2200 if (new_smi->irq)
2201 new_smi->si_state = SI_CLEARING_FLAGS_THEN_SET_IRQ;
2202
2203 /* The ipmi_register_smi() code does some operations to
2204 determine the channel information, so we must be ready to
2205 handle operations before it is called. This means we have
2206 to stop the timer if we get an error after this point. */
2207 init_timer(&(new_smi->si_timer));
2208 new_smi->si_timer.data = (long) new_smi;
2209 new_smi->si_timer.function = smi_timeout;
2210 new_smi->last_timeout_jiffies = jiffies;
2211 new_smi->si_timer.expires = jiffies + SI_TIMEOUT_JIFFIES;
2212 add_timer(&(new_smi->si_timer));
2213
2214 rv = ipmi_register_smi(&handlers,
2215 new_smi,
3ae0e0f9
CM
2216 ipmi_version_major(&new_smi->device_id),
2217 ipmi_version_minor(&new_smi->device_id),
1da177e4
LT
2218 new_smi->slave_addr,
2219 &(new_smi->intf));
2220 if (rv) {
2221 printk(KERN_ERR
2222 "ipmi_si: Unable to register device: error %d\n",
2223 rv);
2224 goto out_err_stop_timer;
2225 }
2226
2227 rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
2228 type_file_read_proc, NULL,
2229 new_smi, THIS_MODULE);
2230 if (rv) {
2231 printk(KERN_ERR
2232 "ipmi_si: Unable to create proc entry: %d\n",
2233 rv);
2234 goto out_err_stop_timer;
2235 }
2236
2237 rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
2238 stat_file_read_proc, NULL,
2239 new_smi, THIS_MODULE);
2240 if (rv) {
2241 printk(KERN_ERR
2242 "ipmi_si: Unable to create proc entry: %d\n",
2243 rv);
2244 goto out_err_stop_timer;
2245 }
2246
2247 *smi = new_smi;
2248
2249 printk(" IPMI %s interface initialized\n", si_type[intf_num]);
2250
2251 return 0;
2252
2253 out_err_stop_timer:
2254 new_smi->stop_operation = 1;
2255
2256 /* Wait for the timer to stop. This avoids problems with race
2257 conditions removing the timer here. */
da4cd8df
NA
2258 while (!new_smi->timer_stopped)
2259 schedule_timeout_uninterruptible(1);
1da177e4
LT
2260
2261 out_err:
2262 if (new_smi->intf)
2263 ipmi_unregister_smi(new_smi->intf);
2264
2265 new_smi->irq_cleanup(new_smi);
2266
2267 /* Wait until we know that we are out of any interrupt
2268 handlers might have been running before we freed the
2269 interrupt. */
fbd568a3 2270 synchronize_sched();
1da177e4
LT
2271
2272 if (new_smi->si_sm) {
2273 if (new_smi->handlers)
2274 new_smi->handlers->cleanup(new_smi->si_sm);
2275 kfree(new_smi->si_sm);
2276 }
2277 new_smi->io_cleanup(new_smi);
2278
2279 return rv;
2280}
2281
2282static __init int init_ipmi_si(void)
2283{
2284 int rv = 0;
2285 int pos = 0;
2286 int i;
2287 char *str;
2288
2289 if (initialized)
2290 return 0;
2291 initialized = 1;
2292
2293 /* Parse out the si_type string into its components. */
2294 str = si_type_str;
2295 if (*str != '\0') {
e8b33617 2296 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
1da177e4
LT
2297 si_type[i] = str;
2298 str = strchr(str, ',');
2299 if (str) {
2300 *str = '\0';
2301 str++;
2302 } else {
2303 break;
2304 }
2305 }
2306 }
2307
1fdd75bd 2308 printk(KERN_INFO "IPMI System Interface driver.\n");
1da177e4
LT
2309
2310#ifdef CONFIG_X86
b224cd3a 2311 dmi_find_bmc();
1da177e4
LT
2312#endif
2313
2314 rv = init_one_smi(0, &(smi_infos[pos]));
e8b33617 2315 if (rv && ! ports[0] && si_trydefaults) {
1da177e4
LT
2316 /* If we are trying defaults and the initial port is
2317 not set, then set it. */
2318 si_type[0] = "kcs";
2319 ports[0] = DEFAULT_KCS_IO_PORT;
2320 rv = init_one_smi(0, &(smi_infos[pos]));
2321 if (rv) {
2322 /* No KCS - try SMIC */
2323 si_type[0] = "smic";
2324 ports[0] = DEFAULT_SMIC_IO_PORT;
2325 rv = init_one_smi(0, &(smi_infos[pos]));
2326 }
2327 if (rv) {
2328 /* No SMIC - try BT */
2329 si_type[0] = "bt";
2330 ports[0] = DEFAULT_BT_IO_PORT;
2331 rv = init_one_smi(0, &(smi_infos[pos]));
2332 }
2333 }
2334 if (rv == 0)
2335 pos++;
2336
e8b33617 2337 for (i = 1; i < SI_MAX_PARMS; i++) {
1da177e4
LT
2338 rv = init_one_smi(i, &(smi_infos[pos]));
2339 if (rv == 0)
2340 pos++;
2341 }
2342
2343 if (smi_infos[0] == NULL) {
2344 printk("ipmi_si: Unable to find any System Interface(s)\n");
2345 return -ENODEV;
2346 }
2347
2348 return 0;
2349}
2350module_init(init_ipmi_si);
2351
2352static void __exit cleanup_one_si(struct smi_info *to_clean)
2353{
2354 int rv;
2355 unsigned long flags;
2356
2357 if (! to_clean)
2358 return;
2359
2360 /* Tell the timer and interrupt handlers that we are shutting
2361 down. */
2362 spin_lock_irqsave(&(to_clean->si_lock), flags);
2363 spin_lock(&(to_clean->msg_lock));
2364
2365 to_clean->stop_operation = 1;
2366
2367 to_clean->irq_cleanup(to_clean);
2368
2369 spin_unlock(&(to_clean->msg_lock));
2370 spin_unlock_irqrestore(&(to_clean->si_lock), flags);
2371
2372 /* Wait until we know that we are out of any interrupt
2373 handlers might have been running before we freed the
2374 interrupt. */
fbd568a3 2375 synchronize_sched();
1da177e4
LT
2376
2377 /* Wait for the timer to stop. This avoids problems with race
2378 conditions removing the timer here. */
da4cd8df
NA
2379 while (!to_clean->timer_stopped)
2380 schedule_timeout_uninterruptible(1);
1da177e4
LT
2381
2382 /* Interrupts and timeouts are stopped, now make sure the
2383 interface is in a clean state. */
e8b33617 2384 while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
1da177e4 2385 poll(to_clean);
da4cd8df 2386 schedule_timeout_uninterruptible(1);
1da177e4
LT
2387 }
2388
2389 rv = ipmi_unregister_smi(to_clean->intf);
2390 if (rv) {
2391 printk(KERN_ERR
2392 "ipmi_si: Unable to unregister device: errno=%d\n",
2393 rv);
2394 }
2395
2396 to_clean->handlers->cleanup(to_clean->si_sm);
2397
2398 kfree(to_clean->si_sm);
2399
2400 to_clean->io_cleanup(to_clean);
2401}
2402
2403static __exit void cleanup_ipmi_si(void)
2404{
2405 int i;
2406
e8b33617 2407 if (! initialized)
1da177e4
LT
2408 return;
2409
e8b33617 2410 for (i = 0; i < SI_MAX_DRIVERS; i++) {
1da177e4
LT
2411 cleanup_one_si(smi_infos[i]);
2412 }
2413}
2414module_exit(cleanup_ipmi_si);
2415
2416MODULE_LICENSE("GPL");
1fdd75bd
CM
2417MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
2418MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT system interfaces.");